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A B S T R A C T   

Endogenous Cushing’s syndrome (CS) is a rare condition due to prolonged exposure to elevated circulating 
cortisol levels that features its typical phenotype characterised by moon face, proximal myopathy, easy bruising, 
hirsutism in females and a centripetal distribution of body fat. Given the direct and indirect effects of hyper
cortisolism, CS is a severe disease burdened by increased cardio-metabolic morbidity and mortality in which 
visceral adiposity plays a leading role. Although not commonly found in clinical setting, endogenous CS is 
definitely underestimated leading to delayed diagnosis with consequent increased rate of complications and 
reduced likelihood of their reversal after disease control. 

Most of all, CS is a unique model for systemic impairment induced by exogenous glucocorticoid therapy that is 
commonly prescribed for a number of chronic conditions in a relevant proportion of the worldwide population. 

In this review we aim to summarise on one side, the mechanisms behind visceral adiposity and lipid meta
bolism impairment in CS during active disease and after remission and on the other explore the potential role of 
cortisol in promoting adipose tissue accumulation.   

1. Introduction 

1.1. Cushing’s syndrome and adipose tissue 

Cushing’s Syndrome (CS) is a severe condition featured by a pro
longed elevation in plasma cortisol levels, due to either exogenous ste
roid use or to excessive endogenous cortisol production. The most 
common cause of CS by far is the exogenous glucocorticoids (GCs) 
therapy from any administration route [1], mainly prescribed for 
chronic disorders such as rheumatological conditions, asthma and 
chronic obstructive pulmonary disease. Endogenous CS is instead a rare 
disease, with an estimated annual incidence ranging between 2 and 3 
[2] to 8 cases per million people/year [3]. 

The most common cause of endogenous CS is Cushing’s Disease (CD), 
due to adrenocorticotropic hormone (ACTH) hypersecretion by 

corticotroph pituitary adenoma [4]. Among ACTH-dependent causes, 
malignant non-pituitary corticotropin-secreting tumours are responsible 
for ectopic CS [5]. Endogenous CS may be also caused by autonomous 
adrenal overproduction of cortisol (due to either benign or malignant 
adrenal tumours, or by bilateral primary micro- and macronodular 
adrenocortical hyperplasia) accounting for around 20 % of all cases [6]. 

Although CS has some pathognomonic features such as purple striae, 
easy bruisability, thin skin and proximal myopathy that raise clinical 
suspicion for cortisol excess, other signs commonly present in CS like 
hirsutism, weight gain and visceral obesity are also frequent in highly 
prevalent conditions like polycystic ovarian syndrome and metabolic 
syndrome [7]. For this reason, CS diagnosis is challenging, especially 
when cortisol is only mildly increased. 

CS is burdened by increased mortality due to its several comorbid
ities including cardiovascular, metabolic, immunological, psychiatric, 
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and musculoskeletal disorders [8–10]. Regarding the metabolic ones, it 
has been observed that hypercortisolism leads to metabolic syndrome, 
characterised by central obesity, insulin resistance and glucose intoler
ance [11]. CS shares several features with metabolic syndrome including 
visceral adiposity that is one of its hallmarks, especially when associated 
with proximal limbs myopathy. These alterations are directly induced 
by chronic GCs overexposure that on one side promotes an increase in 
visceral adiposity and the accumulation of fat-depots in liver, skeletal 
muscle and pancreas while on the other, stimulates lipolysis in subcu
taneous adipose tissue with release of free fatty acids (FFAs) into the 
circulation [10,12]. 

This review aims to summarise the multiple and complex effects of 
GCs on adipose tissue and lipid metabolism, their reversal after disease 
control and the effect of different compounds on visceral adiposity and 
lipid profile in CS, Fig. 1. 

1.2. 11β-Hydroxysteroid dehydrogenase 

Intracellular GC metabolism is regulated by two isoforms of the 11β- 
Hydroxysteroid dehydrogenase (HSD) enzyme; the type 1 (11β-HSD1) 
converts inactive cortisone into cortisol that binds the intracellular 
glucocorticoid receptor (GR). This isoform is localised in several tissues, 
including liver, adipose tissue, testis, ovary and lung [13]. The 11β- 
Hydroxysteroid dehydrogenase type 2 (11β-HSD2) instead operates the 
opposite conversion of cortisol to cortisone, preventing illicit occupation 
of mineralocorticoid receptor (MR) by cortisol in aldosterone target 
tissues, especially the kidneys [14]. 

To date, several studies suggest that increased 11β-HSD1 expression 
and activity are involved in the pathogenesis of obesity and insulin 
resistance [15–22]. Two studies have shown that cortisol increases 11β- 
HSD1 expression in omental adipose tissue [18–19]. Bujalska et al. 
analysed cultured omental and subcutaneous adipose stromal cells 

finding the exclusive expression of the 11β-HSD1 in these cells. 
Furthermore, its enzymatic activity was more efficient in the omental 
than in the subcutaneous fat and it was further stimulated by concom
itant treatments with cortisol and insulin [18]. The authors speculated 
that this mechanism could lead to a constant exposure of GCs in omental 
fat, suggesting that visceral obesity might be a sort of “Cushing’s syn
drome of the omentum”. Similarly, a higher expression of 11β-HSD1 
gene correlated with waist circumference was found in another study on 
postmenopausal women [19]; as previously observed, 11β-HSD1 
expression was inversely correlated with insulin sensitivity and its ac
tivity was enhanced when adipocytes were incubated with cortisol in 
vitro in a dose dependent fashion. A low expression of 11β-HSD2 mRNA 
was also found, but its detection was inversely correlated with central 
obesity and total body fat mass, suggesting an additional contribution of 
local increase in cortisol in visceral adiposity accumulation in obese 
individuals [19]. 

The importance of 11β-HSD1 activity has been confirmed in murine 
models with over- or downregulated 11β-HSD1 expression. Mice with 
transgenic overexpression of 11β-HSD1 in adipocytes have normal 
serum GC concentrations but elevated local GC levels in adipose tissue; 
this results in a higher tendency to develop visceral obesity and meta
bolic syndrome [23]. Conversely, 11β-HSD1 knockout mice seemed 
protected from the cardiovascular and metabolic side effects of GCs 
excess, including obesity. In fact, these mice presented a better lipid 
profile and did not display increased visceral adiposity [24–26]. A 
knockout model of adipose and liver specific 11β-HSD1 resulted in 
reduced lipolysis and circulating fatty acid excess. However, these mice 
presented other Cushingoid manifestations such as hypertension, 
increased adiposity and myopathy caused by GC excess that might be 
secondary to the reactivation of GCs by 11β-HSD1 at the target tissue 
level [27]. 

Furthermore, consequences of long-term 11β-HSD1 suppression in 

Fig. 1. Schematic representation of systemic cortisol actions.  
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humans are still unknown [28]. 
To date, several placebo-controlled trials have been conducted using 

different selective 11β-HSD1 inhibitors in the treatment of type 2 dia
betes or in obese patients. In the study of Heise et al. on the use of two 
inhibitors, RO-151 and RO-838 with metformin in diabetic patients over 
4 weeks, the results showed an improvement in parameters like body 
weight, HbA1c and insulin sensitivity. However, RO-151 caused an in
crease in ACTH plasma levels which can raise some concerns in the long 
run [29]. 

The increase in ACTH together with dehydroepiandrosterone was 
confirmed with other 11β-HSD1 inhibitor (i.e. INCB13739) tested on 
302 patients with type 2 diabetes mellitus for 12 weeks. However, the 
levels of both hormones remained within the upper limit of normal and 
returned to baseline values after treatment discontinuation at follow-up 
visit. A reduction in body weight, total cholesterol, low-density lipo
protein (LDL), triglycerides (TGs), fasting plasma glucose, glycosylated 
haemoglobin (HbA1c) levels was observed in treated patients [30]. 

A similar trial with different doses of MK-0916 inhibitor was per
formed for 12 weeks in patients with diabetes mellitus and metabolic 
syndrome. Authors observed positive effects on body weight, blood 
pressure, HBA1c, but no significant changes in fasting glucose levels. 
The highest doses caused an elevation of androstenedione and dehy
droepiandrosterone, which returned to normality 3 weeks after the end 
of the study, as previously observed [31]. Furthermore, in none of the 
studies that reported the elevation of adrenal androgens there was a 
worsening of hirsutism [30–32]. 

The MK-0916 and MK-0736 inhibitors were tested in 249 obese pa
tients with hypertension; they induced a modest reduction in body 
weight and LDL levels after a 12-week trial. On the other hand, MK-0736 
caused a decrease in high-density lipoprotein (HDL) levels [32]. A 
similar study evaluated the effectiveness of the reversible inhibitor of 
11β-HSD1, AZD4017, in 31 obese women with idiopathic intracranial 
hypertension. An increase in HDL cholesterol with decrease of total 
cholesterol/HDL ratio and an increase in lean muscle mass were 
observed; however, body mass index (BMI) and body fat mass remained 
unchanged, as well as the level of TGs and HbA1c [33]. Based on these 
findings, selective 11β-HSD1 inhibitors could be considered a promising 
therapeutic option for the management of cortisol-related comorbid
ities, although none have been tested in the setting of CS. 

1.3. 11β-Hydroxysteroid dehydrogenase 1 in CS 

Data regarding 11β-HSD1 activity in the adipose tissue of CS patients 
are limited. As previously reported, 11β-HSD1 mRNA and protein 
expression in omental tissue were increased in obese patients compared 
to normal weight controls, but surprisingly this was not observed in CS 
patients [34]. Therefore, GCs do not directly control 11β-HSD1 activity 
in CS as there is no correlation between cortisol levels and the enzyme. It 
has been also speculated that this relative downregulation might 
represent a defence mechanism against hypercortisolism to prevent 
further increase in cortisol levels. Based on these findings, 11β-HSD1 
inhibitors seem to have a marginal role in the visceral fat reduction in 
active CS. 

However, 11β-HSD1 plays a key role in other Cushingoid manifes
tations as it has been demonstrated in CS who did not develop the classic 
Cushing’s phenotype. It is indeed well recognized that the severity of 
clinical expression does not invariably correlate with the absolute levels 
of circulating cortisol. The first observation of this came from a case 
report described by Tomlinson et al. who described a patient diagnosed 
with CD but without any features or complications related to cortisol 
excess. Further investigations proved a defect in the enzyme activity 
with a concomitant increase in cortisol clearance rate [35]. A similar 
case of a patient affected by cortisol-producing adrenocortical adenoma 
was lately reported, and the same enzymatic deficiency was found [36]. 

2. Dyslipidaemia 

Dyslipidaemia is probably the most neglected complication in CS as 
it has been only marginally evaluated. The scant studies available 
converge to point to a raised total and LDL cholesterol and TG concen
trations, and reduced HDL cholesterol levels [37]. These alterations 
were equally present in pituitary and adrenal CS and tended to persist 
one year after curative surgery to some extent [38–39]. This was the case 
of patients with persistent obesity that maintained higher total and LDL 
cholesterol compared to sex- and age-matched, but not BMI-matched, 
controls as far as 5 years after remission [39]. 

Data on the effects of cortisol-lowering medications are scarce as 
well. Pasireotide, a somatostatin receptor multiligand used in the 
treatment of recurrent/persistent CD, proved to significantly reduce 
total and LDL-cholesterol irrespective of whether patients were taking 
lipid-modifying agents or not. Since this improvement was observed in 
both patients with normalised urinary free cortisol and uncontrolled 
patients, the effect was probably mostly related to the waist and BMI 
reduction obtained in the whole cohort [40]. Similar results were 
observed for the steroidogenesis inhibitors that induce an overall 
improvement of lipid profile together with metabolic and anthropo
metric features and hormone control, the only exception being repre
sented by mitotane Table 1. [40–69] 

3. Lipid synthesis 

Although cortisol has lipolytic actions in isolated conditions, chronic 
hypercortisolism contributes to excess adiposity, altering food intake 
and influencing the storage of fatty acids [70]. CS patients have 30 % 
more fat mass, higher waist-to-hip and visceral-to-subcutaneous fat ra
tios than normal people. Alterations in visceral fat have been demon
strated also in mild autonomous cortisol secretion and in patients with 
non-functional adrenal tumours [71–73], pinpointing the importance 
of chronic exposure in the development of these metabolic changes. 

In humans there are two types of adipocytes namely, brown adipose 
tissue (BAT) and white adipose tissue (WAT) [74], while the former 
oxidise fatty acids derived from TGs to generate heat due to the presence 
of the BAT-specific to uncoupling protein (UCP), the latter is involved in 
storage of energy as TGs; brown adipocytes oxidise fatty acids derived 
from TGs to generate heat due to the presence of the BAT-specific UCP1. 
Upon UCP1 activation, the energy generated by mitochondrial is 
released as heat instead of being used by ATP synthase [75]. 

In WAT, GCs have a dual effect since they increase lipolysis in sub
cutaneous adipose tissue, whereas stimulate the hypertrophy and dif
ferentiation of adipocytes in visceral adipose tissue [10,12]. In BAT, 
primarily found in infants and young children, chronic GCs exposure 
causes a reduction of UCP1 activation [76–77]. 

Although BAT has been basically considered non-existent and 
without physiologic relevance in adults [78], it was later observed that 
most important BAT areas are WAT depots that have gained BAT-like 
features, such as UCP1 expression [79] and regions of functionally 
active BAT can be identified by 18F-fluorodeoxyglucose positron emis
sion tomography-computed tomography (18FDG PET-CT) [80]. 

WAT and BAT are both capable of undergoing a browning process 
characterised by a substantial upregulation of UCP1 expression. The 
resulting cells in WAT have been known as beige [81], brite [82], 
inducible [83] or recruitable [84] adipocytes. 

Various treatments have been identified to induce browning, with 
cold exposure being the most pertinent and commonly employed in 
clinical studies. Previous reviews have extensively reviewed these 
agents [85–86]. 

The functional analysis of the browning process revealed contrasting 
results depending on the chosen experimental conditions. When using 
cold acclimation as a potent model for browning and initiating the 
process in mice housed at 21 ◦C, the evidence for increased UCP1 gene 
expression or UCP1 protein amount in classical BAT is weak. Conversely, 
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brite/beige adipose depots showed significant increase in UCP1 
expression in this condition, suggesting a preponderant role of func
tional browning of brite/beige tissues at cold temperature. However, 
when mice were housed at 30 ◦C (a thermoneutrality condition for 
mice), a substantial boost in UCP1 gene expression and UCP1 protein 
were observed in classical BAT depots, with practically no UCP1 gene 
expression in brite/beige tissues. This apparent paradox is related to the 
full differentiation status of BAT at 21 ◦C, which cannot be further 
activated by UCP expression. Under these conditions, increased ther
mogenesis can be achieved exclusively by stimulating cell proliferation, 
rather than enhancing cellular differentiation [87]. 

Studies performed in rodents showed that GCs have an inhibitory 
effect on BAT development and activity, most likely mediated via the 
GR. An increased BAT activity was found after adrenalectomy [88–89], 
while GC replacement normalised BAT activity [88,90]. 

Interestingly, one study on male mice model showed the opposite 
role of ACTH on activation of BAT and browning of WAT; thus in overt 
hypercortisolism there could be a balance between ACTH activation and 
BAT inhibitory effects of GCs on UCP1 transcription and function, that 
are possibly caused by GCs interfering with the adenylyl cyclase/ cyclic 
adenosine monophosphate (cAMP)/ protein kinase A (PKA) signalling 
pathway [91]. 

Indeed, in patients with CD with high ACTH levels, it was shown [92] 
that energy expenditure was not significantly decreased compared to 
matched healthy controls; so it might be possible that long-term expo
sure to hypercortisolism overcome the stimulating effect of ACTH at the 
fat tissue level, leading to a neutral effect on BAT activation in vivo. 

In vitro studies using primary cultures of human BAT showed upre
gulation of UCP1, Cidea, and Ppargc1a mRNA levels in response to GCs 
[77,93]. However, the duration and dosage of GC treatment influenced 
the results, with varying effects on basal UCP1 gene expression. 
Adrenergically-induced UCP1 expression is consistently decreased by 
GC in both human and rodent adipocytes [93]. 

Direct investigations into the impact of GCs on BAT in humans are 
scant, primarily due to challenges in sample collection [94–95]. The 
commonly employed methods, measuring 18FDG uptake in BAT or 
supraclavicular skin temperature, are indirect and do not precisely 
assess thermogenesis. For instance, 18FDG PET-CT quantifies the 
glucose uptake, occurring even in the absence of UCP1 [94–95]. Despite 
these issues, current knowledge suggests that GCs exert a suppressive 
effect on BAT in humans [96]. 

Observational studies examining retroperitoneal fat revealed a lower 
prevalence of BAT-positive patients in groups with cortisol-producing 
adenomas and secondary hypercortisolism [96]. Additionally, there 
was a trend towards a negative correlation between urinary cortisol 
secretion and retroperitoneal UCP1 [96]. Retrospective studies demon
strated a decreased prevalence of BAT-positive individuals in patients 
receiving chronic GCs compared to controls [77]. Experimental studies 
on long-term effect of GC therapy showed a reduced 18FDG uptake in 
BAT and lower supraclavicular skin temperature in response to cooling 

(19 ◦C) in individuals pre-treated with oral prednisolone for 7 days [97]. 
Interestingly, the effects of GCs on human BAT seem to be time depen
dent. Short-term hydrocortisone infusion increased basal and 
isoprenaline-induced supraclavicular skin temperature [98]. Similarly, 
short-term (36 h) administration of prednisolone enhanced 18FDG up
take in BAT and leads to an increased supraclavicular skin temperature 
upon cold exposure [77].These data indicate that, in contrast to results 
reported for long-term hypercortisolism, short-term GC treatment may 
increase BAT thermogenesis in humans. 

The impact of impaired BAT activity on the development of GC- 
induced obesity in humans remains to be further explored. 

3.1. Lipolysis 

Lipids are stored in adipose tissue as TGs. Lipases are enzymes which 
break down TGs, increasing plasmatic levels of fatty acids. The inter
action between GCs and GR leads to an increase in transcription and 
activation of different lipases, such as adipose triglyceride lipase 
(ATGL), hormone-sensitive lipase (HSL), and lipoprotein lipase (LPL) 
[70,99–100]. ATGL converts triacylglycerol to diacylglycerol by 
releasing one fatty acid. HSL could catalyse the same reaction to a lesser 
extent of ATGL, but it also converts diacylglycerol to monoacylglycerol. 
LPL instead hydrolyses triacylglycerol from chylomicrons and very low- 
density lipoproteins, which transport lipids from the gut to other tissues 
through the circulation system. The subsequent greater availability of 
FFAs is picked up in the visceral region. This mechanism is rather fast, 
since the increase in lipolysis starts few hours after GC exposure 
[99,101]. 

The efficiency of these lipases is also regulated by catecholamines 
that have a paramount lipolytic effect, especially in VAT [102]. 

Their binding to the β-adrenergic receptors activates the activity of 
adenylyl cyclase, leading to an elevation of cAMP levels, the target of 
which is the protein PKA. PKA phosphorylates HSL and promotes its 
translocation to the lipid droplets enhancing its lipolytic activity [103]. 
PKA also phosphorylates perilipin, which leads to an increase of HSL 
activity [104]. It is also supposed that the perilipin pathway could 
activate ATGL promoting its lipolytic activity [105–106]. 

The β-adrenergic signalling cascade is instead inhibited by phos
phodiesterases, which break down cAMP reducing PKA activity. 

GCs could interfere with the β-adrenergic pathway by altering cAMP 
levels [70,100,107], but the mechanisms behind this action remain 
unclear. Dexamethasone was found to increase cAMP levels in primary 
cultures of adipocytes and concomitantly enhance PKA activity and 
decrease phosphodiesterases expression [70]. As a result, an increased 
phosphorylation of HSL and perilipin was observed but without a 
greater translocation of HSL to the lipid droplets. Another study 
confirmed that GCs induced a rise in intracellular cAMP due to the 
decrease in protein kinase B and phosphodiesterases expression and 
activity [108]. However, other studies did not report cAMP elevation 
during in vitro incubation with GCs alone [101,109]. 

Table 1 
Effects of cortisol-lowering medications on lipid and glucose profile, anthropometric features.  

Drug Effect on total Cholesterol/LDL TGL HDL BMI/Waist Fasting glucose levels/insulin need HbA1c 

Steroidogenesis inhibitors 
- cLevo/Ketoconazole  ↓ [41–43]  =/↑ [43–44]  ↓ [44]  ↓ [43–47]  ↓ [41,43–47]  ↓ [44] 

- Metyrapone ↓ [48] NA NA ↓ [48–49] ↓ [48–52] ↓ [48,50,52] 
- Osilodrostat ↓ [53–55] = [53]/↓ [54–55] ↓ [53–54] ↓ [53–56] ↓ [53–56] ↓ [53–56] 
- Mitotane ↑ [41,57–60] ↑ [59–60] /= [41,58] ↑ [60]60 ↓ [60] ↓ [60] NA 
- Etomidate NA NA NA NA ↓ [60–61] NA 
Pituitary-directed drugs 

- Pasireotide  ↓ [40,66]  = [40,66]  = [40,66]  ↓ [40,66]  ↑ [40,66]  ↑ [40,66] 
- Cabergoline NA NA NA ↓ [68] ↓ [68–69] ↓ [69] 
GR antagonists 

- Relacorilant  NA  NA  NA  NA  ↓ [67]  NA 
- Mifepristone = [62–63] = [62–63] ↓ [62–63] ↓ [62,64] ↓ [62,64–65] ↓ 

“↑”: Increased level; “↓”: reduced level; “=”: no effect; NA: no data available, 
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Lastly, a blunted growth hormone secretion is commonly found in 
CS, chronic GCs users, as well as in obese patients [110–111]. An 
impairment of the somatotropic axis could contribute to the increased 
visceral adiposity and decreased lean mass, since growth hormone has a 
physiological lipolytic role and protein anabolic effect [112–113]. 

3.2. Lipogenesis 

As known, excess adiposity may be secondary to an increased syn
thesis and storage of lipids in pre-existing adipocytes (hypertrophy) or to 
the recruitment and differentiation of preadipocytes to mature adipo
cytes (hyperplasia) [16]. 

The latter mechanism, known as adipogenesis, is the most studied in 
hypercortisolism. Indeed, cortisol stimulates the differentiation of pre
adipocytes in a dose-related fashion [114], activating proadipogenic 
regulators such as peroxisome proliferator-activated receptor γ (PPARγ) 
and LIM domain only 3 (LMO3) [115–118]. LMO3 is highly expressed in 
visceral adipose tissue, where it is upregulated by GCs and correlates 
with 11β-HSD1 levels. LMO3 stimulates PPARγ activity enhancing 
visceral adipogenesis. Furthermore, preadipocyte differentiation could 
be enhanced by prostaglandin D2 synthase, activated by GCs binding to 
MR [117–118]. Cortisol is able to bind MR in CS due to the saturation of 
the enzymatic activity of 11β-HSD2 in the condition of cortisol excess. 
[119]. 

The increase in adipogenesis is supposed to lead to hyperplastic 
adipose tissue expansion; however, in CS patients, adipose tissue has 
hypertrophic adipocytes, which indicates that the dominant mechanism 
involved GC-stimulated synthesis and lipids storage [120]. 

Only a few studies investigated GCs’ action on lipogenesis. In VAT, 

AMP-activated protein kinases (AMPK) activity is approximately 
reduced by 70 % in CS patients with respect to those with non- 
functioning adrenal adenoma and control subjects [121–122]. AMPK 
activity inhibits fatty acid synthesis and downregulates lipogenic 
enzyme gene transcription [123–124], thus the AMPK downregulation 
leads to an increase in lipid anabolic pathways. 

Another study shows that corticosterone, together with insulin, 
stimulates lipid synthesis up to 66 % in cultured adipose tissue [125]. 
However, other studies delivered opposite results, showing a down
regulation of fatty acid synthase and acetyl CoA carboxylase in rats 
[126]. 

Lipid storage may also be increased through the re-esterification of 
FFAs into TGs. However, other studies did not support that hypothesis 
[127–128] as GCs seemed to reduce re-esterification within adipose 
tissue instead [127]. Similarly, the phosphoenolpyruvate carboxy- 
kinase, the enzyme involved in re-esterification, was reduced in adi
pose tissue during GCs treatment [128]. Cortisol action on lipid meta
bolism is schematically depicted in Fig. 2. 

4. Insulin resistance and diabetes mellitus 

The prevalence of DM in CS patients ranges between 20 and 45 %, 
although the actual prevalence is thought to be underestimated since the 
oral glucose tolerance test is not routinely performed in clinical practice 
especially in case of normal fasting glycaemia [129]. As a general rule, 
the extent of cortisol excess is directly related to with insulin resistance 
and DM development [130], although this has not been invariably 
confirmed. The insulin-resistance induced by GCs in adipose tissue could 
be explained by a reduction of glucose uptake through inhibition of the 

Fig. 2. Schematic representation of cortisol effects on lipid metabolism. F, cortisol; E, cortisone; GRE, glucocorticoid responsive element; AMPK, AMP-activated 
protein kinases; AC, adenylyl cyclase; PPARγ, peroxisome proliferator-activated receptor γ; cAMP, cyclic adenosine monophosphate; HSL, hormone-sensitive 
lipase; LPL, lipoprotein lipase; ATGL, adipose triglyceride lipase; PKA, protein kinase A; ANGTPL4, angiopoietin-like 4; 11 βHSD, 11β-Hydroxysteroid dehydroge
nase. Figure made with Biorender. 
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translocation of glucose transporter type 4 on surface membrane [131]. 
Another possible contribution derives from a downregulation of insulin 
receptor substrate 1 expression. Moreover, it was observed a reduction 
of glucose uptake and a lower expression of insulin receptor substrate 1 
on human omental fat cultures, but in line with the different action of 
GCs on adipose tissue-subtype, it was not observed in subcutaneous 
tissue [132]. GCs induce hepatic gluconeogenesis by increasing the 
transcription factor forkhead box protein O1 and upregulating of 
phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6- 
phosphatase (G6Pase), key enzymes involved in the process [133]. 

Moreover, GCs have a catabolic effect on muscle and the amino acids 
from protein degradation, along with the elevated FFAs, provide further 
substrates for hepatic gluconeogenesis [134–135]. In muscle cells GCs 
reduce the glucose uptake by reducing the translocation of the glucose 
transporter type 4 on the surface membrane [136]. Moreover, GCs 
showed to impair the phosphorylation of insulin signalling proteins in a 
murine model. In particular, a reduced phosphorylation of protein ki
nase B phosphorylation, that controls muscle glucose uptake, and of 
glycogen synthase kinase-3, which controls glycogen synthesis [137] 
have been reported. In liver cells GCs also stimulate de novo lipogenesis, 
enhancing the effect of insulin as described above [138–139]. 

The high circulating FFAs levels induced by GCs are preferably 
accumulated in visceral fat and in the liver inducing hepatic steatosis in 
the long run. Interestingly, Dalle et al showed that mice with a selective 
GR knock-out in adipose tissue not only determined an improvement in 
glucose tolerance and insulin sensitivity, but also a considerable 
reduction of TGs hepatic amount. These data strengthened the primary 
role of GCs in glucose and lipid metabolism control and the GR in the 
adipocytes as a potential therapeutic target for metabolic syndrome 
[140]. 

The diabetogenic effect of GCs is also due to their direct action on 
pancreatic cells. Most of the in vitro experiments on pancreatic ß-cells 
cultures proved a decreased insulin secretion upon GC exposure [141], 
whereas in vivo studies showed hyperinsulinemia and ß-cells hyper
plasia [142]. It was postulated that this finding may be an adaptive 
response to counterbalance insulin resistance induced by GCs [143]. 
Thereby, the majority of CS patients present hyperinsulinemia. Cortisol 
also stimulates alpha pancreatic cells to produce glucagon, enhancing 
the hyperglycemic status [144]. 

It is noteworthy to stress that even a few days of oral administration 
of GCs leads to glucose impairment and insulin resistance also in healthy 
individuals [145–146]. Diabetes is present at CS diagnosis in almost 32 
% of endogenous Cushing’s syndrome patients, with a higher prevalence 
in the ectopic form of CS [147]. 

The diabetogenic effect of GCs is also due to a blunted “incretin ef
fect”. Incretin hormones are gut peptides that are secreted after meal 
intake and stimulate insulin secretion [148]. In healthy volunteers, 
dexamethasone treatment did not change fasting incretin hormones, but 
a reduced incretin effect was observed especially in people who devel
oped glucose intolerance [149–150]. In CD patients with diabetes mel
litus, a blunted glucose dependent insulinotropic polypeptide response 
to a mixed meal tolerance test was observed compared to the non- 
diabetic group [151]. Incretin mimetics, such as glucagon-like
peptide-1 receptor agonist, may improve the insulin sensitivity in CS 
patients, even in patients with Pasireotide-induced hyperglycemia 
[152]. 

5. Food intake 

In normal conditions, the hypothalamic–pituitary–adrenal axis 
(HPA) activity is stimulated during prolonged fasting [153]. The sub
sequent elevation of GCs levels leads humans to choose high-caloric 
foods to assimilate energy substrates [154]. Acute supraphysiological 
exposure to GCs was shown to induce hyperphagia in animals, whereas 
results in humans are not always consistent [155–157]. 

In chronic hypercortisolism this process could cause an elevation in 

calories consumption in non-fasting period, along with increased cir
culation of FFAs contributing to adipose tissue accumulation. CS pa
tients frequently reported increased subjective hunger and food 
consumption during active disease. It has been observed that CD pa
tients usually pick high-fat products to eat compared to normal controls 
[158]. Interestingly, in CD both higher cortisol values and abdominal fat 
stores after remission were associated with lower post-meal satisfaction 
and fullness [159]. These findings pointed that once reached eucorti
solemia, the HPA axis continues to regulate appetite, but exact mecha
nisms need to be elucidated. It should be mentioned that even fat stores 
may play a role in food intake, since hypothalamus is known to sense 
circulating fatty acids [160]. 

Two gastrointestinal hormones, ghrelin and peptide YY involved 
respectively in meal initiation [161] and termination (by enhancing 
satiety and decreasing food intake) [162–163], were not correlated with 
appetite and craving scores in CD patients. While peptide YY levels 
showed no changes after remission, fasting and post-prandial plasmatic 
ghrelin increased following cortisol normalisation. These findings were 
confirmed by other studies in which the expression of ghrelin and its 
receptor were increased in fasting conditions by GCs action [164–165]. 
However, it remains unclear whether this increase in ghrelin levels 
observed after remission is mainly due to decreased GC’s concentration 
or to weight loss. 

A possible role in food intake might be played also by the adipokine 
profile imbalance. Leptin is an adipocyte-derived protein which regu
lates food intake, body mass and takes part in lipolysis, proinflammatory 
responses and other functions [166–168]. Leptin concentrations tended 
to be higher in patients with CS compared to BMI-matched or normal 
weight controls [169]; furthermore, hypercortisolism might cause a 
reduction in leptin’s sensitivity [157,170–171]. These alterations can 
favour the development of obesity, hyperphagia and metabolic disorders 
[157,172], all features present in CS. 

GCs can also affect appetite by upregulating the gene expression of 
orexigenic peptides, like neuropeptide Y [173], and Agouti-related 
protein [174]. Neuropeptide Y increases food intake and the propor
tion of energy that is finally stored as adipose tissue. Other studies 
showed that GCs stimulate hypothalamic endocannabinoids with 
consequent increase in AMPK function, finally enhancing the sense of 
hunger [121,175–176]. 

ACTH is one the products of the enzymatic cleavage of the pro
hormone proopiomelanocortin (POMC); POMC-derived peptides are 
known to play a critical role in obesity through the melanocortin- 
receptor type 4; POMC deficiency or alterations in its processing are 
indeed associated with obesity [177]. POMC was found increased in 
ACTH-dependent CS, especially in ectopic forms [178] but the rate of 
efficient processing of the prohormone in such conditions and its impact 
on food intake have not been explored in cortisol excess states. 

Interestingly, ectopic CS due to small-cell lung carcinoma showed a 
marked increase in Agouti-related protein that might contribute to the 
weight loss frequently found in these patients despite severe cortisol 
excess. These results were later confirmed in another study comparing 
ectopic CS of non-malignant origin with CD [179]. 

6. Adipose tissue’s proinflammatory state 

GCs are known for their anti-inflammatory actions and are usually 
used to suppress immune response. However, long-term hyper
cortisolism is characterised by a state of chronic low-grade inflamma
tion. Indeed, several studies showed that active CS patients had 
increased plasmatic concentrations of proinflammatory cytokines such 
as interleukin (IL)-6, IL1-β and tumour necrosis factor-α [180–181]. Also 
obesity is a state of chronic low-grade inflammation with elevated levels 
of tumour necrosis factor-α and IL-1, driven by dysfunctional adipose 
tissue [182–183]. This inflammation is characterised by the increased 
presence of macrophages, with a predominance of the proinflammatory 
M1 macrophage phenotype over the M2 anti-inflammatory one 
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[184–185]. 
A preponderance of proinflammatory M1 macrophages, namely 

CD68 + and CD11c + macrophages, was also observed in CS patients 
[186]. as well as an increase in CD4 + T lymphocytes. All these markers 
were significantly increased compared to BMI-matched controls, con
firming that the inflammatory state was not secondary to the mere 
weight excess. Moreover, macrophages could abolish the differentiation 
of preadipocytes, inducing a phenotypic switch into myofibroblast 
through the action of macrophage-derived factors [187–189]. This 
process causes an increase in pro-fibrotic markers in adipose tissue 
which has already been reported in patients with CS [190]. 

Furthermore, a reduction in the production of vimentin, an inter
mediate filament expressed in mesenchymal cells, which may indicate a 
compromised adipose tissue structure caused by GCs was observed in CD 
patients. These alterations can further contribute to the augmented 
levels of proinflammatory cytokines in CD patients [186]. 

GCs can bind both GR and MR; it should be recalled that in presence 
of low 11β-HSD2 activity, as it is the case of adipocytes, cortisol is the 
main ligand of MR since in physiological condition concentration of 
cortisol is 100- to 1000-fold higher than those of aldosterone and this 
effect is taken to the extreme in patients with hypercortisolism 
[191–192]. The activation of the MR in adipose tissue led to a release of 
proinflammatory cytokines from M1 macrophages [193]. This addi
tional proinflammatory state was also observed in adipocytes where the 
GR was genetically deleted, suggesting that MR signalling induces 
proinflammatory state itself [194]. 

Lastly, a down-regulation of glucocorticoid-induced leucine zipper 
(an anti-inflammatory factor normally enhanced by GCs) and an acti
vation of multiple proinflammatory pathways, as toll-like receptors, 
leucine-rich family 3 gene receptor and purinergic receptors were also 
described in obesity [195–197]. 

Overall, the adipose tissue inflammation may be a potential cause of 
the increased systemic inflammation found in CS, leading to insulin 
resistance and cardiovascular mortality. Future studies are needed to 
investigate the mechanisms through which GCs increase inflammation 
within adipose tissue and the effects of specific treatment in CS. 

7. Hepatic steatosis 

Hepatic steatosis is commonly found in CS and could lead to non- 
alcoholic fatty liver disease NAFLD [12,198] which in turn paves the 
way toward fibrosis and hepatic cirrhosis, both well known risk factors 
for hepatocarcinoma [199–200]. Although not systematically assessed, 
NAFLD seems to be highly prevalent in CS patients. Indeed, a CT-based 
study found hepatic steatosis in 20 % of active CS patients [198]; a 
negative correlation between both liver attenuation and liver/spleen 
attenuation ratio with abdominal fat area, visceral adipose tissue area 
and the ratio between visceral and subcutaneous adipose tissue 
confirmed a strong connection between visceral adiposity and liver 
hepatic steatosis [198]. Conversely, in a cohort of NAFLD patient the 
level of cortisol where slightly higher than the control groups [201]. 

The intricate regulation of hepatic lipid content involves various 
mechanisms such as food intake, glucose and lipid regulation, all under 
the direct or indirect influence of GCs. Cortisol exerts its effects by both 
upregulating several processes such as lipogenesis, gluconeogenesis, and 
increasing circulating FFAs and glucose levels, and concurrently inhib
iting β-oxidation of fatty acids. Additionally, cortisol stimulates the 
secretion of very-low density lipoprotein (VLDL), contributing to a 
reduction in lipid deposition [12]. 

As previously described, hypercortisolism enhances food intake 
leading to the absorption of fatty acids by enterocytes, used to synthesise 
TGs that are released into the lymphatic system as chylomicrons. At this 
point, plasmatic LPL releases FFAs and glycerol from chylomicrons; 
FFAs are uptaken by muscle, adipose tissue, and liver where they are re- 
converted to TGs and stored in lipid droplets. Glycerol is instead picked 
up by the hepatocytes for gluconeogenesis as well as chylomicron 

remnants by the LDL-receptor [202]. 
Following a meal, glucose is absorbed by glucose transporter type 2 

into the liver, where it is deposited as glycogen or metabolised [203], 
whereas amino acids can be converted to glucose by the liver to a lesser 
extent under fed conditions through gluconeogenesis. [204–205] 
Gluconeogenesis is enhanced in the presence of cortisol excess which 
accelerates the degradation of skeletal muscle proteins, leading to 
muscle atrophy. Furthermore, glucose obtained through this pathway 
could be converted to FFAs and stored as TGs, especially in visceral 
adipose tissue [206]. 

GCs further promote gluconeogenesis through the transcriptional 
activation of PEPCK and glucose-6-phosphatase (G6Pase) [207–209]. 

This stimulation is directly promoted by the binding of the GR 
complex to the glucocorticoid response unit located in the promoter 
region of these genes, and by the activity of nuclear receptor co-factor 
peroxisome proliferator-activated receptor-γ co-activator 1 alpha 
(PGC1α), a co-factor whose expression is also increased by GC 
[203,210]. Recently, GCs have been shown to stimulate the expression 
of Krϋppel-like factor 9 (KLF9), a transcription factor that in turn 
stimulates the expression of PGC1α [211]. In a knock-out KLF9 mouse 
model, hyperglycemia induced by chronic dexamethasone treatment 
was significantly lower than in wild type mice confirming the role of 
GC/GR complex – KLF9 – PGC1α pathway in the activation of the he
patic gluconeogenic program [212]. The expression of PEPCK and 
G6Pase is promoted by catecholamines and glucagon, while insulin ex
erts inhibitory control over these enzymes [207–209]. As previously 
detailed, hypercortisolism induces hyperinsulinemia and insulin resis
tance, attenuating insulin-mediated glucose transport in tissues. Addi
tionally, glucagon levels rise concomitantly [213–214] and the 
catecholamine-induced glycogenolysis is enhanced GCs [215]. The 
synergistic impact of these factors culminates in high blood glucose 
levels [203,214], a part of which is picked by the liver where it is con
verted into FFAs and stored as TGs within lipid vesicles. 

TGs originate from the esterification of FFAs with glycerol or via de 
novo synthesis. Typically, FA esterification accounts for 60 % of TG 
synthesis. The contribution of de novo FFA synthesis is minimal during 
fasting periods but increases up to 20 % of the whole TG amount after 
food intake thanks to the higher acetyl-CoA availability [216–217]. GCs 
exert a regulatory control over several genes encoding enzymes involved 
in de novo FFA synthesis, including ACC and fatty acid synthase (FAS). 
Hyperglycemia, hyperinsulinemia, and GCs play integral roles in the de 
novo FFA synthesis pathway. In insulin resistance state, TG synthesis 
during fasting can be increased up to fivefold [218–220]. Transcrip
tional regulation of de novo FFA synthesis involves sterol regulatory 
element-binding protein-1c, stimulated by insulin, and carbohydrate 
response element-binding protein, stimulated instead by hyperglycemia 
[221–222]. As already described, GCs impaired both insulin and glucose 
plasma concentrations, activating sterol regulatory element-binding 
protein-1c and carbohydrate response element-binding protein, at the 
same time. This activation enhances the transcription of acetyl-CoA 
carboxylase (ACC) and FAS, along with the upregulation of glycolytic 
and lipogenic genes [223]. While some studies suggested a synergistic 
effect of GCs and insulin on ACC gene expression [224–226], others 
pointed to a pivotal role of insulin for GC-induced ACC stimulation 
[139,227–228]. recent study showed an activation of MAPK phospha
tase 3 by GCs as an additional mechanism behind the higher hepatic 
lipid synthesis [138]. 

GCs induce a relatively modest elevation in plasmatic levels of FFAs. 
Specifically, GCs promote lipolysis in subcutaneous adipose tissue, 
leading to an increase in FFA levels. Simultaneously, hypercortisolism 
enhances the uptake of FFAs by the liver and other tissues such as the 
heart and skeletal muscle [30,229–231]. These concurrent processes 
constitute primary contributors to hepatic lipid deposition 
[216,232–235]. The uptake of FFAs is governed by a multitude of 
transporters [236–238]. A study conducted on rats demonstrated the 
upregulation of CD36, a FFA transporter, in the liver during GCs 
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treatment [239]. 
GCs exert inhibitory control over the transcriptional activity of 

peroxisome proliferator-activated receptor alpha (PPARα), leading to a 
reduction in the expression of mitochondrial acyl-CoA dehydrogenases. 
This mechanism results in the attenuation of FFA beta-oxidation 
[240–242]. However, the increase in glucagon levels might stimulate 
FFA oxidation [213,243] and consequent ketone formation [244]. 
Nevertheless, this latter stimulatory effect is counteracted by hyper
insulinemia, which suppresses this pathway [203,245], thus the overall 
impact of GCs on FFA beta-oxidation in the liver is its restraint. Inter
estingly, GCs also modulate some pathways that mitigate lipid deposi
tion. GCs may lead to a reduction in the degradation of apolipoprotein B 
and in the expression and activity of triacylglycerol hydrolase, both 
integral to VLDL secretion [246–247]. Triacylglycerol hydrolase catal
yses the hydrolysis of TGs in the hepatocytes and a fraction of the 
released FFAs is re-esterified to TGs [248]. A proportion of these TGs 
binds to ApoB100, culminating in the formation of VLDL particles. These 
particles are concentrated in the Golgi apparatus and subsequently 
secreted as VLDL [247,249–250]. The combined effects of increased TG 
synthesis and a modest rise in VLDL secretion attributable to excess GCs 
lead to a net TGs accumulation within the hepatic tissue [247,250]. 

8. Increased epicardial adipose tissue 

The epicardial adipose tissue (EAT) is a fat depot of the heart in 
contact with myocardium and coronary arteries with multiple functions. 
EAT serves as a local energy source that releases FFAs into the blood
stream; however, it can also produce inflammatory adipocytokines that 
enhance in a paracrine way monocytes adhesion to endothelial cells 
[251]. Due to this latter action, the increase in EAT has been found to be 
an independent predictor of coronary artery disease, as it seems to be 
involved in early stages of atherogenesis [252]. 

The effects of hypercortisolism on EAT volume and left ventricular 
(LV) function were evaluated in patients with CS [253–254]. The pres
ence of hypercortisolism itself was found to be and independent de
terminants of epicardial fat volume [254]; in fact, EAT volume was 
increased in active CS compared to controls, possibly contributing to the 
increased cardiovascular risk in this setting [253], and it remains higher 
despite remission, although a decrease was observed after treatment 
[254]. 

Similar effects occur in patients with long-term steroid treatment due 
to rheumatic disorders [255]. 

Furthermore, it was found that CS patients had higher LV mass index, 
concentric remodelling and impaired LV relaxation compared to control 
subjects [253]; these structural changes were independently correlated 
with EAT volume, suggesting a major role of EAT in CS-induced LV 
dysfunction. 

As well known, EAT has local effects on the cardiac structure, volume 
and function in severely obese patients, but also in people without 
metabolic syndrome [256–258]; so it could be hypothesised that CS 
related cardiomyopathy is associated to adipocytokines release from 
EAT into the cardiomyocytes, promoting cardiac fibrosis and contractile 
dysfunction [259–260]. 

Notably, it was demonstrated that EAT was also composed by brown 
adipocytes, with a UCP-1 mediated thermogenic function and a putative 
cardio-protective role [261]; thus, it could be speculated that besides a 
quantitative change there is also a qualitative modification of the EAT in 
CS, with an increase of the white adipocytes and a relative decrease in 
brown adipose cells, as it occurs with aging. 

The loss of BAT protective functions in the heart could be a major 
player in CS cardiomyopathy, but more studies are needed to better 
explain this relationship. 

9. Cortisol action in obese patients 

Considering all the above described effects of hypercortisolism on 

adipose tissue, many studies investigated the possibility of a reverse 
relationship between obesity and cortisol. It has been studied whether 
impaired cortisol levels are present in obesity and thus promote fat 
accumulation. To date, most of the studies have shown conflicting data 
[262], and recent meta-analyses were unable to prove a positive asso
ciation between obesity and cortisol excess in epidemiological studies 
[263–264]. 

The 24 h urinary free cortisol is one of the widely used and accepted 
screening methods for the diagnosis of endogenous cortisol excess. 
However, results in literature are inconsistent, with some studies 
reporting hypercortisolism and others hypocortisolism in obese patients 
[265–269]. These heterogeneous results might depend on the fact that 
traditional screening methods for cortisol excess provide a snapshot of 
the day of the assay without giving a real estimation of the total tissues’ 
exposure of cortisol for longer periods. For this reason, multiple samples 
are frequently required in case of suspected CS [270]. 

Recently, the measurement of hair cortisol has gained increasing 
interest since it is less influenced by daily fluctuation and can provide an 
excellent estimation of cortisol exposure in the previous months 
[271–272]. Recent studies have observed that hair cortisol levels are 
increased in obese people [273] and positively correlated to body 
weight [274] and waist-to-hip circumference [275]. The same trend was 
observed also for hair cortisol concentrations and obesity in children. 
[276]. 

Several studies have studied the alterations of the HPA axis in obese 
patients, as summed up by a systematic literature review [263]. The 
HPA axis follows a well-defined circadian rhythm of secretion, with 
cortisol peaking in the morning before awakening and slowly decreasing 
throughout the day, reaching the nadir at bedtime [277]. 

Some authors evaluated the cortisol awakening response by 
measuring salivary cortisol in the morning. As observed for other pa
rameters, results were conflicting; some studies found a negative rela
tionship between low morning cortisol levels and obesity [278–282], 
whereas others found an elevation of morning peaks [283–285] or no 
relationship at all [286–287]. 

An increased HPA activity to both physical and psychological acute 
stressors has been observed in people with abdominal obesity 
[269,279,288–290]. For instance, a higher ACTH and cortisol response 
to CRH was observed in women with abdominal obesity compared to 
controls [291]. Similarly, women with a greater waist-to-hip ratio dis
played an enhanced cortisol response to ACTH stimulation [292]. 

The loss of the circadian rhythm of cortisol secretion is a typical 
hallmark of CS. Its elevation in non-CS patients was positively correlated 
with BMI or waist circumference, as observed in all studies 
[267,278,284,293] but one [281]. A community sample of 120 control 
patients, found elevated late-night salivary cortisol levels in patients 
with metabolic syndrome but the total endogenous daily cortisol 
secretion measured by the area under the curve of multiple cortisol 
sampling was not influenced by age or metabolic syndrome [294]. 

The maintenance of the normal HPA regulation has also been 
assessed through the low dose dexamethasone suppression test. A 
normal response consists of a decrease of serum cortisol to less than 50 
nmol/L on the morning after dexamethasone administration [7]. How
ever, results were not homogenous since testing protocols and dexa
methasone doses differed among studies. In general, no correlation was 
observed between the loss of negative feedback and generalised obesity 
[269,293], whilst abdominal obesity seemed to be associated with a 
reduction of the feedback mechanism and increased post-dose cortisol 
levels [294,295]. Indeed, the waist-to-hip ratio seems to be linked to a 
less effective cortisol inhibition after dexamethasone, while these results 
were independent of the BMI. The possibility of low absorption and 
excessive drug distribution of dexamethasone has been questioned for 
obese patients, and alternative methods of performing the suppression 
test have been used proving the same results. This issue can be overcome 
by measuring serum cortisol and dexamethasone levels after suppression 
to confirm adequate drug bioavailability; a dexamethasone > 4.5 nmol/ 
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L improved accuracy and interestingly, its level was not correlated to 
either body weight or BMI [296]. 

10. CS remission and fat distribution 

To date, few studies have investigated the effects of surgery or 
medical treatment on cortisol-related comorbidities, Table 2. It has been 
observed that despite complete remission, several patients do not 
completely revert cortisol-related comorbidities, in particular they 
maintain cardiovascular, bone and quality of life impairment that result 
in enduring elevated mortality rate [297–299]. 

One of the major determinant of this high risk condition is the 
persistent increase of typical hallmarks of the metabolic syndrome; 
Faggiano et al. showed that one year after remission BMI did not change 
and the waist to hip ratio despite its decline following cortisol normal
isation remained significantly higher than age-matched controls [38]. 

Similarly, CS patients maintained abnormal body composition and 
impaired adipokines secretion even after long-term remission [181]. 
Lower levels of adiponectin, an adipokine with anti-atherogenic and 
anti-inflammatory activity, with concomitant elevation of soluble TNFα 
receptor 1 and IL-6 were found in CS patients in remission compared to 
controls. This impaired adipokine profile that correlates with visceral 
obesity, may contribute to the low-grade inflammation and cardiovas
cular risk observed in CS patients irrespective of the disease activity 
[300]. 

They also observed that long-term remission led to a gradual 
reduction of leptin levels. On the other hand, considering a shorter 
remission time, Cizza et al. found persistently elevated levels of leptin 
ten days after surgery for CD [301]. 

Another study [302] found that a 6-month remission decreased 
weight, waist circumference and nearly all fat depots, like VAT, pelvic 
bone marrow adipose tissue, subcutaneous adipose tissue as assessed by 
magnetic resonance imaging. This resulted in an improvement in fat 
distribution, with a reduction in visceral/total fat and visceral fat/ 

skeletal muscle ratios, all indexes known to be associated with hepatic 
steatosis and metabolic syndrome [303,304]. 

Furthermore, Lonn et al. [305] observed that after normalisation of 
cortisol levels these patients present a reduction in total adipose tissue 
and a redistribution from viscera to legs. Regarding bone marrow adi
pose tissue, also Maurice et al. found a normalisation of its accumulation 
during remission [306] . 

A study with a longer follow-up after remission reported a persistent 
increase in visceral fat and persistent difficulties in losing weight, with 
BMI exceeding 25 kg/m2 in most of the cases [307]. 

Likewise, the EAT excess improved after biochemical remission, 
although it remained more represented than in control patients [253], 
whereas no changes were observed for the pericardial fat after cortisol 
control [254]. 

11. Conclusions 

Several mechanisms are involved in the pathogenesis of visceral 
adiposity in CS, including cortisol direct action on adipocytes inducing 
adipogenesis, 11β-HSD1 overexpression and 11β-HSD2 saturation and 
increased intake high-energy food. However, the relative weight of each 
contributor to the clinical picture of CS is still to be determined and 
required further investigation. What is clear is the detrimental effect of 
central adiposity on cardiovascular health, since it is the key determi
nant of the sustained proinflammatory profile that has been observed 
even after long-term remission in CS patients. Despite the reversal of 
most of the cortisol-related complications after effective control of CS, 
BMI and especially waist circumference remained impaired exposing the 
patients to higher risk of cardiovascular events. Among treatments 
addressing adverse metabolic effects of cortisol at tissue level the 11β- 
HSD1 inhibitors provided promising data suggesting their future appli
cation to mitigate side effects of exogenous GCs therapy for chronic 
conditions and potentially as adjunctive treatment in the management 
of CS comorbidities. However, concerns have been raised about their 

Table 2 
Studies reporting the variations of anthropometric parameters, adipose tissue and adipokine profile in patients with Cushing’s Syndrome.  

First author Year of 
publication 

Study type Remission time Anthropometric 
parameters  

Adipose 
tissue  

Adipokine 
profile  

Lönn L 1994 Prospective 
observational 

8 ± 2 months Weight ↓ TAT 
VAT 
Legs adipose 
tissue 

↓ 
↓ 
↑   

Cizza G  1997 Prospective 
observational 

10 days Weight 
BMI 

=

=

Leptin  
=

Faggiano A 2003 Prospective 
observational 

12 months BMI 
WHR 

=

↓     
Leong GM 2006 Prospective 

observational 
3 to 7 years BMI = VAT =

Barahona 
MJ 

2009 Case-control 11 ± 6 years     Adiponectin 
sTNF-R1 
IL-6 

↓ 
↑ 
↑ 

Geer EB 2012 Prospective 
observational 

6 months after GC replacement discontinuation 
mean 20.1 months (9 – 42 months) 

Weight 
Waist circumference 

↓ 
↓ 

VAT 
SAT 
Pelvic BMAT 
VAT/SM 
VAT/TAT 

↓ 
↓ 
↓ 
↓ 
↓  

Leptin    

↓ 

Maurice F 2018 Cross- 
sectional 

43 ± 4 months BMI = VAT 
dSCAT/ 
sSCAT 
BMAT 

↓ 
↓ 
↓   

Maurice F 2018 Cross- 
sectional 

> 2 years  BMI 
WHR 

=

=

EAT  
↓    

Wolf P 2021 Prospective 
observational 

8.1 – 10.9 months BMI = EAT 
PAT 

↓ 
=

BMI = body mass index; WHR: waist-to-hip ratio; VAT = visceral adipose tissue; SAT = subcutaneous adipose tissue; BMAT = bone marrow adipose tissue; SM =
skeletal muscle; TAT = total adipose tissue; dSCAT = deep subcutaneous adipose tissue; sSCAT = superficial subcutaneous adipose tissue; EAT = epicardial adipose 
tissue; PAT = pericardial adipose tissue. 
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safety in vivo in the long-run and further data are warranted. Targeting 
the cAMP-dependent pathway seems also an intriguing option but still to 
be explored. 
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[135] E. Löfberg, et al., Effects of high doses of glucocorticoids on free amino acids, 
ribosomes and protein turnover in human muscle, Eur. J. Clin. Invest. 32 (2002) 
345–353. 

[136] S.P. Weinstein, T. Paquin, A. Pritsker, R.S. Haber, Glucocorticoid-induced insulin 
resistance: dexamethasone inhibits the activation of glucose transport in rat 
skeletal muscle by both insulin- and non-insulin-related stimuli, Diabetes 44 
(1995) 441–445. 

[137] J. Ruzzin, A.S. Wagman, J. Jensen, Glucocorticoid-induced insulin resistance in 
skeletal muscles: defects in insulin signalling and the effects of a selective 
glycogen synthase kinase-3 inhibitor, Diabetologia 48 (2005) 2119–2130. 

[138] B. Feng, Q. He, H. Xu, FOXO1-dependent up-regulation of MAP kinase 
phosphatase 3 (MKP-3) mediates glucocorticoid-induced hepatic lipid 
accumulation in mice, Mol. Cell. Endocrinol. 393 (2014) 46–55. 

[139] Y. Wang, et al., The human fatty acid synthase gene and de novo lipogenesis are 
coordinately regulated in human adipose tissue, J. Nutr. 134 (2004) 1032–1038. 

[140] H. Dalle, et al., Adipocyte glucocorticoid receptor deficiency promotes adipose 
tissue expandability and improves the metabolic profile under corticosterone 
exposure, Diabetes 68 (2018) 305–317. 

[141] S. Gremlich, R. Roduit, B. Thorens, Dexamethasone induces Posttranslational 
degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic β 
cells: COMPARISON WITH THE EFFECTS OF FATTY ACIDS *, J. Biol. Chem. 272 
(1997) 3216–3222. 

[142] A. Rafacho, et al., Morphofunctional alterations in endocrine pancreas of short- 
and long-term dexamethasone-treated rats, Horm. Metab. Res. 43 (2011) 
275–281. 

[143] E. Courty, et al., Adaptive β-cell neogenesis in the adult mouse in response to 
glucocorticoid-induced insulin resistance, Diabetes 68 (2018) 95–108. 

[144] J.K. Wise, R. Hendler, P. Felig, Influence of glucocorticoids on glucagon secretion 
and plasma amino acid concentrations in man, J. Clin. Invest. 52 (1973) 
2774–2782. 

[145] C. Binnert, S. Ruchat, N. Nicod, L. Tappy, Dexamethasone-induced insulin 
resistance shows no gender difference in healthy humans, Diabetes Metab. 30 
(2004) 321–326. 

[146] D.H. van Raalte, et al., Glucocorticoid treatment impairs microvascular function 
in healthy men in association with its adverse effects on glucose metabolism and 
blood pressure: a randomised controlled trial, Diabetologia 56 (2013) 
2383–2391. 

[147] E. Valassi, Clinical presentation and etiology of Cushing’s syndrome: data from 
ERCUSYN, J. Neuroendocrinol. 34 (2022) e13114. 

[148] D. Regazzo, M. Barbot, C. Scaroni, N. Albiger, G. Occhi, The pathogenic role of the 
GIP/GIPR axis in human endocrine tumors: emerging clinical mechanisms beyond 
diabetes, Rev. Endocr. Metab. Disord. 21 (2020) 165–183. 

[149] D.H. Jensen, et al., Steroid-induced insulin resistance and impaired glucose 
tolerance are both associated with a progressive decline of incretin effect in first- 
degree relatives of patients with type 2 diabetes, Diabetologia 55 (2012) 
1406–1416. 

[150] M. Eriksen, et al., Reduction of insulinotropic properties of GLP-1 and GIP after 
glucocorticoid-induced insulin resistance, Diabetologia 58 (2015) 920–928. 

[151] M. Barbot, et al., Incretin response to mixed meal challenge in active Cushing’s 
disease and after pasireotide therapy, Int. J. Mol. Sci. 23 (2022) 5217. 

[152] M. Shikata, et al., Pasireotide-induced hyperglycemia in a patient with Cushing’s 
disease: potential use of sodium-glucose cotransporter 2 inhibitor and glucagon- 
like peptide-1 receptor agonist for treatment, Clin. Case Rep. 8 (2020) 
2613–2618. 

[153] M.F. Dallman, et al., Starvation: Early signals, sensors, and sequelae 1, 
Endocrinology 140 (1999) 4015–4023. 

[154] A.M. Strack, R.J. Sebastian, M.W. Schwartz, M.F. Dallman, Glucocorticoids and 
insulin: reciprocal signals for energy balance, Am. J. Physiol.-Regul. Integr. 
Comp. Physiol. 268 (1995) R142–R149. 

[155] P.A. Tataranni, et al., Effects of glucocorticoids on energy metabolism and food 
intake in humans, Am. J. Physiol.-Endocrinol. Metab. 271 (1996) E317–E325. 

[156] N. Rieth, et al., Effects of short-term corticoid ingestion on food intake and 
adipokines in healthy recreationally trained men, Eur. J. Appl. Physiol. 105 
(2009) 309–313. 

[157] J. Uddén, et al., Effects of glucocorticoids on leptin levels and eating behaviour in 
women, J. Intern. Med. 253 (2003) 225–231. 

[158] T.W. Castonguay, Glucocorticoids as modulators in the control of feeding, Brain 
Res. Bull. 27 (1991) 423–428. 

[159] E.B. Geer, et al., A prospective study of appetite and food craving in 30 patients 
with Cushing’s disease, Pituitary 19 (2016) 117–126. 

[160] T.K.T. Lam, et al., Hypothalamic sensing of circulating fatty acids is required for 
glucose homeostasis, Nat. Med. 11 (2005) 320–327. 

[161] D.E. Cummings, et al., A preprandial rise in plasma Ghrelin levels suggests a role 
in meal initiation in humans, Diabetes 50 (2001) 1714–1719. 

[162] R.L. Batterham, et al., Inhibition of food intake in obese subjects by peptide YY 
3–36, N. Engl. J. Med. 349 (2003) 941–948. 

[163] L. Degen, et al., Effect of peptide YY3–36 on food intake in humans, 
Gastroenterology 129 (2005) 1430–1436. 
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