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Aperiodic component of EEG 
power spectrum and cognitive 
performance are modulated 
by education in aging
Sonia Montemurro 1,4*, Daniel Borek 2,4, Daniele Marinazzo 2, Sara Zago 3, Fabio Masina 3, 
Ettore Napoli 3, Nicola Filippini 3 & Giorgio Arcara 3

Recent studies have shown a growing interest in the so-called “aperiodic” component of the EEG 
power spectrum, which describes the overall trend of the whole spectrum with a linear or exponential 
function. In the field of brain aging, this aperiodic component is associated both with age-related 
changes and performance on cognitive tasks. This study aims to elucidate the potential role of 
education in moderating the relationship between resting-state EEG features (including aperiodic 
component) and cognitive performance in aging. N = 179 healthy participants of the “Leipzig Study for 
Mind–Body-Emotion Interactions” (LEMON) dataset  were divided into three groups based on age and 
education. Older adults exhibited lower exponent, offset (i.e. measures of aperiodic component), and 
Individual Alpha Peak Frequency (IAPF) as compared to younger adults. Moreover, visual attention 
and working memory were differently associated with the aperiodic component depending on 
education: in older adults with high education, higher exponent predicted slower processing speed 
and less working memory capacity, while an opposite trend was found in those with low education. 
While further investigation is needed, this study shows the potential modulatory role of education in 
the relationship between the aperiodic component of the EEG power spectrum and aging cognition. 

As we age, many changes occur in individuals’ behavior and cognition, worsening in  memory1, attention  span2, 
executive  functions3, and processing  speed4, reflecting just a few of the consequences of the natural aging process. 
These behavioral changes are accompanied by (and associated with) changes in the brain’s structural  anatomy5,6, 
 metabolism7, and  functionality8 which produce a significant effect on its neurophysiological  activity9. Electroen-
cephalography (EEG) studies on aging have shown changes in neural oscillatory activity, especially in the alpha 
band (8–12 Hz)10–12. Researchers have reported that older adults display slower alpha oscillatory activity and 
lower alpha power than their younger  counterparts8,13,14. Moreover, individual alpha peak frequency (IAPF), 
i.e., the frequency where EEG activity exhibits the maximum power in the alpha range, tends to decrease from 
adulthood to  midlife11,12. In most studies, EEG activity in specific frequency bands has been traditionally meas-
ured as the average of the power in the frequency bands of interest as calculated from the power  spectrum15. 
This approach has been recently questioned by a renewed interest in the non-oscillatory, aperiodic component 
of the EEG signal.

The aperiodic component exhibits a 1/f-like distribution in the semi-log space of a Power Spectrum Density 
(PSD), meaning its power exponentially decreases as frequency increases.

Aperiodic activity can be parametrized by values of the exponent, which describes the negativity of the power 
spectrum slope, and the offset, the broadband shift of power across  frequencies15. Importantly, changes in the 
spectrum’s aperiodic component may occur without changes in the oscillatory components and may affect the 
power values calculated for each frequency. This may lead to spurious results and wrong interpretations when 
focusing only on the periodic activity and highlights the importance of taking into account the aperiodic com-
ponent when interpreting power spectrum  data15,16.

In the context of aging, it has been shown that the aperiodic slope of EEG and electrocorticography (ECoG) 
spectra flattened in a group of older people compared with a younger one, with decreased power between 8 and 
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14 Hz and increased power between 14 and 25  Hz17. The changes in EEG spectral slope were also associated 
with age differences in working memory performance. Interestingly, the aperiodic exponent appeared to mediate 
this relationship, suggesting that the slope effect alone could account for behavioral differences between older 
and young adults. Voytek and colleagues explained these results with the “Neural Noise Hypothesis”17, initially 
suggesting that as people age, there is an increase in spontaneous desynchronized neural activity, resulting 
in a decreased fidelity of neural communication and a flatter power spectrum. Recent studies have replicated 
Voytek’s findings and added new insights to the relationship between aging and aperiodic spectral components, 
highlighting their impact on cognitive performance. As an example, flatter slopes in older adults have been 
linked to poorer performance during spatial attention  tasks18,19 and short-term memory  tasks20. Recent work 
from Pathania and  colleagues21 has associated the flattening of the aperiodic slope in frontal regions with worse 
performance on tasks involving processing speed and executive functions. Another  study18 measured changes 
of the aperiodic spectra at the baseline period in younger and older adults investigating to what extent 1/f like 
exponent was related to alpha trial-by-trial consistency in a spatial discrimination task. The authors found that 
older adults with the highest baseline noise levels also had the worse alpha trial-by-trial consistency, suggest-
ing that age-related increases in baseline noise might diminish sensory processing and cognitive performance.

Understanding the impact of neural noise could suggest new perspectives on the relationships between aging 
and neurophysiological functioning, also when considering other moderating  variables22–28. In this field, a crucial 
role could be played by “Education” a variable indicating the educational level, typically operationalized as years 
of successful education or as an ordered factor (e.g. high school, university, etc.). Education is typically strongly 
associated with cognitive performance (i.e., the higher the education, the better cognitive performance), and it is 
almost always considered in any study on aging. The theory of Cognitive  Reserve21,23 has suggested a causal role 
of Education, as it is related to further life experiences (e.g., complexity of the occupational level) that may influ-
ence the capacity of brain structure and functions to cope with age-related changes (normal and pathological).

Although some results already suggest that education is associated with changes in the aperiodic  component29, 
it is not known whether education may modulate the effect of aging on spectral properties and in particular of 
the aperiodic component, in a possible interaction between these variables.

The present work aims to fill this gap, by investigating the potential moderating role of education on the 
relationship between aging and spectral properties of EEG, with focus on the aperiodic activity. To this aim, we 
analyzed the resting state and behavioral data of three groups: young adults with high education, older adults 
with higher education, and older adults with lower education. More specifically, the aims of the study were: (i) to 
investigate the possible age-related changes in the EEG spectral properties across these groups, (ii) to investigate 
the age-related cognitive differences as measured with test scores across the three groups, (iii) to investigate 
the role of education as a variable expected to moderate the association between EEG spectral properties and 
cognitive  measures25. Older adults with higher education were expected to preserve a more youth-like profile 
as compared to older adults with lower education. Exploring the role of education in relationship with multiple 
facets of spectral properties and in particular of aperiodic component of the resting-state EEG signal might 
expand the research about brain aging and its impact on cognitive outcomes.

Results
Descriptive analyses
Older adults performed significantly worse on all cognitive tasks than younger adults [Visual Attention response 
times (t = 9.26, p < 0.001; Cohen’s d = 1.85); Alertness response times (t = 6.66, p < 0.001; Cohen’s d = 1.25); Work-
ing Memory accuracy (t = −2.57, p < 0.001; Cohen’s d = 0.85); Delayed Memory accuracy (t = −13.46, p < 0.001; 
Cohen’s d = 1.11)]. IAPF, exponent, and offset values were different in young adults compared to older adults [i.e., 
IAPF (t = −3.23, p = 0.001; Cohen’s d = 0.48); exponent (t = −6.02, p < 0.001; Cohen’s d = 1.91); offset (t = −6.10, 
p < 0.001; Cohen’s d = 0.99)]; see Table S1 as Fig. 1 and Fig. S1.

Older adults with different educational levels did not differ on most cognitive tasks except for the working 
memory one [visual attention response times (t = −0.11, p = 0.91); alertness response times (t = −0.25, p = 0.79); 
working memory accuracy (t = 2.71, p < 0.01; Cohen’s d = 0.72); delayed memory accuracy (t = −1.14, p = 0.25)], 
where older adults with high education performed better than older adults with lower education and more 
similarly to the younger adults (see also Table 1).

EEG spectral parameters and cognitive performance
In the whole sample, a higher exponent and offset significantly predicted a better performance on the visual atten-
tion task, i.e., a faster performance in terms of response time [(exponent: B = −0.44, p < 0.01; Cohen’s  f2 = 25.11); 
(offset: B = −0.32, p < 0.01; Cohen’s  f2 = 25.63)]. The exponent and the offset values predicted better working 
memory capacity in terms of response accuracy [(exponent: B = 0.37, p = 0.04; Cohen’s  f2 = 6.91); (offset: B = 0.31, 
p = 0.01, Cohen’s  f2 = 7.96)]. Significant results emerged when considering the three groups, i.e., young adults, 
older adults with low education, and older adults with high education, both for the exponent and the offset, in 
the visual attention and working memory tasks. Compared to the group of young adults, where exponent and 
offset did not predict any variation in cognitive performance, a significant interaction was shown in older adults 
depending on their educational level. In the visual attention task, low-educated older adults had a better (faster) 
performance at the higher aperiodic values [(exponent: B = −0.67, p = 0.04; Cohen’s  f2 = 22; (offset: B = −0.56, 
p = 0.03, Cohen’s  f2 = 21)] while those highly educated had a worse performance (slower) at the higher values of 
the exponent (exponent: B = 1.41, p = 0.02; Cohen’s  f2 = 22), a result that was confirmed post-hoc through slope 
comparisons, showing a general age-related effect and also a significant difference between older adults with 
different education, at the third quartile of the exponent values (t = 2.45; p = 0.03), see Fig. 2.
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Results showed that also in the working memory task, older adults with high education had worse perfor-
mance with increasing exponent values, as compared with those with low education (B = −1.71, p = 0.03, Cohen’s 
 f2 = 7.25). Post-hoc slope comparison showed no main education-related difference among older adults. Young 
adults and highly educated older adults did not differ from each other at different quartiles of exponent values 
(25%: t = 1.16, p = 0.47; 50%: t = 1.94, p = 0.12; 75%: t = 2.12, p = 0.08).

An additional exploratory analysis in a frontal  ROI29 showed that a significant interaction also emerged at the 
level of the alertness task (B = 2.01, p = 0.01, Cohen’s  f2 = 9) with higher power predicting faster response times 
in older adults with high education.

Figure 1.  Age- and Education-related differences of the EEG components. The Individual Alpha Peak 
Frequency, power, exponent, and offset of each group (young – high edu = younger adults with high education, 
old – high edu = older adults with high education; old – low edu = older adults with low education) are shown on 
the y-axis.

Table 1.  Descriptive information about the sample and group comparisons based on participants’ age and 
education. Table depicts: processing speed alertness (PS_Allertness), processing speed visual attention (PS_
Attention), working memory accuracy (MEM_WM) and delayed memory accuracy (MEM_Del); gray matter 
volume normalized (GM_Volume), individual alpha peak frequency (IAPF), exponent, and offset.

Young adults
Older adults with high 
education Older adults with low education

Group 
comparison
Young-high edu 
vs old-low edu

Group 
comparison
Young-high edu 
vs old-low edu

Group 
comparison
Old-low edu vs 
old-low edu

Range M(SD) Range M (SD) Range M (SD) χ2 p χ2 p χ2 p

PS_Allertness (−1.69 to 2.67) −0.43 (0.6) (−0.33 to 3.35) 0.69 (1.07) (−0.66 to 5.29) 0.77 (1.07) 23.15  < 0.001 30.44  < 0.001  < 0.01 0.92

PS_Visual 
Attention (−1.47 to 1.50) −0.43 (0.56) (−0.71 to 3.62) 0.94 (1.07) (−0.84 to 3.59) 0.97 (1.07) 42.84  < 0.001 42.11  < 0.001 0.08 0.77

MEM_WM (−2.83 to 0.80) 0.24 (0.71) (−3.27 to 0.80) −0.04 (1.28) (−3.72 to 0.80) −0.92 (1.28) 0.64 0.42 26.30  < 0.001 8.13  < 0.01

MEM_Del (−2.46 to 1.27) 0.30 (0.84) (−3.51 to 0.79) −0.85 (0.97) (−2.46 to 1.08) −0.54 (0.97) 24.16  < 0.001 23.20  < 0.001 0.98 0.32

GM_Volume (0.42 to 0.50) 0.46 (0.01) (0.36 to 0.44) 0.41 (0.01) (0.38 to 0.45) 0.42 (0.01) 56.63  < 0.001 65.30  < 0.001 2.07 0.14

IAPF (8.95 to 11.98) 10.38 (0.68) (8.81 to 11.85) 10.04 (0.67) (8.69 to 11.44) 10.00 (0.67) 3.96 0.04 5.46 0.01 0.17 0.67

Power (8.95 to 11.98) 10.38 (0.68) (8.81 to 11.85) 10.04 (0.67) (8.69 to 11.44) 10.00 (0.67) 3.96 0.04 5.46 0.01 0.17 0.67

Exponent (0.59 to 2.71) 2.00 (0.36) (1.11 to 2.07) 1.67 (0.38) (0.61 to 2.48) 1.61 (0.38) 22.19  < 0.001 20.77  < 0.001 0.21 0.64

Offset (−17.21 to 
14.55) −15.72 (0.54) (−16.89 to 

15.28) −16.23 (0.51) (−17.52 to 
15.22) −16.24 (0.51) 18.33  < 0.001 18.61  < 0.001 0.02 0.88
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Discussion
The present study aimed to investigate the relationship between aperiodic activity and cognitive performance, 
by accounting for the level of education in older individuals, compared with a control group of highly educated 
younger adults (i.e., high neurocognitive efficiency).

The older adults showed less cognitive efficiency compared to young adults, across all tasks, which aligns with 
the well-established literature about cognitive decline in healthy  aging30. Upon considering older adults stratified 
based on education, the results indicated that those with higher education exhibited comparable performance to 
older adults with lower education, except for working memory performance. Older adults with higher education 
showed better working memory performance compared with older adults with lower education, which made 
the group of older adults with higher education more similar to the young group and suggesting a potential role 
of education in mitigating age-related cognitive decline, at least for some specific cognitive functions or tasks.

Consistent with previous  evidence17,31,32, the periodic and aperiodic components of EEG differentiated 
between young and older adults: older adults exhibited lower values across these components, compared to 
younger adults, except for the parametrized power. Concerning the periodic component of the EEG signal, 
results showed a pattern of an age-related slowing of IAPF, reflecting findings related with previous  studies33,34. 
Several interpretations have been advocated to link this periodic EEG components with aging. In addition to 
slowing with age, structural alterations in the brain have also been associated with the decline in power and peak 
frequency of alpha oscillations, particularly in older  individuals10,35.

Additionally, the stability of power and IAPF over the life course reflects the preserved functionality of the 
central nervous  system36. Regarding cognition, IAPF has previously demonstrated a positive relationship with 
interference resolution in working memory performance, primarily observed in the temporal  lobes29. Our results 
indicate that, at least at the level of frontal brain areas (as it possible to observe in Supplementary Materials), 
power may play a functional role in the ability to sustain alertness and to disregard and suppress interfering 
information.

In relation to the aperiodic EEG components, we also found that both exponent and offset values significantly 
decreased with age. These results corroborate previous evidence suggesting that the aperiodic EEG component 
can serve as a neurophysiological marker of aging. Likewise, recent studies have revealed that aperiodic activity 
is influenced by various factors, including  drugs37,38 and level of  arousal39. However, the potential mediation of 
education, and more specifically its influence on the relationship between aperiodic components and cognitive 
performance, was unexplored in the literature.

In our study, education might help in interpreting the relationship between the aperiodic component and 
performance on some tasks of visual attention and working memory, but not on a delayed memory task. The 
relation between aperiodic component and cognitive performance varied depending on education level, with a 
reversed pattern between exponent and cognitive performance in older adults across higher vs lower education. 
Older adults with lower education displayed a positive relationship between exponent and cognitive performance, 
while those with higher education exhibited the opposite trend. In this context, research evidence suggests that 

Figure 2.  Relationship between exponent and cognitive performance on different tasks. On the upper side of 
the panel, response times in the visual attention and alertness tasks (processing speed) are reported on the left- 
and right-hand sides respectively. On the lower panel, accuracy in the working and delayed memory tasks are 
reported on the left- and right-hand sides respectively. On the x-axis, the exponent value parameterized at the 
occipital level and in the Alpha band (8–12 Hz) is reported. On the y-axis, the z-scores associated with the task 
outcome.
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low exponent values (when the exponent approximates zero) may reflect an increase in asynchronous background 
neuronal firing, commonly called neural  noise32.

Related to the concept of neural noise, in non-linear systems like the brain, the notion of stochastic resonance 
proposes that information at the threshold level can be better processed within an optimal noise range than 
without  noise40. If different exponent values represent varying levels of neural noise, it is possible that noise also 
has different effects on performance according to a specific system. In older adults with lower education levels, 
higher exponents—corresponding to lower noise values—may contribute to better performance. On the other 
hand, older adults with higher education would exhibit the opposite pattern. In this latter group, higher exponents 
(lower noise values) would reduce performance efficiency. These two scenarios may depend on the fact that, 
according to the framework of stochastic resonance, there is no ideal level of noise and its effect on performance 
may not follow a linear pattern: it can vary based on the specific system and compensatory dynamics. Although 
such a result may seem counterintuitive, a similar reversed pattern has been observed in a previous study that 
examined the relationship between mathematical achievement and glutamate concentrations. Glutamate has 
the effect of flattening the power spectrum, leading to exponent values closer to  zero37. In a previous  study41, it 
was demonstrated that the concentration of glutamate and the exponent levels could result in reversed cognitive 
performance outcomes depending on the participants’ age. Specifically, the authors found that the concentration 
of glutamate (in the intraparietal sulcus) was negatively associated with mathematical achievement in younger 
participants, but it was positively associated with mathematical achievement in older participants. Given a pos-
sible relationship between glutamate and exponent  levels37, these findings may be interpreted as follows: while in 
younger participants high levels of noise (corresponding to a lower level of glutamate and, consequently, higher 
exponent values) may reduce performance, in older participants high levels of noise may lead to an opposite 
effect, contributing to improving cognitive performance. In summary, these results, similar to ours, imply that 
the relationship between exponent, noise, and cognitive performance may not be straightforward, highlighting 
the importance of investigating possible mediators, such as education, within this complex relationship.

While tantalizing, considering education as a possible mediator in the relationship between the aperiodic 
component and cognitive performance may present pitfalls because education may introduce several other 
aspects that affect performance differently. For example, education may impact cognitive strategies, task engage-
ment, and compensatory mechanisms, leading individuals with higher education to have a better cognitive 
performance with different potential explanations of the observed effect in the aperiodic EEG component. A 
more comprehensive definition about how this effect can be attributed to potential compensation mechanism 
could require further investigations.

We did observe a relationship between the exponent and processing speed, in line with a previous  study42. 
Moreover, the results of the present study partially replicated what was found in some previous studies where 
a relationship between exponent and working memory performance was  identified15,17. The lack of effects of 
aperiodic component in delayed memory task performance is of interest, as it suggests that the modulating role 
of aperiodic component may not be non-specific and happening for general cognitive functioning, but only for 
some aspects of cognitive functioning, possibly related to those case in which there is much time pressure in 
cognitive performance (as psychomotor or working memory tasks).

Overall, our results cannot be interpreted as exhaustive; they should emphasize the importance of considering 
the aperiodic component of EEG signal as a marker of neurophysiological mechanisms that relate to perfor-
mance in some cognitive tasks, which can be mediated by different aspects. Our study, in particular, focused 
on education as one of these aspects. An important limitation is related to the fact that the LEMON database, 
despite having many advantages, did not have the optimal characteristics for the aims of this study. In particular, 
it included a cohort of participants with different ages (whereas a longitudinal dataset would have been more 
suited) and it included a different number of participants for each group, with a larger size for the group of 
younger adults as compared to the older adults. In this study, we focused on the occipital ROI. This decision was 
based both on previous scientific literature which led to the expectation of dominant age-related patterns in the 
alpha  domain8,10,12–14 and to the limited spatial resolution of high-density EEG in which electrode localization 
data were only partially available for this  dataset43. The additional exploratory analysis on frontal brain regions 
supported the potential interaction between EEG measures, education and cognitive performance that needs to 
be further explored through techniques with better spatial  resolution44.

Future studies with better stratification might explore the ontogenetic trajectory of the exponent, to further 
investigate its role in cognitive performance across different tasks during aging. In fact, in the present study, the 
availability of age and education variables in a categorical form might have limited the assessment of neurobe-
havioral relationships and the potential use of finer analysis modeling (i.e. age was included as a factor rather 
than a continuous variable).

Future studies may explore the intricate connection between EEG parameters and cognition, by encompassing 
a broader range of variables that could modulate such a relationship, such as life experience variables, or others 
associated with physical health and physical activity, or to other proxies that can be traced back to the concept of 
“cognitive reserve”, which may be crucial in understanding the complex relationship between cognitive and brain 
aging. Finally, it is important to stress a limitation (intrinsic to cross-sectional and quasi-experimental studies), 
that is the impossibility to infer cause-effect relationship. In all cases, the associations observed between EEG 
spectral parameters and performance should not be interpreted as evidence of causal relationships, but rather as 
a statistical association in which the directionality is not known and that could be mediated also by other aspects.

In summary, results from this study opens many question that may guide future research on the modula-
tory role of education and other cognitive reserve proxies, in the complex relationship between aperiodic EEG 
component and cognitive efficiency in aging.
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Methods
Participants and materials
All participants included in this study were taken from the “Leipzig Study for Mind–Body-Emotion Interac-
tions’’  (LEMON43). The final sample consisted of N = 179 individuals. Socio-demographic information like age 
and education was shared in  bins43, not continuous. In the LEMON project, two groups are distinguished: one 
group of young adults and another of older adults. Such groups were maintained in our study, also based on 
previous research using a similar  approach45,46.

Participants included in the young group (N = 123) aged 20–35 years and all had high education levels 
(12 years of lyceum/gymnasium), whereas the group of older adults (N = 56), age range 60–77 years, was divided 
into two groups: one with high education (12 years of lyceum/gymnasium, N = 24) and the other with low educa-
tion (10 years of technical high school/Realschule, N = 32). Participants with no availability of EEG data and those 
who were indicated as with alcohol abuse or dyslexia problems were not included in the final data sample. A small 
subgroup of young adults with low education was not included in the sample according to the study purpose 
(N = 7); one participant resulted as an outlier on both visual inspection of residuals and Cook’s threshold, and 
it was removed. For this study, data collection was performed in accordance with the Declaration of Helsinki; it 
was approved by the ethics committee, reference number 154/13-ff (University of Leipzig) where all participants 
provided their written informed consent prior to data acquisition for the study, including their agreement to their 
data for being shared anonymously (for more details please consider the article of Babayan and colleagues)43.

Cognitive assessment
Processing Speed and Memory capacity were investigated in relationship with periodic and aperiodic EEG 
components. From the LEMON dataset, we adopted those tests that have been mostly used in the literature to 
evaluate cognitive impairment in older adults in relationship with the periodic and aperiodic components of 
the EEG power spectral  density29,47.

•  Processing speed included alertness and visual attention and it was assessed using two tasks: the Test of 
Attentional  Performance48 and part B of the Trail Making Test (TMT)49. The former estimated alertness: i.e., 
participants were asked to respond, as fast as possible, to the appearance of a visual stimulus on the screen. 
The TMT-B estimated visual attention, i.e., participants were asked to connect as fast as possible a series of 
visual stimuli, alternatively with a definition order: numerical and alphabetical orders. In particular, the time 
of completion of the task was recorded.

•  Memory included working and delayed memory tasks; it was assessed with a working memory task (WM_
TAP)48 and the California Verbal Learning Task (CVLT)50. For the working memory task, participants had to 
simultaneously provide a response only when a given stimulus was equal to the second last one perceived in 
the series while keeping track of a series of different stimuli. In the delayed memory task, participants were 
asked to retain and correctly recall a series of 16 words belonging to their vocabulary.

Neural variables
Gray matter volume
A 3 Tesla scanner (MAGNETOM Verio, Siemens Healthcare GmbH, Erlangen, Germany) with a 32-channel head 
coil was used to conduct Magnetic Resonance Imaging (MRI)43. The pre-processing pipeline included a series 
of steps: (a) re-orientating images to the standard (MNI) template, (b) bias field correction, (c) registration to 
the MNI template using both linear (FLIRT) and nonlinear (FNIRT) registration tools, and (d) brain extraction. 
Brain tissues were segmented using FMRIB’s Automated Segmentation Tool (FAST) which allowed extracting 
measures of total Gray Matter, White Matter, and Cerebrospinal Fluid. Brain tissues were visually inspected by 
a trained neuroscientist (NF) to ensure an accurate segmentation.

EEG preprocessing and source reconstruction
The eyes-closed resting-state EEG recording (8 min) present in the LEMON project was  analyzed43. The record-
ing was made with a BrainAmp MR plus amplifier in an electrically shielded and sound-attenuated EEG booth 
using 62-channel (61 scalp electrodes plus 1 electrode recording the VEOG below the right eye) active ActiCAP 
electrodes (both Brain Products GmbH, Gilching, Germany), referenced to FCz. EEG was recorded with a 
band-pass filter between 0.015 Hz and 1 kHz and digitized with a sampling rate of 2500 Hz. Raw EEG data were 
down-sampled from 2500 to 250 Hz and band-pass filtered within 1–45 Hz. Outlier channels were rejected after 
visual inspection for frequent jumps/shifts in voltage and poor signal quality. Data intervals containing extreme 
peak-to-peak deflections or large bursts of high-frequency activity were identified by visual inspection and 
removed. Independent component analysis (ICA) was performed using the Infomax algorithm (runica function 
from MATLAB). On pre-processed files, source reconstruction was run by using a standard head model. A 3-shell 
boundary element model was constructed via  Brainstorm51. The default current density maps were normalized 
through the Standardized LOw Resolution brain Electromagnetic TomogrAphy approach (sLORETA)52. Welch’s 
method was used to calculate the power spectrum at the level of the reconstructed sources; the window size was 
1 s and the window overlap was 50%. Due to the small number of EEG channels, we grouped cortical vertices 
into major regions (ROIs), aggregated according to Desikan-Killiany atlas following a similar approach previ-
ously  used29 (Table S10).
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Periodic and aperiodic components of the power spectral density
The specparam algorithm (version 1.0.0)15 was used to parametrise power spectra of ROIs. In specparam algo-
rithm, the power spectrum PSD is modeled as a combination of the aperiodic component AP and a sum of N 
oscillatory peaks modeled with a Gaussian:

The component AP
(
f
)
 for frequency f  is expressed by the formula:

where b is the broadband offset, χ is the exponent and k is the knee parameter, controlling the “bend”. When 
k = 0 the component AP will be a line fitted in the log–log space (this is later referred to as a fixed mode). In this 
case, the slope of the line a in log–log space is directly related to the exponent χ , χ = −a15. The outputs of the 
algorithm for estimated peaks are the mean of the Gaussian Gn for the center frequency of the peak, aperiodic-
adjusted power (the distance between the peak of the Gaussian and the aperiodic fit at this frequency) and 
bandwidth as 2 SD of the fitted Gaussian.

In the current analysis, power spectra were parameterized across the frequency range from 3 to 48 Hz (the 
maximal frequency range to avoid the line noise frequency) using the “fixed” mode. Additional algorithm settings 
were set as: peak width limits: [2.5 8]; max number of peaks: 6; minimum peak height: 0.05; peak threshold: 2. 
All the parameters describing identified peaks, offset, exponent, and the parameters describing how well the 
model was fit were extracted.

The parameters were extracted for every PSDs in the eyes closed condition.
As we did not have specific expectations on the pattern of spatial distribution we focused on an occiptal ROI 

that included parcels from Desikan-Killiany atlas which is where dominant activity in alpha is expected to exhibit 
age-related patterns based on a wide amount of previous literature in the context of  aging33,34,36. The parameters 
from all ROIs belonging to this region were averaged. The choice of parameters gave a median goodness-of-fit 
measure of  r2 = 0.981, IQR = [0.971, 0.978] across all regions within the occipital lobe aggregated accordingly to 
Desikan-Killiany atlas following a similar approach previously  used29. An additional exploratory analysis, not 
initially planned, was also added on a frontal ROI using other parcels from Desikan-Killiany Atlas, similar to a 
previous  study29 (see Supplementary Materials for details, Table S10).

Model fits were not statistically different between the two groups: young adults (YA) median  r2 = 0.983, 
IQR = [0.974, 0.988]; older adults (OA) median  r2 = 0.976, IQR = [0.962, 0.984]. Thus, although other process-
ing parameters could have been chosen, we achieved suitable spectral parameterization across participants and 
regions. Compared to previous studies using the specparam algorithm, where the frequency range varies, many 
used 40 Hz as the upper frequency  range29,53,54. For the sake of clarity, while the preprocessed data shared by the 
LEMON consortium was filtered with a cut-off at 45 Hz before source reconstruction, our setting for spectral 
parameterization used 48 Hz as the upper limit frequency. We choose this latter value for three main reasons: 
first, it is a widely adopted  option55,56; second, it avoids biased results due to filter roll-off effect, and third, it is in 
line with the recommendations of the authors of specparam  algorithm15. Importantly, the use of the two upper 
limits for the band-pass filter (45 Hz or 48 Hz) lead to negligible differences on results and statistical significance 
(in Supplementary Materials).

All participants showed a discernible alpha peak in the PSD (see an example in Fig. S2). Individual alpha peak 
frequency values per subject were estimated using periodic components fitted by the algorithm in the alpha range. 
IAPF was computed by analyzing the peak frequency within that range that exhibits the highest power spectral 
density (measured by the value of power of the peak, in the individual’s EEG data per ROI and then averaged 
across ROIs within the occipital region. This method is preferred over averaging frequencies of all peaks as it 
identifies the dominant oscillatory rhythm of the individual’s brain activity, providing a more accurate marker for 
cognitive and attentional  processes12,13,57. Figure 3 offers a qualitative overview of the differences in EEG power 
spectra among our groups. The boxplots in Fig. 1 visually confirmed the differences in IAPF (Individual Alpha 
Peak Frequency) values between the young and old populations.

Statistical analyses
Analyses were performed with the R  software58. A correlation matrix (Spearman’s method) was used to show 
the pattern of correlation among variables of interest (Figure S3). Visual inspection of distribution of variables, 
Shapiro–Wilk tests on residuals, and Kolmogorov–Smirnov analysis were performed prior to build up the regres-
sion models. The results of these analyses indicated General Linear regression Models as suitable; they included 
processing speed and accuracy scores on cognitive tests as dependent variables transformed in z-scores29, and the 
variable group as a factor: older adults with high education vs. older adults with lower education vs. young adults 
(all high education). The continuous predictors were the periodic and the aperiodic EEG components: IAPF, 
power, exponent, and offset values. Sex and normalized gray matter volume were accounted for in all regres-
sion models. The regression model analyses have been carried out on Occipital ROI. An additional exploratory 
analysis was carried out also on a Frontal ROI, which can also be vulnerable in aging  individuals44.

A simplified syntax of the R linear models is reported below:

P = AP +

N∑

n=0

Gn.

AP
(
f
)
= b− log

(
k + f χ

)
,

test score ∼ EEG parameter x group + sex + Gray Matter volume
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Sex and Gray matter volume were added as covariates as they were two relevant variables that could also be 
associated with cognitive performance. Power analysis revealed a statistical power greater than 0.95, indicating 
the ability of the model to detect significant effects, based on a significance level (α) of 0.05 and an estimated effect 
size  f2 of 0.35. Cohen’s d was used for estimating the effect size in group comparisons; Cohen’s  f2 was used for the 
regression analyses as it took into consideration the explained variation and residual variability in the model.

Data availability
Data are available at: https:// www. nature. com/ artic les/ sdata 20183 08.
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