
Engineering Applications of Artificial Intelligence 124 (2023) 106610

A
a
D
G
a

b

A

D
e
e

K
M
C
A
I

1

n
a
e
t
s
a
s
a
q
s
(
c

p
h
o
2

M

G
r
d

d

h
R
A
0
(

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

multi-label Continual Learning framework to scale deep learning
pproaches for packaging equipment monitoring✩

avide Dalle Pezze a,∗, Denis Deronjic a, Chiara Masiero a, Diego Tosato b, Alessandro Beghi a,
ian Antonio Susto a

Department of Engineering, University of Padova, Gradenigo, 6/b, Padova, 35131, Italy
Galdi S.R.L., Enrico Fermi, 43, Postioma (TV), 31038, Italy

R T I C L E I N F O

ataset link: https://data.mendeley.com/datas
ts/4nhx2x67cd, https://github.com/dallepezz
/bat-ocdm

eywords:
ulti-label classification
ontinual Learning
larm forecasting

ndustry 4.0

A B S T R A C T

Continual Learning aims to learn from a stream of tasks, being able to remember at the same time both new
and old tasks. We propose a scenario that holds immense appeal for various real-world applications, where a
model adapts to handle a stream of machines with distribution shifts Tests on real packaging data proved the
feasibility of Continual Learning for addressing such problems. Our study uncovers the limitations of previous
algorithms in the Domain Incremental Learning. Our research presents a novel approach for tackling multi-
label tasks in Continual Learning, achieving superior performance compared to existing approaches found
in the literature. Our method not only achieves optimal performance but also has logarithmic complexity,
significantly reducing computation times.
. Introduction and main contributions

Manufacturing machinery may now gather and communicate perti-
ent data regarding its condition thanks to IoT and Industry 4.0 (Essien
nd Giannetti, 2020; Langarica et al., 2019; Li et al., 2020; Maggipinto
t al., 2022; Susto et al., 2018; Yuan et al., 2020). Alarm records, in par-
icular, are frequently accessible for legacy equipment and have a far
maller memory and transmission footprint than sensor readings. Alarm
nalysis is a low-cost alternative or useful supplement to monitoring
olutions based on raw sensor data. For instance, anticipating future
larms enables operators to implement the best corrective measures
uickly. Therefore, alarm Forecasting (AF) plays an essential role in
afely managing process operations. As introduced in Dalle Pezze et al.
2021), it is frequently reasonable to rephrase AF as a multi-label
lassification task.

Generally, Machine learning has proven valuable in optimizing
rocesses, improving efficiency, and enhancing overall performance. It
as found success in various industrial applications, yielding positive
utcomes (Puruncajas et al., 2020; Dalle Pezze et al., 2021; Li et al.,
014; Bajic et al., 2018).

But in the industrial setting, one of the major difficulties in using
achine Learning (ML) approaches in production is that it is often

✩ This study was partially carried out within the MICS (Made in Italy – Circular and Sustainable) Extended Partnership and received funding from Next-
enerationEU (Italian PNRR – M4 C2, Invest 1.3 – D.D. 1551.11-10-2022, PE00000004). Moreover, this study was also partially carried out within the PNRR

esearch activities of the consortium iNEST (Interconnected North-Est Innovation Ecosystem) funded by the European Union Next-GenerationEU (Piano Nazionale
i Ripresa e Resilienza (PNRR) – Missione 4 Componente 2, Investimento 1.5 – D.D. 1058 23/06/2022, ECS00000043).
∗ Corresponding author.
E-mail addresses: davide.dallepezze@unipd.it (D. Dalle Pezze), denis.deronjic@studenti.unipd.it (D. Deronjic), chiara.masiero@statwolf.com (C. Masiero),

iego.tosato@galdi.it (D. Tosato), alessandro.beghi@unipd.it (A. Beghi), gianantonio.susto@unipd.it (G.A. Susto).

difficult to adapt to process variability (Ma et al., 2022). For example,
new machines could act differently than ones already deployed. Instead
of learning a new model for each piece of equipment or starting from
scratch every time, it would be preferable for scalability to update
the current model when fresh data are available. Indeed, repeated
training from scratch would require increasing amounts of memory and
computing power as new units were added. However, in the classic
paradigm, model retraining using only new data leads to a sharp
decrease in performance on previously learned tasks, a phenomenon
known as Catastrophic Forgetting (CF) (Goodfellow et al., 2013). A
branch of research called Continual Learning (CL) tries to reduce CF
and make it possible to train models using an incoming stream of
training data (Parisi et al., 2019; Delange et al., 2021). In CL, training
samples come in subsequent tasks, and the trained model can access
only a single task at a time.

Proposed CL approaches for multi-label classification were pro-
posed for the Class Incremental Learning (CIL) scenario (Van de Ven
and Tolias, 2019), where new labels appear overtime. To achieve the
scalability required by a production-grade solution, we propose a CL
approach for AF, framed as a Domain Incremental Learning (DIL) Multi-
Label classification task. In DIL (Van de Ven and Tolias, 2019), the
ttps://doi.org/10.1016/j.engappai.2023.106610
eceived 21 April 2023; Received in revised form 3 June 2023; Accepted 6 June 2
vailable online 28 June 2023
952-1976/© 2023 The Authors. Published by Elsevier Ltd. This is an open access
http://creativecommons.org/licenses/by/4.0/).
023

article under the CC BY license

https://doi.org/10.1016/j.engappai.2023.106610
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106610&domain=pdf
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
mailto:davide.dallepezze@unipd.it
mailto:denis.deronjic@studenti.unipd.it
mailto:chiara.masiero@statwolf.com
mailto:diego.tosato@galdi.it
mailto:alessandro.beghi@unipd.it
mailto:gianantonio.susto@unipd.it
https://doi.org/10.1016/j.engappai.2023.106610
http://creativecommons.org/licenses/by/4.0/

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610
Fig. 1. High-level representation of the continual learning scheme. New machines are gradually placed in various locations across the world. The data distribution varies from earlier
machines due to a number of factors, including different sensors, recipes, etc. Therefore, it is necessary a model that can manage data from older equipment while simultaneously
adjusting to new machine data..
Table 1
Some abbreviations used in the work.

Abbreviation Description

AF Alarm Forecasting
CF Catastrophic Forgetting
CL Continual Learning
CIL Class Incremental Learning
DIL Domain Incremental Learning

labels remain the same for each task. In our setup, new machines act
as a stream of new tasks. Our main contributions are the following:

(i) We propose a scenario that holds immense appeal for various real-
world applications, where machines are gradually installed over
time, necessitating the model’s ability to adapt to distribution
shifts and retain the knowledge of previous data.

(ii) We thoroughly investigate the intriguing and unexplored Domain
Incremental Learning. Our study highlights the limitations of
certain previous algorithms when applied in this context.

(iii) Our research presents a novel approach for tackling multi-label
tasks in Continual Learning, achieving superior performance com-
pared to existing approaches found in the literature.

(iv) Our method also has logarithmic complexity, significantly reduc-
ing computation times.

(v) To demonstrate the feasibility of addressing this significant prob-
lem through Continual Learning, we conducted tests on real data
sourced from the packaging industry, utilizing the formulation of
Alarm Forecasting (Tosato et al., 2020).

The rest of the paper is organized as follows. Section 2 provides an
overview of the literature about AF and CL applied to multi-label clas-
sification. In Section 3, we introduce a novel replay-based approach for
the multi-label DIL scenario after describing a multi-label formulation
for AF. In Section 4 we validate the proposed method on a real-world
AF problem from the Packaging Industry. Finally, Section 5 provides
some concluding remarks and describes envisioned future works (see
Table 1).

2. Related work

2.1. Alarm forecasting for predictive maintenance

The goal of alarm data analysis is to translate alarm logs into
actionable insights for operators. Many approaches aim to detect ab-
normal behaviors using Anomaly Detection algorithms (Domingues
et al., 2018; Yen et al., 2013; Du et al., 2017) or Fault Detection

and Classification approaches (Fan et al., 2020). Other approaches

2

aim to provide useful feedback to users before abnormal behaviors
occur. AF plays a fundamental role in this scenario. For example, in Xu
et al. (2019) historical alarm sequences are exploited using Bayesian
estimators. In Zhu et al. (2016), a probabilistic model based on an N-
gram model is proposed to predict the probability of alarm occurrence,
given the previous alarms. Due to the limitations of N-gram models,
more advanced approaches based on neural network architectures were
proposed. In Cai et al. (2019), alarm log information is embedded using
Word2Vec and a Long short-term memory (LSTM)-based deep learning
model is designed to predict the next alarm. In Villalobos et al. (2020),
the authors propose an approach that combines LSTM neural networks
to forecast the future measurements of various sensors with Residual
Neural Networks to predict the future occurrence of alarms based on
estimated future sensor measurements. In Dalle Pezze et al. (2021), the
authors reframe AF as a multi-label classification problem and provide
a more general approach that is viable in situations where raw sensor
readings are not available.

This work aims to adopt a CL framework to achieve a production-
ready solution for AF, where to be scalable, it must learn with new
pieces of equipment that arrive overtime.

2.2. Continual learning

CL tries to learn from a stream of tasks with non-stationary distri-
bution. New experience is constantly being acquired over time, while
old experience is still relevant and needs to be preserved. In the
classic paradigm, model retraining using the new data leads to a sharp
decrease in performance on previously learned tasks, a phenomenon
known as Catastrophic Forgetting(CF) (Goodfellow et al., 2013). Con-
tinual Learning is commonly linked to Deep Learning models, over-
looking classic machine learning techniques like clustering (Borlea
et al., 2022). Deep learning models are frequently utilized in Contin-
ual Learning scenarios due to their ability to learn intricate patterns
and representations from extensive datasets. Neural networks, such as
Multi-Layer Perceptron (MLP), recurrent neural networks (RNNs) (Sale-
hinejad et al., 2017), or convolutional neural networks (CNNs) (Verma
et al., 2022), excel at capturing and retaining information across var-
ious time steps or data samples, thus making them well-suited for
continual learning tasks.

Usually CL considers three scenarios: Task Incremental Learning
(TIL), Class Incremental Learning (CIL) and Domain Incremental Learn-
ing (DIL) (Van de Ven and Tolias, 2019). CIL refers to a CL scenario
where the model is required to learn and adapt to new classes of data
over time. This indicates that during inference, it is expected that the
model will be able to accurately categorize both existing and new
classes. With domain incremental learning, only the distribution of the

input data changes; the set of labels in the output remains constant.

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610

-

c

Such a scenario fits the use-case of our research, in which we are
interested in consistently predicting the same classes (i.e. alarms) on
various machines that have been deployed throughout time and have
a distinct data distribution (see Fig. 1). Models in the CIL and DIL
scenario must be able to complete each task seen so far and determine
which task is being provided to them. One key distinction of Task
Incremental Learning (TIL) compared to Domain Incremental Learning
(DIL) or Class Incremental Learning (CIL) is the inclusion of the Task
ID during the testing phase. This simplifies the problem by reducing its
complexity, as the model only needs to focus on solving the specific task
at hand. This indicates that in order for TIL approaches to work, the
practical application below must be able to provide the task id during
inference, which is frequently not feasible in real-world problems.

The literature often summarize the CL approaches in 3 groups,
regularization-based (Kirkpatrick et al., 2017; Zhang et al., 2022),
dynamic architecture methods (Rusu et al., 2016; Yoon et al., 2017)
and replay-based (Chaudhry et al., 2019; Rolnick et al., 2019). Some
well-known methods of replay-based family are Experience Replay
(ER) (Rolnick et al., 2019), Gradient Episodic Memory (GEM) (Lopez-
Paz and Ranzato, 2017), and iCaRL (Rebuffi et al., 2017). They all work
by explicitly retrain on a limited subset of stored samples while training
on new tasks. In particular, Experience Replay (ER), despite being
straightforward, has shown extraordinary effectiveness and produced
excellent results in many works as discussed below. During training
on new tasks, the model replays samples from the buffer to retain
knowledge from previous tasks, mitigating catastrophic forgetting. By
replaying past experiences, Experience Replay helps to maintain a
balance between learning new tasks and preserving knowledge from
previous tasks.

Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), Synap
tic Intelligence (SI) (Zenke et al., 2017), and Memory Aware Synapses
(MAS) (Aljundi et al., 2018) are popular regularization-based tech-
niques (De Lange et al., 2021). EWC functions by forbidding abrupt
changes to crucial parameters. The similar concept is also used by SI
and MAS. However, it is demonstrated how the replay-based methods
outperform the regularization-based methods in the multi-label setting,
as tested in Kim et al. (2020).

Belonging to the architecture-based methods there are PackNet,
PathNet and Piggyback. Generally, such methods work by keeping task-
specific weights. This implies that during inference they need of the
task id and therefore can work only in the TIL scenario, which make
them unfeasible for many practical applications, including our use-case
that belong to the Domain Incremental scenario.

The related literature suggests that the Rehearsal (also known as
replay-based) approach appears to be a strong solution to CF (Pellegrini
et al., 2020; Buzzega et al., 2021; Masarczyk et al., 2022; Kim et al.,
2020).

Multi-label classification plays a crucial role in various real-world
applications where each instance can be associated with multiple labels
simultaneously. However, in the context of CL, the research focus
on multi-label classification has been relatively limited. Despite the
significance of multi-label tasks, there have been only two main replay-
based approaches specifically designed for multi-label classification
proposed in the literature:

(i) The first approach is Partitioning Reservoir Sampling (PRS) (Kim
et al., 2020). The idea is that it is sufficient to allocate a por-
tion of the memory to the minority classes to retain a balanced
knowledge of present and past experiences.

(ii) The second approach is called Optimizing Class Distribution in
Memory (OCDM) (Liang and Li, 2022). It aims at speeding up
the processing time required to select the samples, compared to
PRS, resulting in a significant improvement. OCDM is a greedy
approach that selects a subset of samples such that the final
distribution of the labels in memory is as close as possible to a
uniform target distribution.
3

Both approaches are derived from the Online CL (OCL) scenario, where,
in contrast to classic CL, a single batch of the task is shown each time.
Thus, in OCL, multiple epochs on the same batch are not allowed. The
PRS and OCDM were proposed for the CIL scenario (Van de Ven and
Tolias, 2019), where new labels may appear for each new task.

In our case, we are considering a Domain Incremental Leaning
(DIL) scenario (Van de Ven and Tolias, 2019) instead, where the set
of output labels remains the same, but the input distribution changes
based on the task. In fact, the set of alarm codes is the same for
each piece of equipment, while the alarm frequency is different for the
different deployments. In this work, we start from the OCDM to design
a task-aware replay-based approach, as detailed in the next section.

3. Proposed approach

3.1. Alarm forecasting as a multi-label classification task

To validate the proposed CL multi-label approach in the DIL sce-
nario, we evaluate it on a real-world dataset from the dairy prod-
ucts packaging industry (Tosato et al., 2020). In the same vein as
in Dalle Pezze et al. (2021), the goal is to produce a list of distinct
alarms that are likely to occur in a future time window.

Given the set of all alarm codes  and the subset of target alarm
odes to be predicted 𝑜𝑢𝑡 =

{

𝑎1,… , 𝑎𝐿
}

⊆ , the target of the multi-
label classification problem is the 𝑛-hot encoding 𝑦 = (𝑦1,… , 𝑦𝐿) ∈  ,
such that 𝑦𝑖 = 1 if alarm 𝑎𝑖 will occur in the future time window of
length 𝐷𝑜𝑢𝑡, otherwise 𝑦𝑖 = 0. We represent the input data 𝑥 as the
normalized count of distinct alarms that occurred in a previous time
window of fixed duration 𝐷𝑖𝑛. Thus, 𝑥 =

(

𝑐1,… , 𝑐𝑁
)

∈  , 𝑁 = || and,
𝑐𝑗 = 𝐶𝑗∕

∑

𝑘 𝐶𝑘 where 𝐶𝑗 is the number of alarms of type 𝑗 occurred in
the input window.

To recap, we reframe AF as the task of estimating the following map
from the input set to the label space:

ℎ∶ → 

(𝑐1,… , 𝑐𝑁) ↦ (𝑦1,… , 𝑦𝐿).
(1)

In dealing with multi-label classification, we need to keep in mind
two key challenging aspects: (i) the possibly overwhelming size of
the output space, since the number of possible combinations of labels
grows exponentially as the number of class labels increases (Zhang
and Zhou, 2013), and (ii) unequal label distribution in most multi-
labeled datasets (Charte et al., 2019; Van Horn and Perona, 2017;
Kim et al., 2020). Moreover, many business-related critical alarms are
rare (Cai et al., 2019). Therefore, we use Weighted Focal Loss (Lin et al.,
2017), an idea from Object Detection and Segmentation, to train the
classification model. Results from Dalle Pezze et al. (2021) indicate
that this choice translates into better classification performance for
low-frequency alarms.

We consider a Multi-layer Perceptron (MLP) as a model for multi-
label classification. Indeed, according to Dalle Pezze et al. (2021),
approaches based on neural networks seem to achieve better perfor-
mance on the AF task at hand than those based on classic ML paired
with problem transformation to convert multi-label problems to single-
label problems, either single-class or multi-class (Madjarov et al., 2012;
Read et al., 2009). The structure of the MLP model is detailed in
Fig. 2.l Since the sigmoid activations in the output layer share the
same hidden representation, this model takes into account the relations
among different labels.

3.2. Continual learning classifier design

The industrial scenario is a dynamic environment in which new
machines are installed over time. CL provides tools that enable ML
solutions to scale efficiently. In this work, we consider new equipment
pieces as new tasks, setting our problem in the DIL scenario (Van de
Ven and Tolias, 2019) as previously stated. This means that the set of

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610

t
a
s
s
2
d
a

3

m
O
a
p

w

r

m

w
𝜌
d

w

e
r

e

f

Fig. 2. The multi-label architecture. Below the number of neurons in each layer. Each
linear layer has a dropout rate of 50% as regularization and ReLU activation function
except for the output layer which has independent sigmoid activation for each neuron.
In this case 15 labels has to be predicted and so 15 independent sigmoid outputs.

labels in the output 𝑜𝑢𝑡 remains the same for the new deployment of
he target machine, while the input and output distributions change
ccording to the current task. Indeed, even if the machines are the
ame type, they may differ from the already deployed ones regarding
ettings, recipes, and the behavior of human operators (Gentner et al.,
021). We use replay-based approaches from CL, according to schema
epicted in Fig. 3, to make a Multi-Label classifier learn to perform
larm forecasting on new machines without forgetting the old ones.

.3. Optimizing Class Distribution in Memory (OCDM)

Before introducing the novel approach to address the Continual
ulti-label classification problem, we recall some notions about the
CDM method. OCDM formulates the memory update mechanism as
n optimization problem. This greedy algorithm, detailed in Alg. 3,
rovides a solution with a linear complexity in the number of tasks.

The core of the algorithm is the procedure to update the memory
hen a new batch of data 𝑡 of size 𝑏𝑡 coming from the task 𝑡 ∈ 

arrives, as depicted in the Algorithm 1. Given that the memory  has
fixed size 𝑀 , for each task the goal of OCDM is to select 𝑀 samples
to save in the memory among the 𝑀 + 𝑏𝑡 available ones. This can be
epresented as an optimization problem:

in
𝛺

𝐷𝑖𝑠𝑡(p𝛺 ,p) subject to 𝛺 ⊆  ∪ 𝑡, |𝛺| = 𝑀 (2)

where p represents the target distribution i.e. the ideal optimal solu-
tion, while, 𝐩𝛺 represents the distribution of the labels produced from
the samples of the set 𝛺. The 𝐷𝑖𝑠𝑡(⋅, ⋅) function used to measure the
difference between the two distributions is the Kullback–Leibler (KL)
Distance. The target distribution proposed in Liang and Li (2022) is
defined as follows:

𝑝𝑖 =
(𝑛𝑖)𝜌

∑𝐶
𝑗=1(𝑛𝑗)𝜌

(3)

here 𝑛𝑖 is the frequency of a class 𝑖 and 𝜌 is the allocation power. Using
= 0 the samples are saved in memory  in order to have equally

istributed classes.
We propose the pseudocode for the OCDM algorithm in three parts,

here a description of each one is shown below:
4

• Alg. 1 (Memory Update): This is the main function of OCDM. It
takes as input a list of samples in memory and a list of new
potential samples to be added in memory. Then it returns the
updated memory with the final distribution as closest as possible
to the uniform distribution. This is done by iteratively deleting
the elements more harmful.

• Alg. 2 (OCDM_task_update): The Alg.Memory Update is iteratively
executed multiple times, by processing the entire dataset divided
into batches of samples. The final result is the updated memory
to be used during the training of future tasks.

• Alg. 3 (OCDM): The Alg. OCDM_task_update is repeated multiple
times on the entire stream of tasks.

Algorithm 1: Memory Update (MU)
Input: Memory , b

/* Given a memory , it will delete 𝑏 elements from
the memory */

for 𝑘 ∈ [1, 2, ..., 𝑏] do
𝑖 = 𝑎𝑟𝑔min𝑗∈ 𝐷𝑖𝑠𝑡(p⧵{𝑗},p)
 ←  ⧵ {𝑖}

nd
eturn 

Algorithm 2: OCDM_task_update
Input: dataset 𝑡 of task 𝑡 ∈  , memory , total size of memory

M

for 𝐵𝑡 ∈ 𝑡 do
if || ≤ 𝑀 then

diff ← || −𝑀
𝑉𝑡 ← select randomly 𝑚𝑖𝑛(|𝐵𝑡|,diff) samples from 𝐵𝑡
𝐵𝑡 ← 𝐵𝑡 ⧵ 𝑉𝑡
 ←  ∪ 𝑉𝑡

end
if |𝐵𝑡| > 0 then

𝛺 ←  ∪ 𝐵𝑡
 ← 𝑀𝑒𝑚𝑜𝑟𝑦_𝑈𝑝𝑑𝑎𝑡𝑒(𝛺, |𝐵𝑡|)

end
nd

Algorithm 3: Optimizing Class Distribution in Memory (OCDM)
Input: task stream  , total size of memory M

 ← {} /* Initialize the memory */
or 𝑡 ∈  do

𝑡 ← Get Dataset 𝑡 = {𝑋𝑡, 𝑌𝑡} of task 𝑡
𝑂𝐶𝐷𝑀_𝑡𝑎𝑠𝑘_𝑢𝑝𝑑𝑎𝑡𝑒(𝑡,,𝑀)

end

3.4. Rehearsal strategy: Balanced among tasks OCDM

The OCDM approach was proposed considering the CIL scenario,
where a new set of labels arrives at each new task (Van de Ven and
Tolias, 2019). As stated above, in our case, we are considering the DIL
scenario, where we always have the same labels with potentially new
frequencies.

The primary limitation of the current state-of-the-art algorithm is its
focus solely on maintaining label balance, disregarding the variations
among tasks. In other words, while OCDM ensures balance over time
from a label perspective, it overlooks the need for balance across tasks.
Consequently, in a Domain Incremental scenario, there is a possibility
that if memory optimization is solely based on label balance, the
algorithm may discard all data from an entire task to favor samples
from another task that improve label balance. For example, when

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610

f
p
T
t

Fig. 3. Rehearsal-based approach to deal with multi-label classification in a CL fashion.
W
m

f

e

3

c
w
a
s
s
m
p
b
i
d
M

a new task with frequent labels is introduced, the algorithm may
choose not to add any samples from this task to the memory, as it
would compromise balance. As a result, OCDM does not guarantee
the retention of all previously seen tasks in memory, preventing the
model from fully incorporating and adapting to them. This limitation
hampers the model’s ability to retain memory of entire tasks and
effectively adapt to them. Additionally, a secondary limitation is that
despite the algorithm’s improved computational speed compared to
previous state-of-the-art methods, it remains computationally expensive
for many real-world applications. Therefore, addressing these limita-
tions is crucial for improving performance and enhancing its practical
applicability.
Algorithm 4: BAT-OCDM
Input: task stream  , total memory size M

Constraint: ∑𝑡∈𝑇 |𝑡| = 𝑀

𝑁 ← 0
for 𝑡 ∈  do

/* We are going to assign a part of the memory to
the new task and select the elements to keep
in memory. */

𝑡 ← Get Dataset 𝑡 = {𝑋𝑡, 𝑌𝑡} of task 𝑡
𝑡 ← {}
𝑁 ← 𝑁 + 1
𝑚 ← 𝑀

𝑁
𝑂𝐶𝐷𝑀_𝑡𝑎𝑠𝑘_𝑢𝑝𝑑𝑎𝑡𝑒(𝑡,𝑡, 𝑚)

/* We update the memories of old tasks, removing
some elements, to give space in memory to the
new task. */

diff ← 𝑀
𝑁−1 − 𝑀

𝑁
if 𝑁 ≥ 2 then

for 𝑡𝑜𝑙𝑑 ∈ 1⋯𝑁−1 do
𝑡𝑜𝑙𝑑 ← 𝑀𝑒𝑚𝑜𝑟𝑦_𝑈𝑝𝑑𝑎𝑡𝑒(𝑡𝑜𝑙𝑑 ,diff)

end
end

end

To address these limitations, we propose to use a separated memory
or each task. Through this approach, described in Alg. 4, balance is
erformed on both labels and tasks, hence the name Balance Among
asks OCDM (BAT-OCDM). BAT-OCDM requires two steps to handle
he memory:

1. Step 1: Given the data of a new task, BAT-OCDM selects a
subset of samples to be included in the memory, using the same
procedure of OCDM to update the memory.
 e

5

2. Step 2: Since the total size of memory has to remain fixed, BAT-
OCDM disregards some of the samples belonging to the mem-
ories of old tasks through the 𝑀𝑒𝑚𝑜𝑟𝑦_𝑈𝑝𝑑𝑎𝑡𝑒 (MU) procedure
detailed in Alg. 1.

e consider the schema of Fig. 3 for the proposed approach, where
emory will be divided among several old tasks.

Algorithm 5: Dataset-based OCDM
Input: task stream  , total size of memory M

 ← {} /* Initialize the memory */
or 𝑡 ∈  do

𝑡 ← Get Dataset 𝑡 = {𝑋𝑡, 𝑌𝑡} of task 𝑡
 ←  ∪𝑡
if || ≥ 𝑀 then

𝛺 ← 𝑡 ∪
𝑑𝑖𝑓𝑓 ← 𝑚𝑖𝑛(|𝛺| −𝑀,𝑀)
 ← 𝑀𝑒𝑚𝑜𝑟𝑦_𝑈𝑝𝑑𝑎𝑡𝑒(, 𝑑𝑖𝑓𝑓)

end
nd

We provide the pseudocode of BAT-OCDM in Alg. 4. The main
points executed for each task can be described as follows:

• For the new task we calculate the new memory size dedicated to
that specific task, which will be the total memory divided by the
number of tasks.

• Then we execute the Alg. OCDM_task_update (discussed before)
to obtain the memory associated to the new task (i.e. Step 1 of
above)

• Then for each old task, we identify the number (identified as diff
in the pseudocode) of elements that need to be deleted from the
old memories. Then for each old task we execute the Alg. Memory
Update with a total number of elements to be deleted equal to diff.

.4.1. Computational complexity
Next, we compare BAT-OCDM and OCDM in terms of computational

omplexity. We also consider Dataset-based OCDM, a version of OCDM
here, instead of sequential batches, all the data coming from the task
re used for the memory update. This should improve performance
ince the original batch-based memory update policy could ignore some
amples. Thus it may lead to a less uniform label distribution in the final
emory. On the other hand, in this way, the update can no longer be
erformed online as in the original OCDM. The pseudocode of Dataset-
ased OCDM is provided in Alg. 5. The pseudocode is very simple, it
terates on the stream of tasks. Then for each task, it calls the already
efined Alg. Memory Update, the main difference between the call of
emory Update in OCDM and in Dataset-based OCDM is the number of

lements required to be deleted at once. As said in Dataset-based OCDM

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610

c

t
t
i

A

Table 2
Notation used to show the complexity of the algorithms.

Notation Description

D Size of the dataset associated to a task
T Number of tasks used in the tests
M Size of the memory used

we want to delete a number of elements such that the final memory
reach size .

Table 3 provides a summary of the computational complexity as-
sociated with the aforementioned strategies. For more comprehensive
information, additional details can be found in the supplementary
material (https://github.com/dallepezze/bat-ocdm) .

As for the notation, as indicated in Table 2, we denote the set of
tasks as  = {𝑡1,… , 𝑡𝑇 }. For simplicity, we assume that each task
orresponds to 𝐷 samples and the memory  has a fixed size M.

The column Task i provides the complexity of the 𝑖−th memory
update. For BAT-OCDM the complexity becomes smaller as 𝑖 increases.
In particular, the overall complexity, shown in column Total, is log-
arithmic in the number of tasks 𝑇 for BAT-OCDM. For OCDM and
Dataset-based OCDM instead, the complexity is linear in 𝑇 .

The last column shows the complexity under the assumption that
𝑀 ≤ 𝐷, i.e. 𝑀 = 𝑐 ⋅𝐷 where 𝑐 ∈ [0, 1]. In this case, the complexity for
all methods is quadratic with regard to the dataset size D. The results
on computational complexity do not hold only for the DIL scenario, but
also for the CIL scenario studied in the original paper proposing OCDM,
showing the same speed improvement.

4. Tests

In order to understand how the models were tested, under what
circumstances, and an analysis of the performance obtained, we go
into different practical issues in this section. The previously discussed
methods are put into practice and evaluated on a dataset taken from a
real-world scenario. First, we look at the measures employed to assess
the efficiency and efficacy of the methodologies mentioned. The setup
of the tests, including the settings and experimental conditions used,
is discussed. We also provide a summary of the continual learning
approaches that were taken into account for the study, emphasizing
their unique attributes and methodologies. As a result, we carefully
examine the test results while concentrating on three key factors: per-
formance, label balance in the memory, and task balance. By examining
these different facets, we aim to provide a comprehensive and insightful
analysis.

4.1. Metrics

Following the convention of multi-label classification (Wang et al.,
2016; Ge et al., 2018) we are going to use the macro f1 score to evaluate
the performance of the model. Let 𝑠 be the macro 𝑓1 score, i.e. the
average of the 𝑓1 scores for each label: 𝑠 =

∑𝐿
𝑖=1 𝑓1(𝑦𝑖, 𝑦𝑖). Let 𝑠𝑖,𝑗 be

he performance of the model on the test set of task 𝑗 after training
he model on task 𝑖. To measure performance in the CL setting, we
ntroduce the following metrics:

verage macro f1 The average macro f1 score 𝑆𝑇 ∈ [0, 1] at task 𝑇 is
defined as:

𝑆𝑇 = 1
𝑇

𝑇
∑

𝑗=1
𝑠𝑇 ,𝑗 (4)

Average Forgetting 𝐹𝑇 ∈ [−1, 1], the average forgetting measure at
task T, is defined as:

𝐹𝑇 = 1
𝑇 − 1

𝑇−1
∑

max
𝑙∈{1,…,𝑇−1}

𝑠𝑙,𝑗 − 𝑠𝑇 ,𝑗
𝑠

. (5)

𝑗=1 𝑙,𝑗

6

With respect to the original definition used in Chaudhry et al.
(2018), we are scaling respect to the maximum macro f1 score,
as done in Kim et al. (2020); this is done to compare the
forgetting among labels with very different scores. Notice that
the closer the metric 𝐹𝑇 is to 1, the higher the forgetting is.

4.2. Tests setup

We test the proposed approach on a publicly available real in-
dustrial dataset originating from monitoring dairy products packaging
equipment (Tosato et al., 2020). In the tests, we consider monitoring 14
packaging machines deployed in different plants worldwide as different
tasks to learn in a CL fashion. The splitting of data in train and test is
based on time; in the test there will be only samples belonging to the
future of the machine.

To obtain the design matrix to train the CL-based multi-label classi-
fier, we draw inspiration from Dalle Pezze et al. (2021), so we consider
input windows having a length of 1720 minutes, and output windows
of 480 minutes. As described in Section 3.1, we represent the input
windows using normalized alarm counts.

Fig. 4 shows in detail the frequencies of the labels and the number
of samples for each task. Based on label frequencies, we split them into
three groups to better assess the performance:

• high-freq: labels {4,6,7,13};
• medium-freq: labels {0,3,5,8,14};
• low-freq: labels {1,2,9,10,11,12}.

The aspects of software, training specifications, and simulation
environment are as follows. Software-wise, Python 3.8 and the deep
learning library PyTorch were utilized to implement the model and
the continual learning framework. Adam is the optimizer taken into
consideration during the model-training process, with a batch size of
32, a learning rate set to 0.001 and a number of epochs equals to
20 for each task. With regards to the loss function’s hyperparameters
were used the same optimal values found in Dalle Pezze et al. (2021)
i.e. beta equal to 0.8 and gamma set to 0.2. The model training was
carried out on a GPU Titan X in terms of hardware. Finally, the
hyperparameter 𝜌 used in OCDM and BAT-OCDM is set to zero, as
suggested in the original paper. All the experimental settings-related
details are available at https://github.com/dallepezze/bat-ocdm for
reproducibility.

4.3. Considered continual learning approaches

All the memory management strategies can be schemed according
to the framework shown in Fig. 3. To assess BAT-OCDM, we compare
it not only with OCDM (Alg. 3) and Dataset-based OCDM (Alg. 5), but
also with the following approaches:

• Finetune: At each task 𝑡𝑖, the classifier is trained from scratch
considering only the data from task 𝑡𝑖. There is no countermeasure
against forgetting, so we consider this approach as a lower bound.

• Cumulative: At each task 𝑡𝑖, the classifier is trained from scratch
based on all the data seen so far (i.e. from task 𝑡1 to 𝑡𝑖), so there
is no limit to memory size.

• Task-based Random: At each task 𝑡𝑖, an equal number of samples
is selected at random.

• Reservoir Sampling: This stream-oriented approach from Online
Learning selects samples at random at a fixed rate. Thus, it is
expected to include more samples for tasks whose dataset size is
bigger.

The code for the BAT-OCDM approach is shared publicly1 as well
the dataset used (Tosato et al., 2020).

1 https://github.com/dallepezze/bat-ocdm

https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610
Table 3
Computational complexity of the proposed approaches.

Task i Total Assuming 𝑀 = 𝑐 ⋅𝐷

OCDM 𝑂(𝐷 ⋅𝑀) 𝑂(𝑇 ⋅𝐷 ⋅𝑀) 𝑂(𝑐 ⋅ 𝑇 ⋅𝐷2)

Dataset-based OCDM 𝑂(𝐷 ⋅𝑀 + 𝐷2

2
) 𝑂(𝑇 ⋅ [𝐷 ⋅𝑀 + 𝐷2

2
]) O (2𝑐+1

2
⋅ 𝑇 ⋅𝐷2)

BAT-OCDM 𝑂(𝐷⋅𝑀
𝑖

+ 𝑀2

𝑖−1
) 𝑂((ln 𝑇 + 1) ⋅𝑀 ⋅ (𝐷 +𝑀)) 𝑂((𝑐 + 𝑐2) ⋅ (ln 𝑇 + 1) ⋅𝐷2)
Fig. 4. Experimental dataset: Labels and tasks statistics.
4.4. Tests results

We divide alarm codes into three categories based on frequency to
more thoroughly assess how the label frequency influences model per-
formance. As stated, we then independently calculate the performance
measures for low, medium, and high-frequency alerts. The computation
time (measured in seconds) needed for the memory update for each
suggested strategy is also evaluated in addition to the average macro
f1 score and the forgetting measure.

4.4.1. Performance
The results are displayed in Table 4. There is no significant dif-

ference among the two approaches based on the random selection
of the samples. It is clear from the results that task-based Random
and Reservoir Sampling appear to work well on labels with high and
medium frequencies. Instead, outcomes are unsatisfactory when low-
frequency labels are considered because of the poor representation of
these labels in the memory. Unbalanced label distribution is one of the
difficulties with multi-label since it makes it harder for the model to
concentrate on the rare labels and results in poor end performance. In
addition, the best choice of samples to keep in memory also makes
the multi-label in continual learning more challenging (with respect
to the classic multi-label setting) because it must come up with a
good strategy to keep a portion of samples from previous tasks in
memory while attempting to have a balanced label distribution that
gives an equal representation to all labels. The OCDM method, in
contrast, produces good performance for low-frequency labels. These
labels critically impact the equipment, as evidenced in Dalle Pezze et al.
(2021). However, this result comes with the trade-off of less effective
performance on labels with high frequency. Instead, there is no relevant
performance difference for classifying medium-frequency labels.

As mentioned above, a possible explanation for this could be that
some tasks are not stored in memory. Indeed, the algorithm focuses
only on balance among labels and not among tasks. This will be
explained in more detail in Section 4.4.2 and in Fig. 4(b) with the
task distribution in memory, where it can be seen the very low balance
among tasks. For this reason, BAT-OCDM shows superior performance
with respect to OCDM for low-freq, medium-freq, and high-freq labels.
In particular, the drop in performance for higher frequency labels
observed for OCDM is much lower. As for Dataset-based OCDM, even if
7

it simultaneously uses all data from a task to find a better label distribu-
tion in memory, no significant difference appears in the performance.
Instead, as anticipated by the complexity analysis, the time required to
update the memory is much higher.

In multi-label classification, a common challenge is achieving good
performance for labels with low frequency. This challenge arises due to
the inherent class imbalance between frequent labels and rare labels.
As a result, the performance on low-frequency labels often suffers,
and the model struggles to make accurate predictions for these less
common labels. Improving the performance of low-frequency labels
is of significant importance in many real-world applications. These
labels might represent critical or rare events, and correctly identifying
them is essential for accurate decision-making or understanding the
data. However, addressing this challenge and achieving notable im-
provements in the performance of low-frequency labels is particularly
demanding in the multi-label setting. Multi-label classification already
poses complexities with the presence of multiple labels and their cor-
relations. The imbalance among frequent and rare labels exacerbates
these challenges, making it difficult for models to learn and generalize
effectively. Thus, obtaining improvements in the performance of low-
frequency labels in multi-label classification is not only significant but
also highly challenging.

In summary, our novel approach, BAT-OCDM, achieves comparable
results to the state-of-the-art OCDM on low-frequency and medium-
frequency labels. However, we demonstrate significant improvements
in performance for high-frequency labels, reaching levels that are
nearly comparable to those obtained with Reservoir Sampling (RS).
Therefore, we are able to obtain optimal performance for the chal-
lenging low-frequency labels while at the same having a very low
compromise with the high-freq labels.

4.4.2. Balance among labels
We can see the label distributions for each technique in Fig. 5 on the

right side. In order we have for each row: RS, OCDM, and BAT-OCDM
techniques. Each plot also shows the KL distance to indicate how far
apart the final distribution is from the desired distribution defined in
Eq. (3). We can observe that the worst algorithm, Reservoir Sampling
(RS), obtains a label distribution that is very unbalanced since the
samples are collected randomly, and therefore the unbalance present in

the original data of the task remains. Instead, we can note how OCDM

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610

t
t

a
a
d
t
O
f
i
a
T
O
p
s

4

B
a
d
o

Fig. 5. At top RS, at center OCDM, and at bottom BAT-OCDM. At left, it is shown the final distribution of the number of samples for each task in memory varying the approach.
On the 𝑥-axis of the plots are represented the task IDs, and on the 𝑦-axis, the number of samples for each machine is an absolute value. The dashed line in each plot represents
he average number of samples among all the machines. Instead, at right, it is shown the final distribution of the labels of the samples in memory varying the approach. In the
itle for each plot is indicated the name of the approach and KL distance with respect to the target uniform distribution: the larger the value, the less balanced the labels.
pproximates better the target distribution, i.e. it is the algorithm that
llows better balancing of the labels of samples in memory. More in
etail, it is noticeable how the KL distance, that we use here to measure
he unbalancement, is roughly ten times larger in RS compared to
CDM. Indeed, in terms of performance, this results in very low results

or low-freq labels, which are the most sensitive to how the memory
s handled. Regarding BAT-OCDM, we have to consider that there is

trade-off between the balance of labels and the balance of tasks.
his implies that the uniformity of label distribution will be inferior to
CDM, though also better than RS. However, as shown before in the
erformance table, this factor does not translate into inferior results
ince it also considers the balance of tasks that OCDM ignores.

.4.3. Balance among tasks
The task distribution in memory achieved by the RS, OCDM, and

AT-OCDM approaches is shown in Fig. 5. By design, BAT-OCDM
chieves a uniform allocation of the tasks (Fig. 5(e)). Task-based Ran-
om has the same characteristic because it maintains a separate mem-
ry for every task. For the Reservoir Sampling technique, the amount
8

of samples in memory for each task is proportional to the dataset
size of that task, as shown in Figs. 4(b) and 5(a). This is because
random selection occurs at a fixed rate during the stream of samples
corresponding to the various tasks. OCDM and Dataset-based OCDM
have a similar distribution shown in Fig. 5(c). We can observe that for
OCDM some tasks are almost absent from the memory, with the risk of
being forgotten more quickly than others.

As mentioned previously, upon comparing the figures depicting the
balance of labels and tasks with the corresponding performance results,
it becomes evident that the trade-off offered by BAT-OCDM presents a
superior choice over OCDM.

4.4.4. Computation times
In Table 4, we can examine the computing time to handle the

memory for the RS, OCDM, and BAT-OCDM approaches. Compared to
OCDM, BAT-OCDM requires four times less computing time to update
memory. This outcome is consistent with the algorithm’s anticipated
theoretical complexity, which is logarithmic in the number of tasks T,
as opposed to the original approach’s linear in T. Dataset-based OCDM

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610

l

F
e
M
V
t
t
c
i
e

D

t
G
p

Table 4
The table contains the performance for each approach. In each cell are showed two
metrics defined like in Section 4.1. Above is the Average macro f1 𝑆𝑇 and below the
Average Forgetting 𝐹𝑇 . Based on the column, these metrics are calculated on a different
set of labels. Low, Medium, and High are label sets grouped by the frequency of the
abels, while Total consider all the labels together.
Approach Total Low Medium High Time (s)

Finetune 0.19 0.04 0.21 0.38 –
(0.27) (0.14) (0.39) (0.33)

Cumulative 0.39 0.17 0.42 0.7 –– – – –

Task-based
Random

0.37 0.14 0.4 0.69 0.3
(0.11) (0.09) (0.18) (0.05)

Reservoir
Sampling (RS)

0.37 0.14 0.4 0.69 0.3(0.1) (0.1) (0.16) (0.04)

OCDM 0.32 0.2 0.32 0.49 2607.9(0.2) (0.04) (0.31) (0.31)

Dataset-based
OCDM

0.32 0.2 0.33 0.49 4702.30.2 0.04 0.31 0.31

BAT-OCDM 0.38 0.2 0.4 0.64 624.4(0.09) (0.04) (0.15) (0.085)

Fig. 6. The computation time of each technique to handle the selection of the samples
to keep in memory and remove from it. It shows the time required for each task. On
the 𝑦-axis is represented the time in seconds, and on 𝑥-axis is the current task.

is slower than OCDM because it takes into account all of the samples
from a task at once. In practice, it is twice as slow as OCDM.

Additionally, the computation time (in seconds) for each task for all
strategies is shown in Fig. 6 For OCDM, we can observe that the time
needed for each task is proportional to the size of the task’s dataset. In
other words, the larger the task’s dataset, the longer it will take. When
using dataset-based OCDM, we can observe that a task takes twice as
long to complete as when using OCDM. Finally, it appears that the
BAT-OCDM computation time gradually reduces over time, which is
consistent with the algorithm’s logarithmic nature.

These aspects hold significant importance, particularly in practical
applications, as our approach not only outperforms the state-of-the-
art OCDM in terms of results but also exhibits significantly reduced
computation times. This is not merely demonstrated through ablation
studies, but is also supported theoretically by showcasing that our
algorithm has logarithmic complexity with respect to the number of
tasks, as proven in the appendix.

5. Conclusions and future works

As far as we know, this study is the first to address multi-label classi-
fication in the context of domain incremental learning. For multi-label
 A

9

classification, earlier Continual Learning methods have focused on the
Class Incremental Scenario, in which additional labels are introduced
into the task sequence. Instead, in Domain Incremental Learning, the
set of labels remains the same while their distribution changes over
time. To overcome this problem, we present BAT-OCDM, an effective
replay-based method of managing memory updates. Furthermore, the
proposed procedure exhibits higher performance than the simple adap-
tation of the previous techniques to the Domain Incremental Learning
scenario, especially in the presence of class imbalance.

We validate the proposed approach on a real-world industrial Alarm
Forecasting task stemming from the monitoring of packaging equip-
ment. Obtained results suggest the efficacy of the proposed method-
ology, especially on low-freq labels. Moreover, the complexity of BAT-
OCDM is logarithmic in the number of tasks. Therefore, the suggested
method is more effective than earlier ones with linear complexity.
Given the efficiency of BAT-OCDM, implementation on the Edge is a
viable perspective. Moreover, this would be a step towards the Tiny ML
paradigm, which is becoming increasingly popular, also in the scenario
of the Industrial Internet of Things (Han and Siebert, 2022).

It could be remarkable to see other real-world applications of the
multi-label setting in continual learning. For instance, it might be inter-
esting to test the studied approaches on domains like medical images.
Indeed, it is common to have multiple labels (i.e., multiple diseases
associated with the same patient) and it might benefit from a scenario
of continual learning (for instance, new diseases are discovered over
time) that handles the imbalance among the diseases. On the more
methodological side, the replay family of strategies is the primary focus
of multi-label approaches in continual learning. However, approaches
from other families (i.e. regularization-based and architectural-based)
might benefit from a specific adaptation of the multilabel setting.
Furthermore, imbalance within labels, imbalance between labels, and
imbalance among label-sets are three different sorts of imbalanced
problems that frequently arise in multi-label classification. The imbal-
ance with labels is the primary concern of the studies in the CL context.
Therefore, a complementary attention to the imbalance of the label-
sets may help to further improve the performance. Other possible
future research directions include validating BAT-OCDM performance
in the Continual Incremental Learning scenario. Though the proposed
algorithm allows for a significant reduction in the computation costs,
the total complexity with regard to the dataset dimension is still
quadratic. Therefore, we also envision further investigation of more
efficient approaches.

CRediT authorship contribution statement

Davide Dalle Pezze: Conceptualization, Methodology, Software,
ormal analysis, Resources, Writing – original draft, Writing – review
diting, Visualization, Supervision. Denis Deronjic: Conceptualization,
ethodology, Software, Validation, Resources, Writing – original draft,
isualization. Chiara Masiero: Conceptualization, Methodology, Inves-

igation, Writing – original draft, Writing – review editing, Visualiza-
ion, Supervision. Diego Tosato: Conceptualization, Investigation, Data
uration. Alessandro Beghi: Supervision, Project administration, Fund-
ng acquisition. Gian Antonio Susto: Supervision, Writing – review
diting, Project administration, Funding acquisition.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
ian Antonio Susto reports financial support was provided by Euro-
ean Union. Gian Antonio Susto is associated editor of Engineering
pplications of Artificial Intelligence.

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610

A

i

b

a

a

s
t

a

𝑂

Table A.5
Description of different symbols used in the appendix.

Symbol Description

𝑚𝑖𝑛 The min operator represents the minimum value between two numbers
∪ It represents the set union operator. It is used to combine two sets into a

single set that contains all the elements from both sets
∈ It is used to indicate that an element belongs to a particular set.
𝑂 In computer science is used to describe the upper bound or

worst-case scenario of the time or space complexity of an algorithm.
{} It indicates an empty set
𝑙𝑛 It represents the natural logarithm function
t

f

(

B

𝐵

Data availability

The dataset used is available at https://data.mendeley.com/datasets/
4nhx2x67cd while the used code is available at https://github.com/
dallepezze/bat-ocdm.

Appendix. Computational complexity

Below, we are going to show the calculations that led to the re-
sults on the complexity of the algorithms present in the table of the
complexity of algorithms.

The analysis will be performed for the original approach OCDM, the
Dataset-based OCDM and our method BAT-OCDM.

We are going to proof that our algorithm has a complexity wrt the
number of tasks 𝑇 that is logarithmic, while the complexity of OCDM
and Dataset-based OCDM is lineart wrt T.

While, in the original paper is showed only the complexity for batch,
we insight further and analyze the complexity for the training of an
entire task and the training on all tasks.

We are going to analyze as first, the original approach OCDM. In the
following section, we are going to assume that each task has the same
dataset size D and the memory  has a fixed size M (see Table A.5).

.1. OCDM

Studying the complexity for task, for each task we are going to
terate on the dataset  𝐷

𝑏 times, assuming that each batch will have
size 𝑏.

In the original approach was proved that the complexity for the al-
gorithm 𝑀𝑒𝑚𝑜𝑟𝑦_𝑈𝑝𝑑𝑎𝑡𝑒(MU) using a memory of size M and removing

elements i.e. 𝑀𝑈 (𝑀, 𝑏) is:

𝑀𝑈 (𝑀, 𝑏) = 𝑂
(

𝑏 ⋅𝑀 −
𝑏 ⋅ (𝑏 − 1)

2

)

(A.1)

OCDM algorithm use Memory_Update to update the memory using
batch B of size 𝑏. In other words the algorithm MU given a set of M+b

elements will remove b elements from it. The complexity of this is:

𝑀𝑈 (𝑀 + 𝑏, 𝑏)
(A.1)
= 𝑂

(

𝑏 ⋅ (𝑀 + 𝑏) −
𝑏 ⋅ (𝑏 − 1)

2

)

(A.2)

to update a memory of size 𝑀 removing 𝑏 elements. The complexity of
lgorithm OCDM for a task consist in 𝐷

𝑏 iterations over the MU method
as indicated in (A.2), which correspond to:

𝑂𝐶𝐷𝑀𝑡 (𝐷,𝑀) = 𝑂
(

𝐷
𝑏

⋅ [𝑏 ⋅ (𝑀 + 𝑏) −
𝑏 ⋅ (𝑏 − 1)

2
]
)

= 𝑂
(

𝐷 ⋅ [𝑀 + 𝑏 + 1
2

]
) 𝑀≫𝑏

= 𝑂 (𝐷 ⋅𝑀)
(A.3)

Where 𝑂𝐶𝐷𝑀𝑡(𝐷,𝑀) is the complexity of the algorithm OCDM for a
ingle task, assuming the number of the samples of the task as D and
he memory size used as M.

Since the entire training correspond to iterate on 𝑇 tasks, we obtain
s overall performance for OCDM:

𝐶𝐷𝑀(𝐷,𝑀) =
∑

𝑂𝐶𝐷𝑀𝑡(𝐷,𝑀) = 𝑂(𝑇 ⋅𝐷 ⋅𝑀) (A.4)

𝑡∈

10
A.2. Dataset-based OCDM

Though the update per batch is essential for the Online Continual
Learning(OCL) setting, we are obtain suboptimal solutions respect to
find the optimal distribution using all dataset D at once. Since we are
evaluating the DIL scenario where the data D of a task is received all to-
gether we also study the performance of MU(M,D) which correspond to
the of the variant Dataset-based OCDM (Db-OCDM), while the original
will remain OCDM.
𝐷𝑏 − 𝑂𝐶𝐷𝑀 (𝐷,𝑀)𝑡 = 𝑀𝑈 (𝐷 +𝑀,𝐷)
(A.1)
= 𝑂

(

𝐷 ⋅ (𝑀 +𝐷) −
𝐷 ⋅ (𝐷 − 1)

2

)

𝐷≫1
= 𝑂

(

𝑀 ⋅𝐷 + 𝐷2

2

)

(A.5)

Since the entire training correspond to iterate on 𝑇 tasks, we obtain
as overall performance for Dataset-based:

𝐷𝑏 − 𝑂𝐶𝐷𝑀 (𝐷,𝑀) = 𝑂
(

𝑇 ⋅ [𝐷 ⋅𝑀 + 𝐷2

2
]
)

(A.6)

A.3. BAT-OCDM

Below we show the complexity obtain considering our approach
BAT-OCDM. In this case, the complexity is splitted in two subprocesses.
The first one consist during the Task 𝑖 to select 𝑀

𝑖 samples from the data
of the new task. Therefore the complexity of first part is equivalent to
OCDM per task i.e. 𝑂𝐶𝐷𝑀𝑡(𝐷, 𝑀𝑖) will be 𝑂(𝐷 ⋅ 𝑀

𝑖).

𝑂𝐶𝐷𝑀𝑡

(

𝐷, 𝑀
𝑖

) (A.3)
= 𝑂

(

𝐷 ⋅
𝑀
𝑖

)

(A.7)

The memory of an old task must be reduced from 𝑀
𝑖−1 to 𝑀

𝑖 ,
herefore eliminating 𝑀

𝑖⋅(𝑖−1) samples.

To do this the complete complexity is 𝑂(𝑀
2

𝑖−1). In fact, we are going
to perform 𝑀𝑈 (𝑀

𝑖−1 ,
𝑀

𝑖⋅(𝑖−1)) i-1 times during task i(assuming tasks start
rom 1 to 𝑇 included). Therefore, for the second part we have:

𝑖 − 1) ⋅𝑀𝑈
(

𝑀
𝑖 − 1

, 𝑀
𝑖 ⋅ (𝑖 − 1)

)

(A.1)
= (𝑖 − 1) ⋅ 𝑂

(

𝑀
𝑖 ⋅ (𝑖 − 1)

⋅
𝑀
𝑖 − 1

− 𝑀2

2 ⋅ 𝑖2 ⋅ (𝑖 − 1)2

)

= 𝑂
(

𝑀2

𝑖 ⋅ (𝑖 − 1)
− 𝑀2

2𝑖2 ⋅ (𝑖 − 1)

)

= 𝑂
(

𝑀2

𝑖 ⋅ (𝑖 − 1)
⋅ (1 − 1

2 ⋅ (𝑖)
)
)

= 𝑂
(

𝑀2

𝑖 ⋅ (𝑖 − 1)

)

= 𝑂
(

𝑀2

𝑖 − 1

)

(A.8)

Therefore, we have the total complexity for task 𝑖th of algorithm
AT-OCDM is:

𝐴𝑇 − 𝑂𝐶𝐷𝑀𝑡 (𝐷,𝑀, 𝑖) = (A.8)+(A.7) = 𝑂
(

𝐷 ⋅𝑀
𝑖

+ 𝑀2

𝑖 − 1

)

(A.9)

Where if i=1 then the second member is 0 since during i=1 there are not
old tasks to update. To evaluate the complexity of the entire training

https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://data.mendeley.com/datasets/4nhx2x67cd
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm
https://github.com/dallepezze/bat-ocdm

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610

𝐵

the calculations are trivial for OCDM and Dataset-based OCDM because
it is enough to multiply the complexity by task for the value T, which
is the total number of tasks. In the case for BAT-OCDM is a little more
tricky because the task complexity depends by task i. To calculate is
necessary to consider the following inequality:
𝑛
∑

𝑖=1

1
𝑖
≤ ln 𝑛 + 1 (A.10)

Therefore, for the first part:

𝑂

(𝑇
∑

𝑖=1
𝐷 ⋅𝑀 ⋅

1
𝑖

)

(A.10)
= 𝑂 (𝐷 ⋅𝑀 ⋅ (ln 𝑇 + 1)) (A.11)

In the same way we have for the second part:

𝑂

(𝑇
∑

𝑖=2

𝑀2

𝑖 − 1

)

(𝑘=𝑖−1)
= 𝑂

(𝑇−1
∑

𝑘=1

𝑀2

𝑘

)

(A.10)
=

(A.10)
= 𝑂

(

𝑀2 ⋅ [ln(𝑇 − 1) + 1]
)

= 𝑂
(

𝑀2 ⋅ [ln(𝑇) + 1]
)

(A.12)

In total we have:
𝐴𝑇 − 𝑂𝐶𝐷𝑀 (𝐷,𝑀) = (A.11)+(A.12)
= 𝑂

(

(ln 𝑇 + 1) ⋅ (𝐷 ⋅𝑀 +𝑀2)
) (A.13)

References

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T., 2018. Memory
aware synapses: Learning what (not) to forget. In: Proceedings of the European
Conference on Computer Vision. ECCV, pp. 139–154.

Bajic, B., Cosic, I., Lazarevic, M., Sremcev, N., Rikalovic, A., 2018. Machine Learning
Techniques for Smart Manufacturing: Applications and Challenges in Industry 4.0,
Vol. 29. Department of Industrial Engineering and Management Novi Sad, Serbia.

Borlea, I.-D., Precup, R.-E., Borlea, A.-B., 2022. Improvement of K-means cluster quality
by post processing resulted clusters. Procedia Comput. Sci. 199, 63–70.

Buzzega, P., Boschini, M., Porrello, A., Calderara, S., 2021. Rethinking experience re-
play: A bag of tricks for continual learning. In: 2020 25th International Conference
on Pattern Recognition. ICPR, IEEE, pp. 2180–2187.

Cai, S., Palazoglu, A., Zhang, L., Hu, J., 2019. Process alarm prediction using deep
learning and word embedding methods. ISA Trans. 85, 274–283.

Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F., 2019. Dealing with difficult
minority labels in imbalanced mutilabel data sets. Neurocomputing 326, 39–53.

Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H., 2018. Riemannian walk for
incremental learning: Understanding forgetting and intransigence. In: Proceedings
of the European Conference on Computer Vision. ECCV, pp. 532–547.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P.K., Torr, P.H.,
Ranzato, M., 2019. On tiny episodic memories in continual learning. arXiv preprint
arXiv:1902.10486.

Dalle Pezze, D., Masiero, C., Tosato, D., Beghi, A., Susto, G.A., 2021. FORMULA: A
deep learning approach for rare alarms predictions in industrial equipment. IEEE
Trans. Autom. Sci. Eng. 19 (3), 1491–1502.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A.,
Slabaugh, G., Tuytelaars, T., 2021. A continual learning survey: Defying forgetting
in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44 (7), 3366–3385.

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G.,
Tuytelaars, T., 2021. A continual learning survey: Defying forgetting in
classification tasks. IEEE Trans. Pattern Anal. Mach. Intell..

Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J., 2018. A comparative evalu-
ation of outlier detection algorithms: Experiments and analyses. Pattern Recognit.
74, 406–421.

Du, M., Li, F., Zheng, G., Srikumar, V., 2017. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1285–1298.

Essien, A., Giannetti, C., 2020. A deep learning model for smart manufacturing using
convolutional LSTM neural network autoencoders. IEEE Trans. Ind. Inf. 16 (9),
6069–6078.

Fan, S.-K.S., Hsu, C.-Y., Tsai, D.-M., He, F., Cheng, C.-C., 2020. Data-driven approach
for fault detection and diagnostic in semiconductor manufacturing. IEEE Trans.
Autom. Sci. Eng. 17 (4), 1925–1936.

Ge, W., Yang, S., Yu, Y., 2018. Multi-evidence filtering and fusion for multi-label clas-
sification, object detection and semantic segmentation based on weakly supervised
learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1277–1286.

Gentner, N., Carletti, M., Kyek, A., Susto, G.A., Yang, Y., 2021. DBAM: Making
virtual metrology/soft sensing with time series data scalable through deep learning.
Control Eng. Pract. 116, 104914.
11
Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y., 2013. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211.

Han, H., Siebert, J., 2022. TinyML: A systematic review and synthesis of existing
research. In: 2022 International Conference on Artificial Intelligence in Information
and Communication. ICAIIC, pp. 269–274. http://dx.doi.org/10.1109/ICAIIC54071.
2022.9722636.

Kim, C.D., Jeong, J., Kim, G., 2020. Imbalanced continual learning with partitioning
reservoir sampling. In: European Conference on Computer Vision. Springer, pp.
411–428.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al., 2017. Overcoming
catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114 (13),
3521–3526.

Langarica, S., Rüffelmacher, C., Núñez, F., 2019. An industrial internet application for
real-time fault diagnosis in industrial motors. IEEE Trans. Autom. Sci. Eng. 17 (1),
284–295.

Li, W., Li, H., Gu, S., Chen, T., 2020. Process fault diagnosis with model-and
knowledge-based approaches: Advances and opportunities. Control Eng. Pract. 105,
104637.

Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., Hampapur, A., 2014. Improving rail
network velocity: A machine learning approach to predictive maintenance. Transp.
Res. C 45, 17–26.

Liang, Y.-S., Li, W.-J., 2022. Optimizing class distribution in memory for multi-label
continual learning. URL https://openreview.net/forum?id=HavXnq6KyT3.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 2980–2988.

Lopez-Paz, D., Ranzato, M., 2017. Gradient episodic memory for continual learning.
Adv. Neural Inf. Process. Syst. 30.

Ma, X., Si, Y., Qin, Y., Wang, Y., 2022. Fault detection for dynamic processes based
on recursive innovational component statistical analysis. IEEE Trans. Autom. Sci.
Eng..

Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S., 2012. An extensive ex-
perimental comparison of methods for multi-label learning. Pattern Recognit.
45 (9), 3084–3104. http://dx.doi.org/10.1016/j.patcog.2012.03.004, URL http:
//www.sciencedirect.com/science/article/pii/S0031320312001203, Best Papers of
Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA’2011).

Maggipinto, M., Beghi, A., Susto, G.A., 2022. A deep convolutional autoencoder-based
approach for anomaly detection with industrial, non-images, 2-dimensional data:
A semiconductor manufacturing case study. IEEE Trans. Autom. Sci. Eng..

Masarczyk, W., Wawrzyński, P., Marczak, D., Deja, K., Trzciński, T., 2022. Logarithmic
continual learning. arXiv preprint arXiv:2201.06534.

Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S., 2019. Continual lifelong
learning with neural networks: A review. Neural Netw. 113, 54–71.

Pellegrini, L., Graffieti, G., Lomonaco, V., Maltoni, D., 2020. Latent replay for real-
time continual learning. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS, IEEE, pp. 10203–10209.

Puruncajas, B., Vidal, Y., Tutivén, C., 2020. Damage detection and diagnosis for offshore
wind foundations. In: ICINCO. pp. 181–187.

Read, J., Pfahringer, B., Holmes, G., Frank, E., 2009. Classifier chains for multi-label
classification. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, pp. 254–269.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., Lampert, C.H., 2017. icarl: Incremental classifier
and representation learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2001–2010.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G., 2019. Experience replay
for continual learning. Adv. Neural Inf. Process. Syst. 32.

Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K.,
Pascanu, R., Hadsell, R., 2016. Progressive neural networks. arXiv preprint arXiv:
1606.04671.

Salehinejad, H., Sankar, S., Barfett, J., Colak, E., Valaee, S., 2017. Recent advances in
recurrent neural networks. arXiv preprint arXiv:1801.01078.

Susto, G.A., Schirru, A., Pampuri, S., Beghi, A., De Nicolao, G., 2018. A hidden-Gamma
model-based filtering and prediction approach for monotonic health factors in
manufacturing. Control Eng. Pract. 74, 84–94.

Tosato, D., Dalle Pezze, D., Masiero, C., Beghi, A., Susto, G.A., 2020. Alarm logs in
packaging industry. http://dx.doi.org/10.17632/4nhx2x67cd.1.

Van de Ven, G.M., Tolias, A.S., 2019. Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734.

Van Horn, G., Perona, P., 2017. The devil is in the tails: Fine-grained classification in
the wild. arXiv preprint arXiv:1709.01450.

Verma, A., Meenpal, T., Acharya, B., 2022. Computational cost reduction of convolution
neural networks by insignificant filter removal. Sci. Technol. 25 (2), 150–165.

Villalobos, K., Suykens, J., Illarramendi, A., 2020. A flexible alarm prediction system for
smart manufacturing scenarios following a forecaster–analyzer approach. J. Intell.
Manuf. 1–22.

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W., 2016. CNN-RNN: A
unified framework for multi-label image classification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2285–2294.

http://refhub.elsevier.com/S0952-1976(23)00794-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb6
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb6
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb6
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb7
http://arxiv.org/abs/1902.10486
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb17
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb17
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb17
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb17
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb17
http://arxiv.org/abs/1312.6211
http://dx.doi.org/10.1109/ICAIIC54071.2022.9722636
http://dx.doi.org/10.1109/ICAIIC54071.2022.9722636
http://dx.doi.org/10.1109/ICAIIC54071.2022.9722636
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb24
https://openreview.net/forum?id=HavXnq6KyT3
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb28
http://dx.doi.org/10.1016/j.patcog.2012.03.004
http://www.sciencedirect.com/science/article/pii/S0031320312001203
http://www.sciencedirect.com/science/article/pii/S0031320312001203
http://www.sciencedirect.com/science/article/pii/S0031320312001203
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb30
http://arxiv.org/abs/2201.06534
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb34
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb34
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb34
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb35
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb35
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb35
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb35
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb35
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb36
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb36
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb36
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb36
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb36
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb37
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb37
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb37
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1801.01078
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb40
http://dx.doi.org/10.17632/4nhx2x67cd.1
http://arxiv.org/abs/1904.07734
http://arxiv.org/abs/1709.01450
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb44
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb44
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb44
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb46

D. Dalle Pezze, D. Deronjic, C. Masiero et al. Engineering Applications of Artificial Intelligence 124 (2023) 106610
Xu, Y., Wang, J., Yu, Y., 2019. Alarm event prediction from historical alarm flood
sequences based on Bayesian estimators. IEEE Trans. Autom. Sci. Eng. 17 (2),
1070–1075.

Yen, T.-F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A., Kirda, E.,
2013. Beehive: Large-scale log analysis for detecting suspicious activity in enterprise
networks. In: Proceedings of the 29th Annual Computer Security Applications
Conference. pp. 199–208.

Yoon, J., Yang, E., Lee, J., Hwang, S.J., 2017. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547.

Yuan, X., Qi, S., Wang, Y., Xia, H., 2020. A dynamic CNN for nonlinear dynamic feature
learning in soft sensor modeling of industrial process data. Control Eng. Pract. 104,
104614.
12
Zenke, F., Poole, B., Ganguli, S., 2017. Continual learning through synaptic intelligence.
In: International Conference on Machine Learning. PMLR, pp. 3987–3995.

Zhang, M.-L., Zhou, Z.-H., 2013. A review on multi-label learning algorithms. IEEE
Trans. Knowl. Data Eng. 26 (8), 1819–1837.

Zhang, J., Zhou, D., Chen, M., Hong, X., 2022. Continual learning for multimode
dynamic process monitoring with applications to an ultra-supercritical thermal
power plant. IEEE Trans. Autom. Sci. Eng..

Zhu, J., Wang, C., Li, C., Gao, X., Zhao, J., 2016. Dynamic alarm prediction for critical
alarms using a probabilistic model. Chin. J. Chem. Eng. 24 (7), 881–885.

http://refhub.elsevier.com/S0952-1976(23)00794-7/sb47
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb47
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb47
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb47
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb47
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb48
http://arxiv.org/abs/1708.01547
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb51
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb51
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb51
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb52
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb52
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb52
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb54
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb54
http://refhub.elsevier.com/S0952-1976(23)00794-7/sb54

	A multi-label Continual Learning framework to scale deep learning approaches for packaging equipment monitoring
	Introduction and main contributions
	Related work
	Alarm Forecasting for Predictive Maintenance
	Continual Learning

	Proposed approach
	Alarm Forecasting as a Multi-Label classification task
	Continual Learning classifier design
	Optimizing Class Distribution in Memory (OCDM)
	Rehearsal strategy: Balanced Among Tasks OCDM
	Computational complexity

	Tests
	Metrics
	Tests setup
	Considered Continual Learning approaches
	Tests results
	Performance
	Balance among labels
	Balance among tasks
	Computation times

	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. Computational Complexity
	OCDM
	Dataset-based OCDM
	BAT-OCDM

	References

