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Abstract

We propose here an analysis based on syntactic categories and internal
categories of existence properties. These metamathematical properties
are peculiar of constructive theories, since they bring the internal notion
of existence back to the external one, in accordance with the informal
paradigm for constructivism known under the acronym BHK. Category
theory is a powerful tool to analyse this phenomenon, since a category is
an environment which allows to describe effectively internal and external
notions and their relationship.
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1 Existence in constructive mathematics
In his “A Constructive Manifesto”, chapter 1 section 3 p.11 in Bishop and
Bridges (1985), Bishop was clear about his view on existence in mathematics:

Constructive existence is much more restrictive than the ideal
existence of classical mathematics. The only way to show that an
object exists is to give a finite routine for finding it, whereas in
classical mathematics other methods can be used.

This view is clearly in contrast with a majority formalist view, defended e.g. by
Poincaré (Poincaré (1906), troisième article, III, and Troelstra and van Dalen
(1988) p.19), according to which

Existence can mean only one thing: freedom from contradiction.

or by Hilbert (in a letter to Frege, see e.g. p.69 of Shapiro (2005)):

if the arbitrarily given axioms do not contradict one another with
all their consequences, then they are true and the things defined by
them exist.

∗Samuele Maschio, Dipartimento di Matematica “Tullio Levi-Civita”, Padova, Italy
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Indeed, this mainstream attitude directly leads to the identification of ∃xP (x)
with ¬∀x¬P (x) and ¬¬∃xP (x), which is exactly one of the methods to which
Bishop referred to in the quotation above; the position of constructivism towards
these methods is very well expressed by Bridges’ words in Bridges (2008), section
3.1:

how could a proof of the impossibility of the non-existence of a
certain object x describe a mental construction of x?

This strong philosophical (and methodological) constructive view on existence
can be translated in formal mathematical and metamathematical terms, as we
will see in the next sections.

It is sort of intuitive to understand that the constructive notion of exis-
tence is captured by mathematical foundational theories for which the distance
between the mathematical level and the metamathematical one (in which the
first is defined) is minimized. Here we will use the descriptive and expressive
power of category theory to illustrate this fact in a more structured way: we
will move from syntax and mathematical theories to categories and internal cat-
egories, respectively, adopting a methodology similar (to some respects) to that
of algebraic set theory (see e.g. Simpson (1999) or Maschio (2015)).

2 A paradigm for constructive proofs: BHK

In most textbooks about constructive mathematics (e.g. in Troelstra and van
Dalen (1988), chapter 1 section 3 p.9 and in Bridges and Vîţă (2006), chapter
1 section 1.1. p.3), the underlying logical system is explained by means of an
informal interpretation of what is a constructive proof of a compound formula,
known under the name of BHK1. According to this interpretation:

(∧BHK) a proof of P ∧Q is a pair 〈p, q〉 with p a proof of P and q a proof of Q;

(∨BHK) a proof of P∨Q is a pair (i, r) consisting of a proof r and a label i declaring
whether that proof is a proof of P or a proof of Q;

(→BHK) a proof of P → Q is a procedure f turning proofs p of P into proofs f(p)
of Q;

(∃BHK) a proof of ∃xP (x) is a pair 〈a, p〉 consisting of an object a and a proof p
of P (a);

(∀BHK) a proof of ∀xP (x) is a procedure f which associates to each object a a
proof f(a) of P (a).

This interpretation does not say what is a proof of an atomic formula and it
is clearly informal. However, as we will see in the next two sections, there are
at least two ways to make it “formal”: one is syntactical, the other semantical.

1The acronym BHK comes from the names of three mathematicians which contributed to
the constructive approach to mathematics, namely Brouwer, Heyting and Kolmogorov.

2



3 A semantic counterpart of BHK
In order to concretely accomplish BHK, proofs should enjoy at least these two
properties: a pair of proofs must be a proof and some (partial) functions send-
ing proofs into proofs must be proofs. Mathematically, we can render these
requirements as follows: if P is a collection of proofs in BHK sense, then there
must be an injective pairing function pair : P× P→ P, and P must be endowed
with a (partial) function from P to the set of partial functions from P to P.

There is a meaningful structure validating these requirements: natural num-
bers. In fact there is a recursive bijective encoding of pairs of natural numbers
by means of natural numbers (p : (n,m) 7→ 2n(2m + 1) − 1) with projections
p1 and p2, and every natural number n represents a recursive (partial) function
{n} from N to N, whenever a Gödelian encoding is fixed.

Using this structure on natural numbers, one can define the so-called Kleene
realizability which is a rigorous semantical account of BHK for Heyting arith-
metics, where proofs are interpreted as natural numbers. Kleene’s realizability
relation, which is represented by a formula x  P (“x realizes P ”), is defined by
induction on the complexity of the formula P :2

x  P ≡def P for atomic formulas P ;

(∧real) x  P ∧ Q ≡def p1(x)  P ∧ p2(x)  Q, that is, a realizer for P ∧ Q is
a natural number encoding a pair of natural numbers in which the first
component realizes P and the second realizes Q;

(∨real) x  P ∨Q ≡def (p1(x) = 0 ∧ p2(x)  P ) ∨ (p1(x) = 1 ∧ p2(x)  Q), that
is, a realizer for P ∨Q is a natural number enconding a pair in which the
first component is a label which tells whether the second component is a
realizer of P or a realizer of Q;

(→real) x  P → Q ≡def ∀y(y  P → {x}(y) ↓ ∧{x}(y)  Q), that is, a realizer
of P → Q is the code of a recursive function sending realizers of P to
realizers of Q;

(∃real) x  ∃z P ≡def p2(x)  P [p1(x)/z], that is, a realizer of ∃z P is a natural
number encoding a pair in which the second component is a realizer of the
formula obtained from P by substituting z with the first component;

(∀real) x  ∀z P ≡def ∀z({x}(z) ↓ ∧{x}(z)  P ), that is, a realizer of ∀z P is
a code of a total recursive function sending each natural number n to a
realizer of P [n/z].

Using Kleene realizability in Kleene (1945), in Troelstra (1971) it was proved
that HA ` ∃x(x  ϕ) ⇔ HA + ECT0 ` ϕ, where HA is Heyting arithmetic
and ECT0 is the so-called Extended Church’s Thesis (see Troelstra and van

2We always assume x and y not to occur in the formulas of which the realizability relation
is defined.
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Dalen (1988), chapter 4 section 4, p.199). In particular this provides a relative
consistency proof of

HA + “All definable functions between natural numbers are computable”

with respect to HA.3
There are many other notions of realizability arising from similar algebraic

structures, which are called partial combinatory algebras (see e.g. Van Oosten
(2008), chapter 1).

It should also be noticed that there exist in literature Kleene realizability
models for intuitionistic set theories like Intuitionistic Zermelo-Fraenkel set the-
ory IZF (see e.g. Friedman (1973), Rosolini (1982) and McCarty (1986)); how-
ever in these cases one need to modify the interpretations of primitive formulas
and quantifiers; in particular, since a realizer is a natural number, one cannot
incorporate a witness for an existential statement (which would be a set) into
it.

4 A syntactic counterpart of BHK
Per Martin-Löf introduced his intuitionistic type theory (see Martin-Löf (1984),
Nordström et al. (1990)) in the early 70’s. From the first lines of p.1 in Martin-
Löf (1975) one can understand his goal and the particular attention dedicated
to the meaning of existential statements:

The theory of types with which we shall be concerned is intended
to be a full scale system for formalizing intuitionistic mathematics
as developed, for example, in the book by Bishop. The language of
the theory is richer that the languages of traditional intuitionistic
systems in permitting proofs to appear as parts of propositions so
that the propositions of the theory can express properties of proofs
(and not only individuals, like in first order predicate logic). This
makes it possible to strengthen the axioms for existence, disjunction
absurdity and identity. In the case of existence, this possibility seems
first to have been indicated by Howard, whose proposed axioms are
special cases of the existential elimination rule of the present theory.

Concretely, in Martin-Löf type theory a dependent sum type constructor Σ is
defined by the following four rules:

1. a formation rule
Atype B(x) type [x ∈ A]

(Σx ∈ A)B(x) type

3The statement “All definable functions between natural numbers are computable” is not
expressible as a formula in HA, but as a collection of formulas

∀x∃!y ϕ(x, y)→ ∃e∀x(ϕ(x, {e}(x)))

for ϕ(x, y) formula of HA.
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which states that one can form the dependent sum (Σx ∈ A)B(x) of a
family B(x) of types indexed over a type A;

2. an introduction rule
a ∈ A b ∈ B(a)

〈a, b〉 ∈ (Σx ∈ A)B(x)

which states that all pairs 〈a, b〉 with a ∈ A and b ∈ B(a) are terms of
type (Σx ∈ A)B(x);

3. an elimination rule

d ∈ (Σx ∈ A)B(x)
C(z) type [z ∈ (Σx ∈ A)B(x)]
c(x, y) ∈ C(〈x, y〉)[x ∈ A, y ∈ B(x)]

ElΣ(d, c(x, y)) ∈ C(d)

which essentially says that nothing else is in (Σx ∈ A)B(x) (in order to
assign an element of C(d) to each d ∈ (Σx ∈ A)B(x), it is sufficient to
assign an element of C(〈x, y〉) to each x ∈ A and y ∈ B(x));

4. an equality rule

a ∈ A b ∈ B(a)
C(z) type [z ∈ (Σx ∈ A)B(x)]
c(x, y) ∈ C(〈x, y〉)[x ∈ A, y ∈ B(x)]

ElΣ(〈a, b〉, c(x, y)) = c(a, b) ∈ C(〈a, b〉).

One of the key features of Martin-Löf type theory is the so called “propositions-
as-types” paradigm: logic and mathematics are identified. For example, the
dependent sum type Σ is used to represent the existential quantifier ∃, which,
as a consequence, satisfies the following rules, which are obtained or derived from
the rules above, by reading some types P as propositions and by interpreting
the relative judgements of the form p ∈ P as “p is a proof of P ”.

Atype P (x) prop [x ∈ A]

(∃x ∈ A)P (x) prop

a ∈ A b is a proof of P (a)

〈a, b〉 is a proof of (∃x ∈ A)P (x)

d is a proof of (∃x ∈ A)P (x)

π1(d) := ElΣ(d, x(x, y)) ∈ A

d is a proof of (∃x ∈ A)P (x)

π2(d) := ElΣ(d, y(x, y)) is a proof of P (π1(d))

Hence, in Martin-Löf type theory the identification between Σ and ∃ im-
poses the validity of the request about existential statements in BHK. Other
constructors of Martin-Löf type theory are designed in order to accomplish BHK
via the propositions-as-types paradigm.

In other type theories, like in the Minimalist Foundation MF (see Maietti
and Sambin (2005), Maietti (2009)), which was introduced in order to provide
a core foundation compatible with the most relevant classical and intuitionistic,
predicative and impredicative, foundations, the paradigm propositions-as-types
is not adopted. In the formulation of MF there is a distinction between two
kinds of types: logical (propositions and small propositions) and mathematical
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(collections and sets) and the existential propositions satisfy rules which are
similar to those of Σ-types above; however the elimination rule works only to-
ward propositions. Hence one cannot in general produce the witness required
by BHK. However one can show that MF admits a Kleene realizability inter-
pretation (see Maietti and Maschio (2015), Ishihara et al. (2018)).

5 Existence properties
In first-order theories the requirement on existential quantifiers from BHK can-
not be imposed in the formulation of the theory itself, as it is in fact done in
Martin-Löf type theory. However, it can be controlled a posteriori, after being
reformulated as a metamathematical property. The point is to find the right
metamathematical formulation. In the literature there are many proposals; the
difference between them consists in what they consider a witness for an existen-
tial statement should be.

In the first case witnesses are definable entities in the theory.

Definition 5.1. A first-order theory T has the existence property (EP) if
whenever T ` ∃xP (x), there exists a formula Q(x), such that

T ` ∃!xQ(x) ∧ ∀x(Q(x)→ P (x)).

The existence property EP essentially means that if something satisfying a
property is proven to exist in T , then something definable in T can be proven
to satisfy that property.

The intuitionistic set theory IZF (see Friedman and Ščedrov (1985)) and the
constructive Zermelo-Fraenkel set theory CZF (see Swan (2014)) do not have
EP, while, as we will see in a few lines, Heyting arithmetic HA has it. Classical
theories like Peano arithmetic PA and ZF+V=L, that is Zermelo-Fraenkel set
theory with the additional axiom that states that all sets are constructible, also
have EP. If PA ` ∃xP (x), then one can take Q(x) to be P (x) ∧ ∀y(P (y) →
x ≤ y) which works because of the minimum principle which is provable in PA.
In ZF+V=L one can do essentially the same, because there one can define a
well-ordering on the universe class V.

Although at first sight EP could be considered a good candidate to express
the BHK requirement about existential quantifiers, one could object that the
“unique existence” required in the definition could be proven in T by means of
indirect methods, thus producing a witness being only apparently “concrete”.

Another option could be to consider a term existence property in which
witnesses are simply terms not containing variables. However this is not of great
interest in this framework:4 terms representing definable objects can indeed be
added to a first-order theory leaving it essentially equivalent and turning, in the
end, term existence property into existence property.

4The internal language of a doctrine in category theory is an example of framework in
which terms have a clear “stable” meaning, that is “arrows of the base category”, and where,
hence, term existence property would be meaningful.
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Looking for something sufficiently simple to be considered “stable” from the
external point of view, one comes to numerals, that is natural (meta)numbers.
In fact the notion of numeral requires only the ability of juxtaposing symbols,
which is a minimal requirement for being able to formulate a first-order theory.
In this sense we can think of numerals as a good notion of witnesses. However
they can only be used as witnesses for those formulas in which the free variable
represents a natural number in the sense of the theory T :

Definition 5.2. A first-order theory of natural numbers T has the numerical
existence property (nEP) if, for every formula P (x),5 there exists a numeral
n such that T ` P (n), whenever T ` ∃xP (x). T has the unique numerical
existence property (nEP!) if, for every formula P (x), there exists a numeral n
such that T ` P (n), whenever T ` ∃!xP (x).

A first-order theory of sets T , in which the existence of the set ω is provable,
has the numerical existence property (nEP) if, for every formula P (x), there
exists a numeral n such that T ` P (n), whenever T ` ∃x ∈ ω P (x). T has the
unique numerical existence property (nEP!) if, for every formula P (x), there
exists a numeral n such that T ` P (n), whenever T ` ∃!x ∈ ω P (x).6

The numerical existence property nEP essentially means that if a natural num-
ber satisfying a property is proven to exist in T , then a numeral can be proven
to satisfy that property. nEP! essentially means that definable natural numbers
exactly coincide with numerals.

Peano arithmetic PA, Zermelo-Fraenkel set theory ZF and, in general, clas-
sical first-order theories T of numbers or sets (if consistent) do not have the
numerical existence property, not even the unique one. Indeed one can con-
sider an independent sentence I (which exists by Gödel’s first incompleteness
theorem): clearly T ` ∃x((x = 0 ∧ ¬I) ∨ (x = 1 ∧ I)) as a consequence of
the law of excluded middle; however there cannot be a numeral n such that
T ` (n = 0 ∧ ¬I) ∨ (n = 1 ∧ I), since in that case n would be 0 or 1 and
we could hence prove ¬I or I in T . Heyting arithmetic HA has the numer-
ical existence property: this was proven by means of realizability by Kleene
(see Kleene (1945)). CZF and IZF also have the numerical existence property,
as was proven in Rathjen (2005) Theorem 1.2. and in Beeson (1985) chapter
VIII section 9, respectively. Clearly, for first-order theories of natural numbers
nEP ≡ EP + nEP! (hence HA has EP), while for first-order theories of sets
EP + nEP! ⇒ nEP, but the converse does not necessarily hold.

6 Categories of definable classes
The next step consists in organizing the content of a theory in a category of
definable classes and to introduce some useful subcategories.

5When we write a formula P (x1, ..., xn) we mean that P contains at most x1, ..., xn as free
variables.

6In set theory, P (n) is defined as follows: P (0) ≡def ∃x(∀y(y /∈ x) ∧ P (x)) and for every
natural (meta)number n, P (n+ 1) ≡def ∃x(∀y(y ∈ x↔ y ∈ n ∨ y = n) ∧ P (x)).
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We define the category DC[T ] of the definable classes of T as follows:

1. we first fix two variables x, y;

2. the objects of DC[T ] are formal expressions {x|P (x)} where P (x) is a
formula; we identify objects {x|P (x)} and {x|Q(x)} with P (x) and Q(x)
provable to be equivalent in T ;

3. an arrow from {x|P (x)} to {x|Q(x)} is a formula F (x, y), such that

(a) F (x, y) `T P (x) ∧Q(y);

(b) F (x, y) ∧ F (x, z) `T y = z (where z is a fresh variable);

(c) P (x) `T ∃yF (x, y);

and we identify formulas provable to be equivalent in T ;

4. the composition G(x, y) ◦F (x, y) is defined as ∃z(F (x, z)∧G(z, y)) where
z is a fresh variable;

5. the identity arrow of an object {x|P (x)} is defined as the formula P (x)∧
x = y.

For the theory T we can also define a category DCterm[T ] having the same
objects as DC[T ], but for which an arrow from {x|P (x)} to {x|Q(x)} is an
equivalence class [t(x)]'P (x)

of terms t(x),7 such that P (x) `T Q(t(x)) with re-
spect to the relation 'P (x) for which t(x) 'P (x) s(x) when P (x) `T t(x) = s(x);
the composition [s(x)]'Q(x)

◦[t(x)]'P (x)
of two arrows is defined by [s(t(x))]'P (x)

,
while the identity id{x|P (x)} is given by [x]'P (x)

.
The category DCterm[T ] is clearly a subcategory of DC[T ]: just consider the

functor sending each {x|P (x)} to itself and each [t(x)]'P (x)
to P (x)∧ y = t(x).

If T is a theory of natural numbers having at least 0 and the successor symbol
s as primitive function symbols, we denote with DCnat[T ] the subcategory of
DCterm[T ] which have the same objects, the same definitions of composition
and identity, but only those arrows which are representable by terms obtained
using the variable x and the function symbols 0 and s.

If T is a theory of sets, we first translate terms τ of the language ob-
tained using the variable x and function symbols 0 and s into formulas [[τ ]]
of T as follows: [[0]] ≡def ∀z (z /∈ y), [[x]] ≡def x = y and [[s(τ(x))]] ≡def

∃z ([[τ ]][z/y] ∧ ∀u(u ∈ y ↔ u = z ∨ u ∈ z)).
The objects of DCnat[T ] are defined as those objects {x|P (x)} of DC[T ]

such that P (x) `T x ∈ ω; an arrow in DCnat[T ] from {x|P (x)} to {x|Q(x)}
is an arrow of DC[T ] of the form [[τ ]] ∧ P (x) for some term τ of the language
obtained using the variable x and function symbols 0 and s. One can prove that
compositions and identities inherited from DC[T ] work with this restriction.

7We will write t(x1, ...xn) if the term t contains at most x1,...,xn as variables.
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For every pair of objects A = {x|P (x)} and B = {x|Q(x)} in DC[T ] an
injection JA,B

nat can be defined as follows. If T is a theory of natural numbers:

JA,B
nat : DCnat[T ](A,B)→ DC[T ](A,B)

[t(x)]'P
7→ P (x) ∧ y = t(x)

If T is a theory of sets and A and B are objects of DCnat[T ](A,B), JA,B
nat is the

obvious inclusion of DCnat[T ](A,B) in DC[T ](A,B).
If the theory T has at least a definable element and a definable encoding of

ordered pairs, that is, if we assume that there exist a formula I(x) such that
T ` ∃!xI(x) and a formula Pr(x, y, z) with three free variables x, y, z such that

1. Pr(x, y, z) ∧ Pr(x, y, z′) `T z = z′;

2. Pr(x, y, z) ∧ Pr(x′, y′, z) `T x = x′ ∧ y = y′;

3. `T ∀x∀y∃z Pr(x, y, z),

then DC[T ] is a cartesian category: a terminal object 1 given by {x| I(x)} and
a product of {x|P (x)} and {x|Q(x)} is given by the object {x| ∃y∃z(P (y) ∧
Q(z) ∧ Pr(y, z, x))} together with the obvious projections.

This is the case for all standard theories of natural numbers and of sets:
in HA or PA the formula I(x) can be taken to be x = 0 and Pr(x, y, z) to be
z = 2x(2y + 1)8; in set theories like CZF, IZF and ZFC, I(x) can be taken to be
∀y(y /∈ x) and Pr(x, y, z) to be z = {{x}, {x, y}} 9.

In the rest of the chapter we will always implicitely assume T to be a first-
order classical or intuitionistic theory of sets or of numbers having at least a
definable element and an encoding of ordered pairs.

7 Existence properties, categorically
We now show what properties of the categories introduced in the previous sec-
tion correspond to the existential properties introduced in section 5.

Before proving our characterization, let us recall some categorical notions:
an arrow e in a category C is a regular epi if there exist arrows f and g in C
of which e is the coequalizer, that is e ◦ f = e ◦ g and for every arrow e′ such
that e′ ◦ f = e′ ◦ g, there exists a unique arrow r such that r ◦ e = e′; an arrow
e : A→ B in C is a split epi if there exists an arrow e′ such that e ◦ e′ = idB .

Theorem 7.1. Let T be a theory of natural numbers or a theory of sets as in
the previous sections and let P (x) be a formula of T . Then

1. T ` ∃xP (x) if and only if the unique arrow from {x|P (x)} to 1 in DC[T ]
is a regular epi;

8The exponential 2(−) can be adequately represented by a definable relation.
9Here z = {x, y} is an shorthand for ∀u(u ∈ z ↔ (u = x ∨ u = y)))
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2. T ` ∃!xP (x) if and only if I(x) ∧ P (y) : 1 → {x|Q(x)} is a well-defined
arrow in DC[T ] for every Q(x) such that P (x) `T Q(x);

3. T has EP if and only if every regular epi in DC[T ] with codomain 1 is a
split epi in DC[T ];

4. if T is a theory of natural numbers, [t(x)]'I(x)
: 1→ {x|P (x)} is an arrow

in DCnat[T ] if and only if there exists a numeral n such that n 'I(x) t(x);

5. if T is a theory of sets and [[τ ]] ∧ ∀u(u /∈ x) : 1 → {x|P (x)} is an arrow
in DCnat[T ], there exists a numeral n such that [[τ ]] ∧ ∀u(u /∈ x) and
[[n]] ∧ ∀u(u /∈ x) represent the same arrow from 1 to {x|P (x)};

6. T has nEP if and only if every regular epi in DC[T ] from an object A to
1 is a split epi with right inverse of the form J1,A

nat (f) with f in DCnat[T ];

7. T has nEP! if and only if J1,A
nat is a bijiection for every A in DCnat[T ].

Proof. 1. Suppose that T ` ∃xP (x). Then one can prove that the unique
arrow from {x|P (x)} to 1 is the coequalizer of the two projections from
{x|P (x)} × {x|P (x)} to {x|P (x)}. Conversely, suppose that the unique
arrow ! from {x|P (x)} to 1 is the coequalizer of two arrows f and g; then
if we consider the unique arrow i from {x|P (x)} to {x|I(x) ∧ ∃y P (y)},
then clearly i ◦ f = i ◦ g. In particular, it follows (since ! is the coequalizer
of f and g) that there exists an arrow from 1 to {x|I(x) ∧ ∃y P (y)}; this
entails that T ` ∃xP (x).

2. If T ` ∃!xP (x) and P (x) `T Q(x), then I(x)∧P (y) `T I(x)∧Q(y), (I(x)∧
P (y))∧ (I(x)∧P (z)) `T y = z and I(x) `T ∃y(I(x)∧P (y)); conversely, if
I(x) ∧ P (y) : 1 → {x|Q} is a well-defined arrow in DC[T ] for every Q(x)
such that P (x) `T Q(x), then in particular I(x) `T ∃y(I(x) ∧ P (y)) and
I(x) ∧ P (y) ∧ P (z) `T y = z; since T ` ∃x I(x), then T ` ∃!y P (y).

3. Suppose that T has EP and suppose that P (x)∧I(y), which is the unique
arrow from {x|P (x)} to 1 in DC[T ], is a regular epi in DC[T ]; then by
point 1. we have that T ` ∃xP (x); as a consequence of EP, we have
that there exists Q(x) such that T ` ∃!xQ(x) and Q(x) `T P (x). These
conditions together with point 2. allow to conclude that I(x) ∧ Q(y) is
a well-defined arrow from 1 to {x|P (x)}. Clearly this arrow is a right
inverse of the unique arrow from {x|P (x)} to 1. Conversely, suppose that
P (x) is a formula for which T ` ∃xP (x). By point 1. the unique arrow
from {x|P (x)} to 1 in DC[T ] is a regular epi, hence it is a split epi. This
means that there is an arrow F (x, y) from 1 to {x|P (x)}. One can see
immediately that, since T ` ∃!x I(x), the formula F (x, y) is equivalent
in T to I(x) ∧ ∃z F (z, y). If we take Q(x) to be ∃z(F (z, x)), then the
requirement of EP, applied to P (x), is satisfied by Q(x).

4. and 5. follow from the very definition of DCnat[T ] and of numerals. From
these, points 6. and 7. follow immediately.
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8 Internalizing DC[T ] in itself
From now on, we will consider only theories T which enjoy a primitive re-
cursive internal Gödelian encoding of their syntax by means of natural num-
bers. We also use, with abuse of notations, symbols for recursive function
between natural numbers (including a primitive recursive bijective encoding
of natural numbers p with primitive recursive projections p1 and p2), since
they can be adequately represented in T . In particular, every variable ξ in
the syntax of T is encoded by a numeral ξ. One can hence define a formula
dc(x) ≡def form(x) ∧ ∀y(free(y, x) → y = x) which expresses the fact that x is
the code of a formula of T having at most x as free variable, in such a way that
the definable class ∆Γ0 := {x| dc(x)}, which is an object of DC[T ], is an internal-
ization of the collection of objects of DC[T ] itself. However, in the definition of
DC[T ], we have identified definable classes which were given by provably equiv-
alent formulas. We hence need to take this into account internally by means of
the obvious internal equivalence relation ≡0:

{x| ∃y∃z(x = p(y, z) ∧ dc(y) ∧ dc(z) ∧ der(y, z) ∧ der(z, y))} → Γ∆0 × Γ∆0

where der(x, y) is a formula expressing the fact that the formula encoded by y
can be derived from that encoded by x in T .

Analogously, one can define a formula fr(x) expressing the fact that x is the
code of a definable functional relation.

However, in order to encode the collection of arrows of DC[T ], we need to
keep track of their codomains (which can not be reconstructed otherwise). We
hence consider the collection

∆Γ1 := {x| ∃y∃z(x = p(y, z) ∧ fr(y) ∧ dc(z) ∧ der(y, sub(z,y,x)))}

(where sub(z,y,x) is a term representing a code for the formula encoded by
z in which the variable x is substituted with y) which is indeed an internal
account of the collection of arrows of DC[T ] once we consider the obvious internal
equivalence relation ≡1 with domain

{x| ∃y∃z(x = p(y, z) ∧ yε∆Γ1 ∧ zε∆Γ1∧

der(p1(y), p1(z)) ∧ der(p1(z), p1(y)) ∧ der(p2(y), p2(z)) ∧ der(p2(z), p2(y)))}.10

In DC[T ] one can also define internally arrows corresponding to the domain,
codomain, identity and composition operations (where we use the notation −
to denote the Gödelian encoding in terms of primitive recursive functions of
connectives, quantifiers and equality symbols):

1. the domain arrow is δ0 := xε∆Γ1 ∧ y = ∃yp1(x) : ∆Γ1 → ∆Γ0;

2. the codomain arrow is δ1 := xε∆Γ1 ∧ y = p2(x) : ∆Γ1 → ∆Γ0;

3. the identity arrow is ID := xε∆Γ0 ∧ y = p(x∧(x=y), x) : ∆Γ0 → ∆Γ1;
10If C = {x|P (x)} is a definable class, then we write tεC as a shorthand for P (t).
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4. the composition arrow � : Pb(δ1, δ0)→ ∆Γ1, where Pb(δ1, δ0) denotes the
obvious choice of a pullback for δ1 and δ0, is more complicated but can be
easily formulated with some patience.

What really matters is that ∆Γ[T ] := ((∆Γ0,≡0), (∆Γ1,≡1), δ0, δ1, ID,�) is
essentially an internal category (see e.g. MacLane and Moerdijk (1992) chapter
V section 7) in the elementary quotient completion (see Maietti and Rosolini
(2012)) of DC[T ] with respect to the doctrine of its subobjects (subobjects in
DC[T ] can be represented by comprehension), since the arrows δ0, δ1, ID and �
respect the internal equivalence relations ≡0 and ≡1.

One can notice that in the case in which a particular parametric version
of EP holds for formulas restricted to natural numbers (e.g. in classical set
theory and in Peano arithmetic), one can avoid internal equivalence relations
and choose representatives via a formula, obtaining an internal account of DC[T ]
as one of its internal categories. More precisely, if Nat(x) is a formula in T
expressing that x is a natural number, the particular parametric version of EP
we consider is the following: whenever P (x, y) is a formula with at most x and
y as free variables such that P (x, y) `T Nat(x) ∧ Nat(y), there exists another
formula Q(x, y) with at most x and y as free variables such that

1. Q(x, y) `T P (x, y);

2. T ` ∀x(∃y P (x, y)→ ∃!y Q(x, y));

3. ∀y(P (x, y)↔ P (x′, y)) ∧Q(x, z) ∧Q(x′, z′) `T z = z′.

9 Numerical existence property and the relation
between DC[T ] and ∆Γ[T ]

In this section we recall a result in Maschio (2020) which connects internal
categories and the numerical existence property.

First, we can observe that, whenever one has a internal equivalence relation
r : R→ I × I in a finitely complete category C, then the subset

{(π1 ◦ r ◦ f, π2 ◦ r ◦ f) |f ∈ HomC(1, R)} ⊆ HomC(1, I)× HomC(1, I)

is an equivalence relation which we denote with Ext(r). Using this fact, one
can define a category Ext(∆Γ[T ]) “externalising” the internal category ∆Γ[T ] in
DC[T ] as follows:

1. the collection of objects of Ext(∆Γ) is HomDC[T ](1,∆Γ0)/Ext(≡0);

2. the collection of objects of Ext(∆Γ) is HomDC[T ](1,∆Γ1)/Ext(≡1);

3. the domain function ∆0 is defined by ∆0([f ]) := [δ0 ◦ f ];

4. the codomain function ∆1 is defined by ∆1([f ]) := [δ1 ◦ f ];

5. the identity function id is defined by id([f ]) := [ID ◦ f ];
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6. the composition function ◦ is defined by [g] ◦ [f ] := [� ◦ 〈f, g〉]11.

In general one can define a functor J : DC[T ]→ Ext(∆Γ[T ]) as follows:

1. If {x|P (x)} is an object of DC[T ], then the formula P (x) is encoded by
a numeral cod(P (x)) for which clearly T ` dc(cod(P (x))). We hence
define J({x|P (x)}) as the equivalence class represented by the arrow

I(x) ∧ y = cod(P (x)) : 1→ ∆Γ0;

2. if F (x, y) : {x|P (x)} → {x|Q(x)} is an arrow in DC[T ], then F (x, y) is
encoded by a numeral cod(F (x, y)) and Q(x) is encoded by a numeral
cod(Q(x)) and, hence, T ` p(cod(F (x, y)), cod(Q(x)))ε∆Γ1. We hence
send F (x, y) : {x|P (x)} → {x|Q(x)} to the equivalence class represented
by the arrow

I(x) ∧ y = p(cod(F (x, y)), cod(Q(x))) : 1→ ∆Γ1.

We can hence enunciate the following result which is proven in Maschio (2020)
in Theorem 7.4

Theorem 9.1. J is an isomorphism if T has the nEP.

10 A categorical reading of numerical existence
property in constructive foundations

A category C with enough structure (e.g. a Heyting category or a topos) can
be thought of as a mathematical universe in which one can perform “internal
mathematics”. The internal mathematics performed in different categories sat-
isfy different principles and each category has its own internal groups, rings,
preorders... As we have seen, categories can also have their own internal cat-
egories. These internal categories have a completely different nature than the
category in which they live (e.g. trivially objects of the external category form a
set or a class, while in general the objects of objects of its internal categories need
not be sets or classes). These two different levels of categories can be thought
of as representations of the two levels corresponding to metamathematics and
mathematics.

In our case the external category, DC[T ], is in fact defined in the metamath-
ematical level: its objects are equivalence (meta)classes of formal expressions
(forming a countable (meta)set) and the same holds for arrows. The internal-
ization ∆Γ[T ] is an internal category of DC[T ] of which the objects do not form
a (meta)set, although they form a class of elements from the point of view of
the theory T . We could roughly say that DC[T ] is an ordinary category from
the point of view of the metamathematician, while ∆Γ[T ] is an ordinary cat-
egory from the point of view of the mathematician working in the theory T .

11We denote with 〈f, g〉 the unique arrow determined by the definition of pullback.
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We can think of ∆Γ[T ] as the best representation of the category DC[T ] that a
mathematician working in T (and using only the tools of T ) can obtain. The
metamathematician knows both the category DC[T ] and the internal category
∆Γ[T ] and he could ask himself whether from its point of view ∆Γ[T ] is a good
representation of DC[T ]. This, as we have seen, is done by means of a simulation
of the notion of elements for objects of the category, that is by means of global
elements.

Theorem 9.1 essentially means that whenever the numerical existence prop-
erty is satisfied (which happens essentially only for some constructive theories),
then the metamathematician can consider ∆Γ[T ] a perfect representation of
DC[T ]. This in some sense breaks some portions of the floor separating the
mathematical level and the metamathematical one.

As we have already said, categorical language is not necessary to understand
this, however it provides a clearer picture, a concrete representation in which
syntactical aspects are organized in such a way that they can form structures
which are more familiar to mathematicians.
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