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Abstract—The stringent timing and reliability requirements in
mission-critical applications require a detailed statistical charac-
terization of end-to-end latency. Teleoperation is a representative
use case, in which a human operator (HO) remotely controls a
robot by exchanging command and feedback signals. We present
a framework to analyze the latency of a closed-loop teleoperation
system consisting of three entities: an HO, a robot located in
remote environment, and a Base Station (BS) with Mobile edge
Computing (MEC) capabilities. A model of each component is
used to analyze the closed-loop latency and optimize the compres-
sion strategy. The closed-form expression of the distribution of
the closed-loop latency is difficult to estimate, such that suitable
upper and lower bounds are obtained. We formulate a non-convex
optimization problem to minimize the closed-loop latency. Using
the obtained upper and lower bound on the closed-loop latency,
a computationally efficient procedure to optimize the closed-
loop latency is presented. The simulation results reveal that
compression of sensing data is not always beneficial, while system
design based on average performance leads to under-provisioning
and may cause performance degradation. The applicability of the
proposed analysis is much wider than teleoperation, including a
large class of systems whose latency budget consists of many
components.

Index Terms—Mission-critical communications, teleoperation,
real-time systems, telerobotics, human-machine interaction, mo-
bile edge computing, low-latency high-reliability

I. INTRODUCTION

The Tactile Internet (TI) [1] is a fairly recent concept
that involves the transmission of tactile sensations along with
data, text, and multimedia content. The ability to receive
multiple sensory inputs enhances the immersion of the user
in Virtual Reality (VR), and improves control performance in
teleoperation, in which a human operator (HO) controls and
manipulates a remotely located robot or object [2]. Specif-
ically, teleoperation involves a two-way exchange of data:
commands from the operator and sensory feedback from the
remote environment, creating a closed-loop system [3]. Ad-
vanced Human-to-Machine Interaction (HMI) in teleoperation
involves the exchange of abundant sensory data, which ensures
that the HO can have an intuitive and precise interaction
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with the remote environment, improving the task execution
accuracy and efficiency, but also putting a significant strain
on the communication system.

Due to its interactive nature, teleoperation is highly sensitive
to communication impairments. The concept of motion-to-
photon delay [4], often used in VR, is extremely relevant here:
if we measure the closed-loop latency between the moment
an action is performed by the operator and the moment that
they get the related feedback, we can gauge the Quality of
Experience (QoE) for the operator, as well as the final control
performance. Besides low latency, teleoperation requires a
high reliability, as communication channel losses in both direc-
tions may degrade feedback and control precision. Moreover,
reliable low-latency systems are effectively transparent [5],
i.e., the operator should not notice the remote nature of the
environment, and should feel as if they were controlling the
robot directly. This ensures the immersion of the operator
in the remote environment, improving both QoE and control
performance. On the other hand, long delays and high jitter
can both deteriorate the user experience and jeopardize the
stability of the closed-loop teleoperation system, as the HO’s
reactions to events in the remote environment are delayed and
sluggish [6]. The comfort zone for performing remote surgery
requires a closed-loop latency up to around 300 ms [7], while
slower tasks in VR-based haptic teleoperation can tolerate up
to around 800 ms[8].

Furthermore, communication is not the only bottleneck in
the system, as closed-loop latency also includes computation
and processing times, and the robot might have limited on-
board computation capabilities. As the decoding and execution
of the operator’s commands are part of the teleoperation
control loop along with the compression and processing of
the sensing data, these operations can have a significant
effect on the latency. In effect, the success of teleoperation
applications strongly depends on the performance of both
the communication and the computational segments. In order
to fully optimize the teleoperation system to meet the final
application’s closed-loop latency constraints, which can be
very stringent in mission-critical industrial scenarios, we need
to consider all steps of the process.

Latency in networked, closed-loop control systems is not
easy to control, as the randomness of the wireless channel and
the variable amount of available bandwidth and computation
resources make the closed-loop latency a stochastic quantity.
While the effects of a higher latency and jitter are understood
from laboratory experiments [9]–[11], existing schemes opti-
mize only for the average latency [12]–[14], without providing
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Figure 1: System model for a closed-loop MEC-enabled teleopera-
tion system.

any reliability guarantees. Furthermore, most teleoperation
system designs [15]–[18] do not take into account the com-
putational delay when computing latency, effectively leaving
out part of the control loop and potentially disregarding an
important component of the closed-loop latency.

In this work, we present an analysis of a Mobile Edge
Computing (MEC) [19], [20] system for teleoperation, in
which the most computationally-intensive tasks are offloaded
to an MEC-enabled Base Station (BS), as shown in Fig. 1.
A preliminary version of this work was presented in [21],
focusing only on the latency of an uplink connection, rather
than closed-loop latency, from a multi-sensor robot to the BS.
This work generalizes the framework to analyze the latency
of the closed-loop teleoperation system and formulates an
optimization problem to minimize the closed-loop latency
with high reliability under statistical constraints. The key
contributions of the paper are as follows:

1) The system model for closed-loop MEC-enabled tele-
operation system is presented, where the command and
sensing data are exchanged over wireless network through
a BS. An MEC server on the BS processes the command
and sensing data in order to be sent to the robot and the
feedback for the HO, respectively, enabling the closed-
loop operation.

2) Two system design possibilities are considered and com-
pared. In the first one, the robot located in the remote
environment compresses the raw sensing data and then
transmits it to the BS, which decompresses and processes
it to extract the user readable feedback that is transmitted
back to the HO. In the second scenario, the robot trans-
mits the raw sensing data to the BS without compression,
where it is processed by the MEC server.

3) The closed-loop latency for both scenarios is analyzed
by dividing it into three components: the duration of the
compression operation on the sensing data, the trans-
mission delays for commands and feedback, and the
decompression and computation at the MEC server. All
these latency components are modelled as independent
random variables (RVs). Thus, the closed-loop latency,
which is the sum of all these components, is also an
RV. We characterize the nature of its Probability Density
Function (PDF) and Cumulative Distribution Function
(CDF) and obtain tractable upper and lower bounds on

the closed-loop latency for both scenarios.
4) A non-convex optimization problem is formulated, aim-

ing to minimize the the closed-loop latency in the statis-
tical sense. Using the obtained upper and lower bounds
on the closed-loop latency, we present a computationally
efficient procedure to estimate the optimal closed-loop
latency and solve the problem.

5) We analyze the performance of the schemes by simu-
lation, and find that the simulation results reveal that
compression of sensing data is not always beneficial. The
decision on data compression depends on the communi-
cation system parameters, as well as the computational
capability of the robot. The proposed approach is also
compared with the system design that is optimized in
average sense, as reported in the prior works. The com-
parative analysis reveals that system design in average
sense leads to under-provisioning and causes a significant
performance degradation.

While this work focuses on the latency analysis for tele-
operation, the basic framework we propose can be used
for any cascaded system with random latency components,
such as Open Radio Access Network (O-RAN) [22] systems.
The O-RAN architecture is envisioned to execute networking
processes in software, making network components’ behavior
programmable. Telecom operators will use the standardized
interfaces to control multi-vendor infrastructures. In the con-
text of O-RAN, the proposed framework will be very useful
to analyze the latency incurred across multiple software and
hardware components from multiple vendors in order to max-
imize user QoE.

The rest of this paper is organized as follows. Section II
presents related work on the subject, while the basic model
of an MEC-enabled teleoperation system is presented in Sec-
tion III. The different delay components of the closed-loop
latency and their distributions are discussed in Section IV,
and the overall closed-loop latency distribution is estimated
and optimized in Section V. Finally, the numerical simulation
results are discussed in Section VI, followed by the concluding
remarks in Section VII.

II. RELATED WORK

Latency is a major issue in teleoperation systems, and the
literature in the field [9]–[11] has extensively investigated its
impact on control performance. The study in [9] describes an
experiment that uses a haptic device to generate feedback,
presenting the visual three-dimensional environment to the
user on a monitor and studying the effect of latency between
the participant’s actual action and the visible movement on
the monitor. A commercial haptic teleoperation system [23]
was used in [10], which allowed HOs to touch and grasp the
computer-generated virtual objects. This experiment demon-
strated that the average latency increases significantly with
the network load. A closed-loop compensatory tracking task
is performed using tactile input in [24], where the feedback is
encoded to the user using frequency and amplitude modulation
schemes. A significant time delay, on the order of several
hundred milliseconds, has been noticed in this experiment.
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Most existing low-latency teleoperation schemes have tried
to minimize the average latency, which is an easier target,
and neglected the required reliability targets in a statistical
sense. Even in systems with high-reliability fiber-wireless
(FiWi) networks, existing optimization works are limited to
average guarantees [14]. In this scenario, the limiting factors
are the availability, skill set, distance to task location, and
remaining energy of robots [25], or the association between
tasks and HOs [26]. The study in [27] presents a task al-
location strategy by combining suitable host robot selection
and computation task offloading onto collaborative nodes in
the FiWi infrastructure. The conventional Cloud, decentralized
cloudlets, and neighboring robots as collaborative nodes are
used for computation offloading. Cross-layer techniques for
low-latency teleoperation have also been considered in the
literature [28]–[30]. TI cross-layer transmission optimization
is investigated in [28] by considering the transmission delay,
error probability, and statistical queuing delay requirements,
using a proactive packet dropping mechanism to limit latency.
A resource allocation mechanism to maximize the uplink sum
rate of traditional data while satisfying the delay requirements
for tactile data is presented in [30] using sparse code multiple
access. The study in [29] estimates the average latency from a
hub to an access point for tactile body-worn devices connected
using an IEEE 802.11 network.

In general, support for teleoperation applications based on
Network Function Virtualization (NFV) is included in the
5G network architecture [12], [13], [31]. The study in [12]
presents a utility function based model to evaluate the per-
formance of the NFV-based TI by considering the human
perception resolution and the network cost of completing
services. The utility function depends on the average round-
trip delay, network link bandwidth, and node virtual resource
consumption. The joint radio and NFV resources for a hetero-
geneous network are allocated in [13] by guaranteeing average
end-to-end delay of each tactile user, including the queuing,
transmission, and computation delays. MEC offloading is
another possibility for TI applications [16], [18]. A trade-off
between the average service response time and power usage
efficiency is investigated in [15] for local and cooperative
MEC. This can be optimized according to QoE metrics as
well [16], or using more advanced caching techniques [17].
Finally, a real-time network architecture for remote surgery
application is presented in [18], employing cloud and MEC
networks to satisfy the timing constraints, which are still
expressed in terms of the average end-to-end delay.

Overall, existing experimental works have mostly consid-
ered simple links with controllable latency, while the existing
architectures only dealt with average latency, and often disre-
garded the contribution of the computational component of the
closed-loop latency. The main novelty of our work is in the
modeling and consideration of these factors, estimating the
complete distribution of the closed-loop latency in a public
Internet setup, along with optimizing it for the worst-case
scenario by considering statistical guarantees to ensure a more
stable performance than average latency minimization.

III. SYSTEM MODEL

The basic schematic of the considered MEC-enabled teleop-
eration system is shown in Fig. 1: the robot, which is located in
the remote environment, is instructed by the HO, who receives
feedback information that guides his decisions. The instruction
sent to the robot is referred to as the command signal, whereas
the the information received from the robot is referred to as
the sensing data. The command signal from the HO and the
sensing data from the robot are exchanged over a wireless
connection via the BS. The volume of the generated sensing
data is much larger than the command signal, because it can
include throughput-intensive formats such as video and tactile
data, along with other types of media such as audio, images,
text, or numeric values. On the other hand, the command
signal is usually selected from a discrete and limited set of
instructions, such as direction, speed, trajectory, or applied
force, which are not data intensive and can be represented
with only a few bytes. The sensing data acts as feedback to
the HO for further command instructions to the remote robot.
The transmission of this potentially large volume of data over
a wireless connection is expensive in terms of required radio
resources, and may require compression before the data is
transmitted.

The alternative is to process the sensing data at the robot
itself and extract a user-readable feedback signal, but this
may be very computationally intensive, often far beyond the
capabilities of the robot. On the other hand, commands from
the HO are typically not compressed, and represent high-level
instructions to the robot. The MEC server then translates these
high-level commands to low-level commands to the robot’s
actuators, which can be directly executed. As the size of
command signals is typically much smaller than the sensing
data from the robot, the compression of command data is not
within the scope of our work1.

The MEC server at the BS acts as a decision-support
system that handles the data-intensive computation task by
processing the sensing data from the robot. Such processed
data is communicated to the HO. In the system model shown
in Fig. 1, the robot compresses the sensing data locally and
transmits this compressed data to the BS. The MEC server at
the BS first decompresses the data, processes it, and sends the
processed data having user readable feedback to the HO. Based
on the received feedback, the HO decides on the command
signal for the robot located in the remote environment. Thus,
the command and sensing signals exchanged over wireless
medium through a BS form a closed-loop teleoperation system
connected over two communication links.

Remark 1. The focus of this work is on communication and
computation aspects of the teleoperation system. Therefore,
the latency due to executing the command signal at the robot
is not taken into account, as it depends on the mechanical
properties of the robot and the application at hand. Likewise,
the latency incurred in the HO’s reaction is not considered
and is beyond the scope of the work.

1Note that the analytical framework presented here can be straightforwardly
extended if the command data also gets compressed at the HO side before
transmission.
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Figure 2: Depiction of the components of the closed-loop latency.

Remark 2. In the following, we assume that the data re-
lated to teleoperation application is allocated resources in a
private slice by the BS avoiding queuing delay, as its latency-
constrained nature requires network support.

The different delay components of the closed-loop latency,
which constitute the delay incurred in exchanging command
and sensing signals, are shown in Fig. 2 for the system model
in Fig. 1. The feed-forward delay consists of the delay incurred
in the transmission of the high-level command signal, the MEC
processing (if required), and the transmission of processed data
(i.e., the low-level command). The feedback delay consists of
the delay incurred in (potential) compression of the sensing
data at the robot, the transmission of the compressed data, the
decompression and processing at the MEC BS, and finally, the
transmission of this processed user-readable feedback signal to
the HO 2.

IV. LATENCY COMPONENTS

In the given context of an MEC-enabled teleoperation sys-
tem, the closed-loop latency is mainly due to the delay incurred
in transmission of command and sensing data, compression at
the robot, and decompression and computation at the MEC
server. The data transmission delay is random in nature due
to uncertainty in the wireless channel, while the randomness
of the computation time at the MEC server is related to the
uncertainty in the amount of resources allocated for process-
ing. Thus, the overall closed-loop latency is also an RV. In
the following, we characterize the probability distributions of

2The propagation delay is not taken into consideration here, as it will be
several orders of magnitude lower than the other components of the closed-
loop delay for the distances relevant for the considered teleoperation scenario.

different delay components of the closed-loop MEC-enabled
teleoperation system.

A. Latency Incurred in Data Transmission

We consider a wireless channel with Rayleigh block fading,
such that the channel gain h is constant over the length of the
packet. Hence, the fading gain g = |h|2 ∼ exp(1), and the
gain over subsequent packets is independent and identically
distributed. We consider a transmitter that uses power Ptx
located at a distance d from the receiver. As teleoperation
applications are extremely sensitive to delay and require
dedicated resources, we consider a slicing-enabled 5G system
in which a bandwidth B is reserved for the transmission [32].
The signal-to-noise ratio (SNR) γ at the receiver is then

γ(Ptx, d, B) = K0
Ptx|h|2

d`N0B
= γ0(Ptx, d, B)g, (1)

where K0 is the Friis equation parameter, ` is a path loss
exponent depending on the propagation scenario, N0 is the
noise power spectral density, and γ0(Ptx, d, B) = K0

Ptx
d`N0B

is
the average SNR.

We assume that the transmitter can choose the transmission
rate, guaranteeing ε-outage of the communication link at the
receiver [33] by using the Shannon bound. The outage prob-
ability ε characterizes the probability of packet loss in case
of deep fading, when the transmission cannot be decoded. We
assume that the data is correctly received if the instantaneous
received SNR is higher than γth. Thus, for a threshold SNR
γth with outage probability ε, the rate R(ε) is

R(ε) = B log2(1 + γth). (2)

The outage probability ε in a Rayleigh fading channel is:

ε = Pr {γ < γth} = Pr

{
g <

γth

γ0

}
= 1− exp

(
−γth

γ0

)
, (3)

where Pr{·} denotes the probability of an event. From (2) and
(3), R(ε) can be rewritten as

R(ε) = B log2(1 + γth) = B log2

(
1 + γ0 ln

(
1

1− ε

))
.

(4)

Remark 3. R(ε) is a monotonically increasing function of ε.

If the transmitter divides data into packets with a constant
length np and uses a pass-band modulation, the time tp to
transmit a packet is simply given by

tp =
np

2BR(ε)
. (5)

As the erasure probability for a packet is ε, the total time until
correct reception is a geometrically distributed RV. The time
elapsed in receiving acknowledgement is very small compared
to the data transmission time, and hence it is ignored. Thus,
the probability mass function (PMF) of the time T required
to transmit a packet is then given by

Pr(T = ktp) = εk−1(1− ε), k ≥ 1. (6)



5

The mean and variance of T are then

E[T ] =
1

1− ε
tp, E[(T − E[T ])2] =

ε

(1− ε)2
t2p. (7)

If a data block is composed of N packets, the total transmis-
sion time for the block is:

Ttx(N, ε) =

N∑
i=1

Ti. (8)

We note that Ttx is the sum of N identical and independent
geometrically distributed RVs. It’s PMF is a negative binomial
distribution as follows

Pr(Ttx = ktp|N, ε) =

(
k +N − 1

N − 1

)
εk−N (1− ε)N , k ≥ N.

(9)
In most practical cases, N will be relatively large, and we can
use the Central Limit Theorem to approximate this distribution
to a Gaussian RV as follows:

Ttx(N, ε) ∼ N (µtx, σ
2
tx), (10)

where µtx = N 1
1−ε tp and σ2

tx = N ε
(1−ε)2 t

2
p. This approxima-

tion substitutes the transmission time from a discrete domain
with only positive values with the real domain. However, the
approximation error is negligible for N � 1. The Cumulative
Distribution Function (CDF) of Ttx is given as follows:

FTtx(t) =
1

2

[
1 + erf

(
t− µtx√

2σtx

)]
, (11)

where erf(x) = 2√
π

∫ x
0

exp(−z2)dz is the error function.

Remark 4. The transmission time, modeled here using the
Gaussian distribution, should be non-negative, but the domain
of the Gaussian distribution is (−∞,∞). Since we are inter-
ested in the worst-case scenario, i.e., in cases in which the
latency is higher than average, the extremely small proba-
bility of the Gaussian approximation resulting in a negative
value on the left tail of the distribution (we have noted that
µtx − 4σtx ≥ 0 for the numerical values considered in this
paper, implying that more than 99.995% data points will be
non-negative) has a negligible effect on the analysis and the
considered reliability levels.

Remark 5. The PDF of Gaussian distribution is neither a
convex nor a concave function. It is symmetric and exhibits a
unimodal variation. Further, it is also a log-concave function.

B. Latency Incurred in Data Processing

The time required by computational tasks, including com-
pression and decompression of data, depend upon the number
of central processing unit (CPU) cycles required to process one
bit of data, the clock frequency of the CPU, and the volume
of the data to be processed. In the context of the considered
closed-loop teleoperation system (see Fig. 1), the processing
capability of the MEC-enabled BS will be much higher than
the robot’s [34]. Therefore, the computation to extract the low-
level command from the raw data is performed by the BS
rather than at the robot. Here, we model the time elapsed in
different computational processes, which will be necessary to
characterize the closed-loop latency.

1) Latency incurred in computation: The time elapsed in
computation Tc to compute a volume of data D0 is given as

Tc =
D0Xc

f0
, (12)

where Xc is the number of CPU cycles and f0 is the frequency
of the CPU clock.

A recent study [35] shows that the number of cycles
allocated to compute one bit is stochastic in nature. This is
because the CPU cycles are allocated to different ongoing tasks
simultaneously. The number of CPU cycles required to com-
pute one bit of data is modeled in the relevant literature [36],
[37] as an RV following a Gamma distribution. Thus, the PDF
of Xc ∼ Gamma(κ1, β1) is given as

fX(x;κ1, β1) =
xκ1−1

(β1)κ1Γ(κ1)
exp(−x/β1), (13)

where κ1 is the shape parameter and β1 is the scale parameter.
Γ(s) =

∫∞
0
ts−1exp(−t)dt is the Gamma function. Note that

E[Xc] = κ1β1. Now, from (12), (13), and the transformation
of the PDF of Xc, the distribution of the computation time
Tc ∼ Gamma

(
κ1,

D0β1

f0

)
is given by

fTc(t;κ1, β1, D0, f0) =

(
f0

D0β1

)κ1 tκ1−1

Γ(κ1)
exp

(
−tf0
D0β1

)
.

(14)
The expected computation delay T̄c is obtained as follows:

T̄c(κ1, β1, D0, f0) = E[Tc] =
D0κ1β1
f0

. (15)

The CDF of Tc is given by:

FTc(t) =
Γ
(
κ1,

t
D0β1/f0

)
Γ(κ1)

, (16)

where Γ(s, x) =
∫ x
0
ts−1exp(−t)dt is lower incomplete

Gamma function. It may be noted that the lower incomplete
gamma function is usually denoted by γ(s, x). However, use
of this notation would introduce ambiguity with the notation
used in the paper to denote SNR – see (1).

2) Latency incurred in compression: The latency of data
compression depends on the data volume and computational
properties of the device’s processor. Specifically, Tcp, the time
elapsed in compressing volume of data D0 is given as [38]

Tcp =
D0Xcp

f0
, (17)

where Xcp is the number of CPU cycles required to compress
one bit of data, and f0 is the frequency (i.e., clock speed) of the
processor. Analogously to the previous case, Xcp is stochastic
in nature and follows the Gamma distribution given

Xcp ∼ Gamma(κ2, β2), (18)

where κ2 and β2 are respectively the shape and scale param-
eters. Note that E[Xcp] = κ2β2.

Thus, Tcp is also an RV and its PDF is given as

Tcp ∼ Gamma
(
κ1,

D0β2
f0

)
. (19)
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We consider lossless data compression, so that the original
data can be perfectly reconstructed from the compressed data
without error3 [40]. For the lossless compression, the average
number of CPU cycles required to compress one bit of raw
data is given as [38], [41]

E[Xcp] = κ2β2 = exp(Qψ)− exp(ψ) = C(Q), (20)

where Q ≥ 1 is the compression ratio (i.e., the ratio of the
sizes of raw and compressed data) and ψ is a positive constant.
Using (20), the PDF of compression time Tcp is also a Gamma
RV

Tcp ∼ Gamma
(
κ2,

D0C(Q)

κ2f0

)
. (21)

The expected value of Tcp for the compression ratio Q is given
as

T̄cp(κ2, β2, D0, f0, Q) = E[Tcp] =
D0E[Xcp]

f0
=
D0C(Q)

f0
.

(22)
3) Latency incurred in decompression: Decompression

refers to the process of restoring compressed data to its original
form. It is also a type of computation, and can be performed
on MEC server. The latency incurred Td in decompressing D0

amount of data is given as

Td =
D0Xd

f0
, (23)

where Xd denotes the number of cycles required to decom-
press one bit of data, which will also follow the Gamma
distribution given as

Xd ∼ Gamma(κ3, β3), (24)

where κ3 and β3 are the shape and scale parameters, respec-
tively. Note that E[Xd] = κ3β3.

Recent works in [39], [42], [43] show that the decompres-
sion process is faster than compression for the same volume
of data. Thus, the average number of cycles required in
decompression and compression process is:

E[Xd] = ζE[Xcp], (25)

where 0 < ζ < 1 is a constant. Using (25), the following can
be written:

κ3β3 = ζκ2β2 = ζC(Q). (26)

Thus, the decompression time Td is also an RV, Td ∼
Gamma

(
κ3,

D0ζC(Q)
f0κ3

)
, and its PDF with compression ratio

Q is given as

Td ∼ Gamma
(
κ3,

D0ζC(Q)

f0κ3

)
. (27)

The expected value of Td, T̄d, for the compression ratio Q,
T̄d, is obtained as

T̄d(κ3, β3, D0, f0, Q) = E[Td] =
D0κ3β3
f0

=
D0ζC(Q)

f0
.

(28)

3Huffman, run-length, Lempel-Ziv, and bzip2 are some of the most com-
monly used compression techniques to achieve lossless data compression [39].

Remark 6. The PDF of the Gamma distribution is neither
convex nor concave, but it has unimodal variation. Also, it is
not a symmetric distribution [44]. Thus, the PDFs of Tc, Tcp,
and Td are neither convex nor concave functions, but are all
unimodal. In addition, the Gamma PDF is log-concave, and
hence so are the PDFs of Tc, Tcp, and Td.

V. CLOSED-LOOP LATENCY ANALYSIS

Using the results from the previous section, we can develop
the analytical framework to estimate the closed-loop latency
of MEC-enabled teleoperation system shown in Fig. 1. We
assume that the HO transmits all the command data to the
BS for processing at the MEC server. On the other hand, two
scenarios are analyzed regarding the processing of the raw
sensing data at the robot. In the first case, the robot located in
the remote environment compresses the raw sensing data first
and then transmits these compressed data. The MEC server
then decompresses the data to recover the original version,
which is processed to extract the user readable command to
be transmitted to the HO. In the second case, the robot does
not compress the sensing data, but transmits them in raw form
to the BS for further processing at the MEC server to extract
the user readable command for the HO.

Let Dc and Ds be the volume of command and sensing
signal, respectively. Let the distance between the HO and the
BS be dho, and the same between BS and the robot be dr. The
transmission powers of the HO, the BS, and the robot are Photx ,
P bstx , and P rtx, respectively. We also assume that a bandwidth
B is dedicated for this closed-loop operation, and the HO,
the BS, and the robot transmit over this bandwidth. We now
consider the case in which the sensing data is compressed
by the robot to avoid excessive transmission delays, while the
BS decompresses and processes the data to generate a human-
readable feedback signal.

The shape parameter in (13), (18), and (24)) will remain
the same for all tasks performed by the same processor.
On the other hand, the scale parameter will be different for
different tasks (computation, compression, or decompression),
as different amounts of resources in terms of CPU cycles need
to be allocated. Let the shape parameter of the MEC-enabled
BS be κMEC, and the scale parameter for computation and
decompression at the BS be βc and βd, respectively. Further,
let the shape parameter of the robot’s embedded processor be
κr, and the scale parameter for the compression process be
βcp. Finally, let the frequency of the MEC-enabled BS and
robot be fMEC and fR, respectively. Thus, from (20) and (26),
we get

κrβcp = C(Q), κMECβd = ζC(Q). (29)

A. Case 1: Data Compression at Robot

The closed-loop latency is the sum of the latency of the
command data (from the HO to the robot) and the sensing data
(from the robot to the HO). The latency of the command data
is the time required to transmit the HO’s command, extract the
low-level command on the MEC-enabled BS, and transmit the
low-level command from the BS to the robot. Thus, referring
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to Fig. 1, the latency involved in transmitting the command
signal T c1 composed of Nc data packets with outage probability
ε is given as

T c1 = T ctx(Nc, ε) +T cc (κMEC, βc, Dc, fBS) +T pctx (Np
c , ε), (30)

where T ctx is the time elapsed in transmitting the command
signal as given by (10) and T cc is the time taken by MEC
server to estimate the low-level command, given by (14).
T pctx denotes the time elapsed in transmitting the low-level
command (consisting of Np

c packets) extracted from command
signal as in (10). All the constituents of T c1 are independent
RVs.

The latency of the sensing data is the time required by
compression on the robot, transmission of the compressed
data, decompression the compressed data by the MEC-enabled
BS, extraction of the low-level command from the sensing
data, and transmission of the human-readable feedback to the
HO. Thus, referring to Fig. 1, the feedback latency T f1 when
Nf data packets are to be transmitted with outage ε is given
as

T f1 =T fc (κMEC, βc, Ds, fBS, Q) + T fd (κMEC, βd,
Ds

Q
, fBS, Q),

+ T fcp(κr, βcp, Ds, fR, Q) + T ftx(Nf , ε) + T pftx (Np
f , ε),

(31)
where Tr denotes the time elapsed in compressing the raw
sensing data with compression ratio Q, given by (21), T ftx
denotes the transmission delay of the compressed data, given
by (10), T fd denotes the decompression delay for the com-
pressed sensing data, given by (27), and T fc denotes the
processing time for the sensing data, given by (19). T pftx is the
transmission time of the human-readable feedback (consisting
of Np

f packets) extracted from the sensing data to the HO,
given by (10). All the constituents of T f1 are independent
RVs. The volumes of the low-level command and human-
readable feedback are much lower than for the original raw
data, i.e., Nc >> Np

c and Nf >> Np
f , and will not contribute

significantly in the closed-loop latency. Using this fact, T c1 and
T f1 can be written as,

T c1 ≈T ctx(Nc, ε) + T cc (κMEC, βc, Dc, fBS)

T f1 ≈T
f
d (κMEC, βd,

Ds

Q
, fBS, Q) + T fc (κMEC, βc, Ds, fBS, Q)

+ T fcp(κr, βcp, Ds, fR, Q) + T ftx(Nf , ε).
(32)

Using (32), we can estimate the closed-loop latency T1 as

T1 =T fcp(κr, βcp, Ds, fR, Q) + T fd (κMEC, βd,
Ds

Q
, fBS, Q)

+ T ctx(Nc, ε) + T cc (κMEC, βc, Dc, fBS) + T ftx(Nf , ε)

+ T fc (κMEC, βc, Ds, fBS, Q).
(33)

This can be rewritten as

T1 = T ctx(Nc, ε) + T ftx(Nf , ε) + T fcp(κr, βcp, Ds, fR, Q)

+ T cc (κMEC, βc, Dc, fBS) + T fd (κMEC, βd,
Ds

Q
, fBS, Q)

+ T fc (κMEC, βc, Ds, fBS, Q).
(34)

The expected value of T1, µT1
, is given by

µT1
=

(Nc +Nf )tp
1− ε

+
(Dc +Ds)κMECβc

fBS
+
DsC(Q)

fR

+
ζDsC(Q)

QfBS
.

(35)

T1’s constituent distributions T cc , T
f
d , and T fc follow Gamma

distributions with different scale and shape parameters,
whereas T ctx and T ftx follow Gaussian distributions. It is very
difficult to estimate the closed-form expression of the PDF of
the RV T1. Therefore, it is very important to characterize its
properties for further analysis.

Lemma 1. The PDF of the sum of two independent RVs is
convex if and only if at least one of them is convex. In the same
way, the PDF of the sum of two independent RVs is concave
if and only if at least one of them is concave.

Proof. See Appendix A.

Remark 7. The PDF of T1 is neither a convex nor a concave
function of t, because none of its constituent distributions are
either convex or concave (see Lemma 1).

Theorem 1. The CDF of T1 is neither a convex nor a concave
function.

Proof. See Appendix B.

B. Case 2: Raw Data Offloading to MEC

In this case, no data compression happens at the robot, and
the whole raw sensing data is transmitted to the BS, which
processes it in order to extract the human-readable feedback.
As the only difference with Case 1 is in the feedback latency,
the latency T c2 to transmit the command signal from HO to
the robot is simply given by

T c2 = T c1 .

Now, referring to Fig. 1, the latency T f2 involved in trans-
mitting Mf raw sensing data packets from the robot to the
HO is given as

T f2 = T ftx(Mf , ε) + T fc (κMEC, βc, Ds, fBS) + T pftx (Np
f , ε),

(36)
where the details of the parameters are mentioned in (31).

Ignoring the latency to send the low-level commands to
robot and the feedback to the HO (see (32)), the closed-loop
latency T2 is given as

T2 = T c2 + T f2

= T ctx(Nc, ε) + T cc (κMEC, βc, Dc, fBS) + T ftx(Nf , ε)

+ T fc (κMEC, βc, Ds, fBS) + T cc (κMEC, βc, Dc, fBS)

+ T fc (κMEC, βc, Ds, fBS) + T ctx(Nc, ε) + T ftx(Mf , ε).
(37)

The expected value of T2, µT2 , is given as

µT2 =
(Nc +Nf )tp

1− ε
+
DcκMECβc

fBS
+
DsκMECβc

fBS
. (38)

As the constituents of T2 are all independent RVs, we can
make some of the same inferences that we proved for T1.
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Figure 3: Variation of the CDF and the absolute error of the sum of four independent Gamma RVs with Ds = 0.5Mb, fBS = 15GHz,
fR = 5GHz, Q = 1.2, and εth = 10−4.

Remark 8. The PDF of T2 is neither a convex nor a concave
function of time, because none of its constituent distributions
are either convex or concave (see Lemma 1).

Theorem 2. The CDF of T2 is neither a convex nor a concave
function.

Proof. See Appendix C.

C. Optimization of the Closed-loop Teleoperation System

The closed-loop latency τi (where i = 1 for Case 1 and
i = 2 for Case 2) of the MEC-enabled teleoperation system
can be optimized by finding the optimal compression ratio
used by the robot before transmitting its sensing data to the
BS. For this purpose, an optimization problem is formulated
as follows

(P1) : min
Q,ε

τi, i ∈ {1, 2}

s. t. (C1) : FTi(τi) ≥ %th, i ∈ {1, 2}
(C2) : 0 ≤ ε ≤ εth,

(C3) : Q ≥ Qth = 1.

Constraint (C1) ensures the closed-loop latency τ in prob-
abilistic sense, where FT (·) denotes the CDF of T . %th is
an statistical parameter, which indicates the probability of
the closed-loop latency be at most τ . Constraint (C2) limits
the link outage probability, and constraint (C3) ensures that
compression reduces the size of the data.

In order to solve the optimization problem (P1), we need to
obtain the distributions of T1 and T2 and verify that they meet
the statistical guarantee on the closed-loop latency criterion
(C1). However, as noted above, the PDFs of T1 and T2 are
hard to obtain, because the closed-form expression of the
distribution of the sum of arbitrary Gamma RVs is not known.
There are several approximation methods to estimate the
distribution of sum of Gamma RVs reported in the literature
[45]–[47], but they are only accurate when the number of RVs
to be summed are very high. Here, the closed-loop latency
T1 is the sum of only four Gamma RVs (see (34)), whereas
the closed-loop latency T2 is the sum of only two Gamma
RVs (see (37)). The approximation error may then be high,

which is unacceptable for a teleoperation system in time-
critical application scenarios. Therefore, these approximation
methods are not viable options in the given context.

On the other hand, the PDF of the sum of independent
RVs can be obtained by convolving the constituent PDFs.
However, the continuous convolution is difficult to compute,
since it requires the solution of a complicated multiple integral.
Therefore, the convolution in the discrete time domain is
adopted here as a simplifying approximation. Towards this,
the constituent PDFs are discretized by sampling with the
same sampling interval (here 1 millisecond is considered) in
order to obtain the corresponding probability mass functions
(PMFs). Then, the constituent PMFs are convolved to obtain
the PMF of the closed-loop latency. Effectively, we use
integration by rectangles as a numerical technique to solve
the optimization problem (P1), approximating the integral by
its midpoint Riemann sum, which has negligible error due
to the very small step size. Hence, the CDF obtained from
the discretized convolution is very accurate, and the trade-off
between accuracy and computational complexity can be tuned
depending on the reliability criterion.

This can also be observed from the CDF of the sum of
four independent Gamma RVs, as shown in Fig. 3a for three
different methods. The first method is Monte Carlo simulation,
which is extremely accurate due to the huge number of
samples. The distribution of the sum of independent Gamma
RVs is also approximated using both the method from [45]–
[47] and the discretized convolution. One can observe from
Fig. 3b that the CDF obtained by discretization method varies
very closely with the CDF obtained by Monte Carlo simulation
method. On the other hand, the CDF obtained by approxi-
mation method is very far from that obtained from Monte
Carlo simulation. This justifies the choice of discretization
method followed by convolution. The value of the absolute
error is around respectively 0.006, 0.001, and 4 × 10−5 for
ρth = 0.95, 0.99, and 0.999, which is at least an order
of magnitude lower than 1 − ρth. Thus, the effects of the
approximation error can effectively be neglected when using
the discretized convolution.

In the next step, the optimal values of the latency, link
outage ε, and compression ratio Q are found by exhaustive
search. A computationally efficient way to simplify the task
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by reducing the search space of ε and Q is to observe that, as
the value of εth increases, the transmission time decreases (see
Remark 3), and hence ε = εth will be the optimal value. The
problem is then reduced to finding the optimal value of the
compression ratio Q. Finding lower and upper bounds on the
values of T1 and T2 will be helpful to solve the optimization
problem (P1) efficiently.

Theorem 3. The closed-loop latency T1 for a given %th with
FT1(τ1) = %th is bounded as follows:

τ1,L(Q, ε, %th) ≤ τ1 ≤ τ1,U (Q, ε, %th).

The lower bound is given by:

τ1,L(Q, ε, %th) = max
(
F−1T ctx

(%th), F−1
T ftx

(%th), F−1
T fcp

(%th),

F−1T cc
(%th), F−1

T fd
(%th), F−1

T fc
(%th)

)
,

where F−1Z (·) denotes the inverse of CDF of RV Z . The upper
bound is given by:

τ1,U (Q, ε, %th) = min

(
F−1T ctx

(%th) + F−1
T ftx

(%th) + F−1
T fc

(%th)

+F−1T cc
(%th) + F−1

T fd
(%th) + F−1

T fcp
(%th),

µT1

1− %th

)
.

Proof. See Appendix D.

Theorem 4. The closed-loop latency T2 for a given %th with
FT2

(τ2) = %th is bounded as follows:

τ2,L(ε, %th) ≤ τ2 ≤ τ2,U (ε, %th),

where the two bounds are given by

τ2,L(ε, %th) = max
(
F−1T ctx

(%th), F−1
T ftx

(%th), F−1T cc
(%th), F−1

T fc
(%th)

)
τ2,U (ε, %th) = min

(
F−1T ctx

(%th) + F−1
T ftx

(%th) + F−1T cc
(%th)

+ F−1
T fc

(%th),
µT2

1− %th

)
.

Proof. See Appendix E.

Using the bounds on the closed-loop latency, the following
can be written

τ opt
i,L ≤ τ

opt
i ≤ τ

opt
i,U , i ∈ {1, 2}, (39)

where τ opt
i,L = argmin

Q,εth,%th

τi,L and τ opt
i,U = argmin

Q,εth,%th

τi,U . It is

important to determine τ opt
i,U , as it will be used subsequently.

Denote the inverse of the error function (erf−1(·)) and inverse
of lower incomplete Gamma function (Γ−1(·)) at %th as:

erf−1(2%th − 1) = φ0 > 0 (as %th → 1),

Γ−1(%th, κr) = φ1 > 0,Γ−1(%th, κMEC) = φ2 > 0.
(40)

Now, the inverse of the CDF of the RVs used in the expressions
for lower and upper bound of T1 is obtained as follows

F−1T ctx
(%th) = Nc

1

1− ε
tp + φ0

√
Nc

ε

(1− ε)2
t2p,

F−1T ctx
(%th) = Nf

1

1− ε
tp + φ0

√
Nf

ε

(1− ε)2
t2p

F−1
T fcp

(%th) =
DsC(Q)φ1
κrfR

, F−1T cc
(%th) =

Dcβcφ2
fBS

,

F−1
T fd

(%th) =
DsζC(Q)φ2
QκMECfBS

, F−1
T fc

(%th) =
Dsβcφ2
fBS

.

(41)

The upper bound on the closed-loop latency can be written as
follows:

τ1,U (Q, εth, %th) = min(J1(Q),J2(Q)), (42)

where we have:

J1(Q) =
tp

(
Nc +Nf + φ0

√
(Nc +Nf )εth

)
1− εth

+
DsC(Q)φ1
κrfR

+
(Ds +Dc)βcφ2

fBS
+
DsζC(Q)φ2
QκMECfBS

J2(Q) =

(Nc+Nf )tp
1−εth

+ (Ds+Dc)κMECβc
fBS

+ DsC(Q)
fR

+ ζDsC(Q)
QfBS

1− %th
.

(43)

Remark 9. J1(Q) and J2(Q) are convex functions of Q. The
proof is not included for brevity.

Thus, the optimal value of τ1,U (Q, εth, %th) can be obtained
as follows

τ opt
1,U = min

(
min
Q
J1(Q),min

Q
J2(Q)

)
.

where minQ J1(Q) and minQ J2(Q) are straightforward to
obtain due to their nature. The reduced search interval of
compression ratio Qi can be obtained as follows

Qi =
{
Q | τi,L ≤ τ opt

i,U

}
. (44)

Qi is segmented into equidistant intervals (specifically, we
used the interval length of 0.01), and then the PMF of the
closed-loop latency is computed for each of the points by
convolving constituent PMFs. Finally, the optimal value of
Q is the one which offers the minimum closed-loop latency
by satisfying constraint (C1) of optimization problem (P1).

VI. SIMULATION RESULTS

We illustrate the analysis presented in the previous sections
through numerical evaluations. If not stated otherwise, the
values of the parameters considered are: ` = 2, Dc = 0.15 Mb,
Ds = 0.5 Mb, fBS = 15 GHz, κMEC = 1.25, κr = 1.5,
ζ = 0.1, Ψ = 3.5, B = 10 MHz, T0 = 0.5 µs, K0 = −27 dB,
N0 = −110 dB, dr−bs = dbs−ho = 2 km, Photx = P rtx =
0.5 W. The computational capabilities of the MEC-enabled
BS are consistent with the Nvidia Jetson TX1, a common
embedded processor for edge computing applications [48].
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Figure 4: Validation of the bounds on closed-loop latency for Case 1 with fR = 1 GHz, ρth = 0.95.
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Figure 5: Validation of the bounds on closed-loop latency for Case
2 with ρth = 0.95.

A. Validation of Bounds

The validation of the bounds on the closed-loop latency
obtained for Case 1 in Theorem 3 is shown in Fig. 4. Fig. 4a
validates the lower bound as the difference between the opti-
mal closed-loop latency and its lower bound, i.e., τopt1 − τ1,L,
is always positive. Similarly, the difference between the upper
bound on the closed-loop latency and its optimal value, i.e.,
τ1,U − τopt1 , is also always positive, as shown in Fig. 4b.4

The bounds on the closed-loop latency obtained for Case 2 in
Theorem 4 are shown in Fig. 5, demonstrating that the optimal
value of closed-loop latency lies well within the bounds (the
compression ratio here is 1, because sensing data is not
compressed at the robot located in the remote environment).
From Fig. 4 and Fig. 5, it can be noted that the optimal closed-
loop latency in both cases is very close to the upper bound.

B. Optimal System Design

The CDF of the latency incurred in data transmission and
compression is shown in Fig. 6. The CDF of the latency
incurred in transmitting 0.5 Mb of sensing data is shown in

4We note that same behavior is observed for any arbitrary range of Q and
ε.

Fig. 6a for different levels of link outage. It may be noted that
the transmission time increases significantly as the target link
outage level becomes stringent. This indicates that the data
transmission with high level of accuracy demands relatively
higher transmission times. The CDF of the latency incurred
in compressing 0.5 Mb of sensing data is shown in Fig.
6b for different compression ratios Q with fR = 5 GHz.
The compression time increases significantly with the increase
in the compression ratio. However, a higher compression
ratio reduces the volume of sensing data, also reducing the
transmission latency, and vice versa. Thus, there is a trade-off
between compression and transmission times.

The optimal closed-loop latency as a function of the outage
ε is shown in Fig. 7a for both cases. The optimal latency
is high for very low values of the outage requirement and it
decreases as the outage probability increases: higher outage
probabilities will increase the data rate, which compensates
the penalty for the increased number of retransmissions. The
computational capability of the robot also has a significant
impact on the latency, and the optimal value of the closed-
loop latency decreases as the computational capability of the
robot increases. It may be noted that the optimal latency for
Case 1 is much lower than that compared to Case 2 for
low target outage requirements. However, the optimal latency
converges towards Case 2 as the outage increases even for the
higher computational capability of the robot: as the data rate
increases, compression rather than transmission becomes the
most expensive task, and it becomes convenient to transmit
the raw data. The optimal compression ratio against outage
probability is shown in Fig. 7b, which depends upon the
computational capability of the robot as well as the outage
probability. The optimal compression ratio decreases as the
outage probability increases, and increases with the processor
speed of the robot, as the task becomes less time-consuming
with respect to data transmission. As the outage probability
increases, the optimal compression ratio converges towards 1,
i.e., no compression as in Case 2.

Remark 10. Data compression is not always beneficial. The
decision about whether to compress the sensing data or not
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Figure 6: CDF of the latency incurred in data transmission and compression.
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Figure 7: Variation of the optimal closed-loop latency and compression ratio for different cases with ρth = 0.95.
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Figure 8: Variation of the optimal closed-loop latency as a function
of the data volume Ds for different cases with ρth = 0.95 and εth =
10−4.

depends on the required outage constraint, as well as the
computational capabilities of the robot.

Fig. 8 shows the optimal closed-loop latency as a function
of the volume of sensing data for both cases, with ρth = 0.95
and εth = 10−4. The optimal latency increases linearly with
the volume of sensing data, as it has a linear effect on both
the transmission and compression time. As noted above, the
computational capabilities of the robot have a strong impact
on the optimal latency, which it decreases significantly as the
computational capability of the robot increases. Due to the
nature of the optimization problem considered in the paper,
and to the linearity of both transmission and compression time

with respect to the data volume, the optimal compression ratio
depends only on the computational capability of the robot and
does not depend on the volume of sensing data. The optimal
compression ratio is 1.19, 1.39, and 1.48 for fR = 1GHz,
fR = 3GHz, and fR = 5GHz, respectively. It may be noted
that the optimal latency for Case 2 is always higher than
for Case 1, and the difference increases as the computational
capability of robot increases.

We can also consider the robot’s transmission power as
a parameter: Fig. 9a shows the closed-loop latency as a
function of Ptx with ρth = 0.95 and εth = 10−4. Increasing
the transmission power leads to a higher transmission rate,
reducing the transmission latency without increasing other
components of the overall closed-loop latency. Fig. 9b shows
that the optimal compression ratio also decreases when the
robot transmits at a higher power: this is because the higher
data rate changes the trade-off between the compression and
transmission latency, making it more convenient to transmit
more data rather than spend time compressing them.

C. Statistical vs Expected Sense System Design

The works reported in [12]–[14], [25]–[27] consider a
similar system design in expected or average sense rather
than in a stochastic sense. Here, we perform a comparative
analysis of the optimal closed-loop latency, considering the
reliability criterion in the stochastic sense and the one in the
average sense for Case 1. Similar inferences can be made
also for Case 2, which is omitted due to space constraints.
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Figure 9: Variation of the optimal closed-loop latency and compression ratio against different transmit power level by robot for different
cases with ρth = 0.95 and εth = 10−4.
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Figure 10: Performance comparison with average sense design for Case 1 with fR = 5 GHz.

The closed-loop latency in the average sense is optimized
using the average latency obtained in (35) from the following
optimization problem:

(P2) : min
Q,ε

µT1 , s. t. (C2) and (C3).

The average sense design in (P2) does not take into account
the statistical guarantee, as the average closed-loop latency is
optimized. (P2) is a convex optimization problem that can be
solved using traditional solvers. The proof of convexity of (P2)
is omitted for brevity.

The variation of the optimal closed-loop latency as a func-
tion of link outage is shown in Fig. 10a for the different
stochastic reliability levels of %th = 0.95, 0.99, 0.999. It may
be noted that the optimal latency increases significantly with
the increase in %th. The comparative view of statistical and
average sense design is depicted in Fig. 10b for ε = 10−4 and
fR = 5 GHz. It may be noted that the latency obtained by the
average sense design will satisfy the statistical guarantee on
the closed-loop latency around %th = 0.54 only (i.e., this value
of the latency will be exceeded 46% of the time), which may
not acceptable for low-latency and high reliability applications
in real-life deployment scenarios.

Remark 11. The system design in average sense leads to
under-provisioning and a potential performance degradation,
which may have severe consequences in ultra-low latency and
high-reliability applications.

VII. CONCLUDING REMARKS

In this paper, we introduced a framework to analyze the
closed-loop latency of a teleoperation system, where the
command data from the HO and sensing data from the robot
are exchanged over a wireless connection through a BS with
MEC capabilities. The high-level command from the HO and
the sensing data from the robot are processed by the BS to
extract the low-level command for the robot and the feedback
signal, respectively, which are then sent to the robot and HO.
We have analyzed the closed-loop latency, which is found to
be a sum of several RVs, obtained upper and lower bounds
to its distribution, and formulated an optimization problem
to control the transmission rate and compression ratio and
provide statistical closed-loop latency guarantees. We then
investigated different trade-offs in the achievable performance
in terms of latency, link outage, and transmission reliability:
the decision on whether and how much to compress mostly
depends on the computational capability of the robot and link
outage probability. The optimal latency increases with the
volume of sensing data, but the optimal compression ratio
depends only on the computational capability of the robot and
does not depend on the volume of sensing data. We have also
observed the shortcomings of the design approaches that only
consider the expected value of the latency.

Future directions for further work include investigations
of the closed-loop teleoperation system from an informa-
tion freshness perspective. Another potential direction is the
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consideration of heterogeneous sensing data having different
compression profiles and their impact on the QoE. Finally,
the design of adaptive power control mechanisms at the robot
and HO sides is another interesting extension of our work,
as the devices may be energy-constrained, which calls for an
energy-aware optimization of the closed-loop latency.

APPENDIX

A. Proof of Lemma 1

Let W be the distribution of the sum of two independent
RVs U and V , so that fW(t) =

∫∞
−∞ fV(τ)fU (t− τ)dτ . Now,

let fU (t) be a convex function of t. We then have fU ((1 −
θ)t1 + θt2) ≤ (1 − θ)fU (t1) + θfU (t2), 0 ≤ θ ≤ 1. Now,
fW((1− θ)t1 + θt2) is given as

fW((1− θ)t1 + θt2) =

∞∫
−∞

fV(τ)fU ((1− θ)t1 + θt2 − τ)dτ.

Using the convexity of fU (t), fW((1 − θ)t1 + θt2) can be
written as:

fW((1− θ)t1 + θt2) ≤ (1− θ)
∫ ∞
−∞

fV(τ)fU (t1 − τ)dτ

+ θ

∫ ∞
−∞

fV(τ)fU (t2 − τ)dτ

= (1− θ)fW(t1) + θfW(t2).

Hence, fW(t) is a convex function of t. The concavity property
can be proven in the same way.

B. Proof of Theorem 1

Let FT1
(t) denote the CDF of T1, which is given as:

FT1(t) =
∫ t
−∞ fT1(x)dx, where fT1(·) denotes the PDF of T1.

The second derivative of FT1(t) is d2

dt2FT1(t) = d
dtfT1(t) =

f ′T1
(t). For a function to be convex (concave), its second

derivative should be non-negative (non-positive). Thus, the
convexity or concavity of FT1

(t) depends on the sign of f ′T1
(t).

We know that fT1
(t) is neither a convex nor a concave function

of t (see Remark 7), but this does not imply anything on the
sign of f ′T1

(t).
The RV T1 given in (34) is the sum of six RVs, whose

PDFs’ properties are listed in Table I. The PDF of the sum
multiple of RVs is the convolution of their PDFs. The works
in [49], [50] investigated the nature of the convolution of
two functions with following key observations: firstly, the
convolution of two log-concave functions is also a log-concave
function; secondly, the convolution of a log-concave function

Table I: Nature of different constituent distributions of closed-loop
latency T1 (see (34))

Unimodal Symmetric Log-concave

T c
tx, T

f
tx (cf. Remark 5) Yes Yes Yes
T c
c (cf. Remark 6) Yes No Yes

T f
d (cf. Remark 6) Yes No Yes
T f
c (cf. Remark 6) Yes No Yes
T f

cp (cf. Remark 6) Yes No Yes

and a unimodal function is also a unimodal function; thirdly,
the convolution of two asymmetric unimodal functions is a
multi-modal function. Based on these findings and the nature
of the constituent PDFs of T1 as listed in Table I, one can
deduce that fT1

(t) is a multi-modal function of t. Thus, the
first derivative of fT1

(t) = f ′T1
(t) changes its sign multiple

times in the domain of definition. Hence, FT1
(t) is neither a

convex nor a concave function of t.

C. Proof of Theorem 2

This can also be proven in the same way as Theorem 1,
following the steps in Appendix B.

D. Proof of Theorem 3

In order to prove the theorem, we first show that τ1,L is
a lower bound of τ1. We define two RVs X and Y with
differentiable strictly monotonic CDFs FX(x) and FY (y),
respectively, and their quantiles x0 = F−1X (%th) and y0 =
F−1Y (%th). We then define RV Z = X + Y , and its quantile
z0 = F−1Z (%th). In order for the bound to hold, we need to
prove the following inequality:

z0 ≥ max(x0, y0). (45)

The inequality can be proven by contradiction. Let, without
loss of generality, y0 ≥ x0, such that max(x0, y0) = y0. If we
assume z0 < y0, we have:

P [z0 < Z ≤ y0] =FZ(y0)− FZ(z0)

=P [Z ≤ y0|Y ≤ y0]P [Y ≤ y0]

+ P [Z ≤ y0|Y > y0]P [Y > y0]− FZ(z0).
(46)

By definition, we know that FZ(z0) = FY (y0) = %th. Due to
the non-negativity of X , we also know that P [Z ≤ y0|Y >
y0] = 0. We can then solve the expression:

P [z0 < Z ≤ y0] = %th(P [Z ≤ y0|Y ≤ y0]− 1). (47)

As no probability can be larger than 1, P [z0 < Z ≤ y0] ≤ 0.
Naturally, a negative probability is a contradiction, while the
case with probability 0 contradicts the strict monotonicity of
the CDFs. As Gamma and left-truncated Gaussian RVs have
strictly monotonic CDFs (i.e., fX(x) > 0 ∀x > 0), we can
extend the result to a summation of N elements and prove
that τ1,L is indeed a lower bound.

We can now prove that τ1,U is an upper bound to τ1.
The higher quantiles of the sum of RVs are well-known in
the statistical literature, and in the quantitative finance in the
literature, by the name Value at Risk (VaR) [51]. The second
term in the upper bound is equivalent to the subadditivity
property, i.e., the guarantee that the quantile of the sum is
lower than or equal to the sum of the individual RVs’ quantiles,
which holds for two generic RVs X and Y with CDFs FX(x)
and FY (y) if the following is true:

S−1X+Y (ν) ≤ S−1X (ν) + S−1Y (ν), ν ∈ [0, 1]. (48)

where SX(x) = 1 − FX(x) is the survival function or
complementary CDF. Ibragimov [52] proved that subadditivity
holds for the class of log-concave distributions, which includes
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both the Gamma distribution (see Remark 6) and the Gaussian
distribution (see Remark 5). As the RVs in our sum are all log-
concave (see Table I), subadditivity holds, and we have:

S−1∑N
i=1Xi

(1− %th) ≤
N∑
i=1

S−1Xi (1− %th). (49)

As S−1X (1−%th) = F−1X (%th) by definition, this proves that the
second term inside the minimum is an upper bound.

In order to prove the theorem, the other term inside the
minimum should also be an upper bound:

τ1 ≤
µT1

1− %th
. (50)

As τ1 > 0 and (1 − %th) > 0 are strictly positive, this is
equivalent to the following:

%th ≥ 1− µT1

τ1
. (51)

We can then prove that (50) is true by contradiction. First, let
us assume that the given term is not an upper bound, directly
negating (51):

%th < 1− µT1

τ1
. (52)

As the theorem hypothesis states that FT1(τ1) = %th, we can
substitute it in the inequality:

FT1
(τ1) < 1− µT1

τ1
. (53)

We can express this using the survival function ST1
(τ1) =

1− FT1
(τ1) = P (T1 > τ1):

ST1(τ1) >
µT1

τ1
. (54)

We now state Markov’s inequality, knowing that T1 is non-
negative, as it represents a latency, and that E[T1] = µT1

:

P (T1 > τ1) = ST1
(τ1) ≤ E[T1]

τ1
=
µT1

τ1
. (55)

The derived expression in (54) is then in direct contradiction
with Markov’s inequality, proving that (50) is true and the
term is indeed an upper bound. As both conditions are always
true, we can apply the one that gives the tightest upper bound
on the value of τ1, which is the minimum in Theorem 3.

E. Proof of Theorem 4

This can also be proven in the same way as Theorem 3,
following the steps in Appendix D.
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