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A B S T R A C T   

Soil Organic Carbon (SOC) plays a crucial role in many soil functions and ecosystem services. Monitoring its 
spatial and temporal changes is essential for planning strategies to minimize soil degradation and loss and 
maintain its quality. Conservation Agriculture (CA) can make a significant contribution to increasing SOC. This 
article reports on the spatially modeled SOC concentration in the topsoil (0–0.3 m) of the Annual Cropland (ACL) 
under Conventional Management (CM) and CA in the Apulia region in Italy. To assess the spatial and temporal 
dynamics of SOC at the regional scale, the “Scorpan-SSPFe” (soil spatial prediction function with spatially 
autocorrelated errors) approach to predictive modeling and mapping of soil, based on the Geographically 
Weighted Regression (GWR) model was performed. The method was implemented using a Geographic Infor-
mation System (GIS) and Google Earth Engine (GEE) environment to calculate the percentage distribution for 
each SOC level, altitude, and slope class and their combination. 80 environmental variables and 250 soil samples 
were analyzed to map the SOC in ACL. The SOC values showed an average of 16.68 and 17.73 g/kg for CM and 
CA respectively. Adequate map accuracy was obtained by GWR, which showed an R2 of 0.71 for CA and R2 of 
0.52 for CM The Root Mean Squared Error (RMSE) predictions obtained were better in CA (3.96 g/kg) than CM 
(5.65 g/kg) with a percentage RMSE difference of 30 %. Predicted SOC obtained by GWR ranged from 4.06 to 
35.60 g/kg for CA and from 5.00 to 29.99 g/kg for CM. The proposed method was shown to be promising in 
predicting SOC in a region of the Mediterranean area and can be used to assess the effect of land use changes, 
such as the application of CA, on SOC in the whole basin.   

1. Introduction 

The Food and Agriculture Organization of the United Nations (FAO) 
defines soil organic matter (SOM) as “any material produced originally 
by living organisms (plant or animal) that is returned to the soil and goes 
through the decomposition process” (Bot and Benites, 2005). SOM is 
considered as the main element for maintaining fertility in soils and it 
has prominent implications on the biological, physical, chemical, and 
hydrological properties of the soil. It is crucial for stabilizing the soil 
structure and enhancing particle aggregation, releasing and retaining 
plant nutrients, increasing water-holding capacity and promoting mi-
crobial activity (Lefèvre et al., 2017; Youcai, 2018; Farooq and Pisante, 
2019). SOM is conventionally agreed to contain 58 % Soil Organic 
Carbon (SOC) Nelson and Sommers (1996), but a critical review by 
Pribyl (2010) reported that the carbon content of SOC can range be-
tween ~ 50–60 % depending on various factors (e.g., soil type, clay 

content, and analytical methods). SOC is important for its contributions 
to food production and to climate change mitigation and adaptation. In 
addition, a high SOC content provides nutrients to plants and improves 
water availability, both of which enhance soil fertility and improve crop 
productivity (Panakoulia et al., 2017; Ramesh et al., 2019). With an 
optimal SOC level (2 % or more), the water filtration capacity of soils 
supports the supply of clean water (Ramesh et al., 2019). Through 
accelerated SOC mineralization during tillage operations, soils can be a 
substantial source of Greenhouse Gas (GHG) emissions into the atmo-
sphere. SOC storage is also an important ecosystem function as it is 
directly linked to increased C input into the soil through root and mi-
crobial biomass, increased decomposition of plant biomass, and plant 
productivity (Wiesmeier et al., 2019). In addition, since 2006, the 
Intergovernmental Panel on Climate Change has reported that SOC 
stocks are stabilized or reach a steady state of equilibrium only after 20 
years or more with different management practices (IPCC, 2006). It is 
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also argued that for soils containing large amounts of clay and SOC, a 
20-year fixed time horizon is too short to establish SOC equilibrium by 
following any land use or land cover change. One of the most important 
cost-effective options for mitigating climate change is SOC sequestration 
which can also increase soil fertility and other ecosystem services. At the 
Conference of the Parties (COP21) to the United Nations Framework 
Convention on Climate Change (UNFCC) in Paris, stakeholders volun-
tarily committed to promoting agricultural practices that increase soil 
carbon (Chambers et al., 2016). Although the overall impact of climate 
change on SOC stocks is variable according to the region and soil type, 
rising temperatures and increased frequency of extreme events are likely 
to lead to increased SOC losses. 

Recently, the influence of management practices and land-use 
changes on the dynamics of SOC has gained scientific attention, as 
changes in land use, landcover, and management practices can have a 
significant impact on global carbon pools and fluxes (Wijesekara et al., 
2017). Land-use changes could lead to temporal and spatial changes in 
soil quality and productivity by altering the structure and functioning of 
ecosystems and biogeochemical cycles (Braimoh and Vlek, 2004). For 
example, continuous and intensive tillage practices, together with 
Conventional Management (CM), have led to a loss of SOC and conse-
quently to a deterioration of biological, physical, chemical, and hydro-
logical soil properties (Srinivasarao et al., 2013). In contrast, 
Conservation Agriculture (CA) which includes suitable biomass man-
agement has been reported to increase the proportion of SOC and its 
fractions, thereby reducing the risk of soil degradation and improving 
soil quality (Awale et al., 2013; Pisante et al., 2015). 

The Rural Development Policies (RDPs) established through the 
Common Agricultural Policy (CAP) of the EU aim to promote agricul-
tural sustainability. However, SOC and SOM monitoring and evaluation 
is not clearly addressed: this makes it difficult for policymakers to 
reward land management practices that can enhance these two param-
eters which are, however, essential for soil health. This is why estab-
lishing effective tools for the current assessment and future monitoring 
of SOC is essential to implement both managements and specifically- 
targeted policies that contrast soil degradation. 

The areas most affected by SOC loss are those in the Mediterranean 
area, which are affected by drought, such as Greece, Spain, and southern 
Italy, in which climate change is already having a visible impact on 
crops and soils (Ronco et al., 2017). The region Apulia, located in the 
southeast of Italy, can be considered to be representative of these areas. 
Most of the Apulia lands are used for agriculture (e.g., cereals, forage 
crops, and table grapes (Zdruli, 2014). Yet, the region suffers from 
hydro-climatic hazards as well as decreasing precipitation. The rise in 
temperatures and the resulting drought caused by the increasingly 
evident effects of climate change pose an additional threat to Apulian 
soils, which are already suffering from the loss of SOC (Ronco et al., 
2017; UNFCC, 2021). 

Advancements in Remote Sensing (RS) technologies provide a great 
opportunity to facilitate the monitoring of SOC content of large areas 
with affordable cost. The RS imagery acts as an environmental predictor 
for modelling SOC in Digital Soil Mapping (DSM) models. 

The relationships between soil properties and covariates are used to 
predict SOC and create maps (Casa et al., 2013). The high temporal 
frequency and high spatial resolution of remote imagery offer an un-
precedented possibility to study and monitor space–time dynamics of 
SOC change if used in combination with (long-term) monitoring stations 
(Chabrillat et al., 2019). SOC mapping has been greatly benefited by 
DSM. 

Among the many techniques commonly used in DSM, Geographically 
Weighted Regression (GWR) stands out (Mishra et al., 2010; Zhang 
et al., 2011; Kumar et al., 2012; Wang et al., 2012; Song et al., 2016; 
Zeng et al., 2016). This technique has a potential in soil science because, 
unlike classical (global) regression models, GWR has coefficients that 
are specific to each location rather than global estimates (Fotheringham 
et al., 2003). This technique can lead to better performance if the 

analyzed attribute has a local variance. In addition, using geostatistical 
tools and multivariate analyses is possible to evaluate the spatial vari-
ability of SOC, in relation with altimetry, sloping, exposition of each 
landscape unit, using geostatistical tools and multivariate analyses (Buss 
et al., 2019). Despite that, the performance of whole-area calibrated 
models versus locally calibrated models (e.g., GWR) in mapping SOC 
over large extents have seldom been explored in detail, particularly with 
respect to the type of model being employed. 

In this study, we attempted to develop a framework for predicting 
carbon for soil mapping for ACL at a regional scale; a Geographic In-
formation System (GIS) and Google Earth Engine (GEE) approach were 
used to map SOC through the use of environmental covariates from 
open-source datasets to monitor SOC at regional scale highlighting the 
difference between CM and CA in ACL of Apulia region by GWR. In 
addition, the percentage distribution of SOC for each quantile, altitude, 
and slope class and their combination was calculated. The predicted 
maps of the validation set of our model was also compared with those 
predicted maps by de Brogniez et al. (2015) for the same ACL. 

2. Materials and methods 

2.1. Study area 

Apulia region (South of Italy) is about 400 km long and surrounded 
mainly by the Adriatic and Ionian seas (Fig. 1). The geographic extent is 
41◦03′46″N 16◦22′50″E, and covers about 19,541 km2 with 4029,053 
inhabitants. The study area is bounded by Molise along the Saccione and 
Fortore rivers (northwest), and is separated from Basilicata and Cam-
pania by the Apennine Mountains (west and southwest). The Apulia 
region is characterized by low mountains located in the Sub-Appennino 
Dauno and the Gargano promontory, respectively in the east and north 
of the province of Foggia (FG), by the Murgia plateau, which covers an 
area of 4000 km2 in the provinces of Barletta-Andria-Trani (BAT) and 
Bari (BA), and by the Tavoliere plain, the second largest plain in Italy, 
which covers 3000 km2 in the central and southern part of the province 
of Foggia. Most of the region is characterized by small plains with 
moderate hills, located within the provinces of Brindisi (BR), Taranto 
(TA) and Lecce (LE). From a geo-lithological point of view, there are 
mainly limestones, clays and dolomites alternating along the region, and 
aeolian deposits along the Arco Ionico-Tarantino in the province of 
Taranto (Di Nunno and Granata, 2020). The region has a semi-arid 
Mediterranean climate with warm, dry summers and mild, rainy win-
ters. In most of the area the annual rainfall is between 450 and 550 mm. 
The lowest rainfall values, about 400 mm, are observed in the area of 
Tavoliere in the province of Foggia, while the highest values, with more 
than 900 mm/year, are recorded in the area of Gargano in the north of 
the same province (Ladisa et al., 2012). Most of the territory (81.4 %) is 
used for agriculture, while forest and semi-natural areas cover about 
13.3 % of the region. Water bodies cover about 1.2 % of the territory, 
including natural lakes and artificial dams. Apulia is a region where 
agriculture has a relevant role in the economic context of the territory; in 
fact, this region is second in Italy for the production of oil, wine, oats and 
vegetables. The production of durum wheat in Tavoliere, figs in the area 
of Bari and tobacco in the area of Lecce is very important. (Serio et al., 
2018). 

2.2. Soil sampling and analysis 

The ACL’s mapping (772,654 ha) was made following Petito et al. 
(2022), while the boundaries under CA are provided by AGEA (Italian 
Agriculture Payments Agency) and the total interested area corresponds 
to 25,506 ha. For model calibration, n = 240 soil samples were taken. 
The soil CA samples (Fig. 2) were selected through a grid of n = 117 
points. The n = 58 samples were chosen according to a sample scheme 
proposed by Brus and Heuvelink (2007) to minimize the Mean Squared 
Shortest Distance (MSSD) by k-means, which used the spatial 
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Fig. 1. Study area and relative provinces. (FG = Foggia; BAT = Barletta-Andria-Trani; BA = Bari; TA = Taranto; BR = Brindisi; LE = Lecce).  

Fig. 2. Sampling points in the Apulia region for Conventional Management (CM) and Conservation Agriculture (CA) in 2021. Hill shade calculated using NASA DEM 
30 m (available at: https://lpdaac.usgs.gov/products/nasadem_hgtv001, accessed on 1 April 2022). 
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coordinates of the centers of the cells of a discretization grid, used as 
variables in k-means clustering of the grid cells. The centroids of the 
clusters are used as sampling points. The other n = 59 samples were 
chosen randomly (Brus, 2018). For CM samples (Fig. 2) were selected 
based on grid of n = 123 points, n = 36 according to a regular grid and 
n = 37 chosen randomly, and the remaining n = 50 ACL points from 
LUCAS survey (Gallego and Bamps, 2008; Tóth et al., 2013). The co-
ordinates of each sampling site were determined with a GPS model SP20 
handheld GNSS (Spectra Geospatial). A composite topsoil samples (0 – 
30 cm), based on five soil samples around and at the center of each ACL 
point, were used to create the soil sampling dataset used in this study. 
The four subsamples were at a distance of 2 m from the central hole, in 
direction of each cardinal points. We removed vegetation residues, grass 
and litter, if any, in order to sample only the topsoil. The five subsamples 
were bulked to create a 500 g sample and put in a labelled plastic bag. 
For SOC determination, the method reported in (Walkley and Black, 
1934) was followed. 

2.3. Environmental covariates 

The environmental covariates applied in this paper are coherent with 
concepts and methodologies for DSM that were formalized in an in- 
depth review by McBratney et al. (2003). Scorpan-SSPFe (soil spatial 
prediction function with spatially autocorrelated errors) approach for 
predictive modelling (and mapping) of soil was introduced, which in 
itself is rooted in earlier works, by Jenny (1941) and Russian soil sci-
entist Dokuchaev (Florinsky, 2012). Scorpan-SSPFe may be a mnemonic 
for factors for prediction of soil attributes: soil, climate, organisms, re-
lief, parent materials, age, and spatial position, and it is enunciated by 
the equation: 

S = f (s, c, o, r, p, a, n)+ e (1)  

where S represents the soil attributes or classes that can be predicted 
from s, the soil, other or previously measured soil attributes, c represents 
climate, o are the organisms (including land cover and natural vegeta-
tion), r is the topography, p is the parent material, a is the age or time, n 
is the spatial location and finally e, are the spatially related residues. 

Long-handed, the equation states that the soil type or attribute at an 
unvisited site (S) are often predicted from a numerical function or model 
(f) given the factors just described plus the locally varying, spatial 
dependent residuals. The f(Q) part of the formulation is that the deter-
ministic component or in other words, the empirical quantitative func-
tion linking S to the Scorpan-SSPFe factors (Lagacherie and McBratney, 
2006). The Scorpan-SSPFe factors or environmental covariates are 
digitally available: Landsat data, other remote sensing images, radio-
metric data, geological survey maps, legacy soil maps and data, can be 
used as relatively simple method to estimate soil change and can have 
important applications in predicting soil carbon rate under future 
climate change scenarios (Gray and Bishop, 2016; Schillaci et al., 2021a; 
Yigini and Panagos, 2016). The Scorpan-SSPFe model (McBratney et al., 
2003) assumes that existing information on soil classes and properties 
can aid in prediction and DSM in areas where spatial information of soils 
is missing or unavailable at the required scale. Using the "Scorpan-SSPFe 
" model, the predicted map of Soil Organic Carbon can be projected into 
the future. This approach is also called spatiotemporal substitution 
(Pickett, 1989; Blois et al., 2013), where the model is used to project 
SOC into the future by changing climate and land use covariates. 
Spatiotemporal substitution has been successfully applied to map tem-
poral changes in SOC in the United States, Australia, and Brazil (Waring 
et al., 2014; Bonfatti et al., 2016; Adhikari et al., 2017). In the work 
reported in this paper, environmental covariates that represent only c, o, 
r, p and, n factors in the Scorpan-SSPFe method were used. 

2.3.1. Climate (c) 
Climatic covariates are presented in Table S1. Climatic data were 

obtained from ERA5-Land high-resolution reanalysis datasets with 
spatial resolution of 0.1◦ × 0.1◦ latitude-longitude referred to 
geographic coordinate system WGS84 (EPSG:4326), which has resolu-
tion of 9 kilometers. ERA5-Land datasets were downloaded from the 
Copernicus Climate Change Service Climate Date Store (C3S). On GEE, 
22 climate covariates were downloaded and processed with a data set 
from January 1, 1981, to December 31, 2021. 

2.3.2. Organism (o) 
A total of 36 covariates were used in this study using images from 

Landsat 8 Tier 1. All GEE-accessible images were acquired at an original 
spatial resolution of 30 m. SOC plays a relevant role on the growth status 
of crops, and remote sensing data can record the apparent spectral 
characteristics of crops that can be useful to explain the variation in the 
SOC content of soils. These indexes were created and downloaded from 
GEE for the satellite images available between January 1, 2016 to 
December 31, 2021. Vegetational indices calculated are present in 
Table S2. 

2.3.3. Topography (r), Parent material (p) and, Position (n) 
In this study, 13 topographic variables (Table S3) were derived from 

the Digital Elevation Model (DEM), distributed at a spatial resolution of 
30 m provided by NASA (https://lpdaac.usgs.gov/products/nasa-
dem_hgtv001, accessed on 1 April 2022). The calculation of these var-
iables was possible using the algorithm Slope, Aspect and Curvature 
provided by System for Automated Geoscientific Analyses (SAGA) and 
related to terrain morphometry and, also the Topographic Wetness 
Index (TWI) which was calculated using the specific SAGA algorithm, 
both algorithms are directly integrated in QGIS. 

The nine classes for the parent material (Table S4) were obtained 
from the lithological map of the Apulia region, available online on the 
website http://www.sit.puglia.it/ (Di Santo et al., 2009). These cate-
gorical variables were transformed in dummy variables applying “fast-
Dummies” library in R environment. Dummy variables are useful for 
incorporating categorical variables into statistical models. In this 
method, each observation is represented by a vector of 0 s and 1 s, with a 
1 in the position corresponding to the category that the observation 
belongs to. In this study, Parental material has nine classes (Table S4), 
nine new binary variables are created, each representing one of the 
classes. Spatial position (n) was related to latitude and longitude asso-
ciated to each sample point. 

2.3.4. Mathematical function and model evaluation (f) 
The model was tested using GWR which is an extension of the 

traditional linear regression (Brunsdon et al., 2010). In DSM, GWR can 
be used to model the relationships between soil properties (such as 
texture, organic matter content, pH, etc.) and environmental variables 
(e.g., elevation, slope, and rainfall). In traditional linear regression, it is 
assumed that the model coefficients are constant across the study area, 
but this is not necessarily true in many situations. Therefore, in the 
GWR, the regression coefficients are specific to a location rather than 
global estimates. The GWR methods can be represented as: 

y(x, y) = β0(x, y)+
∑k

i=1
βi(x, y)xi + εi(x, y) (2)  

in which y(x, y) is the predicted SOC in the i-th site, (x,y) are the co-
ordinates for the i site, k is the number of covariates, βi is regression 
coefficient, xi is the covariate at the site i and εi represents the error term. 

GWR needs bandwidth to work, which is the distance band used for 
each local regression equation. The bandwidth is able to control the 
degree of smoothing and it is a key affecting the regression results. It is 
used to control the extent of the spatial influence of each data point. The 
bandwidth determines the spatial extent over which data points are 
considered neighbours and influence the regression estimates. Akaike 
Information Criterion corrected (AICc) was used to choose the best 
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bandwidth in this study. The adaptive kernel size, used for the estima-
tion, depends on the location of the samples or the location of the test 
point. The weight of each point can be calculated using the Gaussian 
function. GWR was carried out in R environment using ‘GWmodel’ li-
brary (Lu et al., 2015). GWR model were validated using coefficients of 
determination (R2), root mean square error (RMSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
∑n

i=1
[D(xi) ] − D ∗ (xi)]

2

n

√
√
√
√
√

(3)  

MAE =

∑n

i=1
|D(xi)| − D ∗ (xi)]

n
(4)  

MAPE =
100%

N
∑n

i=1

⃒
⃒
⃒
⃒
(D(xi) − D ∗ (xi))

D(xi)

⃒
⃒
⃒
⃒ (5)  

where D (xi) is the measurement of SOC, D* (xi) is the predicted SOC, 
and n is the number of validation sites, respectively. 

2.4. Data processing 

Covariates that have a different spatial resolution were resampled at 
the same resolution of Landsat-8 satellite (30 m), using the Nearest 
Neighbor algorithm in QGIS. Covariates affected by multicollinearity 
were filtered using the function “findCorrelation” developed by Caret 
library, in R environment (Behrens et al., 2010; Ferhatoglu and Miller, 
2022; Chen et al., 2022). This function allows the removing of covariates 
that are highly correlated among them (the selected cutoff was 
r > 0.75), selecting the covariate that is mostly related with SOC. Then, 
a model for SOC was constructed by stepwise multiple regression using 
Bidirectional Elimination approach and Akaike Information Criterion 
(AIC) as a selection criterion. The stepwise multiple regression was also 
performed in R environment, adopting “MASS” library. Finally, using 
the covariates selected by the stepwise multiple regression, the GWR 
was performed, using the R library “spgwr”. 

2.5. Distribution of SOC in the Apulia region 

To obtain optimal understanding of the distribution of SOC in the 
Apulia region, altitudes and slopes were calculated using Digital Terrain 
Model (DTM) in GEE following the methods introduced by Petito et al. 
(2022). Altimetry was classified into three categories based on the 
altitude above sea level: plain (0 ≤ altitude ≤ 300 m a.s.l.), hilly (300 <

altitude < 800 m a.s.l.), and mountain (altitude ≤ 800 m a.s.l.). The 
slope was categorized by dividing the slope range into three quantiles: 
low slope (under 1.8 %), medium slope (1.8–3.7 %), and high slope 
(over 3.3 %). SOC was also categorized using five quantiles: low 
< 14.21, medium-low 14.21–16.44, medium 16.44–18.14, 
medium-high 18.14–20.68, and high > 20.68. In addition, the three 
categories were combined to obtain 45 classes for both scenarios. 

3. Results and discussion 

3.1. Descriptive statistics of SOC and SOC variation by CM and CA 

To effectively test the hypothesis of this study, the sample size took 
into account the area and location, and further verified by land use 
continuity in the power analysis to reduce laboratory costs and maxi-
mize the accuracy of the assessment as already reported in other papers 
(Aïchi et al., 2009; Saurette et al., 2022; Schillaci et al., 2021b). 

The statistical summary of the SOC values is reported in Table 1 and 
derived from 122 observations for CM and 117 observations for CA. SOC 
values for CM are ranging from 5.10 g/kg to 51.89 g/kg with an average 

of 16.68 g/kg, and for CA the values are between 5.75 g/kg and 
58.70 g/kg with an average of 17.73 g/kg. The statistical distribution of 
the values of sampled SOC for the CM is positively skewed with a value 
of 1.06 and a Kurtosis value of 3.72. For the CA the Skewness is 0.70, 
while the Kurtosis value is 2.68. The Skewness and Kurtosis scores, in 
both cases, indicated not-normal distribution in the datasets. 

Within a given area and a short period of time, change from SOC is 
driven mainly by the development of agricultural practices (Blanco--
Canqui et al., 2011). In this work, there was a 6.30 % increase in SOC in 
the points sampled under CA in comparison with CM. The adoption of 
CA system in the last four years increased the quantity of SOC as 
demonstrated by other works (Bhattacharyya et al., 2015; Hok et al., 
2015; Parihar et al., 2018). In these studies, the changes in the con-
centration of SOC content of soils were positively influenced by CA 
compared to the CM system. The CA: (a) reduced the SOC mineralization 
rate due to low residue-SOC mixing and accentuated mulching, which 
reduced exposure to soil microbial attacks, decreased soil surface tem-
perature and aeration, and increased aggregate stability (Duiker and Lal, 
2000; Al-Kaisi et al., 2005; Bronick and Lal, 2005); (b) decreased subsoil 
C movement due to the burial of residues and SOC-rich topsoil layers; 
and (c) increased SOC stratification as a result of a change in soil 
physical properties that hinder rooting depth and promote surface 
accumulation (Qin et al., 2004; Martínez et al., 2008). Although some 
studies have shown that no-tillage practices and their association with 
the retention of crop residues in the field can increase SOC concentra-
tions (Lal, 2004; Poeplau and Don, 2015), the effects of conservation 
practices may not be detectable in the first years after their adoption 
(Acuña and Villamil, 2014; Blanco-Canqui et al., 2014). 

3.2. Environmental covariates and estimation of the SOC for GWR 

The Pearson correlation coefficients, between SOC and its environ-
mental covariables for the two management systems, are shown in  

Table 1 
Descriptive statistics of Soil Organic Carbon (SOC) for CM and CA.   

n. Min. (g/ 
kg) 

Max. (g/ 
kg) 

Mean (g/ 
kg) 

Skew. (g/ 
kg) 

Kurt. (g/ 
kg) 

CM  123  5.10  51.89  16.68  1.06  3.72 
CA  117  5.75  58.70  17.73  2.68  0.70 

CM: Conventional Management; CA: Conservation Agriculture; n: number of soil 
samples; Min: minimum; Max. = maximum; Skew: skewness; Kurt: kurtosis. 

Table 2 
Pearson correlations between SOC and covariates for CA.   

Covariates r p  

NDVIa minimum  -0.44  0.00  
Exposure  -0.04  0.70  
Blue Wide Cloudless min  0.30  0.00  
GRVIb minimum  -0.38  0.00  
GARIc minimum  -0.04  0.69 

SOC ~ Latitude  -0.03  0.76  
Total Precipitation mean  0.00  1.00  
Altimetry  0.41  0.00  
Skin Temperature mean  -0.10  0.31  
EVId maximum  -0.21  0.03  
ID_1e  -0.69  0.00  
ID_2f  0.04  0.70  
ID_7g  -0.42  0.00 

SOC: Soil Organic Carbon; CA: Conservation Agriculture; 
a: Normalized Difference Vegetation Index; 
b: Green-Red Vegetation Index; 
c: Green Atmospherically Vegetation Index; 
d: Enhanced Vegetation Index; 
e: Unit with a predominantly limestone or dolomitic component; 
f: Unit with a prevalent arenite component; 
g: Unit with a predominantly silty-sandy and / or arenitic component. 
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Table 2 for CA and Table 3 for CM. In CA the correlations between SOC 
and Altimetry, Exposition, Latitude, Total Precipitation, Skin Tempera-
ture mean, Unit with a predominantly limestone or dolomitic compo-
nent (ID1), Unit with a prevalent arenite component (ID2), Unit with a 
predominantly silty-sandy and / or arenitic component (ID7), NDVI min, 
BW min, GRVI min, GARI min and EVI max were strong. Unlike the CA 
system, CM had a strong correlation with Total Precipitation and Unit 
with a predominantly limestone or dolomitic component (ID1). 

Results derived from the two system managements indicate that the 
correlated environmental variables for SOC could be very different due 
to different approaches based on different soil conditions in Apulia re-
gion. GWR produced the highest value of determination coefficient for 
CA (0.71), higher than GWR for CM (0.52). The GWR provided 
reasonable results (Table 4), the RMSE for CA was 3.96 g/kg while the 
RMSE for CM was 5.65 g/kg, CA WAS 30 % lower compared to CM. A 
similar trend was observed for MAE and MAPE. The prediction error 
followed the R2, and the GWR models generally showed lower RMSE and 
MAE. The results are in agreement with those of several authors (Mishra 
et al., 2010; Zhang et al., 2011; Song et al., 2016) and these authors 
suggest that GWR has better performance in predicting SOC at regional 
scale. A regional study by Mishra et al. (2010) showed that GWR is the 
best estimation approach compared to other models (e.g., Regression 
Kriging, Kumar et al., 2012). GWR also has no restrictions on the number 
of covariates. As long as the selected environmental factors are 
well-correlated with the dependent variable, GWR can perform better 
than other models (Wang et al., 2013; Costa et al., 2018). 

3.3. Spatial distribution of SOC in ACL of Apulia Region 

Maps of predicted SOC for CM and CA, as obtained by GWR, method 
are shown in Fig. 3. 

The SOC ranged from 4.06 to 35.60 g/kg for CA and from 5.00 to 
29.99 g/kg for CM. The SOC spatial distribution in the ACL of Apulia 
Region varied considerably across the study area. Overall, the spatial 
distribution pattern of SOC for CM (Fig. 4) showed a decrease in expo-
sure in the southwest, with the highest values in the northeast-exposed 
mountainous areas in the Murgia plateau in the middle part of the 
Apulia region. The lowest values were found in the Tavoliere and the 
Daunian Sub-Apennines in the northwest. 

As for the soils under CA system (Fig. 5), in the mountain area, the 
highest SOC values were obtained in the province of Bari and province of 
Barletta-Andria-Trani (Murgia plateau) with a north-east exposure. In 
province of Foggia, in particular in the Daunian Sub Apennines, lower 
values of SOC were obtained. In the south part of the Apulia region 
(Salento, province of Lecce) there are no areas under CA, while the 
values of SOC in the center of this area represent the values for the CM 
system (~ 18,14 – 20,68 g/kg, Fig. 4). 

GWR is suitable for mapping the spatial distribution of soil properties 
because of its ability to incorporate an unlimited number of predictive 
variables (Wang et al., 2013). In the reported study, it was observed 
how, within a given area and within a short period of time for CA, the 
change of SOC compared to CM was primarily determined by the 

evolution of agricultural practices. In a study conducted by Bleuler et al. 
(2017), different measures of SOC sequestration were compared in ACL 
of the Apulia region (Foggia province). Based on the CA principles, the 
permanent soil cover represents a pillar for increasing biological activ-
ities for SOC stability and storage. From a practical point of view, SOC is 
highly dependent on land use patterns and applied agricultural prac-
tices, such as the addition of exogenous organic matter, tillage, and 
fertilization (Dignac et al., 2017). These practices significantly affect soil 
properties, including soil microbial biomass and activity (Tu et al., 
2006), soil physical structure, and consequently the spatial and tem-
poral distribution of SOC (Dignac et al., 2017). 

3.3.1. Comparison with existing SOC map based on spatiotemporal 
resolution 

One of the existing and available maps of SOC for Europe is provided 
by the Joint Research Centre (JRC) / European Soil Data Centre 
(ESDAC). The data are downloadable from the website (https://esdac. 
jrc.ec.europa.eu/content/topsoil-soil-organic-carbon-lucas-eu25) 
through the dataset "Topsoil Organic Carbon for EU25", originated from 
LUCAS 2009 data, and it is possible to clip it for the ACL of Apulia region 
(Fig. 6) using QGIS. The maps were created using LUCAS 2009 sample 
sets with a spatial resolution of 500 m (de Brogniez et al., 2015). 

Sampling conducted in 2021 allowed the creation of a map with a 
spatial resolution of 30 m and validate the data for the same year. With 
this updated map of SOC, the area can be planned in more detail to 
monitor agricultural policies (e.g., land degradation), helping farmers to 
better implement agricultural practices for carbon management and 
carbon credit sales. 

Moreover, following Farina et al. (2017) for the Apulia region, the 
accuracy of predictions could be improved by a more detailed dataset on 
farm management and yields obtained through local surveys or remote 
sensing. New data from CA systems were used to show the improvement 
in SOC loss reduction in Mediterranean area when no-till system is 
applied. This allowed the development of a map for Apulia region, 
providing detailed information for the SOC and for the two soil man-
agement systems examined. In this study, we showed that mapping SOC 
in Apulia region was feasible by using information based on manage-
ment practices adopted for ACL and by using Remote Sensing covariates. 

3.3.2. Altitude and slope classes combination 
The percentage of the SOC distribution in the total ACL of Apulia 

region, were calculated categorizing using five quantiles/SOC levels 
(Table 5). The percentage distribution, based on the five quantiles, 
showed the highest and lowest percentage values in the medium SOC 
and low SOC classes (34.82 % and 10.37 %, respectively). Dividing the 
total ACL in the two management systems with CA and CM, the per-
centage distribution of the areas varied. In CA, the highest distribution 
percentage corresponded to the high SOC (32.57 %), while the lowest 
value was found in the low SOC (10.37 %). In CM, the highest distri-
bution percentages were found in the medium SOC (36.06 %), while the 
lowest were found in the low SOC (9.54 %). The impact of land use 
changes through the application of CA could allow farmers to apply 
proven agricultural methods to improve the SOC (Pisante et al., 2015). 
This path should be increasingly accompanied by specific funding (i.e., 
Common Agricultural Policy) to support farmers and agronomic 

Table 3 
Pearson correlations between SOC and covariates for CM.   

Covariates r p  

Evaporation from Vegetation  0.24  0.01  
Total Precipitation mean  -0.10  0.31  
Curvature Flow  -0.18  0.07 

SOC ~ RVIa mean  0.17  0.10  
GARIb maximum  0.01  0.94  
ID_1c  0.37  0.00 

SOC: Soil Organic Carbon; CM: Conventional Management. 
a: Ratio Vegetation Index; 
b: Green Atmospherically Vegetation Index; 
c: Unit with a predominantly limestone or dolomitic component. 

Table 4 
Performance of the geographically weighted regression (GWR) for CM and CA in 
ACL of Apulia region.   

R2 RMSE (g/kg) MAPE (%) MAE (g/kg) 

CM  0.52  3.96  28.54  4.12 
CA  0.71  5.65  20.16  3.06 

CM: Conventional Management; CA: Conservation Agriculture; RMSE: root 
mean square error; ME: mean error; MAPE: mean absolute percentage error; 
MAE: mean absolute error. 
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Fig. 3. Map of predicted SOC for Annual Cropland (ACL) in Apulia region obtained by GWR. Hill shade calculated using NASA DEM 30 m (available at https 
://lpdaac.usgs.gov/products/nasadem_hgtv001, accessed on 1 April 2022). 

Fig. 4. Map of predicted SOC for CM in Apulia region obtained by GWR. Hill shade calculated using NASA DEM 30 m (available at: https://lpdaac.usgs.gov/ 
products/nasadem_hgtv001, accessed on 1 April 2022). 

M. Petito et al.                                                                                                                                                                                                                                   

https://lpdaac.usgs.gov/products/nasadem_hgtv001
https://lpdaac.usgs.gov/products/nasadem_hgtv001


Soil & Tillage Research 235 (2024) 105916

8

Fig. 5. Map of predicted SOC for CA in Apulia region obtained by GWR. Hill shade calculated using NASA DEM 30 m (available at: https://lpdaac.usgs.gov/ 
products/nasadem_hgtv001, accessed on 1 April 2022). 

Fig. 6. Map of SOC for ACL in Apulia region provided by dataset from LUCAS 2009 by JRC. Hill shade calculated using NASA DEM 30 m (available at: https 
://lpdaac.usgs.gov/products/nasadem_hgtv001, accessed on 1 April 2022). 
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advisors to help to inform themselves better (Llewellyn and Ouzman, 
2019). 

In addition, the altimetric and slope classes and their combination 
were calculated (Table S5, S6, and S7). The percentage distribution of 
SOC by altimetric class showed a similar trend for all quantiles in plain 
areas, except for the high SOC values found in hilly areas. As for the 
percentage distribution of SOC in ACL within the altimetric class, the 
highest value was present in the medium SOC + plain (25.95 %), while 
the lowest values were found in mountainous areas (Table S6). 

The percentage of SOC based on slopes was variable for all quantiles 
(Table S6). Low SOC and medium-low SOC had similar slope distribu-
tion percentage as well as medium SOC and medium-high SOC. While 
for high rates of SOC, the medium and high slope exhibited higher 
distribution percentage (39.23 % and 36.24 %, respectively) than the 
low slope (24.53 %). For the distribution of SOC in the ACLs within the 
slope classes, the highest and lowest percentages were recorded in the 
medium SOC + medium slope (13.32 %) and in the high SOC + low 
slope (2.62 %), respectively (Table S7). Combining SOC levels, altitude 
and slope classes, the highest percentage of distribution of SOC was on 
medium SOC + plain + medium slope (10.42 %), while the lowest 
percentage values in all combinations were found in mountainous areas. 
In this study area, topography plays a particularly important role 
because the region combines slopes and intensive tillage, and redistri-
bution of sediments affects the dynamics of SOC mainly by burying rich 
sediments. The recent paper by Petito et al. (2022) showed that the 
highest slope and elevation values were found in the mountainous re-
gions with steep orography, especially in the western part where 
mountains predominate (Daunian Sub Appenine, province of Foggia, 
and Murgia plateau in province of Bari and Barletta-Andria-Trani). The 
lowest values were distributed along the Adriatic and Ionian coasts. The 
heterogeneity in ACL is largely controlled by the topography, which 
influences the distribution of water, energy and sediments, and thus the 
dynamics of the SOC (Stevens et al., 2014). The contribution of the CA 
system can reduce the rate of soil loss. Volk et al. (2010) estimated that 
soil loss with conventional tillage is 5.4 tons/ha/year which is more than 
double the soil loss under conservation tillage at 2.2 tons/ha/year. A 
recent work in the same area of this study, by Petito et al. (2022), CA 
reduced soil loss rate compared to CM in all classes, from 10.1 % in hill 
class to 14.1 % for hill + low slope class. Therefore, the monitoring of 
SOC in this area is essential so that the loss of soil fertility can be 
reduced. 

The observation of the distribution of SOC, based on the quantile 
division for the ACLs of the Apulia region, is important. The data re-
ported in this paper can improve our understanding of SOC in the Apulia 
region and help better manage SOC stocks to achieve conservation goals. 
Based on the percent distribution of mapped ACLs, the higher values of 
SOC were more distributed in CA than in CM, highlighting the primary 
role of CA in increasing the amounts of SOC in ACLs (Kassam et al., 
2014; Lal, 2015; Valkama et al., 2020). 

4. Conclusion 

This study is one of the first attempts to predict the accumulation of 

SOC and its trend in ACLs during the transition phase, after the adoption 
of sustainable soil management systems at regional scale in Southern 
Italy, using a GWR approach in a GIS and GEE environment. The 
methodology can be applied to other regional estimates on ACL when 
the relevant data are available. Another unique feature the study is that 
the point database represented actual soil management systems at single 
field level and thus reflected the management of the farm with a high 
degree of accuracy. Spatial predictions made it possible to identify when 
changing from a CM to a CA system would improve soil conditions by 
increasing SOC in the soil. The GWR model was shown to accurately 
predict the dynamics of SOC during the first period of adoption of the CA 
system. SOC predictions showed an average of 16.68 and 17.73 g/kg? 
for CM and CA respectively while GWR model was able to reach a high 
R2 for CA (0.71) and good R2 for CM (0.52). The RMSE scores for the 
prediction were smaller in CA (3.96 g/kg) than in CM (5.65 g/kg) with a 
percentage RMSE difference of 30 %. Predicted SOC obtained by GWR 
ranged from 4.06 to 35.60 g/kg for CA and from 5.00 to 29.99 g/kg for 
CM. One of the limiting factors of DSM in the study was the need for a 
larger sample set to test the GWR model to obtain more accurate SOC 
predictions and maps. Therefore, working with a larger sample set will 
be crucial when mapping SOC content in the region. Sampling is 
necessary but costly procedure in terms of money and time. Such in-
formation could be a useful tool for policy makers to assess the impact of 
agricultural policies on SOC trends, but also for future planning that 
could take into account issues such as climate change, land management 
and changes in land use, and reduction of CO2 emissions in the Medi-
terranean area. 
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Volk, M., Möller, M., Wurbs, D., 2010. A pragmatic approach for soil erosion risk 
assessment within policy hierarchies. Land Use Policy 27, 997–1009. 

Walkley, A., Black, I.A., 1934. An examination of the degtjareff method for determining 
soil organic matter, and a proposed modification of the chromic acid titration 
method. Soil Sci. 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003. 

Wang, K., Zhang, C., Li, W., 2012. Comparison of geographically weighted regression and 
regression kriging for estimating the spatial distribution of soil organic matter. 
GIScience Remote Sens. 49, 915–932. https://doi.org/10.2747/1548- 
1603.49.6.915. 

Wang, K., Zhang, C., Li, W., 2013. Predictive mapping of soil total nitrogen at a regional 
scale: A comparison between geographically weighted regression and cokriging. 
Appl. Geogr. 42, 73–85. https://doi.org/10.1016/j.apgeog.2013.04.002. 

Waring, C., Stockmann, U., Malone, B.P., Whelan, B., McBratney, A.B., 2014. Is percent 
‘projected natural vegetation soil carbon’ a useful indicator of soil condition? Soil 
Carbon. Springer International Publishing, Cham, pp. 219–227. https://doi.org/ 
10.1007/978-3-319-04084-4_23. 

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van 
Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.-J., 
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