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1. Introduction

In 2018 the senior members of the Genoa group of Morphodynamics (Blondeaux et al., 2018)
published an introductory Monograph to the subject of Morphodynamics of Sedimentary Patterns.
The idea was that a series of such Monographs focusing on specific topics in the wide area of
fluvial, tidal, coastal and submarine Morphodynamics would follow in the next years. The present
one and the companion Monograph (Seminara et al., 2023) are indeed the first two on fluvial
subjects, while two Monographs on coastal subjects (Blondeaux and Vittori, 2023; Blondeaux
et al., 2023) are forthcoming.

1.1. Rationale behind the present Monograph

In Blondeaux et al. (2018) it has been clarified that river planforms can be classified into two
main classes: meandering and braiding, a straight river alignment being a rather exceptional case.
This notwithstanding, the present Monograph restricts its attention to the Morphodynamics of
straight channels. Why?

The mechanistic approach to fluvial morphodynamics, developed in the last few decades, has
clarified that the formation of meandering as well as braiding patterns in alluvial channels are the
consequences of a simple fact: the uniform flow of water and the equilibrium configuration of bed
topography in an ideal perfectly straight channel with cohesionless granular bed is unstable to
various classes of perturbations of the bottom pattern and/or channel alignment. Hence, in order
to investigate meandering and braiding rivers, one must explore the nature of such instabilities. It
turns out that a class of perturbations plays a major role in the formation of large scale fluvial
sedimentary patterns: they are called bars.

Indeed, the ubiquitous nature of the ’bar’ unit has been known since the cornerstone field
observations of Leopold and Wolman (1957), which may be seen as the starting point of the
modern fluvial morphodynamics. Soon, bars were recognized as the fundamental building block
of both meandering and braiding patterns. A bar unit consists of a sequence of a riffle and a
pool, separated by an oblique sharp front (Figure 1). Except for the case of very narrow channels,
bars are invariably present in both sandy and gravel rivers. A major feature of the bar unit
is that it gives rise to an oscillatory topographic forcing. By simple continuity requirements,
this forcing generates a topographically driven secondary flow whose ultimate expression is the
winding of the thread of high velocity (Figure 1). Note, that the tendency of the stream to follow
a meandering path is an ubiquitous feature of fluvial patterns in nature, but it also occurs in
artificially straightened channels, i.e. channels confined by artificial straight banks. However,
the way these sinuous courses are organized depends on a further major feature of bars, namely
that they form rows and the number of rows accommodated in a channel depends on the channel
width. In fairly narrow channels, a single row of bars (called alternate bars) forms and the river
alignment is either (nearly) straight (e.g. the artificial course of the Rhine River constrained
within in-erodible banks depicted in Figure 2a) or meandering. In wide channels, multiple row
bars develop and the river is defined as ’braiding’ (Figure 2b).

Leopold and Wolman (1957) also found that the wavelength of the pool-riffle unit is a function
of channel width. Figure 3 reproduces the celebrated original plot presented in that paper,
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Figure 1. Photo of alternate bars generated in the Genoa lab, showing a sequence of riffles and pools separated by
oblique fronts which forces the flow to follow a winding path.

Figure 2. Examples of single (a) and multiple (b) row bars displayed by an artificially straightened river (a) and a
natural braiding river (b) respectively (credit: Google Earth (a) GoogleGeoBasis-DE/BKG (©2009) 47°09’05"N,

9°30’07"E dates:7/22/2022–newer; (b) Landsat/Copernicus, 27°19’19"N, 94°46’35"E dates: 1/7/2022-newer)

reporting data for both meandering rivers and straight channels measured in the field or in the
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laboratory. Having established a correlation between pool-riffle wavelength and channel width may
be considered a first major achievement in the development of morphodynamics. Our analysis

Figure 3. The celebrated plot of Leopold and Wolman (1957) where the cartesian wavelength of meanders (•) and
of the pool-riffle sequences in straight channels (◦) is plotted versus the channel width. Data refer to both flume

and field observations of Leopold and Wolman (1957) and further Authors (data extracted from Leopold and
Wolman, 1957, Fig. 45).

will show that alternate (as well as multiple row) bars observed in nature indeed arise from
an ’intrinsic’ instability mechanism whereby an initially flat bottom topography in a straight
cohesionless channel is unable to keep flat: the flow and bottom topography respond to arbitrary
small perturbations of their initial state allowing for their selective amplification and migration.
This is a ’free’ process in that it arises spontaneously, i.e. in the absence of any forcing effect. For
this reason Seminara and Tubino (1989) have coined the term ’free bars’ for alternate and multiple
row bars.

We will also show that forced bars are similar bottom features that do not migrate and arise
when some local or distributed perturbation of bank alignments or bottom topography are forced
by permanent external causes. An important class of forced bars is driven by channel curvature and
are called point bars. They are investigated in the companion Monograph (Seminara et al., 2023),
where it will be clarified that meander formation is a process apparently similar but conceptually
distinct from bar formation.

1.2. Plan of the Monograph

The program we have in mind is intended for a reader at the postgraduate level with some
background in Maths (elementary calculus), in Fluid Mechanics (elementary) and in Sediment

11
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Transport (elementary).

The first part of the Monograph is thus devoted to build up some more advanced knowledge
of the two basic tools required to investigate Fluvial Morphodynamics, namely the Mechanics of
Turbulent Flows and The Mechanics of Sediment Transport in straight open channels. This is a
huge task which could easily require entire books to be fulfilled. We will restrict the treatment to
the main topics required to construct the foundations of Morphodynamics.

We start, in Chapter 2, recalling the governing equations of incompressible flows of Newtonian
fluids in the general Navier-Stokes formulation. We then outline turbulent flow modeling, present
the so called RANS (Reynolds Averaged Navier Stokes) equations, and discuss some of the closure
models appropriate to open channel flows. Next, we derive in a systematic manner the depth
averaged model (sometimes called shallow water or 2D de Saint Venant equations) and the cross
sectionally averaged model of flow in open channels (1D de Saint Venant equations). Applications
of each of these models will be needed in order to analyze the various morphodynamic patterns at
different spatial and temporal scales.

The goal of Chapter three is to introduce the reader to the variety of mechanisms whereby
a unidirectional turbulent stream acting on a flat cohesionless granular bed can entrain solid
particles and transport them downstream until they settle on the bed. A rigorous solution of this
problem is not available yet, in spite of longstanding attempts of many scientific communities,
encompassing geomorphology, fluid mechanics and general physics. In the last decade, significant
progress has been made with the help of increasingly powerful CFD and experimental techniques.
This notwithstanding a variety of semi-empirical approaches have played and continue to play
a fundamental role. We start assessing the state of the art on the motion of an isolated heavy
particle in viscous fluids. Next, we outline the various modes whereby sediment particles lying on
the cohesionless bed of a straight channel may be destabilized when a strictly uniform turbulent
open channel flow acts on them. These modes range between two limit conditions described as
transport mode and debris (or sheet) mode. We focus on the transport mode, and investigate the
two distinct mechanisms of transport, namely bed load, associated with low stresses acting on the
bottom and suspended load experienced for relatively high stresses. The configuration analyzed
in this chapter is fairly idealized, channel alignment is straight, the flow is plane and uniform,
sediment particles are equally sized spheres and the amount of sediments supplied upstream equals
the transport capacity of the channel.

In the next chapter we extend the analysis of sediment transport such to encompass the spatially
and temporally varying characteristics encountered in nature. A crucial role in this respect is
played by the sloping character of the bed. We then complete our formulation of the general
problem of morphodynamics. We first recall the evolution equation of the bed interface derived in
the first Monograph of the present series (Blondeaux et al. (2018)) for the case of homogeneous
sediments. Next, we derive appropriate formulations for the depth integrated sediment flux per unit
width, able to account for the sloping character of the bed interface and for the spatial-temporal
dependence of the flow. Finally, we deal with the last source of complexity, which is associated with
the heterogeneous character of fluvial sediments. In the absence of a rigorous formulation of the
Mechanics of Sediment Transport, analysis must again rely mostly on experimental observations
and physically based reasoning. We then review grain size specific formulations for the transport
of sediment mixtures accounting for the phenomenon of hiding whereby finer grains, protruding
in the turbulent boundary layer less than larger grains, feel fluid drag less intensely than larger
grains.

Next, we take advantage of the body of knowledge established in the previous chapters and
proceed to construct a theory of straight fluvial morphodynamics. The approach we follow is
mechanistic.

We then start (Chapter 5) identifying the ideal channel configuration that plays the role of the
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basic state for the whole theory of River Morphodynamics. Essentially, we seek the conditions
required for a straight channel with uniform cross section to be in morphodynamic equilibrium.
The latter condition essentially implies that the bed interface keeps flat and the channel banks are
not eroded. Such an ideal state exists: flow discharge must be constant, uniform sediments must
be supplied to the channel at constant rate, while channel slope and channel width must attain
appropriate ’equilibrium’ values with some ’equilibrium cross-sectional shape’. Ideal equilibrium
implies that neither bed aggradation nor bed degradation may occur as the rate of sediment supply
exactly meets the sediment transport capacity of the stream at any cross section. Needless to say,
nature is more complex as rivers undergo spatial and temporal fluctuations of both flow discharge
and sediment supply. We then complete the chapter reviewing the various attempts to interpret
the quasi-equilibrium states displayed by rivers in nature.

Obviously, the existence of an equilibrium configuration does not insure that such an equilibrium
is stable. And, indeed, one hardly encounters in nature a straight channel with the characteristics
established in Chapter 5. It is then necessary to ascertain how an ideal equilibrium channel
responds to perturbations. Chapter 6 investigates the origin and the characteristics of bars. As
already pointed out, it turns out that free bars (both single and multiple row bars) result from
a spontaneous instability of the basic state. The linear analysis of such an instability is quite
successful in predicting wavelength and migration speed of these features, while a nonlinear analysis
is needed to predict their amplitudes. We then present analytical solutions for the weakly nonlinear
instability case, showing that bar instability leads to a so called supercritical bifurcation. Numerical
solutions as well as laboratory observations are also discussed. They confirm the significance of
analytical results.

Next, we investigate forced bars, focusing, in particular, on spatial oscillations of channel width
which give rise to the development of central bars, frequently observed in nature. We then review
further effects that influence the development of bars in the field, including the unsteady character
of the basic state and the role of an insufficient sediment supply.

Finally, we devote specific attention to the role of sediment heterogeneity, which leads to the
appearance of so called sorting patterns. Sorting is essentially a process whereby, starting from a
spatially uniform grain size distribution, the distinct motion of different grain sizes leads to clearly
identifiable, organized non uniformities of the grain size distribution in the horizontal and/or in
the vertical directions. We will distinguish sorting patterns in straight channels into two classes:
patterns originating mostly from a rearrangement of the grain size distribution of the surface layer
(bedload sheets, longitudinal streaks) and patterns undergoing vertical sorting where the grain size
distribution is rearranged in both horizontal and vertical directions (bars).

In Chapter 7 we relax the alluvial constraint and discuss the morphodynamics of bedrock
channels. This is a broad subject that has been widely explored recently and will deserve a
Monograph of its own in the future. We will limit ourselves to outlining some of the novelties
brought up when morphodynamic patterns develop in the (complete or partial) absence of an
alluvial cover of river beds. After a brief overview of the large and small scale morphological
patterns observed in bedrock channels, we present the main tool of bedrock morphodynamics,
namely the ’detachment limited’ version of the evolution equation of the bed interface. This
equation involves a major unknown quantity, the absolute erosion rate E , i.e. the local net variation
of bed elevation.

Hence, any further development of the analysis calls for some understanding of the physical
mechanisms of bedrock erosion and the construction of suitable physically based models of the
erosion process. In the early literature, a power law closure relationship was proposed for E as a
function of drainage area of the basin and local channel slope. Models based on such a closure
have enjoyed some popularity as they can successfully predict the occurrence of a transition from
bedrock to alluvial and its dependence on the history of tectonic uplift. They also allow one to
evaluate the response of a bedrock channel to changes in tectonic and climatic conditions, such as
the formation and upstream migration of a knickpoint in response to a base level drop at some
initial cross section. Recently, a real breakthrough in the development of the subject has arisen
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Transport (elementary).
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from a successful attempt to construct a physically based model for E in the major case of bedrock
abrasion driven by saltating bed load. Here, the two main effects controlling the rate of erosion
are found to be the so called tool effect (i.e. the availability of bed load) and the cover effect,
controlling what fraction of the bed surface is free of alluvial cover and thus available for erosion.
This model has generated a flow of research contributions that, on one hand extended the latter
approach to account for further mechanisms contributing to the erosion process, on the other hand
applied erosion models to simulate 1-D and 2-D channel incision processes.

We conclude the chapter reviewing some of the recent attempts to provide a general formulation
for the morphodynamics of mixed alluvial-bedrock channels and their tentative applications to the
formation of bars under mixed conditions.

The final Chapter of the Monograph is devoted to a glance at the future. Although the body
of knowledge established in the last few decades has led to the satisfactory rational framework
discussed in this Monograph, some features of straight morphodynamics are as yet unclear or have
received attention from the scientific community only recently. Most notable in this respect is the
new branch of morphodynamics, called eco-morphodynamics, which investigates the interaction of
sedimentary patterns with ecological processes. This allows to widen the perspective of the river,
which is no longer seen only as a mechanical system, with the main function to transport water
and sediments, but also as the host of rich biota components. This raises a bunch of interesting
novel problems, like the effects of vegetation on sedimentary patterns, the contribution of rivers to
the carbon cycle and the role of river networks as ecological corridors, encompassing the positive
aspects connected with river restoration as well as the ability of rivers to act as vectors of pathogens.
These topics are likely to develop further in the near future.
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2. Incompressible hydrodynamics in straight channels

We start our journey recalling some fundamental notions on turbulent flow of incompressible
fluids in straight open channels with a fixed bed. In other words, in this Chapter we ignore the
presence of a solid phase carried by the stream. This assumption will be relaxed in the following
Chapters.

2.1. The motion of viscous incompressible fluids

Let us consider a viscous incompressible fluid flowing under gravity in a domain V bounded by
a bed interface, Γη, a free surface, ΓH , and some inflow, Γin, and outflow, Γout, open boundaries
(i.e., boundaries permeable to fluid motion). The flow is referred to a cartesian reference frame
(x1, x2, x3) which is assumed to be at rest (Figure 4). It is convenient to assume the x3 axis aligned
with the vertical direction and pointing upwards.

Figure 4. Sketch of the flow domain, a region bounded by a bed interface, a free surface and some open boundaries.

2.1.1 Stress

We take an Eulerian viewpoint and assume that quantities describing the motion of fluid
particles are functions of position x and time t. In particular, v(x, t) denotes the local instantaneous
fluid velocity while t(x, t; n̂) is the instantaneous stress vector acting on a surface element of fluid
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located at x. The unit vector n̂ normal to the element will be taken as oriented in the outward
direction. In any continuum in motion, local dynamic equilibrium implies that the stress vector t
is obtained from the stress tensor T (x, t) through the relationship (see, e.g. Batchelor, 1967, pg.
9):

t = T · n̂, (1a)

or, in scalar form,
ti = Tij n̂j (i = 1, 2, 3), (1b)

where Tij is the j-component of the stress vector acting on a fluid surface element with unit
normal parallel to the xi axis and Einstein summation rule is adopted1.

2.1.2 Constitutive law

In viscous incompressible Newtonian fluids, such as pure water, stresses arise in response to
the strain rate and are linearly proportional to it. The relationship between the stress tensor
T and the strain rate tensor D is called constitutive law because it sets the foundations of the
theoretical framework on which the mechanics of fluid motion stands. The constitutive law of
viscous incompressible Newtonian fluids reads:

T = −p I + 2µD, (2a)

or, in scalar form

Tij = −p δij + 2µDij = −p δij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2b)

Here p(x, t) is pressure, I is the unit tensor2 and µ is dynamic viscosity, a fluid property weakly
dependent on temperature for Newtonian liquids under ordinary conditions.

2.1.3 Governing equations

The governing equations of motion of a viscous incompressible fluid express in differential form
the principle of mass conservation and Newton law.

Mass conservation: the continuity equation

Due to the restriction of fluid incompressibility, mass conservation also implies volume conser-
vation which reduces to a pure kinematical constraint on the velocity field. It reads (Batchelor,
1967):

∇ · v =
∂vi
∂xi

= 0. (3)

The equation of continuity (3) simply states that, in order for a velocity field to satisfy mass
conservation, it must be divergence free (or solenoidal).

The equations of motion: Navier Stokes equations

1 Einstein summation rule states that any repeated index symbol is summed over, i.e. if the index i is used twice
in a given term of a tensor expression, then the term is to be summed for all i. The rule applies to any distinct
pair of indices. For example, equation (1)b is a concise version of the following equation:

ti = Ti1n̂1 + Ti2n̂2 + Ti3n̂3 (i = 1, 2, 3)

2 The diagonal components of the unit tensor I are equal to one. The remaining components vanish. The unit
tensor in scalar form is also denoted by δij and is called Kronecker index.

16

Incompressible hydrodynamics in straight channels

The equations of motion for a viscous incompressible fluid with constant properties subject to
gravity take the form of the Navier-Stokes equations:

dv

dt
= −g x̂3 −

1

ϱ
∇p+ ν∇2v, (4a)

or, in scalar form
dvi
dt

= −g δi3 −
1

ϱ

∂p

∂xi
+ ν∇2vi, (4b)

where ϱ is density, ν(≡ µ/ϱ) is kinematic viscosity and d/dt is the material derivative defined as

d

dt
=

∂

∂t
+ vj

∂

∂xj
. (5)

The Navier-Stokes equations express in differential form a balance between the effects of inertia,
gravity and viscous stress acting on fluid particles.

The vorticity equation

Vorticity ω is an important property of fluid flows. Physically, it is a vectorial measure of the
local fluid rotation rate, a concept that may be visualized thinking of a microscopic paddle wheel
placed into the flow: its spinning rate would be twice the modulus of vorticity.

Mathematically, vorticity is defined as the curl of the velocity field, hence:

ω = ∇× v, ωi = δijk
∂vk
∂xj

, (6)

where δijk is Ricci tensor3.
The reader will readily show that incompressible fluids satisfy a continuity equation for ω that

is identical with the continuity equation for the velocity field, hence:

∇ · ω = 0. (7)

The vorticity equation is obtained taking the curl of the Navier Stokes equations. Recalling
that (∇×)∇f ≡ 0 for any scalar field f , it immediately follows that both pressure and gravity do
not affect the vorticity dynamics and the vorticity equation has the form:

∂ω

∂t
+∇× (v · ∇v) = ν∇2ω. (8)

Some algebra4 then allows to prove the following identity:

∇× (v · ∇v) = ∇×
[
∇v2

2
− v × ω

]
= −∇× (−v × ω) = v · ∇ω − ω · ∇v. (9)

Substituting from (9) into (8) one ends up with the following form of the vorticity equation for
viscous incompressible fluids:

dω

dt
=

∂ω

∂t
+ v · ∇ω︸ ︷︷ ︸

convection

= ω · ∇v︸ ︷︷ ︸
distortion

+ ν∇2ω︸ ︷︷ ︸
diffusion

. (10)

3 The components of Ricci tensor are defined as follows: δijk = 0 if at least two of the indices i,j,k are equal;
δijk = 1 if ijk is an even permutation of 123; δijk = −1 if ijk is an odd permutation of 123. It follows that if
one performs an even number of permutations on the indices of the tensor δijk the tensor is unaffected (e.g.
δijk = δjki) whilst an odd number of permutations changes its sign (e.g. δijk = −δjik).
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Hence, vorticity is convected by the velocity field, a process simply leading to vorticity being
redistributed throughout the flow domain without affecting its intensity. Intensification of vorticity
is known to be associated with distortion, i.e. twisting and extension of the vortex tubes (see
Batchelor, 1970, Section 5.2). Finally, vorticity is dissipated by molecular viscosity.

2.1.4 Boundary and initial conditions

The mathematical problem described by the unsteady system of quasi-linear partial differential
equations (3) and (4), in order to be well posed, needs to be complemented by suitable initial and
boundary conditions (e.g. Fletcher, 1991).

For unsteady flows, the initial condition consists of specifying a divergence free velocity field
v0 everywhere in the flow domain at the initial time t = 0:

v(x, 0) = v0(x), ∇ · v0 = 0 x ∈ V . (11)

At the solid-liquid interface Γη, describing the channel bed assumed to be fixed (x3 = η(x1, x2)),
we impose the conditions of vanishing normal velocity, i.e., a no flux condition (boundary imper-
meability) as well as vanishing tangential velocity (no slip), hence we write:

v|η = 0, (12)

where the notation f |η implies that the quantity f(x3) is computed in x3 = η. Furthermore, the
free surface ΓH is defined by the equation

FH = x3 −H(x1, x2, t) = 0 (13)

and must be a material surface. This kinematical constraint leads to the following boundary
condition:

dFH

dt

∣∣∣∣
H

=

[
−∂H

∂t
− v1

∂H

∂x1
− v2

∂H

∂x2
+ v3

]

H

= 0, (14)

This constraint is equivalent to stating that:

v|H · n̂H = VH . (15)

4 Let us first prove the identity:

[v · ∇v]i = vl vi,l =

[
∇

v2

2
− v × ω

]

i

= vm vm,i − δijk vj ωk = vm vm,i − δijk δkmn vj vn,m

where we have employed the notation: f,i ≡ ∂f/∂xi. The two Ricci tensors appearing in this expression satisfy
a very important identity that proves useful at this stage:

δijk δkmn = δkij δkmn = δim δjn − δin δjm

Substituting the latter identity into the previous relationship one finds:

[v · ∇v]i = vm vm,i − vn vn,i + vm vi,m = vm vi,m
The second step consists of proving the second identity:

∇× (v · ∇v) = −∇× (v × ω) = v · ∇ω − ω · ∇v

In scalar terms we need to show that:

[∇× (v · ∇v)]i = −δimn [−v × ω]n,m = −δimn δnjk(vj ωk),m

Using the previous identity on products of Ricci tensors and the continuity equations for incompressible fluids
(vm,m = ωm,m ≡ 0), one finds:

[∇× (v · ∇v)]i = −vi ωm,m − vi,m ωm + vm,m ωi + vm ωi,m = −vi,m ωm + vmωi,m = [v · ∇ω − ω · ∇v]i

This completes the proof.
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Here, VH is the velocity of the free surface that is defined as follows:

VH = −

∂FH

∂t
|∇FH |

, (16)

and n̂H is the unit vector locally normal to the free surface, which reads:

n̂H =
∇FH

|∇FH |
. (17)

Hence, (14) is physically equivalent to the continuity requirement that the free surface must be
impermeable to fluid particles such that the normal component of the fluid velocity at the free
surface equals the velocity of the free surface.

The free surface is also stress-free to the extent that air motion has negligible effects, hence:

τ̂1 · t|H = τ̂2 · t|H = n̂H · t|H = 0. (18)

Here, t|H is the stress vector acting at the free surface (≡ T |H · n̂H). Moreover, τ̂1 and τ̂2 are unit
vectors in the plane locally tangent to the free surface orthogonal to each other. Finally, curvature
of the free surface is assumed small enough for surface tension to have negligible effect.

A prescribed velocity vector is usually imposed at the inflow boundary Γin:

v|Γin
= vin. (19)

Exact conditions to be applied at an outflow planar boundary Γout have been derived by Gresho
(1991) and Sani and Gresho (1994). However these conditions are expressed in terms of the
distributions of the forces acting on the outflow surface. As such information is usually unavailable,
those conditions can hardly be implemented.

Alternatively, the so called natural outflow or do nothing boundary conditions (Heywood et al.,
1994) can be used, as well as periodic conditions as discussed in John (2016).

The above initial-boundary value formulation poses a formidable mathematical problem for
which no general solution is known. Even its existence and uniqueness have not been mathematically
ascertained in general (www.claymath.org/millenium− problems). In particular, the difficulty
arises for relatively low viscosity fluids (for water ν ≃ 10−6 m2/s) flowing with large speeds. Exact
solutions of the Navier Stokes equations have been found for simple or idealized geometries of the
flow domain and strictly unidirectional flow conditions (e.g. ducts, channels, half-space bounded
by a wall). However, even these solutions have limited use as they are stable only under relatively
slow flow conditions. As the velocity exceeds some threshold value, the exact solution becomes
unstable and a sequence of increasingly irregular flow patterns develop, until the flow regime
changes from laminar to turbulent.

2.2. Turbulent flows

Fluid flows of relevance to engineering and geophysics are most often turbulent. In particular,
fluvial streams are typically characterized by values of the mean longitudinal velocity u ∼ O (1
m/s) and characteristic length scales ℓ ( say the flow depth) falling in the range 1− 10 m. Hence,
the Reynolds number

Rℓ =
u ℓ

ν
(20)

attains typical values in the range 106 - 107, for which flow conditions are invariably turbulent.

2.2.1 General features of turbulence

Turbulence is a major ubiquitous feature of fluid motions characterized by at least one of the
following properties: high fluid speed, low fluid viscosity, large spatial scale of the flow region. All
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Hence, vorticity is convected by the velocity field, a process simply leading to vorticity being
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and n̂H is the unit vector locally normal to the free surface, which reads:
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Hence, (14) is physically equivalent to the continuity requirement that the free surface must be
impermeable to fluid particles such that the normal component of the fluid velocity at the free
surface equals the velocity of the free surface.

The free surface is also stress-free to the extent that air motion has negligible effects, hence:

τ̂1 · t|H = τ̂2 · t|H = n̂H · t|H = 0. (18)

Here, t|H is the stress vector acting at the free surface (≡ T |H · n̂H). Moreover, τ̂1 and τ̂2 are unit
vectors in the plane locally tangent to the free surface orthogonal to each other. Finally, curvature
of the free surface is assumed small enough for surface tension to have negligible effect.

A prescribed velocity vector is usually imposed at the inflow boundary Γin:
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= vin. (19)

Exact conditions to be applied at an outflow planar boundary Γout have been derived by Gresho
(1991) and Sani and Gresho (1994). However these conditions are expressed in terms of the
distributions of the forces acting on the outflow surface. As such information is usually unavailable,
those conditions can hardly be implemented.

Alternatively, the so called natural outflow or do nothing boundary conditions (Heywood et al.,
1994) can be used, as well as periodic conditions as discussed in John (2016).

The above initial-boundary value formulation poses a formidable mathematical problem for
which no general solution is known. Even its existence and uniqueness have not been mathematically
ascertained in general (www.claymath.org/millenium− problems). In particular, the difficulty
arises for relatively low viscosity fluids (for water ν ≃ 10−6 m2/s) flowing with large speeds. Exact
solutions of the Navier Stokes equations have been found for simple or idealized geometries of the
flow domain and strictly unidirectional flow conditions (e.g. ducts, channels, half-space bounded
by a wall). However, even these solutions have limited use as they are stable only under relatively
slow flow conditions. As the velocity exceeds some threshold value, the exact solution becomes
unstable and a sequence of increasingly irregular flow patterns develop, until the flow regime
changes from laminar to turbulent.

2.2. Turbulent flows

Fluid flows of relevance to engineering and geophysics are most often turbulent. In particular,
fluvial streams are typically characterized by values of the mean longitudinal velocity u ∼ O (1
m/s) and characteristic length scales ℓ ( say the flow depth) falling in the range 1− 10 m. Hence,
the Reynolds number
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attains typical values in the range 106 - 107, for which flow conditions are invariably turbulent.

2.2.1 General features of turbulence

Turbulence is a major ubiquitous feature of fluid motions characterized by at least one of the
following properties: high fluid speed, low fluid viscosity, large spatial scale of the flow region. All
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Figure 5. A typical turbulent signal.

these features are typical of the flow of water in a fluvial stream.

Turbulence can be superficially associated with disorder or irregularity of the flow characteristics
both in time and in space (see a typical turbulent signal in Figure 5). More precisely, the turbulent
syndrome displays itself through a number of typical features: unpredictability, a wide range of
spatial scales and an enhancement of exchange processes (Lesieur, 1997).

- Unpredictability
This property arises from the fact that two flows starting from initial conditions very close
to each other exhibit quite distinct temporal evolutions. Hence, a small uncertainty in the
initial conditions is so strongly amplified as to render detailed predictions unfeasible.

- Wide range of spatial scales
The second distinct feature of turbulent motions is the presence of a wide range of spatial
and temporal scales and leads to the classical picture of turbulent flows as the superposition
of ‘eddies’ of variable sizes (see, e.g. Figure 6), defining a continuous distribution of scales of
motion. The largest eddies have sizes comparable with the characteristic length scale ℓ of
the flow (e.g. the average depth in open channel flows).

- Enhancement of exchange processes
The third feature is the strong enhancement of exchange processes: turbulent flow exchange
matter, momentum and heat at a much faster rate than viscous flows. Increased rate of
momentum exchange leads to enhanced dissipation of turbulent flows but it also delays
separation of boundary layers, thus decreasing drag of bluff bodies. Similarly, increased rate
of heat exchange enhances heat loss but it also makes heat transfer more efficient.
The latter feature may be conveniently interpreted in terms of a comparison between molecular
and eddy diffusivities. Let u be a velocity scale characteristic of large eddies (say the root
mean square amplitude of the velocity fluctuations in the flow). We can then define a time
scale of large eddies as ℓ/u and a scale for the eddy diffusivity of turbulent flows as uℓ. The
effectiveness of large turbulent eddies in enhancing exchange processes may be appreciated
noting that the time required for molecular transport processes to spread over a region of
spatial scale ℓ is of order ℓ2/D, where D denotes the kinematic molecular diffusivity of the
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Figure 6. Coherent structures in a turbulent flow.The image refers to an oscillatory flow, approximating the flow
generated by a small amplitude sea wave close to a bottom consisting of spherical particles free to move (Mazzuoli
et al., 2019). Coherent structures are visualized on a horizontal plane at a small distance from the bottom, by the
normal component of the flow vorticity. The snapshot is taken at an instant close to the peak of the wall velocity.

Coordinates are scaled by
√

νT/π, with T wave period (courtesy of Marco Mazzuoli).

transported quantity, i.e. the kinematic viscosity ν for momentum transport or the thermal
diffusivity Dt for heat transport. Hence, the Reynolds number Rℓ ≡ uℓ/ν may be interpreted
as the ratio between eddy and molecular diffusivities or between the time scales of turbulent
and molecular transport of momentum. In rivers and estuaries, typical values for u and ℓ
are around 0.1 m/s and 10 m respectively, hence a typical scale for the eddy diffusivity uℓ is
106 times larger than the kinematic viscosity ν, i.e. turbulent exchange processes occur at a
rate which is roughly 6 orders of magnitude larger than molecular processes.

2.2.2 The energy cascade

We have seen that one striking feature of turbulence is its dissipative nature. But what
mechanism controls the rate of energy dissipation? The answer to this important question came
from the notion of energy cascade put forward by Richardson (1922) and developed twenty years
later in the fundamental work of Andrei Kolmogorov (Kolmogorov, 1941), an outstanding Russian
mathematician.

The picture arisen from those investigations (and a number of later works) may be summarized
as follows. Essentially, one must recognize that eddies do not live independently of each other.
Nonlinear interactions due to convective inertia lead to a continuous interaction among eddies of
all scales, whereby energy is statistically directed from the nearly inviscid largest scales, which
store energy extracted from the mean flow, towards the smallest scales which adjust their sizes so
as to make viscous effects effective in dissipating energy into heat.

The ’width’ of the range of scales characterizing a specific turbulent flow and the size of the
smallest eddies were estimated by Kolmogorov by means of a theory based on few assumptions
valid at large Reynolds numbers.
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Figure 5. A typical turbulent signal.

these features are typical of the flow of water in a fluvial stream.

Turbulence can be superficially associated with disorder or irregularity of the flow characteristics
both in time and in space (see a typical turbulent signal in Figure 5). More precisely, the turbulent
syndrome displays itself through a number of typical features: unpredictability, a wide range of
spatial scales and an enhancement of exchange processes (Lesieur, 1997).

- Unpredictability
This property arises from the fact that two flows starting from initial conditions very close
to each other exhibit quite distinct temporal evolutions. Hence, a small uncertainty in the
initial conditions is so strongly amplified as to render detailed predictions unfeasible.

- Wide range of spatial scales
The second distinct feature of turbulent motions is the presence of a wide range of spatial
and temporal scales and leads to the classical picture of turbulent flows as the superposition
of ‘eddies’ of variable sizes (see, e.g. Figure 6), defining a continuous distribution of scales of
motion. The largest eddies have sizes comparable with the characteristic length scale ℓ of
the flow (e.g. the average depth in open channel flows).

- Enhancement of exchange processes
The third feature is the strong enhancement of exchange processes: turbulent flow exchange
matter, momentum and heat at a much faster rate than viscous flows. Increased rate of
momentum exchange leads to enhanced dissipation of turbulent flows but it also delays
separation of boundary layers, thus decreasing drag of bluff bodies. Similarly, increased rate
of heat exchange enhances heat loss but it also makes heat transfer more efficient.
The latter feature may be conveniently interpreted in terms of a comparison between molecular
and eddy diffusivities. Let u be a velocity scale characteristic of large eddies (say the root
mean square amplitude of the velocity fluctuations in the flow). We can then define a time
scale of large eddies as ℓ/u and a scale for the eddy diffusivity of turbulent flows as uℓ. The
effectiveness of large turbulent eddies in enhancing exchange processes may be appreciated
noting that the time required for molecular transport processes to spread over a region of
spatial scale ℓ is of order ℓ2/D, where D denotes the kinematic molecular diffusivity of the
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Figure 6. Coherent structures in a turbulent flow.The image refers to an oscillatory flow, approximating the flow
generated by a small amplitude sea wave close to a bottom consisting of spherical particles free to move (Mazzuoli
et al., 2019). Coherent structures are visualized on a horizontal plane at a small distance from the bottom, by the
normal component of the flow vorticity. The snapshot is taken at an instant close to the peak of the wall velocity.
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transported quantity, i.e. the kinematic viscosity ν for momentum transport or the thermal
diffusivity Dt for heat transport. Hence, the Reynolds number Rℓ ≡ uℓ/ν may be interpreted
as the ratio between eddy and molecular diffusivities or between the time scales of turbulent
and molecular transport of momentum. In rivers and estuaries, typical values for u and ℓ
are around 0.1 m/s and 10 m respectively, hence a typical scale for the eddy diffusivity uℓ is
106 times larger than the kinematic viscosity ν, i.e. turbulent exchange processes occur at a
rate which is roughly 6 orders of magnitude larger than molecular processes.

2.2.2 The energy cascade

We have seen that one striking feature of turbulence is its dissipative nature. But what
mechanism controls the rate of energy dissipation? The answer to this important question came
from the notion of energy cascade put forward by Richardson (1922) and developed twenty years
later in the fundamental work of Andrei Kolmogorov (Kolmogorov, 1941), an outstanding Russian
mathematician.

The picture arisen from those investigations (and a number of later works) may be summarized
as follows. Essentially, one must recognize that eddies do not live independently of each other.
Nonlinear interactions due to convective inertia lead to a continuous interaction among eddies of
all scales, whereby energy is statistically directed from the nearly inviscid largest scales, which
store energy extracted from the mean flow, towards the smallest scales which adjust their sizes so
as to make viscous effects effective in dissipating energy into heat.

The ’width’ of the range of scales characterizing a specific turbulent flow and the size of the
smallest eddies were estimated by Kolmogorov by means of a theory based on few assumptions
valid at large Reynolds numbers.
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The first assumption states that the motion at the microscale is statistically isotropic: hence,
the memory of large scale features is lost along the cascade process.

The second assumption postulates that the statistics of the small-scale motion has ’universal’
features, determined only by the rate ϵ at which energy is dissipated per unit fluid mass and by
the fluid kinematic viscosity ν. On purely dimensional grounds, the sizes of the smallest scales,
called Kolmogorov microscales, are then found to read (Kolmogorov, 1941):

ℓk = (ν3/ϵ)1/4, τk = (ν/ϵ)1/2, vk = (νϵ)1/4, (21a,b,c)

where ℓk, τk and vk define spatial, temporal and velocity microscales, respectively. Under the
additional assumption that production balances dissipation, we can relate ℓk, τk and vk to the
corresponding scales of large eddies (also called integral scales) by estimating the rate of energy
dissipation per unit mass ϵ as the ratio between a measure of kinetic energy of large scale motion
(say u2 per unit mass) and a measure of the lifetime of large eddies (say ℓ/u). Hence:

ϵ ∼ u3

ℓ
, (22)

resulting in the scalings

ℓk
ℓ

∼ R
−3/4
ℓ ,

τk
ℓ/u

∼ R
−1/2
ℓ ,

vk
u

∼ R
−1/4
ℓ . (23a,b,c)

The latter relations suggest that the smallest eddies increasingly reduce their sizes as the Reynolds
number of the flow increases. In natural streams with Rℓ ∼ 106, ℓk is typically smaller than 1 mm,
τk ranges about 0.1 s and vk does not exceed a few mm/s. Note that ℓk is comparable with the
typical size of particles that are carried in suspension by river flow.

Finally, the third assumption concerns the statistics of motions of eddies of scale ℓi in the so
called inertial subrange such that ℓk ≪ ℓi ≪ ℓ: Kolmogorov (1941) assumed that this statistics
has a universal form determined only by ϵ and ℓi, i.e. is independent of ν. We do not derive here
the consequences of the latter assumption, and refer the interested reader to standard textbooks
on turbulence (Monin and Yaglom, 1971; Frisch, 1995; Pope, 2000).

2.2.3 Investigating turbulent flows

The two major techniques employed to investigate the complex spatial-temporal structure of
turbulent flows have relied on some important modern technological developments. On one hand,
physical experiments have become feasible with the tremendous development of experimental
techniques evolved from hot wire anemometry (around 1970) to hot film and, more recently,
laser doppler anemometry and acoustic doppler velocimeters, which enable one to measure high
frequency turbulent fluctuations with great accuracy and efficiency. On the other hand, numerical
simulations have progressively acquired an increasing role owing to the fast and huge development
of computational facilities. Direct Numerical Simulation (DNS), Large Eddy Simulation (LES)
and numerical computations based on the Reynolds Averaged Navier-Stokes (RANS) equations
are widespread tools presently used to study turbulent flows at the various scales. More recently,
an attempt has also been made to combine LES and RANS, through the so called Detached eddy
simulation (DES) approach, aimed at treating efficiently problems in which the boundary layer
separates massively. We refer the interested reader to Spalart (2009) and Keylock et al. (2012)
for thorough reviews of the latter subject. Below, we limit ourselves to outline the other three
approaches commonly used to investigate turbulent flows.

- Direct numerical simulation is a deterministic approach that consists of solving numerically the
full time-dependent Navier-Stokes equations with appropriate initial and boundary conditions
(see, e.g. Hirsch, 2007). Averaging the numerical output then allows one to obtain the mean
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quantities (fluid velocity, fluid stresses, etc.) of direct practical relevance. This technique is
increasingly employed in the literature, though the enormous computational effort it requires
limits its applicability to simple geometries and flows at relatively low Reynolds numbers, far
from the range significant for geophysical applications. This limitation is a direct consequence
of the wide range of scales present in turbulent motions (Moin and Mahesh, 1998). Since
DNS solves all scales of motion, the number of grid points in each direction is proportional
to the ratio between the largest and the smallest eddy in the flow. This ratio is proportional
to the Reynolds number R

3/4
ℓ based on the integral scale ℓ. Thus, the number of points in

three dimensions is ∝ R
9/4
ℓ . Although it is hard to expect that, in the near future, DNS will

become a feasible practical tool at the values of Rℓ characteristic of natural flows, however
DNS is an important research tool, helping to gain insight into turbulence physics and
improve simplified models of practical relevance. It is essentially a numerical experiment
with no limitation of the kind present in laboratory experiments, where the probe has a
finite size, measurements cannot be performed too close to a wall, etc.

- Large Eddy simulation is a technique intermediate between DNS and RANS. It represents a
weaker form of DNS, whereby the large, energy-carrying eddies are simulated deterministically
while the small sub-grid scales are modelled and, hence, influence statistically the large-scale
motion (see, e.g. Lesieur and Metais, 1996; Metais, 2002). In particular, the evolution
equations for the large scales are obtained by filtering the Navier-Stokes equations through a
proper low-pass filter that eliminates the small scales (Figure 7). As a consequence, large
scales are still characterized by an intense spatio-temporal variability. Note that the small
sub-grid scales tend to be more isotropic and homogeneous than the large scales, thus
justifying the use of more general closure models. Furthermore, the stresses modeled at the
sub-grid scale provide a relatively small contribution to the total turbulent stresses. Despite
the filtering of small scales, the computational costs are still quite high. In these types of
flows the coherent structures that arise close to a solid wall are of fundamental importance
for turbulence dynamics and methods to bypass the problem of fully resolving these eddies
at a reasonable cost are thus required (see, e.g. Piomelli and Balaras, 2002). Attempts in
this direction have recently appeared (see the reviews by Stoesser, 2014; Sotiropoulos, 2019).

Figure 7. An example of 1D instantaneous velocity field v(x; t) (thin, black) and its 1D filtered form v̄(x; t) (bold,
red) obtained with the help of a Gaussian filter are plotted and compared with the associated residual field v′(x; t)

(thin, black) and its filtered form v′(x; t) (bold, red).

- The Reynolds Averaged Navier-Stokes Equations are obtained by averaging over the turbulence
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The first assumption states that the motion at the microscale is statistically isotropic: hence,
the memory of large scale features is lost along the cascade process.

The second assumption postulates that the statistics of the small-scale motion has ’universal’
features, determined only by the rate ϵ at which energy is dissipated per unit fluid mass and by
the fluid kinematic viscosity ν. On purely dimensional grounds, the sizes of the smallest scales,
called Kolmogorov microscales, are then found to read (Kolmogorov, 1941):

ℓk = (ν3/ϵ)1/4, τk = (ν/ϵ)1/2, vk = (νϵ)1/4, (21a,b,c)

where ℓk, τk and vk define spatial, temporal and velocity microscales, respectively. Under the
additional assumption that production balances dissipation, we can relate ℓk, τk and vk to the
corresponding scales of large eddies (also called integral scales) by estimating the rate of energy
dissipation per unit mass ϵ as the ratio between a measure of kinetic energy of large scale motion
(say u2 per unit mass) and a measure of the lifetime of large eddies (say ℓ/u). Hence:

ϵ ∼ u3

ℓ
, (22)

resulting in the scalings
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−3/4
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u

∼ R
−1/4
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The latter relations suggest that the smallest eddies increasingly reduce their sizes as the Reynolds
number of the flow increases. In natural streams with Rℓ ∼ 106, ℓk is typically smaller than 1 mm,
τk ranges about 0.1 s and vk does not exceed a few mm/s. Note that ℓk is comparable with the
typical size of particles that are carried in suspension by river flow.

Finally, the third assumption concerns the statistics of motions of eddies of scale ℓi in the so
called inertial subrange such that ℓk ≪ ℓi ≪ ℓ: Kolmogorov (1941) assumed that this statistics
has a universal form determined only by ϵ and ℓi, i.e. is independent of ν. We do not derive here
the consequences of the latter assumption, and refer the interested reader to standard textbooks
on turbulence (Monin and Yaglom, 1971; Frisch, 1995; Pope, 2000).

2.2.3 Investigating turbulent flows

The two major techniques employed to investigate the complex spatial-temporal structure of
turbulent flows have relied on some important modern technological developments. On one hand,
physical experiments have become feasible with the tremendous development of experimental
techniques evolved from hot wire anemometry (around 1970) to hot film and, more recently,
laser doppler anemometry and acoustic doppler velocimeters, which enable one to measure high
frequency turbulent fluctuations with great accuracy and efficiency. On the other hand, numerical
simulations have progressively acquired an increasing role owing to the fast and huge development
of computational facilities. Direct Numerical Simulation (DNS), Large Eddy Simulation (LES)
and numerical computations based on the Reynolds Averaged Navier-Stokes (RANS) equations
are widespread tools presently used to study turbulent flows at the various scales. More recently,
an attempt has also been made to combine LES and RANS, through the so called Detached eddy
simulation (DES) approach, aimed at treating efficiently problems in which the boundary layer
separates massively. We refer the interested reader to Spalart (2009) and Keylock et al. (2012)
for thorough reviews of the latter subject. Below, we limit ourselves to outline the other three
approaches commonly used to investigate turbulent flows.

- Direct numerical simulation is a deterministic approach that consists of solving numerically the
full time-dependent Navier-Stokes equations with appropriate initial and boundary conditions
(see, e.g. Hirsch, 2007). Averaging the numerical output then allows one to obtain the mean
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quantities (fluid velocity, fluid stresses, etc.) of direct practical relevance. This technique is
increasingly employed in the literature, though the enormous computational effort it requires
limits its applicability to simple geometries and flows at relatively low Reynolds numbers, far
from the range significant for geophysical applications. This limitation is a direct consequence
of the wide range of scales present in turbulent motions (Moin and Mahesh, 1998). Since
DNS solves all scales of motion, the number of grid points in each direction is proportional
to the ratio between the largest and the smallest eddy in the flow. This ratio is proportional
to the Reynolds number R

3/4
ℓ based on the integral scale ℓ. Thus, the number of points in

three dimensions is ∝ R
9/4
ℓ . Although it is hard to expect that, in the near future, DNS will

become a feasible practical tool at the values of Rℓ characteristic of natural flows, however
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weaker form of DNS, whereby the large, energy-carrying eddies are simulated deterministically
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motion (see, e.g. Lesieur and Metais, 1996; Metais, 2002). In particular, the evolution
equations for the large scales are obtained by filtering the Navier-Stokes equations through a
proper low-pass filter that eliminates the small scales (Figure 7). As a consequence, large
scales are still characterized by an intense spatio-temporal variability. Note that the small
sub-grid scales tend to be more isotropic and homogeneous than the large scales, thus
justifying the use of more general closure models. Furthermore, the stresses modeled at the
sub-grid scale provide a relatively small contribution to the total turbulent stresses. Despite
the filtering of small scales, the computational costs are still quite high. In these types of
flows the coherent structures that arise close to a solid wall are of fundamental importance
for turbulence dynamics and methods to bypass the problem of fully resolving these eddies
at a reasonable cost are thus required (see, e.g. Piomelli and Balaras, 2002). Attempts in
this direction have recently appeared (see the reviews by Stoesser, 2014; Sotiropoulos, 2019).

Figure 7. An example of 1D instantaneous velocity field v(x; t) (thin, black) and its 1D filtered form v̄(x; t) (bold,
red) obtained with the help of a Gaussian filter are plotted and compared with the associated residual field v′(x; t)

(thin, black) and its filtered form v′(x; t) (bold, red).

- The Reynolds Averaged Navier-Stokes Equations are obtained by averaging over the turbulence
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the Navier-Stokes equations (see Section 2.2.4) to yield a set of transport equations for
the averaged momentum. This fundamental idea stems from the cornerstone approach
originally proposed by Reynolds (1895) and has produced a widespread body of knowledge.
As discussed in the next Section, averaging generates a set of new unknowns that require
a closure able to account in some parametric form for the effects of the flow scales that
have been removed by averaging. In principle, the effects of all the scales of motion are
modelled, but no universal model has been found for all types of flows: suitable adjustments
of the model constants are needed, depending on the specific features of the flow field to be
simulated (Wilcox, 1993). In general, RANS are effective in simulating statistically steady
flows or flows characterised by statistical properties which vary slowly with time (i.e., on a
characteristic time scale much larger than the turbulent time scale). Since RANS equations
involve statistical quantities, their solution requires temporal and spatial discretizations
much coarser that those necessary for DNS or even LES. They are therefore applicable to
extended flow domains with complex geometries, as those typical of rivers. We will thus base
our treatment of open channel morphodynamics on the information provided by the RANS
approach.

The complementary nature of experiments and computations in turbulence research is clearly
exemplified by the study of coherent structures characterizing wall turbulence. The idea of the
existence of distinctly recognizable organized motions in wall turbulence was first suggested
by Theodorsen (1952), followed by Townsend (1976). The presence of fundamental turbulent
structures as hairpin vortices was later on confirmed by detailed experimental observations and DNS
simulations (Figure 8). These coherent structures are strictly linked to the so called bursting cycle,
whereby ejections of low-speed fluid outward from the wall are followed by sweep of high-speed
fluid toward the wall (see, e.g. Pope, 2000). In particular, experimental observations (Head and
Bandyopadhyay, 1981), LES simulations (Moin and Kim, 1982) and DNS simulations (Kim et al.,
1987) have clearly shown that each bursting process arises from the roll up of initial structures
consisting of sheets of transverse vorticity and leads to the formation of a hairpin vortex.

Figure 8. (a) The sketch of Theodorsen (1952), suggesting that the fundamental structure of wall turbulence
consists of horseshoe (hairpin) vortices (modified from Panton, 2001); (b) Hairpin vortices created by a boundary

layer trip wire using smoke in air, flow is from bottom to top (reproduced from Figure 3 of Perry et al., 2007,
accessed under the terms of the Creative Commons CC BY license).

The burst cycle, in turn reflects the statistical distribution of velocity fluctuations. Indeed,
sweep events are characterized by positive values of the fluctuation of longitudinal velocity (v′x)
and negative values of the fluctuation of vertical velocity (v′z), i.e. they are events of the fourth
quadrant in the (v′x, v

′
z) plane, while ejections belong to the second quadrant (v′x < 0, v′z > 0), as

represented schematically in Figure 9.
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Figure 9. Sketch describing the various types of wall events in the plane of horizontal (v′x) and vertical (v′z)
turbulent velocity fluctuations.

The sign of the product (v′x v
′
z) plays a major role in wall turbulence, as turbulent fluctuations

contribute significantly to momentum exchange. A positive v′z associated with a negative v′x
identifies the transport of negative momentum from a lower layer to a faster upper layer and vice
versa. As it will be explained in Section 2.2.4, when averaging the momentum equation over the
turbulence, momentum exchange driven by turbulent fluctuations is a mechanism that produces
additional effective stresses, known as Reynolds stresses, which sum to viscous stresses generated
by molecular diffusion. Both sweeps and ejections contribute to generating positive Reynolds
stresses, implying increasing turbulence production and drag, whereas first and third quadrant
events contribute to negative Reynolds stresses. Importantly, most of the production of turbulent
energy near the wall (nearly 70%), is strictly correlated with the bursting process (Kim et al.,
1971; Wallace, 1985). Also, note that, very close to the wall, sweep events prevail over ejection
events, while farther from the wall ejections dominate.

Wall roughness may clearly exert a significant role on bursting dynamics. The experimental
measurements carried out by Nezu and Nakagawa (1993) revealed the persistence of high and low
speed structures also in the presence of hydraulically rough wall conditions. On the other hand,
the numerical calculations of Choi et al. (1993), referring to the role of riblets in drag reduction,
showed that the effect of the roughness may be strictly dependent on the size of roughness elements
compared with the size of wall longitudinal vortices.

The above picture immediately suggests the relevance of turbulent coherent structures for
a deep understanding of the mechanics of sediment transport. Attempts to extend the use of
numerical simulations to include the presence of solid particles transported by the turbulent flow
stream have been proposed in the recent literature (Schmeeckle, 2014). As it will be discussed in
Chapter 3, these analyses suffer from obvious restrictions due to a number of difficulties encountered
when one attempts to simulate particle motion in a neighbourhood of walls, including the need to
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account for the effects of particle-particle and particle wall interactions. This notwithstanding, this
research tool may help assessing the limits of the available semi-empirical approaches to sediment
transport widely employed by engineers and geomorphologists.

The morphodynamic problems we are going to treat in this Monograph invariably involve
wall bounded turbulent flows with complex geometries and large spatial domains. Moreover,
they refer to statistically steady flows or flows varying on a time scale much larger than that of
turbulence. As discussed above, under these conditions, the RANS approach provides sufficiently
robust information with reasonable mathematical and computational efforts. In the remaining of
this chapter we will use the RANS approach to derive the depth-averaged shallow water equations
and the cross-sectionally averaged de Saint-Venant equation which will be extensively exploited
throughout this Monograph to investigate the morphodynamics of river meandering.

2.2.4 The Reynolds averaged formulation for turbulent flows

The rationale behind a statistically averaged approach to Navier-Stokes equations is the
assumption that a turbulent flow field can be treated as a stochastic process. Hence, the problem
of predictability takes a weaker form: one simply assumes that the probability distributions of
quantities which characterize turbulent motions are predictable once the external controllable
parameters of the flow are fixed. The knowledge of only few average properties of the flow field,
namely the mean and the second moments (also called correlations) are usually sufficient for most
practical purposes.

We define the mean velocity ⟨vj⟩ at location (x, t) in the form of the probabilistic average:

⟨vj⟩ =
∫ ∞

−∞
vjp(vj)dvj (j = 1, 2, 3), (24)

where p(vj) is the probability density function of the variable vj .
Similarly, the spatial-temporal second-order correlation between vi at (x, t) and vj at (x + δx

, t+ δt) reads
Rij(x, t; δx, δt) = ⟨vi(x, t) vj(x+ δx), t+ δt)⟩. (25)

The correlation (24) becomes a purely spatial correlation if δt vanishes and a temporal correlation
if δx vanishes.

The stochastic approach is further simplified if one assumes that the process is stationary and
ergodic. The former condition implies that all the statistical properties of the stochastic process
do not change if the initial time is changed. Ergodicity of a stationary process implies that one
can safely replace the probabilistic average of any quantity (e.g. ⟨vj⟩) with a corresponding time
average, hence:

⟨vj⟩ = lim
T→∞

1

T

∫ T/2

−T/2

vj(x, t)dt. (26)

The so called ergodic theorem (Monin and Yaglom, 1971, pg. 251) establishes a necessary and
sufficient condition for ergodicity which, in physical terms, is equivalent to the requirement that
the characteristics of the process at two instants t and t+ τ become progressively less correlated
as τ tends to infinity. In other words the flow must lose memory of its past as time progresses.
The above condition is assumed to be valid for turbulent flows on a purely intuitive basis.

The latter assumption is at the base of the so called Reynolds averaging models. At each
point and time instant the flow is described in terms of first and second order moments, i.e. the
mean velocity, the mean pressure and the so-called Reynolds stresses, as discussed below. This
type of models is widely adopted in the study of strongly inhomogeneous, high Reynolds number,
turbulent flows confined by rough walls with fairly complex geometries. This is the case of the
natural environments of interest for the present Monograph. We then proceed to formulate the
Reynolds averaged form of the governing equations.

2.2.5 The RANS equations
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Following Reynolds (1895) let us decompose the local instantaneous flow field as follows

vi = ui + v′i (i = 1, 2, 3), p = P + p′, (27a,b)

where

ui = ⟨vi⟩, ⟨v′i⟩ = 0, (28a,b)

P = ⟨p⟩, ⟨p′⟩ = 0. (29a,b)

The equations governing the mean flow field (u, P ) are then readily derived by applying the
averaging procedure to the Navier-Stokes and continuity equations (3), (4). The averaging operator
satisfies the following conditions

⟨Lf⟩ = L⟨f⟩, ⟨f g⟩ = ⟨f⟩⟨g⟩+ ⟨f ′ g′⟩, (30a,b)

where L is any linear differential operator (e.g.
∂

∂t
,

∂

∂xj
,

∂2

∂xj∂xj
). Note that (30) follow

immediately from (27, 28, 29).
Using (30) the continuity equation (3) can be averaged to give

∇ · u =
∂uj

∂xj
= 0. (31)

Hence, the mean velocity vector is divergence free (i.e. solenoidal). It follows from (3), (31) and
(28) that the instantaneous velocity fluctuations must also be divergence free.

Averaging the Navier-Stokes equations leads to the so called Reynolds equations, which read:

Du

Dt
=

∂u

∂t
+ u · ∇u = −1

ϱ
∇P − g x̂3 + ν∇2u+

1

ϱ
∇ · T t, (32a)

or, in scalar form

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ϱ

∂P

∂xi
− g δi3 + ν

∂2ui

∂x2
j

+
∂

∂xj
(−⟨v′i v′j⟩). (32b)

In (32a) we denote by D/Dt the material derivative associated with the mean flow, while T t is
the Reynolds stress tensor defined in the form

T t
ij = −ϱ⟨v′i v′j⟩. (33)

Reynolds stresses arise from the nonlinearity of convective terms of Navier-Stokes equations. The
exchange of momentum due to turbulent fluctuations is effectively a diffusion process (turbulent
diffusion) similar to molecular diffusion, but with a much larger rate (see, e.g. Fisher et al., 1979).

In conclusion, Reynolds equations involve the mean components of the flow field which exhibit
a behavior far more regular than their instantaneous components. However, they also involve a
new set of unknowns, the six components of the symmetric Reynolds tensor, which pose the well
known closure problem, namely the need to derive further equations relating the new unknowns to
the mean flow field (see, e.g. Wilcox, 1993).

2.2.6 Boundary conditions for the RANS equations

27



Theoretical Morphodynamics Straight Channels

account for the effects of particle-particle and particle wall interactions. This notwithstanding, this
research tool may help assessing the limits of the available semi-empirical approaches to sediment
transport widely employed by engineers and geomorphologists.

The morphodynamic problems we are going to treat in this Monograph invariably involve
wall bounded turbulent flows with complex geometries and large spatial domains. Moreover,
they refer to statistically steady flows or flows varying on a time scale much larger than that of
turbulence. As discussed above, under these conditions, the RANS approach provides sufficiently
robust information with reasonable mathematical and computational efforts. In the remaining of
this chapter we will use the RANS approach to derive the depth-averaged shallow water equations
and the cross-sectionally averaged de Saint-Venant equation which will be extensively exploited
throughout this Monograph to investigate the morphodynamics of river meandering.

2.2.4 The Reynolds averaged formulation for turbulent flows

The rationale behind a statistically averaged approach to Navier-Stokes equations is the
assumption that a turbulent flow field can be treated as a stochastic process. Hence, the problem
of predictability takes a weaker form: one simply assumes that the probability distributions of
quantities which characterize turbulent motions are predictable once the external controllable
parameters of the flow are fixed. The knowledge of only few average properties of the flow field,
namely the mean and the second moments (also called correlations) are usually sufficient for most
practical purposes.

We define the mean velocity ⟨vj⟩ at location (x, t) in the form of the probabilistic average:

⟨vj⟩ =
∫ ∞

−∞
vjp(vj)dvj (j = 1, 2, 3), (24)

where p(vj) is the probability density function of the variable vj .
Similarly, the spatial-temporal second-order correlation between vi at (x, t) and vj at (x + δx

, t+ δt) reads
Rij(x, t; δx, δt) = ⟨vi(x, t) vj(x+ δx), t+ δt)⟩. (25)

The correlation (24) becomes a purely spatial correlation if δt vanishes and a temporal correlation
if δx vanishes.

The stochastic approach is further simplified if one assumes that the process is stationary and
ergodic. The former condition implies that all the statistical properties of the stochastic process
do not change if the initial time is changed. Ergodicity of a stationary process implies that one
can safely replace the probabilistic average of any quantity (e.g. ⟨vj⟩) with a corresponding time
average, hence:

⟨vj⟩ = lim
T→∞

1

T

∫ T/2

−T/2

vj(x, t)dt. (26)

The so called ergodic theorem (Monin and Yaglom, 1971, pg. 251) establishes a necessary and
sufficient condition for ergodicity which, in physical terms, is equivalent to the requirement that
the characteristics of the process at two instants t and t+ τ become progressively less correlated
as τ tends to infinity. In other words the flow must lose memory of its past as time progresses.
The above condition is assumed to be valid for turbulent flows on a purely intuitive basis.

The latter assumption is at the base of the so called Reynolds averaging models. At each
point and time instant the flow is described in terms of first and second order moments, i.e. the
mean velocity, the mean pressure and the so-called Reynolds stresses, as discussed below. This
type of models is widely adopted in the study of strongly inhomogeneous, high Reynolds number,
turbulent flows confined by rough walls with fairly complex geometries. This is the case of the
natural environments of interest for the present Monograph. We then proceed to formulate the
Reynolds averaged form of the governing equations.

2.2.5 The RANS equations

26

Incompressible hydrodynamics in straight channels

Following Reynolds (1895) let us decompose the local instantaneous flow field as follows

vi = ui + v′i (i = 1, 2, 3), p = P + p′, (27a,b)

where

ui = ⟨vi⟩, ⟨v′i⟩ = 0, (28a,b)

P = ⟨p⟩, ⟨p′⟩ = 0. (29a,b)

The equations governing the mean flow field (u, P ) are then readily derived by applying the
averaging procedure to the Navier-Stokes and continuity equations (3), (4). The averaging operator
satisfies the following conditions

⟨Lf⟩ = L⟨f⟩, ⟨f g⟩ = ⟨f⟩⟨g⟩+ ⟨f ′ g′⟩, (30a,b)

where L is any linear differential operator (e.g.
∂

∂t
,

∂

∂xj
,

∂2

∂xj∂xj
). Note that (30) follow

immediately from (27, 28, 29).
Using (30) the continuity equation (3) can be averaged to give

∇ · u =
∂uj

∂xj
= 0. (31)

Hence, the mean velocity vector is divergence free (i.e. solenoidal). It follows from (3), (31) and
(28) that the instantaneous velocity fluctuations must also be divergence free.

Averaging the Navier-Stokes equations leads to the so called Reynolds equations, which read:

Du

Dt
=

∂u

∂t
+ u · ∇u = −1

ϱ
∇P − g x̂3 + ν∇2u+

1

ϱ
∇ · T t, (32a)

or, in scalar form

∂ui

∂t
+ uj
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ϱ

∂P
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∂2ui

∂x2
j

+
∂
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Reynolds averaging the boundary conditions and ignoring the turbulent fluctuations of free
surface elevation (⟨H⟩ = H), the following averaged forms of conditions (14) and (18) are obtained.

- Kinematic boundary conditions.

At the free surface:
DFH

Dt

∣∣∣∣
H

=

[
∂FH

∂t
+ u · ∇FH

]

H

= 0, (34)

or, recalling the definition (13):
[
−∂H

∂t
− u1

∂H

∂x1
− u2

∂H

∂x2
+ u3

]

H

= 0. (35)

Close to solid boundaries the complexity of turbulent flows is circumvented by imposing the
no slip condition at some conventional distance (x3 = η0) empirically defined (see Section 2.3.4).
Hence:

u1|η0
= u2|η0

= u3|η0
= 0. (36)

- Dynamic boundary conditions.

The dynamic boundary condition at the free surface states that the stress vector must vanish
(in the absence of any external stress, e.g. forced by wind action):

t|H = [(−P I + T t + T µ)H · n̂H ] = 0, (37)

where T µ = 2µ⟨D⟩ are the turbulence averaged viscous stresses. Recalling (17) one finds:

n̂H1 = −∂H/∂x1

|∇FH |
, n̂H2 = −∂H/∂x2

|∇FH |
, n̂H3 =

1

|∇FH |
, (38a,b,c)

where

|∇FH | =

√
1 +

(
∂H

∂x1

)2

+

(
∂H

∂x2

)2

. (39)

Noting that far from solid boundaries viscous stresses are in general much smaller than turbulent
stresses, the dynamic boundary conditions in scalar form are eventually written as:

t1|H =

[
(P − T t

11)
∂H

∂x1
− T t

12

∂H

∂x2
+ T t

13

]

H

= 0, (40a)

t2|H =

[
−T t

21

∂H

∂x1
+ (P − T t

22)
∂H

∂x2
+ T t

23

]

H

= 0, (40b)

t3|H =

[
−T t

31

∂H

∂x1
− T t

32

∂H

∂x2
+ (−P + T t

33)

]

H

= 0. (40c)

The conditions to be applied at open inflow/outflow boundaries are in principle similar to
those discussed for the Navier-Stokes equations. A velocity profile is usually defined at the inlet
to provide a certain inflow discharge, while natural outflow (i.e. do nothing) conditions can be
applied at the outlet. However, the presence of additional Reynolds stresses implies that turbulent
quantities have also to be prescribed at open boundaries, depending on the closure model adopted
to express them as a function of turbulence averaged velocities.

Finally, the initial state of the system must be prescribed:

(u1, u2, u3, P ) = (u10, u20, u30, P0)(x1, x2, x3), H = H0(x1, x2) (t = 0). (41a,b)
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2.2.7 Transport equation for the mean vorticity

We have seen that one of the distinctive features of turbulent flows is to enhance the exchange
processes. Transport equations must then be available to assess the dynamics of the various
quantities characterizing a turbulent flow. A special role is played by the transport equations of
turbulent kinetic energy as well as energy dissipation and Reynolds stresses. We do not pursue
their derivation here, but the reader must be aware that those transport equations are major
ingredients of advanced turbulent modeling (see, e.g. Wilcox, 1994) that may be needed in some
morphodynamic problems. Here, we limit ourselves to the transport equation for the mean vorticity,
that will be seen to help understanding the mechanism of generation of secondary flows in curved
channels.

Let us perform the Reynolds decomposition of vorticity:

ω = Ω+ ω′. (42)

Reynolds averaging the vorticity equation (10) then allows us to derive a transport equation for
the mean vorticity, that reads:

DΩi

Dt
=

∂Ωi

∂t
+ uj

∂Ωi

∂xj︸ ︷︷ ︸
mean transport

= Ωj
∂ui

∂xj︸ ︷︷ ︸
mean distortion

+ ν∇2Ωi︸ ︷︷ ︸
viscous diffusion

−
∂⟨v′j ω′

i⟩
∂xj

+
∂⟨v′i ω′

j⟩
∂xj︸ ︷︷ ︸

turbulent transport

. (43)

Hence, changes of the local value of the mean vorticity arise from its transport by the mean velocity
field as well as by the average effect of the transport of vorticity fluctuations by the fluctuations
of the velocity field. The mean vorticity intensifies as the vortex lines of the mean vorticity field
undergo extension and twisting. Finally, the mean vorticity is dissipated by molecular viscosity.

2.2.8 The closure problem

Reynolds stresses T t
ij may be considered as generally determined by the global history of the

mean-velocity field with assigned initial and boundary conditions. However, seeking a closure
relationship fully accounting for the latter feature is not feasible.

Some progress is made adopting the fundamental simplifying assumption of the so called one
point closure schemes: the turbulence at each location (in space and time) may be characterized
by a single spatial and temporal scale. This is an obvious simplification, given the wide spectrum
of scales which is known to be excited by turbulence. However, in spite of their strongly simplified
nature, these closures prove quite useful: indeed, all such models are semi-empirical in nature and
may be described as ’post-dictive’ in that their success is ultimately determined by the ’ad hoc’
tuning of empirical ingredients such to reproduce accurately particular classes of turbulent flows.

The origin of one point closure schemes may be traced back to Boussinesq (1877), who suggested
the idea that a turbulent flow may be interpreted as a laminar flow with a greatly enhanced
viscosity, called eddy viscosity. This idea was further pursued by Prandtl (1925), who introduced
the concept of mixing length, i.e. the single spatial scale characteristic of turbulence at local
level. Prandtl work represents the first successful attempt to predict the average properties of a
turbulent shear flow on the basis of a phenomenological closure assumption. Various developments
of the latter ideas arose from phenomenological, dimensional and statistical arguments through
the work of great scientists, including Von Karman and Kolmogorov. But it was not until after
1970 that modeling could slowly develop into an actual computational tool. Closure models were
then refined through the interaction of experimental and numerical investigations. A new line of
thought was also pursued through the derivation of closure models on a rational basis (Lumley,
1970, 1978; Speziale, 1985, 1987, 1991), i.e. analyzing the formal consequences of various general
constraints that any closure relationship must satisfy.
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Reynolds averaging the boundary conditions and ignoring the turbulent fluctuations of free
surface elevation (⟨H⟩ = H), the following averaged forms of conditions (14) and (18) are obtained.

- Kinematic boundary conditions.

At the free surface:
DFH

Dt

∣∣∣∣
H

=

[
∂FH

∂t
+ u · ∇FH

]

H

= 0, (34)

or, recalling the definition (13):
[
−∂H

∂t
− u1

∂H

∂x1
− u2

∂H

∂x2
+ u3

]

H

= 0. (35)

Close to solid boundaries the complexity of turbulent flows is circumvented by imposing the
no slip condition at some conventional distance (x3 = η0) empirically defined (see Section 2.3.4).
Hence:

u1|η0
= u2|η0

= u3|η0
= 0. (36)

- Dynamic boundary conditions.

The dynamic boundary condition at the free surface states that the stress vector must vanish
(in the absence of any external stress, e.g. forced by wind action):

t|H = [(−P I + T t + T µ)H · n̂H ] = 0, (37)

where T µ = 2µ⟨D⟩ are the turbulence averaged viscous stresses. Recalling (17) one finds:

n̂H1 = −∂H/∂x1

|∇FH |
, n̂H2 = −∂H/∂x2

|∇FH |
, n̂H3 =

1

|∇FH |
, (38a,b,c)

where

|∇FH | =

√
1 +

(
∂H

∂x1

)2

+

(
∂H

∂x2

)2

. (39)

Noting that far from solid boundaries viscous stresses are in general much smaller than turbulent
stresses, the dynamic boundary conditions in scalar form are eventually written as:

t1|H =

[
(P − T t

11)
∂H

∂x1
− T t

12

∂H

∂x2
+ T t

13

]

H

= 0, (40a)

t2|H =

[
−T t

21

∂H

∂x1
+ (P − T t

22)
∂H

∂x2
+ T t

23

]

H

= 0, (40b)

t3|H =

[
−T t

31

∂H

∂x1
− T t

32

∂H

∂x2
+ (−P + T t

33)

]

H

= 0. (40c)

The conditions to be applied at open inflow/outflow boundaries are in principle similar to
those discussed for the Navier-Stokes equations. A velocity profile is usually defined at the inlet
to provide a certain inflow discharge, while natural outflow (i.e. do nothing) conditions can be
applied at the outlet. However, the presence of additional Reynolds stresses implies that turbulent
quantities have also to be prescribed at open boundaries, depending on the closure model adopted
to express them as a function of turbulence averaged velocities.

Finally, the initial state of the system must be prescribed:

(u1, u2, u3, P ) = (u10, u20, u30, P0)(x1, x2, x3), H = H0(x1, x2) (t = 0). (41a,b)
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2.2.7 Transport equation for the mean vorticity

We have seen that one of the distinctive features of turbulent flows is to enhance the exchange
processes. Transport equations must then be available to assess the dynamics of the various
quantities characterizing a turbulent flow. A special role is played by the transport equations of
turbulent kinetic energy as well as energy dissipation and Reynolds stresses. We do not pursue
their derivation here, but the reader must be aware that those transport equations are major
ingredients of advanced turbulent modeling (see, e.g. Wilcox, 1994) that may be needed in some
morphodynamic problems. Here, we limit ourselves to the transport equation for the mean vorticity,
that will be seen to help understanding the mechanism of generation of secondary flows in curved
channels.

Let us perform the Reynolds decomposition of vorticity:

ω = Ω+ ω′. (42)

Reynolds averaging the vorticity equation (10) then allows us to derive a transport equation for
the mean vorticity, that reads:
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∂xj︸ ︷︷ ︸
mean transport

= Ωj
∂ui

∂xj︸ ︷︷ ︸
mean distortion

+ ν∇2Ωi︸ ︷︷ ︸
viscous diffusion

−
∂⟨v′j ω′

i⟩
∂xj

+
∂⟨v′i ω′

j⟩
∂xj︸ ︷︷ ︸

turbulent transport
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Hence, changes of the local value of the mean vorticity arise from its transport by the mean velocity
field as well as by the average effect of the transport of vorticity fluctuations by the fluctuations
of the velocity field. The mean vorticity intensifies as the vortex lines of the mean vorticity field
undergo extension and twisting. Finally, the mean vorticity is dissipated by molecular viscosity.

2.2.8 The closure problem

Reynolds stresses T t
ij may be considered as generally determined by the global history of the

mean-velocity field with assigned initial and boundary conditions. However, seeking a closure
relationship fully accounting for the latter feature is not feasible.

Some progress is made adopting the fundamental simplifying assumption of the so called one
point closure schemes: the turbulence at each location (in space and time) may be characterized
by a single spatial and temporal scale. This is an obvious simplification, given the wide spectrum
of scales which is known to be excited by turbulence. However, in spite of their strongly simplified
nature, these closures prove quite useful: indeed, all such models are semi-empirical in nature and
may be described as ’post-dictive’ in that their success is ultimately determined by the ’ad hoc’
tuning of empirical ingredients such to reproduce accurately particular classes of turbulent flows.

The origin of one point closure schemes may be traced back to Boussinesq (1877), who suggested
the idea that a turbulent flow may be interpreted as a laminar flow with a greatly enhanced
viscosity, called eddy viscosity. This idea was further pursued by Prandtl (1925), who introduced
the concept of mixing length, i.e. the single spatial scale characteristic of turbulence at local
level. Prandtl work represents the first successful attempt to predict the average properties of a
turbulent shear flow on the basis of a phenomenological closure assumption. Various developments
of the latter ideas arose from phenomenological, dimensional and statistical arguments through
the work of great scientists, including Von Karman and Kolmogorov. But it was not until after
1970 that modeling could slowly develop into an actual computational tool. Closure models were
then refined through the interaction of experimental and numerical investigations. A new line of
thought was also pursued through the derivation of closure models on a rational basis (Lumley,
1970, 1978; Speziale, 1985, 1987, 1991), i.e. analyzing the formal consequences of various general
constraints that any closure relationship must satisfy.
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Boussinesq linear closure

A major outcome of these investigations was to provide some substantiation to the classical
Boussinesq closure relationship which reads:

T t
ij

ϱ
= 2 νT ⟨Dij⟩ −

2

3
K δij , (44)

where:

- νT (x, t) is the so called (kinematic) eddy viscosity;

- ⟨Dij⟩ is the Reynolds averaged strain rate tensor defined as follows:

⟨Dij⟩ =
1

2

[
∂ui

∂xj
+

∂uj

∂xi

]
; (45)

- K = ⟨v′2
i ⟩/2 is the turbulent kinetic energy per unit mass.

The reader will immediately recognize that the isotropic contribution −2

3
ϱK δij may be

regarded as a small correction of the mean pressure P needed in order to satisfy the identity
T t
ii = −2 ϱK. A strict analogy is thus established between the constitutive law of viscous

incompressible fluids (2) and (44). However, differently from ν, that is a fluid property, the eddy
viscosity is a flow property which characterizes the turbulence at the given location and at the
given time.

In order to make any progress with (44) one needs to formulate an appropriate model to
evaluate νT (x, t). A large number of such models of increasing complexity has been developed in
the engineering literature (Pope, 2000). A distinction can be made between zero-equation models,
whereby νT is estimated on the basis of algebraic relations, and N-equation models, in which N
additional equations are introduced to eventually estimate νT .

Zero-equation models

The simplest closure model for the eddy viscosity consists of simply assigning an appropriate
algebraic expression to it. As already pointed out, the origin of this approach goes back to the
classical notion of mixing length put forward by Prandtl (1925). For a two-dimensional shear flow,
on pure dimensional ground one may write:

νT = uτ ℓ, (46)

where uτ is the friction velocity defined in terms of some relevant flow shear stress τ and ℓ is the
mixing length scale.

Algebraic expressions for the length scale ℓ have been tested for a variety of free shear layers
and wall bounded shear flows. In the former case a constant value of ℓ is found to be a good first
approximation (Tennekes and Lumley, 1972; Wilcox, 1994). In the latter case, the length scale is
in general a function of the distance from the wall, z. The simplest choice is to assume ℓ = k z, as
firstly proposed by Prandtl (1925), where k is known as Von Karman constant. Improvement of
this relation includes the introduction of a multiplying function that damps the length scale as
the wall is approached, yielding a better description of the Reynolds stresses in this region (Van
Driest, 1956).

Generalizations of (46) to complex flow configurations have been proposed. In particular, the
generalization of Smagorinsky (1963) has been widely employed for subgrid modeling in the context
of large eddy simulation.
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One- and two-equation models

The advantage of zero equation models is their numerical simplicity. Their drawbacks are the facts
that the friction velocity is determined by the mean flow only and the mixing length scale is given
a priori rather than being flow-dependent.

The former limit is overcome by one-equation models in which, taking advantage of the
Kolmogorov-Prandtl relationship (Kolmogorov, 1942; Prandtl, 1945), the friction velocity is related
linearly to the square root of the turbulent kinetic energy

uτ ∝ K1/2. (47)

Hence, according to relation (46), the local eddy viscosity νT becomes a function of a priori-assigned
mixing length and of the local value of K. The latter quantity is computed through the transport
equation for the turbulent kinetic energy. This equation can be obtained by multiplying the
Navier-Stokes equations by u′

j , taking the time average of all terms, and subtracting the equation
which governs the kinetic energy of the mean flow (see, e.g. Tennekes and Lumley, 1972). The
resulting partial differential equation states that the turbulent kinetic energy is produced by
Reynolds stresses that extract energy from the mean flow, is dissipated by viscous stresses and
transported by the mean flow and the turbulent fluctuations themselves (turbulent diffusion).
A pressure-strain correlation also arises, which however does not contribute to variations of the
turbulent kinetic energy, it simply leads to directional redistribution of Reynolds stresses. As
for the Reynolds equations, nonlinear terms eventually arise that needs to be suitably expressed
in terms of known quantities. Specifically, the production term is closed using the Boussinesq
assumption for T t

ij , the flux term is assumed to be proportional to the gradient of K while the
dissipation term is expressed algebraically in terms of K and ℓ (see, e.g. Wilcox, 1994). Clearly,
the resulting one-equation model has still a strong limitation: it is incomplete as the mixing length
still needs be assigned a-priori. As a consequence, one-equation models do not usually perform
much better than zero equation models and are mainly suitable for shear layers.

Two equation models are still based on the Boussinesq assumption and express the eddy
viscosity in terms of two turbulent quantities for which transport equations are derived. The
advantage is that both the friction velocity and the turbulent length scale arise from the solution
of the transport equations. Two of such models have enjoyed great popularity, namely the so-
called K-ε model (Launder and Spalding, 1974) and the K-ω model (Kolmogorov, 1942; Saffman,
1970; Saffman and Wilcox, 1974), with its later modification (Wilcox, 2008). Here, ε is the rate
of dissipation of turbulent kinetic energy per unit mass while the pseudo-vorticity ω has been
interpreted as either "the rate of dissipation of energy in unit volume and time" (Kolmogorov,
1942) or "a frequency characteristic of the turbulence decay process under its self-interaction"
(Saffman, 1970) .

For the K-ε model, dimensional arguments indicate that

νT ∝ K2

ε
. (48)

Transport equations are then needed for K and ε. The transport equation for turbulent kinetic
energy is identical with that employed in one-equation models. The exact transport equation for
the specific turbulent dissipation rate is quite complex and poses a number of difficult closure
problems. The classical approach is rather to conceive an artificial equation for a pseudo-dissipation
rate, formulated in perfect analogy with the equation for K, such to include convection, diffusion,
production and dissipation terms. Experimental data and DNS simulations have been used to
set the various proportionality coefficients appearing in the model. The reader interested in the
details of the models are referred to Wilcox (1994), where appropriate boundary conditions are
also discussed.

For the K-ω model, dimensional arguments allow one to express the eddy viscosity as

νT ∝ K
ω
. (49)
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Boussinesq linear closure

A major outcome of these investigations was to provide some substantiation to the classical
Boussinesq closure relationship which reads:

T t
ij

ϱ
= 2 νT ⟨Dij⟩ −

2

3
K δij , (44)

where:

- νT (x, t) is the so called (kinematic) eddy viscosity;

- ⟨Dij⟩ is the Reynolds averaged strain rate tensor defined as follows:
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; (45)

- K = ⟨v′2
i ⟩/2 is the turbulent kinetic energy per unit mass.

The reader will immediately recognize that the isotropic contribution −2

3
ϱK δij may be

regarded as a small correction of the mean pressure P needed in order to satisfy the identity
T t
ii = −2 ϱK. A strict analogy is thus established between the constitutive law of viscous

incompressible fluids (2) and (44). However, differently from ν, that is a fluid property, the eddy
viscosity is a flow property which characterizes the turbulence at the given location and at the
given time.

In order to make any progress with (44) one needs to formulate an appropriate model to
evaluate νT (x, t). A large number of such models of increasing complexity has been developed in
the engineering literature (Pope, 2000). A distinction can be made between zero-equation models,
whereby νT is estimated on the basis of algebraic relations, and N-equation models, in which N
additional equations are introduced to eventually estimate νT .

Zero-equation models

The simplest closure model for the eddy viscosity consists of simply assigning an appropriate
algebraic expression to it. As already pointed out, the origin of this approach goes back to the
classical notion of mixing length put forward by Prandtl (1925). For a two-dimensional shear flow,
on pure dimensional ground one may write:

νT = uτ ℓ, (46)

where uτ is the friction velocity defined in terms of some relevant flow shear stress τ and ℓ is the
mixing length scale.

Algebraic expressions for the length scale ℓ have been tested for a variety of free shear layers
and wall bounded shear flows. In the former case a constant value of ℓ is found to be a good first
approximation (Tennekes and Lumley, 1972; Wilcox, 1994). In the latter case, the length scale is
in general a function of the distance from the wall, z. The simplest choice is to assume ℓ = k z, as
firstly proposed by Prandtl (1925), where k is known as Von Karman constant. Improvement of
this relation includes the introduction of a multiplying function that damps the length scale as
the wall is approached, yielding a better description of the Reynolds stresses in this region (Van
Driest, 1956).

Generalizations of (46) to complex flow configurations have been proposed. In particular, the
generalization of Smagorinsky (1963) has been widely employed for subgrid modeling in the context
of large eddy simulation.
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One- and two-equation models

The advantage of zero equation models is their numerical simplicity. Their drawbacks are the facts
that the friction velocity is determined by the mean flow only and the mixing length scale is given
a priori rather than being flow-dependent.

The former limit is overcome by one-equation models in which, taking advantage of the
Kolmogorov-Prandtl relationship (Kolmogorov, 1942; Prandtl, 1945), the friction velocity is related
linearly to the square root of the turbulent kinetic energy

uτ ∝ K1/2. (47)

Hence, according to relation (46), the local eddy viscosity νT becomes a function of a priori-assigned
mixing length and of the local value of K. The latter quantity is computed through the transport
equation for the turbulent kinetic energy. This equation can be obtained by multiplying the
Navier-Stokes equations by u′

j , taking the time average of all terms, and subtracting the equation
which governs the kinetic energy of the mean flow (see, e.g. Tennekes and Lumley, 1972). The
resulting partial differential equation states that the turbulent kinetic energy is produced by
Reynolds stresses that extract energy from the mean flow, is dissipated by viscous stresses and
transported by the mean flow and the turbulent fluctuations themselves (turbulent diffusion).
A pressure-strain correlation also arises, which however does not contribute to variations of the
turbulent kinetic energy, it simply leads to directional redistribution of Reynolds stresses. As
for the Reynolds equations, nonlinear terms eventually arise that needs to be suitably expressed
in terms of known quantities. Specifically, the production term is closed using the Boussinesq
assumption for T t

ij , the flux term is assumed to be proportional to the gradient of K while the
dissipation term is expressed algebraically in terms of K and ℓ (see, e.g. Wilcox, 1994). Clearly,
the resulting one-equation model has still a strong limitation: it is incomplete as the mixing length
still needs be assigned a-priori. As a consequence, one-equation models do not usually perform
much better than zero equation models and are mainly suitable for shear layers.

Two equation models are still based on the Boussinesq assumption and express the eddy
viscosity in terms of two turbulent quantities for which transport equations are derived. The
advantage is that both the friction velocity and the turbulent length scale arise from the solution
of the transport equations. Two of such models have enjoyed great popularity, namely the so-
called K-ε model (Launder and Spalding, 1974) and the K-ω model (Kolmogorov, 1942; Saffman,
1970; Saffman and Wilcox, 1974), with its later modification (Wilcox, 2008). Here, ε is the rate
of dissipation of turbulent kinetic energy per unit mass while the pseudo-vorticity ω has been
interpreted as either "the rate of dissipation of energy in unit volume and time" (Kolmogorov,
1942) or "a frequency characteristic of the turbulence decay process under its self-interaction"
(Saffman, 1970) .

For the K-ε model, dimensional arguments indicate that

νT ∝ K2

ε
. (48)

Transport equations are then needed for K and ε. The transport equation for turbulent kinetic
energy is identical with that employed in one-equation models. The exact transport equation for
the specific turbulent dissipation rate is quite complex and poses a number of difficult closure
problems. The classical approach is rather to conceive an artificial equation for a pseudo-dissipation
rate, formulated in perfect analogy with the equation for K, such to include convection, diffusion,
production and dissipation terms. Experimental data and DNS simulations have been used to
set the various proportionality coefficients appearing in the model. The reader interested in the
details of the models are referred to Wilcox (1994), where appropriate boundary conditions are
also discussed.

For the K-ω model, dimensional arguments allow one to express the eddy viscosity as

νT ∝ K
ω
. (49)

31



Theoretical Morphodynamics Straight Channels

Unlike the equation for the turbulent kinetic energy, that can be derived directly from the Reynolds
equations, the equation for ω is only postulated by analogy with the turbulent kinetic energy
equation. Also, in this model various supposedly universal constants appear. Some of them have
been estimated using remarkably simple theoretical arguments (Saffman, 1970), while others rely
on experimental data and/or the results of DNS simulations (see, e.g. Wilcox, 2008).

In general, the performance of the K-ε closure model is qualitatively satisfactory for unseparated
shear layers and high Reynolds number flows, even though extensions to the case of low Reynolds
number have also been proposed (see, e.g. Rodi and Mansour, 1993). An important distinctive
feature of the K-ω model is that it allows for integration through the viscous sublayer to the wall.
On the other hand, the K-ω model turns out to be strongly sensitive to free-stream boundary
conditions in free shear flows whereas the K-ε model is insensitive.

A number of further two-equation models have been proposed both before and after the two
most popular models discussed above. The reader is referred to specialized books (e.g. Wilcox,
1993; Pope, 2000; Durbin and Pettersson Reif, 2011) for exhaustive reviews.

2.2.9 Wall-bounded flows: plane uniform turbulent flow

Understanding the nature of wall turbulence is a fundamental prerequisite of any morphody-
namic theory. The relevant physical mechanisms whereby sediment particles are continuously
transported by a fluvial stream and exchanged with the bed are in fact controlled by the fluid
motion in the vicinity of the bed. Before we devote some specific attention to open channel flows,
it is thus instructive to analyze the simplest, yet fundamentally important, case of plane uniform
turbulent flow.

Let us consider the uniform turbulent flow in an open channel of infinite length and width
(Figure 10), inclined by an angle θ to the horizontal. The uniform character of the turbulent flow

Figure 10. Sketch of a plane uniform turbulent flow and distributions of relevant flow quantities. ζ is the
dimensionless coordinate z/Du.

implies that it is statistically stationary and longitudinally homogeneous. The turbulence averaged
flow is thus uni-directional (⟨u⟩ = u x̂), with statistical properties depending only on the cartesian
coordinate normal to the wall z (u = u(z)). As a consequence, mean inertial terms are identically
zero.

The RANS equations take the following form

∂P

∂z
= −ϱ g cosθ − ϱ

d⟨v′2
z ⟩

dz
, (50)
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− d

dz
⟨v′x v′z⟩+ ν

d2u

dz2
= −g sinθ. (51)

Equation (50) simply shows that the mean pressure is hydrostatic but for a small deviation
associated with the normal stress ϱ ⟨v′2

z ⟩. Also, longitudinal homogeneity implies that pressure is
independent of x.

From (51) the mean motion appears to be determined by a balance between the z-component
of the shear stress gradient and gravity: the shear stress comprises both a Reynolds stress
contribution −ϱ ⟨v′x v′z⟩ and a viscous contribution that will be seen to play a negligible role except
in an immediate neighborhood of the solid boundary.

Integrating (51) and imposing that the free surface is stress free (condition (37)), one finds the
following linear distribution of the total stress, τ :

τ = T t
zx + Tµ

zx = −⟨v′x v′z⟩+ ν
du

dz
= −g sinθ (z −Du) = u2

τu

(
1− z

Du

)
, (52)

where uτu is the friction velocity of uniform flow, defined as
√

τu/ϱ with τu equal to the bottom
value of the total shear stress τ . Hence, from (52):

u2
τu = g Du sinθ. (53)

Equation (52) indicates that at a perfectly smooth wall, where the no slip and impermeability
conditions apply, Reynolds stresses are identically zero and, hence, the shear stress is wholly
viscous. This suggests that, close to the wall, the important physical parameters are the kinematic
viscosity of the fluid ν and the wall shear stress τu and, consequently, the appropriate length
scale is δν = ν/uτu . This scale, called viscous length scale, controls the thickness of the region
(z uτu/ν ≲ 50) where molecular viscosity directly affects the flow. In this region, called inner layer,
the total shear stress can be taken approximately equal to τu.

On the other hand, for z uτu/ν ≫ ∼ 50 viscous effects become negligible. In this region, called
outer layer, turbulent stresses prevail over viscous stresses and decrease linearly, as prescribed by
relation (52). The relevant length scale is Du.

DNS simulations of fully developed turbulent flow in closed plane channels and experimental
observation confirm the above picture (Figure 11). Below, we analyse the velocity distribution
within each of the above identified layers.

Figure 11. Viscous and turbulent contributions to the shear stress distribution in fully developed turbulent flow in
closed plane channels: results of DNS carried out by Kim et al. (1987) for Rτ = 180. In this case Du is half the
distance between the channel walls. Symbols represent the experimental data of Eckelmann (1974) for Rτ = 142

(◦) and Rτ = 208 (+).
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Unlike the equation for the turbulent kinetic energy, that can be derived directly from the Reynolds
equations, the equation for ω is only postulated by analogy with the turbulent kinetic energy
equation. Also, in this model various supposedly universal constants appear. Some of them have
been estimated using remarkably simple theoretical arguments (Saffman, 1970), while others rely
on experimental data and/or the results of DNS simulations (see, e.g. Wilcox, 2008).

In general, the performance of the K-ε closure model is qualitatively satisfactory for unseparated
shear layers and high Reynolds number flows, even though extensions to the case of low Reynolds
number have also been proposed (see, e.g. Rodi and Mansour, 1993). An important distinctive
feature of the K-ω model is that it allows for integration through the viscous sublayer to the wall.
On the other hand, the K-ω model turns out to be strongly sensitive to free-stream boundary
conditions in free shear flows whereas the K-ε model is insensitive.

A number of further two-equation models have been proposed both before and after the two
most popular models discussed above. The reader is referred to specialized books (e.g. Wilcox,
1993; Pope, 2000; Durbin and Pettersson Reif, 2011) for exhaustive reviews.

2.2.9 Wall-bounded flows: plane uniform turbulent flow

Understanding the nature of wall turbulence is a fundamental prerequisite of any morphody-
namic theory. The relevant physical mechanisms whereby sediment particles are continuously
transported by a fluvial stream and exchanged with the bed are in fact controlled by the fluid
motion in the vicinity of the bed. Before we devote some specific attention to open channel flows,
it is thus instructive to analyze the simplest, yet fundamentally important, case of plane uniform
turbulent flow.

Let us consider the uniform turbulent flow in an open channel of infinite length and width
(Figure 10), inclined by an angle θ to the horizontal. The uniform character of the turbulent flow

Figure 10. Sketch of a plane uniform turbulent flow and distributions of relevant flow quantities. ζ is the
dimensionless coordinate z/Du.

implies that it is statistically stationary and longitudinally homogeneous. The turbulence averaged
flow is thus uni-directional (⟨u⟩ = u x̂), with statistical properties depending only on the cartesian
coordinate normal to the wall z (u = u(z)). As a consequence, mean inertial terms are identically
zero.

The RANS equations take the following form

∂P

∂z
= −ϱ g cosθ − ϱ

d⟨v′2
z ⟩

dz
, (50)
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Equation (50) simply shows that the mean pressure is hydrostatic but for a small deviation
associated with the normal stress ϱ ⟨v′2

z ⟩. Also, longitudinal homogeneity implies that pressure is
independent of x.

From (51) the mean motion appears to be determined by a balance between the z-component
of the shear stress gradient and gravity: the shear stress comprises both a Reynolds stress
contribution −ϱ ⟨v′x v′z⟩ and a viscous contribution that will be seen to play a negligible role except
in an immediate neighborhood of the solid boundary.

Integrating (51) and imposing that the free surface is stress free (condition (37)), one finds the
following linear distribution of the total stress, τ :

τ = T t
zx + Tµ

zx = −⟨v′x v′z⟩+ ν
du

dz
= −g sinθ (z −Du) = u2

τu

(
1− z

Du

)
, (52)

where uτu is the friction velocity of uniform flow, defined as
√

τu/ϱ with τu equal to the bottom
value of the total shear stress τ . Hence, from (52):

u2
τu = g Du sinθ. (53)

Equation (52) indicates that at a perfectly smooth wall, where the no slip and impermeability
conditions apply, Reynolds stresses are identically zero and, hence, the shear stress is wholly
viscous. This suggests that, close to the wall, the important physical parameters are the kinematic
viscosity of the fluid ν and the wall shear stress τu and, consequently, the appropriate length
scale is δν = ν/uτu . This scale, called viscous length scale, controls the thickness of the region
(z uτu/ν ≲ 50) where molecular viscosity directly affects the flow. In this region, called inner layer,
the total shear stress can be taken approximately equal to τu.

On the other hand, for z uτu/ν ≫ ∼ 50 viscous effects become negligible. In this region, called
outer layer, turbulent stresses prevail over viscous stresses and decrease linearly, as prescribed by
relation (52). The relevant length scale is Du.

DNS simulations of fully developed turbulent flow in closed plane channels and experimental
observation confirm the above picture (Figure 11). Below, we analyse the velocity distribution
within each of the above identified layers.

Figure 11. Viscous and turbulent contributions to the shear stress distribution in fully developed turbulent flow in
closed plane channels: results of DNS carried out by Kim et al. (1987) for Rτ = 180. In this case Du is half the
distance between the channel walls. Symbols represent the experimental data of Eckelmann (1974) for Rτ = 142

(◦) and Rτ = 208 (+).
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Inner layer: the law of the wall

The velocity distribution in the inner layer is usually denoted as law of the wall. Using as relevant
scales the viscous length scale δν and the friction velocity uτu , the dimensionless form of equation
(52) reads:

−⟨v′x v′z⟩
u2
τu

+
1

uτu

du

dz+
=

(
1− z+

Rτ

)
, (54)

where:

z+ =
z uτu

ν
, Rτ =

uτu Du

ν
. (55a,b)

It immediately appears that, for high values of the friction Reynolds number Rτ typical of
fluvial streams, the dimensionless total stress is equal to unity. In addition, two different behaviours
arise: viscous stress dominates over turbulent stress in the limit of small z+ (i.e. in the viscous
sublayer); both viscous and turbulent stresses play a role for large z+ (in the so called inertial
sublayer).

- The linear law in the viscous sublayer (z+ ≪ 1).

At the wall (z+ = 0) the stress is purely viscous and equation (54) becomes:

1

uτu

du

dz+
= 1. (56)

Expanding u in powers of z+ in the vicinity of the wall, it follows that:

u

uτu

= z+ +H.O.T. (57)

and further analysis would show that the first of the higher order terms (H.O.T.) is O(z+)4.
Hence, the velocity distribution in the viscous sublayer is approximately linear. Figure 12a
confirms the validity of (57). Departures from the linear relation are indeed negligible in the
viscous sublayer (z+ < 5), and increase up to 25% as z+ exceeds 12. Note that, for perfectly
smooth wall surfaces, such that the roughness height es does not occur as an additional
parameter, the viscous sublayer exists independently of the value attained by Rτ . What
varies is the dimensional thickness of this layer, that is of the order (10−3 − 10−5)Du.

- The law of the wall (z+ ≫ 1).

For large values of z+, both viscous and turbulent stresses have to be retained in (54). For
perfectly smooth wall surfaces, solutions of equation (54) may be expected to be of the form:

u

uτu

= f(z+),
⟨v′x v′z⟩
u2
τu

= φ(z+), (58a,b)

and have to satisfy the boundary conditions f(0) = φ(0) = 0.

These relations are called the law of the wall and may be determined experimentally or
through DNS. Nevertheless, as it will be shown below, some insight on their shape is obtained
in the limit of z+ → ∞ and for high enough values of the friction Reynolds number Rτ .
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Figure 12. (a) The linear velocity distribution in the viscous sublayer of fully developed turbulent flow in closed
plane channels predicted by (57) and the log law predicted by (65) (dotted line) are compared with results of DNS

of Kim et al. (1987) for Rτ = 180 (solid line) and experimental data of Eckelmann (1974) for Rτ = 142 (◦)
(modified from Kim et al., 1987). (b) The velocity defect law obtained by DNS of channel flow for Rτ = 180 (Kim

et al., 1987) is compared with the log law (modified from Pope, 2000, Figure 7.9).

Outer layer: the velocity-defect law

The outer layer is defined by the assumption that the mean velocity profile is independent of the
viscous scale. The appropriate length scale is the flow depth while the velocity scale is still uτ .
The dimensionless form of equation (52) then reads:

−⟨v′x v′z⟩
u2
τu

+
1

Rτ

1

uτu

du

dζ
= (1− ζ) , (59)

where:
ζ =

z

Du
, (60)

For large values of Rτ , equation (59) implies that turbulent stresses dominate and decrease
linearly away from the wall. However, no explicit information is given about the mean velocity
profile u+(ζ). In order to make any progress a turbulent closure model is needed. Using a zero-order
closure of the form (46) in conjunction with the Boussinesq linear closure (44) leads to:

1

uτu

du

dζ
=

(1− ζ)Du

ℓ(ζ)
=

dF

dζ
. (61)

Integrating the latter equation between ζ and the free surface (ζ = 1) one finds the so called
velocity-defect law :

u(ζ)− u(1)

uτu

= F (ζ)− F (1). (62)

Inertial sublayer: the logarihtmic velocity profile

The inertial sublayer is the region where the inner and outer layers merge. The existence of this
region is possible only for large enough values of Rτ , such that the limits of z+ → ∞ and ζ → 0
can be taken simultaneously (Figure 13). It allows the matching of the velocity profiles of the
inner and outer layers.

Specifically, it is convenient to match the inner and outer velocity gradient. We then impose
that:

du

dz
=

u2
τu

ν

df

dz+
=

uτu

Du

dF

dζ
(63)
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Inner layer: the law of the wall

The velocity distribution in the inner layer is usually denoted as law of the wall. Using as relevant
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It immediately appears that, for high values of the friction Reynolds number Rτ typical of
fluvial streams, the dimensionless total stress is equal to unity. In addition, two different behaviours
arise: viscous stress dominates over turbulent stress in the limit of small z+ (i.e. in the viscous
sublayer); both viscous and turbulent stresses play a role for large z+ (in the so called inertial
sublayer).

- The linear law in the viscous sublayer (z+ ≪ 1).

At the wall (z+ = 0) the stress is purely viscous and equation (54) becomes:
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du

dz+
= 1. (56)

Expanding u in powers of z+ in the vicinity of the wall, it follows that:

u

uτu

= z+ +H.O.T. (57)

and further analysis would show that the first of the higher order terms (H.O.T.) is O(z+)4.
Hence, the velocity distribution in the viscous sublayer is approximately linear. Figure 12a
confirms the validity of (57). Departures from the linear relation are indeed negligible in the
viscous sublayer (z+ < 5), and increase up to 25% as z+ exceeds 12. Note that, for perfectly
smooth wall surfaces, such that the roughness height es does not occur as an additional
parameter, the viscous sublayer exists independently of the value attained by Rτ . What
varies is the dimensional thickness of this layer, that is of the order (10−3 − 10−5)Du.

- The law of the wall (z+ ≫ 1).

For large values of z+, both viscous and turbulent stresses have to be retained in (54). For
perfectly smooth wall surfaces, solutions of equation (54) may be expected to be of the form:

u

uτu

= f(z+),
⟨v′x v′z⟩
u2
τu

= φ(z+), (58a,b)

and have to satisfy the boundary conditions f(0) = φ(0) = 0.

These relations are called the law of the wall and may be determined experimentally or
through DNS. Nevertheless, as it will be shown below, some insight on their shape is obtained
in the limit of z+ → ∞ and for high enough values of the friction Reynolds number Rτ .
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Figure 12. (a) The linear velocity distribution in the viscous sublayer of fully developed turbulent flow in closed
plane channels predicted by (57) and the log law predicted by (65) (dotted line) are compared with results of DNS

of Kim et al. (1987) for Rτ = 180 (solid line) and experimental data of Eckelmann (1974) for Rτ = 142 (◦)
(modified from Kim et al., 1987). (b) The velocity defect law obtained by DNS of channel flow for Rτ = 180 (Kim

et al., 1987) is compared with the log law (modified from Pope, 2000, Figure 7.9).

Outer layer: the velocity-defect law

The outer layer is defined by the assumption that the mean velocity profile is independent of the
viscous scale. The appropriate length scale is the flow depth while the velocity scale is still uτ .
The dimensionless form of equation (52) then reads:

−⟨v′x v′z⟩
u2
τu

+
1

Rτ

1

uτu

du

dζ
= (1− ζ) , (59)

where:
ζ =

z

Du
, (60)

For large values of Rτ , equation (59) implies that turbulent stresses dominate and decrease
linearly away from the wall. However, no explicit information is given about the mean velocity
profile u+(ζ). In order to make any progress a turbulent closure model is needed. Using a zero-order
closure of the form (46) in conjunction with the Boussinesq linear closure (44) leads to:

1

uτu

du

dζ
=

(1− ζ)Du

ℓ(ζ)
=

dF

dζ
. (61)

Integrating the latter equation between ζ and the free surface (ζ = 1) one finds the so called
velocity-defect law :

u(ζ)− u(1)

uτu

= F (ζ)− F (1). (62)

Inertial sublayer: the logarihtmic velocity profile

The inertial sublayer is the region where the inner and outer layers merge. The existence of this
region is possible only for large enough values of Rτ , such that the limits of z+ → ∞ and ζ → 0
can be taken simultaneously (Figure 13). It allows the matching of the velocity profiles of the
inner and outer layers.

Specifically, it is convenient to match the inner and outer velocity gradient. We then impose
that:

du

dz
=

u2
τu

ν

df

dz+
=

uτu

Du

dF

dζ
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Figure 13. Range of existence of the inertial sublayer in the plane Rτ -ζ according to Tennekes and Lumley (1972).

and eventually find:

z+
df

dz+
= ζ

dF

dζ
=

1

k
, (64)

where the von Von Kàrmàn constant k takes the value 0.41. It then immediately follows that, in
the inertial sublayer, the velocity profile is of logarithmic type:

f(z+) =
1

k
ln(z+) + bin, F (ζ) =

1

k
ln(ζ) + bout, (65a,b)

with bin and bout suitable integration constants. For perfectly smooth walls, both experimental
data and DNS indicate that bin = 5.5. The value of bout is instead subject to some uncertainty, as
DNS suggest a value of 0.2 whilst measurements support the higher value 0.7 (Dean, 1978).

Figure 12a shows that the logarithmic distribution (65) is in excellent agreement with DNS data
for values of z+ larger than 30. Experimental data of Eckelmann (1974), corrected as discussed by
Kim et al. (1987), also agree with DNS data. This agreement has been further supported by several
later observations (see, e.g. Pope, 2000). The transitional region between the viscosity-dominated
viscous sublayer (z+ < 5) and the turbulence-dominated log-law region (z+ > 30) is called buffer
layer.

Figure 12b shows results for the velocity defect obtained by DNS of Kim et al. (1987). Agreement
with the log law is quite strong in the range 0.08− 0.3 for z/D. Small deviations are observed in
the upper portion of the outer layer, where it tends to deviate from the velocity defect law. The
difference between these two profiles:

Π

k
Wf (ζ) = F (ζ)− 1

k
ln ζ − bout (66)

is called law of the wake, with Wf the wake function and Π the wake strength (Coles, 1956). For
open channel flows, Π tends to be about zero for Rτ < 500, increases rapidly for 500 < Rτ < 2000
and attains the almost constant value 0.2 for Rτ > 2000 (Nezu and Nakagawa, 1993).

The effect of wall roughness

Wall surfaces are usually characterized by a distribution of irregular roughness elements, with
mean height es. The velocity profile is found to be affected by the additional parameter es when
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the thickness of the viscous sublayer, which we have seen to decrease for increasing values of the
friction Reynolds number, becomes of the same order or smaller than es. Depending on the ratio
es uτu/ν walls may be then classified as follows:

- Hydraulically smooth (es uτu/ν ≤ 5). Roughness does not play any appreciable role. Under such
conditions the smooth law (65) is recovered.

- Hydraulically rough (es uτu/ν ≥ 70). In this case, viscous effects do not directly affect the mean
velocity distribution and the relevant inner scale is the size of wall roughness es. The law of
the wall is then found to read:

u

uτu

=
1

k
ln

z

es
+ 8.5, (67)

where the value of the constant 8.5 has been determined on the basis of experimental data
of Nikuradse (1933).

- Transitional regime (5 ≤ es uτu/ν ≤ 70). In this regime, both viscous effects and roughness do
affect the mean velocity distribution, that may be given the general form:

u

uτu

=
1

k
ln

z

es
+ bt

(
k uτu

ν

)
, (68)

where the function bt(es uτu/ν) has been experimentally determined by various Authors and
is found to generally depend on the shape of the roughness elements (Jimenez, 2004).
Note that the characteristic roughness height es is often expressed in terms of equivalent
sand roughness, defined as the roughness of a uniform sand which, if artificially attached
to an otherwise perfectly smooth wall, gives rise to the same law of the wall as the actual
irregular roughness of the wall.

2.3. Turbulent flow in straight cylindrical open channels

In fluvial contexts, when dealing with large scale processes like those of interest for the present
Monograph, it is often (though not always) sufficient to rely on a slowly varying assumption
whereby the flow may be treated as a slowly varying sequence of locally uniform flow fields. The
uniform turbulent flow in open channels thus plays a fundamental role in the whole theory of
Morphodynamics and deserves a thorough attention.

2.3.1 Geometrical preliminaries

Consider the turbulent flow of an incompressible fluid in a straight open channel and assume
that the channel boundary is a generalized cylinder. This mathematical surface is identified by a
curved line (directrix ), coinciding with the perimeter of the channel cross section, and a straight
line (generatrix ), orthogonal to the channel cross section and tangent to its boundary. The cylinder
surface is generated by letting the generatrix translate along the directrix (Figure 14). We choose
as channel axis the lowest generatrix of the channel boundary, which thus coincides with the
thalweg, defined as the line connecting the lowest points of successive cross-sections along the river.
Needless to say, a cylindrical surface is an obvious idealization of any real channel boundary. This
notwithstanding, it is a convenient choice as it allows to build a rigorous theoretical framework for
the so called uniform open channel flow.

Let us refer the flow to a cartesian system (x, y, z), with x longitudinal coordinate associated
with the channel axis, y lateral coordinate associated with a horizontal axis normal to the x-axis
and lying on the initial channel cross section and the z-axis orthogonal to the x-y plane (Figure
14). Within the present simplified scheme, the valley plain is the planar surface parallel to the x-y
plane, bounded by the highest generatrices of the cylinder. A distinct slope is associated with the
channel axis.

Fluvial channels are typically characterized by slope values sufficiently small that the z-axis
may be safely confused with the vertical axis used to express height above a given level. We
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Figure 13. Range of existence of the inertial sublayer in the plane Rτ -ζ according to Tennekes and Lumley (1972).
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where the von Von Kàrmàn constant k takes the value 0.41. It then immediately follows that, in
the inertial sublayer, the velocity profile is of logarithmic type:
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with bin and bout suitable integration constants. For perfectly smooth walls, both experimental
data and DNS indicate that bin = 5.5. The value of bout is instead subject to some uncertainty, as
DNS suggest a value of 0.2 whilst measurements support the higher value 0.7 (Dean, 1978).

Figure 12a shows that the logarithmic distribution (65) is in excellent agreement with DNS data
for values of z+ larger than 30. Experimental data of Eckelmann (1974), corrected as discussed by
Kim et al. (1987), also agree with DNS data. This agreement has been further supported by several
later observations (see, e.g. Pope, 2000). The transitional region between the viscosity-dominated
viscous sublayer (z+ < 5) and the turbulence-dominated log-law region (z+ > 30) is called buffer
layer.

Figure 12b shows results for the velocity defect obtained by DNS of Kim et al. (1987). Agreement
with the log law is quite strong in the range 0.08− 0.3 for z/D. Small deviations are observed in
the upper portion of the outer layer, where it tends to deviate from the velocity defect law. The
difference between these two profiles:
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Wf (ζ) = F (ζ)− 1
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is called law of the wake, with Wf the wake function and Π the wake strength (Coles, 1956). For
open channel flows, Π tends to be about zero for Rτ < 500, increases rapidly for 500 < Rτ < 2000
and attains the almost constant value 0.2 for Rτ > 2000 (Nezu and Nakagawa, 1993).

The effect of wall roughness

Wall surfaces are usually characterized by a distribution of irregular roughness elements, with
mean height es. The velocity profile is found to be affected by the additional parameter es when
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the thickness of the viscous sublayer, which we have seen to decrease for increasing values of the
friction Reynolds number, becomes of the same order or smaller than es. Depending on the ratio
es uτu/ν walls may be then classified as follows:

- Hydraulically smooth (es uτu/ν ≤ 5). Roughness does not play any appreciable role. Under such
conditions the smooth law (65) is recovered.

- Hydraulically rough (es uτu/ν ≥ 70). In this case, viscous effects do not directly affect the mean
velocity distribution and the relevant inner scale is the size of wall roughness es. The law of
the wall is then found to read:
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+ 8.5, (67)

where the value of the constant 8.5 has been determined on the basis of experimental data
of Nikuradse (1933).

- Transitional regime (5 ≤ es uτu/ν ≤ 70). In this regime, both viscous effects and roughness do
affect the mean velocity distribution, that may be given the general form:
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where the function bt(es uτu/ν) has been experimentally determined by various Authors and
is found to generally depend on the shape of the roughness elements (Jimenez, 2004).
Note that the characteristic roughness height es is often expressed in terms of equivalent
sand roughness, defined as the roughness of a uniform sand which, if artificially attached
to an otherwise perfectly smooth wall, gives rise to the same law of the wall as the actual
irregular roughness of the wall.

2.3. Turbulent flow in straight cylindrical open channels

In fluvial contexts, when dealing with large scale processes like those of interest for the present
Monograph, it is often (though not always) sufficient to rely on a slowly varying assumption
whereby the flow may be treated as a slowly varying sequence of locally uniform flow fields. The
uniform turbulent flow in open channels thus plays a fundamental role in the whole theory of
Morphodynamics and deserves a thorough attention.

2.3.1 Geometrical preliminaries

Consider the turbulent flow of an incompressible fluid in a straight open channel and assume
that the channel boundary is a generalized cylinder. This mathematical surface is identified by a
curved line (directrix ), coinciding with the perimeter of the channel cross section, and a straight
line (generatrix ), orthogonal to the channel cross section and tangent to its boundary. The cylinder
surface is generated by letting the generatrix translate along the directrix (Figure 14). We choose
as channel axis the lowest generatrix of the channel boundary, which thus coincides with the
thalweg, defined as the line connecting the lowest points of successive cross-sections along the river.
Needless to say, a cylindrical surface is an obvious idealization of any real channel boundary. This
notwithstanding, it is a convenient choice as it allows to build a rigorous theoretical framework for
the so called uniform open channel flow.

Let us refer the flow to a cartesian system (x, y, z), with x longitudinal coordinate associated
with the channel axis, y lateral coordinate associated with a horizontal axis normal to the x-axis
and lying on the initial channel cross section and the z-axis orthogonal to the x-y plane (Figure
14). Within the present simplified scheme, the valley plain is the planar surface parallel to the x-y
plane, bounded by the highest generatrices of the cylinder. A distinct slope is associated with the
channel axis.

Fluvial channels are typically characterized by slope values sufficiently small that the z-axis
may be safely confused with the vertical axis used to express height above a given level. We
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Figure 14. Sketch of a cylindrical open channel and notations.

then define the local instantaneous values of the free surface elevation H(x, y, t), the bed elevation
η(x, y, t) and the flow depth D(x, y, t) such that (Figure 14):

D(x, y, t) = H(x, y, t)− η(x, y). (69)

Let ηa denote the local elevation of the channel axis. We can then write

ηa = ηa0 − sin θ x ≃ ηa0 − S x, (70)

with ηa0 a constant setting the reference value of the elevation of the channel axis at the initial
cross section (x = 0) and θ the angle that the channel axis forms with the horizontal (see Figure
14). Moreover, we have denoted by S the channel slope and assumed θ sufficiently small to allow
for the approximation sin(θ) ≃ tan(θ). Note that, provided the channel cuts the valley plain along
its steepest direction, the channel slope coincides with the valley slope.

At this stage of our analysis, the solid boundary of the channel is assumed to be fixed, i.e.
the bed elevation η is taken to be independent of time. The real boundaries of fluvial channels
are erodible, hence, in due course, the latter assumption will have to be relaxed allowing for the
spatial-temporal evolution of the solid boundary.

2.3.2 Formulation

The mathematical formulation of the hydrodynamic problem is immediately obtained from the
general treatment presented in Section 2.2.4.

Below we refer to the cartesian system introduced in the previous Section and denote by
ux(x, y, z, t), uy(x, y, z, t), uz(x, y, z, t) and P (x, y, z, t) the longitudinal, lateral and vertical com-
ponent of the mean velocity vector and the mean pressure, respectively, averaged over turbulence.
Note that the temporal dependence of mean velocity and mean pressure is preserved in order
to account for possible flow unsteadiness associated with phenomena (e.g. flood propagation)
involving temporal scales much larger than the characteristic period of turbulent fluctuations.

With the latter notations and neglecting the contribution of viscous stresses, as appropriate
throughout most of the flow depth (see Section 2.2.9), the dimensional form of the Reynolds
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averaged conservation equations for the fluid phase reads:

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0, (71a)
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− ϱ g. (71d)

The boundary conditions to be associated with the above conservation equations are those
presented in Section 2.2.6, namely the kinematic condition (35) at the free surface which is also
assumed to be stress free (equation 37), and the no slip condition (36) at a given distance η0 from
the channel bed, depending on the model used to close the turbulence. Finally, in this type of
flow, the open boundaries are the upstream and downstream end cross-sections of the channel
reach under consideration.

The above system of partial differential equations can be closed with the help of Boussinesq
relationship (44). Including into the mean pressure P the minor correction associated with the
turbulent kinetic energy K, one readily finds:
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zz
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. (72b)

2.3.3 Uniform steady (normal) flow.

As seen in Section 2.2.9, a uniform turbulent flow is statistically independent of time and
homogeneous in the longitudinal direction. In the case of an open channel, flow uniformity requires
the following conditions:

- the channel geometry must not vary in the longitudinal direction, i.e. the channel surface must
be cylindrical;

- the flow properties must also be constant in the longitudinal direction: for this condition to
be satisfied, the channel reach considered must be sufficiently far from any ’end’ conditions
which may drive backwater effects.

Under steady, uniform flow conditions (called also normal conditions) it can be easily demon-
strated that the following relationships hold:

H(x) = H0 − S x, η(x, y) = η0(y)− S x, ux = u(y, z), uy = uz = 0, (73)

where the function η0(y) defines the shape of the cross section and H0 is the constant free surface
elevation at the initial cross section x = 0.

As Reynolds stresses are also independent of the longitudinal coordinate x, the governing

39



Theoretical Morphodynamics Straight Channels

Figure 14. Sketch of a cylindrical open channel and notations.

then define the local instantaneous values of the free surface elevation H(x, y, t), the bed elevation
η(x, y, t) and the flow depth D(x, y, t) such that (Figure 14):

D(x, y, t) = H(x, y, t)− η(x, y). (69)

Let ηa denote the local elevation of the channel axis. We can then write

ηa = ηa0 − sin θ x ≃ ηa0 − S x, (70)

with ηa0 a constant setting the reference value of the elevation of the channel axis at the initial
cross section (x = 0) and θ the angle that the channel axis forms with the horizontal (see Figure
14). Moreover, we have denoted by S the channel slope and assumed θ sufficiently small to allow
for the approximation sin(θ) ≃ tan(θ). Note that, provided the channel cuts the valley plain along
its steepest direction, the channel slope coincides with the valley slope.

At this stage of our analysis, the solid boundary of the channel is assumed to be fixed, i.e.
the bed elevation η is taken to be independent of time. The real boundaries of fluvial channels
are erodible, hence, in due course, the latter assumption will have to be relaxed allowing for the
spatial-temporal evolution of the solid boundary.

2.3.2 Formulation

The mathematical formulation of the hydrodynamic problem is immediately obtained from the
general treatment presented in Section 2.2.4.

Below we refer to the cartesian system introduced in the previous Section and denote by
ux(x, y, z, t), uy(x, y, z, t), uz(x, y, z, t) and P (x, y, z, t) the longitudinal, lateral and vertical com-
ponent of the mean velocity vector and the mean pressure, respectively, averaged over turbulence.
Note that the temporal dependence of mean velocity and mean pressure is preserved in order
to account for possible flow unsteadiness associated with phenomena (e.g. flood propagation)
involving temporal scales much larger than the characteristic period of turbulent fluctuations.

With the latter notations and neglecting the contribution of viscous stresses, as appropriate
throughout most of the flow depth (see Section 2.2.9), the dimensional form of the Reynolds
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averaged conservation equations for the fluid phase reads:
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The boundary conditions to be associated with the above conservation equations are those
presented in Section 2.2.6, namely the kinematic condition (35) at the free surface which is also
assumed to be stress free (equation 37), and the no slip condition (36) at a given distance η0 from
the channel bed, depending on the model used to close the turbulence. Finally, in this type of
flow, the open boundaries are the upstream and downstream end cross-sections of the channel
reach under consideration.

The above system of partial differential equations can be closed with the help of Boussinesq
relationship (44). Including into the mean pressure P the minor correction associated with the
turbulent kinetic energy K, one readily finds:
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2.3.3 Uniform steady (normal) flow.

As seen in Section 2.2.9, a uniform turbulent flow is statistically independent of time and
homogeneous in the longitudinal direction. In the case of an open channel, flow uniformity requires
the following conditions:

- the channel geometry must not vary in the longitudinal direction, i.e. the channel surface must
be cylindrical;

- the flow properties must also be constant in the longitudinal direction: for this condition to
be satisfied, the channel reach considered must be sufficiently far from any ’end’ conditions
which may drive backwater effects.

Under steady, uniform flow conditions (called also normal conditions) it can be easily demon-
strated that the following relationships hold:

H(x) = H0 − S x, η(x, y) = η0(y)− S x, ux = u(y, z), uy = uz = 0, (73)

where the function η0(y) defines the shape of the cross section and H0 is the constant free surface
elevation at the initial cross section x = 0.

As Reynolds stresses are also independent of the longitudinal coordinate x, the governing
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Reynolds equations become:
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∂x
= 0, (74a)
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The dynamic boundary conditions at the free surface (40) reduce to the simplest form:

T t
zx|H = 0, T t

zy|H = 0, −P + T t
zz|H = 0, (75)

while the no slip condition (36) at the solid boundary will be specified according to the turbulence
closure scheme employed. Given the steady character of the flow field initial conditions are not
required. Moreover, the only condition needed at open boundaries consists of assigning the flow
discharge Q.

Using the Boussinesq closure (44) and accounting for uniformity (equation (73)), one readily
finds:

T t
xx = T t

yy = T t
zz = 0, T t

zy = T t
yz = 0, (76a)
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The governing equations (74) thus become:
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∂x
= 0, (77a)
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∂
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∂u

∂z

)
= −g S, (77b)

∂P

∂y
= 0, (77c)

∂P

∂z
= −ϱ g. (77d)

while the dynamic boundary conditions at the free surface (75) simplifies to:

∂u

∂z

∣∣∣∣
H

= 0, P |H = 0. (78)

Equation (77d) is immediately solved to give a hydrostatic distribution of the mean pressure:

P = ϱ g (H − z) , (79)

while equation (77c) implies that the free surface is horizontal in the lateral direction:

H = H(x) = H0 − S x. (80)

Hence, under uniform conditions, the free surface is plane with longitudinal slope equal to the
channel slope, independently of the shape of the cross-section.
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The solution for the flow speed u is obtained integrating the longitudinal momentum equation
(77b) along the flow depth and across the section once a closure is assumed for the kinematic
eddy viscosity νT . Before tackling this problem for prismatic sections with arbitrary shape, it is
instructive to consider the case of an infinitely wide rectangular channel.

2.3.4 The case of infinitely wide rectangular channels.

Let us now consider the uniform turbulent flow in a channel with a rectangular and very wide
(strictly infinitely wide) cross-section. This problem has been already analyzed in Section 2.2.9.
Here, we specifically focus on adequate representations of the eddy viscosity in the context of a
zero-order closure model. We only recall that, owing to the plane character of the flow, all partial
derivatives along the transverse direction y vanish. The longitudinal momentum equation (77b)
then simplifies to:

d

dz

(
νT

du

dz

)
= −g S. (81)

Integration of (81) leads to the following linear distribution of shear stresses:

T t
zx = τ(z) = ϱ νT

du

dz
= τu

(
1− z

Du

)
, (82)

where Du is the uniform flow depth while

τu = ϱg Du S (83)

is the shear stress at the channel bed. Note that, differently from relation (52), here only the
turbulent stress is considered, owing to its dominance across most of the flow depth.

Experimental observations and dimensional arguments suggest for νT a structure of the form

νT = νTu = uτu Du N (ζ), (84)

where we recall that uτu = (τu/ϱ)
1/2 is the friction velocity and ζ is the normalized vertical

coordinate z/Du. The mixing length (see equation (46)) is thus taken to scale with the flow
depth and has a vertical distribution described by the shape function N (ζ). Substituting (84) into
equation (82) and integrating one finds:

u

uτu

=

∫ ζ

ζ0

(1− ζ ′)

N (ζ ′)
dζ ′, (85)

where ζ0 = z0/Du is the dimensionless elevation where no-slip is imposed at the wall. Once
the velocity distribution has been derived, the depth averaged flow velocity Uu is obtained by
integrating (85) throughout the flow depth:

Uu =
uτu

1− ζ0

∫ 1

ζ0

dζ

∫ ζ

ζ0

(1− ζ ′)

N (ζ ′)
dζ ′. (86)

Note that the normalized coordinate ζ0 at which the no slip bed condition is imposed is strictly
associated with relative bed roughness, which is typically much smaller than one. Hence, below,
we set (1− ζ0) ≃ 1.

The choice of an appropriate form for the function N (ζ) has been the subject of extensive
investigations, reviewed, e.g. by Nezu and Nakagawa (1993).

The simplest option is to assume a constant distribution as suggested by Engelund (1964) to
reduce the calculation of turbulent flows to a form amenable to analytical treatment. This choice
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Reynolds equations become:
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The dynamic boundary conditions at the free surface (40) reduce to the simplest form:
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zy|H = 0, −P + T t
zz|H = 0, (75)

while the no slip condition (36) at the solid boundary will be specified according to the turbulence
closure scheme employed. Given the steady character of the flow field initial conditions are not
required. Moreover, the only condition needed at open boundaries consists of assigning the flow
discharge Q.

Using the Boussinesq closure (44) and accounting for uniformity (equation (73)), one readily
finds:
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The governing equations (74) thus become:
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= −ϱ g. (77d)

while the dynamic boundary conditions at the free surface (75) simplifies to:

∂u

∂z

∣∣∣∣
H

= 0, P |H = 0. (78)

Equation (77d) is immediately solved to give a hydrostatic distribution of the mean pressure:

P = ϱ g (H − z) , (79)

while equation (77c) implies that the free surface is horizontal in the lateral direction:

H = H(x) = H0 − S x. (80)

Hence, under uniform conditions, the free surface is plane with longitudinal slope equal to the
channel slope, independently of the shape of the cross-section.
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The solution for the flow speed u is obtained integrating the longitudinal momentum equation
(77b) along the flow depth and across the section once a closure is assumed for the kinematic
eddy viscosity νT . Before tackling this problem for prismatic sections with arbitrary shape, it is
instructive to consider the case of an infinitely wide rectangular channel.

2.3.4 The case of infinitely wide rectangular channels.

Let us now consider the uniform turbulent flow in a channel with a rectangular and very wide
(strictly infinitely wide) cross-section. This problem has been already analyzed in Section 2.2.9.
Here, we specifically focus on adequate representations of the eddy viscosity in the context of a
zero-order closure model. We only recall that, owing to the plane character of the flow, all partial
derivatives along the transverse direction y vanish. The longitudinal momentum equation (77b)
then simplifies to:

d

dz

(
νT

du

dz

)
= −g S. (81)

Integration of (81) leads to the following linear distribution of shear stresses:
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zx = τ(z) = ϱ νT

du
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= τu

(
1− z

Du

)
, (82)

where Du is the uniform flow depth while

τu = ϱg Du S (83)

is the shear stress at the channel bed. Note that, differently from relation (52), here only the
turbulent stress is considered, owing to its dominance across most of the flow depth.

Experimental observations and dimensional arguments suggest for νT a structure of the form

νT = νTu = uτu Du N (ζ), (84)

where we recall that uτu = (τu/ϱ)
1/2 is the friction velocity and ζ is the normalized vertical

coordinate z/Du. The mixing length (see equation (46)) is thus taken to scale with the flow
depth and has a vertical distribution described by the shape function N (ζ). Substituting (84) into
equation (82) and integrating one finds:
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uτu

=

∫ ζ

ζ0

(1− ζ ′)

N (ζ ′)
dζ ′, (85)

where ζ0 = z0/Du is the dimensionless elevation where no-slip is imposed at the wall. Once
the velocity distribution has been derived, the depth averaged flow velocity Uu is obtained by
integrating (85) throughout the flow depth:

Uu =
uτu

1− ζ0

∫ 1

ζ0

dζ

∫ ζ

ζ0

(1− ζ ′)

N (ζ ′)
dζ ′. (86)

Note that the normalized coordinate ζ0 at which the no slip bed condition is imposed is strictly
associated with relative bed roughness, which is typically much smaller than one. Hence, below,
we set (1− ζ0) ≃ 1.

The choice of an appropriate form for the function N (ζ) has been the subject of extensive
investigations, reviewed, e.g. by Nezu and Nakagawa (1993).

The simplest option is to assume a constant distribution as suggested by Engelund (1964) to
reduce the calculation of turbulent flows to a form amenable to analytical treatment. This choice
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provides a useful tool for rough engineering calculations and for gaining qualitative understanding
of the mechanisms which control the formation of some river and estuarine bedforms. The idea is to
select a constant value N0 that produces the mean velocity distribution which fits the experimental
data at best. The disadvantage of this approach is its inability to impose the no slip condition at
the wall. Indeed, setting N = N0, into (85) gives:

u

uτu

=
1

N0

(
ζ − ζ2

2

)
+

up

uτu

, (87)

with up the slip velocity at the bed. According to Engelund (1964) the value N0 = 1/13 is the one
which fits the experimental points better than the logarithmic distribution over 90% of the profile.
An expression for the slip velocity up is then found by fitting the theoretical value of the surface
velocity predicted by (87) to the value obtained from the logarithmic distribution. For rough walls
Engelund (1964) finds:

up

uτu

= 2 + 2.5 ln
Du

es
. (88)

The depth averaged value of Uu predicted by substituting (88) into (87) reads

Uu = uτu

[
6.33 + 2.5 ln

(
Du

es

)]
. (89)

Depth averaging (67) the reader will find a relationship identical with (89) except for the constant
6.33, which becomes 6.

The next simplest choice for N (ζ) is to adopt the linear distribution (k ζ), with k Von Karman
constant. This eddy viscosity distribution leads to the classical logarithmic distribution for the
flow speed, that we have seen (Section 2.2.9) to apply in the inertial sublayer. Refinements of
the linear distribution are then needed in order to reproduce deviations from the logarithmic law
observed in the outer layer, where the velocity defect law holds (Figure 12b).

Various corrections to the linear distribution have been proposed in the literature. Nezu and
Nakagawa (1993) suggest the following general form for N (ζ):

N (ζ) =
k ζ (1− ζ)

1 + wf (ζ)
, (90)

where wf (ζ) is the so called wake correction. This latter quantity is associated with the function
Wf appearing in the law of the wake (66) through the relation:

Wf (ζ) =
1

Π

∫ ζ

ζ0

wf (ζ
′)

ζ ′
dζ ′, (91)

with Π the wake strength.
An alternative relatively simple form of N (ζ), appropriate to uniform open channel flow, was

proposed by Rattray and Mitsuda (1974). It reads:

N (ζ) = k ζ (1− ζ) = k ζ
τ(ζ)

τu
(ζ < 0.2), (92a)

N (ζ) = 0.16 k (ζ ≥ 0.2). (92b)

Finally note that from (86) one may immediately derive an expression for the flow conductance
χu of uniform flows in terms of the relative roughness ζ0:

χu =
Uu

uτu

=

∫ 1

ζ0

dζ

∫ ζ

ζ0

1− ζ ′

N (ζ ′)
dζ ′. (93)
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As an example, adopting for N (ζ) the general form (90) in its the simplest form with wf (ζ) = 0
and using (93), one finds:

ζ0 = exp(−1− k χu). (94)

The reader should observe that this relationship allows one to calculate the effective relative
elevation ζ0 at which no slip occurs once the flow conductance χu is known. Also, we note that
(93), along with (83), lead to the well known Chézy relationship (Chézy, 1776):

Uu = χu

√
g Du S, (95)

valid for uniform open channel flows.
With the help of the above relationships, the vertical distribution of the flow speed may finally

be expressed in the form:

u(ζ) = Uu F0(ζ), (96)

with

F0(ζ) =

∫ ζ

ζ0

1− ζ ′

N (ζ ′)
dζ ′

∫ 1

ζ0
dζ

∫ ζ

ζ0
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N (ζ ′)
dζ ′

. (97)

The specific expression for F0(ζ) is obtained once the shape function N (ζ) is chosen.
To conclude this section, we note that the considered zero-order closure models do not consider

viscous effects in the near wall. This is not a severe drawback in the field of river morphodynamics
as river boundaries are most commonly hydraulically rough. However, in laboratory observations,
smooth and intermediate regimes are not uncommon. Also, some fluvial bedforms (ripples) are
typically observed under hydraulically smooth conditions. An empirical tool to account for viscous
effects in the viscous sublayer within the framework of a zero-order closure was proposed by Van
Driest (1956). It consists of correcting the structure of the eddy viscosity in the near wall region
as follows:

νT = uτu DN (ζ) Γ (uτuz/ν) , (98)

where:

Γ (uτuz/ν) = 1− exp

(
−uτuz/ν

bvd

)
, bvd = 26, (99)

is a damping function. For uτuz/ν ≫ bvd the correction becomes ineffective and one recovers the
usual logarithmic law, whilst for uτuz/ν ≪ bvd, Γ → (uτuz/ν)/bvd and νT → 0, hence Reynolds
stresses become negligible and the viscous law u/uτu = uτuz/ν is recovered.

As a final remark, we note that even though one-equation closure models are sufficient for
the purposes of the present Monograph, higher order closure models may be also employed.
Applications of the K-ε model to uniform turbulent flow in open channels first appeared in the
literature in the 1980’s in the context of investigations concerning the transport of suspended
sediments in open channels (Celik and Rodi, 1984, 1988). Since then, this type of models have
often been employed in morphodynamic studies and have been implemented in popular codes as
DELFT3D (Lesser et al., 2004) and ROMS (Warner et al., 2005). However, the K-ε model, being
based on the linear isotropic Boussinesq closure, is unable to reproduce the observed normal stress
anisotropy. To overcome the above deficiency, one must resort to nonlinear closures (Speziale,
1987) or to Reynolds stress models. The reader is referred to specialized books (e.g. Pope, 2000;
Wilcox, 2006; Durbin and Pettersson Reif, 2011) for exhaustive reviews.

2.3.5 The case of channels with finite width and arbitrary shape
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provides a useful tool for rough engineering calculations and for gaining qualitative understanding
of the mechanisms which control the formation of some river and estuarine bedforms. The idea is to
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An expression for the slip velocity up is then found by fitting the theoretical value of the surface
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constant. This eddy viscosity distribution leads to the classical logarithmic distribution for the
flow speed, that we have seen (Section 2.2.9) to apply in the inertial sublayer. Refinements of
the linear distribution are then needed in order to reproduce deviations from the logarithmic law
observed in the outer layer, where the velocity defect law holds (Figure 12b).
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As an example, adopting for N (ζ) the general form (90) in its the simplest form with wf (ζ) = 0
and using (93), one finds:

ζ0 = exp(−1− k χu). (94)

The reader should observe that this relationship allows one to calculate the effective relative
elevation ζ0 at which no slip occurs once the flow conductance χu is known. Also, we note that
(93), along with (83), lead to the well known Chézy relationship (Chézy, 1776):
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The specific expression for F0(ζ) is obtained once the shape function N (ζ) is chosen.
To conclude this section, we note that the considered zero-order closure models do not consider

viscous effects in the near wall. This is not a severe drawback in the field of river morphodynamics
as river boundaries are most commonly hydraulically rough. However, in laboratory observations,
smooth and intermediate regimes are not uncommon. Also, some fluvial bedforms (ripples) are
typically observed under hydraulically smooth conditions. An empirical tool to account for viscous
effects in the viscous sublayer within the framework of a zero-order closure was proposed by Van
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where:

Γ (uτuz/ν) = 1− exp
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)
, bvd = 26, (99)

is a damping function. For uτuz/ν ≫ bvd the correction becomes ineffective and one recovers the
usual logarithmic law, whilst for uτuz/ν ≪ bvd, Γ → (uτuz/ν)/bvd and νT → 0, hence Reynolds
stresses become negligible and the viscous law u/uτu = uτuz/ν is recovered.

As a final remark, we note that even though one-equation closure models are sufficient for
the purposes of the present Monograph, higher order closure models may be also employed.
Applications of the K-ε model to uniform turbulent flow in open channels first appeared in the
literature in the 1980’s in the context of investigations concerning the transport of suspended
sediments in open channels (Celik and Rodi, 1984, 1988). Since then, this type of models have
often been employed in morphodynamic studies and have been implemented in popular codes as
DELFT3D (Lesser et al., 2004) and ROMS (Warner et al., 2005). However, the K-ε model, being
based on the linear isotropic Boussinesq closure, is unable to reproduce the observed normal stress
anisotropy. To overcome the above deficiency, one must resort to nonlinear closures (Speziale,
1987) or to Reynolds stress models. The reader is referred to specialized books (e.g. Pope, 2000;
Wilcox, 2006; Durbin and Pettersson Reif, 2011) for exhaustive reviews.

2.3.5 The case of channels with finite width and arbitrary shape
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Wide channels with arbitrary shape

The most obvious extension of results obtained in the previous Section concerns the case of ’wide’
channels with arbitrary shape, assuming that the variation of the flow properties in the lateral
direction is sufficiently ’slow’, to neglect the lateral derivatives in the governing equation (74b).
With this assumption, the flow field is treated as a sequence of locally uniform flows, each referring
to a vertical strip of infinitesimal thickness (dy), with properties that vary slowly in the lateral
direction (Figure 15).

Figure 15. Sketch of a wide cross section with the flow treated as a sequence of locally uniform flows, each referring
to a vertical strip of infinitesimal thickness.

Let D(y) be the local flow depth. With the same notations of the previous Section, the solution
for the bottom stress and the average pressure associated with each vertical strip reads:

τ(y) = τ0 (y)(1− ζ), P = ϱ g D(y) (1− ζ), (100)

where

τ0(y) = ϱ g D(y)S, ζ =
z

D(y)
. (101)

The closure for the eddy viscosity, for each vertical strip, is now:

νT = uτ (y)D(y)N (ζ), (102)

with uτ (y) =
√

τ0(y)/ϱ. The following vertical distribution for the flow speed then arises:

u = U(y)F0(ζ). (103)

Here U(y) is the depth averaged flow speed, related to the local values of the flow conductance
χ(y) and friction velocity uτ (y) as follows:

U(y) = χ(y)uτ (y), (104)

where

uτ (y) =

√
τ0(y)

ϱ
=

√
g D(y)S, (105)

and χ(y) is obtained from (93) adopting the local value of ζ0(y).
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The case of narrow channels

For narrow channels the slowly varying approximation is no longer valid as the presence of the
channel banks affects the flow field quite significantly. Hence, the full momentum equation (74b)
must be solved numerically. This is not a difficult job, once an appropriate closure for the eddy
viscosity is assumed. And, as mentioned in Section 2.2.8, a number of increasingly refined models
are available in the literature.

However, for the present purposes, a lot can be learnt using a relatively simple closure, still
based on Boussinesq assumption, known as the ’isovel method’, which was originally empirically
proposed by Leighly (1932) and later developed by Houjou et al. (1990), Kean and Smith (2004)
and Kean et al. (2009).

Essentially, the relationship (102) is modified referring to a non cartesian orthogonal system
consisting of isovels, namely lines of equal longitudinal speed, and rays, i.e. lines orthogonal to
isovels. We then write:

νT = uτ (n)D(n)N
[

ζ

D(n)

]
, (106)

where n is the curvilinear coordinate defined along the isovel coinciding with the channel boundary,
ζ is the curvilinear coordinate defined along the central ray, uτ (n) ≡

√
τ0(n)/ϱ is the friction

velocity along the wet boundary and D(n) is the length of the ray (Figure 16 top). The value of

Figure 16. The upper plot shows a sketch of a narrow cross section with the orthogonal network of rays and isovels.
The lower plot depicts the forces acting on the boundary of a control volume consisting of an infinitesimal cylinder
bounded by two adjacent cross sections at an infinitesimal distance ds, two adjacent ray surfaces at an infinitesimal

distance dn, the bottom and the free surface.

τ0(n) is determined imposing the dynamic equilibrium of an infinitesimal volume of water bounded
by two adjacent ray surfaces, the bottom, the free surface and two channel cross sections at a
distance ds (Figure 16 bottom). We note that, within the framework of Boussinesq closure, the
stress T t

ns on the ray surfaces vanishes. Indeed, shear on ray surfaces is driven by variations of flow
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direction (Figure 15).
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τ0(n) is determined imposing the dynamic equilibrium of an infinitesimal volume of water bounded
by two adjacent ray surfaces, the bottom, the free surface and two channel cross sections at a
distance ds (Figure 16 bottom). We note that, within the framework of Boussinesq closure, the
stress T t

ns on the ray surfaces vanishes. Indeed, shear on ray surfaces is driven by variations of flow
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speed in the normal n-direction, i.e. along isovels. Moreover, the dynamic boundary condition
requires that the stress T t

ζs on the free surface must also vanish. At last, the pressures acting on
two adjacent cross sections are identical due to the constraint of uniformity. Hence, one finds:

τ0 (ds dn) = ϱ g S dA(n) ds ⇒ τ0 = ϱ g S
dA

dn
, (107)

having denoted by dA the infinitesimal area of the surface bounded by the two adjacent rays, the
bottom line and the free surface (Figure 16).

In order to complete the analysis, we must extend the latter relationship such to calculate the
shear stress τ ≡ T t

ζs at any location (ζ, n) in the cross section. A force balance similar to (107)
leads to the following relation:

τ = ϱ g S
dAζ

dnζ
, (108)

where dAζ is the area of the surface element bounded by the two adjacent rays, the element of the
isovel of length dnζ through the point (ζ, n) and the free surface.

In order to model the eddy viscosity νT , we exploit the slowly varying assumption and use the
uniform form of νT expressed in terms of the local flow field. Hence, we write:

νT = uτ (n)D(n)N (ζ). (109)

Here, N (ζ) is a function describing the shape of the radial distribution of the eddy viscosity
expressed in terms of the normalized radial coordinate ζ.

In particular, recalling (106) and (92), the eddy viscosity may be given the following structure:

νT = uτ (n)D(n)

[
k ζ

τ(ζ)

τ0

]
= k ζ uτ (n)

dAζ

dnζ

dA

dn

(ζ < ζl) , (110a)

νT = 0.16 kD(n)
√

g D(n)S (ζ ≥ ζl) . (110b)

where ζl is the value of ζ at which νT obtained from (110a) reaches the constant value (110b)
describing mixing in the central region of the flow field.

Finally, appropriate boundary conditions must be imposed. At the water surface the tangential
stress T t

ζs, hence ∂u/∂ζ, must vanish. Moreover, no slip must be imposed at the roughness height
ζ0. Most often, in order to reduce the computational effort, the latter constraint is replaced by the
condition that the velocity a short distance above the boundary must satisfy the law of the wall,
namely u(ζ) = (uτ (n)/k) ln(ζ/ζ0).

2.3.6 Turbulence driven secondary flows in channels

The expression secondary flow refers to flow fields that may be conceptually decomposed into
a primary flow, i.e. a prevailing motion, and a weaker flow field occurring in planes orthogonal to
the direction of the primary flow. The first thorough definition of secondary flows goes back to
Prandtl (1927). Investigating experimentally the turbulent flow in straight ducts with non-circular
cross-sections Prandtl (1927) measured carefully the distribution of mean longitudinal velocity in
the cross section and drew the associated isovels (Figure 17a). It clearly appears that the speed
increases at corners and decreases near the adjacent walls. Prandtl suggested that this distortion
arose from the occurrence of a secondary flow, i.e. an additional circulatory motion which develops
in the cross section of channels with uniform but non circular cross sections.

Prandtl makes a further fundamental distinction between secondary flows of the first kind,
which are driven by the effect of centrifugal forces and the associated pressure gradient and
secondary flows of the second kind, which are driven by turbulence. The former ones occur in
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Figure 17. (a) Pattern of isovels measured in the cross section of a rectangular duct subject to a steady uniform
turbulent flow. (b) Near corner secondary flows according to Prandtl (1927).

both laminar and turbulent flows in curved open channels or curved ducts. They will be widely
investigated in the present Monograph, where we study the morphodynamics of meandering rivers.
On the contrary, secondary flows of the second kind are only observed in turbulent flows in non
circular channels. Below, we discuss how they are generated.

The mechanism of generation of secondary flows of the second kind

In order to clarify the mechanism of generation of secondary flows of the second kind, let us refer
to flow in straight ducts (Figure 18) and consider the mean vorticity equation (43). The aim is to
show that secondary flows can be generated by turbulence anisotropy, that gives rise to lateral
gradients of the normal Reynolds stresses. In the case of uniform turbulent flow conditions, the
equation for the mean streamwise vorticity simplifies to:

uy
∂Ωx

∂y
+ uz

∂Ωx

∂z
− ν∇2 Ωx = −

∂⟨v′y ω′
x⟩

∂y
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∂z

+
∂⟨v′x ω′

y⟩
∂y

+
∂⟨v′x ω′

z⟩
∂z

, (111)

where we have taken into account the fact that, as a result of the uniform character of the mean
flow, Ωy = ∂ux/∂z and Ωz = −∂ux/∂y, hence the quantity (Ωy ∂ux/∂y +Ωz ∂ux/∂z) vanishes.

This equation suggests that, if turbulent fluctuations were not present, as in laminar flows, no
secondary flow would develop. Indeed, the only solution of the turbulent uniform flow within the
duct would be Ωx = 0. On the contrary, turbulent fluctuations on the right hand side of (111)
generate mean streamwise vorticity.

The physical mechanism underlying this process is better clarified if the right hand side of
(111) is expressed in terms of Reynolds stresses. Using the definition of the vorticity fluctuation
and the continuity equation for the velocity fluctuations, some algebraic work eventually leads to
the following alternative form of the streamwise vorticity equation:5
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ϱ
. (112)

The right hand side of (112) shows that a first contribution to the generation of secondary flow
is due to normal stress anisotropy. A second contribution is provided by the Reynolds shear stress

5 Using the definition of the vorticity fluctuation, we may write:
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speed in the normal n-direction, i.e. along isovels. Moreover, the dynamic boundary condition
requires that the stress T t

ζs on the free surface must also vanish. At last, the pressures acting on
two adjacent cross sections are identical due to the constraint of uniformity. Hence, one finds:

τ0 (ds dn) = ϱ g S dA(n) ds ⇒ τ0 = ϱ g S
dA

dn
, (107)

having denoted by dA the infinitesimal area of the surface bounded by the two adjacent rays, the
bottom line and the free surface (Figure 16).

In order to complete the analysis, we must extend the latter relationship such to calculate the
shear stress τ ≡ T t

ζs at any location (ζ, n) in the cross section. A force balance similar to (107)
leads to the following relation:

τ = ϱ g S
dAζ

dnζ
, (108)

where dAζ is the area of the surface element bounded by the two adjacent rays, the element of the
isovel of length dnζ through the point (ζ, n) and the free surface.

In order to model the eddy viscosity νT , we exploit the slowly varying assumption and use the
uniform form of νT expressed in terms of the local flow field. Hence, we write:

νT = uτ (n)D(n)N (ζ). (109)

Here, N (ζ) is a function describing the shape of the radial distribution of the eddy viscosity
expressed in terms of the normalized radial coordinate ζ.

In particular, recalling (106) and (92), the eddy viscosity may be given the following structure:

νT = uτ (n)D(n)

[
k ζ

τ(ζ)

τ0

]
= k ζ uτ (n)

dAζ

dnζ

dA

dn

(ζ < ζl) , (110a)

νT = 0.16 kD(n)
√

g D(n)S (ζ ≥ ζl) . (110b)

where ζl is the value of ζ at which νT obtained from (110a) reaches the constant value (110b)
describing mixing in the central region of the flow field.

Finally, appropriate boundary conditions must be imposed. At the water surface the tangential
stress T t

ζs, hence ∂u/∂ζ, must vanish. Moreover, no slip must be imposed at the roughness height
ζ0. Most often, in order to reduce the computational effort, the latter constraint is replaced by the
condition that the velocity a short distance above the boundary must satisfy the law of the wall,
namely u(ζ) = (uτ (n)/k) ln(ζ/ζ0).

2.3.6 Turbulence driven secondary flows in channels

The expression secondary flow refers to flow fields that may be conceptually decomposed into
a primary flow, i.e. a prevailing motion, and a weaker flow field occurring in planes orthogonal to
the direction of the primary flow. The first thorough definition of secondary flows goes back to
Prandtl (1927). Investigating experimentally the turbulent flow in straight ducts with non-circular
cross-sections Prandtl (1927) measured carefully the distribution of mean longitudinal velocity in
the cross section and drew the associated isovels (Figure 17a). It clearly appears that the speed
increases at corners and decreases near the adjacent walls. Prandtl suggested that this distortion
arose from the occurrence of a secondary flow, i.e. an additional circulatory motion which develops
in the cross section of channels with uniform but non circular cross sections.

Prandtl makes a further fundamental distinction between secondary flows of the first kind,
which are driven by the effect of centrifugal forces and the associated pressure gradient and
secondary flows of the second kind, which are driven by turbulence. The former ones occur in
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Figure 17. (a) Pattern of isovels measured in the cross section of a rectangular duct subject to a steady uniform
turbulent flow. (b) Near corner secondary flows according to Prandtl (1927).

both laminar and turbulent flows in curved open channels or curved ducts. They will be widely
investigated in the present Monograph, where we study the morphodynamics of meandering rivers.
On the contrary, secondary flows of the second kind are only observed in turbulent flows in non
circular channels. Below, we discuss how they are generated.

The mechanism of generation of secondary flows of the second kind

In order to clarify the mechanism of generation of secondary flows of the second kind, let us refer
to flow in straight ducts (Figure 18) and consider the mean vorticity equation (43). The aim is to
show that secondary flows can be generated by turbulence anisotropy, that gives rise to lateral
gradients of the normal Reynolds stresses. In the case of uniform turbulent flow conditions, the
equation for the mean streamwise vorticity simplifies to:
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where we have taken into account the fact that, as a result of the uniform character of the mean
flow, Ωy = ∂ux/∂z and Ωz = −∂ux/∂y, hence the quantity (Ωy ∂ux/∂y +Ωz ∂ux/∂z) vanishes.

This equation suggests that, if turbulent fluctuations were not present, as in laminar flows, no
secondary flow would develop. Indeed, the only solution of the turbulent uniform flow within the
duct would be Ωx = 0. On the contrary, turbulent fluctuations on the right hand side of (111)
generate mean streamwise vorticity.

The physical mechanism underlying this process is better clarified if the right hand side of
(111) is expressed in terms of Reynolds stresses. Using the definition of the vorticity fluctuation
and the continuity equation for the velocity fluctuations, some algebraic work eventually leads to
the following alternative form of the streamwise vorticity equation:5
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The right hand side of (112) shows that a first contribution to the generation of secondary flow
is due to normal stress anisotropy. A second contribution is provided by the Reynolds shear stress
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Figure 18. Sketch of secondary flow in a rectangular duct and notations (modified from Speziale, 1987).

associated with the secondary flow. Numerical simulations based on RANS nonlinear closures
suggest that the latter contribution may be dominant, an observation that, as pointed out by
Durbin and Pettersson Reif (2011) (pg. 208), is in contrast with the common belief that normal
stress anisotropy would be the origin of secondary flows. Normal stress anisotropy is indeed crucial
for their initial formation, but the secondary shear stress then becomes the dominant mechanism
responsible for maintaining the secondary flow once it is created.

In the context of Morphodynamics, the formation of turbulent secondary flows has been
extensively investigated also for wide open channels (Colombini, 1993; Colombini and Parker, 1995;
Yang et al., 2012).

2.4. Depth averaged formulation: the shallow water approximation

Various river and estuarine patterns are characterized by horizontal scales which exceed their
vertical scale by more than one order of magnitude. Under these conditions it proves convenient
to describe the flow field in terms of depth averaged properties (see the Figure 19 for notations
employed in this Section). The advantage of this approach is twofold:

- the number of dependent variables in the depth averaged formulation is reduced from four (the
three components of the mean velocity vector and the mean pressure) to three (the depth
averaged components of longitudinal and transverse velocity and the free surface elevation);

and
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Summing up these equations, noting that mean quantities do not vary in the longitudinal direction owing to
flow uniformity, and using the continuity equation for the velocity fluctuations we eventually find:
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- the number of independent variables is reduced from four (the longitudinal coordinate x, the
lateral coordinate y, the vertical coordinate z and time t) to three (x, y and t).

Let us then denote by L0 the smaller horizontal scale of the mean flow, i.e. the minimum
length over which significant spatial variations of the mean flow occur. Moreover, let D0 denote a
typical value of the flow depth. We then assume:

δ ≡ D0

L0
≪ 1. (113)

Furthermore let us assume the flow to be either steady or slowly varying in time in that the time
scale T0 over which significant variations of the mean flow occur at a fixed location must not be
smaller than L0/U0, where U0 denotes a typical velocity characteristic of the flow in the reach
under consideration. The above assumptions are appropriate to investigate a number of river and

Figure 19. Sketch of the channel and notations for 2D modeling.

estuarine processes. For example, the typical length L0 of fluvial bars scales with channel width;
values of δ based on such length typically range about 10−2-10−3. In addition, the time scales of
both flood propagation in rivers and tidal phenomena are typically much larger than L0/U0, a
quantity which ranges about 102-103 s.

2.4.1 Pressure is hydrostatically distributed

We now show that, under the above conditions and recalling that we can approximate the
normal to the bed with the vertical axis (Section 2.3.1), the mean pressure is hydrostatically
distributed in the vertical direction. In fact, the z-component of the Reynolds equations (see
equation (32)) and the continuity equation read:
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Figure 18. Sketch of secondary flow in a rectangular duct and notations (modified from Speziale, 1987).

associated with the secondary flow. Numerical simulations based on RANS nonlinear closures
suggest that the latter contribution may be dominant, an observation that, as pointed out by
Durbin and Pettersson Reif (2011) (pg. 208), is in contrast with the common belief that normal
stress anisotropy would be the origin of secondary flows. Normal stress anisotropy is indeed crucial
for their initial formation, but the secondary shear stress then becomes the dominant mechanism
responsible for maintaining the secondary flow once it is created.

In the context of Morphodynamics, the formation of turbulent secondary flows has been
extensively investigated also for wide open channels (Colombini, 1993; Colombini and Parker, 1995;
Yang et al., 2012).

2.4. Depth averaged formulation: the shallow water approximation

Various river and estuarine patterns are characterized by horizontal scales which exceed their
vertical scale by more than one order of magnitude. Under these conditions it proves convenient
to describe the flow field in terms of depth averaged properties (see the Figure 19 for notations
employed in this Section). The advantage of this approach is twofold:

- the number of dependent variables in the depth averaged formulation is reduced from four (the
three components of the mean velocity vector and the mean pressure) to three (the depth
averaged components of longitudinal and transverse velocity and the free surface elevation);

and
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∂x∂z
⟨v′xv′y⟩+

∂
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〈
v′z

∂v′x
∂x

〉
−

∂

∂z

〈
v′y

∂v′x
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〉

Summing up these equations, noting that mean quantities do not vary in the longitudinal direction owing to
flow uniformity, and using the continuity equation for the velocity fluctuations we eventually find:

−
∂⟨v′yω′

x⟩
∂y

−
∂⟨v′zω′

x⟩
∂z

+
∂⟨v′xω′
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+
∂⟨v′xω′
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(
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(
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)
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- the number of independent variables is reduced from four (the longitudinal coordinate x, the
lateral coordinate y, the vertical coordinate z and time t) to three (x, y and t).

Let us then denote by L0 the smaller horizontal scale of the mean flow, i.e. the minimum
length over which significant spatial variations of the mean flow occur. Moreover, let D0 denote a
typical value of the flow depth. We then assume:

δ ≡ D0

L0
≪ 1. (113)

Furthermore let us assume the flow to be either steady or slowly varying in time in that the time
scale T0 over which significant variations of the mean flow occur at a fixed location must not be
smaller than L0/U0, where U0 denotes a typical velocity characteristic of the flow in the reach
under consideration. The above assumptions are appropriate to investigate a number of river and

Figure 19. Sketch of the channel and notations for 2D modeling.

estuarine processes. For example, the typical length L0 of fluvial bars scales with channel width;
values of δ based on such length typically range about 10−2-10−3. In addition, the time scales of
both flood propagation in rivers and tidal phenomena are typically much larger than L0/U0, a
quantity which ranges about 102-103 s.

2.4.1 Pressure is hydrostatically distributed

We now show that, under the above conditions and recalling that we can approximate the
normal to the bed with the vertical axis (Section 2.3.1), the mean pressure is hydrostatically
distributed in the vertical direction. In fact, the z-component of the Reynolds equations (see
equation (32)) and the continuity equation read:

−∂P

∂z
− ϱg = ϱ

(
∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

)
− ∂T t

zx

∂x
−

∂T t
zy

∂y
− ∂T t

zz

∂z
, (114)
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∂uz

∂z
= −∂ux

∂x
− ∂uy

∂y
. (115)

We can roughly estimate the orders of magnitude of various contributions to (114) and (115) by
replacing derivatives with ratios between typical scales of variations of dependent and independent
variables. Hence, we take ∂uz/∂z ∼ O(W0/D0) where W0 denotes a typical scale for the vertical
velocity (say its typical depth-averaged value). Since ∂ux/∂x ∼ O(U0/L0), continuity implies that
W0 is O(δ) smaller than U0.

The z-momentum equation suggests that the vertical variation of the mean pressure has
a dominant gravitational contribution of order (ϱgD0), whilst the contribution due to inertia
is at most O(ϱU2

0 δ
2). Hence, inertia is O(U2

0 /gD0)δ
2 = O(F 2

r0)δ
2 smaller than gravity, where

Fr0 = U0/
√
g D0 is an O(1) quantity, representing a typical value of the Froude number in the

flow reach examined.
On the other hand, the contribution due to the divergence of Reynolds stresses can be estimated

recalling that uz = O(δ U0). Given the slowly varying character of the flow in space and time, and
using a Boussinesq type closure for T t

zx, we thus find:

T t
zx ∼ O

(
ϱ νT

∂ux

∂z

)
. (116)

Recalling (84), we may then assume that νT scales with the product between the macro scale of
turbulence D0 and a typical value of the friction velocity uτ0, which measures the intensity of
turbulent velocity fluctuations. Hence:

T t
zx ∼ O

(
ϱ uτ0 D0

(
U0

D0

))
. (117)

Noting that uτ0 ≪ U0, it is readily seen that the order of magnitude of the ratio between Reynolds
stress contribution and gravitational contribution is much smaller than (U2

0 /gD0) δ = F 2
0 δ, having

set uτ0/U0 ∼ O(δ).
In conclusion, we may neglect both inertial and Reynolds stress contributions in equation (114)

and integrate it at once to give:
P

ϱ
= g (H − z). (118)

From (118), it follows that the pressure gradient terms in the x- and y-components of Reynolds
equations take the forms:

1

ϱ

(
∂P

∂x
,
∂P

∂y

)
= g

(
∂H

∂x
,
∂H

∂y

)
. (119)

From equation (119) one thus replaces mean pressure P with free surface elevation H as a dependent
variable in the governing equations of a 2D scheme.

2.4.2 Derivation of the shallow water equations

The shallow water equations are formally derived by depth integrating the 3D Reynolds
averaged forms of the continuity equation and of the x, y-components of the momentum equation.

Consider first the x-component of the Reynolds equations. Using the continuity equation (31)
we may rewrite the convective terms as follows:

ux
∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
=

∂u2
x

∂x
+

∂(ux uy)

∂y
+

∂(ux uz)

∂z
. (120)

50

Incompressible hydrodynamics in straight channels

With the help of (120), we now depth integrate the x-component of the momentum equation (32).
Using Leibnitz rule, we find:

∫ H

η

{
∂ux

∂t
+

∂

∂x
(u2

x) +
∂

∂y
(uxuy) +

∂

∂z
(uxuz)

}
dz =

=
∂

∂t

∫ H

η

ux dz − ux|H
∂H

∂t
+ ux|η

∂η

∂t

+
∂

∂x

∫ H

η

u2
x dz − u2

x|H
∂H

∂x
+ u2

x|η
∂η

∂x

+
∂

∂y

∫ H

η

uxuy dz − [uxuy]H
∂H

∂y
+ [uxuy]η

∂η

∂y

+ [uxuz]H − [uxuz]η. (121)

We next define the depth averaged values of the longitudinal and lateral components of the
Reynolds averaged velocity vector:

U =
1

D

∫ H

η

ux dz, V =
1

D

∫ H

η

uy dz. (122)

Moreover, let us recall the kinematic boundary conditions at the free surface and at the bed
interface, which read:

∂H

∂t
+ ux|H

∂H

∂x
+ uy|H

∂H

∂y
− uz|H = 0, (ux|η, uy|η, uz|η) = 0. (123)

With the help of (122) and (123) the left hand side of (121) becomes:

∂

∂t
(DU) +

∂

∂x
(DU2) +

∂

∂y
(DUV ) +

∂

∂x

∫ H

η

(ux − U)2 dz +
∂

∂y

∫ H

η

(ux − U)(uy − V ) dz. (124)

Note that we have employed the following decompositions:

ux = U + (ux − U), uy = V + (uy − V ). (125)

Let us next perform the depth averaging of the Reynolds stress flux to find:
∫ H

η

(
∂T t

xx

∂x
+

∂T t
xy

∂y
+

∂T t
xz

∂z

)
dz =

∂
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η

T t
xx dz +

∂

∂y
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− T t
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+ T t

xz|H + T t
xx|η

∂η

∂x
+ T t

xy|η
∂η

∂y
− T t

xz|η. (126)

Let us now simplify (126) defining the depth averaged values of the T t
xx and T t

xy components of
Reynolds stresses as follows:

Txx =
1

D

∫ H

η

T t
xx dz, Txy =

1

D

∫ H

η

T t
xy dz, (127)

and recalling that the components of the unit vectors normal to the free surface and bed interface
(equation (38)), positive in the outer direction, read:

n̂x|H = −∂H/∂x

|∇FH |
, n̂y|H = −∂H/∂y

|∇FH |
, n̂z|H =

1

|∇FH |
, (128a)

n̂x|η =
∂η/∂x

|∇Fη|
, n̂y|η =

∂η/∂y

|∇Fη|
, n̂z|η = − 1

|∇Fη|
. (128b)
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∂uz

∂z
= −∂ux
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− ∂uy
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. (115)

We can roughly estimate the orders of magnitude of various contributions to (114) and (115) by
replacing derivatives with ratios between typical scales of variations of dependent and independent
variables. Hence, we take ∂uz/∂z ∼ O(W0/D0) where W0 denotes a typical scale for the vertical
velocity (say its typical depth-averaged value). Since ∂ux/∂x ∼ O(U0/L0), continuity implies that
W0 is O(δ) smaller than U0.

The z-momentum equation suggests that the vertical variation of the mean pressure has
a dominant gravitational contribution of order (ϱgD0), whilst the contribution due to inertia
is at most O(ϱU2

0 δ
2). Hence, inertia is O(U2

0 /gD0)δ
2 = O(F 2

r0)δ
2 smaller than gravity, where

Fr0 = U0/
√
g D0 is an O(1) quantity, representing a typical value of the Froude number in the

flow reach examined.
On the other hand, the contribution due to the divergence of Reynolds stresses can be estimated

recalling that uz = O(δ U0). Given the slowly varying character of the flow in space and time, and
using a Boussinesq type closure for T t

zx, we thus find:

T t
zx ∼ O

(
ϱ νT

∂ux

∂z

)
. (116)

Recalling (84), we may then assume that νT scales with the product between the macro scale of
turbulence D0 and a typical value of the friction velocity uτ0, which measures the intensity of
turbulent velocity fluctuations. Hence:

T t
zx ∼ O

(
ϱ uτ0 D0

(
U0

D0

))
. (117)

Noting that uτ0 ≪ U0, it is readily seen that the order of magnitude of the ratio between Reynolds
stress contribution and gravitational contribution is much smaller than (U2

0 /gD0) δ = F 2
0 δ, having

set uτ0/U0 ∼ O(δ).
In conclusion, we may neglect both inertial and Reynolds stress contributions in equation (114)

and integrate it at once to give:
P

ϱ
= g (H − z). (118)

From (118), it follows that the pressure gradient terms in the x- and y-components of Reynolds
equations take the forms:

1

ϱ

(
∂P

∂x
,
∂P

∂y

)
= g

(
∂H
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,
∂H
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)
. (119)

From equation (119) one thus replaces mean pressure P with free surface elevation H as a dependent
variable in the governing equations of a 2D scheme.

2.4.2 Derivation of the shallow water equations

The shallow water equations are formally derived by depth integrating the 3D Reynolds
averaged forms of the continuity equation and of the x, y-components of the momentum equation.

Consider first the x-component of the Reynolds equations. Using the continuity equation (31)
we may rewrite the convective terms as follows:
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+
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. (120)

50

Incompressible hydrodynamics in straight channels

With the help of (120), we now depth integrate the x-component of the momentum equation (32).
Using Leibnitz rule, we find:
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∫ H

η

uxuy dz − [uxuy]H
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+ [uxuy]η

∂η
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+ [uxuz]H − [uxuz]η. (121)

We next define the depth averaged values of the longitudinal and lateral components of the
Reynolds averaged velocity vector:

U =
1

D

∫ H

η

ux dz, V =
1

D

∫ H

η

uy dz. (122)

Moreover, let us recall the kinematic boundary conditions at the free surface and at the bed
interface, which read:

∂H

∂t
+ ux|H

∂H

∂x
+ uy|H

∂H

∂y
− uz|H = 0, (ux|η, uy|η, uz|η) = 0. (123)

With the help of (122) and (123) the left hand side of (121) becomes:

∂

∂t
(DU) +

∂

∂x
(DU2) +

∂

∂y
(DUV ) +

∂

∂x

∫ H

η

(ux − U)2 dz +
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∂y

∫ H

η

(ux − U)(uy − V ) dz. (124)

Note that we have employed the following decompositions:

ux = U + (ux − U), uy = V + (uy − V ). (125)

Let us next perform the depth averaging of the Reynolds stress flux to find:
∫ H

η
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∂T t

xx
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Let us now simplify (126) defining the depth averaged values of the T t
xx and T t

xy components of
Reynolds stresses as follows:

Txx =
1

D

∫ H

η

T t
xx dz, Txy =

1

D

∫ H

η

T t
xy dz, (127)

and recalling that the components of the unit vectors normal to the free surface and bed interface
(equation (38)), positive in the outer direction, read:

n̂x|H = −∂H/∂x

|∇FH |
, n̂y|H = −∂H/∂y

|∇FH |
, n̂z|H =

1

|∇FH |
, (128a)

n̂x|η =
∂η/∂x

|∇Fη|
, n̂y|η =

∂η/∂y

|∇Fη|
, n̂z|η = − 1
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where |∇FH | =
√

1 + (∂H/∂x)2 + (∂H/∂y)2 and |∇Fη| =
√

1 + (∂η/∂x)2 + (∂η/∂y)2. With
the help of the definition of stress vector (1), we may then write:

[
−T t

xx

∂H

∂x
− T t

xy

∂H

∂y
+ T t

xz

]

H

= tx|H |∇FH | ≃ tx|H , (129a)
[
−T t

xx

∂η

∂x
− T t

xy

∂η

∂y
+ T t

xz

]

η

= −tx|η |∇Fη| ≃ −tx|η, (129b)

where we have neglected the quantities [(∂H/∂x)2 + (∂H/∂y)2] and [(∂η/∂x)2 + (∂η/∂y)2] related
to the local bed and surface slopes, which are O(δ2) in the light of the assumption (113). Also
note that the latter approximation fails close to the banks, where this assumption is no longer
satisfied. Moreover, with the same restrictions, the x-components of the stress vector acting on
the free surface tx|H and on the bed interface tx|η may be replaced by the x-components of the
tangential stress vector acting on the free surface and bed interface respectively: indeed, the local
slopes of the free surface and bed interface are O(δ), hence nz ≃ 1 and

tx|H ∼= τHx, tx|η ∼= τηx. (130)

The reader is warned that the quantities τHx and τηx are the stresses that the air exerts on the free
surface and the bed exerts on the bed interface respectively. Hence, they are positive (negative) if
directed like (opposite to) the x-axis.

We follow the same steps to depth average continuity equation and the y-component of the
Reynolds equations. The following 2D formulation of the governing equations is eventually
obtained:

∂D

∂t
+

∂

∂x
(DU) +

∂

∂y
(DV ) = 0, (131)

∂

∂t
(DU) +

∂

∂x
(DU2) +

∂

∂y
(DU V ) + g D

∂H

∂x
− 1

ϱ
(τHx + τηx) =

1

ϱ

∂

∂x
(D Txx) +

1

ϱ

∂

∂x
(DT (disp)

xx ) +
1

ϱ

∂

∂y
(D Txy) +

1

ϱ

∂

∂y
(DT (disp)

xy ), (132)

∂

∂t
(DV ) +

∂

∂x
(DU V ) +

∂

∂y
(DV 2) + g D

∂H

∂y
− 1

ϱ
(τHy + τηy) =

1

ϱ

∂

∂x
(D Txy) +

1

ϱ

∂

∂x
(DT (disp)

xy ) +
1

ϱ

∂

∂y
(D Tyy) +

1

ϱ

∂

∂y
(DT (disp)

yy ), (133)

where we have introduced the so called dispersive stresses, defined as follows:

T (disp)
xx = − ϱ

D

∫ H

η

(ux − U)2 dz, (134a)

T (disp)
xy = − ϱ

D

∫ H

η

(ux − U)(uy − V ) dz, (134b)

T (disp)
yy = − ϱ

D

∫ H

η

(uy − V )2 dz. (134c)

Dispersive stresses are sort of macro Reynolds stresses associated with the deviations of the
distribution along z of the local mean velocity from its depth averaged value.
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Substituting from (131) into (132, 133) the momentum equations in depth averaged form can
be rewritten as:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ g

∂H

∂x
− τHx + τηx

ϱD
=

1

ϱD

{
∂

∂x

[
D
(
Txx + T (disp)

xx

)]
+

∂

∂y

[
D
(
Txy + T (disp)

xy

)]}
, (135a)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ g

∂H

∂y
− τHy + τηy

ϱD
=

1

ϱD

{
∂

∂x

[
D
(
Txy + T (disp)

xy

)]
+

∂

∂y

[
D
(
Tyy + T (disp)

yy

)]}
. (135b)

In order to complete the formulation of the 2D model, appropriate closure relationships are
needed.

2.4.3 Closures

The structure of the equations (135a, 135b) suggests that, as a result of depth averaging,
the Reynolds stresses present in the 3D form of the momentum equations involve two types of
contributions :

- shear stresses acting on the bed and on the free surface (possibly driven by wind action);

- depth averaged longitudinal and lateral stresses acting on the stream cross section.

In order to estimate the former contribution, closure relationships expressing the bottom stress
τη as a function of the depth averaged flow field and the stress at the free surface τH as a function
of wind velocity, are needed. To achieve this goal it is customary to take advantage of the slow
spatial and temporal variation assumed for the flow field, such that the friction stresses may be
taken as due to a sequence of quasi-steady and quasi-uniform flows associated with the local values
of flow velocity and roughness. One then writes:

τηx = −ϱCf U
√

U2 + V 2, τηy = −ϱCf V
√

U2 + V 2, (136a)

τHx = ϱa Cfw Uw

√
U2
w + V 2

w , τHy = ϱa Cfw Vw

√
U2
w + V 2

w . (136b)

Here, Cf = (χ−2) is the friction coefficient associated with a uniform flow characterized by
the local values of flow depth and roughness, Cfw is the friction coefficient associated with the
wind action on the free surface, Uw and Vw are longitudinal and lateral components of the wind
velocity and ϱa is the air density. The value of Cf is determined employing classical relationships
established for uniform open channel flows. For fixed bed conditions Cf is generally dependent on
the local values of relative roughness and Reynolds number. In particular, for hydraulically rough
walls, we may write:

χ = C
−1/2
f = 6 + 2.5 ln

D

es
, (137)

with es the local value of the equivalent roughness. The wind friction coefficient Cfw takes typical
values around 1.5 × 10−3.

In order to estimate the contribution of the depth averaged longitudinal and lateral stresses
acting on the stream cross section one should depth average a 3D closure relationship. However,
it is easy to show that this contribution is negligible unless the flow contains layers where shear
is intense, as found in separated flows. Indeed, using a Boussinesq type closure and assuming
horizontal variations to occur over the large scale L0 (no separation), one finds:

1

ϱD

∂

∂x
(D Txx) ∼ O(

uτ0 U0 D0

L2
0

). (138)
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where |∇FH | =
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where we have neglected the quantities [(∂H/∂x)2 + (∂H/∂y)2] and [(∂η/∂x)2 + (∂η/∂y)2] related
to the local bed and surface slopes, which are O(δ2) in the light of the assumption (113). Also
note that the latter approximation fails close to the banks, where this assumption is no longer
satisfied. Moreover, with the same restrictions, the x-components of the stress vector acting on
the free surface tx|H and on the bed interface tx|η may be replaced by the x-components of the
tangential stress vector acting on the free surface and bed interface respectively: indeed, the local
slopes of the free surface and bed interface are O(δ), hence nz ≃ 1 and

tx|H ∼= τHx, tx|η ∼= τηx. (130)

The reader is warned that the quantities τHx and τηx are the stresses that the air exerts on the free
surface and the bed exerts on the bed interface respectively. Hence, they are positive (negative) if
directed like (opposite to) the x-axis.

We follow the same steps to depth average continuity equation and the y-component of the
Reynolds equations. The following 2D formulation of the governing equations is eventually
obtained:
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(DU V ) + g D

∂H

∂x
− 1

ϱ
(τHx + τηx) =

1

ϱ

∂

∂x
(D Txx) +

1

ϱ

∂

∂x
(DT (disp)

xx ) +
1

ϱ

∂

∂y
(D Txy) +

1

ϱ

∂

∂y
(DT (disp)

xy ), (132)

∂

∂t
(DV ) +

∂

∂x
(DU V ) +

∂

∂y
(DV 2) + g D

∂H

∂y
− 1

ϱ
(τHy + τηy) =

1

ϱ

∂

∂x
(D Txy) +

1

ϱ

∂

∂x
(DT (disp)

xy ) +
1

ϱ

∂

∂y
(D Tyy) +

1

ϱ

∂

∂y
(DT (disp)

yy ), (133)

where we have introduced the so called dispersive stresses, defined as follows:

T (disp)
xx = − ϱ

D

∫ H

η

(ux − U)2 dz, (134a)

T (disp)
xy = − ϱ

D

∫ H

η

(ux − U)(uy − V ) dz, (134b)

T (disp)
yy = − ϱ

D

∫ H

η

(uy − V )2 dz. (134c)

Dispersive stresses are sort of macro Reynolds stresses associated with the deviations of the
distribution along z of the local mean velocity from its depth averaged value.

52

Incompressible hydrodynamics in straight channels

Substituting from (131) into (132, 133) the momentum equations in depth averaged form can
be rewritten as:

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ g

∂H

∂x
− τHx + τηx

ϱD
=

1

ϱD

{
∂

∂x

[
D
(
Txx + T (disp)

xx

)]
+

∂

∂y

[
D
(
Txy + T (disp)

xy

)]}
, (135a)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ g

∂H

∂y
− τHy + τηy

ϱD
=

1

ϱD

{
∂

∂x

[
D
(
Txy + T (disp)

xy

)]
+

∂

∂y

[
D
(
Tyy + T (disp)

yy

)]}
. (135b)

In order to complete the formulation of the 2D model, appropriate closure relationships are
needed.

2.4.3 Closures

The structure of the equations (135a, 135b) suggests that, as a result of depth averaging,
the Reynolds stresses present in the 3D form of the momentum equations involve two types of
contributions :

- shear stresses acting on the bed and on the free surface (possibly driven by wind action);

- depth averaged longitudinal and lateral stresses acting on the stream cross section.

In order to estimate the former contribution, closure relationships expressing the bottom stress
τη as a function of the depth averaged flow field and the stress at the free surface τH as a function
of wind velocity, are needed. To achieve this goal it is customary to take advantage of the slow
spatial and temporal variation assumed for the flow field, such that the friction stresses may be
taken as due to a sequence of quasi-steady and quasi-uniform flows associated with the local values
of flow velocity and roughness. One then writes:

τηx = −ϱCf U
√

U2 + V 2, τηy = −ϱCf V
√

U2 + V 2, (136a)

τHx = ϱa Cfw Uw

√
U2
w + V 2

w , τHy = ϱa Cfw Vw

√
U2
w + V 2

w . (136b)

Here, Cf = (χ−2) is the friction coefficient associated with a uniform flow characterized by
the local values of flow depth and roughness, Cfw is the friction coefficient associated with the
wind action on the free surface, Uw and Vw are longitudinal and lateral components of the wind
velocity and ϱa is the air density. The value of Cf is determined employing classical relationships
established for uniform open channel flows. For fixed bed conditions Cf is generally dependent on
the local values of relative roughness and Reynolds number. In particular, for hydraulically rough
walls, we may write:

χ = C
−1/2
f = 6 + 2.5 ln

D

es
, (137)

with es the local value of the equivalent roughness. The wind friction coefficient Cfw takes typical
values around 1.5 × 10−3.

In order to estimate the contribution of the depth averaged longitudinal and lateral stresses
acting on the stream cross section one should depth average a 3D closure relationship. However,
it is easy to show that this contribution is negligible unless the flow contains layers where shear
is intense, as found in separated flows. Indeed, using a Boussinesq type closure and assuming
horizontal variations to occur over the large scale L0 (no separation), one finds:

1

ϱD

∂

∂x
(D Txx) ∼ O(

uτ0 U0 D0

L2
0

). (138)

53



Theoretical Morphodynamics Straight Channels

The latter contribution is to be compared with the bottom stress contribution which may be
estimated as follows:

|τηx|
ϱD0

∼ O(
Cf0 U

2
0

D0
). (139)

The ratio between the two is then readily seen to scale with the quantity δ2/C
1/2
f0 which is definitely

quite small.
The effect of dispersive stresses is also typically small in straight channels but may be significant

in curved channels due to the development of a secondary flow which gives rise to a net dispersive
transfer of longitudinal momentum in the transverse direction. This will be discussed in the
companion Monograph, where we will also learn how the shallow water equations can be modified
to account for the effects of channel curvature without losing the dispersive effect mentioned above.

Including only the effects of bottom and wind stresses and adopting the closure relationships
(136), we end up with the classical form of the shallow water equations:

∂D

∂t
+

∂(DU)

∂x
+

∂(DV )

∂y
= 0,

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ g

∂h

∂x
− ϱa

ϱ
Cfw

Uw

√
U2
w + V 2

w

D
+ Cf

U
√
U2 + V 2

D
= 0,

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ g

∂h

∂y
− ϱa

ϱ
Cfw

Vw

√
U2
w + V 2

w

D
+ Cf

V
√
U2 + V 2

D
= 0. (140a,b,c)

This formulation may need some modification if applied in a context where secondary flows occur
and are such that the flow velocity undergoes spatial variations which are not sufficiently slow.

2.4.4 Boundary conditions

The partial differential system (140) can be shown to be quasi-linear and hyperbolic (Vreugdenhil,
1994). This implies that some surfaces exist in the (x, y, t) plane on which the set of partial
differential equations (140) can be formulated in terms of only two independent variables and,
hence, transformed into a system of ordinary differential equations. These surfaces are called
characteristics and consist of two families of planes. Disturbances that propagate within these
planes may loosely be considered as waves moving with given celerities. The boundary conditions
needed to render the mathematical problem well posed is strictly linked to these celerities and
require special attention.

One needs distinguish between closed and open boundaries. At a closed boundary the normal
velocity must vanish. In the case of open boundaries, the number of conditions to be prescribed
is given by the number of characteristic planes entering the flow domain. This number depends
on whether the local Froude number, expressed in terms of the local flow depth and the velocity
component Un normal to the boundary (Fr = Un/

√
g D), is lower than unity (sub-critical flow

conditions) or larger than unity (super-critical flow conditions). The reader interested in the
mathematical derivation of the theory of characteristics for the shallow water equations and in the
appropriate boundary conditions is referred to Vreugdenhil (1994).

2.5. One-dimensional formulation: de Saint-Venant equation

Some processes of interest in river morphodynamics, such as long term river aggradation and
degradation or selective sorting, develop significantly along channel reaches with longitudinal scale
much larger than channel width. Furthermore, their temporal scales far exceed the time scales
associated with growth and migration of smaller scale bedforms like dunes or bars. In order to
investigate such processes, it is then convenient to average out smaller scale effects and employ a
one-dimensional (1D) formulation of the hydrodynamic problem.

This approach is appropriate provided it is possible to identify a dominant flow direction in the
fluid system (the stream) under investigation. Let x be a longitudinal axis aligned with the flow
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direction: note that the axis may be curvilinear in general but, in the context of a 1D formulation,
the hydrodynamic effects of curvature of the channel axis are ignored. Let us call cross sections of
the channel the intersections of the stream with planes orthogonal to the x-axis (see Figure 20 for
notations employed in this Section). One-dimensional modeling employs flow properties that are
averaged over the cross section. Hence, mean velocity, momentum flux, discharge and energy flux
of the stream will at most be functions of x and t. Before we proceed to formulate the problem in

Figure 20. Sketch of the channel and notations for 1D modeling.

terms of cross sectionally averaged quantities we point out that the basic assumption underlying
the validity of the 1D approach may be written in the form:

ϵ =
B0

L0
≪ 1, (141)

where B0 and L0 are typical spatial scales on which the flow quantities exhibit O(1) (relative)
variations in the transverse and longitudinal directions.

Indeed, if (141) is satisfied, the continuity equation (140a) suggests that the transverse
component of the depth averaged velocity is at least O(ϵ) smaller than the longitudinal component:
in other words, the streamlines of the depth averaged flow deviate weakly from the longitudinal
direction. Similarly, the transverse component of the shallow water equations (140c) can be
employed to estimate the transverse component of ∇H. One readily finds that ∂H/∂y is at least
O(ϵ) smaller than ∂H/∂x, hence at the lowest order of approximation the free surface may be
assumed horizontal at each cross section (H = H(x, t)).

2.5.1 Derivation of the 1D governing equations

The one-dimensional equations are readily obtained by averaging in the transverse direction
the shallow water equations.
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The latter contribution is to be compared with the bottom stress contribution which may be
estimated as follows:

|τηx|
ϱD0

∼ O(
Cf0 U

2
0

D0
). (139)

The ratio between the two is then readily seen to scale with the quantity δ2/C
1/2
f0 which is definitely

quite small.
The effect of dispersive stresses is also typically small in straight channels but may be significant

in curved channels due to the development of a secondary flow which gives rise to a net dispersive
transfer of longitudinal momentum in the transverse direction. This will be discussed in the
companion Monograph, where we will also learn how the shallow water equations can be modified
to account for the effects of channel curvature without losing the dispersive effect mentioned above.

Including only the effects of bottom and wind stresses and adopting the closure relationships
(136), we end up with the classical form of the shallow water equations:

∂D

∂t
+

∂(DU)

∂x
+

∂(DV )

∂y
= 0,

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ g

∂h

∂x
− ϱa

ϱ
Cfw

Uw

√
U2
w + V 2

w

D
+ Cf

U
√
U2 + V 2

D
= 0,

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ g

∂h

∂y
− ϱa

ϱ
Cfw

Vw

√
U2
w + V 2

w

D
+ Cf

V
√
U2 + V 2

D
= 0. (140a,b,c)

This formulation may need some modification if applied in a context where secondary flows occur
and are such that the flow velocity undergoes spatial variations which are not sufficiently slow.

2.4.4 Boundary conditions

The partial differential system (140) can be shown to be quasi-linear and hyperbolic (Vreugdenhil,
1994). This implies that some surfaces exist in the (x, y, t) plane on which the set of partial
differential equations (140) can be formulated in terms of only two independent variables and,
hence, transformed into a system of ordinary differential equations. These surfaces are called
characteristics and consist of two families of planes. Disturbances that propagate within these
planes may loosely be considered as waves moving with given celerities. The boundary conditions
needed to render the mathematical problem well posed is strictly linked to these celerities and
require special attention.

One needs distinguish between closed and open boundaries. At a closed boundary the normal
velocity must vanish. In the case of open boundaries, the number of conditions to be prescribed
is given by the number of characteristic planes entering the flow domain. This number depends
on whether the local Froude number, expressed in terms of the local flow depth and the velocity
component Un normal to the boundary (Fr = Un/

√
g D), is lower than unity (sub-critical flow

conditions) or larger than unity (super-critical flow conditions). The reader interested in the
mathematical derivation of the theory of characteristics for the shallow water equations and in the
appropriate boundary conditions is referred to Vreugdenhil (1994).

2.5. One-dimensional formulation: de Saint-Venant equation

Some processes of interest in river morphodynamics, such as long term river aggradation and
degradation or selective sorting, develop significantly along channel reaches with longitudinal scale
much larger than channel width. Furthermore, their temporal scales far exceed the time scales
associated with growth and migration of smaller scale bedforms like dunes or bars. In order to
investigate such processes, it is then convenient to average out smaller scale effects and employ a
one-dimensional (1D) formulation of the hydrodynamic problem.

This approach is appropriate provided it is possible to identify a dominant flow direction in the
fluid system (the stream) under investigation. Let x be a longitudinal axis aligned with the flow
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direction: note that the axis may be curvilinear in general but, in the context of a 1D formulation,
the hydrodynamic effects of curvature of the channel axis are ignored. Let us call cross sections of
the channel the intersections of the stream with planes orthogonal to the x-axis (see Figure 20 for
notations employed in this Section). One-dimensional modeling employs flow properties that are
averaged over the cross section. Hence, mean velocity, momentum flux, discharge and energy flux
of the stream will at most be functions of x and t. Before we proceed to formulate the problem in

Figure 20. Sketch of the channel and notations for 1D modeling.

terms of cross sectionally averaged quantities we point out that the basic assumption underlying
the validity of the 1D approach may be written in the form:

ϵ =
B0

L0
≪ 1, (141)

where B0 and L0 are typical spatial scales on which the flow quantities exhibit O(1) (relative)
variations in the transverse and longitudinal directions.

Indeed, if (141) is satisfied, the continuity equation (140a) suggests that the transverse
component of the depth averaged velocity is at least O(ϵ) smaller than the longitudinal component:
in other words, the streamlines of the depth averaged flow deviate weakly from the longitudinal
direction. Similarly, the transverse component of the shallow water equations (140c) can be
employed to estimate the transverse component of ∇H. One readily finds that ∂H/∂y is at least
O(ϵ) smaller than ∂H/∂x, hence at the lowest order of approximation the free surface may be
assumed horizontal at each cross section (H = H(x, t)).

2.5.1 Derivation of the 1D governing equations

The one-dimensional equations are readily obtained by averaging in the transverse direction
the shallow water equations.
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Let us start with the continuity equation (131). We find:

∫ BL

−BR

[
∂D

∂t
+

∂

∂x
(DU) +

∂

∂y
(DV )

]
dy =

∂

∂t

∫ BL

−BR

Ddy +
∂

∂x

∫ BL

−BR

(DU)dy + (DV )|BL
− (DV )|BR

, (142)

where we have not included terms deriving from the application of Leibnitz rule because the flow
depth vanishes at y = −BR and y = BL. Using the boundary conditions V |BL

= V |−BR
= 0 and

noting that: ∫ BL

−BR

Ddy = Ω(x, t),

∫ BL

−BR

(DU)dy = Q(x, t), (143)

with Ω cross sectional area and Q flow discharge, we end up with the following 1D form of the
continuity equation:

∂Ω

∂t
+

∂Q
∂x

= 0. (144)

As mentioned above, analysis of the y-component of the shallow water equations (133) is only
needed to show that the free surface elevation is constant in the y-direction. We leave this simple
exercise to the reader.

Next, let us average the x-component of the momentum equation (132). We find:

∫ BL

−BR

[
∂

∂t
(DU)

]
dy =

∂Q
∂t

, (145a)

∫ BL

−BR

[
∂

∂x
(DU2) +

1

ϱ

∂

∂x
(DT (disp)

xx )

]
dy =

∂

∂x

[∫ BL

−BR

dy

∫ H

η

u2
x dz

]
=

∂

∂x

(
βcor U2 Ω

)
, (145b)

∫ BL

−BR

[
∂

∂y
(DU V ) +

1

ϱ

∂

∂y
(DT (disp)

xy ) +
1

ϱ

∂

∂y
(D Txy)

]
dy = 0, (145c)

∫ BL

−BR

[
g D

∂H

∂x

]
dy = gΩ

∂H

∂x
, (145d)

∫ BL

−BR

[
−1

ϱ
(τHx + τηx)

]
dy = −1

ϱ
(2B τ̄w + Pw τ̄0), (145e)

∫ BL

−BR

[
1

ϱ

∂

∂x
(D Txx)

]
dy =

1

ϱ

∂Ω T
∂x

, (145f)

where an overbar denotes an average along the wetted perimeter (τ̄0) or across the water surface
(τ̄w), 2B is the width of the free surface, Pw is the wetted perimeter and U , T are the cross sectionally
averaged flow speed and Reynolds stress Txx, respectively. Moreover, βcor is a correction coefficient
which represents the ratio between the actual momentum flux of the stream and the momentum
flux of a stream characterized by the same cross sectional area and a constant velocity distribution
equal to the cross sectionally averaged speed U of the actual stream. Hence:

βcor =

∫ BL

−BR
dy

∫ H

η
u2
x dz

Ω U2
. (146)

Usually, βcor ≃ 1 provided the cross section is sufficiently regular, whereas it may be significantly
different from one in composite sections treated as a single section.
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In conclusion, the averaging process leads to the following form of the momentum equation:

∂Q
∂t

+
∂

∂x

(
βcor Q2

Ω

)
+ gΩ

∂H

∂x
− 1

ϱ
(2B τ̄w + Pw τ̄0)−

1

ϱ

∂(Ω T )

∂x
= 0. (147)

The latter equation has been proposed in 1871 by Adhémar Barré de Saint-Venant (de Saint-
Venant, 1871) (but see Hager et al. (2019) for a historical account of its relationship to the work
of Boussinesq (Boussinesq, 1877).This equation poses a closure problem similar to those discussed
for the 2D case.

2.5.2 Closures

To complete the formulation of the momentum equation (147) the following closure relationships
are required.

- Closure for the average bottom stress τ̄0 and the average wind stress τ̄w.
Closure is achieved using the 1D version of (136). Denoting by C̄f the cross sectionally
averaged value of the friction coefficient of the water stream and by C̄fw the wind friction
coefficient, we write:

τ̄0 = −ϱ C̄f U|U|, τ̄w = ϱa C̄fw Uw|Uw|. (148)

- Closure for the average Reynolds stress.
Typically, this contribution is neglected. Semiempirical closures are necessary only when
the 1D formulation is employed to investigate processes characterized by fairly short spatial
scales.

With the latter assumptions, we end up with the following 1D form of the momentum equation:

∂Q
∂t

+
∂

∂x

(
βcor Q2

Ω

)
+ gΩ

∂H

∂x
+ 2B

ϱa
ϱ

C̄fw Uw|Uw|+ Pw C̄f U|U| = 0. (149)

A simplified version of (149) often employed in fluvial contexts is obtained setting βcor = 1,
introducing the hydraulic radius Rh = Ω/Pw, neglecting the wind contribution and using the
continuity equation (144), to find:

∂U
∂t

+ U ∂U
∂x

+ g
∂H

∂x
+ C̄f

U|U|
Rh

= 0. (150)

2.5.3 Boundary conditions

The equations (144) and (149) (or 150) can be shown to form a quasi-linear hyperbolic system
of partial differential equations (Whitham, 1974). They must be supplemented with boundary
conditions, consisting of known time dependent relationships between H and U (or H and Q)
at the end sections of the channel reach. Theory of characteristics shows that the number of
boundary conditions should be equal to the number of characteristics pointing into the flow domain.
Specifically (see, e.g. Whitham, 1974), two of such relationships must be assigned at the upstream
boundary under supercritical conditions (Fr > 1), whilst one relationship must be assigned at
each boundary under subcritical conditions (Fr < 1), where the Froude number is now defined
as Fr =

√
Q2 2B/(gΩ3). Finally, an initial condition for H and U (or H and Q) at each cross

section within the reach considered must also be assigned.
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Let us start with the continuity equation (131). We find:

∫ BL

−BR

[
∂D

∂t
+

∂

∂x
(DU) +

∂

∂y
(DV )

]
dy =

∂

∂t

∫ BL

−BR

Ddy +
∂

∂x

∫ BL

−BR

(DU)dy + (DV )|BL
− (DV )|BR

, (142)

where we have not included terms deriving from the application of Leibnitz rule because the flow
depth vanishes at y = −BR and y = BL. Using the boundary conditions V |BL

= V |−BR
= 0 and

noting that: ∫ BL

−BR

Ddy = Ω(x, t),

∫ BL

−BR

(DU)dy = Q(x, t), (143)

with Ω cross sectional area and Q flow discharge, we end up with the following 1D form of the
continuity equation:

∂Ω

∂t
+

∂Q
∂x

= 0. (144)

As mentioned above, analysis of the y-component of the shallow water equations (133) is only
needed to show that the free surface elevation is constant in the y-direction. We leave this simple
exercise to the reader.

Next, let us average the x-component of the momentum equation (132). We find:

∫ BL

−BR

[
∂

∂t
(DU)

]
dy =

∂Q
∂t

, (145a)

∫ BL

−BR

[
∂

∂x
(DU2) +

1

ϱ

∂

∂x
(DT (disp)

xx )

]
dy =

∂

∂x

[∫ BL

−BR

dy

∫ H

η

u2
x dz

]
=

∂

∂x

(
βcor U2 Ω

)
, (145b)

∫ BL

−BR

[
∂

∂y
(DU V ) +

1

ϱ

∂

∂y
(DT (disp)

xy ) +
1

ϱ

∂

∂y
(D Txy)

]
dy = 0, (145c)

∫ BL

−BR

[
g D

∂H

∂x

]
dy = gΩ

∂H

∂x
, (145d)

∫ BL

−BR

[
−1

ϱ
(τHx + τηx)

]
dy = −1

ϱ
(2B τ̄w + Pw τ̄0), (145e)

∫ BL

−BR

[
1

ϱ

∂

∂x
(D Txx)

]
dy =

1

ϱ

∂Ω T
∂x

, (145f)

where an overbar denotes an average along the wetted perimeter (τ̄0) or across the water surface
(τ̄w), 2B is the width of the free surface, Pw is the wetted perimeter and U , T are the cross sectionally
averaged flow speed and Reynolds stress Txx, respectively. Moreover, βcor is a correction coefficient
which represents the ratio between the actual momentum flux of the stream and the momentum
flux of a stream characterized by the same cross sectional area and a constant velocity distribution
equal to the cross sectionally averaged speed U of the actual stream. Hence:

βcor =

∫ BL

−BR
dy

∫ H

η
u2
x dz

Ω U2
. (146)

Usually, βcor ≃ 1 provided the cross section is sufficiently regular, whereas it may be significantly
different from one in composite sections treated as a single section.
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In conclusion, the averaging process leads to the following form of the momentum equation:

∂Q
∂t

+
∂

∂x

(
βcor Q2

Ω

)
+ gΩ

∂H

∂x
− 1

ϱ
(2B τ̄w + Pw τ̄0)−

1

ϱ

∂(Ω T )

∂x
= 0. (147)

The latter equation has been proposed in 1871 by Adhémar Barré de Saint-Venant (de Saint-
Venant, 1871) (but see Hager et al. (2019) for a historical account of its relationship to the work
of Boussinesq (Boussinesq, 1877).This equation poses a closure problem similar to those discussed
for the 2D case.

2.5.2 Closures

To complete the formulation of the momentum equation (147) the following closure relationships
are required.

- Closure for the average bottom stress τ̄0 and the average wind stress τ̄w.
Closure is achieved using the 1D version of (136). Denoting by C̄f the cross sectionally
averaged value of the friction coefficient of the water stream and by C̄fw the wind friction
coefficient, we write:

τ̄0 = −ϱ C̄f U|U|, τ̄w = ϱa C̄fw Uw|Uw|. (148)

- Closure for the average Reynolds stress.
Typically, this contribution is neglected. Semiempirical closures are necessary only when
the 1D formulation is employed to investigate processes characterized by fairly short spatial
scales.

With the latter assumptions, we end up with the following 1D form of the momentum equation:

∂Q
∂t

+
∂

∂x

(
βcor Q2

Ω

)
+ gΩ

∂H

∂x
+ 2B

ϱa
ϱ

C̄fw Uw|Uw|+ Pw C̄f U|U| = 0. (149)

A simplified version of (149) often employed in fluvial contexts is obtained setting βcor = 1,
introducing the hydraulic radius Rh = Ω/Pw, neglecting the wind contribution and using the
continuity equation (144), to find:

∂U
∂t

+ U ∂U
∂x

+ g
∂H

∂x
+ C̄f

U|U|
Rh

= 0. (150)

2.5.3 Boundary conditions

The equations (144) and (149) (or 150) can be shown to form a quasi-linear hyperbolic system
of partial differential equations (Whitham, 1974). They must be supplemented with boundary
conditions, consisting of known time dependent relationships between H and U (or H and Q)
at the end sections of the channel reach. Theory of characteristics shows that the number of
boundary conditions should be equal to the number of characteristics pointing into the flow domain.
Specifically (see, e.g. Whitham, 1974), two of such relationships must be assigned at the upstream
boundary under supercritical conditions (Fr > 1), whilst one relationship must be assigned at
each boundary under subcritical conditions (Fr < 1), where the Froude number is now defined
as Fr =

√
Q2 2B/(gΩ3). Finally, an initial condition for H and U (or H and Q) at each cross

section within the reach considered must also be assigned.
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3. The sediment transport capacity of open channel flows

In this Chapter, we provide some elementary knowledge needed to evaluate the sediment
transport capacity of turbulent flows in open alluvial channels.

However, before we proceed, we wish to warn the reader: in spite of the longstanding efforts
of several communities (engineers, geomorphologists, geophysicists, applied mathematicians and
physicists) which have been involved in various aspects of the subject, the available knowledge on
the mechanics of sediment transport is as yet largely empirical. For this reason, we will not engage
ourselves in an attempt to provide a comprehensive survey of the contributions available in the
literature. We will just provide the reader with a physical description of the main aspects of the
subject, along with the least amount of analysis useful to give some conceptual interpretation of
observations. Recent developments on detailed simulations of the Mechanics of Sediment Transport
will deserve a separate thorough assessment in a future Monograph. A brief account will be given
in Section 3.3.3.

In this Chapter the mechanisms of sediment transport are analyzed in the context of the
simplest hydrodynamic conditions, namely a plane uniform (i.e., longitudinally and laterally
homogeneous) turbulent free surface flow on a flat bed made of cohesionless sediments. Moreover,
sediment transport is taken to be statistically uniform. In other words, we assume the existence of
equilibrium conditions such that the supply of sediments balances exactly the transport capacity
of the stream. Under these conditions, neither net erosion nor net deposition occurs and the bed
maintains its initial plane configuration. Needless to say, the latter conditions are never exactly
met in reality. In fact, on one hand, the bottom of rivers most commonly exhibits deviations from
the flat configuration which may take the variety of forms exhibited by the sedimentary patterns
described in the introductory Monograph of the present series (Blondeaux et al., 2018). Moreover,
the supply of sediments generally varies in time and space, depending on the characteristics of the
basin as well as on the intensity of single hydrodynamic events. Some of the required extensions of
the treatment developed for the uniform case, such to account for the variety of circumstances
occurring in nature are presented in the next Chapter. In particular, we will investigate the effects
of slow spatial/temporal variations of the local and instantaneous hydrodynamic conditions, as
well as of bottom geometry.

Finally, in this Chapter we restrict our attention to cohesionless sediment consisting of sediment
particles modeled as solid spheres with the same diameter. This is an obvious (albeit widely
employed) simplification: natural sediments have shapes rather flatter than the shape of a sphere
and their grain size distributions may depart significantly from uniformity. Various interesting
consequences arise from the heterogeneous character of natural sediments as particles of different
sizes have different mobilities. As a result, sediment transport must be distinctly evaluated for
each grain size. Moreover, particles tend to rearrange themselves developing so called sorting
patterns.

3.1. The motion of an isolated heavy particle in viscous fluids

The fundamental process which needs to be preliminarily understood is the dynamic response
of a single particle to the highly irregular turbulent motion of water in natural environments. As
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pointed out in Chapter 2, the size of the smallest eddies in natural streams is comparable with
the typical size of sand particles. However, the spectrum of grain sizes mobilized by water flow in
the natural environment encompasses smaller particles (clay, silt and fine sand) as well as larger
particles (coarse sand and gravel). Hence, a variety of regimes may be encountered in particle
dynamics and different tools must be adopted in each regime.

3.1.1 Small particles: The equation of Maxey-Riley-Gatignol

Let us introduce the notion of the undisturbed ambient flow, namely the flow of the carrier fluid
that would exist in the absence of the solid particle. Let v0(x, t) be the Eulerian field defining the
spatially and temporally varying undisturbed velocity of the ambient fluid referred to a Cartesian
coordinate system xj (j = 1, 2, 3). As already pointed out, we restrict our attention to the case of
spherical particles. Let us then consider a sphere of diameter d translating with speed vP (t) and
rotating with angular velocity ΩP (t) in the carrier fluid. Moreover, let x0(t) denote the location
of the center of the sphere at time t. The presence of the particle modifies the flow field. Let
v(x, t) denote the modified Eulerian velocity field. The governing equations for the motion of the
fluid phase are the Navier-Stokes equations that must be solved with the boundary conditions of
no slip at the surface of the sphere and vanishing perturbations sufficiently far from the sphere.
Once pressure and velocity fields are known, the fluid stress tensor T (x, t) is readily calculated
from the constitutive relationship. Finally, the stress vector t (≡ T · n̂) at the surface of the
sphere and the hydrodynamic actions on the sphere are obtained by integration over the particle
surface. The output of this analysis depends on the regime of particle motion, i.e. on whether the
relative Reynolds number of particle motion is small or moderate-large. This is a huge effort that
is assessed in a number of textbooks (e.g. Clift et al., 1978; Crowe et al., 2012; Michaelides, 2006).
Below, we outline few major achievements of direct interest to sediment transport.

Let us first consider the case of ’small’ particles, in the sense clarified below. Maxey and Riley
(1983) and, independently, Gatignol (1983), were able to determine an asymptotic approximation
for the hydrodynamic force F on small particles, subject to the following assumptions:

- the particle diameter d is much smaller than the scale of spatial variations of the ambient
flow L0, with L0 falling in the range [ℓk, ℓ]:

d

L0
≪ 1; (151)

- the typical Reynolds number Re of the relative motion of the fluid is small:

Re =
(U0 − VP ) d

ν
≪ 1, (152)

with U0 and VP scales for the fluid and particle velocity, respectively;

- the fluid shear, of scale U0/L0, is weak, i.e. such that the shear Reynolds number Rk is also
small:

Rk =
U0 d

2

L0ν
≪ 1. (153)

Physically, this requirement implies that the convective time scale L0/U0, namely the time
the fluid takes to move over a distance of the order of L0, must be large compared with the
viscous time scale d2/ν, namely the time viscous effects take to diffuse over a distance of the
order of particle size;

- the particle rotation is weak, i.e. the rotational Reynolds number RΩ is small.
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Under the above conditions, it is convenient to decompose the flow velocity v into an ambient
component v0 plus a perturbation v1, associated with the modification of the undisturbed ambient
flow due to the presence of the particle. Correspondingly, the hydrodynamic force on the particle
may be decomposed into an ambient component F 0, i.e. the force that the ambient flow would exert
on a fluid sphere instantaneously coincident with the solid sphere and a perturbation component
F 1.

The equation of motion of a small sphere in a temporally and spatially varying unbounded
ambient flow thus reads:

ϱs VP
dvP (t)

dt
= F 0 + F 1, (154)

where ϱs is the particle density and VP is the particle volume. Expressions for F 0 and F 1 have
been derived by Maxey and Riley (1983) and Gatignol (1983). With the help of these expressions
and denoting by wP the velocity of the particle relative to the ambient component of the fluid
velocity:

wP (t) = vP (t)− v0(t), (155)

one ends up with the equation of Maxey-Riley-Gatignol (1983) (hereafter referred to as MRG) in
the form:

s
dvP

dt
= (s− 1) g +

Dv0

Dt
− 3

4

cD
d
wP |wP | − ca

dwP

dt

− 9 ν

d

∫ t

0

K (t− τ)
dwP

dτ
dτ, (156)

where g is the gravity vector and s = ϱs/ϱ is the relative particle density. Moreover, D/Dt is the
material derivative for fluid particles evaluated at the center xo of the sphere in motion,

Dv0i
Dt

=

(
∂v0i
∂t

+ v0j
∂v0i
∂xj

)∣∣∣∣
xo(t)

, (157)

whilst d/dt denotes a material derivative associated with an observer moving with the particle, so
that

dv0i
dt

=

(
∂v0i
∂t

+ vPj
∂v0i
∂xj

)∣∣∣∣
xo(t)

. (158)

In the right hand side of (156) one recognizes various contributions to the force acting on the
sphere, scaled by the particle mass ϱVP . The first term (s− 1) g is the submerged particle weight,
whilst D v0/Dt is the contribution to the ambient component of the hydrodynamic action due to
fluid acceleration.

The term (3 cD wP |wP |/4 d) is the Stokes drag. Here cD is the drag coefficient related to the
drag force FD through the classical relationship:

FD =
1

2
cD ϱ (π

d2

4
)|wP |2. (159)

The low Reynolds number form of cD for a sphere reads (24/Re), with Re = |wP | d/ν particle
Reynolds number based on the instantaneous value of the relative particle velocity.

The term ca dwP /dt is the added mass force, with ca added mass coefficient which takes the
value 1/2 for a sphere. Note that the added mass force originates from the relative acceleration of
the particle. Indeed, when the translation velocity of a body moving in an unbounded fluid varies,
the kinetic energy of the fluid motion also varies. Hence, in order to be able to accelerate and to
vary its kinetic energy, the body has to overcome an acceleration reaction responsible for the work
done by the body on the fluid. In other words, the presence of the fluid acts such to increase the
effective mass of the body.
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Finally, the last term is the so called history term and K (t− τ) is the kernel of the convolution
integral, which reads [π ν (t− τ)]−1/2. Basset (1888) is usually credited with the original derivation
of the history effect for a rigid sphere settling in a fluid that was otherwise at rest, though
Boussinesq (1885) did obtain the same result three years before, in a paper apparently not known
to Basset.

Note that various higher order contributions to the hydrodynamic force exerted on the particle
are not included in the above relationships. They include the effects of non uniformity of the
ambient flow, a correction of the Stokes drag, a side force driven by particle rotation and a lift
force driven by the combined effects of translation and shear of the undisturbed ambient fluid.

3.1.2 The particle response time and the Stokes number

It is of particular interest to estimate how fast the particle is able to adjust its motion to the
ambient flow. The simplest way to obtain this estimate is to calculate the time a small sphere
released from rest in a quiescent fluid (v0 = 0, wP = vP ) takes to reach its asymptotically steady
settling speed. Under these conditions, neglecting for the sake of simplicity the effect of the history
term (that usually plays a minor role), the equation (156) reduces to a simple balance between
submerged weight of the sphere, Stokes drag and particle inertia:

(s+ ca)
dvP
dt

= (s− 1) g − 18
ν

d2
vP . (160)

Here, vP is the modulus of particle velocity which, in the present case, coincides with |wP |. This
equation is immediately solved with the initial condition vP |t=0 = 0 and gives:

vP = ws [1− exp(− t

tR
)], (161)

where the quantity tR = (s+ ca) d
2/(18 ν) is the particle response time and ws is the asymptotic

steady value of the settling speed, which reads:

ws =
(s− 1) g d2

18 ν
. (162)

The quantity tR is precisely the sought estimate of the time required by a solid sphere to adjust
its motion to the ambient flow. The ratio between tR and the convective time scale of the ambient
velocity field, L0/U0, is a dimensionless parameter called Stokes number (St). It reads:

St = (s+ ca)
d2/(18 ν)

L0/U0
. (163)

For small particles, say d = 100µm, the value of tR is approximately equal to 1.5 · 10−3 s. In
turbulent flows the smallest temporal scale is the Kolmogorov microscale τk that in river flows
is around 5 · 10−2 s. Hence, for particles in the fine sand range, the Stokes number is very
small, O(3 · 10−2). This feature turns out to be quite useful to investigate the dynamics of dilute
suspensions in fluvial and tidal environments. Indeed, in the low St limit, the following simple
asymptotic solution for particle velocity is readily derived:

vP = v0 + ws
g

g
. (164)

Hence, at the leading order of approximation, small particles behave as passive tracers except
for their tendency to settle, which makes their trajectories deviate from fluid trajectories.

The solution (164) is obtained from the dimensionless form of (156). Let us then set:

(ṽ0, ṽP ) =
(v0,vP )

U0
, (t̃, τ̃) =

(t, τ)

L0/U0
, (165)
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having denoted by U0 and L0 the flow velocity and length scales, respectively, and used a tilde to
denote dimensionless quantities. Substituting from (165) into (156), and recalling that for low
particle Reynolds number cD = 24 ν/(|wP | d), with the help of some algebra one finds:

w̃P = w̃s
g

g
− St

[
dw̃P

dt̃
+

s

s+ ca

dṽ0

dt̃
− 1

s+ ca

Dṽ0

Dt̃

]
− 1

2 δ

∫ t̃

0

dw̃P

dτ̃√
π (t̃− τ̃)

dτ̃ . (166)

Besides the Stokes number, two further dimensionless parameters appear. The first is w̃s ≡ ws/U0,
namely the settling speed of a spherical particle in the limit of vanishing Reynolds number
normalized by the flow velocity scale. The second is the parameter δ =

√
ν L0/U0/d which

measures the ratio between the distance from the sphere where viscous diffusion is able to spread
in a time of the order of the convective time scale and the sphere diameter. In open channel flows,
for particles in the fine sand range, δ is an O(1) parameter.

Analytic solutions of the Maxey-Riley-Gatignol equation valid in the limit of small particle
inertia (small St) have been obtained by a variety of Authors. For the present purposes, it proves
sufficient to present the simplest version of this asymptotic solution (Maxey, 1987). Assume:

St << 1, (167)

and expand w̃P in the form:
w̃P = w̃P0 + St w̃P1 +O(S2

t ). (168)

Substituting from (168) into (166) and equating likewise powers of St, at the leading order
(O(S0

t )) one finds:
w̃P0 = w̃s

g

g
. (169)

Returning to dimensional variables one immediately recovers the solution (164).

3.1.3 Larger particles

Determining the flow field induced by the unsteady translation and rotation of a particle trans-
ported at moderate-large relative Reynolds numbers in a sheared ambient fluid is a fundamental, yet
unresolved, problem of Fluid Mechanics. Hence, a rigorous extension of the Maxey-Riley-Gatignol
equation to the moderate-large Reynolds number regime is not available. An overview of the
history of recent attempts performed to achieve this ambitious goal can be found in Michaelides
(2006). A semiempirical general form for the particle equation of motion at moderate Re has been
proposed by Bagchi and Balachandar (2002) for solid spheres and Magnaudet and Eames (2000)
for bubbles. It may be written in the general form:

(s+ ca)
dvP

dt
= (s− 1) g − 18 ν

d2
wP (1 + 0.15R0.687

e ) + ca
dv0

dt
+

Dv0

Dt
. (170)

The various contributions to (170) are forces per unit mass of the fluid phase. The first term on
the right-hand side is the submerged gravity. The second term is the viscous drag, evaluated in
terms of the local instantaneous relative particle velocity wP and including the finite Re correction
of Schiller and Neumann (1933), which is known to be valid for Re < 800. The third term is the
added mass force: for a sphere the added mass coefficient ca keeps the value 1/2 also in the finite
Re regime. The fourth term is the force due to the pressure gradient in the undisturbed fluid. A
last minor contribution, the history term, is not included in (170). Further minor (or insufficiently
understood) effects are ignored in (170). Firstly, the strain rate ∇v0 of the ambient fluid that
modifies the drag force in a complex way is neglected. Shear induced lift and Magnus force driven
by particle rotation are usually smaller than the drag force, hence are not included in equation
(170). Moreover, when the particle diameter d is comparable with the characteristic length scale
of the ambient flow, corrections of the drag force associated with flow non uniformity are likely
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of the history effect for a rigid sphere settling in a fluid that was otherwise at rest, though
Boussinesq (1885) did obtain the same result three years before, in a paper apparently not known
to Basset.

Note that various higher order contributions to the hydrodynamic force exerted on the particle
are not included in the above relationships. They include the effects of non uniformity of the
ambient flow, a correction of the Stokes drag, a side force driven by particle rotation and a lift
force driven by the combined effects of translation and shear of the undisturbed ambient fluid.

3.1.2 The particle response time and the Stokes number

It is of particular interest to estimate how fast the particle is able to adjust its motion to the
ambient flow. The simplest way to obtain this estimate is to calculate the time a small sphere
released from rest in a quiescent fluid (v0 = 0, wP = vP ) takes to reach its asymptotically steady
settling speed. Under these conditions, neglecting for the sake of simplicity the effect of the history
term (that usually plays a minor role), the equation (156) reduces to a simple balance between
submerged weight of the sphere, Stokes drag and particle inertia:

(s+ ca)
dvP
dt

= (s− 1) g − 18
ν

d2
vP . (160)

Here, vP is the modulus of particle velocity which, in the present case, coincides with |wP |. This
equation is immediately solved with the initial condition vP |t=0 = 0 and gives:

vP = ws [1− exp(− t

tR
)], (161)

where the quantity tR = (s+ ca) d
2/(18 ν) is the particle response time and ws is the asymptotic

steady value of the settling speed, which reads:

ws =
(s− 1) g d2

18 ν
. (162)

The quantity tR is precisely the sought estimate of the time required by a solid sphere to adjust
its motion to the ambient flow. The ratio between tR and the convective time scale of the ambient
velocity field, L0/U0, is a dimensionless parameter called Stokes number (St). It reads:

St = (s+ ca)
d2/(18 ν)

L0/U0
. (163)

For small particles, say d = 100µm, the value of tR is approximately equal to 1.5 · 10−3 s. In
turbulent flows the smallest temporal scale is the Kolmogorov microscale τk that in river flows
is around 5 · 10−2 s. Hence, for particles in the fine sand range, the Stokes number is very
small, O(3 · 10−2). This feature turns out to be quite useful to investigate the dynamics of dilute
suspensions in fluvial and tidal environments. Indeed, in the low St limit, the following simple
asymptotic solution for particle velocity is readily derived:

vP = v0 + ws
g

g
. (164)

Hence, at the leading order of approximation, small particles behave as passive tracers except
for their tendency to settle, which makes their trajectories deviate from fluid trajectories.

The solution (164) is obtained from the dimensionless form of (156). Let us then set:

(ṽ0, ṽP ) =
(v0,vP )

U0
, (t̃, τ̃) =

(t, τ)

L0/U0
, (165)
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having denoted by U0 and L0 the flow velocity and length scales, respectively, and used a tilde to
denote dimensionless quantities. Substituting from (165) into (156), and recalling that for low
particle Reynolds number cD = 24 ν/(|wP | d), with the help of some algebra one finds:

w̃P = w̃s
g

g
− St

[
dw̃P

dt̃
+

s

s+ ca

dṽ0

dt̃
− 1

s+ ca

Dṽ0

Dt̃

]
− 1

2 δ

∫ t̃

0

dw̃P

dτ̃√
π (t̃− τ̃)

dτ̃ . (166)

Besides the Stokes number, two further dimensionless parameters appear. The first is w̃s ≡ ws/U0,
namely the settling speed of a spherical particle in the limit of vanishing Reynolds number
normalized by the flow velocity scale. The second is the parameter δ =

√
ν L0/U0/d which

measures the ratio between the distance from the sphere where viscous diffusion is able to spread
in a time of the order of the convective time scale and the sphere diameter. In open channel flows,
for particles in the fine sand range, δ is an O(1) parameter.

Analytic solutions of the Maxey-Riley-Gatignol equation valid in the limit of small particle
inertia (small St) have been obtained by a variety of Authors. For the present purposes, it proves
sufficient to present the simplest version of this asymptotic solution (Maxey, 1987). Assume:

St << 1, (167)

and expand w̃P in the form:
w̃P = w̃P0 + St w̃P1 +O(S2

t ). (168)

Substituting from (168) into (166) and equating likewise powers of St, at the leading order
(O(S0

t )) one finds:
w̃P0 = w̃s

g

g
. (169)

Returning to dimensional variables one immediately recovers the solution (164).

3.1.3 Larger particles

Determining the flow field induced by the unsteady translation and rotation of a particle trans-
ported at moderate-large relative Reynolds numbers in a sheared ambient fluid is a fundamental, yet
unresolved, problem of Fluid Mechanics. Hence, a rigorous extension of the Maxey-Riley-Gatignol
equation to the moderate-large Reynolds number regime is not available. An overview of the
history of recent attempts performed to achieve this ambitious goal can be found in Michaelides
(2006). A semiempirical general form for the particle equation of motion at moderate Re has been
proposed by Bagchi and Balachandar (2002) for solid spheres and Magnaudet and Eames (2000)
for bubbles. It may be written in the general form:

(s+ ca)
dvP

dt
= (s− 1) g − 18 ν

d2
wP (1 + 0.15R0.687

e ) + ca
dv0

dt
+

Dv0

Dt
. (170)

The various contributions to (170) are forces per unit mass of the fluid phase. The first term on
the right-hand side is the submerged gravity. The second term is the viscous drag, evaluated in
terms of the local instantaneous relative particle velocity wP and including the finite Re correction
of Schiller and Neumann (1933), which is known to be valid for Re < 800. The third term is the
added mass force: for a sphere the added mass coefficient ca keeps the value 1/2 also in the finite
Re regime. The fourth term is the force due to the pressure gradient in the undisturbed fluid. A
last minor contribution, the history term, is not included in (170). Further minor (or insufficiently
understood) effects are ignored in (170). Firstly, the strain rate ∇v0 of the ambient fluid that
modifies the drag force in a complex way is neglected. Shear induced lift and Magnus force driven
by particle rotation are usually smaller than the drag force, hence are not included in equation
(170). Moreover, when the particle diameter d is comparable with the characteristic length scale
of the ambient flow, corrections of the drag force associated with flow non uniformity are likely
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to be required, but a suitable form for such corrections at moderate Re has not been proposed
yet. Finally, for particles larger than Kolmogorov scale, particle-turbulence interaction becomes
complex and the contribution of smaller-scale eddies is hardly captured by equation (170).

The picture of the dynamics of an isolated particle in turbulent flow emerging from the overview
presented in this Section, points at a complex problem that is still far from being complete. A
variety of further effects of relevance to morphodynamics would deserve attention.

Firstly, in natural settings sediment particles do not move in an unconfined environment, they
interact with boundaries. In particular, natural streams exchange sediments with their cohesionless
boundaries through two fundamental mechanisms which will be discussed in the next Section:
entrainment from and deposition onto the bed. Moreover, particles may collide either physically
or hydrodynamically with boundaries, a process which affects particle trajectory and, in the long
term, may also lead to reduction of the particle mass (abrasion) as well as erosion of the channel
boundary.

Moreover, sediment particles are not isolated: clouds of particles are typically transported
by the stream near the bed and in the bulk of the flow. In the presence of sediment transport,
the nature of the stream turns into that of a mixture of two distinct phases, whose motion may
occur in a variety of regimes depending on the concentration of the solid phase and the size of
sediment particles. In particular, as the concentration increases, particles do no longer behave as
isolated: hydrodynamic and possibly collisional interactions occur. Moreover, the collective motion
of sediment particles may affect the turbulence of the ambient fluid inducing a so called turbulence
modulation. Accounting for all these features is a formidable task. Some progress has been recently
made with the help of modern measuring techniques and computational fluid dynamics, as briefly
outlined in the following Sections.

3.1.4 An important application: Settling of a sphere in a fluid at rest at moderate-large Reynolds numbers

The settling speed of a solid sphere in an unbounded fluid at rest is determined imposing a
dynamic balance between the submerged weight of the sphere and the drag force expressed in the
form of (159) with the drag coefficient cD a function of the Reynolds number Re ≡ wsd/ν. The
reader will readily show that this balance leads to the following dimensionless relationship for the
settling speed:

w̃s =

√
4

3 cD
, (171)

where:
w̃s =

ws√
(s− 1) g d

. (172)

An important limit of (171) deserves special attention. At low Reynolds numbers, using the
Stokes form for the drag coefficient (cD = 24/Re), the relationship (171) becomes:

w̃s =
Rp

18
(St ≪ 1), (173)

where Rp is a particle Reynolds number which plays an important role in sediment transport and
reads:

Rp =

√
(s− 1) g d3

ν
. (174)

In the intermediate range of values of Re, employing the standard curve for the drag coefficient
(Clift et al., 1978) one may calculate a standard curve for the settling speed of a sphere. This is
plotted in dimensionless form in Figure 21. The error associated with the latter estimate does not
exceed 4%. Also shown in Figure 21 is the empirical relationship proposed by Dietrich (1982),
which reads:

log10
ws d

ν
= −1.2557 + 1.95296 ℓR − 0.13086 ℓ2R − 0.01533 ℓ3R + 0.00298 ℓ4R, (175)
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Figure 21. The Reynolds number of a settling sphere Re(= ws d/ν) is plotted versus the particle Reynolds number
Rp(=

√
(s− 1) g d3/ν). The red line is the standard curve reported in (Clift et al., 1978, p. 114). The blue line is

the empirical approximation (175) proposed by Dietrich (1982).

with ℓR = log10 Rp.
Note that solid spheres settling at moderate-large Reynolds numbers are also subject to lateral

forces which are associated with vortex shedding: as a result they follow a spiral motion. These
lateral oscillations produce a small retardation of the settling process, with reductions of the
terminal velocity which, for sand particles, do not reach 1%. A further note of caution is required
when the above theoretical arguments are applied to the natural environment as real sediments are
hardly spherical. The settling process of particles of arbitrary shape may display a quite complex
behavior. Even at low Reynolds numbers, the force experienced by the particle may exhibit a lift
component at right angle to particle velocity, which may cause the particle to drift laterally settling
along a curved path. The rotational response of particles may also be complicated in general. If
particles have a skew shape, i.e. if they do not exhibit suitable symmetries, one cannot define a
center of hydrodynamic stress, hence particles rotate while settling and the resulting motion may
be spiral or even wobbling if particles change orientation while settling (Happel and Brenner, 1965,
Chapter 5). On the contrary, symmetric particles eventually reach a pure translatory motion,
hence for such particles one can unambiguously define a terminal settling speed.

3.2. The modes of sediment motion

3.2.1 Transport mode versus sheet/debris mode

There are various modes whereby sediment particles lying on the bed of a natural stream may
be destabilized. They range between two limit conditions that will be described as transport mode
and debris (or sheet) mode. These two limit mechanisms are respectively associated with fairly
low and fairly high values of the shear stress transmitted by the stream to a cohesionless bottom.

This can be readily illustrated considering the equilibrium of a plane granular bed, composed
of grains of uniform size d, and density ϱs. The bed is subject to a turbulent uniform free surface
flow determining a uniform distribution of the mean shear stress (averaged over turbulence) τ0
at the bed-fluid interface. Let θ be the inclination angle of the bed, ϕ the angle of repose of the
granular medium and cM its volumetric concentration.

Let us consider a sediment layer of thickness l, bounded by the bed interface and a planar
surface parallel to it (Figure 22). This layer will experience destabilizing actions arising from
the shear stress exerted by the flowing stream as well as from the down-slope component of the
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to be required, but a suitable form for such corrections at moderate Re has not been proposed
yet. Finally, for particles larger than Kolmogorov scale, particle-turbulence interaction becomes
complex and the contribution of smaller-scale eddies is hardly captured by equation (170).

The picture of the dynamics of an isolated particle in turbulent flow emerging from the overview
presented in this Section, points at a complex problem that is still far from being complete. A
variety of further effects of relevance to morphodynamics would deserve attention.

Firstly, in natural settings sediment particles do not move in an unconfined environment, they
interact with boundaries. In particular, natural streams exchange sediments with their cohesionless
boundaries through two fundamental mechanisms which will be discussed in the next Section:
entrainment from and deposition onto the bed. Moreover, particles may collide either physically
or hydrodynamically with boundaries, a process which affects particle trajectory and, in the long
term, may also lead to reduction of the particle mass (abrasion) as well as erosion of the channel
boundary.

Moreover, sediment particles are not isolated: clouds of particles are typically transported
by the stream near the bed and in the bulk of the flow. In the presence of sediment transport,
the nature of the stream turns into that of a mixture of two distinct phases, whose motion may
occur in a variety of regimes depending on the concentration of the solid phase and the size of
sediment particles. In particular, as the concentration increases, particles do no longer behave as
isolated: hydrodynamic and possibly collisional interactions occur. Moreover, the collective motion
of sediment particles may affect the turbulence of the ambient fluid inducing a so called turbulence
modulation. Accounting for all these features is a formidable task. Some progress has been recently
made with the help of modern measuring techniques and computational fluid dynamics, as briefly
outlined in the following Sections.

3.1.4 An important application: Settling of a sphere in a fluid at rest at moderate-large Reynolds numbers

The settling speed of a solid sphere in an unbounded fluid at rest is determined imposing a
dynamic balance between the submerged weight of the sphere and the drag force expressed in the
form of (159) with the drag coefficient cD a function of the Reynolds number Re ≡ wsd/ν. The
reader will readily show that this balance leads to the following dimensionless relationship for the
settling speed:

w̃s =

√
4

3 cD
, (171)

where:
w̃s =

ws√
(s− 1) g d

. (172)

An important limit of (171) deserves special attention. At low Reynolds numbers, using the
Stokes form for the drag coefficient (cD = 24/Re), the relationship (171) becomes:

w̃s =
Rp

18
(St ≪ 1), (173)

where Rp is a particle Reynolds number which plays an important role in sediment transport and
reads:

Rp =

√
(s− 1) g d3

ν
. (174)

In the intermediate range of values of Re, employing the standard curve for the drag coefficient
(Clift et al., 1978) one may calculate a standard curve for the settling speed of a sphere. This is
plotted in dimensionless form in Figure 21. The error associated with the latter estimate does not
exceed 4%. Also shown in Figure 21 is the empirical relationship proposed by Dietrich (1982),
which reads:

log10
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= −1.2557 + 1.95296 ℓR − 0.13086 ℓ2R − 0.01533 ℓ3R + 0.00298 ℓ4R, (175)
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Figure 21. The Reynolds number of a settling sphere Re(= ws d/ν) is plotted versus the particle Reynolds number
Rp(=

√
(s− 1) g d3/ν). The red line is the standard curve reported in (Clift et al., 1978, p. 114). The blue line is

the empirical approximation (175) proposed by Dietrich (1982).

with ℓR = log10 Rp.
Note that solid spheres settling at moderate-large Reynolds numbers are also subject to lateral

forces which are associated with vortex shedding: as a result they follow a spiral motion. These
lateral oscillations produce a small retardation of the settling process, with reductions of the
terminal velocity which, for sand particles, do not reach 1%. A further note of caution is required
when the above theoretical arguments are applied to the natural environment as real sediments are
hardly spherical. The settling process of particles of arbitrary shape may display a quite complex
behavior. Even at low Reynolds numbers, the force experienced by the particle may exhibit a lift
component at right angle to particle velocity, which may cause the particle to drift laterally settling
along a curved path. The rotational response of particles may also be complicated in general. If
particles have a skew shape, i.e. if they do not exhibit suitable symmetries, one cannot define a
center of hydrodynamic stress, hence particles rotate while settling and the resulting motion may
be spiral or even wobbling if particles change orientation while settling (Happel and Brenner, 1965,
Chapter 5). On the contrary, symmetric particles eventually reach a pure translatory motion,
hence for such particles one can unambiguously define a terminal settling speed.

3.2. The modes of sediment motion

3.2.1 Transport mode versus sheet/debris mode

There are various modes whereby sediment particles lying on the bed of a natural stream may
be destabilized. They range between two limit conditions that will be described as transport mode
and debris (or sheet) mode. These two limit mechanisms are respectively associated with fairly
low and fairly high values of the shear stress transmitted by the stream to a cohesionless bottom.

This can be readily illustrated considering the equilibrium of a plane granular bed, composed
of grains of uniform size d, and density ϱs. The bed is subject to a turbulent uniform free surface
flow determining a uniform distribution of the mean shear stress (averaged over turbulence) τ0
at the bed-fluid interface. Let θ be the inclination angle of the bed, ϕ the angle of repose of the
granular medium and cM its volumetric concentration.

Let us consider a sediment layer of thickness l, bounded by the bed interface and a planar
surface parallel to it (Figure 22). This layer will experience destabilizing actions arising from
the shear stress exerted by the flowing stream as well as from the down-slope component of the
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submerged weight of the granular mixture contained in the layer. The overall destabilizing stress
per unit area is then equal to [τ0 + (ϱs − ϱ) cM l g sin θ]. Contacts among grains provide the
stabilizing stress acting on the planar surface. Under conditions of limit equilibrium, the latter
may be written in the Coulomb form, [(ϱs − ϱ) cM l g cos θ tanϕ]. The threshold conditions for
the granular layer lying above the planar surface to be mobilized are then immediately derived by
equating the above stresses. One finds:

l

d
=

τ∗
cM cos θ (tanϕ− tan θ)

, (176)

where τ∗ is a dimensionless quantity, the Shields stress, which will be seen to play an important
role in the theory of sediment transport:

τ∗ =
τ0

(ϱs − ϱ) g d
. (177)

Values of τ∗ typically encountered in sand and gravel bed rivers will be presented later on
(Figure 24).

The equation (176) immediately suggests that, in order for the thickness of the mobilized layer
to be large relative to particle size, at least one of the following conditions must be satisfied:

- the Shields stress τ∗ must be large enough;

- the bed inclination θ must be close to the angle of repose of the mixture.

Figure 22. Sketch of the balance of destabilizing versus stabilizing forces acting on a layer of granular mixture

The former condition is characteristic of intense flows and/or fine sediments: this is the so
called sheet mode, experienced in lowland rivers as well as in coastal areas subject to intense
currents generated by tides and wind waves. The latter condition is typical of the massive motion
of sediments on high slopes: the so called debris mode. However, when the bed inclination is
small and the Shields stress takes the fairly small values (most often much smaller than one)
typically encountered in fluvial streams, the relationship (176) predicts that the thickness of the
destabilized layer does not exceed one particle diameter: the Coulomb type approach is then no
longer significant. In fact, under these conditions, the major destabilizing forces are those acting
on individual particles lying on the surface layer (hydrodynamic drag and lift), while submerged
gravity plays a stabilizing role, allowing for the generation of contact forces between a given
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particle and its neighbours. This regime is called sediment transport mode. Below, we concentrate
on the transport mode. The study of debris flows requires distinct techniques that will deserve a
Monograph of its own.

3.2.2 Transport mode: bedload versus suspended load

The traditional view of geomorphologists and engineers has been to establish a relationship
between the shear stress, averaged over turbulence, acting on the erodible bed interface and the
intensity of sediment transport. Indeed, it has long been recognized that, increasing the flow
discharge, a uniform free surface flow over an erodible bed interface undergoes a sequence of stages
which are commonly classified as follows.

- Immobile bed. If the turbulent intensity is sufficiently weak and/or sediment particles are
large enough, particles lying on a cohesionless sediment bed keep immobile (Figure 23a).

- Incipient particle motion. Increasing the flow discharge, the shear stress τ0 acting on the
bed also increases. As soon as τ0 exceeds some threshold value τc depending on the sediment
characteristics, particles lying on the cohesionless bed are entrained and set in motion.

- Bedload transport. Provided the bottom stress (hence the turbulent intensity) keeps sufficiently
low (τc < τ0 < τs) and/or particles are not too small, sediment transport occurs in a thin
layer (of the order of few grain diameters) adjacent to the bed, with particles sliding, rolling
or saltating, i.e. making small jumps, on the bottom (Figure 23b). This mode of transport is
conventionally called bedload transport.

- Transport in suspension. For larger values of the bottom stress (τs < τ0 < τsd) and/or small
enough particles, sediments escape from the bottom layer and are entrained in the bulk of
the flow. They are then transported by the fluid behaving as passive tracers except for their
tendency to settle as a result of their excess density (Figure 23c). This mode of transport is
conventionally called transport in suspension as long as the suspension keeps sufficiently dilute
that particle interactions (hydrodynamic, frictional and collisional) may safely be neglected.

- Transition to sheet-debris mode. This transition occurs for τ0 > τsd, as a result the suspension
becomes highly concentrated and particle interactions play a dominant role.

As a final note of caution, the threshold values τc , τs and τsd can only be defined in statistical
sense as the transition between adjacent transport modes is smooth rather than abrupt.

3.2.3 The modern view: coherent turbulent structures and their role in particle entrainment

As discussed in Section 2.2.3, since the early works of Theodorsen (1952) and Kline and
Runstadler (1959), developed and extended by Kline et al. (1967), experimental investigations on
the detailed structure of the turbulence field in boundary layers and channels have revealed the
existence of distinctly recognizable organized motions referred to as ’coherent structures’.

The discovery of coherent structures has had some impact also on the understanding of
sediment transport. Indeed, in a laboratory investigation appeared shortly after the discovery of
wall structures, Sutherland (1967) clearly observed that bedload particles move collectively “in a
series of short intermittent bursts, each of which is confined to a small area” which then “remains
relatively undisturbed for a period until another short burst occurs”. The mechanism envisaged by
Sutherland (1967), namely an eddy impact onto a sediment bed able to produce a horizontal drag
force on the grain large enough to give rise to rolling of the particle about its point of support,
already contained the essential features of the process which have later emerged from more detailed
investigations.

However, it was only in the 80’s that these inspiring ideas were more clearly related to the
structure of near wall flow events. In a series of important papers (Heathershaw and Thorne, 1985;
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submerged weight of the granular mixture contained in the layer. The overall destabilizing stress
per unit area is then equal to [τ0 + (ϱs − ϱ) cM l g sin θ]. Contacts among grains provide the
stabilizing stress acting on the planar surface. Under conditions of limit equilibrium, the latter
may be written in the Coulomb form, [(ϱs − ϱ) cM l g cos θ tanϕ]. The threshold conditions for
the granular layer lying above the planar surface to be mobilized are then immediately derived by
equating the above stresses. One finds:
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where τ∗ is a dimensionless quantity, the Shields stress, which will be seen to play an important
role in the theory of sediment transport:

τ∗ =
τ0

(ϱs − ϱ) g d
. (177)

Values of τ∗ typically encountered in sand and gravel bed rivers will be presented later on
(Figure 24).

The equation (176) immediately suggests that, in order for the thickness of the mobilized layer
to be large relative to particle size, at least one of the following conditions must be satisfied:

- the Shields stress τ∗ must be large enough;

- the bed inclination θ must be close to the angle of repose of the mixture.

Figure 22. Sketch of the balance of destabilizing versus stabilizing forces acting on a layer of granular mixture

The former condition is characteristic of intense flows and/or fine sediments: this is the so
called sheet mode, experienced in lowland rivers as well as in coastal areas subject to intense
currents generated by tides and wind waves. The latter condition is typical of the massive motion
of sediments on high slopes: the so called debris mode. However, when the bed inclination is
small and the Shields stress takes the fairly small values (most often much smaller than one)
typically encountered in fluvial streams, the relationship (176) predicts that the thickness of the
destabilized layer does not exceed one particle diameter: the Coulomb type approach is then no
longer significant. In fact, under these conditions, the major destabilizing forces are those acting
on individual particles lying on the surface layer (hydrodynamic drag and lift), while submerged
gravity plays a stabilizing role, allowing for the generation of contact forces between a given
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particle and its neighbours. This regime is called sediment transport mode. Below, we concentrate
on the transport mode. The study of debris flows requires distinct techniques that will deserve a
Monograph of its own.

3.2.2 Transport mode: bedload versus suspended load

The traditional view of geomorphologists and engineers has been to establish a relationship
between the shear stress, averaged over turbulence, acting on the erodible bed interface and the
intensity of sediment transport. Indeed, it has long been recognized that, increasing the flow
discharge, a uniform free surface flow over an erodible bed interface undergoes a sequence of stages
which are commonly classified as follows.

- Immobile bed. If the turbulent intensity is sufficiently weak and/or sediment particles are
large enough, particles lying on a cohesionless sediment bed keep immobile (Figure 23a).

- Incipient particle motion. Increasing the flow discharge, the shear stress τ0 acting on the
bed also increases. As soon as τ0 exceeds some threshold value τc depending on the sediment
characteristics, particles lying on the cohesionless bed are entrained and set in motion.

- Bedload transport. Provided the bottom stress (hence the turbulent intensity) keeps sufficiently
low (τc < τ0 < τs) and/or particles are not too small, sediment transport occurs in a thin
layer (of the order of few grain diameters) adjacent to the bed, with particles sliding, rolling
or saltating, i.e. making small jumps, on the bottom (Figure 23b). This mode of transport is
conventionally called bedload transport.

- Transport in suspension. For larger values of the bottom stress (τs < τ0 < τsd) and/or small
enough particles, sediments escape from the bottom layer and are entrained in the bulk of
the flow. They are then transported by the fluid behaving as passive tracers except for their
tendency to settle as a result of their excess density (Figure 23c). This mode of transport is
conventionally called transport in suspension as long as the suspension keeps sufficiently dilute
that particle interactions (hydrodynamic, frictional and collisional) may safely be neglected.

- Transition to sheet-debris mode. This transition occurs for τ0 > τsd, as a result the suspension
becomes highly concentrated and particle interactions play a dominant role.

As a final note of caution, the threshold values τc , τs and τsd can only be defined in statistical
sense as the transition between adjacent transport modes is smooth rather than abrupt.

3.2.3 The modern view: coherent turbulent structures and their role in particle entrainment

As discussed in Section 2.2.3, since the early works of Theodorsen (1952) and Kline and
Runstadler (1959), developed and extended by Kline et al. (1967), experimental investigations on
the detailed structure of the turbulence field in boundary layers and channels have revealed the
existence of distinctly recognizable organized motions referred to as ’coherent structures’.

The discovery of coherent structures has had some impact also on the understanding of
sediment transport. Indeed, in a laboratory investigation appeared shortly after the discovery of
wall structures, Sutherland (1967) clearly observed that bedload particles move collectively “in a
series of short intermittent bursts, each of which is confined to a small area” which then “remains
relatively undisturbed for a period until another short burst occurs”. The mechanism envisaged by
Sutherland (1967), namely an eddy impact onto a sediment bed able to produce a horizontal drag
force on the grain large enough to give rise to rolling of the particle about its point of support,
already contained the essential features of the process which have later emerged from more detailed
investigations.

However, it was only in the 80’s that these inspiring ideas were more clearly related to the
structure of near wall flow events. In a series of important papers (Heathershaw and Thorne, 1985;
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Figure 23. Sketch of the various modes of sediment transport (a) no transport; (b) bedload transport; (c) transport
in suspension68

The sediment transport capacity of open channel flows

Thorne et al., 1989) a technique was developed to measure simultaneously flow field and bedload
transport in a shallow tidal channel, with bed composed of a bimodal sand-gravel mixture with
dominant content of gravel. An analysis of the experimental results revealed the following facts.

- The bulk of bedload gravel transport was associated with events of the bursting cycle classified
as sweeps.

- A significant role was also played by so called outward interactions (v′x > 0, v′z > 0), though
their relatively low frequency and amplitude gave rise to a fairly small overall effect.

- On the contrary, ejections (v′x < 0, v′z > 0) and inward interactions (v′x < 0, v′z < 0) produced
very little transport.

Field observations of bedload transport of gravel in fluvial alluvial streams performed by Drake
et al. (1988) and later detailed laboratory measurements (Nelson et al., 1995) confirmed the general
ideas discussed above.

In order to transform the above observations into modeling capabilities, one should compute
the unsteady response of a single particle to the action of organized wall structures. However,
this is a formidable problem as a number of difficulties are encountered when one attempts to
model the actual process occurring in nature. Firstly, the flow Reynolds number of fluvial and
tidal streams is typically very large (say 106 − 107), hence outside the range of Reynolds numbers
that can be reached by DNS. Rough wall conditions add a further source of difficulty for numerical
modeling. Finally, particle-particle and wall-particle interactions pose a formidable hydrodynamic
problem, the more so if the wall is irregular. This notwithstanding, considerable progress has been
made recently, considering turbulent flows at low Reynolds numbers and restricting the analysis to
collections of a relatively small number of spherical particles. Results of these efforts are briefly
discussed in Section 3.3.3.

3.3. Bedload transport

3.3.1 Threshold conditions for particle entrainment as bedload

It is hard to trace the earliest known contribution to the problem of defining threshold conditions
for the initiation of sediment motion in turbulent streams. However, the first systematic approach
to the problem was apparently pursued by Shields (1936). This author was already aware of the
highly unsteady and spatially non uniform character of the process of initiation of motion, which
is statistical in nature and requires some averaged definition of the critical conditions. The actual
approach employed by Shields (1936) to define the critical (mean) bed shear stress for sediment
motion is not quite clear. The interested reader may refer to Buffington (1999) and the discussions
which followed, for a thorough analysis of the historical developments of the interpretation of
Shields work1. His experiments were performed in flumes with a fully developed uniform turbulent
stream flowing on an initially flattened bed of cohesionless natural sediments. Nevertheless, the
bed did not keep plane throughout the experiment and the grain size distribution was not uniform.

In principle, entrainment occurs when the static equilibrium of a grain lying on the bed surface
is lost. Equilibrium obviously depends on the forces acting on the particle, namely submerged
gravity, hydrodynamic forces and contact forces with neighboring grains. Hence, on purely physical
ground, the mean critical bed shear stress for the incipient motion of uniform sediments lying at
the bottom of a uniform turbulent stream may be assumed to be a function of: i) fluid properties
(density ϱ and kinematic viscosity ν); ii) particle properties (size d, submerged specific weight
g (ϱs − ϱ), shape, grain size distribution); iii) local geometrical arrangement of the cohesionless

1 In Shields (1936) paper the critical stress was defined as the value of the mean bottom stress below which the
average volumetric bedload flux vanishes. Its value was apparently obtained by extrapolating a plot of observed
sediment fluxes as a function of the average bottom shear stress. However, it has been argued (Kennedy, 1995)
that visual observations might have actually been employed by Shields (1936).
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Figure 23. Sketch of the various modes of sediment transport (a) no transport; (b) bedload transport; (c) transport
in suspension68

The sediment transport capacity of open channel flows
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stream flowing on an initially flattened bed of cohesionless natural sediments. Nevertheless, the
bed did not keep plane throughout the experiment and the grain size distribution was not uniform.

In principle, entrainment occurs when the static equilibrium of a grain lying on the bed surface
is lost. Equilibrium obviously depends on the forces acting on the particle, namely submerged
gravity, hydrodynamic forces and contact forces with neighboring grains. Hence, on purely physical
ground, the mean critical bed shear stress for the incipient motion of uniform sediments lying at
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bed, notably the degree of exposure of the particle to the flow; iv) gravity, acting on sediment
particles lying on sloping beds.

Ignoring, for the moment, the effects of sediment heterogeneity and particle shape, we can
write

τc = τc

(
d, ϱ, ν, g (ϱs − ϱ); e, tan θ

)
, (178)

where tan θ is the bed slope and e is a dimensionless parameter measuring the degree of particle
exposure. The application of Buckingam theorem to (178) implies:

τ∗c = τ∗c(Rp; e, tan θ), (179)

where τ∗c is the critical value of the Shields stress τ∗ (recall the equation 177), while Rp is the
particle Reynolds number defined by (174). Essentially, Rp is a dimensionless measure of particle
size and turns out to be a convenient alternative to the particle Reynolds number Rτ based on the
friction velocity uτ originally employed by Shields (1936) and defined in the form:

Rτ =
uτ d

ν
. (180)

The use of Rp was apparently first suggested by Yalin (1972). Such a choice avoids the presence
of the friction velocity in both sides of (179) and simplifies the actual calculation of the critical
Shields stress. Also note that Rp, Rτ and τ∗ satisfy the following simple relationship:

Rp =
Rτ√
τ∗

. (181)

Shields (1936) original results did not consider the effect of bed slope nor the role of particle
exposure as natural sediments were employed and the spatial arrangement of particles was random.
The critical conditions were identified through a plot in the plane (Rτ , τ∗) based on experimental
observations performed by a number of previous Authors along with some observations performed
by Shields himself. The plot was later fit by a curve proposed by Rouse (1939). A close analytical
approximation of this curve was obtained by Brownlie (1981) and reads:

τ∗co = 0.22R−0.6
p + 0.06 exp(−17.77R−0.6

p ), (182)

where the subscript o is introduced to recall that the above relationship refers to conditions of
nearly vanishing bed slope. Brownlie relationship is plotted in the plane (Rp, τ∗) of Figure 24.
Also shown are experimental data referring to bankfull conditions for a variety of rivers. They
suggest that the threshold conditions for both bedload and suspended load are typically exceeded
in the field although Shields criterion clearly overestimates the critical value of the Shields stress
for gravel bed river. The above plot also underlines the level of uncertainty that unavoidably
characterizes the definition of a threshold which is statistical in nature.

Various later experimental works pointed out the difficulty to give a precise definition of
threshold conditions for particle motion. In particular, Taylor (1971) showed that the definition
of critical conditions depends on the choice of the accuracy of the condition of vanishing bedload
transport. For large particle Reynolds numbers, the critical value of the Shields parameter may
roughly decrease from 0.06 to 0.03 as the dimensionless sediment flux per unit width (scaled by
the flow discharge per unit width) decreases from 10−2 to 10−6. Similarly, Fenton and Abbott
(1977) showed that the value of τ∗co decreases as the degree of exposure of individual grains to the
flow e increases (the lowest value of τ∗co ranged about 0.01 and was associated with the maximum
value of e for large values of Rp).

The effect of bed slope can be readily incorporated in the context of the present dimensional
treatment. In fact, for the typical case of small bed slopes, we may linearize the dependence of the
relationship (179) on tan θ, to find:

τ∗c = τ∗co(Rp)
(
1 + c tan θ

)
, (183)
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Figure 24. Threshold conditions for the initiation of motion are plotted in plane (Rp, τ∗). Two curves are shown:
the Brownlie (1981) approximation of the original Shields (1936) empirical criterion (τ∗c0 solid line) and the curve
representing Van Rijn (1984a) criterion for incipient transport in suspension (τ∗s dashed line). The points refer to

data sets for a variety of rivers under bankfull conditions.

with c a constant and the obvious constraint that τ∗c must tend to τ∗co as the slope vanishes.
The constant c can be determined experimentally. However, a simple estimate of c is obtained by
extending the validity of (183) up to values of θ comparable with the sediment angle of repose ϕ.
Imposing the further constraint that τ∗c must vanish as θ → ϕ, one finds:

τ∗c = τ∗co(Rp)

(
1− tan θ

tanϕ

)
. (184)

An expression similar to (184) was first derived by Lysne (1969) who also tested it by performing
a series of experiments on the effect of bed slope on the incipient motion of sand in a close channel.
Results are quite well fitted by (184) with ϕ ranging about 47◦. A similar value of ϕ was found by
Luque and Van Beek (1976), who fitted a similar relationship to their experimental observations
for the incipient motion of sand, gravel and magnetite in open channel flow on sloping beds. This
suggests that a simple dimensional approach is significant in spite of the complexity of the process.
The above discussion is sufficient for our present purposes. The reader interested in achieving a
wider knowlegde of the rich literature developed on the subject in the last few decades is referred
to Garcia (2008).

In order to interpret the available experimental observations, attempts have been made to
perform elementary analysis of the equilibrium of an isolated particle, resting on a granular bed.
At incipient motion the sum of the destabilizing moments of drag and lift forces acting on the
grain with respect to the points of contact of the grain with neighboring particles must balance
the stabilizing moment of submerged particle weight. These attempts have qualitative significance.
Several Authors have tried to go beyond qualitative reasoning. However, various difficulties arise.
In particular, the statement of equilibrium should hold instantaneously but no rigorous knowledge
exists of the instantaneous flow field acting on a sphere lying on a granular bed. Moreover,
even neglecting the effect of turbulent fluctuations, the presence of the rough wall makes the
hydrodynamic forces acting on the particle hardly predictable with accuracy. In spite of these
difficulties, Coleman (1967), Ikeda (1982a) and Wiberg and Smith (1987) (among others) were
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bed, notably the degree of exposure of the particle to the flow; iv) gravity, acting on sediment
particles lying on sloping beds.

Ignoring, for the moment, the effects of sediment heterogeneity and particle shape, we can
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, (178)

where tan θ is the bed slope and e is a dimensionless parameter measuring the degree of particle
exposure. The application of Buckingam theorem to (178) implies:
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where τ∗c is the critical value of the Shields stress τ∗ (recall the equation 177), while Rp is the
particle Reynolds number defined by (174). Essentially, Rp is a dimensionless measure of particle
size and turns out to be a convenient alternative to the particle Reynolds number Rτ based on the
friction velocity uτ originally employed by Shields (1936) and defined in the form:
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of the friction velocity in both sides of (179) and simplifies the actual calculation of the critical
Shields stress. Also note that Rp, Rτ and τ∗ satisfy the following simple relationship:
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Shields (1936) original results did not consider the effect of bed slope nor the role of particle
exposure as natural sediments were employed and the spatial arrangement of particles was random.
The critical conditions were identified through a plot in the plane (Rτ , τ∗) based on experimental
observations performed by a number of previous Authors along with some observations performed
by Shields himself. The plot was later fit by a curve proposed by Rouse (1939). A close analytical
approximation of this curve was obtained by Brownlie (1981) and reads:

τ∗co = 0.22R−0.6
p + 0.06 exp(−17.77R−0.6
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where the subscript o is introduced to recall that the above relationship refers to conditions of
nearly vanishing bed slope. Brownlie relationship is plotted in the plane (Rp, τ∗) of Figure 24.
Also shown are experimental data referring to bankfull conditions for a variety of rivers. They
suggest that the threshold conditions for both bedload and suspended load are typically exceeded
in the field although Shields criterion clearly overestimates the critical value of the Shields stress
for gravel bed river. The above plot also underlines the level of uncertainty that unavoidably
characterizes the definition of a threshold which is statistical in nature.

Various later experimental works pointed out the difficulty to give a precise definition of
threshold conditions for particle motion. In particular, Taylor (1971) showed that the definition
of critical conditions depends on the choice of the accuracy of the condition of vanishing bedload
transport. For large particle Reynolds numbers, the critical value of the Shields parameter may
roughly decrease from 0.06 to 0.03 as the dimensionless sediment flux per unit width (scaled by
the flow discharge per unit width) decreases from 10−2 to 10−6. Similarly, Fenton and Abbott
(1977) showed that the value of τ∗co decreases as the degree of exposure of individual grains to the
flow e increases (the lowest value of τ∗co ranged about 0.01 and was associated with the maximum
value of e for large values of Rp).

The effect of bed slope can be readily incorporated in the context of the present dimensional
treatment. In fact, for the typical case of small bed slopes, we may linearize the dependence of the
relationship (179) on tan θ, to find:

τ∗c = τ∗co(Rp)
(
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Figure 24. Threshold conditions for the initiation of motion are plotted in plane (Rp, τ∗). Two curves are shown:
the Brownlie (1981) approximation of the original Shields (1936) empirical criterion (τ∗c0 solid line) and the curve
representing Van Rijn (1984a) criterion for incipient transport in suspension (τ∗s dashed line). The points refer to

data sets for a variety of rivers under bankfull conditions.

with c a constant and the obvious constraint that τ∗c must tend to τ∗co as the slope vanishes.
The constant c can be determined experimentally. However, a simple estimate of c is obtained by
extending the validity of (183) up to values of θ comparable with the sediment angle of repose ϕ.
Imposing the further constraint that τ∗c must vanish as θ → ϕ, one finds:

τ∗c = τ∗co(Rp)

(
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)
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An expression similar to (184) was first derived by Lysne (1969) who also tested it by performing
a series of experiments on the effect of bed slope on the incipient motion of sand in a close channel.
Results are quite well fitted by (184) with ϕ ranging about 47◦. A similar value of ϕ was found by
Luque and Van Beek (1976), who fitted a similar relationship to their experimental observations
for the incipient motion of sand, gravel and magnetite in open channel flow on sloping beds. This
suggests that a simple dimensional approach is significant in spite of the complexity of the process.
The above discussion is sufficient for our present purposes. The reader interested in achieving a
wider knowlegde of the rich literature developed on the subject in the last few decades is referred
to Garcia (2008).

In order to interpret the available experimental observations, attempts have been made to
perform elementary analysis of the equilibrium of an isolated particle, resting on a granular bed.
At incipient motion the sum of the destabilizing moments of drag and lift forces acting on the
grain with respect to the points of contact of the grain with neighboring particles must balance
the stabilizing moment of submerged particle weight. These attempts have qualitative significance.
Several Authors have tried to go beyond qualitative reasoning. However, various difficulties arise.
In particular, the statement of equilibrium should hold instantaneously but no rigorous knowledge
exists of the instantaneous flow field acting on a sphere lying on a granular bed. Moreover,
even neglecting the effect of turbulent fluctuations, the presence of the rough wall makes the
hydrodynamic forces acting on the particle hardly predictable with accuracy. In spite of these
difficulties, Coleman (1967), Ikeda (1982a) and Wiberg and Smith (1987) (among others) were
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able to show that, with the help of reasonable empirical guesses for the values of the drag and lift
coefficients, along with approximate assumptions on the velocity distribution of the fluid phase
and the direction of particle drag and lift, the predicted criterion exhibits the general form of the
Shields criterion. This will be discussed in Section 3.3.4.

3.3.2 Bedload transport capacity of homogeneous sediments in uniform open channel flow

Classical experimental observations

As mentioned above, provided the Shields stress acting on the bed exceeds the critical value τ∗c,
grains are entrained by the stream and bedload transport occurs within a layer adjacent to the
bed where particles slide, roll or saltate on the bottom.

In the classical experimental investigations of the mechanics of bedload transport appeared in
the early literature, attempts were made to relate the average properties of particle motion to the
mean flow properties. A great deal of our knowledge on the subject comes from the investigations
of Francis (1973) and Abbott and Francis (1977). These works, along with a number of previous
and later studies, employed photographic techniques to observe the motion of isolated particles
saltating over a fixed bed. Investigations by Ikeda (1971), Luque and Van Beek (1976) and Niño
and Garcia (1994) (among others) extended these observations to the more realistic case of bedload
particles saltating over movable beds, restricting their attention to the case of uniform sediments.
A number of important results emerged.

- Bagnold (1973) clarified the distinction between bedload and suspended load, emphasizing the
role of turbulence as the supporting agent of suspended particles (“the excess weight of the
solid is supported wholly by a random succession of upward impulses imparted by eddy currents
of fluid turbulence moving upwards relative to the bed.”). Bedload transport was then defined as
unsuspended in that “no upward impulses are imparted to the solid other than those attributable
to successive contacts between the solid and the bed ”. Vague as these statements may appear,
they contain a fundamental idea, later confirmed by field and laboratory observations: bedload
transport, as opposed to transport in suspension, is not associated with the occurrence of
positive (i.e., upward directed) turbulent velocity fluctuations in the near wall region. Hence,
it is not surprising that, as shown by some of Francis (1973) observations, saltation may occur
also under laminar flow conditions.

- Abbott and Francis (1977) formulated a more precise definition of saltation as a mode of
transport where grains do never experience an upward acceleration (except, of course for the
very initial instant of particle motion).

- Few experimental observations analyzed the simultaneous occurrence of the rolling-sliding and
saltation modes as a function of the so called stage parameter T , a measure of the intensity of
transport defined as the ratio τ∗/τ∗c. In Abbott and Francis (1977) it clearly emerged that
the rolling-sliding mode prevailed (roughly 60% of total time spent in transport) at threshold,
then decreased rapidly (20% at T = 1.4) and practically disappeared as T reached a value of
about 3. Qualitatively similar field observations have been reported by Drake et al. (1988).
Thus the rolling-sliding mode appears to be a relatively minor feature of bedload transport.

- Both saltation lengths and saltation heights exhibit a monotonically increasing dependence on
stage parameter in different sets of data, with the exception of those of Luque and Van Beek
(1976) whose saltation lengths did not exhibit any Shields dependence and ranged about 16 d.

- The average intensity of the particle velocity ⟨vP ⟩ measured by various Authors was invariably
found to depend on Shields stress in the form:

⟨vP ⟩ = A
(√

τ∗ −
√
τ∗c1

)
, (185)
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where A is a parameter and τ∗c1 is a sort of dynamic critical Shields stress somewhat smaller
than τ∗c. Hence, it is more difficult to mobilize a particle than to keep it in motion once it has
been mobilized. The velocity is thus discontinuous at the threshold of sediment transport, even
though determining this nonzero finite value remains an experimental challenge (Lajeunesse
et al., 2010).

- In interpreting the saltation mechanism, one may be tempted to take the view that particle
rebound arises from an elastic collision between the hopping grain and the hit particle lying
on the bed. Indeed, such a view is able to explain the process of aeolian saltation (Bagnold,
1941; Owen, 1964; Anderson and Haff, 1988). However Bagnold (1956) (pg. 244) first pointed
out that the above viewpoint is not appropriate to interpret subaqueous saltation: “owing to
viscous effects in liquids the grain velocity on return to the bed is insufficient to cause any
observable rebound or any disturbance of the bed grains”. Bagnold again captures a basic
physical idea: the interaction between a particle and the bed is a hydrodynamic process,
affected by the dynamics of the fluid layer squeezed between the moving and the stationary
grains. The details of this process have hardly been investigated. Bagnold intuition was
confirmed by later observations. In particular Abbott and Francis (1977) state: “there was
not the slight evidence of a particle bouncing backwards after a collision” while, often, the
impacting grain “rolls over the bed particle and is momentarily stopped by the next bed particle
before being lifted away again by the flow ” and “there are fewer impacts in which the grain
glances off the bed into a low trajectory”.

The average bedload transport rate per unit width

Using the notations of Figure 25, the instantaneous volumetric bedload transport rate per unit
width can be given the following general form:

∫ y+b1/2

y−b1/2

dy

∫ hb

0

vP (x, t) dz. (186)

In (186), x is a point vector lying within the given cross-section, vP (x, t) is a function which
vanishes whenever x is located outside the volume Vs instantaneously occupied by sediment
particles in motion, otherwise it coincides with the longitudinal component of the instantaneous
particle velocity at locations x contained within Vs. Moreover, hb is the thickness of the layer
containing sediment particles in motion and b1 is the dimensional unit width.

Figure 25. Sketch of particles in motion as bedload and notations.

Note that (186) essentially defines the instantaneous sediment flux per unit width in terms
of a weighted average of the longitudinal components of the velocities of the particles crossing
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able to show that, with the help of reasonable empirical guesses for the values of the drag and lift
coefficients, along with approximate assumptions on the velocity distribution of the fluid phase
and the direction of particle drag and lift, the predicted criterion exhibits the general form of the
Shields criterion. This will be discussed in Section 3.3.4.

3.3.2 Bedload transport capacity of homogeneous sediments in uniform open channel flow

Classical experimental observations

As mentioned above, provided the Shields stress acting on the bed exceeds the critical value τ∗c,
grains are entrained by the stream and bedload transport occurs within a layer adjacent to the
bed where particles slide, roll or saltate on the bottom.

In the classical experimental investigations of the mechanics of bedload transport appeared in
the early literature, attempts were made to relate the average properties of particle motion to the
mean flow properties. A great deal of our knowledge on the subject comes from the investigations
of Francis (1973) and Abbott and Francis (1977). These works, along with a number of previous
and later studies, employed photographic techniques to observe the motion of isolated particles
saltating over a fixed bed. Investigations by Ikeda (1971), Luque and Van Beek (1976) and Niño
and Garcia (1994) (among others) extended these observations to the more realistic case of bedload
particles saltating over movable beds, restricting their attention to the case of uniform sediments.
A number of important results emerged.

- Bagnold (1973) clarified the distinction between bedload and suspended load, emphasizing the
role of turbulence as the supporting agent of suspended particles (“the excess weight of the
solid is supported wholly by a random succession of upward impulses imparted by eddy currents
of fluid turbulence moving upwards relative to the bed.”). Bedload transport was then defined as
unsuspended in that “no upward impulses are imparted to the solid other than those attributable
to successive contacts between the solid and the bed ”. Vague as these statements may appear,
they contain a fundamental idea, later confirmed by field and laboratory observations: bedload
transport, as opposed to transport in suspension, is not associated with the occurrence of
positive (i.e., upward directed) turbulent velocity fluctuations in the near wall region. Hence,
it is not surprising that, as shown by some of Francis (1973) observations, saltation may occur
also under laminar flow conditions.

- Abbott and Francis (1977) formulated a more precise definition of saltation as a mode of
transport where grains do never experience an upward acceleration (except, of course for the
very initial instant of particle motion).

- Few experimental observations analyzed the simultaneous occurrence of the rolling-sliding and
saltation modes as a function of the so called stage parameter T , a measure of the intensity of
transport defined as the ratio τ∗/τ∗c. In Abbott and Francis (1977) it clearly emerged that
the rolling-sliding mode prevailed (roughly 60% of total time spent in transport) at threshold,
then decreased rapidly (20% at T = 1.4) and practically disappeared as T reached a value of
about 3. Qualitatively similar field observations have been reported by Drake et al. (1988).
Thus the rolling-sliding mode appears to be a relatively minor feature of bedload transport.

- Both saltation lengths and saltation heights exhibit a monotonically increasing dependence on
stage parameter in different sets of data, with the exception of those of Luque and Van Beek
(1976) whose saltation lengths did not exhibit any Shields dependence and ranged about 16 d.

- The average intensity of the particle velocity ⟨vP ⟩ measured by various Authors was invariably
found to depend on Shields stress in the form:
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τ∗ −
√
τ∗c1

)
, (185)
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where A is a parameter and τ∗c1 is a sort of dynamic critical Shields stress somewhat smaller
than τ∗c. Hence, it is more difficult to mobilize a particle than to keep it in motion once it has
been mobilized. The velocity is thus discontinuous at the threshold of sediment transport, even
though determining this nonzero finite value remains an experimental challenge (Lajeunesse
et al., 2010).

- In interpreting the saltation mechanism, one may be tempted to take the view that particle
rebound arises from an elastic collision between the hopping grain and the hit particle lying
on the bed. Indeed, such a view is able to explain the process of aeolian saltation (Bagnold,
1941; Owen, 1964; Anderson and Haff, 1988). However Bagnold (1956) (pg. 244) first pointed
out that the above viewpoint is not appropriate to interpret subaqueous saltation: “owing to
viscous effects in liquids the grain velocity on return to the bed is insufficient to cause any
observable rebound or any disturbance of the bed grains”. Bagnold again captures a basic
physical idea: the interaction between a particle and the bed is a hydrodynamic process,
affected by the dynamics of the fluid layer squeezed between the moving and the stationary
grains. The details of this process have hardly been investigated. Bagnold intuition was
confirmed by later observations. In particular Abbott and Francis (1977) state: “there was
not the slight evidence of a particle bouncing backwards after a collision” while, often, the
impacting grain “rolls over the bed particle and is momentarily stopped by the next bed particle
before being lifted away again by the flow ” and “there are fewer impacts in which the grain
glances off the bed into a low trajectory”.

The average bedload transport rate per unit width

Using the notations of Figure 25, the instantaneous volumetric bedload transport rate per unit
width can be given the following general form:

∫ y+b1/2

y−b1/2
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0

vP (x, t) dz. (186)

In (186), x is a point vector lying within the given cross-section, vP (x, t) is a function which
vanishes whenever x is located outside the volume Vs instantaneously occupied by sediment
particles in motion, otherwise it coincides with the longitudinal component of the instantaneous
particle velocity at locations x contained within Vs. Moreover, hb is the thickness of the layer
containing sediment particles in motion and b1 is the dimensional unit width.

Figure 25. Sketch of particles in motion as bedload and notations.

Note that (186) essentially defines the instantaneous sediment flux per unit width in terms
of a weighted average of the longitudinal components of the velocities of the particles crossing
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the unit width of the stream at time t, with weights given by the areas of the instantaneous
intersections of the particles with the stream cross-section. Both velocities and areas fluctuate in
time due to particle motion. It is then convenient to define an average depth integrated volumetric
sediment flux per unit width Qb

s (or average bedload transport rate per unit width) by performing
an ensemble average or an equivalent temporal average of (186). One finds:

Qb
s = lim

∆t→∞

(
NP (∆t)VP

∆t

)
, (187)

where NP (∆t) is the number of grains (not necessarily an integer number) which have crossed
the unit width of the stream in the time interval ∆t. Note that, in the classical approach, the
relative effect of fluctuations of NP (∆t) on Qb

s is assumed to decrease as ∆t increases, hence a
fairly stationary limit is expected.

Let us now derive a general relationship for Qb
s by purely dimensional arguments. On physical

ground, it is reasonable to assume that, for a uniform sediment and a weak bottom slope, the
intensity of bedload transport should depend on the excess bottom stress, particle size, submerged
specific weight of solid particles and fluid properties. We then assume the following functional
dependence:

Qb
s = f [(τ0 − τc), d, ϱ, ν, g (ϱs − ϱ)]. (188)

Application of the Buckingham theorem then allows to transform the latter equation into the
following dimensionless form:

Q̃b
s =

Qb
s√

(s− 1) g d3
= Φb(τ∗ − τ∗c, Rp), (189)

where we have employed the classical scaling for Qb
s originally introduced by Einstein (1950).

Several data for Qb
s, referring to plane bed conditions, are available in the literature (e.g.

Gilbert, 1914a; Meyer-Peter and Müller, 1948; Guy et al., 1966; Williams, 1970; Ashida and
Michiue, 1972; Luque and Van Beek, 1976; Mantz, 1980, among others). Experimental results
invariably suggest that Φb is a monotonically and rapidly increasing function of the excess Shields
stress. This sensitive dependence of Φb on (τ∗ − τ∗c) makes predictions of the average sediment
transport rate subject to significant uncertainty.

A large number of empirical relationships of the general form (189) has been proposed in the
literature (Garcia, 2008). An early assessment of their success as bedload predictors was the
subject of the phD Dissertation of Brownlie (1981). The early relationship of Meyer-Peter and
Müller (1948), which has enjoyed a great popularity in both basic and applied research, deserves
to be particularly mentioned. It reads:

Φb = 8 (τ∗ − 0.047)3/2. (190)

The tendency of this relationship to overpredict bedload rates has been recently corrected modifying
both the factor 8 and the critical Shields stress, that respectively take the value 3.97 and the value
0.0495 in the formulation of Wong and Parker (2006), and the values 5 and 0.05 according to
the proposal of Hunziker and Jäggi (2002). The Figure 26 shows a comparison with the original
datasets of Meyer-Peter and Müller (1948). This plot also clarifies the relatively low degree of
accuracy that empirical transport formulas are able to achieve.

This poor performance of empirical bedload predictions is strictly related to the fluctuations
that, for a given flow condition, bedload measurements exhibit not only in the field (Recking et
al., 2012) but also in flume tests (Ancey, 2020b). In particular, the shorter is the sampling period,
the higher are these fluctuations. In addition, because of their high variance, the time needed
to obtain the mean sediment transport rate up to a prescribed accuracy (e.g 5%) may be very
long even under controlled laboratory conditions (Ancey, 2020b). As a consequence, while most
bedload transport formulas predict reasonably time integrated flume measurements, they exhibit
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Figure 26. Comparison of original empirical relation for the dimensionless bedload transport capacity per unit
width of a stream as proposed by Meyer-Peter and Müller (1948) (solid line) and the version proposed by Wong
and Parker (2006) (dashed line). Data reported in this plot belong to the original dataset of Meyer-Peter and

Müller (1948) (courtesy of Miguel Wong).

severe limitations when applied to field conditions, especially at low Shields stresses (Recking et
al., 2012).

Bedload fluctuations are not only associated with processes typical of natural sediments (e.g.
grain sorting, bed armouring, bed form migration, irregular bed geometry, variations in sediment
supply), but they are also intrinsic to the complex dynamics of sediment particles transported by
a turbulent stream. As briefly discussed below, at low transport rates this dynamics is essentially
a noise-driven process which implies that Qb

s depends not only on the mean flow properties (i.e
flow depth and mean velocity) but also on a diffusion term arising from the ensemble average of
the fluctuating bedload rates (Furbish et al., 2017; Ancey, 2020b).

Bedload transport modeling: a still open issue

Modeling bedload transport even for a uniform flow under equilibrium conditions, i.e. such that
the transport process is statistically stationary both in space and in time, is a formidable problem,
which awaits to be fully understood. Indeed, even under these conditions, bedload transport
exhibits considerable spatial and temporal fluctuations. Before modern observations clarified the
role played by coherent wall structures suggesting the need for a new generation of theoretical
models, a number of attempts appeared in the literature, where the process of bedload transport
was described in some average fashion. We will not engage ourselves in the effort to provide a
review of these attempts. But it may be instructive for the reader to get acquainted with the basic
ideas underlying most of them, along with some thoughts about developments which appear to be
necessary and feasible.

Let us return to our definition (187) of the average volumetric transport rate per unit width.
If each particle moved with the average longitudinal component of particle velocity ⟨vP ⟩, then
NP (∆t)VP would be exactly equal to (Ca ⟨vP ⟩∆t), where Ca is the average areal concentration of
bedload particles (a quantity having dimension of a length and often denoted as particle activity),
namely the average volume of sediment particles transported as bedload per unit horizontal area.
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the unit width of the stream at time t, with weights given by the areas of the instantaneous
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that, for a given flow condition, bedload measurements exhibit not only in the field (Recking et
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Figure 26. Comparison of original empirical relation for the dimensionless bedload transport capacity per unit
width of a stream as proposed by Meyer-Peter and Müller (1948) (solid line) and the version proposed by Wong
and Parker (2006) (dashed line). Data reported in this plot belong to the original dataset of Meyer-Peter and

Müller (1948) (courtesy of Miguel Wong).

severe limitations when applied to field conditions, especially at low Shields stresses (Recking et
al., 2012).

Bedload fluctuations are not only associated with processes typical of natural sediments (e.g.
grain sorting, bed armouring, bed form migration, irregular bed geometry, variations in sediment
supply), but they are also intrinsic to the complex dynamics of sediment particles transported by
a turbulent stream. As briefly discussed below, at low transport rates this dynamics is essentially
a noise-driven process which implies that Qb

s depends not only on the mean flow properties (i.e
flow depth and mean velocity) but also on a diffusion term arising from the ensemble average of
the fluctuating bedload rates (Furbish et al., 2017; Ancey, 2020b).

Bedload transport modeling: a still open issue

Modeling bedload transport even for a uniform flow under equilibrium conditions, i.e. such that
the transport process is statistically stationary both in space and in time, is a formidable problem,
which awaits to be fully understood. Indeed, even under these conditions, bedload transport
exhibits considerable spatial and temporal fluctuations. Before modern observations clarified the
role played by coherent wall structures suggesting the need for a new generation of theoretical
models, a number of attempts appeared in the literature, where the process of bedload transport
was described in some average fashion. We will not engage ourselves in the effort to provide a
review of these attempts. But it may be instructive for the reader to get acquainted with the basic
ideas underlying most of them, along with some thoughts about developments which appear to be
necessary and feasible.

Let us return to our definition (187) of the average volumetric transport rate per unit width.
If each particle moved with the average longitudinal component of particle velocity ⟨vP ⟩, then
NP (∆t)VP would be exactly equal to (Ca ⟨vP ⟩∆t), where Ca is the average areal concentration of
bedload particles (a quantity having dimension of a length and often denoted as particle activity),
namely the average volume of sediment particles transported as bedload per unit horizontal area.
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Fluctuations of the average speed of different particles lead to fluctuations of NP (∆t). However,
we have already pointed out that, as ∆t increases in the classical approach, the effect of such
fluctuations on the average transport rate is assumed to vanish. Hence, in the formal limit ∆t → ∞,
the following relationship is found:

Qb
s = Ca ⟨vP ⟩. (191)

As mentioned above, equilibrium is assumed to imply that the process is statistically stationary
both in space and in time hence, under equilibrium conditions, both Ca and ⟨vP ⟩ are constant.
However, note that the latter definition can be readily extended to the more general case of non
uniform flows, with the only constraint that the time scale of variations of the average flow field
must be much larger than the sufficiently large value of ∆t for which fluctuations of NP (∆t)
become insignificant.

The equation (191) clarifies that any theoretical attempt to derive a relationship for Qb
s requires

a framework able to evaluate the quantities Ca and ⟨vP ⟩. And, indeed, most investigations have
pursued this goal.

The efforts to estimate the average speed of saltating particles have been fairly successful. The
earliest attempts (Bagnold, 1973; Ashida and Michiue, 1972; Engelund and Fredsøe, 1976; Bridge
and Dominic, 1984) were based on a strongly idealized model. Particles would keep saltating
indefinitely and their average motion would satisfy a steady dynamic balance between an average
drag force acting on the particle and an average frictional force, somehow interpreting the effect
of the intermittent interactions of particles with the bed. Modern experimental observations
suggest that the latter scheme cannot be expected to fully represent the actual saltating process,
which is inherently unsteady and intermittent. Moreover, the steady assumption rules out all the
effects associated with spatial and temporal variations of the ambient flow field, notably added
mass, shear, particle rotation and horizontal buoyancy. This notwithstanding, in spite of its clear
oversimplification, this model problem leads to sensible results of the general form (185), i.e. in
reasonable qualitative agreement with observations.

A second class of models (e.g. Van Rijn, 1984a; Wiberg and Smith, 1985; Sekine and Kikkawa,
1992; Niño and Garcia, 1994, among others) aimed at deriving a relationship for the average speed
⟨vP ⟩ of saltating particles by means of numerical simulations of the saltation process. This approach
poses a hydrodynamical problem of formidable difficulty. In fact, the ambient fluid is subject to
a turbulent shear flow, which is disturbed by the presence of bedload particles. Evaluating the
hydrodynamic force acting on particles in relative motion at moderate Reynolds numbers and in
the presence of other particles would require a full DNS solution in the near wall region. Moreover,
particles are subject to a process of rebound which is controlled by a complex hydrodynamic
interaction with a granular bed whose geometrical arrangement can only be described in statistical
terms, a process that is, at present, outside the reach of any rigorous approach.

The analysis of the second problem, namely estimating the average areal concentration Ca of
particles engaged in bedload transport, has been widely influenced by a fundamental assumption
due to Bagnold (1973). The idea is extremely simple. At the top of the bedload layer, of thickness
hb, the average shear stress is equal to τ0(1−hb/D0) with τ0 average bottom stress and D0 uniform
flow depth (see Figure 27). In the absence of any sediment transport, the amount τ0(hb/D0),
typically much smaller than τ0, balances the effect of gravity acting on the fluid layer of thickness
hb adjacent to the bottom. The argument put forward by Bagnold (1973) suggests that, in the
presence of sediment transport, the entire stress τ0(1− hb/D0) available at the top of the saltation
layer (except for a residual portion equal to the critical value for particle entrainment) must be
“consumed” by the additional resistive stress associated with contacts of bedload particles with the
granular bed. In other words, enough particles must be set in motion such that the residual average
fluid stress acting on the granular bed does not exceed the critical stress τc. A simple dynamic
equilibrium condition then allows to derive a linear relationship between the areal concentration
and the excess Shields stress (τ∗ − τ∗c).

The debate on the validity of Bagnold hypothesis has been intense through the years. In
particular, the detailed experimental work of Luque and Van Beek (1976) on a stream flowing
under pressure in a fairly narrow rectangular duct has shown that this assumption is not satisfied
close to critical conditions and becomes less invalid as the stage parameter increases. More recently,
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Figure 27. Sketch illustrating Bagnold hypothesis.

Seminara et al. (2002) have pointed out a conceptual failure of Bagnold hypothesis, which emerges
when one attempts to generalize it to the important case of sloping beds. Essentially, analyzing
Bagnold assumption more deeply, its inadequacy emerges clearly. In fact, the rationale behind it
is essentially a static notion of equilibrium of the bed interface, whereby exposed particles should
be subject to a mean stress smaller than the critical stress for particle motion. However, the
experimental observations of particle dynamics suggest that, when bedload transport is present,
the average equilibrium of the particle interface is, indeed, of dynamic nature: it arises from a
balance between particles entrained by turbulent sweeps and particles distrained as these turbulent
events decay. Hence, interpreting the process in terms of average quantities, one is led to infer
that, contrary to Bagnold hypoyhesis, in order for particle entrainment to occur, the residual stress
acting at the bed interface must indeed exceed the critical stress.

The failure of Bagnold hypothesis leaves us with our second fundamental problem, namely
that of predicting the areal concentration of particles, unresolved. This difficulty equally limits
the significance of numerical simulations of the saltation process, which are also able to evaluate
the average longitudinal component of particle velocity through suitable ensemble averages of the
longitudinal speed experienced by a large number of saltating particles throughout their jumping
motion but are unable to predict the average number of saltating particles per unit area.

Another key question concerns the inability of saltation models to deal with irregular particle
trajectories and velocities (Furbish et al., 2017). Since the seminal work of Einstein (Einstein,
1926, 1937) it has been recognised that noise associated with bedload transport rate fluctuations
is an intrinsic feature of bedload transport (Ancey, 2020a). The macroscopic treatment of bedload
transport should thus reflect random particle motion at the grain scale, thus calling for a statistical
approach even under equilibrium conditions. Various attempts have been pursued in this sense,
e.g. exploiting the framework of discrete and continuous Markovian processes (Ancey et al., 2008;
Bohorquez and Ancey, 2015) and statistical theories of gas dynamics under rarefied transport
conditions (Furbish et al., 2012, 2017). We refer the interested reader to the review by Ancey
(2020a) for a thorough description of these approaches. Here, we simply recall that, independently
of the stochastic approach used to deal with particle positions and motions, the effect of fluctuations
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Fluctuations of the average speed of different particles lead to fluctuations of NP (∆t). However,
we have already pointed out that, as ∆t increases in the classical approach, the effect of such
fluctuations on the average transport rate is assumed to vanish. Hence, in the formal limit ∆t → ∞,
the following relationship is found:

Qb
s = Ca ⟨vP ⟩. (191)

As mentioned above, equilibrium is assumed to imply that the process is statistically stationary
both in space and in time hence, under equilibrium conditions, both Ca and ⟨vP ⟩ are constant.
However, note that the latter definition can be readily extended to the more general case of non
uniform flows, with the only constraint that the time scale of variations of the average flow field
must be much larger than the sufficiently large value of ∆t for which fluctuations of NP (∆t)
become insignificant.

The equation (191) clarifies that any theoretical attempt to derive a relationship for Qb
s requires

a framework able to evaluate the quantities Ca and ⟨vP ⟩. And, indeed, most investigations have
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earliest attempts (Bagnold, 1973; Ashida and Michiue, 1972; Engelund and Fredsøe, 1976; Bridge
and Dominic, 1984) were based on a strongly idealized model. Particles would keep saltating
indefinitely and their average motion would satisfy a steady dynamic balance between an average
drag force acting on the particle and an average frictional force, somehow interpreting the effect
of the intermittent interactions of particles with the bed. Modern experimental observations
suggest that the latter scheme cannot be expected to fully represent the actual saltating process,
which is inherently unsteady and intermittent. Moreover, the steady assumption rules out all the
effects associated with spatial and temporal variations of the ambient flow field, notably added
mass, shear, particle rotation and horizontal buoyancy. This notwithstanding, in spite of its clear
oversimplification, this model problem leads to sensible results of the general form (185), i.e. in
reasonable qualitative agreement with observations.
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a turbulent shear flow, which is disturbed by the presence of bedload particles. Evaluating the
hydrodynamic force acting on particles in relative motion at moderate Reynolds numbers and in
the presence of other particles would require a full DNS solution in the near wall region. Moreover,
particles are subject to a process of rebound which is controlled by a complex hydrodynamic
interaction with a granular bed whose geometrical arrangement can only be described in statistical
terms, a process that is, at present, outside the reach of any rigorous approach.

The analysis of the second problem, namely estimating the average areal concentration Ca of
particles engaged in bedload transport, has been widely influenced by a fundamental assumption
due to Bagnold (1973). The idea is extremely simple. At the top of the bedload layer, of thickness
hb, the average shear stress is equal to τ0(1−hb/D0) with τ0 average bottom stress and D0 uniform
flow depth (see Figure 27). In the absence of any sediment transport, the amount τ0(hb/D0),
typically much smaller than τ0, balances the effect of gravity acting on the fluid layer of thickness
hb adjacent to the bottom. The argument put forward by Bagnold (1973) suggests that, in the
presence of sediment transport, the entire stress τ0(1− hb/D0) available at the top of the saltation
layer (except for a residual portion equal to the critical value for particle entrainment) must be
“consumed” by the additional resistive stress associated with contacts of bedload particles with the
granular bed. In other words, enough particles must be set in motion such that the residual average
fluid stress acting on the granular bed does not exceed the critical stress τc. A simple dynamic
equilibrium condition then allows to derive a linear relationship between the areal concentration
and the excess Shields stress (τ∗ − τ∗c).

The debate on the validity of Bagnold hypothesis has been intense through the years. In
particular, the detailed experimental work of Luque and Van Beek (1976) on a stream flowing
under pressure in a fairly narrow rectangular duct has shown that this assumption is not satisfied
close to critical conditions and becomes less invalid as the stage parameter increases. More recently,
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Figure 27. Sketch illustrating Bagnold hypothesis.

Seminara et al. (2002) have pointed out a conceptual failure of Bagnold hypothesis, which emerges
when one attempts to generalize it to the important case of sloping beds. Essentially, analyzing
Bagnold assumption more deeply, its inadequacy emerges clearly. In fact, the rationale behind it
is essentially a static notion of equilibrium of the bed interface, whereby exposed particles should
be subject to a mean stress smaller than the critical stress for particle motion. However, the
experimental observations of particle dynamics suggest that, when bedload transport is present,
the average equilibrium of the particle interface is, indeed, of dynamic nature: it arises from a
balance between particles entrained by turbulent sweeps and particles distrained as these turbulent
events decay. Hence, interpreting the process in terms of average quantities, one is led to infer
that, contrary to Bagnold hypoyhesis, in order for particle entrainment to occur, the residual stress
acting at the bed interface must indeed exceed the critical stress.

The failure of Bagnold hypothesis leaves us with our second fundamental problem, namely
that of predicting the areal concentration of particles, unresolved. This difficulty equally limits
the significance of numerical simulations of the saltation process, which are also able to evaluate
the average longitudinal component of particle velocity through suitable ensemble averages of the
longitudinal speed experienced by a large number of saltating particles throughout their jumping
motion but are unable to predict the average number of saltating particles per unit area.

Another key question concerns the inability of saltation models to deal with irregular particle
trajectories and velocities (Furbish et al., 2017). Since the seminal work of Einstein (Einstein,
1926, 1937) it has been recognised that noise associated with bedload transport rate fluctuations
is an intrinsic feature of bedload transport (Ancey, 2020a). The macroscopic treatment of bedload
transport should thus reflect random particle motion at the grain scale, thus calling for a statistical
approach even under equilibrium conditions. Various attempts have been pursued in this sense,
e.g. exploiting the framework of discrete and continuous Markovian processes (Ancey et al., 2008;
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conditions (Furbish et al., 2012, 2017). We refer the interested reader to the review by Ancey
(2020a) for a thorough description of these approaches. Here, we simply recall that, independently
of the stochastic approach used to deal with particle positions and motions, the effect of fluctuations
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of particle velocity and concentration implies that the mean bedload transport rate Qb
s is, not

only a local function of the mean particle concentration and mean particle velocity, as stated by
equation (191), but includes a further contribution arising from averaging a product of fluctuating
quantities, hence

Qb
s = Ca ⟨vP ⟩+ ⟨c′av′P ⟩. (192)

The ensemble average of the product of the fluctuations of particle areal concentration c′a and
velocity v′P may be expressed in a Fickian form (Furbish et al., 2017)

⟨c′av′P ⟩ = − ∂

∂x

(
DP Ca

)
, (193)

which involves a diffusive term reflecting a non-local behaviour quantified by the particle diffusivity
DP , and highly correlated with the average particle velocity. This purely kinematic definition
of particle diffusivity does however provide no insight on the mechanisms of particle diffusion.
Rather, a Lagrangian description focusing on the temporal statistics of particle displacements has
to be used to provide information on particle spreading. As pointed out by Furbish et al. (2017),
the challenge involves a number of further steps, i) clarifying how near-bed flow conditions and
coupled fluid-granular behavior determine particle motions, ii) examining the consequences of
transport under rarefied (i.e. low transport and, hence, low Shields stress) conditions involving
patchy, intermittent particle motions, and iii) evaluating how particle rest times, not considered so
far, affect particle diffusion. A further challenge consists of characterizing variations in particle
spreading associated with the individual realizations about the expected ensemble behavior.

Concluding, even though the efforts made in the last few decades are certainly promising, no
decisive breakthrough in the computation of bedload transport rates has so far been accomplished,
nor is expected in the medium term (Ancey, 2020a). Saltation models have contributed significantly
to progress in understanding of bedload transport. However, they have not yet been able to
improve our predictive capabilities, mainly due to their inability to predict the areal concentration
of saltating particles (Seminara et al., 2002), as well as, to deal with irregular particle trajectories
and velocities (Furbish et al., 2017).

This is a real challenge as it calls for a temporally and spatially detailed description of how the
near-bed coupled fluid-grain and grain-grain interactions determine particle motion, its patchy
character and its intermittency associated with particle rest times. As mentioned before, some
progress in this direction has been made in the last decade with the help of recently developed
computational tools.

3.3.3 The recent contribution of computational fluid dynamics (CFD) to modeling sediment transport in
open channels.

Computational approaches.

Ideally, modelling sediment transport in open channels would require:

(i) Solving numerically the Navier–Stokes equations in the time-dependent domain instantaneously
occupied by the fluid phase, with the constraint that the no-slip condition should be satisfied
at the instantaneous solid boundaries of the moving particles.

(ii) Resolving the lubrication effects associated with particles closely approaching each other and
evaluating the collision force generated when particles overcome the lubrication barrier and
get in contact.

No contribution has yet been able to implement this whole strategy.

Great progress has been achieved on stage (i) with the help of CFD. Here, the issue is that, if
the computational mesh were continuously adapted to the temporal variations of the fluid domain
associated with grain motion, then the computational cost would become rapidly prohibitive as the
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flow Reynolds number and the number of particles increase. To overcome the latter shortcoming
that severely limited applications of the above technique to systems of large numbers of grains
in motion, a major step forward was the recognition that the flow equations can be solved on a
fixed grid provided the effect of solid particles in motion is accounted for through the addition of
appropriate source terms to the Navier–Stokes equations. In particular, a major breakthrough was
the contribution of Peskin (2002), who proposed the so called immersed boundary method (IBM),
to calculate the blood flow driven in the human heart by the wall motion. Essentially, in the
original method, the source term consisted of a distribution of forces expressed in terms of Dirac
deltas, with intensities depending on the wall deformation and its elastic properties. Moreover,
the wall was allowed to move with the local flow velocity.

IBM was later extended and modified in a number of contributions. Notable the work of Fadlun
et al. (2000), where the force distribution was obtained by a formulation originally proposed in
Goldstein et al. (1993), namely allowing for a feed-back mechanism to oppose deviations of the
local velocity from the desired value. This approach is subject to time step restrictions needed to
resolve the transient feedback process.

The later developments of Uhlmann (2005) have been particularly successful in overcoming the
latter restrictions. The idea was again to employ a Cartesian, fixed uniform grid and replace each
fluid-solid interface by a number of so called ‘Lagrangian force points’, which are evenly distributed
and fixed relative to a reference frame attached to the particle. This is similar to Peskin’s approach,
but two novel features were introduced. Firstly, unlike in the latter technique where the force
points were advected with the local fluid velocity, Uhlmann’s Lagrangian force points followed the
rigid-body motion of the particles. Moreover, a discrete volume and an associated volume force
were defined at each force point, unlike the original IB method where a singular force was defined
at each Lagrangian point. The method proved computationally very efficient: indeed, Uhlmann
(2005) showed that the computational effort ‘needed for treating the pure fluid part of the code
asymptotically outweighs the remaining contributions.’ The latter method was then employed in a
number of applications of direct relevance to sediment transport modelling.

Before proceeding to discuss such applications, let us mention that an approach alternative to
IBM was developed by Zhang and Prosperetti (2003, 2005). Essentially, it employs an appropriate
analytic solution for the near particle flow which, as stated by the Authors, allows ‘to transfer
the no-slip condition from the particle surface to the adjacent grid nodes.’ This is an alternative
way to avoid the remeshing problems associated with particle motion and be able to employ fast
solvers.

An advantage of IBM is to allow the direct computation of long-range interactions between
the particles, but short-range lubricating interactions and particle collisions, i.e. stage (ii) of the
general strategy, still require modeling. The most popular approach to model the collision of
particles, described as discrete-element model (DEM), is based on a linear mass–spring–damper
system (Kidanemariam and Uhlmann, 2014a, 2017). Briefly:

- particles ‘are in contact’ when the smallest distance between their surfaces ∆, is smaller than
a force range ∆c.

- the contact force is the sum of three contributions, namely elastic and damping normal
components plus a tangential frictional component.

- the elastic part of the normal force component is proportional to the penetration length δc =
∆−∆c, with assigned stiffness constant.

- the normal damping force is proportional to the normal component of the difference between
the velocities of the two particles at the contact point with assigned proportionality coefficient.

- the tangential frictional force is proportional to the tangential relative velocity at the contact
point, again with assigned proportionality coefficient.

An extensive validation of the above collision model is reported in Kidanemariam and Uhlmann
(2014b). Note, that the four parameters involved in this model as well as the force range ∆c must
be prescribed for each simulation.
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of particle velocity and concentration implies that the mean bedload transport rate Qb
s is, not

only a local function of the mean particle concentration and mean particle velocity, as stated by
equation (191), but includes a further contribution arising from averaging a product of fluctuating
quantities, hence

Qb
s = Ca ⟨vP ⟩+ ⟨c′av′P ⟩. (192)

The ensemble average of the product of the fluctuations of particle areal concentration c′a and
velocity v′P may be expressed in a Fickian form (Furbish et al., 2017)

⟨c′av′P ⟩ = − ∂

∂x

(
DP Ca

)
, (193)

which involves a diffusive term reflecting a non-local behaviour quantified by the particle diffusivity
DP , and highly correlated with the average particle velocity. This purely kinematic definition
of particle diffusivity does however provide no insight on the mechanisms of particle diffusion.
Rather, a Lagrangian description focusing on the temporal statistics of particle displacements has
to be used to provide information on particle spreading. As pointed out by Furbish et al. (2017),
the challenge involves a number of further steps, i) clarifying how near-bed flow conditions and
coupled fluid-granular behavior determine particle motions, ii) examining the consequences of
transport under rarefied (i.e. low transport and, hence, low Shields stress) conditions involving
patchy, intermittent particle motions, and iii) evaluating how particle rest times, not considered so
far, affect particle diffusion. A further challenge consists of characterizing variations in particle
spreading associated with the individual realizations about the expected ensemble behavior.

Concluding, even though the efforts made in the last few decades are certainly promising, no
decisive breakthrough in the computation of bedload transport rates has so far been accomplished,
nor is expected in the medium term (Ancey, 2020a). Saltation models have contributed significantly
to progress in understanding of bedload transport. However, they have not yet been able to
improve our predictive capabilities, mainly due to their inability to predict the areal concentration
of saltating particles (Seminara et al., 2002), as well as, to deal with irregular particle trajectories
and velocities (Furbish et al., 2017).

This is a real challenge as it calls for a temporally and spatially detailed description of how the
near-bed coupled fluid-grain and grain-grain interactions determine particle motion, its patchy
character and its intermittency associated with particle rest times. As mentioned before, some
progress in this direction has been made in the last decade with the help of recently developed
computational tools.

3.3.3 The recent contribution of computational fluid dynamics (CFD) to modeling sediment transport in
open channels.

Computational approaches.

Ideally, modelling sediment transport in open channels would require:

(i) Solving numerically the Navier–Stokes equations in the time-dependent domain instantaneously
occupied by the fluid phase, with the constraint that the no-slip condition should be satisfied
at the instantaneous solid boundaries of the moving particles.

(ii) Resolving the lubrication effects associated with particles closely approaching each other and
evaluating the collision force generated when particles overcome the lubrication barrier and
get in contact.

No contribution has yet been able to implement this whole strategy.

Great progress has been achieved on stage (i) with the help of CFD. Here, the issue is that, if
the computational mesh were continuously adapted to the temporal variations of the fluid domain
associated with grain motion, then the computational cost would become rapidly prohibitive as the
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flow Reynolds number and the number of particles increase. To overcome the latter shortcoming
that severely limited applications of the above technique to systems of large numbers of grains
in motion, a major step forward was the recognition that the flow equations can be solved on a
fixed grid provided the effect of solid particles in motion is accounted for through the addition of
appropriate source terms to the Navier–Stokes equations. In particular, a major breakthrough was
the contribution of Peskin (2002), who proposed the so called immersed boundary method (IBM),
to calculate the blood flow driven in the human heart by the wall motion. Essentially, in the
original method, the source term consisted of a distribution of forces expressed in terms of Dirac
deltas, with intensities depending on the wall deformation and its elastic properties. Moreover,
the wall was allowed to move with the local flow velocity.

IBM was later extended and modified in a number of contributions. Notable the work of Fadlun
et al. (2000), where the force distribution was obtained by a formulation originally proposed in
Goldstein et al. (1993), namely allowing for a feed-back mechanism to oppose deviations of the
local velocity from the desired value. This approach is subject to time step restrictions needed to
resolve the transient feedback process.

The later developments of Uhlmann (2005) have been particularly successful in overcoming the
latter restrictions. The idea was again to employ a Cartesian, fixed uniform grid and replace each
fluid-solid interface by a number of so called ‘Lagrangian force points’, which are evenly distributed
and fixed relative to a reference frame attached to the particle. This is similar to Peskin’s approach,
but two novel features were introduced. Firstly, unlike in the latter technique where the force
points were advected with the local fluid velocity, Uhlmann’s Lagrangian force points followed the
rigid-body motion of the particles. Moreover, a discrete volume and an associated volume force
were defined at each force point, unlike the original IB method where a singular force was defined
at each Lagrangian point. The method proved computationally very efficient: indeed, Uhlmann
(2005) showed that the computational effort ‘needed for treating the pure fluid part of the code
asymptotically outweighs the remaining contributions.’ The latter method was then employed in a
number of applications of direct relevance to sediment transport modelling.

Before proceeding to discuss such applications, let us mention that an approach alternative to
IBM was developed by Zhang and Prosperetti (2003, 2005). Essentially, it employs an appropriate
analytic solution for the near particle flow which, as stated by the Authors, allows ‘to transfer
the no-slip condition from the particle surface to the adjacent grid nodes.’ This is an alternative
way to avoid the remeshing problems associated with particle motion and be able to employ fast
solvers.

An advantage of IBM is to allow the direct computation of long-range interactions between
the particles, but short-range lubricating interactions and particle collisions, i.e. stage (ii) of the
general strategy, still require modeling. The most popular approach to model the collision of
particles, described as discrete-element model (DEM), is based on a linear mass–spring–damper
system (Kidanemariam and Uhlmann, 2014a, 2017). Briefly:

- particles ‘are in contact’ when the smallest distance between their surfaces ∆, is smaller than
a force range ∆c.

- the contact force is the sum of three contributions, namely elastic and damping normal
components plus a tangential frictional component.

- the elastic part of the normal force component is proportional to the penetration length δc =
∆−∆c, with assigned stiffness constant.

- the normal damping force is proportional to the normal component of the difference between
the velocities of the two particles at the contact point with assigned proportionality coefficient.

- the tangential frictional force is proportional to the tangential relative velocity at the contact
point, again with assigned proportionality coefficient.

An extensive validation of the above collision model is reported in Kidanemariam and Uhlmann
(2014b). Note, that the four parameters involved in this model as well as the force range ∆c must
be prescribed for each simulation.
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Applications to sediment transport processes.

In a series of papers (Kidanemariam and Uhlmann, 2014a,b, 2017; Scherer et al., 2020; Kidamenarian
et al., 2022), the Karslruhe group has applied its computational model to analyze the mechanism of
sediment transport in steady uniform turbulent open channel flows over cohesionless beds for low
Shields stresses and relatively small Reynolds numbers. Later, the Genoa group led by Blondeaux
(Mazzuoli et al., 2016, 2019, 2020) used the same model to investigate sediment transport in
oscillatory boundary layer flows over an erodible bed, a problem of relevance to patterns originated
by sea wave propagation in the coastal zone. Details of these works are outside the scope of the
present monograph and will be found in the literature cited above. However, some of the results
reported in those papers are worth mentioning in the present context as they clarify some of the
issues raised on the limits of the average treatment of sediment transport on which the formulation
of morphodynamics relies.

The first issue is simply ascertaining to what extent we may rely on classical algebraic closures
to evaluate the bedload flux under macroscopically steady equilibrium conditions, say a statistically
unidirectional turbulent flow in an open channel with a cohesionless granular ‘plane’ bed.

The second, related, issue is the use of a ‘quasi-equilibrium’ formulation of sediment transport
under spatially (and temporally) varying flow conditions. As we know, adopting this approach, the
sediment flux is evaluated in terms of the local and instantaneous value of the relevant dimensionless
parameters (notably the Shields stress). It has been argued that the sediment transport does
not adapt instantaneously to a change in the flow conditions due to particle inertia (Nakagawa
and Tsujimoto, 1980; Parker, 1975; Charru, 2006, among others) and adaptation is expressed in
terms of a characteristic saturation length. While the effect of the latter is likely negligible when
spatial-temporal variations are associated with large scale patterns of the kind treated in the
present monograph, it has been argued that it plays a crucial stabilizing role in the process of small
scale bed instability leading to the formation of bedforms like ripples and dunes (see Nakagawa and
Tsujimoto, 1980; Charru et al., 2013, for a review of several recent efforts of the French School).
This is a picture of the process alternative to those originally proposed by Engelund and Fredsøe
(1982) (where the stabilization mechanism was attributed to the effect of bed slope on bedload
transport) and, more recently, by Colombini (2004), who argued that the perturbations of the
fluid stress driving bedload transport should be evaluated at the top of the bed load layer as the
phase-lag of bedload varies significantly in a neighborhood of the bed.

In the series of papers mentioned above, the Karslruhe group investigated a statistically
unidirectional turbulent flow in an open channel over a bed consisting of a large number of freely
moving spherical solid particles. The initial configuration of the sediment bed was generated
allowing particles to settle from random initial positions under the effects of gravity and particle
collisions but no hydrodynamic forces. Next, the actual simulation started with the pseudo-
randomly packed particles initially at rest.

In Kidanemariam and Uhlmann (2014a) one simulation was performed under turbulent flow
conditions, with the following values of the relevant parameters: bulk Reynolds number 6022,
relative density 2.5, relative roughness (diameter of spherical particles/flow depth) 25.05, Shields
stress 0.17, domain size in the longitudinal (lateral, vertical) direction equal to 307.2 (38.4, 76.8)
particle diameters, uniform step size equal to one tenth of particle diameter, number of particles
263 412. Various interesting results emerged from the simulation. A streamwise sequence of
alternating ridges and troughs formed shortly after startup and migrated downstream. Occasionally,
perturbations merged and, as a result, their wavelengths increased, and their migration speeds
decreased. Eventually, the pattern stabilized, with two distinct bedforms with different amplitudes.
The volumetric particle flow rate (per unit spanwise length) was evaluated and found to be very
close to the value given by the empirical law of Wong and Parker (2006).

Later, Kidanemariam and Uhlmann (2017) performed similar simulations varying systematically
the length of the computational domain to investigate its influence on pattern formation. In
the case of a very long streamwise box (length 48 times the flow depth, roughly 11 ripple units
with initial wavelength of 100–110 particle diameters) the pattern exhibited an initial exponential
growth, followed by a nonlinear regime strongly dependent on the domain length. The volumetric
sediment flux and the mean interface shear stress increased with increasing ripple amplitude, but
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their relationship was again found to be well fitted by the formula of Wong and Parker (2006).
In their latest contribution Kidamenarian et al. (2022) performed one further set of simulations

which did provide insight on some open issues. In this simulation, the computational box length
was limited, such to force the ripple pattern to keep a steady configuration (constant shape,
amplitude and migration speed) with a mean wavelength ranging from 100 to 180 grain diameters.
The simulation could then be sufficiently long as to allow for phase averaging and analysis of the
spatio-temporal correlation between hydrodynamics and sediment transport. The main result of
this analysis was to show that the shear stress at the bed interface lags ahead of bed elevation, i.e.,
it peaks upstream of the ripple crests with an average phase shift in the range of 16 to 19 grain
diameters, thus supporting the view of Charru et al. (2013) on fluid inertia being the mechanism
responsible for ripple instability. Moreover, the depth integrated volumetric sediment flux, was
found to be nearly in phase with bed elevation, hence it lagged behind the shear stress with
a similar average phase shift. This suggests that, while the space- and time-averaged particle
flux rate is well predicted by the algebraic expression of Wong and Parker (2006), the spatial
dependence of the local sediment flux on the local shear stress is not well captured by an algebraic
closure (Figure 28).

Figure 28. The local dimensionless volumetric bedload flux per unit width (Einstein’s scale) calculated by
Kidamenarian et al. (2022) on the stoss side of ripples is plotted versus the local excess Shields stress. Different
colors correspond to different simulations. The black dashed line is Wong and Parker (2006) relationship, the red

dashed line is a reference linear scaling.

It may be of interest in this context to also quote some recent results of Mazzuoli et al. (2020)
who employed the same model to perform direct numerical simulations of sediment transport in a
turbulent oscillatory boundary layer modeling the flow of small amplitude sea waves on shallow
water. Figure 29 shows the values of the dimensionless bedload flux per unit width (scaled by the
product between particle settling speed ws and particle diameter d) as a function of the modulus of
the Shields stress at various instants throughout the wave period. Different colors refer to distinct
runs, characterized by different values of the Reynolds Number Rd (based on the amplitude of the
oscillating speed and the thickness of the boundary layer). Arrows indicate the orbital direction.
The blue dashed-dotted line is the steady relationship by Wong and Parker (2006). The figure
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unidirectional turbulent flow in an open channel over a bed consisting of a large number of freely
moving spherical solid particles. The initial configuration of the sediment bed was generated
allowing particles to settle from random initial positions under the effects of gravity and particle
collisions but no hydrodynamic forces. Next, the actual simulation started with the pseudo-
randomly packed particles initially at rest.

In Kidanemariam and Uhlmann (2014a) one simulation was performed under turbulent flow
conditions, with the following values of the relevant parameters: bulk Reynolds number 6022,
relative density 2.5, relative roughness (diameter of spherical particles/flow depth) 25.05, Shields
stress 0.17, domain size in the longitudinal (lateral, vertical) direction equal to 307.2 (38.4, 76.8)
particle diameters, uniform step size equal to one tenth of particle diameter, number of particles
263 412. Various interesting results emerged from the simulation. A streamwise sequence of
alternating ridges and troughs formed shortly after startup and migrated downstream. Occasionally,
perturbations merged and, as a result, their wavelengths increased, and their migration speeds
decreased. Eventually, the pattern stabilized, with two distinct bedforms with different amplitudes.
The volumetric particle flow rate (per unit spanwise length) was evaluated and found to be very
close to the value given by the empirical law of Wong and Parker (2006).

Later, Kidanemariam and Uhlmann (2017) performed similar simulations varying systematically
the length of the computational domain to investigate its influence on pattern formation. In
the case of a very long streamwise box (length 48 times the flow depth, roughly 11 ripple units
with initial wavelength of 100–110 particle diameters) the pattern exhibited an initial exponential
growth, followed by a nonlinear regime strongly dependent on the domain length. The volumetric
sediment flux and the mean interface shear stress increased with increasing ripple amplitude, but
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their relationship was again found to be well fitted by the formula of Wong and Parker (2006).
In their latest contribution Kidamenarian et al. (2022) performed one further set of simulations

which did provide insight on some open issues. In this simulation, the computational box length
was limited, such to force the ripple pattern to keep a steady configuration (constant shape,
amplitude and migration speed) with a mean wavelength ranging from 100 to 180 grain diameters.
The simulation could then be sufficiently long as to allow for phase averaging and analysis of the
spatio-temporal correlation between hydrodynamics and sediment transport. The main result of
this analysis was to show that the shear stress at the bed interface lags ahead of bed elevation, i.e.,
it peaks upstream of the ripple crests with an average phase shift in the range of 16 to 19 grain
diameters, thus supporting the view of Charru et al. (2013) on fluid inertia being the mechanism
responsible for ripple instability. Moreover, the depth integrated volumetric sediment flux, was
found to be nearly in phase with bed elevation, hence it lagged behind the shear stress with
a similar average phase shift. This suggests that, while the space- and time-averaged particle
flux rate is well predicted by the algebraic expression of Wong and Parker (2006), the spatial
dependence of the local sediment flux on the local shear stress is not well captured by an algebraic
closure (Figure 28).

Figure 28. The local dimensionless volumetric bedload flux per unit width (Einstein’s scale) calculated by
Kidamenarian et al. (2022) on the stoss side of ripples is plotted versus the local excess Shields stress. Different
colors correspond to different simulations. The black dashed line is Wong and Parker (2006) relationship, the red

dashed line is a reference linear scaling.

It may be of interest in this context to also quote some recent results of Mazzuoli et al. (2020)
who employed the same model to perform direct numerical simulations of sediment transport in a
turbulent oscillatory boundary layer modeling the flow of small amplitude sea waves on shallow
water. Figure 29 shows the values of the dimensionless bedload flux per unit width (scaled by the
product between particle settling speed ws and particle diameter d) as a function of the modulus of
the Shields stress at various instants throughout the wave period. Different colors refer to distinct
runs, characterized by different values of the Reynolds Number Rd (based on the amplitude of the
oscillating speed and the thickness of the boundary layer). Arrows indicate the orbital direction.
The blue dashed-dotted line is the steady relationship by Wong and Parker (2006). The figure
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shows that, except for very low values of the Shields stress, the computed bedload flux agrees
quite well with the predictions of a fairly established steady formula applied to the instantaneous
flow conditions.

Figure 29. The dimensionless sediment flux per unit width driven by the flow in an oscillatory boundary layer on a
cohesionless bottom is plotted as a function of the absolute value of the Shields stress for three runs (identified by
different colors) characterized by different values of the Reynolds number. The blue dashed-dotted line represents
the steady formula of Wong and Parker (2006) associated with instantaneous values of the modulus of the Shields

stress (reproduced from Mazzuoli et al., 2020, under the Creative Commons Attribution licence).

The above results provide a fairly optimistic picture, encouraging the highly specialized
computational groups active in this research area to perseverate in their efforts, which will
eventually help substantiating and improving our present capability to predict the intensity
and direction of sediment transport of homogeneous sediments under both steady and unsteady
conditions. Computational approaches would also be helpful to substantiate the available models
of bedload transport in the mixed bedrock-alluvial case (see Section 7.7), that need experimental
and theoretical substantiation.

In the following, we will assume that the spatial scale of the inertially driven lag between
bedload transport and bottom stress is much smaller than the scale of the sedimentary patterns
of interest for the present and of the next monographs. This will allow us to adopt simplest
semiempirical closures between depth integrated bedload flux per unit width and local excess mean
bottom stress.

3.4. Threshold conditions for particle entrainment in suspension

Let us proceed to investigate the incipient transport of sediments under conditions such that
the turbulent intensity is large enough and/or particles are small enough for sediments to be
entrained in the bulk of the flow. In this mode of transport, the transport in suspension, two main
mechanisms operate: particle entrainment and particle deposition. The deposition of a sphere
in an unbounded fluid was analyzed in Section 3.1.4. The mechanism of particle entrainment in
suspension, namely the strict correlation between particle pick-up and occurrence of flow ejections
in the wall region, has been investigated through physical and numerical experiments and is
outlined below.

3.4.1 The entrainment mechanism

The picture emerging unambiguously from both physical and numerical experiments, is as
follows.
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Figure 30. Sketch of the motion of fluid particles (arrows) and sediment particles (circles) relative to
the shear layer originated by the ejection event (according to Urushihara et al., 1993). The

longitudinal x+ and vertical y+ coordinates are scaled as x+ = uτ x/ν, y+ = uτ y/ν.

Particles picked up from low-speed streaks are lifted away from the wall through a mechanism
which has been clarified by several investigators starting from the detailed measurements of
Urushihara et al. (1993). The Figure 30 shows a sketch of the relative velocity field, consisting of
a shear layer extending a vertical distance of about 100 wall units, with a mean inclination angle
of 14◦, convection velocity ranging about 10uτ , life span of about 60 - 80 (ν/u2

τ ) and frequency
of occurrence roughly equal to 0.003u2

τ/ν. The relative velocity field exhibits the presence of a
saddle point. In the upstream high-velocity region the relative motion is directed towards the
shear layer, while downstream to the structure, in the low-velocity region, the relative velocity is
negative, i.e. directed again towards the shear layer. Sediment particles (circles in Figure 30) are
initially ejected from a region located about 100 - 200 wall units downstream from the structure.
Then their relative motion direct them towards the shear layer where they get trapped and are
then advected by the flow structure. Stretching of the latter towards the outer regions of the wall
layer lets sediment particles lose correlation, lag behind the flow structure and eventually settle
back to the bed (Figure 31a).

Flow ejection events are not always effective in entraining sediment particles in suspension.
In some cases lifted particles lose correlation with the fluid motion and fall back to the bed well
before the flow structure loses coherence (Figure 31b), a phenomenon pointed out by Well and
Stock (1983) who called it crossing trajectory effect. The ability of ejections to suspend particles
depends on both the intensity of these flow events, which are stochastic in nature, and on particle
characteristics. The ratio between the number of ejected particles able to reach the bulk flow and
the total number of ejected particles is found to increase with the Shields stress.

3.4.2 Incipient particle entrainment

The notion of threshold conditions for particle entrainment into suspension can perhaps
be traced back to Bagnold (1966). He suggested that these conditions are reached when the
destabilizing actions on particles associated with turbulence are balanced by the stabilizing effect of
gravity. Bagnold (1966) took the intensity of vertical turbulent fluctuations of flow velocity ⟨|w′|⟩
as a measure of the former, while the particle settling speed was used to measure the tendency of
particles to deposit. Further assuming, somewhat crudely, that ⟨|w′|⟩ ≃ uτ , Bagnold (1966) ended
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shows that, except for very low values of the Shields stress, the computed bedload flux agrees
quite well with the predictions of a fairly established steady formula applied to the instantaneous
flow conditions.

Figure 29. The dimensionless sediment flux per unit width driven by the flow in an oscillatory boundary layer on a
cohesionless bottom is plotted as a function of the absolute value of the Shields stress for three runs (identified by
different colors) characterized by different values of the Reynolds number. The blue dashed-dotted line represents
the steady formula of Wong and Parker (2006) associated with instantaneous values of the modulus of the Shields

stress (reproduced from Mazzuoli et al., 2020, under the Creative Commons Attribution licence).
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conditions. Computational approaches would also be helpful to substantiate the available models
of bedload transport in the mixed bedrock-alluvial case (see Section 7.7), that need experimental
and theoretical substantiation.

In the following, we will assume that the spatial scale of the inertially driven lag between
bedload transport and bottom stress is much smaller than the scale of the sedimentary patterns
of interest for the present and of the next monographs. This will allow us to adopt simplest
semiempirical closures between depth integrated bedload flux per unit width and local excess mean
bottom stress.

3.4. Threshold conditions for particle entrainment in suspension

Let us proceed to investigate the incipient transport of sediments under conditions such that
the turbulent intensity is large enough and/or particles are small enough for sediments to be
entrained in the bulk of the flow. In this mode of transport, the transport in suspension, two main
mechanisms operate: particle entrainment and particle deposition. The deposition of a sphere
in an unbounded fluid was analyzed in Section 3.1.4. The mechanism of particle entrainment in
suspension, namely the strict correlation between particle pick-up and occurrence of flow ejections
in the wall region, has been investigated through physical and numerical experiments and is
outlined below.

3.4.1 The entrainment mechanism

The picture emerging unambiguously from both physical and numerical experiments, is as
follows.
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Urushihara et al. (1993). The Figure 30 shows a sketch of the relative velocity field, consisting of
a shear layer extending a vertical distance of about 100 wall units, with a mean inclination angle
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τ/ν. The relative velocity field exhibits the presence of a
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negative, i.e. directed again towards the shear layer. Sediment particles (circles in Figure 30) are
initially ejected from a region located about 100 - 200 wall units downstream from the structure.
Then their relative motion direct them towards the shear layer where they get trapped and are
then advected by the flow structure. Stretching of the latter towards the outer regions of the wall
layer lets sediment particles lose correlation, lag behind the flow structure and eventually settle
back to the bed (Figure 31a).

Flow ejection events are not always effective in entraining sediment particles in suspension.
In some cases lifted particles lose correlation with the fluid motion and fall back to the bed well
before the flow structure loses coherence (Figure 31b), a phenomenon pointed out by Well and
Stock (1983) who called it crossing trajectory effect. The ability of ejections to suspend particles
depends on both the intensity of these flow events, which are stochastic in nature, and on particle
characteristics. The ratio between the number of ejected particles able to reach the bulk flow and
the total number of ejected particles is found to increase with the Shields stress.

3.4.2 Incipient particle entrainment

The notion of threshold conditions for particle entrainment into suspension can perhaps
be traced back to Bagnold (1966). He suggested that these conditions are reached when the
destabilizing actions on particles associated with turbulence are balanced by the stabilizing effect of
gravity. Bagnold (1966) took the intensity of vertical turbulent fluctuations of flow velocity ⟨|w′|⟩
as a measure of the former, while the particle settling speed was used to measure the tendency of
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Figure 31. Sketch of the possible mechanisms of sediment entrainment by turbulent flow ejections
according to Niño (1995). Sediment particles progressively lose correlation, lag behind the flow

structure and eventually settle back to the bed. In some cases lifted particles lose correlation with
the fluid motion and fall back to the bed well before the flow structure loses coherence (crossing

trajectory effect) (redrawn from Figure 8.19 of Niño, 1995).

up suggesting the following threshold criterion:

uτ

ws
= 1. (194)

Below, the quantity uτ/ws will be referred to as Bagnold parameter. Note that, making use of the
following relationship:

uτ

ws
=

√
τ∗

w̃s
, (195)

and recalling that w̃s(= ws/[(s− 1) g d]1/2) is a known function of the particle Reynolds number
Rp, the criterion (194) is readily transformed into a relationship between a threshold value of τ∗
for entrainment into suspension (denoted as τ∗s) and the particle Reynolds number Rp.

Full theoretical understanding of the entrainment process will have to wait for a significant
improvement of our ability to model the response of a single particle lying on a granular bed
to the hydrodynamic actions induced by an ejection event. Fortunately, for the purposes of
morphodynamics, empirically based criteria are often sufficient. It is somewhat surprising, in
this respect, that few systematic experimental investigations have been performed. An obvious
limitation of (194), emerged from these investigations, is that it does not involve some measure
of the size of particles relative to the thickness of the viscous sublayer. Observations reveal that
entrainment is made more difficult when particles are fully immersed into the viscous sublayer.
The obvious parameter to account for this effect is the friction Reynolds number Rτ adopted by
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Shields (1936); hence the threshold criterion may be given the general form:

uτ

ws
= f(Rτ ), (196)

which is still equivalent to a relationship between τ∗s and the particle Reynolds number Rp.
Threshold relationships of the type (196), based on experimental observations, have been

proposed by various Authors, notably Van Rijn (1984a) and Niño and Garcia (1996) (but see
also Niño et al., 2003). These two experimental works differed in some respect. In the former,
the bed was cohesionless and consisted of uniform particles of the same size as those transported
in suspension. In the latter, the bed was fixed and either smooth or artificially roughened by
glueing sand particles of a given size (0.53 mm) to the originally smooth surface; particles were
fed externally to the flow far upstream from the observation window and the establishment of
equilibrium conditions was ascertained before measurements were performed.

The threshold criterion finally proposed by Niño et al. (2003) predicts values of uτ/ws slightly
higher than those predicted by Van Rijn (1984a) for values of Rp in the range 10-25. For values of
Rp smaller than 10, Van Rijn (1984a) criterion appears to underestimate sharply the threshold
values of the Bagnold parameter observed by Niño and Garcia (1996). The two criteria read:

uτ
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{
4 R

−2/3
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0.4 (Rp > 31.62)
Van Rijn (1984a), (197)
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0.4 (Rp > 27.3)
Niño et al. (2003). (198)

The criterion (197), transformed into a relationship between τ∗s and Rp has been plotted in
Figure 24. Note that the sharp change of the exponent from −2/3 to 0 occurring in equation
(197) at Rp = 31.62 corresponds to a value of Rτ = (Rp

√
τ∗) of about 10. Hence, recalling that

the conventional ’thickness’ of the viscous sublayer is roughly equal to 11.6 ν/uτ , the above limit
clearly corresponds to particle sizes comparable with the thickness of the viscous sublayer. In
other words, as pointed out by Niño et al. (2003), grains protruding over the viscous sublayer, are
more easily entrained than particles fully immersed into the viscous sublayer. As a consequence,
the Shields stress tends to increase rapidly as Rp decreases.

3.5. Modeling the dynamics of suspensions

The subject of transport of suspensions is part of a wider and quite complex area of research
that combines turbulence and multiphase flows, “two of the most challenging topics in fluid
mechanics”, as pointed out by Balachandar and Eaton (2010) in a thorough review to which
the interested reader is referred. Given the complexity of the subject, a variety of conceptual
frameworks appropriate to different contexts have been proposed. Let us outline them briefly.

3.5.1 Modeling techniques

Modeling techniques may be distinguished on the basis of which description (Eulerian/Lagrangian)
is used, the type of coupling between the motion of solid and fluid phases, and the computational
methodology. Note that, for the time being, we use the word concentration as an intuitive local
measure of the ratio between volume of the solid phase and volume of the mixture. This notion will
be formally introduced later on, as an example of the averaging operation to be suitably defined.

Eulerian versus Lagrangian approaches

Eulerian approaches rely on the continuum approximation and define mean quantities for the
mixture as Eulerian continuous functions of x and t, governed by a set of conveniently derived
differential equations expressing the basic conservation principles of sediment mixtures.
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Figure 31. Sketch of the possible mechanisms of sediment entrainment by turbulent flow ejections
according to Niño (1995). Sediment particles progressively lose correlation, lag behind the flow

structure and eventually settle back to the bed. In some cases lifted particles lose correlation with
the fluid motion and fall back to the bed well before the flow structure loses coherence (crossing

trajectory effect) (redrawn from Figure 8.19 of Niño, 1995).

up suggesting the following threshold criterion:
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this respect, that few systematic experimental investigations have been performed. An obvious
limitation of (194), emerged from these investigations, is that it does not involve some measure
of the size of particles relative to the thickness of the viscous sublayer. Observations reveal that
entrainment is made more difficult when particles are fully immersed into the viscous sublayer.
The obvious parameter to account for this effect is the friction Reynolds number Rτ adopted by
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other words, as pointed out by Niño et al. (2003), grains protruding over the viscous sublayer, are
more easily entrained than particles fully immersed into the viscous sublayer. As a consequence,
the Shields stress tends to increase rapidly as Rp decreases.

3.5. Modeling the dynamics of suspensions

The subject of transport of suspensions is part of a wider and quite complex area of research
that combines turbulence and multiphase flows, “two of the most challenging topics in fluid
mechanics”, as pointed out by Balachandar and Eaton (2010) in a thorough review to which
the interested reader is referred. Given the complexity of the subject, a variety of conceptual
frameworks appropriate to different contexts have been proposed. Let us outline them briefly.

3.5.1 Modeling techniques

Modeling techniques may be distinguished on the basis of which description (Eulerian/Lagrangian)
is used, the type of coupling between the motion of solid and fluid phases, and the computational
methodology. Note that, for the time being, we use the word concentration as an intuitive local
measure of the ratio between volume of the solid phase and volume of the mixture. This notion will
be formally introduced later on, as an example of the averaging operation to be suitably defined.

Eulerian versus Lagrangian approaches

Eulerian approaches rely on the continuum approximation and define mean quantities for the
mixture as Eulerian continuous functions of x and t, governed by a set of conveniently derived
differential equations expressing the basic conservation principles of sediment mixtures.
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Lagrangian approaches solve the equations of motion of each particle subject to the hydrodynamic
actions driven by the ambient fluid and, possibly, by the feedback of particle motion on the fluid
itself.

Coupling

As for the effect of the motion of the fluid phase on sediment dynamics and the feedback of
sediment motion on the fluid phase, known as coupling problem, models may involve various degrees
of coupling described below.
One way coupling. In this case, the concentration of the solid phase is sufficiently small for the effect
of the turbulent carrier flow on the dynamics of the dispersed phase to be dominant. No feedback
is accounted for. Moreover, the motion of the solid phase may be taken as indistinguishable from
that of the fluid phase (sediments treated as passive tracers) or it may differ slightly from that of
the fluid due to various causes (e.g. particle settling and inertia).

Two-way coupling. For larger concentrations the effect of the dispersed phase on the motion
of the carrier fluid may no longer be ignored. As discussed by Balachandar and Eaton (2010),
coupling leads, on one hand, to the so called turbulence modulation. Essentially, the presence of
particles enhances dissipation in the fluid phase, transfers kinetic energy to the fluid and generates
’turbulence’ in the form of wakes and vortex shedding. On the other hand, turbulence affects the
forces exerted by the fluid phase on sediment particles.

Four-way coupling. As the concentration increases further, the role of particle interactions
(hydrodynamic or collisional) may no longer be neglected and requires ad-hoc modeling techniques.

When the sediment concentration approaches values comparable with the packing concentration
of the granular medium, the role of the solid phase in the dynamics of the mixture becomes dominant
and the concept of coupling loses significance as interparticle collisions prevail.

Computational approaches

Extensive investigations performed by the multiphase flow community (see the reviews of El-
ghobashi, 1991, 1994; Balachandar, 2009; Balachandar and Eaton, 2010) suggest that two main
parameters control the range of applicability of different computational approaches, namely the
particle Stokes number (equation 163) and the concentration of the solid phase.

The Figure 32 points out several important facts. Firstly, the transition from the dilute to
the dense suspension regime is set at values of the concentration of the solid phase around 10−3.
Secondly, dilute suspensions require different modeling tools, depending on the particle Stokes
number. Balachandar and Eaton (2010) list the following approaches.

Dusty gas approach (Carrier, 1958; Marble, 1970). It applies to the case of very small particle
Stokes numbers. Here, particles are modeled as passive tracers: their effect is then only to change
the density of the fluid depending on the local concentration. Hence, besides the equations for
the fluid phase only the mass conservation equation for the solid phase, i.e. an equation for
concentration, needs to be solved.

Equilibrium Eulerian approach (Ferry and Balachandar, 2001; Ferry et al., 2003). It applies to
the case of small particle Stokes numbers. This model differs from the dusty gas approach as the
particle velocity is allowed to differ slightly from that of the fluid phase to account for settling and
inertia. This is the approach underlying the models of transport in suspension commonly used in
the morphodynamic literature and will be discussed extensively in the next Section.

Eulerian approach (Crowe et al., 2012; Zhong et al., 2010). It is also known as two-fluid approach
and applies to the case of fairly small particle Stokes numbers. Both the fluid and the solid
phase are treated as continua, for which governing conservation equations are derived through
appropriate averaging procedures. Averaging leads to the generation of phase-interaction terms
which require closure.
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Figure 32. Range of applicability of different computational approaches to the dynamics of suspensions (according
to Balachandar and Eaton, 2010) as a function of the solid concentration and the Stokes number defined by

equation (163).

Lagrangian point particle approach. The main feature of these approaches is that the solid phase is
no longer treated as a continuum, rather the trajectory of each point particle is tracked solving
its equation of motion subject to the actions of the fluid phase, treated as a continuum. These
actions are calculated solving the continuity and momentum equations in an Eulerian framework.
One way coupling was initially adopted (Elghobashi, 1991). Later two way coupling (Elghobashi
and Truesdell, 1993; Ferrante and Elghobashi, 2003) was developed, adding the reaction of the
moving particles on the fluid phase to the Navier Stokes equations. Semiempirical attempts to
extend the above approach to account for particle-particle collisions (four way coupling) have also
appeared in the literature (e.g. Yamamoto et al., 2001).

Fully resolved approach (Uhlmann, 2005; Picano et al., 2005). When particle diameter is no
longer smaller than the smallest eddies of the flow field (the Kolmogorov eddies), the only feasible
approach is a full DNS, where all the scales of the turbulent flow of the fluid phase, including those
generated by the motion of the solid phase, are fully resolved. As already discussed in Section 3.3.2,
this is a computationally heavy approach which may hardly be applicable to practical contexts
but plays an important scientific role to improve our understanding of the basic processes of
morphodynamics.

In conclusion, the available modeling techniques range from relatively simple approaches that
are readily applicable to practical problems although under fairly restricted conditions (very dilute
suspensions of very small particles), to techniques (full numerical solution) that are generally
valid but can hardly been implemented in practice. In the geophysical and hydraulic engineering
literature of relevance to morphodynamics it is common to employ the Eulerian approach, which
appears to be most suitable to applications. In order to engage ourselves in the effort to discuss the
Eulerian approach in sufficient detail, it is necessary to derive the governing equations of sediment
mixtures.

3.5.2 The Eulerian approach: governing equations of sediment mixtures

Deriving governing equations of sediment mixtures treated as continua is a long standing issue

87



Theoretical Morphodynamics Straight Channels

Lagrangian approaches solve the equations of motion of each particle subject to the hydrodynamic
actions driven by the ambient fluid and, possibly, by the feedback of particle motion on the fluid
itself.

Coupling

As for the effect of the motion of the fluid phase on sediment dynamics and the feedback of
sediment motion on the fluid phase, known as coupling problem, models may involve various degrees
of coupling described below.
One way coupling. In this case, the concentration of the solid phase is sufficiently small for the effect
of the turbulent carrier flow on the dynamics of the dispersed phase to be dominant. No feedback
is accounted for. Moreover, the motion of the solid phase may be taken as indistinguishable from
that of the fluid phase (sediments treated as passive tracers) or it may differ slightly from that of
the fluid due to various causes (e.g. particle settling and inertia).

Two-way coupling. For larger concentrations the effect of the dispersed phase on the motion
of the carrier fluid may no longer be ignored. As discussed by Balachandar and Eaton (2010),
coupling leads, on one hand, to the so called turbulence modulation. Essentially, the presence of
particles enhances dissipation in the fluid phase, transfers kinetic energy to the fluid and generates
’turbulence’ in the form of wakes and vortex shedding. On the other hand, turbulence affects the
forces exerted by the fluid phase on sediment particles.

Four-way coupling. As the concentration increases further, the role of particle interactions
(hydrodynamic or collisional) may no longer be neglected and requires ad-hoc modeling techniques.

When the sediment concentration approaches values comparable with the packing concentration
of the granular medium, the role of the solid phase in the dynamics of the mixture becomes dominant
and the concept of coupling loses significance as interparticle collisions prevail.

Computational approaches

Extensive investigations performed by the multiphase flow community (see the reviews of El-
ghobashi, 1991, 1994; Balachandar, 2009; Balachandar and Eaton, 2010) suggest that two main
parameters control the range of applicability of different computational approaches, namely the
particle Stokes number (equation 163) and the concentration of the solid phase.

The Figure 32 points out several important facts. Firstly, the transition from the dilute to
the dense suspension regime is set at values of the concentration of the solid phase around 10−3.
Secondly, dilute suspensions require different modeling tools, depending on the particle Stokes
number. Balachandar and Eaton (2010) list the following approaches.

Dusty gas approach (Carrier, 1958; Marble, 1970). It applies to the case of very small particle
Stokes numbers. Here, particles are modeled as passive tracers: their effect is then only to change
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the case of small particle Stokes numbers. This model differs from the dusty gas approach as the
particle velocity is allowed to differ slightly from that of the fluid phase to account for settling and
inertia. This is the approach underlying the models of transport in suspension commonly used in
the morphodynamic literature and will be discussed extensively in the next Section.
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Figure 32. Range of applicability of different computational approaches to the dynamics of suspensions (according
to Balachandar and Eaton, 2010) as a function of the solid concentration and the Stokes number defined by

equation (163).
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no longer treated as a continuum, rather the trajectory of each point particle is tracked solving
its equation of motion subject to the actions of the fluid phase, treated as a continuum. These
actions are calculated solving the continuity and momentum equations in an Eulerian framework.
One way coupling was initially adopted (Elghobashi, 1991). Later two way coupling (Elghobashi
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In conclusion, the available modeling techniques range from relatively simple approaches that
are readily applicable to practical problems although under fairly restricted conditions (very dilute
suspensions of very small particles), to techniques (full numerical solution) that are generally
valid but can hardly been implemented in practice. In the geophysical and hydraulic engineering
literature of relevance to morphodynamics it is common to employ the Eulerian approach, which
appears to be most suitable to applications. In order to engage ourselves in the effort to discuss the
Eulerian approach in sufficient detail, it is necessary to derive the governing equations of sediment
mixtures.

3.5.2 The Eulerian approach: governing equations of sediment mixtures

Deriving governing equations of sediment mixtures treated as continua is a long standing issue
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that has attracted the attention of the Mechanics community since the early works of Fick (1855)
and Stefan (1871). The approaches proposed so far belong to two major classes: mixture theories
and ensemble averaging approaches. It falls outside the scopes of the present Monograph to provide
deep reviews of these theories. Here, we simply outline the main ideas underlying each class of
them.

Mixture theories are based on the assumption that the mixture may be viewed as a superposition
of distinct continua, each following its own motion but simultaneously present at any time t and
each location x. Hence, material points belonging to distinct phases are not distinguishable, and
different continua interpenetrate each other. Though the foundation of mixture theory may be
traced back to the early works cited above, only in the second half of the last century those ideas
led to the formulation of actual continuum theories (Truesdell, 1957; Bowen, 1971; Passman et al.,
1984). In the context of mixture theories, the governing equations are essentially postulated.

In ensemble averaging approaches, the motion of sediment mixtures is treated as a stochastic
process. The flow properties are defined in statistical terms and ensemble averages, i.e. averages
based on a large number of realizations of the process, are used to describe the average flow. This
approach has indeed been widely employed in the literature (see, among others, Saffman, 1971;
Lundgren, 1972; Drew, 1983; Joseph and Lundgren, 1990) and is quite elegant but, as pointed out
by Batchelor (1988), it “achieves rigor at the cost of introducing the intractable problem of closure
of averages of a complicated kind ”. An alternative, physics-based, approach (Batchelor, 1970) is
feasible provided one can recognize the existence of three distinct length scales in the dynamics of
the mixture under investigation (Figure 33):

- a microscale s of the order of the average interparticle distance;

- an intermediate scale ℓ, large with respect to s, such that the average properties of the mixture
do not vary significantly on this scale;

- a macroscale L, large with respect to ℓ, which measures the typical distance on which significant
variations of the average properties are experienced.

Hence:
s ≪ ℓ ≪ L. (199)

The existence of an intermediate scale ℓ, on which the dynamics of the mixture (i.e., the
stochastic process) may be assumed statistically stationary, suggests the opportunity to replace
ensemble averaging with spatial averaging, thus postulating the validity of the so called ergodic
hypothesis, widely employed in all theories concerning statistically homogeneous media (Hashin,
1964).

Let us consider a fixed volume V of linear scale ℓ, contained within the region instantaneously
occupied by the sediment mixture in a neighborhood of the point x. Furthermore, let Vk be the
portion of V occupied by the phase k (with k = s for the solid phase and k = f for the fluid phase,
see Figure 34). The boundary of Vf consists of the sum of the fluid portion Sf of the boundary
of V and of the boundary Si of the portions of the solid particles contained in V. Similarly, the
boundary of Vs consists of the sum of Si and of the solid portion Ss of the boundary of V.

With the above notations we may then define the volumetric concentration c of the solid phase
in the form:

c =
Vs

V
. (200)

Of course the concentration of the fluid phase is simply (1− c). Note that c is in general a function
of position x and time t.

Following Prosperetti and Jones (1984) the instantaneous and local value of the volume average
of any scalar, vectorial or tensorial quantity fk referring to phase k, denoted by an overbar, may
be defined in the form:

f̄k =
1

Vk

∫

Vk

fk dV. (201)
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Figure 33. Sketch depicting the three distinct spatial scales s, ℓ and L that can be used to characterize the
dynamics of statistically homogeneous sediment mixtures.

Figure 34. The averaging volume: notations.

In particular, we will denote by v̄, v̄s and q̄s the instantaneous volume averaged values of the
fluid phase speed, of the solid phase speed and of the instantaneous volume flux of the solid phase,
respectively. Note that the accuracy in the definition of any averaged quantity depends on the
level of fluctuation of that quantity, which varies as the size of the averaging volume varies. This
may pose a severe constraint for dilute suspensions.

89



Theoretical Morphodynamics Straight Channels

that has attracted the attention of the Mechanics community since the early works of Fick (1855)
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feasible provided one can recognize the existence of three distinct length scales in the dynamics of
the mixture under investigation (Figure 33):
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- a macroscale L, large with respect to ℓ, which measures the typical distance on which significant
variations of the average properties are experienced.

Hence:
s ≪ ℓ ≪ L. (199)

The existence of an intermediate scale ℓ, on which the dynamics of the mixture (i.e., the
stochastic process) may be assumed statistically stationary, suggests the opportunity to replace
ensemble averaging with spatial averaging, thus postulating the validity of the so called ergodic
hypothesis, widely employed in all theories concerning statistically homogeneous media (Hashin,
1964).

Let us consider a fixed volume V of linear scale ℓ, contained within the region instantaneously
occupied by the sediment mixture in a neighborhood of the point x. Furthermore, let Vk be the
portion of V occupied by the phase k (with k = s for the solid phase and k = f for the fluid phase,
see Figure 34). The boundary of Vf consists of the sum of the fluid portion Sf of the boundary
of V and of the boundary Si of the portions of the solid particles contained in V. Similarly, the
boundary of Vs consists of the sum of Si and of the solid portion Ss of the boundary of V.

With the above notations we may then define the volumetric concentration c of the solid phase
in the form:

c =
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Of course the concentration of the fluid phase is simply (1− c). Note that c is in general a function
of position x and time t.

Following Prosperetti and Jones (1984) the instantaneous and local value of the volume average
of any scalar, vectorial or tensorial quantity fk referring to phase k, denoted by an overbar, may
be defined in the form:
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Figure 33. Sketch depicting the three distinct spatial scales s, ℓ and L that can be used to characterize the
dynamics of statistically homogeneous sediment mixtures.

Figure 34. The averaging volume: notations.

In particular, we will denote by v̄, v̄s and q̄s the instantaneous volume averaged values of the
fluid phase speed, of the solid phase speed and of the instantaneous volume flux of the solid phase,
respectively. Note that the accuracy in the definition of any averaged quantity depends on the
level of fluctuation of that quantity, which varies as the size of the averaging volume varies. This
may pose a severe constraint for dilute suspensions.
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With the help of the above definitions, one may derive a general spatially averaged form of the
conservation equation of any quantity transported by a fluid in motion (see, e.g. Prosperetti and
Jones, 1984).

For the fluid phase, the continuity equation reads:

ϱ

[
∂(1− c)

∂t
+∇ ·

(
(1− c) v̄

)]
= 0. (202)

Similarly, the continuity equation for the solid phase reads:

ϱs

(
∂c

∂t
+∇ · q̄s

)
= 0, (203)

where q̄s = c v̄s denotes the instantaneous spatially averaged sediment flux.
Note that, in spite of the incompressible character of both the fluid and solid phases, their

spatially averaged behavior in a sediment mixture is compressible due to the spatial and temporal
variations of the concentration c.

The equation of momentum conservation for the fluid phase takes the following form:

ϱ

{
∂

∂t

[
(1− c) v̄

]
+∇ ·

[
(1− c) v̄ v̄

]}
= −ϱ g (1− c) x̂3

+∇ ·
[
(1− c)T tot

]
− i. (204)

Here, i is the interactive specific force for the fluid phase, i.e. the force per unit volume of the
mixture arising from particle drag FD and buoyancy, that reads:

i = F̄D
Vs

V
+ ϱ

Vs

V
g x̂3 = c (F̄D + ϱ g x̂3), (205)

where F̄D is the phase averaged particle drag and x̂3 is the upward directed unit vector of the
vertical axis.

Moreover, T tot is the total stress tensor of the fluid phase, which reads:

T tot = T̄ + T t. (206)

Here T̄ is the spatially averaged value of the viscous stress tensor and T t is the following Reynolds
stress tensor:

T t = −ϱv′v′, (207)

with v′ instantaneous fluctuation of the local fluid velocity with respect to its spatially averaged
value v̄. Note that the dissipation of fluid momentum associated with flow perturbations induced
by particle collisions is incorporated in the Reynolds stress tensor T t.

Employing the continuity equation (202) and the explicit form of the interactive force (205),
the momentum equation for the fluid phase (204) is readily found to reduce to the simpler form:

ϱ (1− c)
dv̄

dt
= −ϱ g x̂3 − c F̄D +∇ ·

[
(1− c)T tot

]
. (208)

In conclusion, the average dynamics of the fluid phase is governed, in general, by a Cauchy
equation which poses a closure problem for the total stress tensor of the fluid phase. A similar
equation is derived for the solid phase. We do not report it here as the only case treated in this
Monograph is that of dilute mixtures of small particles discussed in the next Section.

3.5.3 Governing equations of the dynamics of suspensions of uniform sediments in the dilute approximation

Let us examine the form taken by the conservation equations for the fluid and solid phases in
the dilute limit (c << 1).
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Momentum equations in the dilute approximation

We have seen (Section 3.1.2) that for particles moving in a regime of small relative Reynolds
number in a dilute turbulent suspension, the dominant hydrodynamic force acting on particles
is the Stokes drag. Hence, the Maxey-Riley-Gatignol equation of motion reduces to a balance
between submerged weight and Stokes drag, which leads to the relationship (164). Spatial average
of the latter equation gives:

v̄s = v̄ − ws x̂3. (209)

As stated above, such approximation is strictly valid for particles not coarser than coarse silt.
However, in the engineering literature, often and somewhat arbitrarily, it is employed for suspensions
of larger particles in investigations focusing on the large scale features of the transport process.
For particles coarser than coarse silt in water, the settling speed ws is evaluated by the general
expression (171) rather than by its low Reynolds number version (162). In conclusion, the algebraic
equation (209) will be employed as the phase averaged approximation of the full momentum
equation for the solid phase appropriate to dilute turbulent suspensions of small particles.

In order to examine the simplified (dilute) form of equation (204) for the fluid phase, let us
first point out that, under the conditions discussed above, the interactive force per unit volume
of the mixture arises from Stokes drag and Archimede buoyancy. Hence we can set F̄D = F̄St in
equation (205), where F̄St

is the phase averaged Stokes drag, which reads:

F̄St = 3π dµ (v̄s − v̄). (210)

We next note that (205) suggests that the interactive force is O(c). It is also convenient to
employ the constitutive law of viscous Newtonian fluids and write:

T̄ = −p̄ I + 2µ D̄, (211)

with p̄ spatially averaged fluid pressure, I unit tensor and D̄ spatially averaged strain rate tensor
of the fluid phase.

Taking advantage of the small value of c, we then neglect O(c) terms and, with the help of
(211), the leading order approximation of the phase averaged form of the momentum equation
(204) for the fluid phase takes the form:

ϱ

(
−g x̂3 −

dv̄

dt

)
= ∇p̄− µ∇2v̄ +∇ · T t. (212)

Hence, at leading order, the momentum equation for the fluid phase is not affected by the
presence of the solid phase. A closure problem, however, arises for the turbulent stress tensor T t

which accounts for the inertial effect of spatial fluctuations of the fluid velocity inside the averaging
volume V.

Mass conservation equations in the dilute approximation

Neglecting O(c) terms, one readily finds that, at the leading order of approximation the mass con-
servation equation for the fluid phase reduces to the classical continuity equation of incompressible
fluids, constraining the fluid speed to be divergence free (i.e. solenoidal)

∇ · v̄ = 0, (213)

while the mass conservation equation for the solid phase takes the form:

∂c

∂t
+∇ · q̄s = 0. (214)
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With the help of the above definitions, one may derive a general spatially averaged form of the
conservation equation of any quantity transported by a fluid in motion (see, e.g. Prosperetti and
Jones, 1984).

For the fluid phase, the continuity equation reads:

ϱ

[
∂(1− c)

∂t
+∇ ·

(
(1− c) v̄

)]
= 0. (202)

Similarly, the continuity equation for the solid phase reads:

ϱs

(
∂c

∂t
+∇ · q̄s

)
= 0, (203)

where q̄s = c v̄s denotes the instantaneous spatially averaged sediment flux.
Note that, in spite of the incompressible character of both the fluid and solid phases, their

spatially averaged behavior in a sediment mixture is compressible due to the spatial and temporal
variations of the concentration c.

The equation of momentum conservation for the fluid phase takes the following form:

ϱ

{
∂

∂t

[
(1− c) v̄

]
+∇ ·

[
(1− c) v̄ v̄

]}
= −ϱ g (1− c) x̂3

+∇ ·
[
(1− c)T tot

]
− i. (204)

Here, i is the interactive specific force for the fluid phase, i.e. the force per unit volume of the
mixture arising from particle drag FD and buoyancy, that reads:

i = F̄D
Vs

V
+ ϱ

Vs

V
g x̂3 = c (F̄D + ϱ g x̂3), (205)

where F̄D is the phase averaged particle drag and x̂3 is the upward directed unit vector of the
vertical axis.

Moreover, T tot is the total stress tensor of the fluid phase, which reads:

T tot = T̄ + T t. (206)

Here T̄ is the spatially averaged value of the viscous stress tensor and T t is the following Reynolds
stress tensor:

T t = −ϱv′v′, (207)

with v′ instantaneous fluctuation of the local fluid velocity with respect to its spatially averaged
value v̄. Note that the dissipation of fluid momentum associated with flow perturbations induced
by particle collisions is incorporated in the Reynolds stress tensor T t.

Employing the continuity equation (202) and the explicit form of the interactive force (205),
the momentum equation for the fluid phase (204) is readily found to reduce to the simpler form:

ϱ (1− c)
dv̄

dt
= −ϱ g x̂3 − c F̄D +∇ ·

[
(1− c)T tot

]
. (208)

In conclusion, the average dynamics of the fluid phase is governed, in general, by a Cauchy
equation which poses a closure problem for the total stress tensor of the fluid phase. A similar
equation is derived for the solid phase. We do not report it here as the only case treated in this
Monograph is that of dilute mixtures of small particles discussed in the next Section.

3.5.3 Governing equations of the dynamics of suspensions of uniform sediments in the dilute approximation

Let us examine the form taken by the conservation equations for the fluid and solid phases in
the dilute limit (c << 1).
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Momentum equations in the dilute approximation

We have seen (Section 3.1.2) that for particles moving in a regime of small relative Reynolds
number in a dilute turbulent suspension, the dominant hydrodynamic force acting on particles
is the Stokes drag. Hence, the Maxey-Riley-Gatignol equation of motion reduces to a balance
between submerged weight and Stokes drag, which leads to the relationship (164). Spatial average
of the latter equation gives:

v̄s = v̄ − ws x̂3. (209)

As stated above, such approximation is strictly valid for particles not coarser than coarse silt.
However, in the engineering literature, often and somewhat arbitrarily, it is employed for suspensions
of larger particles in investigations focusing on the large scale features of the transport process.
For particles coarser than coarse silt in water, the settling speed ws is evaluated by the general
expression (171) rather than by its low Reynolds number version (162). In conclusion, the algebraic
equation (209) will be employed as the phase averaged approximation of the full momentum
equation for the solid phase appropriate to dilute turbulent suspensions of small particles.

In order to examine the simplified (dilute) form of equation (204) for the fluid phase, let us
first point out that, under the conditions discussed above, the interactive force per unit volume
of the mixture arises from Stokes drag and Archimede buoyancy. Hence we can set F̄D = F̄St in
equation (205), where F̄St

is the phase averaged Stokes drag, which reads:

F̄St = 3π dµ (v̄s − v̄). (210)

We next note that (205) suggests that the interactive force is O(c). It is also convenient to
employ the constitutive law of viscous Newtonian fluids and write:

T̄ = −p̄ I + 2µ D̄, (211)

with p̄ spatially averaged fluid pressure, I unit tensor and D̄ spatially averaged strain rate tensor
of the fluid phase.

Taking advantage of the small value of c, we then neglect O(c) terms and, with the help of
(211), the leading order approximation of the phase averaged form of the momentum equation
(204) for the fluid phase takes the form:
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(
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)
= ∇p̄− µ∇2v̄ +∇ · T t. (212)

Hence, at leading order, the momentum equation for the fluid phase is not affected by the
presence of the solid phase. A closure problem, however, arises for the turbulent stress tensor T t

which accounts for the inertial effect of spatial fluctuations of the fluid velocity inside the averaging
volume V.

Mass conservation equations in the dilute approximation

Neglecting O(c) terms, one readily finds that, at the leading order of approximation the mass con-
servation equation for the fluid phase reduces to the classical continuity equation of incompressible
fluids, constraining the fluid speed to be divergence free (i.e. solenoidal)

∇ · v̄ = 0, (213)

while the mass conservation equation for the solid phase takes the form:

∂c

∂t
+∇ · q̄s = 0. (214)
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Using the relationship (209), the continuity equation of the solid phase (214) appropriate to
the case of dilute suspensions is found to read:

∂c

∂t
+∇ · (c v̄)− ws

∂c

∂x3
= 0. (215)

Mass conservation at the boundaries impose that the free surface (x3 = H) is impermeable to
solid particles while a normal component of the relative sediment flux through the bed interface
(x3 = η) may arise as a result of an entrainment of sediments from the erodible bed or deposition
on it. The instantaneous forms of these constraints read:

- at the free surface (x3 = H):
[
c v̄s · n̂H − VH c

]
H

=
[
(c v̄ − ws c x̂3) · n̂H − VH c

]
H

= 0, (216)

where VH is the velocity of the free surface (see equation (16));

- at the bed interface (x3 = η):
[
c v̄s · n̂η

]
η
=

[
(c v̄ − ws c x̂3) · n̂η

]
η
= D − E . (217)

Here, D is the intensity of the deposition flux, E is the intensity of the entrainment flux, both
positive quantities, hence D − E is the net deposition at the bed interface (recall eq. (3.20)
in Blondeaux et al., 2018). This quantity needs to be defined as a function of the local and
instantaneous velocity and concentration fields.

The above mathematical formulation of the dynamics of turbulent sediment mixtures is based
on averaged quantities which filter out the effect of spatial fluctuations occurring at scales of the
order of the mesoscale ℓ. The generation of microscopic stress tensors is a result of the averaging
procedure and of the nonlinearity of the basic equations. Part of the total stress tensor T tot of
the fluid phase, namely its viscous part T̄ , can be expressed explicitly in terms of the unknown
averaged quantities. However, just like in the context of LES techniques, a closure problem for
the turbulent part T t still remains to be solved. Once the latter problem has been given some
semiempirical solution, one ends up with a still formidable problem consisting of solving the
equations (212), (213) and (215) with appropriate initial and boundary conditions. The outcome
of such huge numerical effort would be the spatial-temporal distributions of the phase averaged
quantities v̄, p̄ and c which still display spatial and temporal fluctuations associated with the large
scale features of the turbulent transport process.

Alternatively one may attempt to average out also these effects by performing a second
averaging process which generate a macroscopic Reynolds stress tensor for the fluid phase, as well
as turbulent mass fluxes. This approach, vastly exploited in the engineering literature, is outlined
below.

Reynolds averaged formulation of the spatially averaged conservation equations of sediment mixtures in the
dilute approximation

Let us then decompose the microscopically averaged properties of the two phases into mean
components and fluctuations where the words mean and fluctuation now refer to the large scale
features of the turbulent flow field :

(
v̄, p̄, v̄s, c

)
=

(
u, ⟨p̄⟩,us, ⟨c⟩

)
+
(
u′, p′,u′

s, c
′
)
. (218)

Here, the symbol ⟨ ⟩ denotes the macroscopic average, u = ⟨v̄⟩ and us = ⟨v̄s⟩. Note that the
microscopic average concentration c does not require an overbar recalling its definition (200).
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Applying the decompositions (218) to the dilute form of the momentum equation for the solid
phase (209), one readily finds:

us = u− ws x̂3. (219)

Thus, the macroscopically averaged forms of the equations of continuity of the fluid phase and of
the solid phase, equations (213) and (215), take the form:

∇ · u = 0, (220)

∂⟨c⟩
∂t

+∇ ·
(
⟨c⟩u

)
+∇ · ⟨u′ c′⟩ − ws

∂⟨c⟩
∂x3

= 0. (221)

The reader will note that the further macroscopic averaging process generates a turbulent con-
tribution to the mass flux ⟨u′ c′⟩ which will be seen to affect crucially the dynamics of turbulent
suspensions.

Similarly, applying the decompositions (218), the momentum equation of the fluid phase (212)
becomes:

ϱ

(
−g x̂3 −

du

dt

)
= ∇⟨p̄⟩ − µ∇2u−∇ ·

(
⟨T t⟩+ T tM

)
, (222)

where we have defined a macroscopic Reynolds stress tensor T tM of the classical form:

T tM = −ϱ ⟨u′u′⟩. (223)

Here, as anticipated above, the macroscopic averaging process has generated a further contribu-
tion to the effective stress of the mixture in the form of a classical Reynolds stress tensor. Hence,
two macroscopic closure problems are left open, namely providing a structure to the turbulent
fluxes of mass, ⟨c′u′⟩, and momentum, ϱ ⟨u′u′⟩.

The Reynolds averaged forms of the mass conservation constraints at the free surface and at
the bed interface are readily obtained:

- at the free surface (x3 = H):

[
⟨c′ u′⟩ − ws ⟨c⟩ x̂3

]
H
· n̂H = 0. (224)

Note that here we have used the Reynolds averaged form of the kinematic boundary condition
at the free surface (15), that gives: u|H · n̂H = VH ;

- at the bed interface (x3 = η):

[
⟨c′ u′⟩ − ws ⟨c⟩ x̂3

]
η
· n̂η = E − D, (225)

having set u|η = 0.

In the next Section, we will discuss the classical solution for the simplest, yet fundamental,
problem of transport in suspension by uniform free surface flows.

3.5.4 Equilibrium transport of dilute turbulent suspensions of small particles in open channel flows: the
equilibrium Eulerian approach

Let us investigate the transport of dilute suspensions by uniform turbulent free surface flows
under equilibrium conditions. Such conditions are rarely exactly met but are often closely
approached in geophysical flows.
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Using the relationship (209), the continuity equation of the solid phase (214) appropriate to
the case of dilute suspensions is found to read:

∂c

∂t
+∇ · (c v̄)− ws

∂c

∂x3
= 0. (215)

Mass conservation at the boundaries impose that the free surface (x3 = H) is impermeable to
solid particles while a normal component of the relative sediment flux through the bed interface
(x3 = η) may arise as a result of an entrainment of sediments from the erodible bed or deposition
on it. The instantaneous forms of these constraints read:

- at the free surface (x3 = H):
[
c v̄s · n̂H − VH c

]
H

=
[
(c v̄ − ws c x̂3) · n̂H − VH c

]
H

= 0, (216)

where VH is the velocity of the free surface (see equation (16));

- at the bed interface (x3 = η):
[
c v̄s · n̂η

]
η
=

[
(c v̄ − ws c x̂3) · n̂η

]
η
= D − E . (217)

Here, D is the intensity of the deposition flux, E is the intensity of the entrainment flux, both
positive quantities, hence D − E is the net deposition at the bed interface (recall eq. (3.20)
in Blondeaux et al., 2018). This quantity needs to be defined as a function of the local and
instantaneous velocity and concentration fields.

The above mathematical formulation of the dynamics of turbulent sediment mixtures is based
on averaged quantities which filter out the effect of spatial fluctuations occurring at scales of the
order of the mesoscale ℓ. The generation of microscopic stress tensors is a result of the averaging
procedure and of the nonlinearity of the basic equations. Part of the total stress tensor T tot of
the fluid phase, namely its viscous part T̄ , can be expressed explicitly in terms of the unknown
averaged quantities. However, just like in the context of LES techniques, a closure problem for
the turbulent part T t still remains to be solved. Once the latter problem has been given some
semiempirical solution, one ends up with a still formidable problem consisting of solving the
equations (212), (213) and (215) with appropriate initial and boundary conditions. The outcome
of such huge numerical effort would be the spatial-temporal distributions of the phase averaged
quantities v̄, p̄ and c which still display spatial and temporal fluctuations associated with the large
scale features of the turbulent transport process.

Alternatively one may attempt to average out also these effects by performing a second
averaging process which generate a macroscopic Reynolds stress tensor for the fluid phase, as well
as turbulent mass fluxes. This approach, vastly exploited in the engineering literature, is outlined
below.

Reynolds averaged formulation of the spatially averaged conservation equations of sediment mixtures in the
dilute approximation

Let us then decompose the microscopically averaged properties of the two phases into mean
components and fluctuations where the words mean and fluctuation now refer to the large scale
features of the turbulent flow field :

(
v̄, p̄, v̄s, c

)
=

(
u, ⟨p̄⟩,us, ⟨c⟩

)
+
(
u′, p′,u′

s, c
′
)
. (218)

Here, the symbol ⟨ ⟩ denotes the macroscopic average, u = ⟨v̄⟩ and us = ⟨v̄s⟩. Note that the
microscopic average concentration c does not require an overbar recalling its definition (200).
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Applying the decompositions (218) to the dilute form of the momentum equation for the solid
phase (209), one readily finds:

us = u− ws x̂3. (219)

Thus, the macroscopically averaged forms of the equations of continuity of the fluid phase and of
the solid phase, equations (213) and (215), take the form:

∇ · u = 0, (220)

∂⟨c⟩
∂t

+∇ ·
(
⟨c⟩u

)
+∇ · ⟨u′ c′⟩ − ws

∂⟨c⟩
∂x3

= 0. (221)

The reader will note that the further macroscopic averaging process generates a turbulent con-
tribution to the mass flux ⟨u′ c′⟩ which will be seen to affect crucially the dynamics of turbulent
suspensions.

Similarly, applying the decompositions (218), the momentum equation of the fluid phase (212)
becomes:

ϱ

(
−g x̂3 −

du

dt

)
= ∇⟨p̄⟩ − µ∇2u−∇ ·

(
⟨T t⟩+ T tM

)
, (222)

where we have defined a macroscopic Reynolds stress tensor T tM of the classical form:

T tM = −ϱ ⟨u′u′⟩. (223)

Here, as anticipated above, the macroscopic averaging process has generated a further contribu-
tion to the effective stress of the mixture in the form of a classical Reynolds stress tensor. Hence,
two macroscopic closure problems are left open, namely providing a structure to the turbulent
fluxes of mass, ⟨c′u′⟩, and momentum, ϱ ⟨u′u′⟩.

The Reynolds averaged forms of the mass conservation constraints at the free surface and at
the bed interface are readily obtained:

- at the free surface (x3 = H):

[
⟨c′ u′⟩ − ws ⟨c⟩ x̂3

]
H
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Note that here we have used the Reynolds averaged form of the kinematic boundary condition
at the free surface (15), that gives: u|H · n̂H = VH ;

- at the bed interface (x3 = η):
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⟨c′ u′⟩ − ws ⟨c⟩ x̂3

]
η
· n̂η = E − D, (225)

having set u|η = 0.

In the next Section, we will discuss the classical solution for the simplest, yet fundamental,
problem of transport in suspension by uniform free surface flows.

3.5.4 Equilibrium transport of dilute turbulent suspensions of small particles in open channel flows: the
equilibrium Eulerian approach

Let us investigate the transport of dilute suspensions by uniform turbulent free surface flows
under equilibrium conditions. Such conditions are rarely exactly met but are often closely
approached in geophysical flows.
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Figure 35. Plane steady and uniform free surface turbulent flow carrying sediment in suspension: sketch and
notations.

Rouse solution

We refer the flow to a cartesian reference frame (x, y, z) chosen as in Figure 35 which illustrates
the relevant notations. In particular, we denote by ux the macroscopic average of the longitudinal
velocity component. The flow is assumed to be steady, plane (uy = 0), unidirectional (uz = 0), and
uniform in the mean. Hence temporal derivatives as well as lateral and longitudinal derivatives of
mean and fluctuating quantities vanish identically.

Moreover, we assume that transport in suspension is in equilibrium. Physically, this condition
implies that the sediment flux is constant both in space and in time, such that sediment is supplied
upstream at the exact rate needed to meet the transport capacity of the stream averaged both in
time and space. As a result, the microscopically averaged concentration of suspended particles c
fluctuates around a mean distribution ⟨c⟩ which is also steady and uniform. Hence, we may write:

c(x, y, z, t) = ⟨c⟩(z) + c′(x, y, z, t). (226)

Taking into account the steady, plane and unidirectional character of the flow, continuity of
the fluid phase (equation 220) leads to the simple statement:

∂ux

∂x
= 0 ⇒ ux = ux(z). (227)

Continuity of the solid phase (equation (221)) is readily shown to lead to a balance between
the z-component of the upward sediment flux driven by turbulence and the z-component of the
downward settling flux. Below we approximate the z-direction with the vertical direction. Hence,
integrating along z,

ws⟨c⟩ − ⟨u′
z c

′⟩ = 0, (228)

where the constant of integration has been set equal to zero in order to satisfy the boundary
condition at the free surface (224), whereby the net flux of the solid phase normal to the free
surface must vanish.

The momentum of the fluid phase (equation (222)) is similarly shown to reduce to the following
simple governing equation:

d

dz

(
⟨T t

zx⟩+ T tM
zx

)
+ ϱ g sin θ = 0. (229)
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Hence, in the infinitely dilute limit, not surprisingly, the stress of the mixture is purely turbulent
and, in the context of our derivation where averaging proceeds in two steps, Tzx is expressed as
a sum of microscopic (⟨T t

zx⟩) and macroscopic (T tM
zx ) contributions. Closure of (229) may then

be achieved following the classical approaches employed in the case of turbulent uniform flows of
homogeneous fluids. The output of the analysis for the mean flow is then the classical logarithmic
distribution (Section 2.2.9). In other words, in the infinitely dilute limit, the flow field is not
affected by the presence of suspended sediments.

The distribution of the mean concentration ⟨c⟩(z) can be obtained from equation (228) once
an appropriate closure is adopted for the turbulent diffusive flux ⟨u′

z c
′⟩. The classical approach

employs a Fickian closure which, in its simplest version, consists of assuming the turbulent flux
proportional to the gradient of the mean concentration through some turbulent diffusion coefficient
(or turbulent diffusivity) DT , a scalar quantity which varies in space. Assuming the validity of the
so called Reynolds analogy, it is often further assumed that the turbulent diffusivity coincides with
the kinematic eddy viscosity. With the simplest choice of a classical parabolic distribution for DT

(see equation (90) with no wake correction, i.e. wf = 0), in the uniform case we may write:

⟨u′
z c

′⟩ = −DT
d⟨c⟩
dz

= −k uτ z (1− z)
d⟨c⟩
dz

. (230)

The equation (228) is thus immediately solved to give:

⟨c⟩
ca

=

(
ζa

1− ζa

1− ζ

ζ

)Z

, (231)

where ca is the mean concentration at some reference level a, ζ is a dimensionless coordinate and
Z is a dimensionless parameter, known as Rouse parameter, with:

ζ =
z

D
, ζa =

a

D
, Z =

ws

k uτ
. (232)

The solution (231) was first derived by Rouse (1937). Note, that it is expressed in terms of the
reference concentration ca. This quantity will have to be specified on the basis of observations,
as a sound, theoretically based, model for particle entrainment-deposition at the bed is not yet
available. Indeed, the boundary condition at the bed interface (225) is of no help, as the assumed
state of equilibrium implies that no net entrainment is allowed at the bed interface, hence E − D
vanishes and the boundary condition is automatically satisfied by (228).

The concentration distribution (231) has some interesting features (Figure 35). In fact, as
Z → 0 the mean concentration ⟨c⟩ tends to become uniformly distributed and equal to ca. This
is the limiting case when suspended sediments are so fine that they are unable to settle. They
form the so called wash load . The opposite limit of large Z is also very interesting. Indeed, as
Z increases, the layer adjacent to the bed where the mean concentration is not negligible gets
thinner. Hence, not surprisingly, as Z tends to the threshold value for particle entrainment in
suspension, the behavior of suspended load tends to somehow resemble that of bedload. This may
be better appreciated by a simple example. For particles of size 1 mm (Rp = 127) the threshold
value of Z predicted by the criterion (198) is 5.55 and, for this value of Z, the distribution (231)
(with a assumed to be much smaller than the flow depth), predicts that at a distance z = 2 a the
mean concentration ⟨c⟩ ranges about 0.02 ca.

Reference concentration and reference level

The engineering literature abounds with relationships proposed to evaluate the reference concen-
tration ca. As it is reasonable to expect on purely dimensional ground, these relationships can be
cast in the general form:

ca = ca

(
τ∗, Rp,

d

D

)
, (233)
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Figure 35. Plane steady and uniform free surface turbulent flow carrying sediment in suspension: sketch and
notations.

Rouse solution

We refer the flow to a cartesian reference frame (x, y, z) chosen as in Figure 35 which illustrates
the relevant notations. In particular, we denote by ux the macroscopic average of the longitudinal
velocity component. The flow is assumed to be steady, plane (uy = 0), unidirectional (uz = 0), and
uniform in the mean. Hence temporal derivatives as well as lateral and longitudinal derivatives of
mean and fluctuating quantities vanish identically.

Moreover, we assume that transport in suspension is in equilibrium. Physically, this condition
implies that the sediment flux is constant both in space and in time, such that sediment is supplied
upstream at the exact rate needed to meet the transport capacity of the stream averaged both in
time and space. As a result, the microscopically averaged concentration of suspended particles c
fluctuates around a mean distribution ⟨c⟩ which is also steady and uniform. Hence, we may write:

c(x, y, z, t) = ⟨c⟩(z) + c′(x, y, z, t). (226)

Taking into account the steady, plane and unidirectional character of the flow, continuity of
the fluid phase (equation 220) leads to the simple statement:

∂ux

∂x
= 0 ⇒ ux = ux(z). (227)

Continuity of the solid phase (equation (221)) is readily shown to lead to a balance between
the z-component of the upward sediment flux driven by turbulence and the z-component of the
downward settling flux. Below we approximate the z-direction with the vertical direction. Hence,
integrating along z,

ws⟨c⟩ − ⟨u′
z c

′⟩ = 0, (228)

where the constant of integration has been set equal to zero in order to satisfy the boundary
condition at the free surface (224), whereby the net flux of the solid phase normal to the free
surface must vanish.

The momentum of the fluid phase (equation (222)) is similarly shown to reduce to the following
simple governing equation:

d

dz

(
⟨T t

zx⟩+ T tM
zx

)
+ ϱ g sin θ = 0. (229)
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Hence, in the infinitely dilute limit, not surprisingly, the stress of the mixture is purely turbulent
and, in the context of our derivation where averaging proceeds in two steps, Tzx is expressed as
a sum of microscopic (⟨T t

zx⟩) and macroscopic (T tM
zx ) contributions. Closure of (229) may then

be achieved following the classical approaches employed in the case of turbulent uniform flows of
homogeneous fluids. The output of the analysis for the mean flow is then the classical logarithmic
distribution (Section 2.2.9). In other words, in the infinitely dilute limit, the flow field is not
affected by the presence of suspended sediments.

The distribution of the mean concentration ⟨c⟩(z) can be obtained from equation (228) once
an appropriate closure is adopted for the turbulent diffusive flux ⟨u′

z c
′⟩. The classical approach

employs a Fickian closure which, in its simplest version, consists of assuming the turbulent flux
proportional to the gradient of the mean concentration through some turbulent diffusion coefficient
(or turbulent diffusivity) DT , a scalar quantity which varies in space. Assuming the validity of the
so called Reynolds analogy, it is often further assumed that the turbulent diffusivity coincides with
the kinematic eddy viscosity. With the simplest choice of a classical parabolic distribution for DT

(see equation (90) with no wake correction, i.e. wf = 0), in the uniform case we may write:

⟨u′
z c

′⟩ = −DT
d⟨c⟩
dz

= −k uτ z (1− z)
d⟨c⟩
dz

. (230)

The equation (228) is thus immediately solved to give:

⟨c⟩
ca

=

(
ζa

1− ζa

1− ζ

ζ

)Z

, (231)

where ca is the mean concentration at some reference level a, ζ is a dimensionless coordinate and
Z is a dimensionless parameter, known as Rouse parameter, with:

ζ =
z

D
, ζa =

a

D
, Z =

ws

k uτ
. (232)

The solution (231) was first derived by Rouse (1937). Note, that it is expressed in terms of the
reference concentration ca. This quantity will have to be specified on the basis of observations,
as a sound, theoretically based, model for particle entrainment-deposition at the bed is not yet
available. Indeed, the boundary condition at the bed interface (225) is of no help, as the assumed
state of equilibrium implies that no net entrainment is allowed at the bed interface, hence E − D
vanishes and the boundary condition is automatically satisfied by (228).

The concentration distribution (231) has some interesting features (Figure 35). In fact, as
Z → 0 the mean concentration ⟨c⟩ tends to become uniformly distributed and equal to ca. This
is the limiting case when suspended sediments are so fine that they are unable to settle. They
form the so called wash load . The opposite limit of large Z is also very interesting. Indeed, as
Z increases, the layer adjacent to the bed where the mean concentration is not negligible gets
thinner. Hence, not surprisingly, as Z tends to the threshold value for particle entrainment in
suspension, the behavior of suspended load tends to somehow resemble that of bedload. This may
be better appreciated by a simple example. For particles of size 1 mm (Rp = 127) the threshold
value of Z predicted by the criterion (198) is 5.55 and, for this value of Z, the distribution (231)
(with a assumed to be much smaller than the flow depth), predicts that at a distance z = 2 a the
mean concentration ⟨c⟩ ranges about 0.02 ca.

Reference concentration and reference level

The engineering literature abounds with relationships proposed to evaluate the reference concen-
tration ca. As it is reasonable to expect on purely dimensional ground, these relationships can be
cast in the general form:

ca = ca

(
τ∗, Rp,

d

D

)
, (233)
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Figure 36. (a) The parameter I of equation (242) is plotted as a function of the Rouse number Z. (b) Comparison
between the relation (231), describing the distribution of relative concentration ⟨c⟩/ca computed by Rouse (1937),

and experimental data of various Authors (modified from Vanoni, 1975).
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Figure 37. The normalized turbulent diffusivity, DT /uτD is plotted versus the dimensionless vertical coordinate
ζ = z/D. The dashed line corresponds to the distribution (92). Symbols refer to the numerical experiments carried

out by Schmeeckle (2014) for ux = 1m/s: diamonds are the momentum diffusivities corrected for density
stratification effects according to the relation (244) of Gelfenbaum and Smith (1986); circles denote the normalized

momentum diffusivity, −⟨u′
xu

′
z⟩/(uτ Dd⟨c⟩/dz); squares denote the normalized sediment particle diffusivity,

⟨c⟩uz/(uτ Dd⟨c⟩/dz), where uz is the vertical fluid velocity at the particle centers, averaged over a horizontal
plane (modified from Schmeeckle, 2014).
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4. Sediment transport in natural channels

In this Chapter, we investigate the additional complexities arising when the formulation of
the problem of morphodynamics is extended to natural channels. Let us recall that, physically,
the problem consists of determining the dynamics of the bed (and/or bank) interface between
the flowing water and sediment mixture and the adjacent erodible medium. In the Introductory
Monograph of the present series (Blondeaux et al., 2018) the fundamental ingredient needed to
formulate this problem, namely the evolution equation of the bed interface, known as Exner
equation, has been derived. In the next Section we briefly recall this equation, which states that
the temporal derivative of bed elevation is determined by the divergence of the sediment flux. In
the previous Chapter, we have discussed the fundamental tools needed to evaluate the flux of
homogeneous sediments in uniform steady flow in open channels with a plane sediment bed and
under equilibrium conditions (sediment supply equal to transport capacity). In the rest of this
Chapter we deal with the various features that complicate the evaluation of the sediment transport
capacity in natural channels.

4.1. The evolution equation of the bed interface

The dimensional depth integrated form of the mass conservation equation for the solid phase
can be demonstrated to give the following evolution equation of the bed interface (see equation
(3.18) of Blondeaux et al., 2018):

∂(DC)

∂t
+ cM

∂η

∂t
+

∂Qsx

∂x
+

∂Qsy

∂y
= 0, (245)

where t denotes time, x, y are the longitudinal and lateral Cartesian horizontal coordinates, η
is the local bed elevation with respect to a reference horizontal plane and D is the local flow
depth. Moreover, C is the depth averaged concentration of the flowing mixture, cM is the packing
concentration of the erodible bed, and Qs is the depth integrated total sediment flux per unit width.
The depth-averaged concentration C and the j- component of the depth-integrated sediment flux
per unit width Qsj are defined as follows:

DC =

∫ H

η

⟨c⟩ dz, Qsj =

∫ H

η

⟨qsj⟩ dz (j = x, y), (246)

where ⟨c⟩ is the Reynolds averaged local sediment concentration (see Section 3.5.4) and ⟨qsx⟩, ⟨qsy⟩
are the longitudinal and lateral components of the local Reynolds averaged total sediment flux,
respectively. The equation (245) has a general form which is valid whatever type of sediment
motion prevails in the flowing mixture. In general, we may write:

Qsj = Qb
sj +Qs

sj (j = x, y), (247)

where Qb
sj and Qs

sj are the bedload and suspended load components of Qsj , respectively. In order
to complete the formulation we then need closure relationships for Qb

sj and Qs
sj as functions of the

tangential stress at the bottom and of the local bed topography.
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The one-dimensional version of equation (245) is easily obtained by averaging it in the transverse
direction (recall Figure 20 for notations), applying the Leibnitz rule and introducing the following
averaged quantities:

∫ BbL

−BbR

η dy = 2Bb η̄,

∫ BL

−BR

CD dy = C Ω,

∫ BbL

−BbR

Qsx dy = 2Bb Qs (248)

One eventually finds:
∂(C Ω)

∂t
+ cM

∂(2Bb η̄)

∂t
+

∂(2Bb Qs)

∂x
= 0 (249)

Indeed, all the terms involving quantities evaluated at the lateral boundaries, arising from the
application of the Leibnitz rule, are identically zero, since the flow depth vanishes at y = −BbR

and y = BbL and η|BbL
= η|−BbR

.
Considering a constant channel width and further assuming that the variations of the amount of

sediments stored in the water column are small relative to the amount of sediments exchanged with
the bed through the erodible interface (i.e. neglecting the first term in (249)), the one-dimensional
version of the bed evolution equation takes the form derived by Exner (1925):

cM
∂η̄

∂t
+

∂Qs

∂x
= 0 (250)

In the previous Chapter we have outlined the mechanisms of transport of homogeneous
sediments in the context of the simplest hydrodynamic conditions, namely a plane, steady and
uniform (i.e. longitudinally homogeneous) turbulent free surface flow. However, sediment transport
in natural channels has a number of features which complicate the latter picture. In particular:

- Flows are non uniform, they are spatially varying (in both lateral and longitudinal directions),
and may be unsteady.

- The local bed slope differs from the average bed slope of the channel reach under consideration.
This implies that secondary flows are generated and local particle trajectories are not aligned
with the channel axis. This effect plays an important role in pattern formation and must be
appropriately taken into account.

- The bed may be covered by small scale bedforms (ripples, dunes, antidunes). Their effect
on the hydrodynamics of larger scale morphodynamic processes is often taken into account
treating them as a macro-roughness affecting essentially the friction coefficient of the stream.
Sediment transport is also significantly modified by the presence of small scale bedforms and
this effect must also be accounted for in the modeling.

- Natural river banks are typically not plane. They are commonly characterized by the presence
of small-scale features consisting of undulations due to a number of factors, such as erosion
and slumping of bank material, as well as the presence of vegetation (roots, grass, etc.).
Similarly to bedforms, bank undulations may be treated as macro-roughness leading to form
drag which also affects the friction coefficient of the stream.

- Natural sediments are heterogeneous, hence the motion of grains of each size is affected by the
presence of different sizes.

- The channel boundary may be cohesive and only partially covered by alluvial sediments. Under
these conditions sediment supply may be lower than the actual transport capacity of the stream.

- The concentration of sediment mixtures may not be small enough to treat them as dilute
suspensions.
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In the next sections, we outline briefly the tools developed to deal with flow non-uniformity,
sloping topography, small scale bedforms and small scale bank-forms, sediment heterogeneity.
Cohesive effects and highly concentrated suspensions lead to a number of specific phenomena that
deserve to be dealt with in special Monographs. The role of an insufficient sediment supply will be
discussed in Chapter 6 in relation to the problem of bar formation.

4.2. Bedload transport of homogeneous sediments in non-uniform flows

4.2.1 Spatial non uniformities

Spatial variations of natural flows are driven by a variety of causes, e.g. the shape of the
channel bottom deviates from a sloping plane both longitudinally and laterally, the free surface
may differ from the constant slope plane surface characteristic of a uniform flow as a result of
backwater effects. Fortunately, the spatial scale of flow variations is usually much larger than the
scale of turbulent events which control bedload transport, such that we may reasonably assume, for
our purposes, that the transport capacity of the stream adapts to the local flow conditions.

For sufficiently wide channels, lateral non uniformities may be treated adopting the approach
discussed in Section 2.3.3. We recall that the basic idea is to treat the flow field as a sequence of
locally uniform flows, each referring to a vertical strip of infinitesimal thickness dy, with properties
that vary slowly in the lateral direction, as illustrated in Figure 15. Following this approach we
may also associate a local value of the Shields stress τ∗(y) and depth averaged bedload flux per
unit width Qb

s(y) to each strip, such that:

τ∗(y) =
Q2(y)

(s− 1)χ2(y)D2(y) d(y) g
, Qb

s(y) = Qb
s

[
τ∗(y)

]
, (251)

having denoted by Q = DU , χ, D and d the local values of the fluid discharge per unit width, the
local flow conductance, the local flow depth and the local average grain size, respectively.

With the help of (251) one can calculate the total bed load discharge Qb
s transported in the

cross-section as follows:

Qb
s =

∫ BbR

−BbL

Qb
s

[
τ∗(y)

]
dy. (252)

The reader should note that, due to the nonlinear dependence of Qb
s on τ∗(y), if the channel cross-

section displays strong variations of bed elevation, the value of Qb
s obtained with the help of (252)

may differ significantly from the estimate obtained using the commonly employed approximation:

Qb
s = 2Bb Q

b
s(τ̄∗), (253)

having denoted by τ̄∗ the laterally averaged value of the Shields stress.
The exercise presented in Figure 38 illustrates the latter statement quantitatively.

4.2.2 Temporal non uniformities

Similar ideas apply when the flow under consideration is unsteady, as the temporal scale of
flow variations in fluvial-tidal settings is much larger than the temporal scale of the events that
control sediment transport.

4.3. Non uniform dilute suspensions of homogeneous sediments

4.3.1 The 3D Reynolds averaged advection-diffusion equation

We now extend the knowledge on the transport of suspended load established in Chapter 3
for the fundamental case of uniform conditions to flows that, as typical of natural settings, vary
slowly both in space and in time. This approach also applies to investigations concerning large
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slowly both in space and in time. This approach also applies to investigations concerning large
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Figure 38. Panel (a) shows a sketch of the investigated cross section, characterised by a gradually varying
perturbation of the bottom of maximum amplitude ∆η. The corresponding lateral depth distribution has the form
D(y) = Dflat +∆η sin(πy/(2B)). Panel (b) shows how the relative error of the total bedload discharge estimate

obtained using the laterally averaged value of the Shields stress (equation 253) instead of the integral (252)
increases as the maximum amplitude of the bottom perturbation increases. The exercise has been performed

assuming a sequence of locally uniform flows in the lateral direction with S = 0.01%, BbL = BbR = B, d=0.5 mm
and Dflat= 2 m.

scale bedforms (e.g. bars), while it progressively becomes less appropriate as the temporal/spatial
scale of bedforms dynamics decreases (e.g. ripples).

Let us then recall the advection-diffusion equation governing the dynamics of dilute suspensions
of small solid equally sized particles that was derived in Section 3.5.3 for the macroscopically
averaged form of the equation of continuity of the solid phase. It reads:

∂⟨c⟩
∂t

+∇ ·
(
⟨c⟩u

)
+∇ ·

(
⟨u′ c′⟩

)
− ws

∂⟨c⟩
∂z

= 0, (254)

where the symbol ⟨⟩ denotes the macroscopic average.
As already pointed out, the rational framework underlying (254) is based on two main assump-

tions, namely that the suspension must be sufficiently dilute to make hydrodynamic interactions
between solid particles weak and particle collisions highly unlikely, while solid particles must be
small enough to induce negligible disturbances of the turbulence field down to its smallest scales.
Though these assumptions are quite strict and apply rigorously to a relatively small subset of
the actual suspensions observed in fluvial and tidal streams, however the above scheme is widely
employed for its simplicity. In fact, the implication of the above assumptions can be summarized
by stating that the motion of the solid phase is coupled to the motion of the fluid phase while, on
the contrary, the fluid motion is not affected by the presence of the solid phase. Technically, this
scheme is a particular case of the approach known as one way coupling (Section 3.5.1). It implies
that the sediment particles are advected by the fluid except for their tendency to settle as a result
of their submerged weight.

Mass conservation at the free surface z = H imposes that this surface is impermeable to solid
particles. The Reynolds averaged form of this constraint was introduced in the previous Chapter
(equation 224) and reads: [

⟨c′ u′⟩ − ws ⟨c⟩ ẑ
]
H
· n̂H = 0, (255)

At the bed interface, under non equilibrium conditions, the boundary condition (225) states that
the flux entrained by the stream does not coincide with the deposited flux, i.e. a net positive
(negative) exchanged flux E − D must be allowed at the reference elevation z = η + a. We now
assume that this net flux is proportional to the defect (excess) concentration at the bed, relative
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to the local and instantaneous value of the equilibrium concentration ca
[
τ∗(x, t)]. More precisely,

we set:
D − E = ws

[
ca − ⟨c⟩η+a

]
ẑ · n̂η (256)

such that the boundary condition (225) takes the form:
[
⟨c′ u′⟩ − ws ⟨c⟩ ẑ

]
η+a

· n̂η = ws

[
ca − ⟨c⟩η+a

]
ẑ · n̂η (257)

This relationship makes it clear that the form (256) assumed for the net exchanged flux, in
particular the choice of ws as proportionality factor, ensures that the boundary condition (257)
applied to uniform streams in equilibrium reduces to the classical equality of entrainment and
deposition. This is readily proved. Assume equilibrium conditions, such that the bed is flat and
ẑ = −n̂η. The relationship (257) then becomes:

[
⟨c′ u′

z⟩
]
η+a

= ws ca (258)

i.e. the entrained flux equals the depositing flux. Since the entrained flux under equilibrium
conditions is equal to ws ca, then the assumption (256) can be readily interpreted stating that
the net exchanged flux is equal to the difference between the entrained flux, estimated by the
equilibrium relationship in terms of the local and instantaneous conditions, and the depositing
flux.

The differential system (254, 255, 257) will require some closure for the turbulent diffusive flux
⟨u′ c′⟩. Following the classical approach introduced in Section 3.5 we employ a gradient-diffusion
assumption which is likely to hold for turbulent flows not far from uniformity. In the present
general case it reads:

⟨u′
j c

′⟩ = −Dj
∂⟨c⟩
∂xj

, (259)

where Dj (j = x, y, z) is the j-th-component of the turbulent diffusivity vector, which is usually
estimated using the Reynolds analogy, i.e. assuming that the turbulent diffusivity is equal to the
eddy viscosity.

Once equation (254) has been solved with the appropriate boundary conditions, the components
of the depth averaged sediment flux per unit width (Qs

sx and Qs
sy) are readily calculated from the

following integrals:

(Qs
sx, Q

s
sy) =

∫ H

η+a

(u, v) ⟨c⟩ dz. (260)

Note that, in principle, also the horizontal turbulent diffusive fluxes contribute to the depth-
averaged fluxes. However, as discussed in the next Section, in most situations of interest for
fluvial morphodynamics these contributions are much smaller than advective fluxes and, hence,
are usually neglected.

4.3.2 Depth averaged model of transport in suspension

Most application problems of morphodynamics focus on predicting the short- or long-term
evolution of relatively large river or estuarine reaches for which full-scale three-dimensional modeling
is computationally inconvenient or even prohibitive. Moreover, in many cases (e.g. tidal flows,
flood waves, large scale sedimentary patterns) the flow characteristics vary gradually both in space
and time. Under these conditions, a depth-averaged model is most often adequate to investigate
the hydrodynamics. Similarly, morphodynamic investigations would greatly benefit from the
availability of an appropriate depth-averaged model to evaluate the flux of sediment transported
in suspension.

Below, we follow the approach of Bolla Pittaluga and Seminara (2003) who were able to derive
a sequence of higher order corrections for the local and instantaneous equilibrium solution for the
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Figure 38. Panel (a) shows a sketch of the investigated cross section, characterised by a gradually varying
perturbation of the bottom of maximum amplitude ∆η. The corresponding lateral depth distribution has the form
D(y) = Dflat +∆η sin(πy/(2B)). Panel (b) shows how the relative error of the total bedload discharge estimate

obtained using the laterally averaged value of the Shields stress (equation 253) instead of the integral (252)
increases as the maximum amplitude of the bottom perturbation increases. The exercise has been performed

assuming a sequence of locally uniform flows in the lateral direction with S = 0.01%, BbL = BbR = B, d=0.5 mm
and Dflat= 2 m.

scale bedforms (e.g. bars), while it progressively becomes less appropriate as the temporal/spatial
scale of bedforms dynamics decreases (e.g. ripples).

Let us then recall the advection-diffusion equation governing the dynamics of dilute suspensions
of small solid equally sized particles that was derived in Section 3.5.3 for the macroscopically
averaged form of the equation of continuity of the solid phase. It reads:

∂⟨c⟩
∂t

+∇ ·
(
⟨c⟩u

)
+∇ ·

(
⟨u′ c′⟩

)
− ws

∂⟨c⟩
∂z

= 0, (254)

where the symbol ⟨⟩ denotes the macroscopic average.
As already pointed out, the rational framework underlying (254) is based on two main assump-

tions, namely that the suspension must be sufficiently dilute to make hydrodynamic interactions
between solid particles weak and particle collisions highly unlikely, while solid particles must be
small enough to induce negligible disturbances of the turbulence field down to its smallest scales.
Though these assumptions are quite strict and apply rigorously to a relatively small subset of
the actual suspensions observed in fluvial and tidal streams, however the above scheme is widely
employed for its simplicity. In fact, the implication of the above assumptions can be summarized
by stating that the motion of the solid phase is coupled to the motion of the fluid phase while, on
the contrary, the fluid motion is not affected by the presence of the solid phase. Technically, this
scheme is a particular case of the approach known as one way coupling (Section 3.5.1). It implies
that the sediment particles are advected by the fluid except for their tendency to settle as a result
of their submerged weight.

Mass conservation at the free surface z = H imposes that this surface is impermeable to solid
particles. The Reynolds averaged form of this constraint was introduced in the previous Chapter
(equation 224) and reads: [

⟨c′ u′⟩ − ws ⟨c⟩ ẑ
]
H
· n̂H = 0, (255)

At the bed interface, under non equilibrium conditions, the boundary condition (225) states that
the flux entrained by the stream does not coincide with the deposited flux, i.e. a net positive
(negative) exchanged flux E − D must be allowed at the reference elevation z = η + a. We now
assume that this net flux is proportional to the defect (excess) concentration at the bed, relative
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to the local and instantaneous value of the equilibrium concentration ca
[
τ∗(x, t)]. More precisely,

we set:
D − E = ws

[
ca − ⟨c⟩η+a

]
ẑ · n̂η (256)

such that the boundary condition (225) takes the form:
[
⟨c′ u′⟩ − ws ⟨c⟩ ẑ

]
η+a

· n̂η = ws

[
ca − ⟨c⟩η+a

]
ẑ · n̂η (257)

This relationship makes it clear that the form (256) assumed for the net exchanged flux, in
particular the choice of ws as proportionality factor, ensures that the boundary condition (257)
applied to uniform streams in equilibrium reduces to the classical equality of entrainment and
deposition. This is readily proved. Assume equilibrium conditions, such that the bed is flat and
ẑ = −n̂η. The relationship (257) then becomes:

[
⟨c′ u′

z⟩
]
η+a

= ws ca (258)

i.e. the entrained flux equals the depositing flux. Since the entrained flux under equilibrium
conditions is equal to ws ca, then the assumption (256) can be readily interpreted stating that
the net exchanged flux is equal to the difference between the entrained flux, estimated by the
equilibrium relationship in terms of the local and instantaneous conditions, and the depositing
flux.

The differential system (254, 255, 257) will require some closure for the turbulent diffusive flux
⟨u′ c′⟩. Following the classical approach introduced in Section 3.5 we employ a gradient-diffusion
assumption which is likely to hold for turbulent flows not far from uniformity. In the present
general case it reads:

⟨u′
j c

′⟩ = −Dj
∂⟨c⟩
∂xj

, (259)

where Dj (j = x, y, z) is the j-th-component of the turbulent diffusivity vector, which is usually
estimated using the Reynolds analogy, i.e. assuming that the turbulent diffusivity is equal to the
eddy viscosity.

Once equation (254) has been solved with the appropriate boundary conditions, the components
of the depth averaged sediment flux per unit width (Qs

sx and Qs
sy) are readily calculated from the

following integrals:

(Qs
sx, Q

s
sy) =

∫ H

η+a

(u, v) ⟨c⟩ dz. (260)

Note that, in principle, also the horizontal turbulent diffusive fluxes contribute to the depth-
averaged fluxes. However, as discussed in the next Section, in most situations of interest for
fluvial morphodynamics these contributions are much smaller than advective fluxes and, hence,
are usually neglected.

4.3.2 Depth averaged model of transport in suspension

Most application problems of morphodynamics focus on predicting the short- or long-term
evolution of relatively large river or estuarine reaches for which full-scale three-dimensional modeling
is computationally inconvenient or even prohibitive. Moreover, in many cases (e.g. tidal flows,
flood waves, large scale sedimentary patterns) the flow characteristics vary gradually both in space
and time. Under these conditions, a depth-averaged model is most often adequate to investigate
the hydrodynamics. Similarly, morphodynamic investigations would greatly benefit from the
availability of an appropriate depth-averaged model to evaluate the flux of sediment transported
in suspension.

Below, we follow the approach of Bolla Pittaluga and Seminara (2003) who were able to derive
a sequence of higher order corrections for the local and instantaneous equilibrium solution for the
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depth-averaged concentration. These corrections are found to be expressed in terms of the spatial
and temporal derivatives of the depth-averaged equilibrium concentration. Below, we outline the
analysis of Bolla Pittaluga and Seminara (2003) later extended by Federici and Seminara (2006).

Governing equations

Let us start from the advection-diffusion equation (254), rewritten in the explicit form:

∂⟨c⟩
∂t

+u
∂⟨c⟩
∂x

+ v
∂⟨c⟩
∂y

+ (w − ws)
∂⟨c⟩
∂z

=

∂

∂x

(
Dx

∂⟨c⟩
∂x

)
+

∂

∂y

(
Dy

∂⟨c⟩
∂y

)
+

∂

∂z

(
Dz

∂⟨c⟩
∂z

)
. (261)

Next we make the relevant physical quantities dimensionless as follows:

(x̃, ỹ, z̃) =

(
x

L
,
y

2B
,
z

D0

)
, t̃ = ω t, (262a)

(ũ, ṽ, w̃) =

(
u

U0
,
v

V0
,
w

W0

)
, D̃j =

Dj

uτ0D0
. (262b)

Here, ω is the inverse of the characteristic temporal scale of the flow, L is a longitudinal scale
depending on the investigated problem and 2B is a lateral scale (e.g. the channel width). Moreover,
D0 and U0 are the flow depth and the cross-sectional speed of some reference uniform flow.
They are employed as spatial scale for the vertical coordinate and for the longitudinal velocity,
respectively. Balancing the three terms of the Reynolds averaged continuity equation of the fluid
phase (equation 71a), it follows that V0 = 2B U0/L and W0 = D0 U0/L are the associated scales
for the lateral and vertical components of the flow velocity. Finally uτ0 is the friction velocity
associated with the reference uniform flow.

Using the above dimensionless variables the equation (261) takes the form:

δ1
∂⟨c⟩
∂t̃

+ δ2

[
ũ
∂⟨c⟩
∂x̃

+ ṽ
∂⟨c⟩
∂ỹ

+ w̃
∂⟨c⟩
∂z̃

]
− ∂⟨c⟩

∂z̃
=

1

kZ0

[
∂

∂z̃

(
D̃z

∂⟨c⟩
∂z̃

)
+ δ3

∂

∂x̃

(
D̃x

∂⟨c⟩
∂x̃

)
+ δ4

∂

∂ỹ

(
D̃y

∂⟨c⟩
∂ỹ

)]
, (263)

where the following dimensionless parameters arise:

δ1 =
ωD0

ws
, δ2 =

U0D0

wsL
, δ3 =

(D0

L

)2

, δ4 =
(D0

2B

)2

, Z0 =
ws

k uτ0
. (264)

In (263, 264) k is the von Karman constant and Z0 is the reference Rouse number. Note that
the parameters δj (j = 1, 4) are typically small for slowly varying flows like tidal flows (Lanzoni
and Seminara, 2002), flood waves (Bolla Pittaluga and Seminara, 2003) or large scale fluvial and
estuarine sedimentary patterns (Federici and Seminara, 2006). In particular, δ3 and δ4 are usually
much smaller than δ1 and δ2 and, therefore, the last two terms in the right hand side of (263) are
usually neglected.

Let us next define a transformed vertical coordinate ζ as follows:

ζ =
z − η

h− η
=

z − η

D
=

z̃ − η̃

D̃
, (265)

with η̃ = η/D0 and D̃ = D/D0. The reader must note that the transformed variable ζ falls in the
range [0, 1]. Moreover, the governing equations must also be transformed. Indeed, as ζ depends on
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x̃, ỹ and t̃, the following coordinate transformations follow:

∂

∂z̃
→ 1

D̃

∂

∂ζ
, (266a)

∂

∂x̃
→ ∂

∂x̃
+

∂ζ

∂x̃

∂

∂ζ
=

∂

∂x̃
− 1

D̃

(
∂η̃

∂x̃
+ ζ

∂D̃

∂x̃

)
∂

∂ζ
, (266b)

∂

∂ỹ
→ ∂

∂ỹ
+

∂ζ

∂ỹ

∂

∂ζ
=

∂

∂ỹ
− 1

D̃

(
∂η̃

∂ỹ
+ ζ

∂D̃

∂ỹ

)
∂

∂ζ
, (266c)

∂

∂t̃
→ ∂

∂t̃
+

∂ζ

∂t̃

∂

∂ζ
=

∂

∂t̃
− 1

D̃

(
∂η̃

∂t̃
+ ζ

∂D̃

∂t̃

)
∂

∂ζ
. (266d)

Setting

δ2 = δ, δ1 = γ δ, γ =
U0

ω L
∼ O(1), (267)

employing the transformations (266) and neglecting the terms proportional to δ3 and δ4, the
advection-diffusion equation (263) becomes:

1

kZ0

1

D̃

[
∂

∂ζ

(
D̃z

∂⟨c⟩
∂ζ

)]
+

∂⟨c⟩
∂ζ

= δ

{
γ D̃

∂⟨c⟩
∂t̃

+ D̃ ũ
∂⟨c⟩
∂x̃

+ D̃ ṽ
∂⟨c⟩
∂ỹ

+ w̃
∂⟨c⟩
∂ζ

−
[
γ

(
∂η̃

∂t̃
+ ζ

∂D̃

∂t̃

)
+ ũ

(
∂η̃

∂x̃
+ ζ

∂D̃

∂x̃

)
+ ṽ

(
∂η̃

∂ỹ
+ ζ

∂D̃

∂Ỹ

)]
∂⟨c⟩
∂ζ

}
. (268)

Boundary conditions

The boundary conditions to be associated with the equation (268) are obtained from (255) and
(257), recalling also the no slip condition at the bed and the fixed nature of the bed interface in
the present context, whereby

[
ũ, ṽ, w̃)

]
η+a

= 0. Again, one has to make the above relationships
dimensionless with the help of (262b) and then perform the coordinate transformations (266). Use
must also be made of the definitions of the unit vectors normal to the free surface and to the
bed interface already introduced and employed in Chapter 2 (see equations (128a, b) and (13)).
Finally, the mathematical definition of the normal velocity of the free surface VH must be recalled
(equation (16)).

Retaining only terms up to O(δ), some algebraic work eventually leads to the following
dimensionless form of the boundary conditions:

1

kZ0

[
D̃ζ

D̃

∂⟨c⟩
∂ζ

]

1

+ ⟨c⟩
∣∣∣
1
= δ

[(
w̃ − ũ

∂H̃

∂x̃
− ṽ

∂H̃

∂ỹ
− γ

∂H̃

∂t̃

)
⟨c⟩

]

1

(269a)

1

kZ0

[
D̃ζ

D̃

∂⟨c⟩
∂ζ

]

ζa

+ ca = 0 (269b)

Here, ζa is the conventional dimensionless value of the reference elevation where the bed boundary
condition is imposed under uniform conditions. As discussed in Section 3.5.4, several empirical
expressions for ca and ζa are available in the literature. They usually assume a dependence of ca
on the local and instantaneous value of the Shields parameter τ∗, and on the particle Reynolds
number Rp.

Closure

A closure relation for the eddy diffusivity Dz is required. In the present context, the flow field
is treated as a quasi-steady sequence of locally and instantaneously equilibrium states, hence we
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depth-averaged concentration. These corrections are found to be expressed in terms of the spatial
and temporal derivatives of the depth-averaged equilibrium concentration. Below, we outline the
analysis of Bolla Pittaluga and Seminara (2003) later extended by Federici and Seminara (2006).

Governing equations

Let us start from the advection-diffusion equation (254), rewritten in the explicit form:

∂⟨c⟩
∂t

+u
∂⟨c⟩
∂x

+ v
∂⟨c⟩
∂y

+ (w − ws)
∂⟨c⟩
∂z

=

∂

∂x

(
Dx

∂⟨c⟩
∂x

)
+

∂

∂y

(
Dy

∂⟨c⟩
∂y

)
+

∂

∂z

(
Dz

∂⟨c⟩
∂z

)
. (261)

Next we make the relevant physical quantities dimensionless as follows:

(x̃, ỹ, z̃) =

(
x

L
,
y

2B
,
z

D0

)
, t̃ = ω t, (262a)

(ũ, ṽ, w̃) =

(
u

U0
,
v

V0
,
w

W0

)
, D̃j =

Dj

uτ0D0
. (262b)

Here, ω is the inverse of the characteristic temporal scale of the flow, L is a longitudinal scale
depending on the investigated problem and 2B is a lateral scale (e.g. the channel width). Moreover,
D0 and U0 are the flow depth and the cross-sectional speed of some reference uniform flow.
They are employed as spatial scale for the vertical coordinate and for the longitudinal velocity,
respectively. Balancing the three terms of the Reynolds averaged continuity equation of the fluid
phase (equation 71a), it follows that V0 = 2B U0/L and W0 = D0 U0/L are the associated scales
for the lateral and vertical components of the flow velocity. Finally uτ0 is the friction velocity
associated with the reference uniform flow.

Using the above dimensionless variables the equation (261) takes the form:

δ1
∂⟨c⟩
∂t̃

+ δ2

[
ũ
∂⟨c⟩
∂x̃

+ ṽ
∂⟨c⟩
∂ỹ

+ w̃
∂⟨c⟩
∂z̃

]
− ∂⟨c⟩

∂z̃
=

1

kZ0

[
∂

∂z̃

(
D̃z

∂⟨c⟩
∂z̃

)
+ δ3

∂

∂x̃

(
D̃x

∂⟨c⟩
∂x̃

)
+ δ4

∂

∂ỹ

(
D̃y

∂⟨c⟩
∂ỹ

)]
, (263)

where the following dimensionless parameters arise:

δ1 =
ωD0

ws
, δ2 =

U0D0

wsL
, δ3 =

(D0

L

)2

, δ4 =
(D0

2B

)2

, Z0 =
ws

k uτ0
. (264)

In (263, 264) k is the von Karman constant and Z0 is the reference Rouse number. Note that
the parameters δj (j = 1, 4) are typically small for slowly varying flows like tidal flows (Lanzoni
and Seminara, 2002), flood waves (Bolla Pittaluga and Seminara, 2003) or large scale fluvial and
estuarine sedimentary patterns (Federici and Seminara, 2006). In particular, δ3 and δ4 are usually
much smaller than δ1 and δ2 and, therefore, the last two terms in the right hand side of (263) are
usually neglected.

Let us next define a transformed vertical coordinate ζ as follows:

ζ =
z − η

h− η
=

z − η

D
=

z̃ − η̃

D̃
, (265)

with η̃ = η/D0 and D̃ = D/D0. The reader must note that the transformed variable ζ falls in the
range [0, 1]. Moreover, the governing equations must also be transformed. Indeed, as ζ depends on
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x̃, ỹ and t̃, the following coordinate transformations follow:

∂

∂z̃
→ 1

D̃

∂

∂ζ
, (266a)

∂

∂x̃
→ ∂

∂x̃
+

∂ζ

∂x̃

∂

∂ζ
=

∂

∂x̃
− 1

D̃

(
∂η̃

∂x̃
+ ζ

∂D̃

∂x̃

)
∂

∂ζ
, (266b)

∂

∂ỹ
→ ∂

∂ỹ
+

∂ζ

∂ỹ

∂

∂ζ
=

∂

∂ỹ
− 1

D̃

(
∂η̃

∂ỹ
+ ζ

∂D̃

∂ỹ

)
∂

∂ζ
, (266c)

∂

∂t̃
→ ∂

∂t̃
+

∂ζ

∂t̃

∂

∂ζ
=

∂

∂t̃
− 1

D̃

(
∂η̃

∂t̃
+ ζ

∂D̃

∂t̃

)
∂

∂ζ
. (266d)

Setting

δ2 = δ, δ1 = γ δ, γ =
U0

ω L
∼ O(1), (267)

employing the transformations (266) and neglecting the terms proportional to δ3 and δ4, the
advection-diffusion equation (263) becomes:
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[
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∂ζ

(
D̃z
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+

∂⟨c⟩
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= δ
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+ D̃ ũ
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∂⟨c⟩
∂ỹ

+ w̃
∂⟨c⟩
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−
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+ ζ

∂D̃
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+ ũ

(
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∂D̃

∂x̃

)
+ ṽ

(
∂η̃

∂ỹ
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∂D̃

∂Ỹ
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}
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Boundary conditions

The boundary conditions to be associated with the equation (268) are obtained from (255) and
(257), recalling also the no slip condition at the bed and the fixed nature of the bed interface in
the present context, whereby

[
ũ, ṽ, w̃)

]
η+a

= 0. Again, one has to make the above relationships
dimensionless with the help of (262b) and then perform the coordinate transformations (266). Use
must also be made of the definitions of the unit vectors normal to the free surface and to the
bed interface already introduced and employed in Chapter 2 (see equations (128a, b) and (13)).
Finally, the mathematical definition of the normal velocity of the free surface VH must be recalled
(equation (16)).

Retaining only terms up to O(δ), some algebraic work eventually leads to the following
dimensionless form of the boundary conditions:

1

kZ0

[
D̃ζ

D̃

∂⟨c⟩
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]

1

+ ⟨c⟩
∣∣∣
1
= δ
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∂ỹ
− γ

∂H̃
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]
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(269a)

1

kZ0

[
D̃ζ

D̃

∂⟨c⟩
∂ζ

]

ζa

+ ca = 0 (269b)

Here, ζa is the conventional dimensionless value of the reference elevation where the bed boundary
condition is imposed under uniform conditions. As discussed in Section 3.5.4, several empirical
expressions for ca and ζa are available in the literature. They usually assume a dependence of ca
on the local and instantaneous value of the Shields parameter τ∗, and on the particle Reynolds
number Rp.

Closure

A closure relation for the eddy diffusivity Dz is required. In the present context, the flow field
is treated as a quasi-steady sequence of locally and instantaneously equilibrium states, hence we
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write:
D̃z = D̃

uτ

uτ0
N (ζ), (270)

with uτ local and instantaneous value of the friction velocity and N (ζ) vertical distribution of the
eddy diffusivity at equilibrium. Using the classical parabolic distribution for N (ζ) we may write:

N (ζ) = k ζ (1− ζ) . (271)

Reduction of the mathematical problem

The last step is to remove the vertical velocity from the mathematical formulation. This is readily
achieved recalling the continuity equation for the fluid phase, that in dimensionless form reads:

∂ũ

∂x̃
+

∂ṽ

∂ỹ
+

∂w̃

∂z̃
= 0. (272)

Employing the transformations (266) and performing integration in ζ we obtain:
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∂x̃

∫ ζ

ζa

ũ(ξ) dξ − D̃

∫ ζ

ζa

∂ũ

∂x̃
dξ

+

(
∂η̃

∂ỹ
+ ζ

∂D̃

∂ỹ

)
ṽ − ∂D̃

∂ỹ

∫ ζ

ζa

ṽ(ξ) dξ − D̃

∫ ζ

ζa

∂ṽ

∂ỹ
dξ. (273)

Assuming a self similar structure of the velocity field appropriate to slowly varying flows, we
can write

(ũ, ṽ) = (Ũ , Ṽ )F0 (ζ) . (274)

Here, Ũ(x̃, ỹ, t̃) and Ṽ (x̃, ỹ, t̃) are the dimensionless depth averaged longitudinal and lateral
velocity components, with the obvious implication that, in the reference state, Ũ = 1 and Ṽ = 0.
Moreover, the function F0 is the one defined in (97) and is obviously characterized by the condition∫ 1

ζ0
F0 dζ = 1. Below, we set

∫ 1

ζa
F0 dζ ≃

∫ 1

ζ0
F0 dζ = 1.

With the aid of (274) the vertical component of the velocity (273) takes the form:

w̃ =

(
∂η̃

∂x̃
+ ζ

∂D̃

∂x̃

)
ũ+

(
∂η̃

∂ỹ
+ ζ

∂D̃

∂ỹ

)
ṽ −

[
∂(D̃ Ũ)

∂x̃
+

∂(D̃ Ṽ )

∂ỹ

]
IF0 (ζ) , (275)

where

IF0
(ζ) =

∫ ζ

ζa

F0(ξ) dξ. (276)

Next, recall the shallow water formulation of the mass balance equation for the fluid phase
(131) and make it dimensionless to find:

γ
∂D̃

∂t̃
+

∂(D̃Ũ)

∂x̃
+

∂(D̃Ṽ )

∂ỹ
= 0. (277)

Substituting from (275), (277) and (270) into (268) and (269), we obtain the following final form
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of the differential problem:

1

kZ
∂

∂ζ

[
N (ζ)

∂⟨c⟩
∂ζ

]
+

∂⟨c⟩
∂ζ

= δ D̃

[
γ
∂⟨c⟩
∂t̃

+ ũ
∂⟨c⟩
∂x̃

+ ṽ
∂⟨c⟩
∂ỹ

]
+

δ γ

[
∂D̃

∂t̃
IF0

(ζ)−
(
∂η̃

∂t̃
+ ζ

∂D̃

∂t̃

)]
∂⟨c⟩
∂ζ

, (278a)

1

kZ

[
N (ζ)

∂⟨c⟩
∂ζ

]

1

+ ⟨c⟩
∣∣∣
1
= −δ γ ⟨c⟩

∣∣∣
1

∂η̃

∂t̃
(278b)

1

kZ

[
N (ζ)

∂⟨c⟩
∂ζ

]

ζa

+ ca = 0 (278c)

where Z = ws/k uτ is the local and instantaneous value of the Rouse number.

Perturbation solution for the slowly varying case (δ << 1)

A formal perturbation solution of the differential equation (278a), associated with the boundary
conditions (278b, 278c), can be obtained by expanding the concentration ⟨c⟩ in powers of the small
parameter δ in the form:

⟨c⟩ = ⟨c0⟩(ζ; x̃, ỹ, t̃) + δ⟨c1⟩(ζ; x̃, ỹ, t̃) +O(δ2). (279)

By substituting from the latter expansion into the differential problem (278a, 278b, 278c) and
equating likewise powers of δ we find a sequence of differential problems at the various orders of
approximation.

- O(δ0): Leading order

1

kZ

[
∂

∂ζ

(
N (ζ)

∂⟨c0⟩
∂ζ

)]
+

∂⟨c0⟩
∂ζ

= 0 , (280a)

1

kZ

[
N (ζ)

∂⟨c0⟩
∂ζ

]

1

+ ⟨c0⟩
∣∣∣
1
= 0, (280b)

1

kZ

[
N (ζ)

∂⟨c0⟩
∂ζ

]

ζa

= −ca (280c)

This leads to the classical Rouse solution (231) associated with the local and instantaneous
conditions, that can be cast in the form:

⟨c0⟩ = C0(x̃, ỹ, t̃)ϕ0(ζ, τ∗, Rp). (281)

Here, C0 is the lowest order approximation for the depth averaged concentration, such that:

C0(x̃, ỹ, t̃) = ca(τ∗, Rp) I0(τ∗, Rp), (282)

while

ϕ0(ζ, τ∗, Rp) =
1

I0(τ∗, Rp)

(
1− ζ

1− ζa

ζa
ζ

)Z

. (283)

with

I0(τ∗, Rp) =
1

1− ζa

∫ 1

ζa

(
1− ζ

1− ζa

ζa
ζ

)Z

dζ. (284)
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write:
D̃z = D̃

uτ

uτ0
N (ζ), (270)

with uτ local and instantaneous value of the friction velocity and N (ζ) vertical distribution of the
eddy diffusivity at equilibrium. Using the classical parabolic distribution for N (ζ) we may write:

N (ζ) = k ζ (1− ζ) . (271)
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ũ+

(
∂η̃

∂ỹ
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∂x̃
+

∂(D̃ Ṽ )
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∂ỹ
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IF0
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∂t̃
+ ζ

∂D̃

∂t̃

)]
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∂ζ

, (278a)

1

kZ

[
N (ζ)

∂⟨c⟩
∂ζ

]

1

+ ⟨c⟩
∣∣∣
1
= −δ γ ⟨c⟩

∣∣∣
1

∂η̃

∂t̃
(278b)

1

kZ
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N (ζ)
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]

ζa

+ ca = 0 (278c)

where Z = ws/k uτ is the local and instantaneous value of the Rouse number.

Perturbation solution for the slowly varying case (δ << 1)

A formal perturbation solution of the differential equation (278a), associated with the boundary
conditions (278b, 278c), can be obtained by expanding the concentration ⟨c⟩ in powers of the small
parameter δ in the form:

⟨c⟩ = ⟨c0⟩(ζ; x̃, ỹ, t̃) + δ⟨c1⟩(ζ; x̃, ỹ, t̃) +O(δ2). (279)

By substituting from the latter expansion into the differential problem (278a, 278b, 278c) and
equating likewise powers of δ we find a sequence of differential problems at the various orders of
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- O(δ0): Leading order
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kZ

[
∂

∂ζ
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∂ζ
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+
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∂ζ

= 0 , (280a)

1

kZ

[
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∂ζ

]

1

+ ⟨c0⟩
∣∣∣
1
= 0, (280b)

1

kZ

[
N (ζ)

∂⟨c0⟩
∂ζ

]

ζa

= −ca (280c)

This leads to the classical Rouse solution (231) associated with the local and instantaneous
conditions, that can be cast in the form:

⟨c0⟩ = C0(x̃, ỹ, t̃)ϕ0(ζ, τ∗, Rp). (281)

Here, C0 is the lowest order approximation for the depth averaged concentration, such that:

C0(x̃, ỹ, t̃) = ca(τ∗, Rp) I0(τ∗, Rp), (282)

while

ϕ0(ζ, τ∗, Rp) =
1

I0(τ∗, Rp)

(
1− ζ

1− ζa

ζa
ζ

)Z

. (283)

with

I0(τ∗, Rp) =
1

1− ζa

∫ 1

ζa

(
1− ζ

1− ζa

ζa
ζ

)Z

dζ. (284)
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- O(δ): First order

At the first order of approximation we find:

1

kZ

[
∂

∂ζ

(
N (ζ)

∂⟨c1⟩
∂ζ

)]
+

∂⟨c1⟩
∂ζ

= γ D̃
∂⟨c0⟩
∂t̃

+ D̃F0(ζ)

[
Ũ

∂⟨c0⟩
∂x̃

+ Ṽ
∂⟨c0⟩
∂ỹ

]

+

[
∂D̃

∂t̃
IF0

(ζ)−
(
∂η̃

∂t̃
+ ζ

∂D̃

∂t̃

)]
γ
∂⟨c0⟩
∂ζ

, (285)

1

kZ

[
N (ζ)

∂⟨c1⟩
∂ζ

]

1

+ ⟨c1⟩
∣∣∣
1
= −γ ⟨c0⟩

∣∣∣
1

∂η̃

∂t̃
, (286)

∂⟨c1⟩
∂ζ

∣∣∣
ζa

= 0 (287)

The expression of ϕ0 indicates that it generally depends on x̃, ỹ and t̃ through the variations
of ζa associated with τ∗. However, this dependence is very weak and, as a first approximation,
can be neglected. We then set:

(
∂⟨c0⟩
∂t̃

,
∂⟨c0⟩
∂x̃

,
∂⟨c0⟩
∂ỹ

)
= ϕ0(ζ)

(
∂C0

∂t̃
,
∂C0

∂x̃
,
∂C0

∂ỹ

)
,

∂⟨c0⟩
∂ζ

= C0
dϕ0

dζ
. (288)

Recalling the structure of the forcing terms in the right hand side of (285) and the expressions
(288), the solution for ⟨c1⟩ can then be written in the form

⟨c1⟩ = c11 γ D̃
∂C0

∂t̃
+ D̃

(
c12 Ũ

∂C0

∂x̃
+ c13 Ṽ

∂C0

∂ỹ

)
− γ C0

[
c14

∂η̃

∂t̃
+ (c15 − c16)

∂D̃

∂t̃

]
, (289)

where the functions c1j (j = 1, 6) are solutions of the boundary value problems:

L c1j = aj (ζ) , (290a)

B c1j

∣∣∣
1
= bj (290b)

dc1j
dζ

∣∣∣
ζa

= 0 (290c)

with the following definitions of the operators L and B:

L ≡ 1

kZ

[
d

dζ

(
N (ζ)

d

dζ

)]
+

d

dζ
, (291a)

B ≡ N (ζ)

kZ
d

dζ
+ 1, (291b)

and

a1 = ϕ0, a2 = a3 = ϕ0 F0, a4 =
dϕ0

dζ
, a5 = IF0

dϕ0

dζ
, a6 = ζ

dϕ0

dζ
, (292a)

b1 = b2 = b3 = b5 = b6 = 0, b4 = ϕ0

∣∣∣
1
. (292b)

The boundary value problems (290) can be solved numerically using a shooting technique
(Press et al., 2007).
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4.3.3 Analytical relationship for the depth integrated suspended sediment flux per unit width appropriate to
slowly varying flows

Based on the above analysis, we can expand the depth integrated suspended sediment flux per
unit width, denoted by Qs

s, in powers of the small parameter δ in the form:

Qs
s = Qs

s0 + δQs
s1 +O(δ2). (293)

Let us make Qs
s dimensionless as follows:

Q̃s
s =

Qs
s

U0 D0
. (294)

With the aid of (274) we can write:

Q̃s
s = (Ũ , Ṽ ) D̃Φs(x̃, ỹ, t̃), (295)

where

Φs(x̃, ỹ, t̃) =

∫ 1

ζa

[
⟨c0⟩+ δ ⟨c1⟩+O(δ2)

]
F0(ζ) dζ = Φs

0 + δΦs
1 +O(δ2). (296)

By substituting from (281) and (289) into (296) we end up with the relationships for Q̃s
s0 and Q̃s

s1
presented below.

- O(δ0): Sediment flux at leading order

Q̃s
s0 = (Ũ , Ṽ ) D̃Φs

0, (297)

where:

Φs
0 =

∫ 1

ζa

ϕ0 F0(ζ) dζ. (298)

The reader must recognize that the above solution is Rouse solution for the depth integrated
sediment flux per unit width, evaluated locally and instantaneously (see equation (241) in
Chapter 3).

- O(δ): Sediment flux at first order
At first order Rouse solution is corrected by an O(δ) contribution accounting for the effects of
the slow spatial and temporal variations of the flow and concentration fields. We find:

Q̃s
s1 = (Ũ , Ṽ ) D̃Φs

1, (299)

where

Φs
1 = D̃

(
γ
∂C0

∂t̃
I11 + Ũ

∂C0

∂x̃
I12 + Ṽ

∂C0

∂ỹ
I13

)

− γ C0

(
∂η̃

∂t̃
I14 +

∂D̃

∂t̃
(I15 − I16)

)
, (300)

and we have used the notation:

I1j =

∫ 1

ζa

c1j F0(ζ) dζ . (301)

The coefficients ψ0 and I1j (j = 1, 6) are functions of ζa and Z. They have to be determined
numerically. An analytical interpolation of the numerical computations is reported in Bolla
Pittaluga and Seminara (2003) and Federici and Seminara (2006).
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- O(δ): First order

At the first order of approximation we find:

1

kZ

[
∂

∂ζ

(
N (ζ)

∂⟨c1⟩
∂ζ

)]
+

∂⟨c1⟩
∂ζ

= γ D̃
∂⟨c0⟩
∂t̃

+ D̃F0(ζ)

[
Ũ

∂⟨c0⟩
∂x̃

+ Ṽ
∂⟨c0⟩
∂ỹ

]

+

[
∂D̃

∂t̃
IF0

(ζ)−
(
∂η̃

∂t̃
+ ζ

∂D̃

∂t̃

)]
γ
∂⟨c0⟩
∂ζ

, (285)

1

kZ
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N (ζ)
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∂ζ
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1
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1
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∣∣∣
1
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∂t̃
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∣∣∣
ζa

= 0 (287)

The expression of ϕ0 indicates that it generally depends on x̃, ỹ and t̃ through the variations
of ζa associated with τ∗. However, this dependence is very weak and, as a first approximation,
can be neglected. We then set:

(
∂⟨c0⟩
∂t̃
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∂x̃
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∂ỹ

)
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∂ỹ
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Recalling the structure of the forcing terms in the right hand side of (285) and the expressions
(288), the solution for ⟨c1⟩ can then be written in the form

⟨c1⟩ = c11 γ D̃
∂C0
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∂ỹ
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where the functions c1j (j = 1, 6) are solutions of the boundary value problems:
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1
= bj (290b)
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with the following definitions of the operators L and B:
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kZ
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d
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N (ζ)

d

dζ

)]
+

d

dζ
, (291a)
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kZ
d

dζ
+ 1, (291b)

and
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dϕ0
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dϕ0

dζ
, a6 = ζ

dϕ0

dζ
, (292a)

b1 = b2 = b3 = b5 = b6 = 0, b4 = ϕ0

∣∣∣
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The boundary value problems (290) can be solved numerically using a shooting technique
(Press et al., 2007).
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Let us make Qs
s dimensionless as follows:
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With the aid of (274) we can write:

Q̃s
s = (Ũ , Ṽ ) D̃Φs(x̃, ỹ, t̃), (295)

where
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∫ 1
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s0 and Q̃s
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s0 = (Ũ , Ṽ ) D̃Φs

0, (297)

where:

Φs
0 =

∫ 1

ζa

ϕ0 F0(ζ) dζ. (298)

The reader must recognize that the above solution is Rouse solution for the depth integrated
sediment flux per unit width, evaluated locally and instantaneously (see equation (241) in
Chapter 3).

- O(δ): Sediment flux at first order
At first order Rouse solution is corrected by an O(δ) contribution accounting for the effects of
the slow spatial and temporal variations of the flow and concentration fields. We find:

Q̃s
s1 = (Ũ , Ṽ ) D̃Φs

1, (299)

where

Φs
1 = D̃

(
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∂C0

∂t̃
I11 + Ũ

∂C0

∂x̃
I12 + Ṽ

∂C0
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I13
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− γ C0
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∂η̃
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I14 +

∂D̃
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and we have used the notation:

I1j =

∫ 1

ζa

c1j F0(ζ) dζ . (301)

The coefficients ψ0 and I1j (j = 1, 6) are functions of ζa and Z. They have to be determined
numerically. An analytical interpolation of the numerical computations is reported in Bolla
Pittaluga and Seminara (2003) and Federici and Seminara (2006).
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The relationships (297, 298, 299, 300) thus provide a simple tool to be incorporated into
morphodynamic computations of the suspended flux of homogeneous sediments in slowly varying
flows. In summary, the three-dimensional equation (268) for the macroscopically averaged concen-
tration ⟨c⟩(x, t), subject to the boundary conditions (269), is solved asymptotically in terms of
the depth-averaged concentration C(x, y, t) assuming that the vertical concentration profiles vary
slowly in space and/or time. The first order solution can then be used to compute the correction
(299) to the depth-integrated sediment flux provided by the Rouse solution (241).

It is appropriate at this stage to point out that the above described approach modifies
and corrects a previous approach of Galappatti (1983) (see also Galappatti and Vreugdenhil,
1985) that has become very popular and is widely employed, especially in the Dutch literature.
These Authors introduced small parameters analogous to those employed by Bolla Pittaluga
and Seminara (2003) and set a perturbation expansion of concentration in terms of these small
parameters. Correspondingly, the governing equations were also expanded but, in contrast to
the classical approach of perturbation methods (Nayfeh, 2011), the boundary conditions were
not expanded. Rather, Galappatti arbitrarily stipulated that the depth-averaged concentration
was wholly determined by the lower order approximation of the solution, such that higher order
terms were forced to possess vanishing depth averages. With the latter assumptions Galappatti
derived solutions at all orders of approximation, each expressed in terms of the depth averaged
concentration. Finally, the whole solution, truncated at some order of approximation, was forced
to satisfy the boundary condition at the bed and this led to a relationship treated by Galappatti
as a differential equation for the as-yet unknown depth-averaged concentration. The limits of
this asymptotic approach have been discussed by Wang (1992) and Bolla Pittaluga and Seminara
(2003).

More recently, Toffolon and Vignoli (2007) have explored in detail the limits of the depth-
averaged approach comparing the outputs of the latter with results of fully 3D numerical solutions
of the governing equations. This comparison indicates that applications of the depth-averaged
approach should be restricted to flows characterized by sufficiently slow spatial-temporal variations
as the straightforward expansion of Bolla Pittaluga and Seminara (2003) rapidly diverges when
the value of the perturbation parameter δ increases. The detailed comparison between the fully 3D
(Tubino et al., 1999) and the 2D depth averaged approach (Federici and Seminara, 2006) applied
to the problem of sand bar instability suggests that sand bars are sufficiently long to justify the
use of the simpler approach described in the present Section.

Finally, it is worthwhile to note that many widely employed commercial numerical models
(e.g. Delft3D (Lesser et al., 2004), Telemac (Villaret et al., 2013), Basement (Vetsch et al., 2018),
among many others), include a sediment transport module in which suspended load is evaluated
by solving a two-dimensional advection-diffusion equation obtained by integrating (254) over the
depth. The reader can easily demonstrate that, applying the boundary conditions (269), this
equation reads:
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∂D
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∂C
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)

∂x
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where the longitudinal and transverse mixing coefficients kx and ky are defined as:
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Dy
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∂y

dz (303b)

In order to close the problem, suitable relations are needed to express the unknown mixing
coefficients and the net sediment entrainment flux at the bed as functions of depth-averaged
quantities. The coefficients kx and ky may be evaluated assuming the Reynolds analogy and taking
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advantage of the knowledge gathered from mixing processes in rivers (see, e.g. Fisher et al., 1979,
Chapter 5). Much more complicated is the estimate of E , since it would in principle require to
solve the original advection-diffusion equation (254). In practice, empirical relations are used, with
the obvious limitations related to the specific conditions for which they have been developed. For
example, in the case of sufficiently fine sediments the exchange rate between the bed and the bulk
of the flow can be expressed in the form (Wang, 1989; Hibma et al., 2003):

E − D = aEws (C0 − C), (304)

where the proportionality coefficient aE is in general function of bed shear stress and sediment
characteristics. This coefficient essentially accounts for the distance needed for concentration to
adapt to changing hydraulic conditions, the so called adaptation length (see e.g. Armanini and
Di Silvio, 1980). Although several empirical and semi-empirical methods have been proposed to
predict this length (see, e.g. Wu and Wang, 2008), significant differences exist among the various
formulas. In our opinion, this makes the use of the rational perturbation framework described
above preferable.

4.4. Bedload transport of homogeneous sediments on sloping beds

Extending our admittedly limited knowledge on the transport capacity of uniform streams
flowing on a plane bed to the even more complex case of streams flowing on sloping beds is
clearly a formidable problem which cannot be given a rigorous solution. This notwithstanding,
some guidance for the interpretation of experimental observations is achieved through dimensional
reasoning and model problems. The early literature focused on the case of weakly sloping beds.
More recently, attempts have been made to extend the analysis to finite slopes, with the implicit
assumption, however, that the bed inclination does never exceed the angle of repose of the sediment.

4.4.1 Threshold conditions for the inception of sediment motion on sloping beds

The general treatment presented below follows closely the work of Seminara et al. (2002).

Geometry of the bed surface: local slope

There are only two externally imposed directions in the problem: the vertical direction, described
by the vertical coordinate z with unit vector ẑ, and the tangential direction to the bed aligned
with the bottom shear stress τ̂ . We then choose the right handed cartesian reference frame (x, y, z)
centered at the point P of the bed surface, such that (see Figure 39): x (unit vector x̂) is the
horizontal axis through P lying in the vertical plane (τ̂ , ẑ) and defines the local longitudinal
coordinate, aligned with the locally prevailing motion of the stream; y (unit vector ŷ) is the
horizontal axis through P orthogonal to the vertical plane (τ̂ , ẑ) and defines the local lateral
coordinate. The reader should note that the x-axis may be at an arbitrary angle with the channel
axis, which does not enter the present analysis. Let us write the equation of the bed interface in
the form:

Fη = z − η(x, y, t) = 0. (305)

The unit vector n̂ of the axis orthogonal to the bed at P then reads:

n̂ =
∇Fη

|∇Fη|
. (306)

The coordinate plane (x, z) intersects the bed surface along a line the slope of which, Sx, will be
called the longitudinal slope. Similarly, the coordinate plane (y, z) intersects the bed surface along
a line whose slope Sy will be called the lateral slope. Note that the above lines through P are not
orthogonal to each other in general. We may write:

Sx = tanαx = −∂η

∂x
Sy = tanαy = −∂η

∂y
, (307)
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The relationships (297, 298, 299, 300) thus provide a simple tool to be incorporated into
morphodynamic computations of the suspended flux of homogeneous sediments in slowly varying
flows. In summary, the three-dimensional equation (268) for the macroscopically averaged concen-
tration ⟨c⟩(x, t), subject to the boundary conditions (269), is solved asymptotically in terms of
the depth-averaged concentration C(x, y, t) assuming that the vertical concentration profiles vary
slowly in space and/or time. The first order solution can then be used to compute the correction
(299) to the depth-integrated sediment flux provided by the Rouse solution (241).
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These Authors introduced small parameters analogous to those employed by Bolla Pittaluga
and Seminara (2003) and set a perturbation expansion of concentration in terms of these small
parameters. Correspondingly, the governing equations were also expanded but, in contrast to
the classical approach of perturbation methods (Nayfeh, 2011), the boundary conditions were
not expanded. Rather, Galappatti arbitrarily stipulated that the depth-averaged concentration
was wholly determined by the lower order approximation of the solution, such that higher order
terms were forced to possess vanishing depth averages. With the latter assumptions Galappatti
derived solutions at all orders of approximation, each expressed in terms of the depth averaged
concentration. Finally, the whole solution, truncated at some order of approximation, was forced
to satisfy the boundary condition at the bed and this led to a relationship treated by Galappatti
as a differential equation for the as-yet unknown depth-averaged concentration. The limits of
this asymptotic approach have been discussed by Wang (1992) and Bolla Pittaluga and Seminara
(2003).

More recently, Toffolon and Vignoli (2007) have explored in detail the limits of the depth-
averaged approach comparing the outputs of the latter with results of fully 3D numerical solutions
of the governing equations. This comparison indicates that applications of the depth-averaged
approach should be restricted to flows characterized by sufficiently slow spatial-temporal variations
as the straightforward expansion of Bolla Pittaluga and Seminara (2003) rapidly diverges when
the value of the perturbation parameter δ increases. The detailed comparison between the fully 3D
(Tubino et al., 1999) and the 2D depth averaged approach (Federici and Seminara, 2006) applied
to the problem of sand bar instability suggests that sand bars are sufficiently long to justify the
use of the simpler approach described in the present Section.

Finally, it is worthwhile to note that many widely employed commercial numerical models
(e.g. Delft3D (Lesser et al., 2004), Telemac (Villaret et al., 2013), Basement (Vetsch et al., 2018),
among many others), include a sediment transport module in which suspended load is evaluated
by solving a two-dimensional advection-diffusion equation obtained by integrating (254) over the
depth. The reader can easily demonstrate that, applying the boundary conditions (269), this
equation reads:
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In order to close the problem, suitable relations are needed to express the unknown mixing
coefficients and the net sediment entrainment flux at the bed as functions of depth-averaged
quantities. The coefficients kx and ky may be evaluated assuming the Reynolds analogy and taking
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advantage of the knowledge gathered from mixing processes in rivers (see, e.g. Fisher et al., 1979,
Chapter 5). Much more complicated is the estimate of E , since it would in principle require to
solve the original advection-diffusion equation (254). In practice, empirical relations are used, with
the obvious limitations related to the specific conditions for which they have been developed. For
example, in the case of sufficiently fine sediments the exchange rate between the bed and the bulk
of the flow can be expressed in the form (Wang, 1989; Hibma et al., 2003):

E − D = aEws (C0 − C), (304)

where the proportionality coefficient aE is in general function of bed shear stress and sediment
characteristics. This coefficient essentially accounts for the distance needed for concentration to
adapt to changing hydraulic conditions, the so called adaptation length (see e.g. Armanini and
Di Silvio, 1980). Although several empirical and semi-empirical methods have been proposed to
predict this length (see, e.g. Wu and Wang, 2008), significant differences exist among the various
formulas. In our opinion, this makes the use of the rational perturbation framework described
above preferable.

4.4. Bedload transport of homogeneous sediments on sloping beds

Extending our admittedly limited knowledge on the transport capacity of uniform streams
flowing on a plane bed to the even more complex case of streams flowing on sloping beds is
clearly a formidable problem which cannot be given a rigorous solution. This notwithstanding,
some guidance for the interpretation of experimental observations is achieved through dimensional
reasoning and model problems. The early literature focused on the case of weakly sloping beds.
More recently, attempts have been made to extend the analysis to finite slopes, with the implicit
assumption, however, that the bed inclination does never exceed the angle of repose of the sediment.

4.4.1 Threshold conditions for the inception of sediment motion on sloping beds

The general treatment presented below follows closely the work of Seminara et al. (2002).

Geometry of the bed surface: local slope

There are only two externally imposed directions in the problem: the vertical direction, described
by the vertical coordinate z with unit vector ẑ, and the tangential direction to the bed aligned
with the bottom shear stress τ̂ . We then choose the right handed cartesian reference frame (x, y, z)
centered at the point P of the bed surface, such that (see Figure 39): x (unit vector x̂) is the
horizontal axis through P lying in the vertical plane (τ̂ , ẑ) and defines the local longitudinal
coordinate, aligned with the locally prevailing motion of the stream; y (unit vector ŷ) is the
horizontal axis through P orthogonal to the vertical plane (τ̂ , ẑ) and defines the local lateral
coordinate. The reader should note that the x-axis may be at an arbitrary angle with the channel
axis, which does not enter the present analysis. Let us write the equation of the bed interface in
the form:

Fη = z − η(x, y, t) = 0. (305)

The unit vector n̂ of the axis orthogonal to the bed at P then reads:

n̂ =
∇Fη

|∇Fη|
. (306)

The coordinate plane (x, z) intersects the bed surface along a line the slope of which, Sx, will be
called the longitudinal slope. Similarly, the coordinate plane (y, z) intersects the bed surface along
a line whose slope Sy will be called the lateral slope. Note that the above lines through P are not
orthogonal to each other in general. We may write:

Sx = tanαx = −∂η
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Figure 39. Sketch of a sloping bed and notations.

or, in vectorial form:
S = −∇hη. (308)

where ∇h denotes the two dimensional gradient operator (∂/∂x, ∂/∂y).
In order to formulate the threshold conditions for particle entrainment, it is useful to decompose

the unit vector ẑ into its normal and tangential components, zn and zt respectively (see sketch in
Figure 39). We find:

zn = (ẑ · n̂) n̂, zt = ẑ − zn. (309)

Hence, the following relationships hold:

n̂ =

(
−∂η

∂x
,−∂η

∂y
, 1

)

√
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
=

(tanαx, tanαy, 1)√
1 + tan2 αx + tan2 αy

, ẑ = (0, 0, 1), (310a)

zn =
(tanαx, tanαy, 1)

1 + tan2 αx + tan2 αy
, zt =

[− tanαx,− tanαy, (tan
2 αx + tan2 αy)]

1 + tan2 αx + tan2 αy
. (310b)

The reader must note that the quantities zn and zt are not unit vectors. They will be used to
project the submerged weight force along the directions locally normal and tangent to the bed.
Moreover, our choice of the reference frame implies that:

τ̂ = [cosαx, 0,− sinαx]. (311)

The inception of motion on sloping beds: dimensional arguments

On purely dimensional ground, a general expression for the threshold value of the Shields stress
for particle entrainment as bedload in terms of the longitudinal and lateral slopes may be written
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in the form:
τ∗c = τ∗c0 fc(Sx, Sy;Rp, ϕ). (312)

Here, τ∗c0 is the critical Shields stress for vanishing bed slope discussed in Chapter 3, Rp is the
particle Reynolds number, ϕ is the angle of repose of the sediment composing the bed and fc is a
real function to be determined. Moreover, (312) must satisfy the constraint: fc → 1 as S → 0.

For weakly sloping beds (Sx ≪ 1, Sy ≪ 1), the latter relationship may be linearized in the
form:

τ∗c = τ∗c0 (1 + tcx Sx + tcy Sy), (313)

with tcx and tcy two suitably chosen constants. Below we provide a theoretical estimate for the
function fc appearing in the equation (312). In particular, we show that:

- for weakly sloping beds, the critical value of the Shields stress is not affected by the lateral
slope, i.e. tcy = 0 in (313);

- on the contrary, a positive longitudinal slope reduces τ∗c and the constant tcx in (313) takes
the value obtained in Chapter 3 (equation (184)).

Theoretical estimates on a model problem

The treatment presented below extends ideas developed for the plane bed case by, among others,
Coleman (1967), Ikeda (1982a) and Wiberg and Smith (1987). The rationale behind the use of
idealized models of the actual phenomenon is that, provided they are able to capture the dominant
mechanisms operating in the process, the information they provide is at least qualitatively significant
and may guide the interpretation of experimental observations.

We consider the average static equilibrium of a spherical sediment particle lying on the
cohesionless sloping bed of a channel and subject to the hydrodynamic actions of a turbulent
free surface stream flowing in the channel. The forces which are assumed to interpret, in an
average sense, the interactions of the particle with the flowing fluid and the adjacent sediment
particles are the submerged gravity FG, directed vertically, the fluid drag FD and lift FL, directed
tangentially and normally to the bed. In addition, the net resultant FN of the component of the
submerged gravity normal to the bed and of the lift force gives rise to a static friction force Fµ

acting tangentially to the bed. Using the notations of Figure 40, the average equilibrium of the
particle is governed by the following relationship:

µs |FN | = |Ft|, (314)

where,
FN = |FG|zn − FL, Ft = −|FG|zt + FD, (315)

and µs is the static friction coefficient (taken equal to tanϕ).
Let us attempt an estimate of the above forces. The particle submerged weight FG may be

written in the form:
FG = −π

6
(ϱs − ϱ) g d3 ẑ. (316)

The average hydrodynamic drag force acting on the particle may be estimated in terms of some
average drag coefficient cD as follows:

FD =
1

2
ϱ cD

π d2

4
|uzP |2 τ̂ . (317)

Note that FD is aligned with the bottom stress and the mean flow velocity uzP is evaluated at
some conventional distance from the bed zP , chosen such to interpret in an average sense the drag
force on the particle which is in general a fluctuating function of time and space. Hence, in the
absence of detailed knowledge of the latter function, the selection of characteristic values for cD
and zP is empirical.
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Figure 39. Sketch of a sloping bed and notations.

or, in vectorial form:
S = −∇hη. (308)

where ∇h denotes the two dimensional gradient operator (∂/∂x, ∂/∂y).
In order to formulate the threshold conditions for particle entrainment, it is useful to decompose

the unit vector ẑ into its normal and tangential components, zn and zt respectively (see sketch in
Figure 39). We find:
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The reader must note that the quantities zn and zt are not unit vectors. They will be used to
project the submerged weight force along the directions locally normal and tangent to the bed.
Moreover, our choice of the reference frame implies that:

τ̂ = [cosαx, 0,− sinαx]. (311)

The inception of motion on sloping beds: dimensional arguments

On purely dimensional ground, a general expression for the threshold value of the Shields stress
for particle entrainment as bedload in terms of the longitudinal and lateral slopes may be written
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in the form:
τ∗c = τ∗c0 fc(Sx, Sy;Rp, ϕ). (312)

Here, τ∗c0 is the critical Shields stress for vanishing bed slope discussed in Chapter 3, Rp is the
particle Reynolds number, ϕ is the angle of repose of the sediment composing the bed and fc is a
real function to be determined. Moreover, (312) must satisfy the constraint: fc → 1 as S → 0.

For weakly sloping beds (Sx ≪ 1, Sy ≪ 1), the latter relationship may be linearized in the
form:

τ∗c = τ∗c0 (1 + tcx Sx + tcy Sy), (313)

with tcx and tcy two suitably chosen constants. Below we provide a theoretical estimate for the
function fc appearing in the equation (312). In particular, we show that:

- for weakly sloping beds, the critical value of the Shields stress is not affected by the lateral
slope, i.e. tcy = 0 in (313);

- on the contrary, a positive longitudinal slope reduces τ∗c and the constant tcx in (313) takes
the value obtained in Chapter 3 (equation (184)).

Theoretical estimates on a model problem

The treatment presented below extends ideas developed for the plane bed case by, among others,
Coleman (1967), Ikeda (1982a) and Wiberg and Smith (1987). The rationale behind the use of
idealized models of the actual phenomenon is that, provided they are able to capture the dominant
mechanisms operating in the process, the information they provide is at least qualitatively significant
and may guide the interpretation of experimental observations.

We consider the average static equilibrium of a spherical sediment particle lying on the
cohesionless sloping bed of a channel and subject to the hydrodynamic actions of a turbulent
free surface stream flowing in the channel. The forces which are assumed to interpret, in an
average sense, the interactions of the particle with the flowing fluid and the adjacent sediment
particles are the submerged gravity FG, directed vertically, the fluid drag FD and lift FL, directed
tangentially and normally to the bed. In addition, the net resultant FN of the component of the
submerged gravity normal to the bed and of the lift force gives rise to a static friction force Fµ

acting tangentially to the bed. Using the notations of Figure 40, the average equilibrium of the
particle is governed by the following relationship:

µs |FN | = |Ft|, (314)

where,
FN = |FG|zn − FL, Ft = −|FG|zt + FD, (315)

and µs is the static friction coefficient (taken equal to tanϕ).
Let us attempt an estimate of the above forces. The particle submerged weight FG may be

written in the form:
FG = −π

6
(ϱs − ϱ) g d3 ẑ. (316)

The average hydrodynamic drag force acting on the particle may be estimated in terms of some
average drag coefficient cD as follows:

FD =
1

2
ϱ cD

π d2

4
|uzP |2 τ̂ . (317)

Note that FD is aligned with the bottom stress and the mean flow velocity uzP is evaluated at
some conventional distance from the bed zP , chosen such to interpret in an average sense the drag
force on the particle which is in general a fluctuating function of time and space. Hence, in the
absence of detailed knowledge of the latter function, the selection of characteristic values for cD
and zP is empirical.
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Figure 40. Sketch of forces acting on a sediment particle lying on a sloping bed.

Similarly, the average hydrodynamic lift force acting on the particle and aligned with the
direction normal to the bed may be estimated in terms of some average lift coefficient cL as follows
(see, e.g. Auton, 1987):

FL =
4

3
ϱ cL

πd3

8
|u× ω|zP n̂, (318)

where ω is the average fluid vorticity and |u× ω|zP = [u du/dz]zP .
Using the relationships (316), (317), and (318), the equilibrium relationship (314) becomes:

µs

∣∣∣π
6
(ϱs − ϱ) g d3 zn − 4

3
ϱ cL

πd3

8

(
u
du

dz

)

zP

n̂
∣∣∣ =

∣∣∣− π

6
(ϱs − ϱ) g d3 zt +

1

2
ϱ cD

πd2

4
u2
zP τ̂

∣∣∣.
(319)

where uzP denotes the modulus of uzP . Employing (310a), (310b), and (311), it is easily demon-
strated that in the case of a horizontal bed (αx = αy = 0) this equation simplifies to:

µs

[π
6
(ϱs − ϱ) g d3 − 4

3
ϱ cL

πd3

8

(
u
du

dz

)

zP

]
=

1

2
ϱ cD

πd2

4
u2
zP , (320)

thus yielding the critical conditions for the incipient particle entrainment. Recalling the expression
of the Shields stress:

τ∗ =
ϱ u2

τ

(ϱs − ϱ) g d
, (321)

and noting that u(z) = uτ f(z), with uτ the friction velocity at the bed and f the logarithmic law
of the wall (67), we eventually obtain the critical Shields stress for incipient sediment motion on a
horizontal bed:

τ∗c0 =
4µs

3 cD f2
∣∣
zP

1

1 + ∆
, (322)

where the parameter

∆ =
4

3
µs

cL
cD

d

(
1

f

df

dz

)

zP

(323)

accounts for the effects of lift.
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Figure 41. Plot of the ratio τ∗c/τ∗c0 as a function of the lateral slopes for two values of the
stream-wise angles αx. The following values of the parameters have been employed in the

calculations: ϕ = arctanµs = 35◦, f = 6.8 (corresponding to zP = 0.5d, hydraulically rough wall
conditions, and a wall roughness es = d), cL/cD = 0.85 (reproduced from Seminara et al., 2002).

Taking into account equation (322) and with the help of (310a), (310b), and (311) we finally
obtain:

(1−∆)

(
τ∗c
τ∗c0

)2

+ 2

(
∆√

1 + tan2 αx + tan2 αy

+
sinαx

µs

)
τ∗c
τ∗c0

+

+
1 +∆

µ2
s

tan2 αx + tan2 αy − µ2
s

1 + tan2 αx + tan2 αy
= 0.

(324)

From (324), with an appropriate estimate for the parameters ∆ and ϕ, one readily determines
the quantity τ∗c/τ∗c0 as a function of the longitudinal and lateral slopes, i.e. the sought function
fc appearing in equation (312). An example of this dependence is shown in the Figure (41).

The case of weakly sloping beds

The case of weakly sloping beds is of special interest, as it applies to most natural sedimentary
patterns. Let us first check that, as αx → 0 and αy → 0 the limit condition τ∗c → τ∗c0 is recovered.
In fact, in this limit, the relationship (324) becomes:

(
τ∗c
τ∗c0

− 1

)[
τ∗c
τ∗c0

(1−∆) + (1 + ∆)

]
= 0, (325)

which is immediately seen to satisfy the above constraint.
Next, let us examine the case of αx and αy both being small enough to allow for the linearization

of (324). Noting that αy appears in (324) only through quadratic terms, we set:

τ∗c
τ∗c0

= fc = 1 + ϵ fc1(µs,∆), (326)

with ϵ = sinαx ≪ 1 . Substituting from (326) into (324) and equating likewise powers of ϵ, at
the leading order of approximation (O(ϵ0)) the relationship is identically satisfied. At first order
(O(ϵ)) one finds:

2 (1−∆)fc1 + 2∆fc1 +
2

µs
= 0, (327)

whence:
fc1 = − 1

µs
⇒ τ∗c

τ∗c0
= 1− sinαx

µs
. (328)
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Figure 40. Sketch of forces acting on a sediment particle lying on a sloping bed.

Similarly, the average hydrodynamic lift force acting on the particle and aligned with the
direction normal to the bed may be estimated in terms of some average lift coefficient cL as follows
(see, e.g. Auton, 1987):

FL =
4

3
ϱ cL

πd3

8
|u× ω|zP n̂, (318)

where ω is the average fluid vorticity and |u× ω|zP = [u du/dz]zP .
Using the relationships (316), (317), and (318), the equilibrium relationship (314) becomes:
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where uzP denotes the modulus of uzP . Employing (310a), (310b), and (311), it is easily demon-
strated that in the case of a horizontal bed (αx = αy = 0) this equation simplifies to:
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thus yielding the critical conditions for the incipient particle entrainment. Recalling the expression
of the Shields stress:

τ∗ =
ϱ u2

τ

(ϱs − ϱ) g d
, (321)

and noting that u(z) = uτ f(z), with uτ the friction velocity at the bed and f the logarithmic law
of the wall (67), we eventually obtain the critical Shields stress for incipient sediment motion on a
horizontal bed:

τ∗c0 =
4µs

3 cD f2
∣∣
zP

1

1 + ∆
, (322)

where the parameter

∆ =
4

3
µs

cL
cD

d

(
1

f

df

dz

)

zP

(323)

accounts for the effects of lift.
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Figure 41. Plot of the ratio τ∗c/τ∗c0 as a function of the lateral slopes for two values of the
stream-wise angles αx. The following values of the parameters have been employed in the

calculations: ϕ = arctanµs = 35◦, f = 6.8 (corresponding to zP = 0.5d, hydraulically rough wall
conditions, and a wall roughness es = d), cL/cD = 0.85 (reproduced from Seminara et al., 2002).

Taking into account equation (322) and with the help of (310a), (310b), and (311) we finally
obtain:

(1−∆)

(
τ∗c
τ∗c0

)2

+ 2

(
∆√

1 + tan2 αx + tan2 αy

+
sinαx

µs

)
τ∗c
τ∗c0

+

+
1 +∆

µ2
s

tan2 αx + tan2 αy − µ2
s

1 + tan2 αx + tan2 αy
= 0.

(324)

From (324), with an appropriate estimate for the parameters ∆ and ϕ, one readily determines
the quantity τ∗c/τ∗c0 as a function of the longitudinal and lateral slopes, i.e. the sought function
fc appearing in equation (312). An example of this dependence is shown in the Figure (41).

The case of weakly sloping beds

The case of weakly sloping beds is of special interest, as it applies to most natural sedimentary
patterns. Let us first check that, as αx → 0 and αy → 0 the limit condition τ∗c → τ∗c0 is recovered.
In fact, in this limit, the relationship (324) becomes:

(
τ∗c
τ∗c0

− 1

)[
τ∗c
τ∗c0

(1−∆) + (1 + ∆)

]
= 0, (325)

which is immediately seen to satisfy the above constraint.
Next, let us examine the case of αx and αy both being small enough to allow for the linearization

of (324). Noting that αy appears in (324) only through quadratic terms, we set:

τ∗c
τ∗c0

= fc = 1 + ϵ fc1(µs,∆), (326)

with ϵ = sinαx ≪ 1 . Substituting from (326) into (324) and equating likewise powers of ϵ, at
the leading order of approximation (O(ϵ0)) the relationship is identically satisfied. At first order
(O(ϵ)) one finds:

2 (1−∆)fc1 + 2∆fc1 +
2

µs
= 0, (327)

whence:
fc1 = − 1

µs
⇒ τ∗c

τ∗c0
= 1− sinαx

µs
. (328)
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The latter result confirms that, as anticipated above, for weakly sloping beds, the critical value
of the Shields stress is not affected by the lateral slope. On the contrary, a positive longitudinal
slope reduces τ∗c. The latter tends to vanish as the local longitudinal bed inclination tends to the
angle of repose of the sediment (though, for finite values of αx, linearization is no longer strictly
valid).

An expression similar to (328) was first derived by Lysne (1969) who tested it by performing a
series of experiments on the effect of bedslope on the incipient motion of sand in a close channel.
Lysne results are found to fit quite well (328) with ϕ ranging about 47◦. A similar value of ϕ
was found by Luque and Van Beek (1976), who fitted a similar relationship to their experimental
observations for the incipient motion of sand, gravel and magnetite in open channel flow on sloping
beds. This is quite encouraging, suggesting that, in spite of their approximate character, averaged
approaches may provide a reasonable guidance to the interpretation of these complex processes.

4.4.2 Bedload transport on sloping beds: dimensional arguments

We now extend to the general case of sloping beds, the classical bedload relationship valid
under uniform equilibrium conditions. On purely dimensional ground, we write:

Qb
s = Qb

s

(
τ ,∇hη, ϱs − ϱ, g, d, µs

)
, (329)

where τ is the local value of the tangential stress at the bottom and Qb
s is the dimensional form of

the bedload flux per unit width, a vector which also lies on the plane tangent to the bed interface.
The latter assumption, essentially extends the classical treatment of bedload transport under
uniform flow conditions in two ways: we are assuming that bedload transport is controlled by
the local value of the bottom stress; moreover, we are postulating that a local slope affects the
direction and intensity of bedload transport, making the latter deviate from the direction of the
tangential stress at the bottom.

Having formulated the above ansatz, application of Buckingam theorem immediately leads to
the following dimensionless form of the generalized bedload transport relationship:

Qb
s =

√
(s− 1) g d3 Q̃b

s

(
τ∗ τ̂ ,∇hη,Rp

)
, (330)

having denoted by Q̃b
s the dimensionless bedload flux per unit width, and by τ∗ the local and

instantaneous value of the Shields stress.
Next, we stipulate that, as ∇hη tends to vanish, the latter relationship must reduce to the

classical relationship valid under uniform flow conditions, namely:

Q̃b
s = Φb

(
τ∗; τ∗c0, Rp

)
τ̂ , (331)

where Φb is the equilibrium bedload function discussed in Section 3.3.2, evaluated for the instan-
taneous value of the Shields stress τ∗, and τ∗c0 is the instantaneous value of the critical Shields
stress for horizontal beds.

The general relationship for the bedload flux per unit width on sloping beds may then be
written in the form:

Q̃b
s = Φb

(
τ∗; τ∗c, Rp

) [
τ̂ + fG (∇hη, τ∗, Rp)

]
, (332)

with fG an unknown dimensionless vectorial function which vanishes as ∇hη → 0, while the local
value of the critical Shields stress τ∗c reduces to τ∗c0 as ∇hη → 0.

The particular case of weakly sloping beds is again of special interest. Assuming that |∇hη| → 0
we may linearize (332) to find:

Q̃b
s = Φb

(
τ∗; τ∗c0, Rp

) [
τ̂ + G

(
τ∗, Rp

)
· ∇hη

]
, (333)
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where G is a (2 × 2) tensor which needs to be determined either experimentally or theoretically.
Recalling (311), the longitudinal and lateral components of (333) become:

Q̃b
sx = Φb

(
τ∗; τ∗c0, Rp

) [
1 + Gxx

∂η

∂x
+ Gxy

∂η

∂y

]
, (334a)

Q̃b
sy = Φb

(
τ∗; τ∗c0, Rp

) [
Gyx

∂η

∂x
+ Gyy

∂η

∂y

]
. (334b)

In the next Sections we discuss some of the available attempts to estimate the components of
the G-tensor.

4.4.3 Bedload transport on sloping beds: Theoretical and experimental estimates

Theoretical estimates

We consider the average dynamic equilibrium of a spherical sediment particle saltating close
to a sloping bed. We do not constrain the slope to be weak and denote by vP the average
saltation velocity of the particle. The average dynamic equilibrium of the particle is governed
by a relationship identical to (314): however, here Fµ is a frictional force which is assumed to
interpret, in an average sense, the contact forces experienced by the saltating particle. Similarly,
FD is the average hydrodynamic drag force experienced by the particle throughout its saltating
motion, which may still be estimated in terms of some average drag coefficient cD as follows:

FD =
1

2
ϱ cD

πd2

4

(
u|zP − vP

) ∣∣(u|zP − vP

)∣∣, (335)

having imposed that FD must be aligned with the relative flow velocity evaluated at some distance
from the bed, zP . This distance is chosen such to interpret in an average sense the drag experienced
by the saltating particle throughout its trajectory. The reader is already aware of the severe
approximation implied by the above assumption as the drag force is a fluctuating function of time
and space. Note that FD lies on the tangent plane. The tangential component of the resultant
active force Ft arises from the vectorial composition of FD and the tangential component of the
submerged particle weight, hence it is defined by a relationship identical to that in (315b), with
FD given by (335).

The average frictional force Fµ is now aligned with the particle velocity vP , hence it lies on
the tangent plane. We will express it in terms of a dynamic friction coefficient µd as follows:

Fµ = −µd

∣∣FN

∣∣ v̂P , (336)

where v̂P is the unit vector in the direction of particle velocity. Neglecting as a first approximation
the average hydrodynamic lift force, the average normal reaction FN (equation 315) reduces to the
static approximation:

FN =
π

6
(ϱs − ϱ) g d3 zn. (337)

The dynamic equilibrium of the particle saltating along the tangent plane is then governed by
the following relationship:

−µd
π

6
(ϱs − ϱ) g d3

∣∣zn
∣∣ v̂P − π

6
(ϱs − ϱ) g d3 zt +

1

2
ϱ cD

πd2

4

(
u|zP − vP

) ∣∣u|zP − vP

∣∣ = 0.
(338)

The latter vectorial relationship can be further reduced recalling the definitions (310a), (310b),
(311) and noting that

u|zP = u|zP τ̂ , τ̂ =
[
cosαx, 0,− sinαy

]
, (339a)

vP = vP v̂P , v̂P = [cosψ τ̂ + sinψ (n̂× τ̂ )], (339b)
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The latter result confirms that, as anticipated above, for weakly sloping beds, the critical value
of the Shields stress is not affected by the lateral slope. On the contrary, a positive longitudinal
slope reduces τ∗c. The latter tends to vanish as the local longitudinal bed inclination tends to the
angle of repose of the sediment (though, for finite values of αx, linearization is no longer strictly
valid).

An expression similar to (328) was first derived by Lysne (1969) who tested it by performing a
series of experiments on the effect of bedslope on the incipient motion of sand in a close channel.
Lysne results are found to fit quite well (328) with ϕ ranging about 47◦. A similar value of ϕ
was found by Luque and Van Beek (1976), who fitted a similar relationship to their experimental
observations for the incipient motion of sand, gravel and magnetite in open channel flow on sloping
beds. This is quite encouraging, suggesting that, in spite of their approximate character, averaged
approaches may provide a reasonable guidance to the interpretation of these complex processes.

4.4.2 Bedload transport on sloping beds: dimensional arguments

We now extend to the general case of sloping beds, the classical bedload relationship valid
under uniform equilibrium conditions. On purely dimensional ground, we write:

Qb
s = Qb

s
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τ ,∇hη, ϱs − ϱ, g, d, µs

)
, (329)

where τ is the local value of the tangential stress at the bottom and Qb
s is the dimensional form of

the bedload flux per unit width, a vector which also lies on the plane tangent to the bed interface.
The latter assumption, essentially extends the classical treatment of bedload transport under
uniform flow conditions in two ways: we are assuming that bedload transport is controlled by
the local value of the bottom stress; moreover, we are postulating that a local slope affects the
direction and intensity of bedload transport, making the latter deviate from the direction of the
tangential stress at the bottom.

Having formulated the above ansatz, application of Buckingam theorem immediately leads to
the following dimensionless form of the generalized bedload transport relationship:

Qb
s =

√
(s− 1) g d3 Q̃b

s

(
τ∗ τ̂ ,∇hη,Rp

)
, (330)

having denoted by Q̃b
s the dimensionless bedload flux per unit width, and by τ∗ the local and

instantaneous value of the Shields stress.
Next, we stipulate that, as ∇hη tends to vanish, the latter relationship must reduce to the

classical relationship valid under uniform flow conditions, namely:

Q̃b
s = Φb

(
τ∗; τ∗c0, Rp

)
τ̂ , (331)

where Φb is the equilibrium bedload function discussed in Section 3.3.2, evaluated for the instan-
taneous value of the Shields stress τ∗, and τ∗c0 is the instantaneous value of the critical Shields
stress for horizontal beds.

The general relationship for the bedload flux per unit width on sloping beds may then be
written in the form:

Q̃b
s = Φb

(
τ∗; τ∗c, Rp

) [
τ̂ + fG (∇hη, τ∗, Rp)

]
, (332)

with fG an unknown dimensionless vectorial function which vanishes as ∇hη → 0, while the local
value of the critical Shields stress τ∗c reduces to τ∗c0 as ∇hη → 0.

The particular case of weakly sloping beds is again of special interest. Assuming that |∇hη| → 0
we may linearize (332) to find:

Q̃b
s = Φb
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τ∗; τ∗c0, Rp

) [
τ̂ + G

(
τ∗, Rp

)
· ∇hη

]
, (333)
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where G is a (2 × 2) tensor which needs to be determined either experimentally or theoretically.
Recalling (311), the longitudinal and lateral components of (333) become:

Q̃b
sx = Φb
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+ Gxy
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]
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]
. (334b)

In the next Sections we discuss some of the available attempts to estimate the components of
the G-tensor.

4.4.3 Bedload transport on sloping beds: Theoretical and experimental estimates

Theoretical estimates

We consider the average dynamic equilibrium of a spherical sediment particle saltating close
to a sloping bed. We do not constrain the slope to be weak and denote by vP the average
saltation velocity of the particle. The average dynamic equilibrium of the particle is governed
by a relationship identical to (314): however, here Fµ is a frictional force which is assumed to
interpret, in an average sense, the contact forces experienced by the saltating particle. Similarly,
FD is the average hydrodynamic drag force experienced by the particle throughout its saltating
motion, which may still be estimated in terms of some average drag coefficient cD as follows:

FD =
1

2
ϱ cD

πd2

4

(
u|zP − vP

) ∣∣(u|zP − vP

)∣∣, (335)

having imposed that FD must be aligned with the relative flow velocity evaluated at some distance
from the bed, zP . This distance is chosen such to interpret in an average sense the drag experienced
by the saltating particle throughout its trajectory. The reader is already aware of the severe
approximation implied by the above assumption as the drag force is a fluctuating function of time
and space. Note that FD lies on the tangent plane. The tangential component of the resultant
active force Ft arises from the vectorial composition of FD and the tangential component of the
submerged particle weight, hence it is defined by a relationship identical to that in (315b), with
FD given by (335).

The average frictional force Fµ is now aligned with the particle velocity vP , hence it lies on
the tangent plane. We will express it in terms of a dynamic friction coefficient µd as follows:

Fµ = −µd

∣∣FN

∣∣ v̂P , (336)

where v̂P is the unit vector in the direction of particle velocity. Neglecting as a first approximation
the average hydrodynamic lift force, the average normal reaction FN (equation 315) reduces to the
static approximation:

FN =
π

6
(ϱs − ϱ) g d3 zn. (337)

The dynamic equilibrium of the particle saltating along the tangent plane is then governed by
the following relationship:
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(338)

The latter vectorial relationship can be further reduced recalling the definitions (310a), (310b),
(311) and noting that

u|zP = u|zP τ̂ , τ̂ =
[
cosαx, 0,− sinαy

]
, (339a)

vP = vP v̂P , v̂P = [cosψ τ̂ + sinψ (n̂× τ̂ )], (339b)
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where ψ is the angle that vP forms with the bottom shear stress vector τ (Figure 42). Moreover,
since both these vectors lie on the tangent plane, we have decomposed the vector vP into a
component aligned with τ and a second component still lying on the tangent plane but orthogonal
to the first (i.e, aligned with n̂× τ̂ ).

Figure 42. Sketch showing the particle velocity in the tangent plane and notations.

With simple algebraic manipulations we can reduce the relationship for v̂P to the form:

v̂P = (v̂Px, v̂Py, v̂Pz), (340)

where:

v̂Px = cosψ cosαx − sinψ sinαx tanαy√
1 + tan2 αx + tan2 αy

, (341a)

v̂Py =

sinψ

cosαx√
1 + tan2 αx + tan2 αy

, (341b)

v̂Pz = − cosψ sinαx − sinψ cosαx tanαy√
1 + tan2 αx + tan2 αy

. (341c)

With the help of (339) and (341), Parker et al. (2003) were able to derive a vectorial relationship
for bedload transport on finite slopes. This is a complex derivation and the interested reader is
referred to the latter paper. Here, we limit ourselves to considering the important case of weakly
sloping beds that is of great relevance to the whole field of morphodynamics.

The weakly sloping bed case

In the weakly sloping bed case, we can derive the sought relationship for the angle ψ which
describes the direction of sediment motion by linearizing the general equilibrium relationship (338).
Let us then make the following approximations:

cosψ ≃ cosαx ≃ cosαy ≃ 1, (342a)
sinψ ≃ tanψ ≪ 1, sinαx ≃ tanαx ≪ 1, sinαy ≃ tanαy ≪ 1. (342b)
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Hence:

u|zP ≃ uzP [1, 0,− sinαx], vP ≃ vP [1, sinψ,− sinαx], (343a)
|zn| ≃ 1, zt ≃ [− tanαx,− tanαy, 0]. (343b)

The x-component of (338), at the leading order of approximation, then reads:

µd
π

6
(ϱs − ϱ) g d3 =

1

2
ϱ cD

π d2

4

(
u|zP − vP

)2
. (344)

If we define the dynamic critical Shields stress τ∗cd as follows:

τ∗cd =
4

3

µd

cD f2
∣∣
zP

, (345)

we end up with the following relationship

uzP − vP = f
∣∣
zP

√
τ∗cd

√
(s− 1) g d, (346)

which can be reduced to the form observed experimentally for uniform flows by Luque and Van
Beek (1976) (see equation(185))

vP√
(s− 1) g d

= f
∣∣
zP

(√
τ∗ −

√
τ∗cd

)
. (347)

Note that from equation (347), the experimental relation of Luque and Van Beek (1976) is recovered
choosing f

∣∣
zP

= 11.5 and
√
τ∗cd = 0.7

√
τ∗co.

Using the last few relationships, we then derive the leading order approximation of the y-
component of (338), which reads:

sinψ =

π

6
(ϱs − ϱ) g d3

1

2
ϱ cD

π d2

4

(
u|zP − vP

)
u|zP

tanαy, (348)

or, with some manipulations and the help of (345):

sinψ =
1

µd

√
τ∗cd
τ∗

tanαy. (349)

This relationship is an important result: it predicts the direction of bedload transport in the
tangent plane of weakly sloping beds. More precisely, it provides the angle that the direction
of bedload transport forms with the local direction of the tangential stress at the bottom in
terms of the lateral bed slope. Similar relationships for the angle ψ have been proposed in
the literature. In particular, Engelund (1974) presented a simple derivation in the context of a
pioneering investigation of the morphodynamics of river bends. Engelund’s result was further
developed by Hasegawa (1981), Ikeda (1982a), Engelund and Fredsøe (1982), Parker (1984) and
Struiksma et al. (1985).

Comparing (349) with (334b) we are now able to obtain the sought estimate of components of
the G-tensor:

Gyx = 0, Gyy = − 1

µd

√
τ∗cd
τ∗

= − r
√
τ∗

. (350)

The O(1) parameter r appearing in (350) can be readily estimated. Let us employ the following
characteristic values for the parameters appearing in the relationship (345): µd ≃ tan 30◦, cD ≃ 0.4,
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where ψ is the angle that vP forms with the bottom shear stress vector τ (Figure 42). Moreover,
since both these vectors lie on the tangent plane, we have decomposed the vector vP into a
component aligned with τ and a second component still lying on the tangent plane but orthogonal
to the first (i.e, aligned with n̂× τ̂ ).

Figure 42. Sketch showing the particle velocity in the tangent plane and notations.

With simple algebraic manipulations we can reduce the relationship for v̂P to the form:

v̂P = (v̂Px, v̂Py, v̂Pz), (340)

where:

v̂Px = cosψ cosαx − sinψ sinαx tanαy√
1 + tan2 αx + tan2 αy

, (341a)

v̂Py =

sinψ

cosαx√
1 + tan2 αx + tan2 αy

, (341b)

v̂Pz = − cosψ sinαx − sinψ cosαx tanαy√
1 + tan2 αx + tan2 αy

. (341c)

With the help of (339) and (341), Parker et al. (2003) were able to derive a vectorial relationship
for bedload transport on finite slopes. This is a complex derivation and the interested reader is
referred to the latter paper. Here, we limit ourselves to considering the important case of weakly
sloping beds that is of great relevance to the whole field of morphodynamics.

The weakly sloping bed case

In the weakly sloping bed case, we can derive the sought relationship for the angle ψ which
describes the direction of sediment motion by linearizing the general equilibrium relationship (338).
Let us then make the following approximations:

cosψ ≃ cosαx ≃ cosαy ≃ 1, (342a)
sinψ ≃ tanψ ≪ 1, sinαx ≃ tanαx ≪ 1, sinαy ≃ tanαy ≪ 1. (342b)
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Hence:

u|zP ≃ uzP [1, 0,− sinαx], vP ≃ vP [1, sinψ,− sinαx], (343a)
|zn| ≃ 1, zt ≃ [− tanαx,− tanαy, 0]. (343b)

The x-component of (338), at the leading order of approximation, then reads:
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, (345)

we end up with the following relationship
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which can be reduced to the form observed experimentally for uniform flows by Luque and Van
Beek (1976) (see equation(185))
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Note that from equation (347), the experimental relation of Luque and Van Beek (1976) is recovered
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Using the last few relationships, we then derive the leading order approximation of the y-
component of (338), which reads:
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or, with some manipulations and the help of (345):

sinψ =
1

µd
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τ∗cd
τ∗

tanαy. (349)

This relationship is an important result: it predicts the direction of bedload transport in the
tangent plane of weakly sloping beds. More precisely, it provides the angle that the direction
of bedload transport forms with the local direction of the tangential stress at the bottom in
terms of the lateral bed slope. Similar relationships for the angle ψ have been proposed in
the literature. In particular, Engelund (1974) presented a simple derivation in the context of a
pioneering investigation of the morphodynamics of river bends. Engelund’s result was further
developed by Hasegawa (1981), Ikeda (1982a), Engelund and Fredsøe (1982), Parker (1984) and
Struiksma et al. (1985).

Comparing (349) with (334b) we are now able to obtain the sought estimate of components of
the G-tensor:

Gyx = 0, Gyy = − 1

µd

√
τ∗cd
τ∗

= − r
√
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. (350)

The O(1) parameter r appearing in (350) can be readily estimated. Let us employ the following
characteristic values for the parameters appearing in the relationship (345): µd ≃ tan 30◦, cD ≃ 0.4,
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f |zP ≃ 2.5 ln(zP /es) + 8.5 = 6.7, having assumed that the average distance of saltating particles
from the bed ranges about zP = 1.5 d and es = 3 d. Using the latter values, (345) provides an
estimate for the dynamic Shields stress τ∗cd ranging about 0.04, and the parameter r takes a
value about 0.35. Below, we test this result against experimental observations. Note that (349)
suggests that, in a linear context, the longitudinal slope does not affect the direction of bedload
transport. However, even in a linear context, the longitudinal slope does affect the intensity of
bedload transport. This is immediately appreciated, noting that, in the static limit (vP = 0) the
equilibrium relationship (338) reduces to the second of (328). We may then estimate the two
remaining components of the G-tensor appearing in the relationship (334a) as follows:

Gxx =
[
− 1

Φb

dΦb

dτ∗c

]
τ∗co

dτ∗c
dSx

=
τ∗co
µs

[ 1

Φb

dΦb

dτ∗c

]
τ∗co

, Gxy = 0. (351)

The relationships (351) and (350) complete our analysis, which can be summarized by stating
that the intensity of bedload transport on weakly sloping beds is affected by variations of the
longitudinal slope and is insensitive to variations of the lateral slope. On the contrary, the direction
of bedload transport is insensitive to variations of the longitudinal slope but is significantly affected
by variations of the lateral slope. The latter dependence involves the inverse square root of the
local Shields stress, a feature which will be seen to have significant morphological implications.

A more ambitious attempt to predict the average direction of particle motion on a sloping bed
was performed by Sekine and Parker (1992), based on the fairly detailed saltation model of Sekine
and Kikkawa (1992). The significance of the latter contribution arises from its ability to clarify
the physical mechanism whereby a lateral slope may drive a deviation of the average trajectories
of saltating particles from the direction of the mean bottom stress. Indeed, one may argue that, in
order to feel the downslope effect of gravity, a bed load particle should be in continuous contact
with the bed. This condition is fulfilled by rolling or sliding particles but is not satisfied by
saltating particles. On the contrary, Sekine and Parker (1992) argue that, though the placement
of grains on the bed does not intrinsically bias rebound in either the positive or negative lateral
direction, however the geometry of collision implies that particle rebound on a laterally sloping
bed pumps lateral momentum on the bouncing particle. Less convincing is the assumption made
in their saltation model that a particle would continuously saltate unless it enters a depression and
cannot escape by rebound. In fact, as discussed in Chapter 3, modern observations suggest that
saltation is sustained by wall events, hence its lifetime is controlled by the lifetime of sweeps. This
notwithstanding the exercise of averaging several hundred individual realizations of the simulated
saltation process is useful in order to evaluate the effect of lateral slope on the direction of particle
motion. Indeed, the above Authors were able to derive a relationship of the type (334b) with

Gyx = 0, Gyy = −fyy(Rp)
[τ∗c
τ∗

]1/4
. (352)

Note that, the dependence of the function fyy on the particle Reynolds number was found to be
weak, i.e. the function is nearly flat and takes values around 0.75. This work provides a further
confirmation of the soundness of the structure (334b) of the linear bedload relationship, though
the component Gyy exhibits a somewhat weaker dependence on the Shields stress than predicted
by (350).

Test of linear relationships against experimental data

Several experimental contributions have been reported in the literature. They are typically
conducted measuring the intensity and direction of bedload transport in turbulent streams flowing
in straight channels with laterally tilted cohesionless bed in the absence of bedforms. Experiments
of this type were conducted in water by Hirano (1973), Hasegawa (1981), Ikeda (1982a) and, in
air, by Yamasaka and Ikeda (1988). Results of these investigations have been summarized and
compared with various theoretical estimates by Sekine and Parker (1992). Here it suffices to point
out that the experimental data exhibit a considerable scatter and an equally acceptable agreement
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is achieved using either the Sekine and Parker relationship (352) or the relationship (350) with
r ≃ 0.35.

However, note that the above estimates (both theoretical and experimental) apply to bedload
transport on plane (yet laterally tilted) beds. Talmon et al. (1995) reported observations performed
on a turbulent water stream flowing over a cohesionless sandy bed where dunes had developed.
Results of this investigation do confirm the suitability of (350), though with a somewhat larger
value of r (≃ 0.56). The effects of bedforms and sediment transport mode also emerge from the
experiments carried out by Baar et al. (2018) in a rotating annular flume with counterrotating
floor. However, the complexity of the experimental flow field, which includes secondary flows
of uncertain interpretation, and the difficulties to collect local rather than global measurements
prevented any definitive conclusion.

Finally, recent detailed measurements of particle motion over a laterally inclined fixed bed
have been performed by Francalanci and Solari (2007) (see also Francalanci and Solari, 2008).
The ultimate aim of these works was to test the validity of the nonlinear analysis of bedload
transport on sloping beds proposed by Seminara et al. (2002) and Parker et al. (2003). This is
briefly discussed in the Appendix to this Chapter.

4.5. Flow resistance in natural channels

4.5.1 Small scale fluvial bedforms

It has been known for longer than a century (Gilbert, 1914b) that a sequence of distinct small
scale bedforms form in open channel streams flowing over erodible cohesionless beds as the flow
and sediment discharges (hence the Shields stress) increase. The characteristics of these bedforms
have been summarized in the first Monograph of the present series (Blondeaux et al., 2018) and
their description will not be repeated here. We simply reproduce in Figure 43 the sketch presented
by Simons and Richardson (1966) to depict the shape of small scale bedforms they observed in
classical laboratory experiments on uniform open channel flow with cohesionless beds.

Let us assume we generate a sequence of uniform flows in an open channel with cohesionless
bed consisting of fine sand by progressively increasing the channel slope. As the Shields stress
exceeds its critical value for incipient sediment motion, the following sequence of bottom patterns
is typically observed.

- Ripples. Small triangular-shaped forms with typical wave-lengths of few tens of centimeters and
heights of few centimeters.

- Dunes. Bed features longer and larger than ripples, associated with surface waves out of phase
with the bed waves. Their amplitude and wavelength typically scale with the flow depth.
Similarly to ripples, dunes are also approximately triangular, with fairly gentle upstream
slopes on which ripples can form at low stages. Downstream slopes are often approximately
equal to the angle of repose of the bed material, although gentler fronts are also observed.
Dunes migrate slowly downstream.

- Plane bed and stationary waves. Somewhat abruptly, the dunes disappear, and are replaced by a
bed devoid of significant irregularities (plane bed) or by trains of virtually stationary waves
(sometimes called nonbreaking antidunes).

- Antidunes. At higher stage, upstream-migrating trains of fairly sinusoidal bottom waves
(antidunes) develop. They are associated and strongly interact with surface waves in phase
with them. Moreover, the amplitude of the surface waves is larger than the amplitude of
antidunes. At even higher Froude numbers, the surface waves typically grow to the extent
of becoming unstable and break in the upstream direction. Antidunes are then subject to
cyclic processes of obliteration, re-initiation and growth.

- Steps and pools. At steep slopes and large values of water and sediment discharges, the channel
displays a series of pools, where the flow is subcritical, connected by steps (steep chutes),
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f |zP ≃ 2.5 ln(zP /es) + 8.5 = 6.7, having assumed that the average distance of saltating particles
from the bed ranges about zP = 1.5 d and es = 3 d. Using the latter values, (345) provides an
estimate for the dynamic Shields stress τ∗cd ranging about 0.04, and the parameter r takes a
value about 0.35. Below, we test this result against experimental observations. Note that (349)
suggests that, in a linear context, the longitudinal slope does not affect the direction of bedload
transport. However, even in a linear context, the longitudinal slope does affect the intensity of
bedload transport. This is immediately appreciated, noting that, in the static limit (vP = 0) the
equilibrium relationship (338) reduces to the second of (328). We may then estimate the two
remaining components of the G-tensor appearing in the relationship (334a) as follows:
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[
− 1
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dΦb
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]
τ∗co

dτ∗c
dSx

=
τ∗co
µs

[ 1

Φb

dΦb
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, Gxy = 0. (351)

The relationships (351) and (350) complete our analysis, which can be summarized by stating
that the intensity of bedload transport on weakly sloping beds is affected by variations of the
longitudinal slope and is insensitive to variations of the lateral slope. On the contrary, the direction
of bedload transport is insensitive to variations of the longitudinal slope but is significantly affected
by variations of the lateral slope. The latter dependence involves the inverse square root of the
local Shields stress, a feature which will be seen to have significant morphological implications.

A more ambitious attempt to predict the average direction of particle motion on a sloping bed
was performed by Sekine and Parker (1992), based on the fairly detailed saltation model of Sekine
and Kikkawa (1992). The significance of the latter contribution arises from its ability to clarify
the physical mechanism whereby a lateral slope may drive a deviation of the average trajectories
of saltating particles from the direction of the mean bottom stress. Indeed, one may argue that, in
order to feel the downslope effect of gravity, a bed load particle should be in continuous contact
with the bed. This condition is fulfilled by rolling or sliding particles but is not satisfied by
saltating particles. On the contrary, Sekine and Parker (1992) argue that, though the placement
of grains on the bed does not intrinsically bias rebound in either the positive or negative lateral
direction, however the geometry of collision implies that particle rebound on a laterally sloping
bed pumps lateral momentum on the bouncing particle. Less convincing is the assumption made
in their saltation model that a particle would continuously saltate unless it enters a depression and
cannot escape by rebound. In fact, as discussed in Chapter 3, modern observations suggest that
saltation is sustained by wall events, hence its lifetime is controlled by the lifetime of sweeps. This
notwithstanding the exercise of averaging several hundred individual realizations of the simulated
saltation process is useful in order to evaluate the effect of lateral slope on the direction of particle
motion. Indeed, the above Authors were able to derive a relationship of the type (334b) with
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Note that, the dependence of the function fyy on the particle Reynolds number was found to be
weak, i.e. the function is nearly flat and takes values around 0.75. This work provides a further
confirmation of the soundness of the structure (334b) of the linear bedload relationship, though
the component Gyy exhibits a somewhat weaker dependence on the Shields stress than predicted
by (350).

Test of linear relationships against experimental data

Several experimental contributions have been reported in the literature. They are typically
conducted measuring the intensity and direction of bedload transport in turbulent streams flowing
in straight channels with laterally tilted cohesionless bed in the absence of bedforms. Experiments
of this type were conducted in water by Hirano (1973), Hasegawa (1981), Ikeda (1982a) and, in
air, by Yamasaka and Ikeda (1988). Results of these investigations have been summarized and
compared with various theoretical estimates by Sekine and Parker (1992). Here it suffices to point
out that the experimental data exhibit a considerable scatter and an equally acceptable agreement
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is achieved using either the Sekine and Parker relationship (352) or the relationship (350) with
r ≃ 0.35.

However, note that the above estimates (both theoretical and experimental) apply to bedload
transport on plane (yet laterally tilted) beds. Talmon et al. (1995) reported observations performed
on a turbulent water stream flowing over a cohesionless sandy bed where dunes had developed.
Results of this investigation do confirm the suitability of (350), though with a somewhat larger
value of r (≃ 0.56). The effects of bedforms and sediment transport mode also emerge from the
experiments carried out by Baar et al. (2018) in a rotating annular flume with counterrotating
floor. However, the complexity of the experimental flow field, which includes secondary flows
of uncertain interpretation, and the difficulties to collect local rather than global measurements
prevented any definitive conclusion.

Finally, recent detailed measurements of particle motion over a laterally inclined fixed bed
have been performed by Francalanci and Solari (2007) (see also Francalanci and Solari, 2008).
The ultimate aim of these works was to test the validity of the nonlinear analysis of bedload
transport on sloping beds proposed by Seminara et al. (2002) and Parker et al. (2003). This is
briefly discussed in the Appendix to this Chapter.

4.5. Flow resistance in natural channels

4.5.1 Small scale fluvial bedforms

It has been known for longer than a century (Gilbert, 1914b) that a sequence of distinct small
scale bedforms form in open channel streams flowing over erodible cohesionless beds as the flow
and sediment discharges (hence the Shields stress) increase. The characteristics of these bedforms
have been summarized in the first Monograph of the present series (Blondeaux et al., 2018) and
their description will not be repeated here. We simply reproduce in Figure 43 the sketch presented
by Simons and Richardson (1966) to depict the shape of small scale bedforms they observed in
classical laboratory experiments on uniform open channel flow with cohesionless beds.

Let us assume we generate a sequence of uniform flows in an open channel with cohesionless
bed consisting of fine sand by progressively increasing the channel slope. As the Shields stress
exceeds its critical value for incipient sediment motion, the following sequence of bottom patterns
is typically observed.

- Ripples. Small triangular-shaped forms with typical wave-lengths of few tens of centimeters and
heights of few centimeters.

- Dunes. Bed features longer and larger than ripples, associated with surface waves out of phase
with the bed waves. Their amplitude and wavelength typically scale with the flow depth.
Similarly to ripples, dunes are also approximately triangular, with fairly gentle upstream
slopes on which ripples can form at low stages. Downstream slopes are often approximately
equal to the angle of repose of the bed material, although gentler fronts are also observed.
Dunes migrate slowly downstream.

- Plane bed and stationary waves. Somewhat abruptly, the dunes disappear, and are replaced by a
bed devoid of significant irregularities (plane bed) or by trains of virtually stationary waves
(sometimes called nonbreaking antidunes).

- Antidunes. At higher stage, upstream-migrating trains of fairly sinusoidal bottom waves
(antidunes) develop. They are associated and strongly interact with surface waves in phase
with them. Moreover, the amplitude of the surface waves is larger than the amplitude of
antidunes. At even higher Froude numbers, the surface waves typically grow to the extent
of becoming unstable and break in the upstream direction. Antidunes are then subject to
cyclic processes of obliteration, re-initiation and growth.

- Steps and pools. At steep slopes and large values of water and sediment discharges, the channel
displays a series of pools, where the flow is subcritical, connected by steps (steep chutes),
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Figure 43. Sketch showing the sequence of small scale patterns observed in open channel flow over a
cohesionless bottom by Simons and Richardson (1966).

where the flow is supercritical. Hydraulic jumps form where the chute merges into the pool.
The step and pool train may slowly migrate upstream.

The formation of bed-forms poses a number of conceptual and practical problems that have
been investigated by the scientific community for many decades and are not fully settled yet.
Essentially, one would like to be able to understand why and when bedforms appear, what are
their characteristic features (wavelengths, amplitudes, migration speeds) and what effects they
induce on flow resistance and sediment transport. These goals are complex enough to deserve to
be treated in a specific Monograph. Below, we restrict ourselves to provide a brief overview of the
least amount of knowledge needed in order to proceed with the present exposition of principles of
river meandering.

4.5.2 Bedform regime

A sound approach to formulating appropriate criteria for bed forms would be to identify
and investigate the physical mechanisms underlying their formation. Indeed, it has been firmly
established that bedforms originate from instabilities of the bed interface. This is a fundamental
topic that has received attention from the scientific community since the late 1960’s. Parallel
to the theoretical investigations, a number of experimental investigations have been performed,
in particular the extensive and accurate work of Guy et al. (1966) among many others. Based
on these investigations, several empirically-based bedform regime criteria have been proposed.
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A comprehensive review of the literature is presented in Chapter 2 of Garcia (2008). None of

Figure 44. The bedform regime criterion proposed by Liu (1957) and later developed by Simons and
Richardson (1961).

those criteria is fully satisfactory. Here, we limit ourselves to the illustration of few of them.
Note that, on physical ground, one expects that the bedform regime depends on dimensionless
parameters characterizing the nature of sediments (the relative submerged density (s − 1), the
particle Reynolds number Rp and, possibly, the geometric standard deviation of the grain size
distribution σg), the intensity of sediment transport (e.g. the Shields stress of the uniform flow τ∗u)
and the hydrodynamics (the channel slope S or the relative roughness d50/Du, with d50 average
grain size, or the Froude number Fru). Most of the proposed criteria ignore the role of σg, assume
(s− 1) = 1.65 and employ only two dimensionless parameters, that may be expressed in terms of
Rp and τ∗u.

Figure 44 shows the bedform regime criterion originally proposed by Liu (1957) and later
developed by Simons and Richardson (1961). The reader will readily demonstrate that the two
parameters employed in this plot can both be expressed in terms of Rp and τ∗u. This plot suggests
that neither ripples nor dunes form in the case of coarse material. However, dunes have been
observed to form under subcritical flow conditions also in rivers with bed composed of coarse sand
and fine gravel (d50 = 1.8− 9.1 mm), e.g the North Fork Toutle River at Kid Valley, Washington
(Dinehart, 1989).

The above plot predicts that antidunes form only under supercritical conditions. This prediction
is not correct, as shown by Figure 45 where Engelund and Hansen criterion (Engelund and Hansen,
1966) is reported. The diagram clearly demonstrates that antidunes do actually form within an
extensive range of subcritical flow conditions. Nevertheless, a limit of this plot is that it does not
include the role of the particle Reynolds number Rp. This parameter is instead accounted for in
the last criterion we wish to mention, due to Van Rijn (1984c) (see also Van Rijn, 1993). This is
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Figure 43. Sketch showing the sequence of small scale patterns observed in open channel flow over a
cohesionless bottom by Simons and Richardson (1966).
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The step and pool train may slowly migrate upstream.
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induce on flow resistance and sediment transport. These goals are complex enough to deserve to
be treated in a specific Monograph. Below, we restrict ourselves to provide a brief overview of the
least amount of knowledge needed in order to proceed with the present exposition of principles of
river meandering.

4.5.2 Bedform regime

A sound approach to formulating appropriate criteria for bed forms would be to identify
and investigate the physical mechanisms underlying their formation. Indeed, it has been firmly
established that bedforms originate from instabilities of the bed interface. This is a fundamental
topic that has received attention from the scientific community since the late 1960’s. Parallel
to the theoretical investigations, a number of experimental investigations have been performed,
in particular the extensive and accurate work of Guy et al. (1966) among many others. Based
on these investigations, several empirically-based bedform regime criteria have been proposed.
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A comprehensive review of the literature is presented in Chapter 2 of Garcia (2008). None of

Figure 44. The bedform regime criterion proposed by Liu (1957) and later developed by Simons and
Richardson (1961).

those criteria is fully satisfactory. Here, we limit ourselves to the illustration of few of them.
Note that, on physical ground, one expects that the bedform regime depends on dimensionless
parameters characterizing the nature of sediments (the relative submerged density (s − 1), the
particle Reynolds number Rp and, possibly, the geometric standard deviation of the grain size
distribution σg), the intensity of sediment transport (e.g. the Shields stress of the uniform flow τ∗u)
and the hydrodynamics (the channel slope S or the relative roughness d50/Du, with d50 average
grain size, or the Froude number Fru). Most of the proposed criteria ignore the role of σg, assume
(s− 1) = 1.65 and employ only two dimensionless parameters, that may be expressed in terms of
Rp and τ∗u.

Figure 44 shows the bedform regime criterion originally proposed by Liu (1957) and later
developed by Simons and Richardson (1961). The reader will readily demonstrate that the two
parameters employed in this plot can both be expressed in terms of Rp and τ∗u. This plot suggests
that neither ripples nor dunes form in the case of coarse material. However, dunes have been
observed to form under subcritical flow conditions also in rivers with bed composed of coarse sand
and fine gravel (d50 = 1.8− 9.1 mm), e.g the North Fork Toutle River at Kid Valley, Washington
(Dinehart, 1989).

The above plot predicts that antidunes form only under supercritical conditions. This prediction
is not correct, as shown by Figure 45 where Engelund and Hansen criterion (Engelund and Hansen,
1966) is reported. The diagram clearly demonstrates that antidunes do actually form within an
extensive range of subcritical flow conditions. Nevertheless, a limit of this plot is that it does not
include the role of the particle Reynolds number Rp. This parameter is instead accounted for in
the last criterion we wish to mention, due to Van Rijn (1984c) (see also Van Rijn, 1993). This is
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Figure 45. The bedform regime criterion proposed by Engelund and Hansen (1966).

probably the most comprehensive known classification scheme, that has the merit to be based on
both laboratory and field data. It employs the so called transport-stage parameter T , defined in
the form:

T =
τ ′∗ − τ∗c

τ∗c
, (353)

and the so called Bonnefille dimensionless particle diameter D∗ ≡ R
2/3
p (Bonnefille, 1963). In

(353) τ ′∗ is the Shields stress associated with the grain roughness and τ∗c is the critical Shields
stress obtained from the Shields diagram.

The bedform regime criterion by van Rijn, shown in Figure 46, suggests that ripples exist in
the region defined by the conditions D∗ < 10 and T < 3. Dunes are observed for values of D∗ > 10
with T < 3 and for values of T in the interval 3 < T < 15. They are washed out for values of T in
the range 15 < T < 25. However, also this criterion is not fully satisfactory. Indeed, as pointed
out by Van Rijn himself (Van Rijn, 1996), in large rivers like the Mississippi, large dunes may be
observed for values of T as large as 50 (see also Julien and Klaassen, 1995; Garcia, 2008).

4.5.3 Bedform characteristics at equilibrium
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Figure 46. The bedform regime criterion proposed by Van Rijn (1984c).

Again, a comprehensive review of the literature concerning the prediction of bedform char-
acteristics is found in Chapter 2 of Garcia (2008). Here, we restrict ourselves to results of few
contributions concerning dunes, as these bedforms are quite common and significantly affect flow
and sediment transport in open cohesionless channels. The available knowledge on the subject is
still incomplete, even though, in the last two decades, significant advances in field, laboratory, and
numerical investigations have contributed to unravel the principal features of mean and turbulent
flow over alluvial sand dunes (Best, 2005). The data collected in extensive series of laboratory
observations have in particular led to predictive relationships widely exploited in the morpho-
dynamics literature, although they are not wholly satisfactory when applied to field conditions,
especially to large rivers.

Predictors for the dune height Ad and the dune wavelength Ld were proposed by Van Rijn
(1984c), based on data obtained from 84 flume experiments carried out by Guy et al. (1966) and
various other Authors, as well as on field data collected in a few rivers (including the Mississippi,
the Paraná, the Jissel and the Waal).Van Rijn (1984c) predictor for Ad reads:

Ad = 0.11D

(
d50
D

)0.3 (
1− e−0.5T

) (
25− T

)
, (354)

with D and T average flow depth and transport stage parameter, respectively. According to Van
Rijn (1984c), the dune length, scaled by the average flow depth, Ld/D, is constant and equal to
7.3, a value not far from the value 2π earlier suggested by Yalin (1964).

These relationships fit satisfactorily the experimental observations (Figure 47) but, as pointed
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Figure 45. The bedform regime criterion proposed by Engelund and Hansen (1966).

probably the most comprehensive known classification scheme, that has the merit to be based on
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, (353)
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p (Bonnefille, 1963). In

(353) τ ′∗ is the Shields stress associated with the grain roughness and τ∗c is the critical Shields
stress obtained from the Shields diagram.

The bedform regime criterion by van Rijn, shown in Figure 46, suggests that ripples exist in
the region defined by the conditions D∗ < 10 and T < 3. Dunes are observed for values of D∗ > 10
with T < 3 and for values of T in the interval 3 < T < 15. They are washed out for values of T in
the range 15 < T < 25. However, also this criterion is not fully satisfactory. Indeed, as pointed
out by Van Rijn himself (Van Rijn, 1996), in large rivers like the Mississippi, large dunes may be
observed for values of T as large as 50 (see also Julien and Klaassen, 1995; Garcia, 2008).

4.5.3 Bedform characteristics at equilibrium
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Figure 46. The bedform regime criterion proposed by Van Rijn (1984c).

Again, a comprehensive review of the literature concerning the prediction of bedform char-
acteristics is found in Chapter 2 of Garcia (2008). Here, we restrict ourselves to results of few
contributions concerning dunes, as these bedforms are quite common and significantly affect flow
and sediment transport in open cohesionless channels. The available knowledge on the subject is
still incomplete, even though, in the last two decades, significant advances in field, laboratory, and
numerical investigations have contributed to unravel the principal features of mean and turbulent
flow over alluvial sand dunes (Best, 2005). The data collected in extensive series of laboratory
observations have in particular led to predictive relationships widely exploited in the morpho-
dynamics literature, although they are not wholly satisfactory when applied to field conditions,
especially to large rivers.

Predictors for the dune height Ad and the dune wavelength Ld were proposed by Van Rijn
(1984c), based on data obtained from 84 flume experiments carried out by Guy et al. (1966) and
various other Authors, as well as on field data collected in a few rivers (including the Mississippi,
the Paraná, the Jissel and the Waal).Van Rijn (1984c) predictor for Ad reads:

Ad = 0.11D

(
d50
D

)0.3 (
1− e−0.5T

) (
25− T

)
, (354)

with D and T average flow depth and transport stage parameter, respectively. According to Van
Rijn (1984c), the dune length, scaled by the average flow depth, Ld/D, is constant and equal to
7.3, a value not far from the value 2π earlier suggested by Yalin (1964).

These relationships fit satisfactorily the experimental observations (Figure 47) but, as pointed
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out by Julien and Klaassen (1995) and Van Rijn himself (Van Rijn, 1996), they tend to underesti-
mate the dune height and the dune steepness observed in the field. The complexity of bottom
patterns observed in large rivers, where large dunes typically coexist with smaller dunes, and their
different response to variations of the flow discharge were discussed by Amsler and García (1997),
while Carling et al. (2007) investigated the dynamics of large isolated sand dunes forming under
supply-limited conditions. The role of viscous effects in smooth-transitional flows occurring in
large rivers, ignored by Van Rijn (1984c), was extensively investigated by Amsler and Schreider
(1999). These observations raise the need of further field investigations to improve our predictive
capability.

Figure 47. Comparison between Van Rijn predictors for (a) dune height and (b) dune steepness
(Van Rijn, 1984c) and laboratory-field data of various Authors (modified from Van Rijn, 1984c,

Figures 2 and 3).

Some attention has also been devoted to modeling the equilibrium shape of self-formed finite
amplitude dunes, most notably by Fredsøe (1982) and Tjerry and Fredsøe (2005). These works
exploit the linear relationship between local dune elevation and local sediment transport rate,
which applies to migrating 2D bedforms of permanent form. With the help of some closure for the
local bedload transport rate as a function of local Shields stress and local bed slope, these Authors
derive a first order differential equation for the local dune elevation depending on the distribution
of the Shields stress over the dune profile. This equation is then coupled to a hydrodynamic model
able to predict the latter distribution. Results are of scientific interest as they suggest that various
mechanisms, including the role of streamline curvature, control dune shape.

4.5.4 Bedforms and flow resistance

The effect of small scale bedforms on flow resistance is clearly illustrated in Figure 48. This
figure requires some explanation to clarify the meaning of the average bottom shear stress τ̄0
exerted on a bedform and its decomposition into grain roughness and form roughness components
(τ̄0g and τ̄0f , respectively). Let FDd denote the intensity of the drag force that the bottom exerts
on the fluid over one bedform wavelength. We may then define the average bottom shear stress τ̄0
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Figure 48. Dependence of the average bottom shear stress τ̄0, of its grain and form components τ̄0g
and τ̄0f , and of the friction coefficient Cf on the average speed U according to Raudkivi (1990).

in the form:
τ̄0 =

FDd

bd Ld
, (355)

where bd is the dune width. The drag force FDd arises from two distinct contributions, the former
associated with the effect of shear stresses, the latter arising from the normal stresses (pressures)
acting on the bottom profile. This is clear if we decompose the stress vector t acting on the bottom
into its normal (t · n̂) n̂ and tangential (t · τ̂ ) τ̂ components. Here we have denoted by n̂ and τ̂
the unit vectors in the directions normal and tangential to the bottom, respectively.

The drag force FDd is obtained projecting the stress vector in the longitudinal direction and
integrating over one dune wavelength, to find:

FDd =

∫
t · x̂ dx =

∫ [
(t · n̂) n̂ · x̂

]
dx+

∫ [
(t · τ̂ ) τ̂ · x̂

]
dx = FDf + FDg. (356)

Here FDf and FDg denote the form and grain roughness components of the drag force. Hence,
the grain (τ̄0g) and form (τ̄0f ) components of the bottom shear stress read:

τ̄0g =
FDg

bd Ld
, τ̄0f =

FDf

bd Ld
. (357)

The Figure 48 shows that the presence of bedforms significantly affects flow resistance. The form
contribution increases as the flow speed increases, reaches a peak, decreases as the dune amplitude
is reduced, and vanishes as the dunes are washed out. A smaller contribution arises in the upper
regime due to antidune formation.

The reader should note that grain and form contributions to the bottom shear stress play
different roles. The grain component is associated with turbulence and controls sediment transport,
which is unaffected by the form component of the bottom stress. On the contrary, the form
contribution to the bottom shear stress contributes significantly to flow resistance. This was first
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out by Julien and Klaassen (1995) and Van Rijn himself (Van Rijn, 1996), they tend to underesti-
mate the dune height and the dune steepness observed in the field. The complexity of bottom
patterns observed in large rivers, where large dunes typically coexist with smaller dunes, and their
different response to variations of the flow discharge were discussed by Amsler and García (1997),
while Carling et al. (2007) investigated the dynamics of large isolated sand dunes forming under
supply-limited conditions. The role of viscous effects in smooth-transitional flows occurring in
large rivers, ignored by Van Rijn (1984c), was extensively investigated by Amsler and Schreider
(1999). These observations raise the need of further field investigations to improve our predictive
capability.

Figure 47. Comparison between Van Rijn predictors for (a) dune height and (b) dune steepness
(Van Rijn, 1984c) and laboratory-field data of various Authors (modified from Van Rijn, 1984c,

Figures 2 and 3).

Some attention has also been devoted to modeling the equilibrium shape of self-formed finite
amplitude dunes, most notably by Fredsøe (1982) and Tjerry and Fredsøe (2005). These works
exploit the linear relationship between local dune elevation and local sediment transport rate,
which applies to migrating 2D bedforms of permanent form. With the help of some closure for the
local bedload transport rate as a function of local Shields stress and local bed slope, these Authors
derive a first order differential equation for the local dune elevation depending on the distribution
of the Shields stress over the dune profile. This equation is then coupled to a hydrodynamic model
able to predict the latter distribution. Results are of scientific interest as they suggest that various
mechanisms, including the role of streamline curvature, control dune shape.

4.5.4 Bedforms and flow resistance

The effect of small scale bedforms on flow resistance is clearly illustrated in Figure 48. This
figure requires some explanation to clarify the meaning of the average bottom shear stress τ̄0
exerted on a bedform and its decomposition into grain roughness and form roughness components
(τ̄0g and τ̄0f , respectively). Let FDd denote the intensity of the drag force that the bottom exerts
on the fluid over one bedform wavelength. We may then define the average bottom shear stress τ̄0
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Figure 48. Dependence of the average bottom shear stress τ̄0, of its grain and form components τ̄0g
and τ̄0f , and of the friction coefficient Cf on the average speed U according to Raudkivi (1990).

in the form:
τ̄0 =

FDd

bd Ld
, (355)

where bd is the dune width. The drag force FDd arises from two distinct contributions, the former
associated with the effect of shear stresses, the latter arising from the normal stresses (pressures)
acting on the bottom profile. This is clear if we decompose the stress vector t acting on the bottom
into its normal (t · n̂) n̂ and tangential (t · τ̂ ) τ̂ components. Here we have denoted by n̂ and τ̂
the unit vectors in the directions normal and tangential to the bottom, respectively.

The drag force FDd is obtained projecting the stress vector in the longitudinal direction and
integrating over one dune wavelength, to find:

FDd =

∫
t · x̂ dx =

∫ [
(t · n̂) n̂ · x̂

]
dx+

∫ [
(t · τ̂ ) τ̂ · x̂

]
dx = FDf + FDg. (356)

Here FDf and FDg denote the form and grain roughness components of the drag force. Hence,
the grain (τ̄0g) and form (τ̄0f ) components of the bottom shear stress read:

τ̄0g =
FDg

bd Ld
, τ̄0f =

FDf

bd Ld
. (357)

The Figure 48 shows that the presence of bedforms significantly affects flow resistance. The form
contribution increases as the flow speed increases, reaches a peak, decreases as the dune amplitude
is reduced, and vanishes as the dunes are washed out. A smaller contribution arises in the upper
regime due to antidune formation.

The reader should note that grain and form contributions to the bottom shear stress play
different roles. The grain component is associated with turbulence and controls sediment transport,
which is unaffected by the form component of the bottom stress. On the contrary, the form
contribution to the bottom shear stress contributes significantly to flow resistance. This was first
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recognized by Einstein (1950) who proposed a method to perform a partition of the average shear
stress into grain and form components. An alternative proposal for a similar partition is due to
Nelson and Smith (1989), building on previous work of Smith and McLean (1977).

Here, we refer to a physically based partition, originally suggested by Engelund (Fredsøe
and Deigaard, 1992, p. 280), whereby the form contribution to the bottom shear stress can be
estimated using the well known expression for the head loss due to a sudden flow expansion,
a feature occurring at dune crests. This idea was pursued by Fredsøe (1982) who derived an
expression for τ̄∗f , namely the Shields stress associated with τ̄0f :

τ̄∗f =
τ̄0f

(ϱs − ϱ) g d
=

1

2

U2
u

(s− 1) g d

Ad

Du

Ad

Ld
, (358)

having denoted by Du and Uu the average depth and speed of the flow, respectively.
The equation (358) is readily derived. Using the notations of Figure 49 the Borda-Carnot

formula for the head loss associated with the abrupt expansion downstream to the dune crest,
reads:

Figure 49. Sketch of a dune and notations.

∆H =
U2
1

2g

(
1− Ω1

Ω2

)2

, (359)

with H total head, Ω1 and Ω2 the cross-sectional areas at the dune top and at the dune toe,
respectively, and U1 and U2 the corresponding velocities. Employing the reasonable assumption
Ad/Du ≪ 1, one immediately finds:

1− Ω1

Ω2
= 1−

bd
(
Du − Ad

2

)

bd
(
Du +

Ad

2

) =
Ad

Du
+O

(Ad

Du

)2

, (360)

and

U1 =
Q

bd
(
Du − Ad

2

) =
Q

bd Du

[
1 +O

(Ad

Du

)]
= Uu

[
1 +O

(Ad

Du

)]
. (361)
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Hence, denoting by J the energy slope:

τ̄0f = ϱ g Du J = ϱ g Du
∆H
Ld

=
1

2
ϱU2

u

A2
d

Ld Du
, (362)

we obtain the relationship (358) for the form Shields stress.
The grain roughness contribution to the bottom shear stress may be written in terms of a

friction coefficient Cfg as:

τ̄∗g =
τ̄0g

(ϱs − ϱ) g d
=

Cfg U
2
u

(s− 1) g d
. (363)

Finally, the relationship between total and grain Shields stresses reads:

τ̄∗ = τ̄∗g

[
1 +

1

2
C−1

fg

A2
d

Ld Du

]
. (364)

This relationship was tested by Fredsøe (1982) using the set of laboratory data of Guy et al. (1966).
In order to make it a tool of practical relevance, one would need to have reliable predictors for
dune amplitude and dune wavelength.

Alternatively, one may rely on empirical relationships proposed by various Authors. Most of
them refer to sand bed rivers. In particular Engelund and Hansen (1967) proposed a relationship
between τ̄∗g and τ̄∗ based on the laboratory data of Guy et al. (1966), which is plotted in Figure
50. The branches of this relation can be approximated as follows:

τ̄∗g = 0.06 + 0.4 τ̄2∗ , 0.55 < τ̄∗g (lower regime), (365a)
τ̄∗g = τ̄∗, 0.55 < τ̄∗g < 1 (upper-transitional), (365b)

τ̄∗g =
τ̄∗(

0.702 + 0.298 τ̄1.8∗
)1/1.8 , τ̄∗g > 1 (upper-antidune). (365c)

The relation (365a) originally proposed by Engelund and Hansen (1967) to describe the lower
branch was later modified by Engelund and Fredsøe (1982) who, on the basis of supplementary
experiments, suggested to use the the slightly different formula τ̄∗g = 0.06+0.3 τ̄

3/2
∗ . Note that the

lower branch curve (lower bed regime) does not merge smoothly into the upper branch (upper bed
regime) corresponding to plane bed, standing waves and anti-dunes. The range of plane bed and
standing waves is characterized by the absence of expansion losses, hence in this regime τ̄∗ = τ̄∗g.
On the contrary, some expansion losses occur in the antidune regime, whose representative curve
may be approximated by the relation (365c) suggested by Brownlie (1983).

The use of relationships like (365a) to construct stage-discharge curves spanning the lower
regime for given channel slope S, channel width 2B and grain size d50 is straightforward. Essentially,
one starts evaluating the flow characteristics assuming the absence of expansion losses. Hence, let
Dug denote the uniform flow depth that would occur under these conditions. For any given Dug,
we can estimate the associated friction coefficient Cfg using the logarithmic law in Keulegan form:

Cfg =
1

k
ln

(
11Dug

es

)
, (366)

where es is the absolute roughness estimated by Engelund and Hansen (1967) as 2.5 d50. Chézy
law then allows to calculate the average cross-sectional speed Uu. Next, we evaluate the frictional
component of the average bottom stress τ̄0g (= ϱ g Dug S) and its Shields associate τ̄∗g. The
Engelund and Hansen relationship between τ̄∗g e τ̄∗ (365a) is finally employed to evaluate the
total Shields stress τ̄∗. The total dimensional stress τ̄0 = (ϱs − ϱ) g d50 τ̄∗ and the total flow depth
Du = τ̄0/(ϱ g S) follow. Finally, the sought value of the flow discharge Q (≡ UuDu 2B) associated
with the flow depth Du is readily calculated. A similar procedure can be used from the relation
(365c) to compute the stage-discharge curves in the upper antidune regime.
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Hence, denoting by J the energy slope:
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we obtain the relationship (358) for the form Shields stress.
The grain roughness contribution to the bottom shear stress may be written in terms of a

friction coefficient Cfg as:

τ̄∗g =
τ̄0g
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Finally, the relationship between total and grain Shields stresses reads:
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This relationship was tested by Fredsøe (1982) using the set of laboratory data of Guy et al. (1966).
In order to make it a tool of practical relevance, one would need to have reliable predictors for
dune amplitude and dune wavelength.

Alternatively, one may rely on empirical relationships proposed by various Authors. Most of
them refer to sand bed rivers. In particular Engelund and Hansen (1967) proposed a relationship
between τ̄∗g and τ̄∗ based on the laboratory data of Guy et al. (1966), which is plotted in Figure
50. The branches of this relation can be approximated as follows:

τ̄∗g = 0.06 + 0.4 τ̄2∗ , 0.55 < τ̄∗g (lower regime), (365a)
τ̄∗g = τ̄∗, 0.55 < τ̄∗g < 1 (upper-transitional), (365b)

τ̄∗g =
τ̄∗(

0.702 + 0.298 τ̄1.8∗
)1/1.8 , τ̄∗g > 1 (upper-antidune). (365c)

The relation (365a) originally proposed by Engelund and Hansen (1967) to describe the lower
branch was later modified by Engelund and Fredsøe (1982) who, on the basis of supplementary
experiments, suggested to use the the slightly different formula τ̄∗g = 0.06+0.3 τ̄

3/2
∗ . Note that the

lower branch curve (lower bed regime) does not merge smoothly into the upper branch (upper bed
regime) corresponding to plane bed, standing waves and anti-dunes. The range of plane bed and
standing waves is characterized by the absence of expansion losses, hence in this regime τ̄∗ = τ̄∗g.
On the contrary, some expansion losses occur in the antidune regime, whose representative curve
may be approximated by the relation (365c) suggested by Brownlie (1983).

The use of relationships like (365a) to construct stage-discharge curves spanning the lower
regime for given channel slope S, channel width 2B and grain size d50 is straightforward. Essentially,
one starts evaluating the flow characteristics assuming the absence of expansion losses. Hence, let
Dug denote the uniform flow depth that would occur under these conditions. For any given Dug,
we can estimate the associated friction coefficient Cfg using the logarithmic law in Keulegan form:

Cfg =
1
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ln

(
11Dug
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)
, (366)

where es is the absolute roughness estimated by Engelund and Hansen (1967) as 2.5 d50. Chézy
law then allows to calculate the average cross-sectional speed Uu. Next, we evaluate the frictional
component of the average bottom stress τ̄0g (= ϱ g Dug S) and its Shields associate τ̄∗g. The
Engelund and Hansen relationship between τ̄∗g e τ̄∗ (365a) is finally employed to evaluate the
total Shields stress τ̄∗. The total dimensional stress τ̄0 = (ϱs − ϱ) g d50 τ̄∗ and the total flow depth
Du = τ̄0/(ϱ g S) follow. Finally, the sought value of the flow discharge Q (≡ UuDu 2B) associated
with the flow depth Du is readily calculated. A similar procedure can be used from the relation
(365c) to compute the stage-discharge curves in the upper antidune regime.
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Figure 50. The relationship between τ̄∗g e τ̄∗ proposed by Engelund and Hansen. Data points refer
to laboratory observations of Guy et al. (1966) (modified from Engelund and Hansen, 1967).

The relationship of Engelund and Hansen (1967) performs well for laboratory flumes and
small and medium scale sand bed streams. When applied to large rivers at high flows, the above
approach tends to overpredict the grain contribution to flow resistance (Posada-García, 1995).
This may be related to the fact that the transition from dunes to flat bed in large rivers occurs for
values of the bed shear stresses higher than those observed in laboratory flumes.

A modified version of (365a) was proposed by Wright (2003) (but see also Wright and Parker,
2004a,b). It reads:

τ̄∗g = 0.05 + 0.7
(
τ̄∗ F

0.7
r

)0.8
. (367)

As shown in Figure 51, this relationship performs satisfactorily for the sand rivers it was derived
from, including small scale (Niobrara and Middle Loup), medium scale (Rio Grande) and large
scale (Red, Mississippi and Atchafalaya) streams.

4.5.5 Bedforms and sediment transport

A number of empirical or semi-empirical predictors for the total sediment flux (bed load
plus suspended load) have been proposed in the literature. A systematic comparison among the
performances of various predictors applied to field conditions has been performed by Brownlie
(1981). The survey concludes that the most successful predictor is the simplest formula proposed
by Engelund and Hansen (1967):

Q̃s =
Qs√

(s− 1) g d3
=

0.05

Cf
τ̄
5/2
∗ . (368)

Although the above relationship was essentially based on a fairly restricted set of laboratory data
(Guy et al., 1966), however the intensity of sediment transport predicted by (368) proves quite
accurate even when applied to field conditions and fairly large values of the average total Shields
stress.

4.5.6 Small scale fluvial bank-forms
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Figure 51. Comparison between the performances of (a) Engelund and Hansen resistance
relationship and (b) relationship (367) applied to small, medium and large scale sand rivers (data

courtesy of Wright, 2003).

While the role of small scale bedforms in open channel streams flowing over erodible cohesionless
beds has been known since the early work of Gilbert (1914a), very little attention has been devoted
to the effect of the small-scale features that commonly form on the banks of natural channels.
They typically consist of undulations due to a number of factors, such as erosion and slumping of
bank material as well as the presence of vegetation (roots, grass, etc.). As pointed out by Kean and
Smith (2006a), “the size and spacing of adjacent features can vary considerably, usually more than
the geometry of a set of dunes . . . bank features tend to be shorter, steeper, and more symmetric
than dunes” resulting “in greater form drag relative to the dune situation”. Kean and Smith (2006a)
characterized several streamwise bank surface profiles observed in the field and found that: i) the
undulations develop a fairly two-dimensional shape in the longitudinal direction; ii) the shape
of each undulation was well described by a Gaussian distribution (Figure 52). Kean (2003) (but
see also Kean and Smith, 2006a) developed a model aimed at calculating the flow field and the
associated boundary shear stress field over boundaries consisting of regular sequences of Gaussian
shaped undulations mimicking those observed in natural river banks. In a companion paper, the
same Authors (Kean and Smith, 2006b) extended the previous model, such to determine the form
drag on irregular sequences of different-sized bank features. We refer the reader to the latter
papers for details. It suffices here to outline briefly the main features of their modeling framework.

Following the approach of Smith and McLean (1977), the total shear stress on the average
boundary, τT , was partitioned into an average component associated with skin friction acting on
the actual surface, τsf , and an average component associated with form drag generated by the
boundary irregularities, τD, noting that the former is typically an order of magnitude smaller than
the latter. The form component τD was then expressed as follows:

τD =
FDb

Lp Db
=

1

2
ϱ cDb

ap
Lp

u2
ref . (369)

where FDb is the form drag acting on an individual element of the bank undulation, cDb is the
associated drag coefficient, Db is the flow depth at the bank, ap and Lp are the amplitude and the
wavelength of bank undulations, respectively (Figure 53), and uref is an appropriately determined
reference velocity. The hydrodynamic model of Kean (2003) provided an approach to calculate
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While the role of small scale bedforms in open channel streams flowing over erodible cohesionless
beds has been known since the early work of Gilbert (1914a), very little attention has been devoted
to the effect of the small-scale features that commonly form on the banks of natural channels.
They typically consist of undulations due to a number of factors, such as erosion and slumping of
bank material as well as the presence of vegetation (roots, grass, etc.). As pointed out by Kean and
Smith (2006a), “the size and spacing of adjacent features can vary considerably, usually more than
the geometry of a set of dunes . . . bank features tend to be shorter, steeper, and more symmetric
than dunes” resulting “in greater form drag relative to the dune situation”. Kean and Smith (2006a)
characterized several streamwise bank surface profiles observed in the field and found that: i) the
undulations develop a fairly two-dimensional shape in the longitudinal direction; ii) the shape
of each undulation was well described by a Gaussian distribution (Figure 52). Kean (2003) (but
see also Kean and Smith, 2006a) developed a model aimed at calculating the flow field and the
associated boundary shear stress field over boundaries consisting of regular sequences of Gaussian
shaped undulations mimicking those observed in natural river banks. In a companion paper, the
same Authors (Kean and Smith, 2006b) extended the previous model, such to determine the form
drag on irregular sequences of different-sized bank features. We refer the reader to the latter
papers for details. It suffices here to outline briefly the main features of their modeling framework.

Following the approach of Smith and McLean (1977), the total shear stress on the average
boundary, τT , was partitioned into an average component associated with skin friction acting on
the actual surface, τsf , and an average component associated with form drag generated by the
boundary irregularities, τD, noting that the former is typically an order of magnitude smaller than
the latter. The form component τD was then expressed as follows:
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where FDb is the form drag acting on an individual element of the bank undulation, cDb is the
associated drag coefficient, Db is the flow depth at the bank, ap and Lp are the amplitude and the
wavelength of bank undulations, respectively (Figure 53), and uref is an appropriately determined
reference velocity. The hydrodynamic model of Kean (2003) provided an approach to calculate
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Figure 52. Small-scale bank roughness. (a) Picture of the bank of the inset channel of the Rio Puerco near Belen,
New Mexico. (b) Measurements and Gaussian fit of bank undulations near the top of the bank. Note that the

amplitude of the elements increases from bottom to top of the bank (reproduced from Figure 2.10 of Kean, 2003).

the two unknowns in (369), namely cDb and uref . An estimate for cDb was obtained from the
experiments of Hopson (1999) on single (or sequences of) gaussian bank undulations. In order to
evaluate uref , the solution for the velocity field was sought within each of the three adjacent flow
regions which can be identified close to the banks, namely an internal boundary layer, a wake,
and an outer boundary layer (Figure 53). Solutions were then patched at the boundaries between
adjacent regions. Results show that the presence of topographic undulations and the inclusion of
form drag are crucial ingredients in order to determine the spatial distribution of the flow and the
boundary shear stress on the banks.

This is clarified in Figure 54 which shows a typical example of velocity (Figure 54a) and shear
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Figure 53. Plan view geometry of a regular sequence of bank undulations with indications of the distinct flow
regions adopted in the model of Kean (2003) (internal boundary layer, wake, and outer flow region) (modified from

Figure 2.2 of Kean, 2003).

stress (Figure 54b) distributions in the cross-section obtained applying the above model, jointly
with the flow model of Kean and Smith (2004). Note that the stress profiles are scaled by the
average stress τm of flow in an equivalent wide channel with flow depth equal to the actual depth
Dm observed in the center of the channel (i.e. τm = ϱ g Dm S). The dashed lines represent the
boundary shear stress distributions obtained assuming that the absolute roughness at the banks
ebanks equals its value at the bed ebeds . Finally, the dotted lines represent the stress profiles obtained
approximating the flow field as a lateral sequence of uniform flows with the local value D of the
flow depth (τ = ϱ g D S). This Figure provides some measure of the reduction of near-bank velocity
and the variations experienced by boundary shear stress due to the drag on bank protrusions. It
also suggests that, as pointed out by Kean and Smith (2006a), in narrow channels the influence of
the bank extends to the center of the channel.

In the companion paper, Kean and Smith (2006b), with the help of simulations performed on
irregular sequences of bank roughness elements, show that “the drag on an individual element is
primarily controlled by the size and shape of the feature immediately upstream and that the spatial
average of the boundary shear stress over a large set of randomly ordered elements is relatively
insensitive to the sequence of the elements" Moreover, they develop a method to transform the
topography of irregular surfaces into a hydrodynamically equivalently rough surface consisting of
regularly spaced, identical roughness elements. This allows the application of Kean and Smith
(2006a) approach to natural contexts. In particular, the work of Darby et al. (2010) showed that,
in the Lower Mekong river characterized by fine-grained cohesive banks, the boundary shear stress
was mainly associated with form drag, ranging between 61% and 85% of the total shear stress.

4.6. Summary of the mathematical formulation for homogeneous sediments

Let us finally summarize the mathematical ingredients needed to formulate the problem of
open channel morphodynamics.

3D Formulation

The governing equations of the hydrodynamics are the Reynolds equations and associated boundary
conditions in the form presented in Section 2.3.2. The bed evolution equation in the form (245) is
the fourth governing equation needed.

Reynolds equations need closures. For the scopes of large scale morphodynamics, it is usually
sufficient to rely on a slowly-varying assumption. In other words, one may use the Boussinesq
closure for Reynolds stresses (see equation (44) with a quasi-uniform relationship for the eddy
viscosity expressed in terms of the local value of the friction velocity and flow depth. With the
notations of equation (102), in dimensional form one may write:

νT = uτ (x, y)D(x, y)N (ζ), (370)
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Figure 52. Small-scale bank roughness. (a) Picture of the bank of the inset channel of the Rio Puerco near Belen,
New Mexico. (b) Measurements and Gaussian fit of bank undulations near the top of the bank. Note that the

amplitude of the elements increases from bottom to top of the bank (reproduced from Figure 2.10 of Kean, 2003).

the two unknowns in (369), namely cDb and uref . An estimate for cDb was obtained from the
experiments of Hopson (1999) on single (or sequences of) gaussian bank undulations. In order to
evaluate uref , the solution for the velocity field was sought within each of the three adjacent flow
regions which can be identified close to the banks, namely an internal boundary layer, a wake,
and an outer boundary layer (Figure 53). Solutions were then patched at the boundaries between
adjacent regions. Results show that the presence of topographic undulations and the inclusion of
form drag are crucial ingredients in order to determine the spatial distribution of the flow and the
boundary shear stress on the banks.

This is clarified in Figure 54 which shows a typical example of velocity (Figure 54a) and shear

134

Sediment transport in natural channels

Figure 53. Plan view geometry of a regular sequence of bank undulations with indications of the distinct flow
regions adopted in the model of Kean (2003) (internal boundary layer, wake, and outer flow region) (modified from

Figure 2.2 of Kean, 2003).

stress (Figure 54b) distributions in the cross-section obtained applying the above model, jointly
with the flow model of Kean and Smith (2004). Note that the stress profiles are scaled by the
average stress τm of flow in an equivalent wide channel with flow depth equal to the actual depth
Dm observed in the center of the channel (i.e. τm = ϱ g Dm S). The dashed lines represent the
boundary shear stress distributions obtained assuming that the absolute roughness at the banks
ebanks equals its value at the bed ebeds . Finally, the dotted lines represent the stress profiles obtained
approximating the flow field as a lateral sequence of uniform flows with the local value D of the
flow depth (τ = ϱ g D S). This Figure provides some measure of the reduction of near-bank velocity
and the variations experienced by boundary shear stress due to the drag on bank protrusions. It
also suggests that, as pointed out by Kean and Smith (2006a), in narrow channels the influence of
the bank extends to the center of the channel.

In the companion paper, Kean and Smith (2006b), with the help of simulations performed on
irregular sequences of bank roughness elements, show that “the drag on an individual element is
primarily controlled by the size and shape of the feature immediately upstream and that the spatial
average of the boundary shear stress over a large set of randomly ordered elements is relatively
insensitive to the sequence of the elements" Moreover, they develop a method to transform the
topography of irregular surfaces into a hydrodynamically equivalently rough surface consisting of
regularly spaced, identical roughness elements. This allows the application of Kean and Smith
(2006a) approach to natural contexts. In particular, the work of Darby et al. (2010) showed that,
in the Lower Mekong river characterized by fine-grained cohesive banks, the boundary shear stress
was mainly associated with form drag, ranging between 61% and 85% of the total shear stress.

4.6. Summary of the mathematical formulation for homogeneous sediments

Let us finally summarize the mathematical ingredients needed to formulate the problem of
open channel morphodynamics.

3D Formulation

The governing equations of the hydrodynamics are the Reynolds equations and associated boundary
conditions in the form presented in Section 2.3.2. The bed evolution equation in the form (245) is
the fourth governing equation needed.

Reynolds equations need closures. For the scopes of large scale morphodynamics, it is usually
sufficient to rely on a slowly-varying assumption. In other words, one may use the Boussinesq
closure for Reynolds stresses (see equation (44) with a quasi-uniform relationship for the eddy
viscosity expressed in terms of the local value of the friction velocity and flow depth. With the
notations of equation (102), in dimensional form one may write:

νT = uτ (x, y)D(x, y)N (ζ), (370)
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Figure 54. Reach-averaged (a) velocity (in m/s) and (b) boundary shear stress distributions obtained by Kean and
Smith (2006a) applying their model to Lost Creek near Anaconda, Montana (continuous line). The stress profiles
are scaled by τm = ϱ g Dm S, with Dm flow depth in the center of the channel. Dashed lines: boundary shear stress
distributions for ebank

s = ebeds . Dotted lines: stress profiles obtained using the approximation τ = ϱ g D S, with D
the local flow depth (courtesy of Jason Kean).

Needless to say, more accurate closures may be employed if needed.
Exner equation (245) also need closure relationships for Qb

sj and Qs
sj as functions of the

tangential stress at the bottom and of the local bed topography. They have been presented
in Section 4.4 for their bedload component (equations (330), (334a) (334b), (350) and (351)).
If suspended load is accounted for, then the 3D advection-diffusion equation for the Reynolds
averaged concentration (254) must be solved with the closure (259) for the turbulent diffusion
terms and the use of Reynolds analogy to estimate the turbulent diffusivity in terms of the eddy
viscosity. Once the concentration equation has been solved, the components of the depth averaged
sediment flux per unit width (Qs

sx and Qs
sy) are calculated from relations (260).

2D Formulation

The governing equations are now the shallow water equations and associated boundary conditions
in the form presented in Section 2.4 along with the bed evolution equation in the form (245).

The only closure needed for the shallow water equations concerns the friction coefficient. Again,
for the scopes of large scale morphodynamics, it is usually sufficient to rely on a slowly-varying
assumption. In other words, one may use the expression for the friction coefficient appropriate to
uniform flow expressed in terms of the local values of the roughness coefficient, flow depth and
possibly Shields stress provided small scale bedforms are present on the bed.

As for the bedload component of the sediment flux per unit width, the closures for Exner
equation do not differ from those for the 3D case summarized above. The components of the depth-
integrated suspended sediment flux per unit width (Qs

sx and Qs
sy) can be calculated employing the
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analytical approach appropriate to slowly varying flows described in Section 4.3.3.

Decoupling

The morphodynamic time scale for the evolution of morphological patterns under steady hydrody-
namic conditions and constant sediment supply is typically much larger than the flow time scale.
For example, the time required for the bar pattern to travel a given distance (say a bar wavelength)
is much larger than the time needed for a fluid particle to travel the same distance. This physical
fact justifies neglecting the temporal derivatives in the hydrodynamic equations. This simplified
assumption, whereby one essentially assumes that the flow field adapts instantaneously (if viewed
on the morphodynamic time scale) to temporal variations of the bed interface, is commonly
described as decoupling assumption.

4.7. Extensions to heterogeneous sediments

In this section, we outline some additional features that complicate the picture of sediment
transport further. They involve a number of partially settled issues, concerning the effects of
sediment heterogeneity. The dynamics of sediment mixtures and sorting patterns may well deserve
further specific attention in future Monographs of the present series. Below, we do not attempt
to provide a comprehensive review of the state of the art on those issues. We simply seek to
stimulate the interest of the readers providing them with brief introductions to the complexities of
mechanisms that control such additional effects and to the novel modeling ingredients needed to
investigate the formation of the so called sorting patterns.

The subject of bedload transport of heterogeneous sediments has been extensively reviewed in
the recent past (e.g. Parker, 1992; Powell, 1998; Parker, 2008). We will largely refer to the latter
works. Prerequisite to follow the present section is an elementary knowledge of the basic definitions
of the geometrical characteristics of sediment mixtures (see, e.g. Chapter 1 of Blondeaux et al.,
2018).

4.7.1 Threshold for particle entrainment of heterogeneous sediments: Hiding

The dynamics of heterogeneous mixtures is dominated by the phenomenon of hiding whereby
finer grains, protruding in the turbulent boundary layer less than larger grains, feel fluid drag less
intensely than larger grains (Figure 55). This simple effect was recognized by Einstein (1950) and
Egiazaroff (1965) and tends to counteract the opposite effect whereby reduced gravity makes the
lighter finer grains more easily mobilized than the heavier coarser grains.

In order to appreciate the implications of hiding, let us first analyze how entrainment would
operate in the absence of any effects of hiding. Let τ∗cd and τ∗cg be the critical values of the
dimensionless Shields stress for the grains of size d and dg, respectively, with dg the geometric
grain size of the mixture. They are defined in the form

τ∗cd =
τcd

(ϱs − ϱ) g d
, τ∗cg =

τcg
(ϱs − ϱ) g dg

, (371)

with τcd and τcg dimensional values of the respective critical stresses. With no-hiding, one should
set

τ∗cd = τ∗cg, (372)

and, recalling the definitions (371),
τcd
τcg

=
d

dg
. (373)

Hence, in the absence of hiding, the dimensional values of the critical stresses for particle entrain-
ment would be simply proportional to grain size: finer grains would be more mobile than larger
grains in proportion to the corresponding sizes. However, this is not what is observed in nature:
sizes larger than the average are slightly less mobile while sizes smaller than the average are slightly
more mobile.
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Figure 54. Reach-averaged (a) velocity (in m/s) and (b) boundary shear stress distributions obtained by Kean and
Smith (2006a) applying their model to Lost Creek near Anaconda, Montana (continuous line). The stress profiles
are scaled by τm = ϱ g Dm S, with Dm flow depth in the center of the channel. Dashed lines: boundary shear stress
distributions for ebank

s = ebeds . Dotted lines: stress profiles obtained using the approximation τ = ϱ g D S, with D
the local flow depth (courtesy of Jason Kean).

Needless to say, more accurate closures may be employed if needed.
Exner equation (245) also need closure relationships for Qb

sj and Qs
sj as functions of the

tangential stress at the bottom and of the local bed topography. They have been presented
in Section 4.4 for their bedload component (equations (330), (334a) (334b), (350) and (351)).
If suspended load is accounted for, then the 3D advection-diffusion equation for the Reynolds
averaged concentration (254) must be solved with the closure (259) for the turbulent diffusion
terms and the use of Reynolds analogy to estimate the turbulent diffusivity in terms of the eddy
viscosity. Once the concentration equation has been solved, the components of the depth averaged
sediment flux per unit width (Qs

sx and Qs
sy) are calculated from relations (260).

2D Formulation

The governing equations are now the shallow water equations and associated boundary conditions
in the form presented in Section 2.4 along with the bed evolution equation in the form (245).

The only closure needed for the shallow water equations concerns the friction coefficient. Again,
for the scopes of large scale morphodynamics, it is usually sufficient to rely on a slowly-varying
assumption. In other words, one may use the expression for the friction coefficient appropriate to
uniform flow expressed in terms of the local values of the roughness coefficient, flow depth and
possibly Shields stress provided small scale bedforms are present on the bed.

As for the bedload component of the sediment flux per unit width, the closures for Exner
equation do not differ from those for the 3D case summarized above. The components of the depth-
integrated suspended sediment flux per unit width (Qs

sx and Qs
sy) can be calculated employing the
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analytical approach appropriate to slowly varying flows described in Section 4.3.3.

Decoupling

The morphodynamic time scale for the evolution of morphological patterns under steady hydrody-
namic conditions and constant sediment supply is typically much larger than the flow time scale.
For example, the time required for the bar pattern to travel a given distance (say a bar wavelength)
is much larger than the time needed for a fluid particle to travel the same distance. This physical
fact justifies neglecting the temporal derivatives in the hydrodynamic equations. This simplified
assumption, whereby one essentially assumes that the flow field adapts instantaneously (if viewed
on the morphodynamic time scale) to temporal variations of the bed interface, is commonly
described as decoupling assumption.

4.7. Extensions to heterogeneous sediments

In this section, we outline some additional features that complicate the picture of sediment
transport further. They involve a number of partially settled issues, concerning the effects of
sediment heterogeneity. The dynamics of sediment mixtures and sorting patterns may well deserve
further specific attention in future Monographs of the present series. Below, we do not attempt
to provide a comprehensive review of the state of the art on those issues. We simply seek to
stimulate the interest of the readers providing them with brief introductions to the complexities of
mechanisms that control such additional effects and to the novel modeling ingredients needed to
investigate the formation of the so called sorting patterns.

The subject of bedload transport of heterogeneous sediments has been extensively reviewed in
the recent past (e.g. Parker, 1992; Powell, 1998; Parker, 2008). We will largely refer to the latter
works. Prerequisite to follow the present section is an elementary knowledge of the basic definitions
of the geometrical characteristics of sediment mixtures (see, e.g. Chapter 1 of Blondeaux et al.,
2018).

4.7.1 Threshold for particle entrainment of heterogeneous sediments: Hiding

The dynamics of heterogeneous mixtures is dominated by the phenomenon of hiding whereby
finer grains, protruding in the turbulent boundary layer less than larger grains, feel fluid drag less
intensely than larger grains (Figure 55). This simple effect was recognized by Einstein (1950) and
Egiazaroff (1965) and tends to counteract the opposite effect whereby reduced gravity makes the
lighter finer grains more easily mobilized than the heavier coarser grains.

In order to appreciate the implications of hiding, let us first analyze how entrainment would
operate in the absence of any effects of hiding. Let τ∗cd and τ∗cg be the critical values of the
dimensionless Shields stress for the grains of size d and dg, respectively, with dg the geometric
grain size of the mixture. They are defined in the form

τ∗cd =
τcd

(ϱs − ϱ) g d
, τ∗cg =

τcg
(ϱs − ϱ) g dg

, (371)

with τcd and τcg dimensional values of the respective critical stresses. With no-hiding, one should
set

τ∗cd = τ∗cg, (372)

and, recalling the definitions (371),
τcd
τcg

=
d

dg
. (373)

Hence, in the absence of hiding, the dimensional values of the critical stresses for particle entrain-
ment would be simply proportional to grain size: finer grains would be more mobile than larger
grains in proportion to the corresponding sizes. However, this is not what is observed in nature:
sizes larger than the average are slightly less mobile while sizes smaller than the average are slightly
more mobile.
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Figure 55. Sketch illustrating the mechanism, called hiding, whereby larger particles in a mixture are more prone to
be mobilized than finer grains which hide between coarser grains

In order to account for hiding, Egiazaroff (1965) suggested to correct the dimensionless value
of the critical Shields stress through a hiding function H(d), depending on grain size, defined in
the form

H(d) =
τ∗cd
τ∗cg

. (374)

Two important limits deserve special attention.

- No-hiding corresponds to the hiding function H being constant and equal to 1: in this case
the differential mobility of large versus fine grains is maximum.

- Perfect hiding would be achieved if the dimensional values of the critical stresses were size-
independent (τcd = τcg): in this case the hiding function H would simply reduce to (dg/d).
This condition was described as equal mobility by Parker and co-workers in a series of papers
(Parker and Klingeman, 1982; Parker et al., 1982a,b) which have strongly influenced the
subject, determining a debate which is still not wholly settled (Parker and Toro-Escobar,
2002). We will discuss the dynamic implications of the notion of equal mobility in Section
4.7.2.

A number of expressions for H have been proposed in the literature. In particular, the
relationship suggested by Egiazaroff (1965), with some corrections introduced by Ashida and
Michiue (1972), reads

H =

[
1 + 0.782 log

(
d

dg

)]−2 (
d

dg
≥ 0.4

)
(375)

H = 0.843
dg
d

(
d

dg
< 0.4

)
. (376)

An alternative form was proposed by Parker (1990),

H =

(
dg
d

)b

(b = 0.9), (377)

where the degree of departure of the value of the exponent b from one measures the degree of
unequal mobility of different grains in the mixture. To make the latter statement more quantitative,
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we note that, using (377) with τ∗cg = 0.03 and considering a sediment mixture with dg = 80
mm, the ratio between the physical stresses required to mobilize two grains with sizes d = 120
mm and d = 40 mm is equal to 1.12. The same grains, each lying on a uniform cohesionless
bed, would have mobilities differing by a factor 3. Note that Parker relationship (377) predicts
differential mobilities significantly smaller than those predicted using the relations of Egiazaroff
and Ashida-Michiue.

The figure 56 shows experimental observations and relationships proposed for the structure of
the hiding function (Powell, 1998). The upper plot shows the hiding function of Egiazaroff and
the data on which it was based. Figure 56b shows a larger set of data, collected by Ferguson et al.
(1989), compared with results of theoretical analysis of Komar and Li (1986) and Wiberg and
Smith (1987), as well as with the hiding function of Parker (1990) (equation 377) with b = 0.88
chosen by least squares regression for d/dg < 2.

What can we conclude from Figure 56? Firstly, it appears that sizes larger (smaller) than the
average are less (more) mobile than the average size, but this effect is indeed much weaker than
it would be in the absence of hiding (see the equal mobility line). Secondly, although significant
scatter is present, observations suggest that, in the range d/dg < 2, hiding is quasi perfect, i.e.
such that equal mobility is nearly achieved. On the contrary, in the range of high values of d/dg,
the trend tends to that of no-hiding (identified by the horizontal line), as noted much earlier by
Ramette and Heuzel (1962). This was further substantiated by Wilcock (1993), who investigated
the effect of the degree of mixture bimodality on differential entrainment and concluded that “the
critical shear stress of individual fractions τcd in unimodal and weakly bimodal sediments shows
little variation with grain size and depends only on the mean grain size of the mixture. For strongly
bimodal sediments, τcd increases with grain size”.

Below, we analyze the transport of heterogeneous sediment mixtures. This process is also
affected by hiding, which will then be further discussed.

4.7.2 Evaluation of grain size specific bed load transport capacity

Let us consider the uniform flow in a straight rectangular channel of width 2B, subject to
the supply of a constant discharge of heterogeneous sediments Qb

0 = 2BQb
0, where Qb

0 is the
sediment supply per unit width and the subscript 0 stands for reference uniform state. Under
equilibrium conditions sediment supply equals transport capacity. Let the sediment mixture be
characterized by an assigned grain size distribution of density f0(d). The heterogeneous character
of the sediments suggests that Qb

0 can be expressed as the integral of the transport capacity per
unit width Qb

0d of grains in the size range d, d+ dd, of the form

Qb
0 =

∫ ∞

0

Qb
0d dd. (378)

We then need to evaluate the grain size specific transport capacity Qb
0d. This quantity depends

on the availability of sediments in the range (d, d+ dd) in the surface layer of the bed. It is then
natural to assume that Qb

0d is proportional to the probability density of sediments available for
entrainment in the surface layer. Hence, we write

Qb
0d = f0(d)

√
(s− 1) g d3 Φ0d. (379)

where Φ0d is the dimensionless form of the bedload transport capacity of homogeneous sediments
in a uniform stream, subject to the Shields stress τ∗d associated with grains of size d. Following
Parker and Klingeman (1982) we express Φ0d as follows:

Φ0d = τ
3/2
∗d G(τ∗d). (380)

This definition is quite instructive. If G were constant the transport capacity would be size-
independent as d is present in the scalings of both Φ0d and τ

3/2
∗d in identical form. In this

case, the difference between transport capacities of different sizes would arise only from the
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Figure 55. Sketch illustrating the mechanism, called hiding, whereby larger particles in a mixture are more prone to
be mobilized than finer grains which hide between coarser grains

In order to account for hiding, Egiazaroff (1965) suggested to correct the dimensionless value
of the critical Shields stress through a hiding function H(d), depending on grain size, defined in
the form

H(d) =
τ∗cd
τ∗cg

. (374)

Two important limits deserve special attention.

- No-hiding corresponds to the hiding function H being constant and equal to 1: in this case
the differential mobility of large versus fine grains is maximum.

- Perfect hiding would be achieved if the dimensional values of the critical stresses were size-
independent (τcd = τcg): in this case the hiding function H would simply reduce to (dg/d).
This condition was described as equal mobility by Parker and co-workers in a series of papers
(Parker and Klingeman, 1982; Parker et al., 1982a,b) which have strongly influenced the
subject, determining a debate which is still not wholly settled (Parker and Toro-Escobar,
2002). We will discuss the dynamic implications of the notion of equal mobility in Section
4.7.2.

A number of expressions for H have been proposed in the literature. In particular, the
relationship suggested by Egiazaroff (1965), with some corrections introduced by Ashida and
Michiue (1972), reads
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where the degree of departure of the value of the exponent b from one measures the degree of
unequal mobility of different grains in the mixture. To make the latter statement more quantitative,
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we note that, using (377) with τ∗cg = 0.03 and considering a sediment mixture with dg = 80
mm, the ratio between the physical stresses required to mobilize two grains with sizes d = 120
mm and d = 40 mm is equal to 1.12. The same grains, each lying on a uniform cohesionless
bed, would have mobilities differing by a factor 3. Note that Parker relationship (377) predicts
differential mobilities significantly smaller than those predicted using the relations of Egiazaroff
and Ashida-Michiue.

The figure 56 shows experimental observations and relationships proposed for the structure of
the hiding function (Powell, 1998). The upper plot shows the hiding function of Egiazaroff and
the data on which it was based. Figure 56b shows a larger set of data, collected by Ferguson et al.
(1989), compared with results of theoretical analysis of Komar and Li (1986) and Wiberg and
Smith (1987), as well as with the hiding function of Parker (1990) (equation 377) with b = 0.88
chosen by least squares regression for d/dg < 2.

What can we conclude from Figure 56? Firstly, it appears that sizes larger (smaller) than the
average are less (more) mobile than the average size, but this effect is indeed much weaker than
it would be in the absence of hiding (see the equal mobility line). Secondly, although significant
scatter is present, observations suggest that, in the range d/dg < 2, hiding is quasi perfect, i.e.
such that equal mobility is nearly achieved. On the contrary, in the range of high values of d/dg,
the trend tends to that of no-hiding (identified by the horizontal line), as noted much earlier by
Ramette and Heuzel (1962). This was further substantiated by Wilcock (1993), who investigated
the effect of the degree of mixture bimodality on differential entrainment and concluded that “the
critical shear stress of individual fractions τcd in unimodal and weakly bimodal sediments shows
little variation with grain size and depends only on the mean grain size of the mixture. For strongly
bimodal sediments, τcd increases with grain size”.

Below, we analyze the transport of heterogeneous sediment mixtures. This process is also
affected by hiding, which will then be further discussed.

4.7.2 Evaluation of grain size specific bed load transport capacity

Let us consider the uniform flow in a straight rectangular channel of width 2B, subject to
the supply of a constant discharge of heterogeneous sediments Qb

0 = 2BQb
0, where Qb

0 is the
sediment supply per unit width and the subscript 0 stands for reference uniform state. Under
equilibrium conditions sediment supply equals transport capacity. Let the sediment mixture be
characterized by an assigned grain size distribution of density f0(d). The heterogeneous character
of the sediments suggests that Qb

0 can be expressed as the integral of the transport capacity per
unit width Qb

0d of grains in the size range d, d+ dd, of the form

Qb
0 =

∫ ∞

0

Qb
0d dd. (378)

We then need to evaluate the grain size specific transport capacity Qb
0d. This quantity depends

on the availability of sediments in the range (d, d+ dd) in the surface layer of the bed. It is then
natural to assume that Qb

0d is proportional to the probability density of sediments available for
entrainment in the surface layer. Hence, we write

Qb
0d = f0(d)

√
(s− 1) g d3 Φ0d. (379)

where Φ0d is the dimensionless form of the bedload transport capacity of homogeneous sediments
in a uniform stream, subject to the Shields stress τ∗d associated with grains of size d. Following
Parker and Klingeman (1982) we express Φ0d as follows:

Φ0d = τ
3/2
∗d G(τ∗d). (380)

This definition is quite instructive. If G were constant the transport capacity would be size-
independent as d is present in the scalings of both Φ0d and τ

3/2
∗d in identical form. In this

case, the difference between transport capacities of different sizes would arise only from the
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Figure 56. (a) The hiding function of Egiazaroff (equation 376) is plotted along with the data on which its
derivation was based. (b) Data collected by Ferguson et al. (1989) are compared with results of theoretical analysis
of Komar and Li (1986) and Wiberg and Smith (1987). The hiding function of Parker (equation 377) with b = 0.88
chosen by least squares regression for d/dg < 2, as well as the equal mobility form of the function (dotted red line,
b = 1) are also shown. The horizontal line illustrates the tendency of τ∗cd to attain constant values for large d/dg

as suggested earlier by Ramette and Heuzel (1962) (modified from Powell, 1998).

different availabilities of each size, as measured by the function f0(d) (equation 379). However, for
nonhomogeneous sediments, G is not constant, it is rather an increasing function of τ∗d. Hence
(380) predicts values of Φ0d for finer grains quite larger than for coarser grains. This effect would

140

Sediment transport in natural channels

prevail over the effect of the reduced representation of finer grains in the surface layer. As a result,
contrary to observations, (379) and (380) would lead to transport capacities of the fine fraction
much larger than that of the coarse fraction.

The generalization of (380) to mixtures then requires a correction for hiding. Dynamically,
this implies that the dimensionless Shields stress, which controls the transport rate of each size,
must be corrected through the introduction of a hiding function. Following Parker and Klingeman
(1982), we write:

Qb
0d =


(s− 1) g d3g f0(d) τ

3/2
∗g G


τ∗g H


d

dg


, (381)

where τ∗g is the Shields stress associated with the geometric mean size of the surface layer dg.
Various suggestions are available in the literature to quantify the function G (e.g. Ashida and

Michiue, 1972; Parker, 1990; Powell et al., 2001; Wilcock and Crowe, 2003). Below, we provide two
examples and refer the reader to the extensive treatment of Parker (2008) for a more comprehensive
overview of the available approaches.

Parker (1990) based his analysis on field observations performed on a small gravel bed river,
Oak Creek, Oregon, USA (Milhous, 1973). Moreover, his approach ignored the sand component of
the mixture. Hence, the probability density f0 was renormalized removing the sand component
and, similarly, the quantities dg and τ∗g were based on the renormalized distribution. The outcome
of the analysis was the following relationship for G,

G(ξ) ≡




11.93
�
1− 0.853/ξ

4.5
ξ > 1.59

0.00218 exp

14.2

�
ξ − 1


− 9.28

�
ξ − 1

2
1 < ξ < 1.59

0.00218 ξ14.2 ξ < 1,

(382)

where ξ reads:

ξ = ω
τ∗g
τ∗r


d

dg

−b

. (383)

Here, τ∗r is a reference stress which replaces the usual notion of critical stress, b is a hiding
parameter and ω is a straining coefficient. They read:

τ∗r = 0.0386, b = 0.0905, ω = 1 +
σs

σ0


ω0 − 1


, (384)

where σs is the standard deviation of the grain size distribution of the surface layer and ω0, σ0 are
parameters plotted in Parker (1990) as functions of τ∗g/τ∗r.

The approach of Wilcock and Crowe (2003) differs from the approach of Parker (1990) in that
the sand fraction is not excluded when computing the function G, which now reads:

G(ξ) ≡


0.002 ξ7.5 ξ < 1.35

14
�
1− 0.894/ξ0.5

4.5
ξ > 1.35

(385)

Here, ξ is defined by (383) with ω = 1. Moreover, τ∗r is replaced by τ∗rg where

τ∗rg = 0.021 + 0.015 exp(−20Fss), b =
0.67

1 + exp(1.5− d/dg)
. (386)

In (386) we have denoted by Fss the cumulative sand fraction in the surface layer, a fraction which
rarely exceeds 30%.

The reader should note that the mean reference stress for the surface material τ∗rg, as predicted
by (386), increases as the sand fraction decreases (Figure 57b). This is an important effect pointed
out by Wilcock and Crowe (2003). Increasing the sand content in the surface layer of a gravel-bed
river enhances the mobility of the surface gravel. Also, unlike in Parker (1990), the hiding exponent
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Figure 56. (a) The hiding function of Egiazaroff (equation 376) is plotted along with the data on which its
derivation was based. (b) Data collected by Ferguson et al. (1989) are compared with results of theoretical analysis
of Komar and Li (1986) and Wiberg and Smith (1987). The hiding function of Parker (equation 377) with b = 0.88
chosen by least squares regression for d/dg < 2, as well as the equal mobility form of the function (dotted red line,
b = 1) are also shown. The horizontal line illustrates the tendency of τ∗cd to attain constant values for large d/dg

as suggested earlier by Ramette and Heuzel (1962) (modified from Powell, 1998).

different availabilities of each size, as measured by the function f0(d) (equation 379). However, for
nonhomogeneous sediments, G is not constant, it is rather an increasing function of τ∗d. Hence
(380) predicts values of Φ0d for finer grains quite larger than for coarser grains. This effect would
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prevail over the effect of the reduced representation of finer grains in the surface layer. As a result,
contrary to observations, (379) and (380) would lead to transport capacities of the fine fraction
much larger than that of the coarse fraction.

The generalization of (380) to mixtures then requires a correction for hiding. Dynamically,
this implies that the dimensionless Shields stress, which controls the transport rate of each size,
must be corrected through the introduction of a hiding function. Following Parker and Klingeman
(1982), we write:
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where τ∗g is the Shields stress associated with the geometric mean size of the surface layer dg.
Various suggestions are available in the literature to quantify the function G (e.g. Ashida and

Michiue, 1972; Parker, 1990; Powell et al., 2001; Wilcock and Crowe, 2003). Below, we provide two
examples and refer the reader to the extensive treatment of Parker (2008) for a more comprehensive
overview of the available approaches.

Parker (1990) based his analysis on field observations performed on a small gravel bed river,
Oak Creek, Oregon, USA (Milhous, 1973). Moreover, his approach ignored the sand component of
the mixture. Hence, the probability density f0 was renormalized removing the sand component
and, similarly, the quantities dg and τ∗g were based on the renormalized distribution. The outcome
of the analysis was the following relationship for G,
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where ξ reads:
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Here, τ∗r is a reference stress which replaces the usual notion of critical stress, b is a hiding
parameter and ω is a straining coefficient. They read:

τ∗r = 0.0386, b = 0.0905, ω = 1 +
σs

σ0
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, (384)

where σs is the standard deviation of the grain size distribution of the surface layer and ω0, σ0 are
parameters plotted in Parker (1990) as functions of τ∗g/τ∗r.

The approach of Wilcock and Crowe (2003) differs from the approach of Parker (1990) in that
the sand fraction is not excluded when computing the function G, which now reads:
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Here, ξ is defined by (383) with ω = 1. Moreover, τ∗r is replaced by τ∗rg where

τ∗rg = 0.021 + 0.015 exp(−20Fss), b =
0.67

1 + exp(1.5− d/dg)
. (386)

In (386) we have denoted by Fss the cumulative sand fraction in the surface layer, a fraction which
rarely exceeds 30%.

The reader should note that the mean reference stress for the surface material τ∗rg, as predicted
by (386), increases as the sand fraction decreases (Figure 57b). This is an important effect pointed
out by Wilcock and Crowe (2003). Increasing the sand content in the surface layer of a gravel-bed
river enhances the mobility of the surface gravel. Also, unlike in Parker (1990), the hiding exponent
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is now a function of grain size. It corrects the reference stress of grain sizes smaller than the
average differently from grain sizes larger than the average:

τr
τrg
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(
d

dg

)0.67
[
1+exp

(
1.5−d/dg

)]−1

. (387)

The Figure 57a shows how the latter relationship fits the experimental observations on which it
was based (Wilcock and Crowe, 2003).

Figure 57. (a) Comparison between predictions of the reference stress of size d based on equation (387) and
experimental observations (Wilcock and Crowe, 2003); (b) Dependence of the mean dimensionless reference stress
for the surface material τ∗rg on the sand fraction, according to (386) (modified from Wilcock and Crowe, 2003).

4.7.3 Grain size specific formulation of Exner equation: Hirano’s approach

The heterogeneous character of sediments also calls for the need to adapt the classical Exner
equation, i.e. the differential formulation of mass conservation for the transport of sediments,
such that the balance is satisfied for each grain size. The processes of particle mixing, through
deposition, burial and re-entrainment, have attracted the attention of scientists for a long time
(see the review of Hassan and Church, 1994). The first sound attempt at formulating a grain size
specific form of the mass conservation equation is due to Hirano (1971). The latter approach
has then dominated the subject for roughly three decades, although various improvements were
proposed (e.g. Armanini and Di Silvio, 1988; Armanini, 1995). Parker et al. (2000) have introduced
a novel approach able to account for the effects of vertical mixing and of the random nature
of the geometry of the bed interface in the presence of large scale bedforms. Below, we outline
the derivation of the model by Hirano (1971), the merits and limits of which have been fully
ascertained. The probabilistic formulation of Parker et al. (2000), whose potential has not been
fully exploited yet, will be briefly outlined in the next section.

The formulation of Hirano (1971) (see the extensive presentations in Parker, 1992, 2008) adopts
a two layer structure to model the dynamics of a river bed: a surface exchange layer of thickness
La, called active layer, and a substrate (Figure 58a). The probability density functions of a given
grain size d within these two layers are denoted by fa and fs, respectively.

The active layer is taken to be vertically well mixed so that the probability density function fa
of the material within it has no vertical structure. On the contrary, the substrate has no direct
interaction with bedload transport but can exchange material with the active layer if the bed
undergoes aggradation-degradation and/or the bed pattern is affected by vertical mixing, through
deposition, burial and re-entrainment, as typically occurs in the presence of large amplitude
bedforms.
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Thus, the grain-size distribution density f is in general discontinuous. In the active layer it
may depend on the longitudinal and lateral cartesian coordinates, x and y, as well as on time t, i.e.
fa = fa(d;x, y, t), whereas in the substrate it can also vary with the vertical coordinate z, namely
fs = fs(d;x, y, z, t), the dependence on time being related to aggradation/degradation processes or
bed reworking by large amplitude bedforms. Aggradation/degradation can be incorporated easily
into the model. Conversely, as discussed below, the presence of large amplitude bedforms requires
some more elaborate analysis able to describe vertical mixing, like the probabilistic framework
proposed by Parker et al. (2000) that will be briefly outlined in the next Section.

Figure 58. (a) Sketch of the two-layer structure in the model of Hirano (1971), with illustration of the flux
exchanged through the interface between the active layer and the substrate in the case of (b) bed degradation and

(c) bed aggradation (according to from Toro-Escobar et al., 1996).

Within Hirano framework, the size specific form of the statement of mass conservation for the
active layer can be written in the form:

(1− p)

[
fi

∂η

∂t
+ La

∂fa
∂t

]
+

∂(fa Q
b
xd)

∂x
+

∂(fa Q
b
yd)

∂y
= 0. (388)

Here, the thickness of the active layer La is assumed to be constant. Moreover, Qb
xd and Qb

yd
are the longitudinal and lateral components of the size specific bedload transport vector per unit
width, Qb

d, p is the porosity of the granular mixture in the substrate, assumed to be constant, and
fi is the grain-size distribution density at the interface between the active layer and the substrate.
Assigning the value of this function is not obvious due to the assumed discontinuous character of
the grain-size density distribution. If the bed is degrading (∂η/∂t < 0), the common choice is to
assume fi equal to the value of fs in the substrate just below the active layer (Figure 58b). In the
aggrading case (∂η/∂t > 0), a variety of suggestions have been made, ranging from the original
assumption (Hirano, 1971) that fi = fa, to the more recent suggestion, supported by laboratory
experiments (Toro-Escobar et al., 1996), that fi may be expressed as a weighted average of the
grain size density distributions of the active layer (fa) and of the bedload (fb) (Figure 58c).

The reader should note that, in the case of heterogeneous sediment, besides the four unknown
functions (depth averaged velocities, free surface elevation and bed elevation) characteristic of the
homogeneous case, one further unknown function is involved, namely the grain-size probability
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is now a function of grain size. It corrects the reference stress of grain sizes smaller than the
average differently from grain sizes larger than the average:
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The Figure 57a shows how the latter relationship fits the experimental observations on which it
was based (Wilcock and Crowe, 2003).

Figure 57. (a) Comparison between predictions of the reference stress of size d based on equation (387) and
experimental observations (Wilcock and Crowe, 2003); (b) Dependence of the mean dimensionless reference stress
for the surface material τ∗rg on the sand fraction, according to (386) (modified from Wilcock and Crowe, 2003).
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The heterogeneous character of sediments also calls for the need to adapt the classical Exner
equation, i.e. the differential formulation of mass conservation for the transport of sediments,
such that the balance is satisfied for each grain size. The processes of particle mixing, through
deposition, burial and re-entrainment, have attracted the attention of scientists for a long time
(see the review of Hassan and Church, 1994). The first sound attempt at formulating a grain size
specific form of the mass conservation equation is due to Hirano (1971). The latter approach
has then dominated the subject for roughly three decades, although various improvements were
proposed (e.g. Armanini and Di Silvio, 1988; Armanini, 1995). Parker et al. (2000) have introduced
a novel approach able to account for the effects of vertical mixing and of the random nature
of the geometry of the bed interface in the presence of large scale bedforms. Below, we outline
the derivation of the model by Hirano (1971), the merits and limits of which have been fully
ascertained. The probabilistic formulation of Parker et al. (2000), whose potential has not been
fully exploited yet, will be briefly outlined in the next section.

The formulation of Hirano (1971) (see the extensive presentations in Parker, 1992, 2008) adopts
a two layer structure to model the dynamics of a river bed: a surface exchange layer of thickness
La, called active layer, and a substrate (Figure 58a). The probability density functions of a given
grain size d within these two layers are denoted by fa and fs, respectively.

The active layer is taken to be vertically well mixed so that the probability density function fa
of the material within it has no vertical structure. On the contrary, the substrate has no direct
interaction with bedload transport but can exchange material with the active layer if the bed
undergoes aggradation-degradation and/or the bed pattern is affected by vertical mixing, through
deposition, burial and re-entrainment, as typically occurs in the presence of large amplitude
bedforms.
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Thus, the grain-size distribution density f is in general discontinuous. In the active layer it
may depend on the longitudinal and lateral cartesian coordinates, x and y, as well as on time t, i.e.
fa = fa(d;x, y, t), whereas in the substrate it can also vary with the vertical coordinate z, namely
fs = fs(d;x, y, z, t), the dependence on time being related to aggradation/degradation processes or
bed reworking by large amplitude bedforms. Aggradation/degradation can be incorporated easily
into the model. Conversely, as discussed below, the presence of large amplitude bedforms requires
some more elaborate analysis able to describe vertical mixing, like the probabilistic framework
proposed by Parker et al. (2000) that will be briefly outlined in the next Section.

Figure 58. (a) Sketch of the two-layer structure in the model of Hirano (1971), with illustration of the flux
exchanged through the interface between the active layer and the substrate in the case of (b) bed degradation and

(c) bed aggradation (according to from Toro-Escobar et al., 1996).

Within Hirano framework, the size specific form of the statement of mass conservation for the
active layer can be written in the form:
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+
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Here, the thickness of the active layer La is assumed to be constant. Moreover, Qb
xd and Qb

yd
are the longitudinal and lateral components of the size specific bedload transport vector per unit
width, Qb

d, p is the porosity of the granular mixture in the substrate, assumed to be constant, and
fi is the grain-size distribution density at the interface between the active layer and the substrate.
Assigning the value of this function is not obvious due to the assumed discontinuous character of
the grain-size density distribution. If the bed is degrading (∂η/∂t < 0), the common choice is to
assume fi equal to the value of fs in the substrate just below the active layer (Figure 58b). In the
aggrading case (∂η/∂t > 0), a variety of suggestions have been made, ranging from the original
assumption (Hirano, 1971) that fi = fa, to the more recent suggestion, supported by laboratory
experiments (Toro-Escobar et al., 1996), that fi may be expressed as a weighted average of the
grain size density distributions of the active layer (fa) and of the bedload (fb) (Figure 58c).

The reader should note that, in the case of heterogeneous sediment, besides the four unknown
functions (depth averaged velocities, free surface elevation and bed elevation) characteristic of the
homogeneous case, one further unknown function is involved, namely the grain-size probability
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density function fa(d;x, y, t), that must satisfy the obvious constraint:
∫ ∞

0

fa(d;x, y, t) dd = 1. (389)

This is conceptually a major novel feature of the sorting problem. Indeed, the constraint (389)
transforms the mathematical nature of the problem from differential into integro-differential.

The classical form of Exner equation for homogeneous sediments is immediately recovered
integrating (388) over all grain sizes and using the constraint (389) and the similar constraint valid
for the interfacial grain-size probability density function fi.

The statement (388) differs from the classical Exner equation in various respects:

- variations of bed elevation now contribute to the grain specific sediment balance in proportion
to the size probability density function fi;

- the divergence of the sediment flux per unit width is replaced by the divergence of the size
specific sediment flux per unit width;

- an additional contribution to the size specific sediment balance arises from the volume of
sediments of size d contained within the active layer per unit area: this undergoes temporal
variations due to variations of the grain-size probability density function fa.

The size specific form of Exner equation (388) requires closure relationships for Qb
xd and

Qb
yd. Following Parker and Andrews (1985) appropriate closures may be obtained modifying the

relationships (334a), (334b), (350), (351), valid for the case of homogeneous sediments and weakly
sloping bed topography. Accounting also for the possible deviation of the bottom stress vector
from the direction of the longitudinal axis induced by streamline curvatures, χ (see equation (181)
of the companion Monograph Seminara et al., 2023), we then write:

Qb
xd = Qb

0d

[
1−

√
τ∗cg H(d/dg)

µd

∂η
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]
, (390a)

Qb
yd = Qb

0d

[
sinχ− r

√
τ∗g

√
d

dg
H(d/dg)

∂η

∂y
.
]
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A few notes:

- the quantity Qb
0d is the grain size specific transport rate at uniform conditions (equation 381)

evaluated for the local and instantaneous values of the geometrical mean of the Shields stress
τ∗g and for the sediment size d;

- the effect of the lateral slope acts through the effective Shields stress associated with grain
size d, accounting for hiding. More precisely, in order to derive (390b) we start from the
relationship (349) and note that:

√
τ∗cd
τ∗d

=

√
τ∗cg
τ∗d

H(d/dg) =

√
τ∗cg
τ∗g

d

dg
H(d/dg). (391)

The relationship (390b) follows noting that the constant r is equal to √
τ∗cg/µd.

4.7.4 Grain size specific formulation of Exner equation: The missing role of vertical sorting

The active layer introduced by (Hirano, 1971) has no vertical structure. As a result, the active
layer approach is not suited to investigate sorting processes involving both the vertical and the
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horizontal directions. This is typically the case of rivers with the bed covered with bedforms like
dunes and bars.

The process of vertical sorting is the outcome of various distinct phenomena. Firstly, the bedload
of mixtures gives rise to differential sediment transport leading to surficial sorting. Secondly, the
spatial fluctuations of local bed slope associated with the presence of bedforms drives gravitational
sorting whereby coarse material tends to accumulate in the troughs. Thirdly, bedform migration
transforms the superficial sorting pattern into distinct stratigraphic patterns. Figure 59a shows a
typical dune-covered bottom pattern measured in the experiments of Leclair (1999). Figure 59b
visualizes the stratigraphic record resulting from the passage of dunes, obtained slicing the deposit.
The picture shows a distinct pattern of cross-bedding associated with dune migration and confirms
the tendency for the coarsest sediment to concentrate in the troughs of the dunes. Moreover,
significant fluctuations of bedform amplitude are evident from the three lines demarcating the
passage of dune troughs. Parker et al. (2000) point out that “the line of deepest trough shown in
Figure 59b could be thought of as an instantaneous realization of the bottom of the active layer for
a dune covered bottom”.

The probabilistic nature of fluctuations of bed elevation about a mean value driven by bedform
migration emerges clearly from Figure 59c where the fraction of the bed record with elevation
higher than the level y is plotted versus y itself.

Figure 59. Bed features observed at the end of a dune-covered experiment (Run 33) carried out by Leclair (1999)
using graded sediments. (a) Photograph of the flume bed covered by dunes and (b) picture of a typical peel of

stratigraphy. (c) The fraction of bed with elevation higher than some level y, measured relative to mean bed level,
is plotted versus y itself. Courtesy of Suzanne Leclair and Gary Parker.

Note that similar experiments had been conducted by Ribberink (1987). He was probably the
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density function fa(d;x, y, t), that must satisfy the obvious constraint:
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transforms the mathematical nature of the problem from differential into integro-differential.

The classical form of Exner equation for homogeneous sediments is immediately recovered
integrating (388) over all grain sizes and using the constraint (389) and the similar constraint valid
for the interfacial grain-size probability density function fi.

The statement (388) differs from the classical Exner equation in various respects:
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to the size probability density function fi;

- the divergence of the sediment flux per unit width is replaced by the divergence of the size
specific sediment flux per unit width;

- an additional contribution to the size specific sediment balance arises from the volume of
sediments of size d contained within the active layer per unit area: this undergoes temporal
variations due to variations of the grain-size probability density function fa.

The size specific form of Exner equation (388) requires closure relationships for Qb
xd and

Qb
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relationships (334a), (334b), (350), (351), valid for the case of homogeneous sediments and weakly
sloping bed topography. Accounting also for the possible deviation of the bottom stress vector
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A few notes:

- the quantity Qb
0d is the grain size specific transport rate at uniform conditions (equation 381)

evaluated for the local and instantaneous values of the geometrical mean of the Shields stress
τ∗g and for the sediment size d;

- the effect of the lateral slope acts through the effective Shields stress associated with grain
size d, accounting for hiding. More precisely, in order to derive (390b) we start from the
relationship (349) and note that:
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The relationship (390b) follows noting that the constant r is equal to √
τ∗cg/µd.

4.7.4 Grain size specific formulation of Exner equation: The missing role of vertical sorting

The active layer introduced by (Hirano, 1971) has no vertical structure. As a result, the active
layer approach is not suited to investigate sorting processes involving both the vertical and the
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horizontal directions. This is typically the case of rivers with the bed covered with bedforms like
dunes and bars.

The process of vertical sorting is the outcome of various distinct phenomena. Firstly, the bedload
of mixtures gives rise to differential sediment transport leading to surficial sorting. Secondly, the
spatial fluctuations of local bed slope associated with the presence of bedforms drives gravitational
sorting whereby coarse material tends to accumulate in the troughs. Thirdly, bedform migration
transforms the superficial sorting pattern into distinct stratigraphic patterns. Figure 59a shows a
typical dune-covered bottom pattern measured in the experiments of Leclair (1999). Figure 59b
visualizes the stratigraphic record resulting from the passage of dunes, obtained slicing the deposit.
The picture shows a distinct pattern of cross-bedding associated with dune migration and confirms
the tendency for the coarsest sediment to concentrate in the troughs of the dunes. Moreover,
significant fluctuations of bedform amplitude are evident from the three lines demarcating the
passage of dune troughs. Parker et al. (2000) point out that “the line of deepest trough shown in
Figure 59b could be thought of as an instantaneous realization of the bottom of the active layer for
a dune covered bottom”.

The probabilistic nature of fluctuations of bed elevation about a mean value driven by bedform
migration emerges clearly from Figure 59c where the fraction of the bed record with elevation
higher than the level y is plotted versus y itself.

Figure 59. Bed features observed at the end of a dune-covered experiment (Run 33) carried out by Leclair (1999)
using graded sediments. (a) Photograph of the flume bed covered by dunes and (b) picture of a typical peel of

stratigraphy. (c) The fraction of bed with elevation higher than some level y, measured relative to mean bed level,
is plotted versus y itself. Courtesy of Suzanne Leclair and Gary Parker.

Note that similar experiments had been conducted by Ribberink (1987). He was probably the
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first to recognize clearly the role of vertical sorting and the need for a multi-layer reformulation of
mass conservation of bed sediment in order to predict the vertical distribution of grain size. An
idea also pursued by Armanini and Di Silvio (1988) and Armanini (1995). A more recent attempt
to provide a conceptual framework equipped to incorporate information about the stochastic
nature of bed elevation is found in the work of Parker et al. (2000). The probabilistic approach
proposed there does not lead to a local statement of sediment continuity. Rather, it seeks a
spatially averaged formulation, with averaging performed over a channel length “ large compared to
those associated with the fluctuations but small compared to those of variation of the mean bed”.
Hence, this approach can hardly be employed to investigate vertical sorting at the scale of the
single bedform. Given the complexity of the problem an intense research on vertical sorting is
being pursued and a specific Monograph will likely be needed in the near future to provide an
adequate assessment of the problem. For the time being we refer the reader to the paper of Parker
et al. (2000) and to the subsequent developments pursued by Blom and coworkers (e.g. Blom et al.,
2008).

4.8. Appendix: Bedload transport of homogeneous sediments on finite slopes

In this Appendix, the theoretical framework developed in Section 4.4.3 will be used to outline
an extension of the analysis of bedload transport on weakly sloping beds to the case of finite slopes.

Particle velocity on finite slopes

Recalling that:

u
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2
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, (392)

the equation (338), governing the dynamic equilibrium of a spherical particle saltating along the
tangent plane, can be easily rewritten as:
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with ṽP = vP /[(s− 1) g d]0.5. Projecting this equation in the directions of τ̂ and (n̂× τ̂ ), with the
help of some algebraic manipulations, one finally derives two scalar relationships for the modulus
(vP ) and direction (ψ) of particle velocity, vP = vP

[
cosψ τ̂ + sinψ (n̂× τ̂ )

]
, which may be cast

in the following form:
ṽP = f

∣∣
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√
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(
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)
, (394)

where the function A reads:

A =
cosαx tanαy − µd sinψ

cosψ cosαx tanαy − sinψ sinαx

√
1 + tan2 αx + tan2 αy

. (395)

The angle ψ is given in implicit form, in terms of the local value of the Shields stress τ∗ and of the
angles αx and αy through the relationship:

τ∗
τ∗cd

=
cosαx tanαy − µd sinψ

µd A sinψ
√

(1− 2A cosψ +A2)(1 + tan2 αx + tan2 αy)
. (396)

The reader will readily verify that relations (394), (395) and (396) reduce to (346) and (349) in
the weakly sloping limit. In Figure 60 we plot the angle ψ as a function of the Shields stress τ∗ for
given values of the lateral bed inclination and vanishing longitudinal bed inclination.

Two comments are in order. Firstly, it is not surprising that the effect of the lateral slope
on the direction of particle motion decreases as the Shields stress increases: this finding bears
some relevance for the process of lateral sorting in meander bends. Secondly, less obvious is the
observation that nonlinear effects are significant only for quite large values of the lateral bed
inclination.
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Figure 60. The average direction of bedload motion on a sloping bed, defined by the angle ψ, is
plotted versus Shields stress τ∗, scaled by the critical Shields stress for incipient motion on a

horizontal bed τ∗co, for different values of the lateral bed inclination αy and vanishing longitudinal
bed inclination αx. The computations have been carried out by setting

√
τ∗cd = 0.7

√
τ∗co and

fzP = 11.5. Modified from Seminara et al. (2002).

The general form of the average bedload flux per unit width

Having determined the average particle speed vP , we may now write a general relationship for
the average bedload flux per unit width Qb

s in terms of the average areal concentration of saltating
particles (volume of sediment particles in motion per unit area) Ca:

Qb
s = Ca vP

[
cosψ τ̂ + sinψ (n̂× τ̂ )

]
. (397)

As already discussed in Section 3.3.2, predicting the areal concentration Ca is still a fairly
open issue. The only simple tool proposed in the literature is based on the Bagnold hypothesis
discussed in Section 3.3.2. Let us recall that essentially Bagnold notes that the intensity of the
clear water bed shear stress τ is reduced in the saltation layer by the transfer of momentum from
the liquid to the solid phase. As the number of particles mobilized by the stream increases, the
residual shear stress at the bed interface decreases. This observation motivated the Bagnold
assumption: a sufficient number of particles must be entrained by the stream, such that the residual
fluid shear stress at the bed drops to the critical value for particle motion. However, as already
pointed out in Section 3.3.2, this assumption is somewhat contradictory. Indeed, it stipulates that
the rate of particle entrainment is determined by a constraint whereby the bed interface should be
in static equilibrium. On the contrary, we know that dynamic equilibrium of the granular bed is
maintained by a balance between entrainment and deposition of grains and entrainment is only
possible provided the mean residual fluid shear stress at the bed exceeds the critical value.

Seminara et al. (2002) have proved that the above intuitive arguments do have a physical basis,
as Bagnold constraint is found to fail when applied to sloping beds with lateral bed inclination
exceeding some limiting value well below the angle of repose. The mathematical demonstration of
this failure is rather long and we refer the interested reader to the above paper. The failure of
the Bagnold criterion to predict an areal concentration of equilibrium bed load transport even
on relatively mild transverse slopes clearly demonstrates that the criterion cannot be correct,
even in the case of a nearly horizontal bed. This is why Seminara et al. (2002) concluded that
Bagnold hypothesis should be abandoned in favor of an alternative entrainment formulation. Such
a formulation, which was proposed by Parker et al. (2003) and further implemented by Francalanci
and Solari (2008), is not described here. The interested reader is referred to the latter papers.

A much simpler approach, which allows one to get advantage of the present general formulation
valid for arbitrarily sloping beds without embarking in the complex issue of guessing the structure
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first to recognize clearly the role of vertical sorting and the need for a multi-layer reformulation of
mass conservation of bed sediment in order to predict the vertical distribution of grain size. An
idea also pursued by Armanini and Di Silvio (1988) and Armanini (1995). A more recent attempt
to provide a conceptual framework equipped to incorporate information about the stochastic
nature of bed elevation is found in the work of Parker et al. (2000). The probabilistic approach
proposed there does not lead to a local statement of sediment continuity. Rather, it seeks a
spatially averaged formulation, with averaging performed over a channel length “ large compared to
those associated with the fluctuations but small compared to those of variation of the mean bed”.
Hence, this approach can hardly be employed to investigate vertical sorting at the scale of the
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being pursued and a specific Monograph will likely be needed in the near future to provide an
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2008).

4.8. Appendix: Bedload transport of homogeneous sediments on finite slopes
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an extension of the analysis of bedload transport on weakly sloping beds to the case of finite slopes.
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the equation (338), governing the dynamic equilibrium of a spherical particle saltating along the
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with ṽP = vP /[(s− 1) g d]0.5. Projecting this equation in the directions of τ̂ and (n̂× τ̂ ), with the
help of some algebraic manipulations, one finally derives two scalar relationships for the modulus
(vP ) and direction (ψ) of particle velocity, vP = vP
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where the function A reads:
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cosαx tanαy − µd sinψ
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The angle ψ is given in implicit form, in terms of the local value of the Shields stress τ∗ and of the
angles αx and αy through the relationship:

τ∗
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cosαx tanαy − µd sinψ

µd A sinψ
√

(1− 2A cosψ +A2)(1 + tan2 αx + tan2 αy)
. (396)

The reader will readily verify that relations (394), (395) and (396) reduce to (346) and (349) in
the weakly sloping limit. In Figure 60 we plot the angle ψ as a function of the Shields stress τ∗ for
given values of the lateral bed inclination and vanishing longitudinal bed inclination.

Two comments are in order. Firstly, it is not surprising that the effect of the lateral slope
on the direction of particle motion decreases as the Shields stress increases: this finding bears
some relevance for the process of lateral sorting in meander bends. Secondly, less obvious is the
observation that nonlinear effects are significant only for quite large values of the lateral bed
inclination.
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Figure 60. The average direction of bedload motion on a sloping bed, defined by the angle ψ, is
plotted versus Shields stress τ∗, scaled by the critical Shields stress for incipient motion on a

horizontal bed τ∗co, for different values of the lateral bed inclination αy and vanishing longitudinal
bed inclination αx. The computations have been carried out by setting

√
τ∗cd = 0.7

√
τ∗co and

fzP = 11.5. Modified from Seminara et al. (2002).

The general form of the average bedload flux per unit width
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As already discussed in Section 3.3.2, predicting the areal concentration Ca is still a fairly
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Bagnold hypothesis should be abandoned in favor of an alternative entrainment formulation. Such
a formulation, which was proposed by Parker et al. (2003) and further implemented by Francalanci
and Solari (2008), is not described here. The interested reader is referred to the latter papers.

A much simpler approach, which allows one to get advantage of the present general formulation
valid for arbitrarily sloping beds without embarking in the complex issue of guessing the structure
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of the entrainment and deposition functions, was presented by Seminara et al. (2001b) and is
outlined below. Specifically, this approach is based on the general form of the bedload relationship
(397), which can be written in the dimensionless form:

Q̃b
s = Ca

ṽP
d

[
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]
, (398)

or, recalling the equation (394):
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]
. (399)

The major issue of predicting the structure of the areal concentration is then solved on the
basis of the following arguments.

The excess residual stress acting on the bed interface seems to be the most reasonable candidate
to measure the residual turbulent activity present close to the interface, hence the ability of
the stream to produce the turbulent events (sweeps and inward interactions) which are the
major hydrodynamic agents of bedload transport. It is then instructive to reinterpret detailed
experimental results on bedload transport under uniform controlled conditions (e.g. Luque and
Van Beek, 1976) in the light of the above viewpoint. For a uniform stream flowing on a planar bed
the modulus of the residual stress τr acting at the bed interface is readily calculated in the form:

τr = τ − µd (ϱs − ϱ) g Ca, (400)

or, with the help of simple manipulations,

τ∗r = τ∗ − µd
Ca

d
(401)

in dimensionless form.
On physical ground, it is reasonable to expect that Ca is a nonnegative, monotonically increasing

function of (τ∗r − τ∗c), with τ∗c critical value of the Shields stress evaluated with the local values
of the longitudinal and lateral slopes. According to this hypothesis, in the presence of any bedload
transport, the residual fluid Shields stress at the bed τ∗r must exceed the threshold value τ∗c.
Equilibrium conditions are not reached when the fluid shear stress at the bed reaches the threshold
value, but rather when the entrainment rate of bed particles into the bed load layer equals the
deposition rate of bed load particles onto the bed. This condition implies a dynamic equilibrium
rather than a static equilibrium at which no bed particles can be entrained at all.

As a first approximation, the structure of the function Ca can be assumed to coincide with that
obtained by Luque and Van Beek (1976) for the plane case. In other words, the sloping character
of the bed would affect the hydrodynamics and the direction of sediment particles, but it would
leave the dependence of particle areal concentration on the local excess of the residual Shields
stress unaltered. Conversely, the critical Shields stress is assumed to depend on the local values of
the longitudinal and lateral slopes. This scheme is readily implemented using the expressions for
Q̃b

s and vP obtained by Luque and Van Beek (1976) in the case of plane bed (Q̃b
s =Φb). One thus

finds the following relationship for Ca:

Ca = 0.93 d
(τ∗ − τ∗c)

3/2

√
τ∗ − 0.7

√
τ∗c

. (402)

Note that the areal concentration tends to vanish as τ∗ → τ∗c and becomes proportional to τ∗
as τ∗ → ∞. Recall, however, that the experimental results of Luque and Van Beek (1976) apply
to the case of fairly low Shields stresses only. Below, we discuss the more recent experimental
observations of Francalanci and Solari (2007) which substantiate the simplified approach described
above.
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The output of the above analysis is a simple calculation method for a bed with finite slope
in an arbitrary direction. Feeding (402) into (399) and recalling the expression (395) for A, one
ends up with a relationship which gives the bedload flux per unit width for given external Shields
stress, longitudinal and lateral slopes, once the angle ψ is evaluated from the implicit relationship
(396). The recent work of Francalanci and Solari (2008) simplifies further the above procedure as
it provides an explicit analytical approximation for ψ, of the general form:

ψ = ψ1(θ, φ)
[ τ∗
τ∗co

]ψ2(θ,φ)

, (403)

where ψ1 and ψ2 are functions estimated from laboratory experiments while the critical Shields
stress for incipient sediment entrainment τ∗co may be determined through the relation (182).

Figure 61. The dependence of Q̃b
s on the parameter τ∗/τ∗c0 as predicted by the nonlinear theory of

Seminara et al. (2000) is compared with the linear predictions for various combinations of
streamwise and lateral slopes. The computations have been carried out by setting d=1 mm,

ϕ=40o, cD= 0.32, cL/cD=0.85, µd=0.8. Modified from Seminara et al. (2000).

Before we discuss the experimental verification of the latter approach, it is instructive to
ascertain the importance of nonlinear effects by performing a comparison between results of
the present fully nonlinear formulation for bed load transport on finite slope and their linear
approximation for small slopes. This comparison is shown in Figure 61 where Q̃b

s is plotted against
the ratio τ∗/τ∗c0 for various values of αx and αy. The linear and nonlinear formulations obviously
yield the same result for the case αx = αy = 0o. On the other hand, the linearized formulation
invariably tends to under-predict the transport rate on non negligible bed slopes: moderately when
αx = 0o and αy = 30o; strongly when αx = 30o and αy = 0o.

Test of the nonlinear theory against experimental data

We now show to what extent the above approach has found a consistent substantiation based on
laboratory observations. We refer to the recent detailed work of Francalanci (2005) (but see also
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Figure 62. Comparison between the experimental values (Francalanci, 2005) of the particle speed
vP (a) and the deviation angle ψ (b) of particle trajectories (symbols) and the theoretical results

of Seminara et al. (2002) (solid and dashed lines): αx fixed (5o) and αy variable (5o, 10o)
(reproduced from Figure 2.18 of Francalanci, 2005).

Francalanci and Solari, 2007), who carried out a series of accurate tests in a laboratory tilting
flume with the sediment bed composed of steel particles shaped as fairly flat disks. Techniques
based on volumetric sampling, laser Doppler anemometry, image acquisition and processing where
used to track bedload particles saltating over the bed. The collected data were plotted in terms
of the average properties of the collective motion of sediment particles, for various hydraulic
conditions and different longitudinal and lateral bed slopes. Finally, a comparison was performed
with theoretical results.

The Figure 62 shows a comparison between the experimental values of the particle speed vP
and the deviation angle ψ of particle trajectories and the predictions of Seminara et al. (2002) for
a few values of the longitudinal and lateral slopes. Although scattering of experimental data is
large, observations confirm that the deviation angle tends to increase with the lateral slope and to
decrease as the longitudinal slope and/or the Shields stress increase. Also, the weak predicted
effect of longitudinal and lateral slope on the intensity of particle velocity is qualitatively confirmed.

Figure 63. Comparison between the experimental values of the average areal concentration of
sediment particles (symbols) and those predicted by the relationship for Ca employed by Seminara

et al. (2001b) (solid and dashed lines). αx fixed (5o) and various αy (0o, 5o, 10o, 15o, 20o)
(modified from Figure 2.21 of Francalanci, 2005).
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In the Figure 63 the average areal concentration of sediment particles Ca obtained experimentally
is compared with the relationship proposed by Seminara et al. (2001b). Note that, in the abscissa,
the excess residual Shields stress τ∗r − τ∗c rather than the excess outer Shields stress τ∗ − τ∗c is
plotted. Moreover, the critical Shields stress τ∗c is corrected for the effects of longitudinal and
lateral slopes. Observations confirm a fairly linear dependence of Ca on the excess residual stress
and its negligible dependence on the lateral slope. On the contrary Ca appears to depend on the
longitudinal slope more strongly than the theory predicts.

Finally, Francalanci and Solari (2007) also show that predictions for Q̃s
b, vP and ψ obtained

from the linear formulation compare less satisfactorily with observed values than results obtained
from the nonlinear theory. In particular, the particle speed is invariably under-predicted whilst
the deviation angle is consistently over-predicted.

151



Theoretical Morphodynamics Straight Channels

Figure 62. Comparison between the experimental values (Francalanci, 2005) of the particle speed
vP (a) and the deviation angle ψ (b) of particle trajectories (symbols) and the theoretical results

of Seminara et al. (2002) (solid and dashed lines): αx fixed (5o) and αy variable (5o, 10o)
(reproduced from Figure 2.18 of Francalanci, 2005).

Francalanci and Solari, 2007), who carried out a series of accurate tests in a laboratory tilting
flume with the sediment bed composed of steel particles shaped as fairly flat disks. Techniques
based on volumetric sampling, laser Doppler anemometry, image acquisition and processing where
used to track bedload particles saltating over the bed. The collected data were plotted in terms
of the average properties of the collective motion of sediment particles, for various hydraulic
conditions and different longitudinal and lateral bed slopes. Finally, a comparison was performed
with theoretical results.

The Figure 62 shows a comparison between the experimental values of the particle speed vP
and the deviation angle ψ of particle trajectories and the predictions of Seminara et al. (2002) for
a few values of the longitudinal and lateral slopes. Although scattering of experimental data is
large, observations confirm that the deviation angle tends to increase with the lateral slope and to
decrease as the longitudinal slope and/or the Shields stress increase. Also, the weak predicted
effect of longitudinal and lateral slope on the intensity of particle velocity is qualitatively confirmed.

Figure 63. Comparison between the experimental values of the average areal concentration of
sediment particles (symbols) and those predicted by the relationship for Ca employed by Seminara

et al. (2001b) (solid and dashed lines). αx fixed (5o) and various αy (0o, 5o, 10o, 15o, 20o)
(modified from Figure 2.21 of Francalanci, 2005).

150

The basic state: Straight channels at equilibrium

In the Figure 63 the average areal concentration of sediment particles Ca obtained experimentally
is compared with the relationship proposed by Seminara et al. (2001b). Note that, in the abscissa,
the excess residual Shields stress τ∗r − τ∗c rather than the excess outer Shields stress τ∗ − τ∗c is
plotted. Moreover, the critical Shields stress τ∗c is corrected for the effects of longitudinal and
lateral slopes. Observations confirm a fairly linear dependence of Ca on the excess residual stress
and its negligible dependence on the lateral slope. On the contrary Ca appears to depend on the
longitudinal slope more strongly than the theory predicts.

Finally, Francalanci and Solari (2007) also show that predictions for Q̃s
b, vP and ψ obtained

from the linear formulation compare less satisfactorily with observed values than results obtained
from the nonlinear theory. In particular, the particle speed is invariably under-predicted whilst
the deviation angle is consistently over-predicted.

151



5. The basic state: Straight channels at equilibrium

Conceptually, rivers may be modeled as systems in a state of quasi-equilibrium, i.e. such that
flow perturbations relative to some equilibrium state let the system evolve on spatial-temporal
scales much larger than the hydrodynamic scale. As a preliminary step to our future efforts to
understand the formation and evolution of fluvial patterns, in the present Chapter we attempt to
provide a rational answer to the question: does a straight equilibrium configuration of an erodible
channel actually exist?

5.1. The basic equilibrium profile of straight channels

5.1.1 The notion of morphodynamic equilibrium

Field evidence suggests that, on relatively small time scales (of the order of few years or
decades) and in the absence of major anthropogenic effects, the average bed profile of rivers may
be in quasi equilibrium. Loosely speaking, this implies that the laterally averaged elevation of
the active bed η̄, which is in general a function of the longitudinal coordinate x and time t, does
not experience significant temporal variations except for fluctuations associated with a variety of
natural factors.

The terminal reach of the Magra river (Italy), which will be used as a test case in this
Chapter, provides a useful example of a river in quasi-equilibrium. The Magra River is located
in the Northern part of Tuscany, a region of central Italy (Figure 64a). Details of the general
characteristics of the Magra catchment can be found in Surian and Rinaldi (2003). It suffices here
to mention that the catchment has an area of 1700 km2 and consists of two distinct basins, the
Vara River (length of about 65 km, area of 600 km2) on the west side and the upper-middle Magra
on the eastern side (length of about 54 km). The two basins merge into the lower Magra (length
of about 16 km) which forms a microtidal estuary ending into the Ligurian sea, characterized by
very small tidal oscillations (amplitude around 15 cm). The climate of the area is temperate, with
mean and maximum annual precipitations around 1700 mm and 3000 mm, respectively. The mean
of the maximum annual daily discharges recorded at the Calamazza station is 683 m3s−1. The
monitoring station is located on the Magra, upstream of the Vara-Magra confluence, and refers to
a draining area of 932 km2. The channel morphology varies from wandering in the upper basin
to sinuous along the terminal reach (Figure 64b). Below we focus on the latter region, denoted
by A in Figure 64a, where detailed and systematic surveys have been performed. It displays
significant width variations and has a sandy bottom characterized by a mixture of fine and coarse
sand (Figure 64b).

The morphology of the Magra river has undergone significant changes in the first half of the
20th century as a result of several anthropogenic factors, namely the construction of protection
works, including a sequence of spur dykes in the lower reach, as well as few small dams and the
massive exploitation of river sediments through extensive mining. As a result, the channel has
narrowed and the braided pattern has slowly evolved into a transitional pattern, whilst strong
bottom degradation occurred. The coastline underwent a significant regression, which stopped
only around 1950 when it had attained a configuration quite close to the present one.

Giovanni Seminara, University of Genoa, Italy, giovanni.seminara@unige.it, 0000-0002-0360-2029
Stefano Lanzoni, University of Padua, Italy, stefano.lanzoni@unipd.it, 0000-0002-6621-2386
Nicoletta Tambroni, University of Genoa, Italy, nicoletta.tambroni@unige.it, 0000-0002-2952-7290

FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)

Giovanni Seminara, Stefano Lanzoni, Nicoletta Tambroni (edited by), Theoretical Morphodynamics Straight Channels, © 2021Author(s),
content CC BY 4.0 International, metadata CC0 1.0 Universal, published by Firenze University Press (www.fupress.com), ISSN 009-
009(online), ISBN 978-88-00-00-00(PDF), DOI 10.36253/45-678



5. The basic state: Straight channels at equilibrium

Conceptually, rivers may be modeled as systems in a state of quasi-equilibrium, i.e. such that
flow perturbations relative to some equilibrium state let the system evolve on spatial-temporal
scales much larger than the hydrodynamic scale. As a preliminary step to our future efforts to
understand the formation and evolution of fluvial patterns, in the present Chapter we attempt to
provide a rational answer to the question: does a straight equilibrium configuration of an erodible
channel actually exist?

5.1. The basic equilibrium profile of straight channels

5.1.1 The notion of morphodynamic equilibrium

Field evidence suggests that, on relatively small time scales (of the order of few years or
decades) and in the absence of major anthropogenic effects, the average bed profile of rivers may
be in quasi equilibrium. Loosely speaking, this implies that the laterally averaged elevation of
the active bed η̄, which is in general a function of the longitudinal coordinate x and time t, does
not experience significant temporal variations except for fluctuations associated with a variety of
natural factors.

The terminal reach of the Magra river (Italy), which will be used as a test case in this
Chapter, provides a useful example of a river in quasi-equilibrium. The Magra River is located
in the Northern part of Tuscany, a region of central Italy (Figure 64a). Details of the general
characteristics of the Magra catchment can be found in Surian and Rinaldi (2003). It suffices here
to mention that the catchment has an area of 1700 km2 and consists of two distinct basins, the
Vara River (length of about 65 km, area of 600 km2) on the west side and the upper-middle Magra
on the eastern side (length of about 54 km). The two basins merge into the lower Magra (length
of about 16 km) which forms a microtidal estuary ending into the Ligurian sea, characterized by
very small tidal oscillations (amplitude around 15 cm). The climate of the area is temperate, with
mean and maximum annual precipitations around 1700 mm and 3000 mm, respectively. The mean
of the maximum annual daily discharges recorded at the Calamazza station is 683 m3s−1. The
monitoring station is located on the Magra, upstream of the Vara-Magra confluence, and refers to
a draining area of 932 km2. The channel morphology varies from wandering in the upper basin
to sinuous along the terminal reach (Figure 64b). Below we focus on the latter region, denoted
by A in Figure 64a, where detailed and systematic surveys have been performed. It displays
significant width variations and has a sandy bottom characterized by a mixture of fine and coarse
sand (Figure 64b).

The morphology of the Magra river has undergone significant changes in the first half of the
20th century as a result of several anthropogenic factors, namely the construction of protection
works, including a sequence of spur dykes in the lower reach, as well as few small dams and the
massive exploitation of river sediments through extensive mining. As a result, the channel has
narrowed and the braided pattern has slowly evolved into a transitional pattern, whilst strong
bottom degradation occurred. The coastline underwent a significant regression, which stopped
only around 1950 when it had attained a configuration quite close to the present one.

Giovanni Seminara, University of Genoa, Italy, giovanni.seminara@unige.it, 0000-0002-0360-2029
Stefano Lanzoni, University of Padua, Italy, stefano.lanzoni@unipd.it, 0000-0002-6621-2386
Nicoletta Tambroni, University of Genoa, Italy, nicoletta.tambroni@unige.it, 0000-0002-2952-7290

FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)

Giovanni Seminara, Stefano Lanzoni, Nicoletta Tambroni (edited by), Theoretical Morphodynamics Straight Channels, © 2021Author(s),
content CC BY 4.0 International, metadata CC0 1.0 Universal, published by Firenze University Press (www.fupress.com), ISSN 009-
009(online), ISBN 978-88-00-00-00(PDF), DOI 10.36253/45-678

Giovanni Seminara, University of Genoa, Italy, giovanni.seminara@unige.it, 0000-0002-0360-2029
Stefano Lanzoni, University of Padoa, Italy, stefano.lanzoni@unipd.it, 0000-0002-6621-2386
Nicoletta Tambroni, University of Genoa, Italy, nicoletta.tambroni@unige.it, 0000-0002-2952-7290
Referee List (DOI 10.36253/fup_referee_list)
FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)
Giovanni Seminara, Stefano Lanzoni, Nicoletta Tambroni, Theoretical Morphodynamics: Straight Channels, © 2023 Author(s), CC BY 4.0, 
published by Firenze University Press, ISBN 979-12-215-0213-8, DOI 10.36253/979-12-215-0213-8

mailto:giovanni.seminara@unige.it
https://orcid.org/0000-0002-0360-2029
mailto:stefano.lanzoni@unipd.it
https://orcid.org/0000-0002-6621-2386
mailto:nicoletta.tambroni@unige.it
https://orcid.org/0000-0002-2952-7290
https://doi.org/10.36253/fup_referee_list
https://doi.org/10.36253/fup_best_practice
http://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.36253/979-12-215-0213-8


Theoretical Morphodynamics Straight Channels

(a)
(b)

Figure 64. (a) The Magra river basin and the location of the investigated reach (dashed ellipse). (b) The terminal
reach of the Magra river and the grain size distribution function.

This notwithstanding, the bed profile of the terminal reach of the river has recently been quite
stable, as shown in Figure 65, where surveys performed in 2003, 2008 and 2010 are compared. It is
important to note that, during this period, the Magra River experienced various flood events. Most
notably, two large floods occurred in January 2009 and December 2009. They were characterized
by peak discharges in the lower Magra of about 3550 m3 s−1 and 4050 m3 s−1 (Seminara et al.,
2011), corresponding roughly to 25 and 30 years recurrence interval, respectively. An even larger
flood was experienced in October 2011, with an estimated peak of 4200 m3 s−1 at the Calamazza
station (recurrence interval ∼ 100 years) and 5000 m3s−1 in the terminal reach (recurrence interval
∼ 60 years, Seminara et al., 2012).
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Figure 65. Bed profiles of the terminal reach of the Magra River (Italy) according to topographical surveys
performed in 2003, 2008 and 2010 (reproduced from Bolla Pittaluga et al., 2014a).
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Note that the notion of morhodynamic equilibrium employed above relies on two related
qualifications: the observed equilibrium is only approximate (quasi–equilibrium) and refers to
the cross-sectionally averaged bed elevation rather than to its local value. Indeed, in the real
world, rivers display spatial variations and temporal fluctuations of the flow properties acting
on a variety of scales. The smallest scales are associated with the formation of free and forced
bedforms: free bedforms arise from instabilities of the bed interface and are typically migrating
features (see Chapter 6); forced bedforms are generated by end conditions or by deviations of
channel geometry from the straight cylindrical configuration and are typically steady features.
Larger scales are associated with variations of the driving forces, namely water discharge and
sediment flux, forced by a variety of possible events: floods, natural seasonal oscillations, slow
processes of degradation-aggradation induced by variations of sediment supply or abrupt variations
of channel geometry (e.g. meander cutoffs), as discussed in later Chapters of this Monograph. At
even larger time scales, the occurrence of geologic phenomena may strongly perturb the state of
the river, leading to drastically different configurations.

In spite of such a wide spectrum of perturbations, the paradigm of morphodynamic equilibrium,
defined in some appropriate average sense, proves quite instructive. In the classical geomorpholog-
ical literature, equilibrium is traditionally associated with the notion of formative discharge of a
river: a notion, which essentially assumes that the unsteady forcing on the river is morphologically
equivalent to some effective steady forcing. More precisely, Copeland et al. (2000) define the
formative discharge as a theoretical discharge that, maintained indefinitely, would produce the
same channel geometry as the natural long-term hydrograph. This representative channel-forming
discharge has been used mainly in hydraulic geometry theories to define the main morphological
characteristics of alluvial rivers (Leopold and Maddock, 1953).

Various methods have been proposed in order to identify the channel-forming discharge including
bankfull discharge, specified recurrence interval discharge, and effective discharge. Each of them
can be calculated using a procedure based on field indicators. The bankfull discharge is defined
as the flow discharge which fills the channel to the tops of the banks. The top of the bank
is determined through several field indicators which, however, are not necessarily of general
applicability nor they are free from subjectivity (Williams, 1978). A specific recurrence interval
discharge has been associated with the bankfull stage, typically corresponding to a recurrence
interval of the annual flood of approximately 1 to 2.5 years with the 1.5-year recurrence flood
considered as a reasonable value (Leopold, 1994). However, this criterion is not verified in many
rivers (Williams, 1978)) implying that the specified recurrence discharge generates poor estimates
of the formative discharge. The effective discharge is defined as the increment of discharge that
transports the largest proportion of the annual sediment load over a period of many years (Andrews,
1980). It incorporates the idea introduced by Wolman and Miller (1960) according to which the
channel-forming discharge, a function of both the magnitude of sediment-transporting events and
their frequency of occurrence, may be identified as the value of the discharge which maximizes
the product of the flow frequency and the sediment transport rate. A large amount of flow and
sediment data is required to estimate this discharge, which makes it difficult to exploit this notion
in many cases. This notwithstanding, it turns out that a fully mechanistic approach does support
this definition, which turns out to be more easily implemented by means of numerical simulations
(Bolla Pittaluga et al., 2014a; Lanzoni et al., 2015).

It is perhaps fair to state that the availability of field data and the characteristics of the site
strongly influence the selection of the appropriate method and often limit the reliability of the
final estimate of the formative discharge.

Below, we attempt to found the notion of morphodynamic equilibrium (and related formative
discharge) on a mechanistic basis, making use of the available knowledge on morphodynamic
modeling. In order to achieve this goal, we start treating the simplest configuration: a cylindrical
cohesionless channel with constant slope subject to steady forcing, namely constant flow and
sediment supply. Under these fairly ideal, yet conceptually important conditions, it will appear
that a rigorous equilibrium state can be defined. This equilibrium configuration will play the
role of the basic morphodynamic state of the channel for the variety of investigations required to
explain the formation of fluvial patterns discussed in the present Monograph.
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(a)
(b)

Figure 64. (a) The Magra river basin and the location of the investigated reach (dashed ellipse). (b) The terminal
reach of the Magra river and the grain size distribution function.

This notwithstanding, the bed profile of the terminal reach of the river has recently been quite
stable, as shown in Figure 65, where surveys performed in 2003, 2008 and 2010 are compared. It is
important to note that, during this period, the Magra River experienced various flood events. Most
notably, two large floods occurred in January 2009 and December 2009. They were characterized
by peak discharges in the lower Magra of about 3550 m3 s−1 and 4050 m3 s−1 (Seminara et al.,
2011), corresponding roughly to 25 and 30 years recurrence interval, respectively. An even larger
flood was experienced in October 2011, with an estimated peak of 4200 m3 s−1 at the Calamazza
station (recurrence interval ∼ 100 years) and 5000 m3s−1 in the terminal reach (recurrence interval
∼ 60 years, Seminara et al., 2012).
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Figure 65. Bed profiles of the terminal reach of the Magra River (Italy) according to topographical surveys
performed in 2003, 2008 and 2010 (reproduced from Bolla Pittaluga et al., 2014a).
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The basic state: Straight channels at equilibrium

Note that the notion of morhodynamic equilibrium employed above relies on two related
qualifications: the observed equilibrium is only approximate (quasi–equilibrium) and refers to
the cross-sectionally averaged bed elevation rather than to its local value. Indeed, in the real
world, rivers display spatial variations and temporal fluctuations of the flow properties acting
on a variety of scales. The smallest scales are associated with the formation of free and forced
bedforms: free bedforms arise from instabilities of the bed interface and are typically migrating
features (see Chapter 6); forced bedforms are generated by end conditions or by deviations of
channel geometry from the straight cylindrical configuration and are typically steady features.
Larger scales are associated with variations of the driving forces, namely water discharge and
sediment flux, forced by a variety of possible events: floods, natural seasonal oscillations, slow
processes of degradation-aggradation induced by variations of sediment supply or abrupt variations
of channel geometry (e.g. meander cutoffs), as discussed in later Chapters of this Monograph. At
even larger time scales, the occurrence of geologic phenomena may strongly perturb the state of
the river, leading to drastically different configurations.

In spite of such a wide spectrum of perturbations, the paradigm of morphodynamic equilibrium,
defined in some appropriate average sense, proves quite instructive. In the classical geomorpholog-
ical literature, equilibrium is traditionally associated with the notion of formative discharge of a
river: a notion, which essentially assumes that the unsteady forcing on the river is morphologically
equivalent to some effective steady forcing. More precisely, Copeland et al. (2000) define the
formative discharge as a theoretical discharge that, maintained indefinitely, would produce the
same channel geometry as the natural long-term hydrograph. This representative channel-forming
discharge has been used mainly in hydraulic geometry theories to define the main morphological
characteristics of alluvial rivers (Leopold and Maddock, 1953).

Various methods have been proposed in order to identify the channel-forming discharge including
bankfull discharge, specified recurrence interval discharge, and effective discharge. Each of them
can be calculated using a procedure based on field indicators. The bankfull discharge is defined
as the flow discharge which fills the channel to the tops of the banks. The top of the bank
is determined through several field indicators which, however, are not necessarily of general
applicability nor they are free from subjectivity (Williams, 1978). A specific recurrence interval
discharge has been associated with the bankfull stage, typically corresponding to a recurrence
interval of the annual flood of approximately 1 to 2.5 years with the 1.5-year recurrence flood
considered as a reasonable value (Leopold, 1994). However, this criterion is not verified in many
rivers (Williams, 1978)) implying that the specified recurrence discharge generates poor estimates
of the formative discharge. The effective discharge is defined as the increment of discharge that
transports the largest proportion of the annual sediment load over a period of many years (Andrews,
1980). It incorporates the idea introduced by Wolman and Miller (1960) according to which the
channel-forming discharge, a function of both the magnitude of sediment-transporting events and
their frequency of occurrence, may be identified as the value of the discharge which maximizes
the product of the flow frequency and the sediment transport rate. A large amount of flow and
sediment data is required to estimate this discharge, which makes it difficult to exploit this notion
in many cases. This notwithstanding, it turns out that a fully mechanistic approach does support
this definition, which turns out to be more easily implemented by means of numerical simulations
(Bolla Pittaluga et al., 2014a; Lanzoni et al., 2015).

It is perhaps fair to state that the availability of field data and the characteristics of the site
strongly influence the selection of the appropriate method and often limit the reliability of the
final estimate of the formative discharge.

Below, we attempt to found the notion of morphodynamic equilibrium (and related formative
discharge) on a mechanistic basis, making use of the available knowledge on morphodynamic
modeling. In order to achieve this goal, we start treating the simplest configuration: a cylindrical
cohesionless channel with constant slope subject to steady forcing, namely constant flow and
sediment supply. Under these fairly ideal, yet conceptually important conditions, it will appear
that a rigorous equilibrium state can be defined. This equilibrium configuration will play the
role of the basic morphodynamic state of the channel for the variety of investigations required to
explain the formation of fluvial patterns discussed in the present Monograph.
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5.1.2 Mathematical formulation of 1D morphodynamic equilibrium

Strictly speaking, an erodible stream is in morphodynamic equilibrium provided its boundary
does not undergo any temporal change. Hence, its bed should neither aggrade nor degrade
(∂η/∂t ≡ 0) and its banks should neither retreat nor advance. Below, we restrict our attention
on the former constraint and treat river banks as fixed at this stage. The conditions required for
erodible banks not to retreat nor to advance determine the equilibrium width of erodible channels
and will be discussed in Section 5.1.4.

Strict equilibrium naturally requires also steady hydrodynamic conditions. The 1D governing
equations of morphodynamics, namely the de Saint Venant equation (150) derived in Section 2.5
and the 1D Exner equation (250) derived in Section 4.1, then reduce to the following form:

Q = constant, (404)
Qs = constant, (405)

Q2

Ω

d

dx

(
βcor

Ω

)
+ g

dH̄

dx
+ C̄f

U| U|
Rh

= 0. (406)

This system must be solved with the help of some closure algebraic relationship for the cross-
sectionally averaged sediment flux Qs(x) which can be cast in the following general form:

Qs = Qs[τ̄∗(x);Rp], (407)

with Rp particle Reynolds number and τ̄∗(x) laterally averaged Shields stress:

τ̄∗ = C̄f
U2

(s− 1) g d
. (408)

Here, as usual, d is the sediment size assumed uniform at this stage. Note that the problem
of morphodynamics is coupled to the hydrodynamic problem through the equation (408). Also
note that the constraint (405) and the constitutive relationship (407) for given uniform grain
size distribution imply that, at morphodynamic equilibrium, the following condition must also be
satisfied:

τ̄∗ = constant. (409)

Finally, a boundary condition for one of the unknown functions H̄(x) or η̄(x) is required and may
indifferently be assigned either upstream or downstream.

The equation (405) immediately suggests that there are two simplest conditions which would
ensure the requirement of bed equilibrium. A first (trivial) condition is that the sediment discharge
vanishes everywhere throughout the reach investigated. In other words, the average bed shear stress
should nowhere exceed the threshold value for sediment entrainment as bedload or suspended load.
In nature, this condition is indeed met, but only at very low stage. A second, less trivial, condition
would be that the total sediment discharge does not vanish but keeps spatially constant throughout
the investigated reach. This is a dynamic condition which can be readily analyzed under steady
forcing. Below, we discuss systematically the consequences of the latter constraint and show that
a distinct equilibrium state is associated with any given set of forcing conditions, namely given
values of flow and sediment discharges.

5.1.3 The case of cylindrical channels

If the geometry of the channel is perfectly cylindrical the constraint (409), along with flow
continuity equation (404), implies that the cross-sectional area and, consequently, the average
flow depth (D = H̄ − η̄) and the average fluid speed must also be constant throughout the reach.
Recalling the momentum equation (406) we are then led to the conclusion that the slope of the
free surface (−dH̄/dx), which is equal to the channel slope S, must keep constant. In other words,
the flow must be strictly uniform and the stream adjusts its slope and its flow depth to the driving
inputs Q and Qs.
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This can be better understood referring to a straight wide rectangular channel with constant
width. Then the bottom width (2Bb) is constant and equal to the width of the free surface (2B).
Moreover, the Shields stress τ∗ is uniformly distributed in the lateral direction (except within
the boundary layers at the bank), such that, as a first approximation, one may set τ̄∗ ≃ τ∗. The
constraints (404) and (405) then lead to the stricter requirements that the flow discharge per unit
width Q and the depth integrated sediment flux per unit width Qs should also be constant. Using
Chézy law with Strickler closure for the conductance to express the constraint (404) and a general
relationship for the transport capacity needed to express the constraint (405), we write:

Q = ks
√

Se D5/3
e , Qs =

√
(s− 1) g d3 n (τ∗e − τ∗c)

m, (410)

with ks Strickler parameter, De equilibrium flow depth, Se equilibrium slope, τ∗e equilibrium
Shields stress, n empirical constant and m empirical exponent larger than one. Simple algebraic
manipulations with the help of (408) then give:

Se = Q̃−6/7 τ
10/7
∗e ,

De

(s− 1) d
= Q̃6/7 τ

−3/7
∗e , (411)

where Q̃ is the dimensionless flow discharge per unit width, which reads:

Q̃ =
Q

ks
[
(s− 1) d

]5/3 . (412)

Figure 66. Equilibrium values of (a) the slope Se and (b) the dimensionless flow depth De/(s− 1) d are plotted in
terms of the dimensionless flow discharge per unit width, Q̃, for different values of the Shields stress at equilibrium,

τ∗e. We have chosen m = 3/2 corresponding to a Meyer Peter-Müller type of transport formula.

Hence, as shown in Figure 66, for given fluid discharge and average grain size, an increased
sediment supply (associated with an increased Shields stress) tends to steepen the channel. On
the contrary, for given sediment supply and average grain size, an increased fluid discharge tends
to flatten the channel. Moreover, as the grain diameter increases for given flow discharge, the
dimensionless quantity Q̃ decreases and, consequently, the equilibrium slope increases.
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5.1.2 Mathematical formulation of 1D morphodynamic equilibrium

Strictly speaking, an erodible stream is in morphodynamic equilibrium provided its boundary
does not undergo any temporal change. Hence, its bed should neither aggrade nor degrade
(∂η/∂t ≡ 0) and its banks should neither retreat nor advance. Below, we restrict our attention
on the former constraint and treat river banks as fixed at this stage. The conditions required for
erodible banks not to retreat nor to advance determine the equilibrium width of erodible channels
and will be discussed in Section 5.1.4.

Strict equilibrium naturally requires also steady hydrodynamic conditions. The 1D governing
equations of morphodynamics, namely the de Saint Venant equation (150) derived in Section 2.5
and the 1D Exner equation (250) derived in Section 4.1, then reduce to the following form:
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This system must be solved with the help of some closure algebraic relationship for the cross-
sectionally averaged sediment flux Qs(x) which can be cast in the following general form:

Qs = Qs[τ̄∗(x);Rp], (407)

with Rp particle Reynolds number and τ̄∗(x) laterally averaged Shields stress:

τ̄∗ = C̄f
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. (408)

Here, as usual, d is the sediment size assumed uniform at this stage. Note that the problem
of morphodynamics is coupled to the hydrodynamic problem through the equation (408). Also
note that the constraint (405) and the constitutive relationship (407) for given uniform grain
size distribution imply that, at morphodynamic equilibrium, the following condition must also be
satisfied:

τ̄∗ = constant. (409)

Finally, a boundary condition for one of the unknown functions H̄(x) or η̄(x) is required and may
indifferently be assigned either upstream or downstream.

The equation (405) immediately suggests that there are two simplest conditions which would
ensure the requirement of bed equilibrium. A first (trivial) condition is that the sediment discharge
vanishes everywhere throughout the reach investigated. In other words, the average bed shear stress
should nowhere exceed the threshold value for sediment entrainment as bedload or suspended load.
In nature, this condition is indeed met, but only at very low stage. A second, less trivial, condition
would be that the total sediment discharge does not vanish but keeps spatially constant throughout
the investigated reach. This is a dynamic condition which can be readily analyzed under steady
forcing. Below, we discuss systematically the consequences of the latter constraint and show that
a distinct equilibrium state is associated with any given set of forcing conditions, namely given
values of flow and sediment discharges.

5.1.3 The case of cylindrical channels

If the geometry of the channel is perfectly cylindrical the constraint (409), along with flow
continuity equation (404), implies that the cross-sectional area and, consequently, the average
flow depth (D = H̄ − η̄) and the average fluid speed must also be constant throughout the reach.
Recalling the momentum equation (406) we are then led to the conclusion that the slope of the
free surface (−dH̄/dx), which is equal to the channel slope S, must keep constant. In other words,
the flow must be strictly uniform and the stream adjusts its slope and its flow depth to the driving
inputs Q and Qs.
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This can be better understood referring to a straight wide rectangular channel with constant
width. Then the bottom width (2Bb) is constant and equal to the width of the free surface (2B).
Moreover, the Shields stress τ∗ is uniformly distributed in the lateral direction (except within
the boundary layers at the bank), such that, as a first approximation, one may set τ̄∗ ≃ τ∗. The
constraints (404) and (405) then lead to the stricter requirements that the flow discharge per unit
width Q and the depth integrated sediment flux per unit width Qs should also be constant. Using
Chézy law with Strickler closure for the conductance to express the constraint (404) and a general
relationship for the transport capacity needed to express the constraint (405), we write:

Q = ks
√

Se D5/3
e , Qs =

√
(s− 1) g d3 n (τ∗e − τ∗c)

m, (410)

with ks Strickler parameter, De equilibrium flow depth, Se equilibrium slope, τ∗e equilibrium
Shields stress, n empirical constant and m empirical exponent larger than one. Simple algebraic
manipulations with the help of (408) then give:
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10/7
∗e ,
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where Q̃ is the dimensionless flow discharge per unit width, which reads:
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Figure 66. Equilibrium values of (a) the slope Se and (b) the dimensionless flow depth De/(s− 1) d are plotted in
terms of the dimensionless flow discharge per unit width, Q̃, for different values of the Shields stress at equilibrium,

τ∗e. We have chosen m = 3/2 corresponding to a Meyer Peter-Müller type of transport formula.

Hence, as shown in Figure 66, for given fluid discharge and average grain size, an increased
sediment supply (associated with an increased Shields stress) tends to steepen the channel. On
the contrary, for given sediment supply and average grain size, an increased fluid discharge tends
to flatten the channel. Moreover, as the grain diameter increases for given flow discharge, the
dimensionless quantity Q̃ decreases and, consequently, the equilibrium slope increases.
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Of course, we may establish equilibrium relationships similar to those reported in (411) for any
pair of variables chosen among De, Se, Q,Qs as functions of the remaining two. In particular, the
reader will readily show that:

Qs√
(s− 1) g d3

= n
[
Q̃3/5 S7/10

e − τ∗c
]m

,
De

(s− 1) d
=

(
Q̃√
Se

)3/5

. (413)

The latter relationships may be of help to estimate the formative sediment discharge in
equilibrium with some observed slope. The above simple results have a number of implications.

A simple application: Change of equilibrium slope arising from a step change in sediment size

As distinct equilibria are associated with any given set of forcing conditions, namely a given grain
size distribution, a given channel geometry and specific values of the flow and sediment discharges
per unit width, a step change in sediment size leads to a corresponding change of the equilibrium
slope.

Let us illustrate this point considering a river characterized by a step change in the average
grain size from d0 upstream to d downstream (e.g. due to a gravel-sand transition). Assume the
upstream reach is in a state of morphological equilibrium for prescribed values of the flow discharge
per unit width Q0 and of the depth integrated sediment flux per unit width Qs0. Following
Meyer-Peter and Müller (1948), the Strickler coefficient ks may be taken as inversely proportional
to the 1/6 power of the average grain size and the exponent of the transport formula m equal to
3/2.

Employing the equilibrium relationships (411) for the flow depth and setting Q = Q0 , one
immediately obtains:

De

De0
=

(
d

d0

)−2/7(
τ∗e
τ∗e0

)−3/7

,
Se

Se0
=

(
d

d0

)9/7(
τ∗e
τ∗e0

)10/7

. (414)

On the other hand, recalling (408), one readily finds that:

τ∗e
τ∗e0

=

(
d0
d

)2/3(De0

De

)7/3

. (415)

Next, setting Qs = Qs0, with the help of (410) one finds:

τ∗e
τ∗e0

=
d0
d

(
1− τ∗c

τ∗e0

)
+

τ∗c
τ∗e0

. (416)

From (415) and (416) we then derive a relationship between the upstream and downstream
flow depths as a function of d0/d and τ∗c/τ∗e0:

De

De0
=

(
d

d0

)−2/7 [
d0
d

(
1− τ∗c

τ∗e0

)
+

τ∗c
τ∗e0

]−3/7

. (417)

Finally, substituting from (416) into the expression for Se/Se0 in (414) we find the following
relationship between the upstream and downstream slopes:

Se

Se0
=

(
d

d0

)9/7 [
d0
d

(
1− τ∗c

τ∗e0

)
+

τ∗c
τ∗e0

]10/7
. (418)

The latter two relationships are plotted in Figure 67.
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Figure 67. Ratios between upstream and downstream equilibrium values of (a) the slope Se and (b) the flow depth
De in response to a step change of the average grain size d. The black line is obtained employing the Engelund and
Hansen predictor for the total load. The other lines refer to the case of dominant bed load and are obtained using

Wong and Parker (2006) predictor.

Two simple limits of (417) and (418) are instructive. In the weak sediment transport limit
(τ∗c/τ∗e0 → 1), one readily finds that De/De0 → (d/d0)

−2/7 and Se/Se0 → (d/d0)
9/7. Hence: the

bed slope decreases and the flow depth increases if sediment size decreases and vice versa.
The opposite trend is obtained in the limit of intense sediment transport (τ∗c/τ∗e0 → 0) as

De/De0 → (d/d0)
1/7 and Se/Se0 → (d/d0)

−1/7. However, in this limit, sediment transport is not
restricted to bedload: transport in suspension is likely to occur. The simplest way to account
for this effect is to use a transport relationship able to account for the total load. Indeed, if
Engelund and Hansen formula is employed and the Strickler coefficient ks is still taken to be
inversely proportional to the 1/6 power of the average grain size, the reader will readily prove that
the equilibrium relationships (417) and (418) become:

De

De0
=

(
d

d0

)−1/11

,
Se

Se0
=

(
d

d0

)7/11

. (419)

They show that the bed slope decreases and the flow depth increases (albeit quite weakly) if
the sediment size decreases and vice versa, a result which applies to any value of the Shields stress
and is also plotted in Figure 67. This result is indeed consistent with field observations of sand
bed rivers at bankfull stage. As it will be seen in Section 5.2.4 (see equation (463)), for given
bankfull discharge, the bankfull depth and the average slope turn out to be proportional to powers
of the median grain size with exponents −0.155 and 0.691, respectively. This dependence is similar
to that expressed by (419), with quantitative differences likely due to the fact that the exponent
of the resistance relationship observed in the field for sand bed rivers at bankfull stage turns out
to be 0.463, much larger than the value 1/6 adopted to derive (419).

The picture emerging from the above analysis, is based on the assumption of cylindrical
channels. Of course, real rivers are hardly cylindrical. The next step is then to ascertain whether
the notion of morphodynamic equilibrium can be extended to non cylindrical channels.

5.1.4 The case of non cylindrical channels: rectangular channels with variable width

The non cylindrical character of natural channels is felt by the bed profile at equilibrium, as
the stream responds to variations of the cross-sectional area by modifying the flow depth such to
keep the total sediment discharge constant. We illustrate this mechanism by analyzing firstly a
simple configuration consisting of a rectangular channel with variable width, where variations of
cross-sections arise only from channel narrowing or channel widening. This case has the advantage
to be amenable to fully analytical treatment. In the next Section, resorting to numerical tools, we
show that similar ideas apply to the irregular channel geometries observed in nature.
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Of course, we may establish equilibrium relationships similar to those reported in (411) for any
pair of variables chosen among De, Se, Q,Qs as functions of the remaining two. In particular, the
reader will readily show that:

Qs√
(s− 1) g d3

= n
[
Q̃3/5 S7/10

e − τ∗c
]m

,
De

(s− 1) d
=

(
Q̃√
Se

)3/5

. (413)

The latter relationships may be of help to estimate the formative sediment discharge in
equilibrium with some observed slope. The above simple results have a number of implications.

A simple application: Change of equilibrium slope arising from a step change in sediment size

As distinct equilibria are associated with any given set of forcing conditions, namely a given grain
size distribution, a given channel geometry and specific values of the flow and sediment discharges
per unit width, a step change in sediment size leads to a corresponding change of the equilibrium
slope.

Let us illustrate this point considering a river characterized by a step change in the average
grain size from d0 upstream to d downstream (e.g. due to a gravel-sand transition). Assume the
upstream reach is in a state of morphological equilibrium for prescribed values of the flow discharge
per unit width Q0 and of the depth integrated sediment flux per unit width Qs0. Following
Meyer-Peter and Müller (1948), the Strickler coefficient ks may be taken as inversely proportional
to the 1/6 power of the average grain size and the exponent of the transport formula m equal to
3/2.

Employing the equilibrium relationships (411) for the flow depth and setting Q = Q0 , one
immediately obtains:

De

De0
=

(
d

d0

)−2/7(
τ∗e
τ∗e0

)−3/7

,
Se

Se0
=

(
d

d0

)9/7(
τ∗e
τ∗e0

)10/7

. (414)

On the other hand, recalling (408), one readily finds that:

τ∗e
τ∗e0

=

(
d0
d

)2/3(De0

De

)7/3

. (415)

Next, setting Qs = Qs0, with the help of (410) one finds:

τ∗e
τ∗e0

=
d0
d

(
1− τ∗c

τ∗e0

)
+

τ∗c
τ∗e0

. (416)

From (415) and (416) we then derive a relationship between the upstream and downstream
flow depths as a function of d0/d and τ∗c/τ∗e0:

De

De0
=

(
d

d0

)−2/7 [
d0
d

(
1− τ∗c

τ∗e0

)
+

τ∗c
τ∗e0

]−3/7

. (417)

Finally, substituting from (416) into the expression for Se/Se0 in (414) we find the following
relationship between the upstream and downstream slopes:

Se

Se0
=

(
d

d0

)9/7 [
d0
d

(
1− τ∗c

τ∗e0

)
+

τ∗c
τ∗e0

]10/7
. (418)

The latter two relationships are plotted in Figure 67.
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Figure 67. Ratios between upstream and downstream equilibrium values of (a) the slope Se and (b) the flow depth
De in response to a step change of the average grain size d. The black line is obtained employing the Engelund and
Hansen predictor for the total load. The other lines refer to the case of dominant bed load and are obtained using

Wong and Parker (2006) predictor.

Two simple limits of (417) and (418) are instructive. In the weak sediment transport limit
(τ∗c/τ∗e0 → 1), one readily finds that De/De0 → (d/d0)

−2/7 and Se/Se0 → (d/d0)
9/7. Hence: the

bed slope decreases and the flow depth increases if sediment size decreases and vice versa.
The opposite trend is obtained in the limit of intense sediment transport (τ∗c/τ∗e0 → 0) as

De/De0 → (d/d0)
1/7 and Se/Se0 → (d/d0)

−1/7. However, in this limit, sediment transport is not
restricted to bedload: transport in suspension is likely to occur. The simplest way to account
for this effect is to use a transport relationship able to account for the total load. Indeed, if
Engelund and Hansen formula is employed and the Strickler coefficient ks is still taken to be
inversely proportional to the 1/6 power of the average grain size, the reader will readily prove that
the equilibrium relationships (417) and (418) become:

De

De0
=

(
d

d0

)−1/11

,
Se

Se0
=

(
d

d0

)7/11

. (419)

They show that the bed slope decreases and the flow depth increases (albeit quite weakly) if
the sediment size decreases and vice versa, a result which applies to any value of the Shields stress
and is also plotted in Figure 67. This result is indeed consistent with field observations of sand
bed rivers at bankfull stage. As it will be seen in Section 5.2.4 (see equation (463)), for given
bankfull discharge, the bankfull depth and the average slope turn out to be proportional to powers
of the median grain size with exponents −0.155 and 0.691, respectively. This dependence is similar
to that expressed by (419), with quantitative differences likely due to the fact that the exponent
of the resistance relationship observed in the field for sand bed rivers at bankfull stage turns out
to be 0.463, much larger than the value 1/6 adopted to derive (419).

The picture emerging from the above analysis, is based on the assumption of cylindrical
channels. Of course, real rivers are hardly cylindrical. The next step is then to ascertain whether
the notion of morphodynamic equilibrium can be extended to non cylindrical channels.

5.1.4 The case of non cylindrical channels: rectangular channels with variable width

The non cylindrical character of natural channels is felt by the bed profile at equilibrium, as
the stream responds to variations of the cross-sectional area by modifying the flow depth such to
keep the total sediment discharge constant. We illustrate this mechanism by analyzing firstly a
simple configuration consisting of a rectangular channel with variable width, where variations of
cross-sections arise only from channel narrowing or channel widening. This case has the advantage
to be amenable to fully analytical treatment. In the next Section, resorting to numerical tools, we
show that similar ideas apply to the irregular channel geometries observed in nature.
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Let us consider a wide rectangular channel with variable width. The bottom width 2Bb then
coincides with the width of the free surface 2B and we may simply write:

D(x) = H̄ − η̄, Ω = 2B(x)D(x). (420)

It is also convenient to define an average configuration characterized by an average channel width
2B0, such that, for given flow and sediment discharges, we may define an equilibrium slope Se0

and a uniform flow depth De0.
The mechanism of morphodynamic equilibrium is immediately illustrated by imposing the

constraint (405) that the solid discharge keeps constant along the channel. Adopting the general
transport formula (410) with m constant, this constraint becomes:

(
τ∗ − τ∗c
τ∗e0 − τ∗c

)m

=
B0 n0

B n
, (421)

having denoted by n0 the coefficient of the transport relationship evaluated at equilibrium. Below,
we will adopt a Meyer Peter–Müller type of transport formula (with m = 3/2 and n = n0) at low
Shields stress and Engelund and Hansen relationship (with m = 5/2, n = 0.05/C̄f , n0 = 0.05/C̄f0

and τ∗c = 0) at high Shields stress.
Note that the weak transport limit is subject to the constraint that transport occurs throughout

the whole channel, which is ensured for narrowing channels, where Shields stress increases. On the
contrary, for widening channels the Shields stress decreases hence τ∗e0 must be sufficiently larger
than τ∗c in order to satisfy the above constraint.

- Flow depth
Simple manipulations with the help of (408) lead to the following relationship:

D
De0

=

(
B

B0

)(1/m−2) 3/7 (
n

n0

)3/(7m)

f−3/7, (422)

having denoted by f the following function:

f = 1 +
τ∗c
τ∗e0

[(
B n

B0 n0

)1/m

− 1

]
, (423)

that is plotted in Figure 68a. The reader will readily show that, for large Shields stress
(EH predictor), with C̄f expressed through the Gauckler-Strichler relation, f = 1 and
D/De0 = (B/B0)

−8/11. Moreover, as τ∗c/τ∗e0 → 1 (MPM predictor), f → (B/B0)
2/3 and

D/De0 → (B/B0)
−6/7.

Differentiating (422) one finds:
dD
dx

= −φf

ψf

D
B

dB

dx
, (424)

having set:

φf =
3

7

[
2− 1

m

1− τ∗c/τ∗e0
f

]
, ψf = 1− 3

7m

D
n

dn

dD

[
1− τ∗c/τ∗e0

f

]
. (425)

One readily shows that, for low Shields stress (MPM predictor) φf is invariably positive
(Figure 68b) and ψf = 1; for large Shields stress (EH predictor) φf is still invariably positive
(=24/35) and ψf = 33/35. We may thus conclude that the sign of dD/dx is opposite to that
of dB/dx, a result independent of whether the channel is steep or mild.
Hence, the equilibrium depth increases if the channel narrows and vice versa it decreases if
the channel widens (Figure 69a).
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Figure 68. The functions f (equation (423)) and φf (equation (425)) are plotted in terms of the width ratio B/B0

for different values of the ratio τ∗c/τ∗e0. We have adopted Meyer Peter–Müller type transport formula at low
Shields stress (τ∗c/τ∗e0 = 0.25, 0.5, 0.75,→ 1) and Engelund and Hansen relationship at high Shields stress

(τ∗c/τ∗e0 = 0).

- Froude number
The relationship (422) has some further interesting implications. Denoting by Fr the Froude
number, one finds that:

F 2
r

F 2
r0

=

(
B

B0

)4/7−9/(7m) (
n

n0

)−9/(7m)

f9/7. (426)

At low Shields stress (MPM predictor) the equation for the Froude number (426) becomes:

F 2
r

F 2
r0

=

(
B

B0

)−2/7
{
1 +

τ∗c
τ∗e0

[(
B

B0

)2/3

− 1

]}9/7

. (427)

In particular, in the limit τ∗c/τ∗e0 → 1, (427) becomes:

F 2
r

F 2
r0

=

(
B

B0

)4/7

. (428)

From (428) it follows that a subcritical flow (Fr0 < 1) in a mobile bed channel at equilibrium
keeps subcritical (Fr < 1) at a channel narrowing, whereas a supercritical flow (Fr0 > 1)
keeps supercritical (Fr > 1) at a channel widening (Figures 69b and 70). Note that this result
applies to channel narrowing-widening sufficiently gradual that flow separation does not occur
and one dimensional modeling is appropriate.
At large Shields stress (EH predictor) the equation for the Froude number (426) becomes:

F 2
r

F 2
r0

=

(
B

B0

)2/35 (
D
De0

)−6/35

=

(
B

B0

)2/11

. (429)

The trend predicted by (429) is qualitatively similar to that obtained in the low Shields limit
(Figure 70) but with the iso-F curves reversed as small values of B/B0 are approached. Note,
that the above predictions differ significantly from those that one would find in the fixed bed
case. This comparison is left to the reader as exercise.
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Let us consider a wide rectangular channel with variable width. The bottom width 2Bb then
coincides with the width of the free surface 2B and we may simply write:

D(x) = H̄ − η̄, Ω = 2B(x)D(x). (420)

It is also convenient to define an average configuration characterized by an average channel width
2B0, such that, for given flow and sediment discharges, we may define an equilibrium slope Se0

and a uniform flow depth De0.
The mechanism of morphodynamic equilibrium is immediately illustrated by imposing the

constraint (405) that the solid discharge keeps constant along the channel. Adopting the general
transport formula (410) with m constant, this constraint becomes:

(
τ∗ − τ∗c
τ∗e0 − τ∗c

)m

=
B0 n0

B n
, (421)

having denoted by n0 the coefficient of the transport relationship evaluated at equilibrium. Below,
we will adopt a Meyer Peter–Müller type of transport formula (with m = 3/2 and n = n0) at low
Shields stress and Engelund and Hansen relationship (with m = 5/2, n = 0.05/C̄f , n0 = 0.05/C̄f0

and τ∗c = 0) at high Shields stress.
Note that the weak transport limit is subject to the constraint that transport occurs throughout

the whole channel, which is ensured for narrowing channels, where Shields stress increases. On the
contrary, for widening channels the Shields stress decreases hence τ∗e0 must be sufficiently larger
than τ∗c in order to satisfy the above constraint.

- Flow depth
Simple manipulations with the help of (408) lead to the following relationship:
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)(1/m−2) 3/7 (
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having denoted by f the following function:

f = 1 +
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[(
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that is plotted in Figure 68a. The reader will readily show that, for large Shields stress
(EH predictor), with C̄f expressed through the Gauckler-Strichler relation, f = 1 and
D/De0 = (B/B0)

−8/11. Moreover, as τ∗c/τ∗e0 → 1 (MPM predictor), f → (B/B0)
2/3 and

D/De0 → (B/B0)
−6/7.

Differentiating (422) one finds:
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One readily shows that, for low Shields stress (MPM predictor) φf is invariably positive
(Figure 68b) and ψf = 1; for large Shields stress (EH predictor) φf is still invariably positive
(=24/35) and ψf = 33/35. We may thus conclude that the sign of dD/dx is opposite to that
of dB/dx, a result independent of whether the channel is steep or mild.
Hence, the equilibrium depth increases if the channel narrows and vice versa it decreases if
the channel widens (Figure 69a).
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Figure 68. The functions f (equation (423)) and φf (equation (425)) are plotted in terms of the width ratio B/B0

for different values of the ratio τ∗c/τ∗e0. We have adopted Meyer Peter–Müller type transport formula at low
Shields stress (τ∗c/τ∗e0 = 0.25, 0.5, 0.75,→ 1) and Engelund and Hansen relationship at high Shields stress

(τ∗c/τ∗e0 = 0).

- Froude number
The relationship (422) has some further interesting implications. Denoting by Fr the Froude
number, one finds that:

F 2
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F 2
r0

=

(
B

B0

)4/7−9/(7m) (
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n0

)−9/(7m)

f9/7. (426)

At low Shields stress (MPM predictor) the equation for the Froude number (426) becomes:
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(
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)−2/7
{
1 +

τ∗c
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[(
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− 1
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. (427)

In particular, in the limit τ∗c/τ∗e0 → 1, (427) becomes:
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F 2
r0

=

(
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B0

)4/7

. (428)

From (428) it follows that a subcritical flow (Fr0 < 1) in a mobile bed channel at equilibrium
keeps subcritical (Fr < 1) at a channel narrowing, whereas a supercritical flow (Fr0 > 1)
keeps supercritical (Fr > 1) at a channel widening (Figures 69b and 70). Note that this result
applies to channel narrowing-widening sufficiently gradual that flow separation does not occur
and one dimensional modeling is appropriate.
At large Shields stress (EH predictor) the equation for the Froude number (426) becomes:
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F 2
r0

=

(
B

B0

)2/35 (
D
De0

)−6/35

=

(
B

B0

)2/11

. (429)

The trend predicted by (429) is qualitatively similar to that obtained in the low Shields limit
(Figure 70) but with the iso-F curves reversed as small values of B/B0 are approached. Note,
that the above predictions differ significantly from those that one would find in the fixed bed
case. This comparison is left to the reader as exercise.
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Figure 69. Equilibrium values of ratios of (a) flow depth D/De0 and (b) Froude numbers Fr/Fr0 as a function of
the width ratio B/B0 for different values of the ratio τ∗c/τ∗e0. We have adopted Meyer Peter–Müller type

transport formula at low Shields stress (τ∗c/τ∗e0 = 0.5, 0.75) and Engelund and Hansen relationship at high Shields
stress (τ∗c/τ∗e0 = 0).

Figure 70. The solid lines describe in the (Fr0, B/B0) plane the iso-Fr curves for mobile bed streams flowing in
narrowing or widening channels in equilibrium conditions. (a) τ∗c/τ∗e0 = 0.5 (MPM predictor); (b) τ∗c/τ∗e0 = 0

(EH predictor).

- Free surface profile.
Let us next examine the effects of channel narrowing–widening on the free surface profiles at
equilibrium. We then need to solve the momentum equation. Let us denote by H̄1(x) the
component of free surface elevation driven by width variations and write:

H̄ = H̄0 − Se0 x+ H̄1(x), (430)

where H̄0 is the average free surface elevation at the cross-section x = 0. With the help
of (430), the momentum equation (406) becomes an ordinary differential equation for the
unknown function H̄1(x), which reads:

dH̄1

dx
= Se0

(
1− C̄f

Q2

Ω2 gD S0

)
+

Q2

gΩ2

1

B

dB

dx
(1− φf

ψf
), (431)

having assumed the cross-section sufficiently large to allow approximating the hydraulic radius
by the flow depth and taking the correction coefficient for fluid momentum βcor equal to one.
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Simple algebraic manipulations allow reduction of (431) to the following form:

dH̄1

dx
= Se0

[
1−

(
Fr

Fr0

)2(D0

D

)1/3
]
+ F 2

r

D
B

dB

dx
(1− φf

ψf
). (432)

With the help of (426) and (422) and replacing the undisturbed slope Se0 by the quantity
F 2
r0 C̄f0, this equation is readily integrated in the form:

H̄1(x) = F 2
r0 De0

[
Lr C̄f0

De0
IH1
1 + IH1

2

]
. (433)

Here, IH1
1 and IH1

2 are the following dimensionless quantities:

IH1
1 (x̃) =

∫ x̃

0

[
1− B̃ 6/7−10/(7m)

(
n

n0

)−10/(7m)

f 10/7

]
dx̃′, (434a)

IH1
2 (x̃) =

∫ x̃

0

B̃−9/7−6/(7m) f 6/7

(
n

n0

)−6/(7m)
dB̃

dx̃
(1− φf

ψf
) dx̃′, (434b)

where x̃ = x/Lr and B̃ = B/B0, with Lr the length of the reach and B0 the undisturbed half
channel width, respectively.

The solution (433) deserves some comments. Not surprisingly, the perturbation of the free
surface is a fraction of the undisturbed flow depth which scales with the square of the Froude
number F 2

r0. Hence, the effect of width variations on the free surface decreases rapidly as the
flow regime varies from supercritical to subcritical.

The first term of (432) is driven by the perturbation of frictional terms induced by variations
of flow speed and flow depth in the widening and narrowing reaches. The importance of this
effect depends mainly on the length of the channel reach where width variations occur.

The role of sediment transport is readily illustrated. In the case of dominant bedload (MPM
predictor) and in the limit of weak sediment transport (τ∗c/τ∗e0 → 1), one readily shows that:

[
1− B̃ 6/7−10/(7m)

(
n

n0

)−10/(7m)

f10/7

]
→ 1− B̃ 6/7.

Hence, in the weak sediment transport limit, the contribution of the integral IH1
1 is negative

where the channel is wider than the undisturbed channel (B̃ > 1) and vice versa. A similar
trend is obtained for large Shields stress as, using EH predictor, one finds:

[
1− B̃6/7−10/(7m)

(
n

n0

)−10/(7m)

f10/7

]
= 1− B̃14/33.

The second term of the solution (433) has the sign of dB/dx̃. Indeed, simple analysis of the
relations (425) readily shows that 0 < φf/ψf < 1 for any value of τ∗e0. Moreover, the quantity
B̃−9/7−6/(7m) f6/7 (n/n0)

−6/(7m) keeps invariably positive. Hence, at equilibrium, the effect
of the second term is to let the free surface elevation rise when channels widen and vice versa.

In conclusion, the two contributions to the solution (433) have opposite effects on the
perturbation of the free surface. The two examples discussed below will show that the role of
the second term usually prevails.
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Figure 69. Equilibrium values of ratios of (a) flow depth D/De0 and (b) Froude numbers Fr/Fr0 as a function of
the width ratio B/B0 for different values of the ratio τ∗c/τ∗e0. We have adopted Meyer Peter–Müller type

transport formula at low Shields stress (τ∗c/τ∗e0 = 0.5, 0.75) and Engelund and Hansen relationship at high Shields
stress (τ∗c/τ∗e0 = 0).

Figure 70. The solid lines describe in the (Fr0, B/B0) plane the iso-Fr curves for mobile bed streams flowing in
narrowing or widening channels in equilibrium conditions. (a) τ∗c/τ∗e0 = 0.5 (MPM predictor); (b) τ∗c/τ∗e0 = 0

(EH predictor).

- Free surface profile.
Let us next examine the effects of channel narrowing–widening on the free surface profiles at
equilibrium. We then need to solve the momentum equation. Let us denote by H̄1(x) the
component of free surface elevation driven by width variations and write:

H̄ = H̄0 − Se0 x+ H̄1(x), (430)

where H̄0 is the average free surface elevation at the cross-section x = 0. With the help
of (430), the momentum equation (406) becomes an ordinary differential equation for the
unknown function H̄1(x), which reads:

dH̄1

dx
= Se0

(
1− C̄f

Q2

Ω2 gD S0

)
+

Q2

gΩ2

1

B

dB

dx
(1− φf

ψf
), (431)

having assumed the cross-section sufficiently large to allow approximating the hydraulic radius
by the flow depth and taking the correction coefficient for fluid momentum βcor equal to one.
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With the help of (426) and (422) and replacing the undisturbed slope Se0 by the quantity
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r0 C̄f0, this equation is readily integrated in the form:
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where x̃ = x/Lr and B̃ = B/B0, with Lr the length of the reach and B0 the undisturbed half
channel width, respectively.

The solution (433) deserves some comments. Not surprisingly, the perturbation of the free
surface is a fraction of the undisturbed flow depth which scales with the square of the Froude
number F 2

r0. Hence, the effect of width variations on the free surface decreases rapidly as the
flow regime varies from supercritical to subcritical.

The first term of (432) is driven by the perturbation of frictional terms induced by variations
of flow speed and flow depth in the widening and narrowing reaches. The importance of this
effect depends mainly on the length of the channel reach where width variations occur.

The role of sediment transport is readily illustrated. In the case of dominant bedload (MPM
predictor) and in the limit of weak sediment transport (τ∗c/τ∗e0 → 1), one readily shows that:

[
1− B̃ 6/7−10/(7m)

(
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)−10/(7m)

f10/7

]
→ 1− B̃ 6/7.

Hence, in the weak sediment transport limit, the contribution of the integral IH1
1 is negative

where the channel is wider than the undisturbed channel (B̃ > 1) and vice versa. A similar
trend is obtained for large Shields stress as, using EH predictor, one finds:

[
1− B̃6/7−10/(7m)

(
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)−10/(7m)

f10/7

]
= 1− B̃14/33.

The second term of the solution (433) has the sign of dB/dx̃. Indeed, simple analysis of the
relations (425) readily shows that 0 < φf/ψf < 1 for any value of τ∗e0. Moreover, the quantity
B̃−9/7−6/(7m) f6/7 (n/n0)

−6/(7m) keeps invariably positive. Hence, at equilibrium, the effect
of the second term is to let the free surface elevation rise when channels widen and vice versa.

In conclusion, the two contributions to the solution (433) have opposite effects on the
perturbation of the free surface. The two examples discussed below will show that the role of
the second term usually prevails.
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- Bed profile
Let us finally determine the response of the bed elevation η to channel widening or narrowing.
It is again convenient to introduce a perturbation η̄1 of the uniform bed profile by defining:

η̄ = η̄0 − Se0 x+ η̄1(x), (435)

where η̄0 = H̄0 −De0. With the latter definition and recalling the solution (422) one finds:

η̄1(x) = H̄1(x) +De0 −D(x) = H̄1(x) +De0

[
1− B̃(1/m−2) 3/7

(
n

n0

)3/(7m)

f−3/7

]
. (436)

This solution is readily interpreted. The reader will show that the role of the second term
on the right hand side is to produce, as expected, bed aggradation in widening channels at
equilibrium and, vice versa, degradation in narrowing channels. The role of H̄1(x) has already
been discussed and is proportional to the square of the Froude number (equation (433)). For
low Froude numbers, in widening channels the bed elevation increases faster than the free
surface elevation such to allow for the predicted reduction of flow depth. Just the opposite
occurs for narrowing channels at equilibrium, where bed elevation decreases faster than free
surface elevation, eventually leading to an increased flow depth. At high Froude numbers the
role of H̄1(x) tends to prevail on that of the term De0 − D(x) which is independent of the
Froude number. As a result, the perturbation of bed elevation tends to follow closely the
perturbation of free surface elevation.

In order to make our arguments quantitative, below we consider two instructive examples.

Example 1: Sinusoidal channel.

Let us consider the rectangular channels depicted in Figure 71, which undergo either a widening (Figure
71a) or a narrowing (Figure 71b), such that, in both cases, the channel eventually recovers its original
width 2B0. More precisely, let us assume that B̃ = 1 + 0.5 δ

[
1 − cos(2π x̃)

]
with x̃ ϵ [0, 1] and δ a

parameter measuring the degree of narrowing/widening. The Figure 71 shows that, for the case considered,

Figure 71. Sketch of two examples of channel undergoing (a) widening and (b) narrowing in reversed
sequences. Input data: Se0 = 10−3; d = 0.01 m; a) δ = 1.5; Fr0 = 0.46; τ∗e0 = 0.308; b) δ = −0.78;

Fr0 = 0.44; τ∗e0 = 0.227 (modified from Bolla Pittaluga et al., 2014a).

widening channels (δ > 0) at equilibrium experience rising of the free surface and, vice versa, in narrowing
channels (δ < 0) the free surface lowers. Is this invariably true? In order to answer this question, in Figure
72 we have reported the two integrals (434a) and (434b) computed for x̃ = 0.5 and plotted as functions
of the parameters τ∗ and δ. It appears that, as expected, the integral IH1
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has the sign of δ. On the
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Figure 72. The integrals IH1
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as functions of the Shields parameter τ∗ and the amplitude
of width variations δ.

contrary, the integral IH1
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may have the same sign or the opposite sign, depending on the intensity
of sediment transport. However, the Figure 72 suggests that IH1
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is at least an order of magnitude
smaller than IH1
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. If the factor Lr C̄f0/De0 is O(1), then the modulus of the first term in (433) is
smaller than the second, i.e. widening channels at equilibrium experience rising of the free surface and
vice versa. Note that this result suggests that local widening of alluvial channels is not an appropriate
solution to reduce the risk of flooding.

A second interesting feature of this solution is that, for symmetric width perturbations, the net effect
of the second term of (433) vanishes (IH1

2

∣∣
1
= 0) whilst the net effect of the first term does not vanish

and (IH1
1

∣∣
1
= 2 IH1

1
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). Hence, except for the case of intense sediment transport, in channels wider than
the undisturbed reach, the first term of (433) is negative and leads to net lowering of the free surface
downstream or net rising upstream. Conversely, net rising downstream or net lowering upstream will result
in channels undergoing narrowing. In each case, whether the net effect is felt upstream or downstream
depends on the boundary condition.

Example 2: Diverging river mouth.

Next, let us consider a second instructive example, namely a divergent river mouth. The channel width
2B is assumed to vary exponentially in the landward direction according to the following relationship:

B = B0 + (Bmouth −B0) exp

(
− x

LB

)
, (437)

where x is the longitudinal coordinate with origin at the estuary mouth directed landward, LB is the
channel convergence length, Bmouth is half width at the mouth and B0 is the half width asymptotically
reached upstream by the river (Figure 73b). Furthermore we assume that the sea level Hmouth, the
flow discharge Q and the average channel slope Se0 are known. In Figure 73 we show the equilibrium
configuration of the bed and the corresponding free surface elevation for a specific case.

Results show that, in order to accommodate both flow and sediment discharge prescribed upstream,
the equilibrium flow depth must decrease as the width increases, leading to a negative bed slope close to
the estuary mouth. Such a tendency of the bed profile is typically observed in many micro-tidal estuaries,
where the role of tide is negligible (e.g. in the estuary of the Magra river shown in Figure 65). In other
words, this mechanism is exclusively associated with river widening close to the estuary mouth. For the
general estuarine case the reader is referred to Bolla Pittaluga et al. (2014b).

5.1.5 The case of non cylindrical channels: natural rivers
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- Bed profile
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B = B0 + (Bmouth −B0) exp

(
− x

LB

)
, (437)

where x is the longitudinal coordinate with origin at the estuary mouth directed landward, LB is the
channel convergence length, Bmouth is half width at the mouth and B0 is the half width asymptotically
reached upstream by the river (Figure 73b). Furthermore we assume that the sea level Hmouth, the
flow discharge Q and the average channel slope Se0 are known. In Figure 73 we show the equilibrium
configuration of the bed and the corresponding free surface elevation for a specific case.

Results show that, in order to accommodate both flow and sediment discharge prescribed upstream,
the equilibrium flow depth must decrease as the width increases, leading to a negative bed slope close to
the estuary mouth. Such a tendency of the bed profile is typically observed in many micro-tidal estuaries,
where the role of tide is negligible (e.g. in the estuary of the Magra river shown in Figure 65). In other
words, this mechanism is exclusively associated with river widening close to the estuary mouth. For the
general estuarine case the reader is referred to Bolla Pittaluga et al. (2014b).

5.1.5 The case of non cylindrical channels: natural rivers
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Figure 73. (a) The equilibrium configuration of the bed and the corresponding free surface elevation
associated with a convergent microtidal estuary with shape described by the relationship (437). (b)

Planform configuration. Data: Bmouth/B0 = 8/3; LB = 1500 m; Hmouth = 0 m; Se0 = 10−4;
Fr0 = 0.13; τ∗e0 = 0.15; d = 1 mm (modified from Bolla Pittaluga et al., 2014a).

The analysis presented in the previous Section has shown that, given the spatial distribution of
channel width and the grain size distribution of a rectangular channel, an equilibrium bed profile
can be associated with any assigned values of the flow and sediment discharges along with some
boundary condition. However, the analysis does not help identifying the formative values (if any)
of flow and sediment discharges.

To make some progress in this direction it is convenient to ascertain whether our steady
equilibrium paradigm does indeed help us interpreting field observations. With this goal in mind,
we then analyze the terminal reach of the Magra River where the latter ideas have been tested
(Seminara et al., 2011). Following the approach extensively discussed by Bolla Pittaluga et al.
(2014a), we now show that the observed bed profiles are fairly closely fit by the equilibrium
profile associated with some steady discharge. Note, that a similar exercise, which led to similar
conclusions, was performed by Lanzoni et al. (2015) on a long reach of the Po river.

The equation (406) was solved numerically for different values of the flow discharge Q, starting
from the downstream end where the free surface elevation was set equal to the mean sea level. In
other words, tidal oscillations were neglected given the fluvially dominated character of the river
mouth. Simulations were performed assuming the shape of the cross-sections obtained in the 2003
survey and following the approach of Engelund described in Section 2.3.5 to calculate the flow
properties in each cross-section.

The sediment transport capacity associated with each flow discharge was evaluated using
equation (410) with the observed value of the average bed slope in the upstream river reach. The
transport capacity was evaluated using Engelund and Hansen (1967) predictor. The average value
of the Strickler coefficient was set equal to 30 m1/3s−1. Results of the calculation are reported
in Figure 74. They suggest that the bed profile observed in 2003 fits well the equilibrium profile
associated with a discharge close to 500 m3s−1, except for an intermediate reach (about 2.5-3.5
km from the mouth) where the river exhibits a strong constriction. Here the 2003 profile is closer
to the equilibrium profile corresponding to a discharge of 1000 m3s−1. As the assigned discharge
increases, the corresponding equilibrium profile deepens.

The value 500 m3s−1 is close to the mean annual discharge of the Magra River in the reach
investigated here (347 m3s−1), a value significantly lower than the mean annual flood discharge
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Figure 74. The equilibrium profiles of the terminal reach of the Magra River (Italy) associated with various values
of the flow discharge are compared with the observed profile, based on the detailed survey performed in 2003 (from

Bolla Pittaluga et al., 2014a).

(1702 m3s−1). However, note that the relative high value of the mean annual flood discharge might
be due to the rather short time period (8 years) on which the above statistics is based, noting that
in this short period three very intense flood events have been experienced by the river.

Similarly, in the case of a lowland reach of the Po River, Lanzoni et al. (2015) found that the
discharge (2300 m3s−1) ensuring the best fit between computed and observed bed profiles is close
to the mean annual discharge (1500 m3s−1) at Pontelagoscuro gauge station. The latter quantity,
on the other hand, is close to the discharge for which the unvegetated (and hence highly mobile)
point bars forming in the active river section begin to be submerged.

These results suggest that, in spite of the strong fluctuations of flow and sediment discharges
undergone by a river, the bed profile tends to settle around an equilibrium state which is associated
with steady forcing values of flow and sediment discharge falling in the lower range of values
experienced by the river. It remains to be clarified how this equilibrium state survives the strong
fluctuations of bed elevation driven by the likely propagation of sediment waves during flood events.
This goal cannot clearly be pursued in the context of a steady treatment of the problem. Much can
be learnt on this problem from unsteady numerical simulations of the evolution of the bed profile
in river reaches subject to observed sequences of hydrographs. This goal has been pursued by Bolla
Pittaluga et al. (2014a) to whom the reader is referred for details. The latter Authors concluded
with the following picture of river equilibrium: “we interpret the dynamic state of the system as a
strict equilibrium state subject to fluctuations: essentially, we may always interpret a hydrograph as
the sum of some steady constant discharge plus fluctuations driven by variations of external forcing
(at any temporal scale). The issue is then to decide what is the appropriate value of the steady
component of the forcing such that fluctuations of the forcing produce fluctuations of the bed profile
which have zero mean when averaged over a sufficiently long period. This is the concept of effective
forcing which can be also expressed as follows: the river morphology chooses the (effectively) steady
forcing which is able to maintain its associated equilibrium by smoothing out the perturbations
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intermittently induced by flood events. In other words, the sediment transport associated with
low-stage flows must be statistically able to suppress the deviations from the equilibrium profile
driven by the propagation of flood waves."

5.1.6 Additional effects

The picture emerged from the above analysis is appropriate to river reaches sufficiently short
to justify the assumptions of constant discharge and uniform grain size. A number of additional
effects (sediment abrasion, effect of tributaries, grain sorting, subsidence) must be accounted for
when extending the analysis to river reaches of length scale comparable to the size of the basin.
At that scale, the analysis must be simplified such to allow to detect the average trend of the bed
profile, smoothed out from the perturbations of the bed elevation driven by local width variations
like those analyzed above. Such an extension is outside the scopes of the present Monograph. The
interested reader is referred to Sinha and Parker (1996).

5.2. The basic equilibrium cross-section of straight channels

5.2.1 The early field observations

The shape of the cross-section of river channels adjusts, through the processes of erosion and
deposition, to the need to accommodate the fluid discharge and the sediment load supplied from
the drainage basin, subject to the additional constraints posed by the boundary composition and
the valley slope.

Since the discharge increases downstream with the drainage area, the average channel size,
grossly described in terms of some characteristic width 2B and depth D of its cross-section, should
vary accordingly. A pioneering contribution aimed at quantifying the latter dependence is due
to Leopold and Maddock (1953). Averaging values for a number of selected river reaches in the
United States, Leopold and Maddock (1953) established empirical relationships between the mean
annual discharge Qma and geometrical properties of the channel cross-section (top bank width 2B,
cross-sectionally averaged depth D) or flow properties (cross-sectionally averaged speed at mean
annual discharge U). These relationships are known in the literature as regime equations and read:

2B = aLM (Qma)
b, D = cLM (Qma)

f , U = kLM (Qma)
m (438a,b,c)

with aLM , cLM and kLM dimensional constants and

b = 0.5, f = 0.4, m = 0.1. (439)

Parker (1979) suggested that the scale factors aLM , cLM and kLM vary at different sites but
the exponents, b, f , and m, exhibit a remarkable degree of consistency, i.e. they appear to be fairly
independent of location and only weakly dependent on channel type. This was indeed confirmed
by Griffiths (1981) and Hey and Thorne (1986) who investigated six large, coarse gravel-bed rivers
in New Zealand and a few stable gravel-bed river reaches in the United Kingdom, respectively.
The values of b, f and m found in the former work were 0.48, 0.43 and 0.11 respectively. The
latter Authors report slightly different values, namely b = 0.52 and f = 0.39.

Other researchers have pointed out that, although discharge has a dominant control on channel
size, additional factors such as the dominant form of sediment transport (bed load vs. suspended
load), bank composition and vegetation also play some role. Notable is the early work of Schumm
(1960), who showed that the shape of stable cross-sections, identified by the ratio between the
channel width and the maximum flow depth, can be expressed as a function of the mean percentage
of silt and clay along the entire perimeter (banks and bed), the latter quantity accounting for the
boundary resistance to erosion. Empirical evidence, obtained for channels containing only small
amounts of gravel, shows that the width to depth ratio can change over two orders of magnitude,
ranging from over 100 when silt-clay is less than 1% to less than 10 when silt-clay is more than
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20%, see Figure 75. In other words, channels containing little silt-clay are relatively wide and
shallow; whereas those composed of predominantly silt-clay are relatively narrow and deep. Note
that small percentages of silt-clay indicate bedload dominated channels while high values are
representative of suspended-load channels.

Figure 75. The width to depth ratio as a function of weighted percentage of silt and clay (modified from Schumm,
1960).

Vegetation is generally expected to increase bank resistance which leads to channel narrowing.
Hey and Thorne (1986) found that channels with grassed banks are up to 1.8 times wider that
those that are tree-lined. However, data analysis showed that the inclusion of vegetation did not
affect the value of the exponent b of Leopold and Maddock (1953) relationship.

The actual physical interpretation of the empirical correlations (438), which turn out to apply
to so many river reaches around the world, has been the subject of a large number of investigations.
Below, we provide an overview of the main mechanistic approaches, which succeeded in determining
the shape of the cross-section of straight cylindrical channels with erodible banks at equilibrium.
We start from the simplest case, that of channels which convey an assigned fluid discharge without
transporting any sediment.

5.2.2 The equilibrium shape of channels unable to transport sediments

This problem was first investigated by Glover and Florey (1951) using the so called tractive
force approach: essentially, one imposes that, in a stable geometry of the cross-section, all the
sediment particles along the channel boundary must be at threshold conditions for the onset of
particle motion. The shape of the cross-section is then obtained coupling a hydrodynamic model
for the distribution of water shear stresses along the wetted perimeter with the condition that the
boundary shear stress must be critical.
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for the distribution of water shear stresses along the wetted perimeter with the condition that the
boundary shear stress must be critical.
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The mathematical treatment of this problem considers a symmetrical cross-section (see sketch
in Figure 76). The channel is taken to be erodible, cylindrical and characterized by constant
longitudinal bed slope S. The flow field is steady and uniform. Bed and banks are assumed to
be composed of loose gravel of similar size and cannot be suspended. The system is referred to
a curvilinear coordinate system (s, p, ζ) where s is the longitudinal coordinate, p the curvilinear
coordinate defined along the wetted perimeter, and ζ is the coordinate normal to the boundary.
We denote by 2B the width of the free surface, Pw the wetted perimeter, D the local flow depth
and Ω the liquid cross-sectional area.

Figure 76. Sketch and notations of a cross-section that keeps in equilibrium being unable to transport
sediments.

With these notations, the longitudinal component of the Reynolds equations can be written as:

∂(T t
ζs hp)

∂s
+

∂T t
ps

∂p
+ ϱ g S hp = 0, (440)

where Tt is the Reynolds stress tensor and hp is the metric coefficient of the lateral curvilinear
coordinate. Note that in equation (440) the effect of the weak convective motions due to secondary
flows associated with turbulence anisotropy is neglected. As a matter of fact, in straight channels,
such secondary velocities are very weak, typically 1 to 2% of the main longitudinal velocity.

The metric coefficient arises from the local inclination and curvature of the wetted perimeter
and has the following expression:

hp = 1 + ζ

d2D

dp2[
1−

(
dD

dp

)2
]1/2

. (441)

By integrating equation (440) from the bed to the free surface, and taking into account the
dynamic boundary condition imposing that the stress tensor vanishes at the free surface, we obtain:

τ = ϱ g S
dΩ

dp
+

d

dp

(∫ Dn

0

T t
ps dζ

)
, (442)

where dΩ is the liquid area between the normals to the bed at p and (p+ dp), such that:

dΩ

dp
= Dn =

D

cos θ
. (443)
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Glover and Florey (1951), quite arbitrarily, introduced the following approximation in the
previous expression:

Dn
∼= D cos θ. (444)

Equation (442), with equation (444) and neglecting the effect of redistribution of Reynolds
shear stress T t

ps, then gives:
τ = ϱ g S D cos θ. (445)

The shape of the channel cross-section was finally found by imposing that the boundary shear
stress (445) must be equal to its critical value for the onset of sediment motion along the entire
wetted boundary.

In order to formulate the problem in a dimensionless form, we now introduce the following
scaled variables:

D̃ = D/D0, ỹ = y/B, (446)

with D0 = D(0) the flow depth at the channel centerline, and y the horizontal lateral coordinate
(see the sketch in Figure 76). The following governing equation is found:

dD̃

dỹ
= µs β

[
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(
1− r

1 + r

)
ỹ2 −

(
2 r

1 + r

)
ỹ

]1/2
, (447)

with r = µs cL/cD and β the aspect ratio defined as B over D0. The equation (447) is to be solved
with the following boundary conditions at the channel centre, ỹ = 0, and at the bank, ỹ = 1:

D̃
∣∣
0
= 1, D̃

∣∣
1
= 0. (448)

Eventually, the following cosine shape of the cross-section is obtained:

D̃ =
1

1− r

{
cos
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]
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, (449)

with

β =
arccos(r)

µs

(
1− r

1 + r

)1/2

. (450)

Setting cL/cD = 0.85, the cross-section profile can be integrated to yield the following relation-
ships for water surface width (2B), cross-sectional area (Ω) and wetted perimeter (Pw):

2B

D0
= 3.14ϕ−1.038,

Ω

BD0
= 0.66ϕ0.021,

Pw

D0
= 3.59ϕ−0.950, (451)

where ϕ = arctanµs is the angle of repose of the granular material lying on the wetted perimeter.
Note that equation (451) predicts quite ’narrow’ channels: for example, in the case of ϕ = 40◦, the
ratio 2B/D0 is only about 4.5.

Using Strickler formula to evaluate the flow resistance, the flow discharge pertaining to the
equilibrium cross-section is found to read:

Q = 1.437 ks
√
S ϕ−1.06 D

8/3
0 , (452)

where the flow depth at the channel centerline has been specified through the relation:

τ
∣∣
0
= g D0 (ϱs − ϱ) τ∗c0. (453)

The original formulation of Glover and Florey (1951) was revised and improved by Tubino
and Colombini (1992) who removed the approximation (444) and retained the effect of lateral
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The mathematical treatment of this problem considers a symmetrical cross-section (see sketch
in Figure 76). The channel is taken to be erodible, cylindrical and characterized by constant
longitudinal bed slope S. The flow field is steady and uniform. Bed and banks are assumed to
be composed of loose gravel of similar size and cannot be suspended. The system is referred to
a curvilinear coordinate system (s, p, ζ) where s is the longitudinal coordinate, p the curvilinear
coordinate defined along the wetted perimeter, and ζ is the coordinate normal to the boundary.
We denote by 2B the width of the free surface, Pw the wetted perimeter, D the local flow depth
and Ω the liquid cross-sectional area.

Figure 76. Sketch and notations of a cross-section that keeps in equilibrium being unable to transport
sediments.

With these notations, the longitudinal component of the Reynolds equations can be written as:
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where Tt is the Reynolds stress tensor and hp is the metric coefficient of the lateral curvilinear
coordinate. Note that in equation (440) the effect of the weak convective motions due to secondary
flows associated with turbulence anisotropy is neglected. As a matter of fact, in straight channels,
such secondary velocities are very weak, typically 1 to 2% of the main longitudinal velocity.

The metric coefficient arises from the local inclination and curvature of the wetted perimeter
and has the following expression:
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By integrating equation (440) from the bed to the free surface, and taking into account the
dynamic boundary condition imposing that the stress tensor vanishes at the free surface, we obtain:
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where dΩ is the liquid area between the normals to the bed at p and (p+ dp), such that:
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Glover and Florey (1951), quite arbitrarily, introduced the following approximation in the
previous expression:

Dn
∼= D cos θ. (444)

Equation (442), with equation (444) and neglecting the effect of redistribution of Reynolds
shear stress T t

ps, then gives:
τ = ϱ g S D cos θ. (445)

The shape of the channel cross-section was finally found by imposing that the boundary shear
stress (445) must be equal to its critical value for the onset of sediment motion along the entire
wetted boundary.

In order to formulate the problem in a dimensionless form, we now introduce the following
scaled variables:

D̃ = D/D0, ỹ = y/B, (446)

with D0 = D(0) the flow depth at the channel centerline, and y the horizontal lateral coordinate
(see the sketch in Figure 76). The following governing equation is found:
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with r = µs cL/cD and β the aspect ratio defined as B over D0. The equation (447) is to be solved
with the following boundary conditions at the channel centre, ỹ = 0, and at the bank, ỹ = 1:
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Setting cL/cD = 0.85, the cross-section profile can be integrated to yield the following relation-
ships for water surface width (2B), cross-sectional area (Ω) and wetted perimeter (Pw):
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D0
= 3.14ϕ−1.038,

Ω

BD0
= 0.66ϕ0.021,

Pw

D0
= 3.59ϕ−0.950, (451)

where ϕ = arctanµs is the angle of repose of the granular material lying on the wetted perimeter.
Note that equation (451) predicts quite ’narrow’ channels: for example, in the case of ϕ = 40◦, the
ratio 2B/D0 is only about 4.5.

Using Strickler formula to evaluate the flow resistance, the flow discharge pertaining to the
equilibrium cross-section is found to read:

Q = 1.437 ks
√
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0 , (452)

where the flow depth at the channel centerline has been specified through the relation:

τ
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0
= g D0 (ϱs − ϱ) τ∗c0. (453)

The original formulation of Glover and Florey (1951) was revised and improved by Tubino
and Colombini (1992) who removed the approximation (444) and retained the effect of lateral
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variation of the Reynolds shear stress T t
ps. A simplest analytical solution of this more complex

problem was found in terms of friction velocity. Essentially, Tubino and Colombini (1992) used
a perturbation approach getting advantage of the slowly varying character of the cross-section
in the lateral direction, measured by the small parameter ϵ = D0/(Pw/2). Using the simplest
closure provided by the slip-velocity method of Engelund (1964), the analysis led to the evaluation
of a correction of the shear stress distribution at the boundary. From a physical point of view,
this correction is driven by the local slope and curvature of the perimeter and it represents a
redistribution of the longitudinal momentum from the central region of the cross-section, where
the velocity is higher, to the side wall regions, where velocity is smaller due to the retarding effect
of the banks. This redistribution reduces the bed shear stress at the channel axis and increases it
near the banks (see Figure 77).

Figure 77. Comparison between the perturbation solution (thin curves) and the full numerical solution (thick
curves) for the lateral distribution of the O(ϵ2) correction of the friction velocity for different values of the

perturbation parameter ϵ = D0/(Pw/2) (reproduced from Tubino and Colombini, 1992).

Tubino and Colombini (1992) explored also the effect of different turbulence closures on the
hydrodynamic solution. Finally, Tubino (1992) applied the latter hydrodynamic model to determine
the shape of the cross-section at equilibrium. Results show that momentum redistribution leads
to wider cross-sections with typical aspect ratios B/D0 ranging about 3.6. Similar results were
also obtained by Diplas and Vigilar (1992) and Dey (2001). The difference between the cosine
cross-section obtained by Glover and Florey (1951) and the threshold channel of Tubino and
Colombini (1992) is sketched in Figure 78.

5.2.3 The equilibrium shape of channels able to transport sediments: solution of the stable channel paradox
for gravel rivers

Parker (1978a) was the first scientist to clarify an important apparent paradox arising when one
attempts to apply the ideas underlying the tractive force approach to an active gravel river. Parker
(1978a) examined the following fundamental problem. Consider the simplest channel cross-section,
consisting of a flat central region bounded by two lateral banks. As long as bed load is present in
the central region, the bottom stress must exceed the threshold of motion there. Adopting the
simplest approach of Glover and Florey (1951), the distribution of bottom stress in the central
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Figure 78. Comparison between the cosine cross-section derived by Glover and Florey (1951) and the threshold
cross-section of Tubino and Colombini (1992) (according to ASCE Task Committee, 1998).

region would then be flat (recall equation (445) and set θ = 0). But, in this case, a portion of the
bank adjacent to its toe should also experience a bottom stress exceeding the critical value, hence
some grains on the banks should also be in motion. This would cause bank erosion and thus a
widening of the cross-section until the stress in the central region would decrease enough to reach
its critical value for sediment transport. This apparent contradiction was called stable-channel
paradox by Parker (1978a).

Parker (1978a) solved this paradox for the case of gravel bed rivers (no suspension) revisiting
the approach of Glover and Florey (1951) such to take into account the turbulence driven lateral
transfer of longitudinal momentum in the cross-section. The theory was formulated for a river
reach satisfying the following criteria: i) the channel is straight and laterally symmetrical; ii)
the perimeter, both bed and banks, is entirely composed of loose coarse gravel; iii) most grain
sizes are mobile at bankfull discharge; and iv) the channel is self-formed and has a stable width.
Parker (1978a) was able to show that the lateral momentum transfer leads to a redistribution
of the bed shear stress which decreases from the central region towards the banks. In order to
achieve equilibrium, the channel widens until the bed shear stress reaches its critical value for
sediment motion at the bank toe. In other words, the shape of an equilibrium cross-section capable
of transporting sediment is composed of two regions: a central flat region where sediment is
transported and the bed shear stress is larger than its critical value and a bank region, where
sediment is not transported and the bed shear stress is critical (Figure 79). Parker (1978a) also
found that, in the central region, the Shields stress exceeds its critical value by about 14− 16%.

Figure 79. Sketch of an equilibrium cross-section with bedload transport in a straight gravel channel.

The analysis of Parker (1978a) was revisited by Tubino and Colombini (1992) through a rational
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variation of the Reynolds shear stress T t
ps. A simplest analytical solution of this more complex

problem was found in terms of friction velocity. Essentially, Tubino and Colombini (1992) used
a perturbation approach getting advantage of the slowly varying character of the cross-section
in the lateral direction, measured by the small parameter ϵ = D0/(Pw/2). Using the simplest
closure provided by the slip-velocity method of Engelund (1964), the analysis led to the evaluation
of a correction of the shear stress distribution at the boundary. From a physical point of view,
this correction is driven by the local slope and curvature of the perimeter and it represents a
redistribution of the longitudinal momentum from the central region of the cross-section, where
the velocity is higher, to the side wall regions, where velocity is smaller due to the retarding effect
of the banks. This redistribution reduces the bed shear stress at the channel axis and increases it
near the banks (see Figure 77).

Figure 77. Comparison between the perturbation solution (thin curves) and the full numerical solution (thick
curves) for the lateral distribution of the O(ϵ2) correction of the friction velocity for different values of the

perturbation parameter ϵ = D0/(Pw/2) (reproduced from Tubino and Colombini, 1992).

Tubino and Colombini (1992) explored also the effect of different turbulence closures on the
hydrodynamic solution. Finally, Tubino (1992) applied the latter hydrodynamic model to determine
the shape of the cross-section at equilibrium. Results show that momentum redistribution leads
to wider cross-sections with typical aspect ratios B/D0 ranging about 3.6. Similar results were
also obtained by Diplas and Vigilar (1992) and Dey (2001). The difference between the cosine
cross-section obtained by Glover and Florey (1951) and the threshold channel of Tubino and
Colombini (1992) is sketched in Figure 78.

5.2.3 The equilibrium shape of channels able to transport sediments: solution of the stable channel paradox
for gravel rivers

Parker (1978a) was the first scientist to clarify an important apparent paradox arising when one
attempts to apply the ideas underlying the tractive force approach to an active gravel river. Parker
(1978a) examined the following fundamental problem. Consider the simplest channel cross-section,
consisting of a flat central region bounded by two lateral banks. As long as bed load is present in
the central region, the bottom stress must exceed the threshold of motion there. Adopting the
simplest approach of Glover and Florey (1951), the distribution of bottom stress in the central
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Figure 78. Comparison between the cosine cross-section derived by Glover and Florey (1951) and the threshold
cross-section of Tubino and Colombini (1992) (according to ASCE Task Committee, 1998).

region would then be flat (recall equation (445) and set θ = 0). But, in this case, a portion of the
bank adjacent to its toe should also experience a bottom stress exceeding the critical value, hence
some grains on the banks should also be in motion. This would cause bank erosion and thus a
widening of the cross-section until the stress in the central region would decrease enough to reach
its critical value for sediment transport. This apparent contradiction was called stable-channel
paradox by Parker (1978a).

Parker (1978a) solved this paradox for the case of gravel bed rivers (no suspension) revisiting
the approach of Glover and Florey (1951) such to take into account the turbulence driven lateral
transfer of longitudinal momentum in the cross-section. The theory was formulated for a river
reach satisfying the following criteria: i) the channel is straight and laterally symmetrical; ii)
the perimeter, both bed and banks, is entirely composed of loose coarse gravel; iii) most grain
sizes are mobile at bankfull discharge; and iv) the channel is self-formed and has a stable width.
Parker (1978a) was able to show that the lateral momentum transfer leads to a redistribution
of the bed shear stress which decreases from the central region towards the banks. In order to
achieve equilibrium, the channel widens until the bed shear stress reaches its critical value for
sediment motion at the bank toe. In other words, the shape of an equilibrium cross-section capable
of transporting sediment is composed of two regions: a central flat region where sediment is
transported and the bed shear stress is larger than its critical value and a bank region, where
sediment is not transported and the bed shear stress is critical (Figure 79). Parker (1978a) also
found that, in the central region, the Shields stress exceeds its critical value by about 14− 16%.

Figure 79. Sketch of an equilibrium cross-section with bedload transport in a straight gravel channel.

The analysis of Parker (1978a) was revisited by Tubino and Colombini (1992) through a rational
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perturbation approach that essentially confirmed the previous findings. Later, Kovacs and Parker
(1994) developed a mathematical model to simulate the widening process of a straight, initially
trapezoidal, channel subject to bank erosion. They found that the evolution leads to an equilibrium
cross-section such that the bed shear stress along the banks just equals the threshold for sediment
transport, hence sediments are transported in the central region only, in accordance with the
previous finding of Parker (1978a). However, the latter analysis made use of a relationship for
bedload transport on a laterally sloping bed with finite slope, based on a generalization of the so
called Bagnold hypothesis, that was later shown to be incorrect (Seminara et al., 2002). Tubino
(1992), by imposing τ∗ = 1.15 τ∗c0 and considering the cross-section wide enough to approximate
the hydraulic radius with the local flow depth, derived the following first rational regime equation:

D0

d50
= 1.15 (s− 1) τ∗c0 S

−1 ∼= 0.057S−1, (454)

having assumed that τ∗c0 ∼= 0.03 as appropriate to gravel bed rivers. Note that the equation (454)
is practically identical to the first regime equation proposed by Parker (1978a).

A second rational regime equation can be obtained for a given equilibrium cross-section,
composed of a central flat region of width 2B and depth D0 connected to stable banks. Integrating
the logarithmic velocity distribution in the direction normal to the bed and using the friction
velocity obtained by Tubino and Colombini (1992), the flow discharge pertaining to the equilibrium
cross-section was found to read:

Q = 0.036

√
(s− 1) g d350 S

−1.22 2B

(
1− 2.23

D0

2B

)
. (455)

A direct comparison between the equations (454)-(455) and the regime equations 438a,b is
not straightforward, as the latter implicitly contain a dependence on the bed slope. However,
relations (454-455) are not in contradiction with the regime equations. Assuming the flow depth
proportional to Q0.4 (equation 438b), equation (454) predicts that the bed slope is proportional to
Q−0.4. Substituting this finding into (455) and considering a wide cross-section, it turns out that
B ∝ Q0.51, i.e. we recover equation (438a).

A third rational regime equation is obtained integrating the bed load discharge per unit width
associated with the local value of the bed shear stress in the lateral direction. One finds:

Qs = 0.46 10−5
√

(s− 1) g d350 S
−0.278 2B

(
1− 4.52

D0

2B

)
. (456)

Parker (1979) notes that, according to this equation and for a given flow discharge, a 30%
increase in bedload leads to a 25% reduction of the flow depth in the central region, a 40% increase
in width and a 32% increase in slope.

Equations (454)-(456) have been tested with laboratory and field data regarding straight
reaches of gravel rivers. This comparison supports the validity of the proposed approach.

More recently, Parker et al. (2007) revisited the rational regime equations, seeking quasi-
universal forms for the geometrical properties of channel cross-section at bankfull stage. In
particular, using their notations, the bankfull depth Dbf , the total bankfull width Bbf and the
downstream channel slope Sbf are expressed as functions of the bankfull channel discharge Qbf and
of the median diameter of the bed surface d50. Using a dataset of alluvial single-thread gravel-bed
reaches of rivers in Canada, USA and Great Britain, they were able to obtain dimensionless
relations which show a remarkable degree of universality despite the wide range of variation of
river geometries investigated. The approach they employed relied on dimensional analysis and
interpolation of the observed data. It is noteworthy that the relationships they derived apply to
reaches of single-thread gravel bed rivers, with stable width, surface median grain size greater than
25 mm, definable channels and flood plains, regardless of the type of banks and channel planform.

The quasi-universal relations read as follows:

B̃ = 4.63 Q̃0.0667, D̃ = 0.382 Q̃−0.0004, Sbf = 0.101 Q̃−0.344, (457)
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with

B̃ =
g1/5 Bbf

Q2/5
bf

, D̃ =
g1/5 Dbf

Q2/5
bf

, Q̃ =
Qbf√
g d550

. (458)

The reader interested in plots showing how accurately the above relationships fit the available
data is referred to Parker et al. (2007). The same equations take the following dimensional form:

Bbf = 4.63
Q0.4

bf

g1/5

(
Qbf√
gd550

)0.0667

, (459a)

Dbf = 0.382
Q0.4

bf

g1/5
, (459b)

Sbf = 0.101

(
Qbf√
gd550

)−0.344

. (459c)

Equations (459a,b) predict that a doubling of bankfull discharge results in an increase in
bankfull depth by a factor of 1.32 and in bankfull width by 1.38. Note that the bankfull width is
proportional to the 0.467 power of the discharge (close to the exponent 0.5 of equation (438a))
and to the −0.167 power of the sediment diameter; moreover, the exponent in equation (459b) is
the same as in (438b).

Furthermore, Parker et al. (2007) performed a back-calculation to identify parameters (expo-
nents and coefficients) of three physical relationships taken to be the governing laws of bankfull
morphodynamics of gravel-bed rivers: a generalized Manning-Strickler resistance relation; a rela-
tion for the channel-forming Shields number (in accordance with the results obtained by Parker
(1978a)); a relation for gravel yield at bankfull flow. These relationships read as follows:

Ubf

uτbf
= aU

(
Dbf

d50

)nr

, τ̄∗bf = aτ τ∗c0, Q̃b
s = aQ (Q̃)ny . (460a,b,c)

Application of the equation (460a) may lead to some inaccuracies associated with the following
facts: the skin friction due to grain roughness is usually associated with sizes coarser than d50
such as d90 or d84; at bankfull flow, form drag (due to a number of factors such as the presence of
bars, planform shape, bank undulations and bank vegetation) may play a non-negligible role. Note
that, in equation (460b), aτ can be interpreted as a surrogate for bank strength. Moreover, the
equation (460c) empirically stipulates that river catchments organize themselves at bankfull flow
such that the gravel discharge Q̃b

s scales as proportional to some power of the water discharge.
Substituting from (457) into (460) and using water continuity as well as the bed load transport

relationship proposed by Parker (1978a), the following physically based relationships are finally
obtained:

Ubf

uτbf
= 3.71

(
Dbf

d50

)0.263

, (461a)

τ̄∗bf = 0.0233 Q̃0.0561, (461b)

Q̃b
s = 0.0033 Q̃0.551. (461c)

A few notes are in order:
- The exponent in the right hand side of equation (461a) is larger than the classical value of the
Manning-Strickler exponent (1/6 ≃ 0.165);
- The very low exponent in the right hand side of equation (461b) reveals that the bankfull Shields
number exhibits an almost negligible dependence on Q̃, also recalling that in gravel bed rivers τ∗bf
attains an average value of about 0.05;
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perturbation approach that essentially confirmed the previous findings. Later, Kovacs and Parker
(1994) developed a mathematical model to simulate the widening process of a straight, initially
trapezoidal, channel subject to bank erosion. They found that the evolution leads to an equilibrium
cross-section such that the bed shear stress along the banks just equals the threshold for sediment
transport, hence sediments are transported in the central region only, in accordance with the
previous finding of Parker (1978a). However, the latter analysis made use of a relationship for
bedload transport on a laterally sloping bed with finite slope, based on a generalization of the so
called Bagnold hypothesis, that was later shown to be incorrect (Seminara et al., 2002). Tubino
(1992), by imposing τ∗ = 1.15 τ∗c0 and considering the cross-section wide enough to approximate
the hydraulic radius with the local flow depth, derived the following first rational regime equation:

D0

d50
= 1.15 (s− 1) τ∗c0 S

−1 ∼= 0.057S−1, (454)

having assumed that τ∗c0 ∼= 0.03 as appropriate to gravel bed rivers. Note that the equation (454)
is practically identical to the first regime equation proposed by Parker (1978a).

A second rational regime equation can be obtained for a given equilibrium cross-section,
composed of a central flat region of width 2B and depth D0 connected to stable banks. Integrating
the logarithmic velocity distribution in the direction normal to the bed and using the friction
velocity obtained by Tubino and Colombini (1992), the flow discharge pertaining to the equilibrium
cross-section was found to read:
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A direct comparison between the equations (454)-(455) and the regime equations 438a,b is
not straightforward, as the latter implicitly contain a dependence on the bed slope. However,
relations (454-455) are not in contradiction with the regime equations. Assuming the flow depth
proportional to Q0.4 (equation 438b), equation (454) predicts that the bed slope is proportional to
Q−0.4. Substituting this finding into (455) and considering a wide cross-section, it turns out that
B ∝ Q0.51, i.e. we recover equation (438a).

A third rational regime equation is obtained integrating the bed load discharge per unit width
associated with the local value of the bed shear stress in the lateral direction. One finds:
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Parker (1979) notes that, according to this equation and for a given flow discharge, a 30%
increase in bedload leads to a 25% reduction of the flow depth in the central region, a 40% increase
in width and a 32% increase in slope.

Equations (454)-(456) have been tested with laboratory and field data regarding straight
reaches of gravel rivers. This comparison supports the validity of the proposed approach.

More recently, Parker et al. (2007) revisited the rational regime equations, seeking quasi-
universal forms for the geometrical properties of channel cross-section at bankfull stage. In
particular, using their notations, the bankfull depth Dbf , the total bankfull width Bbf and the
downstream channel slope Sbf are expressed as functions of the bankfull channel discharge Qbf and
of the median diameter of the bed surface d50. Using a dataset of alluvial single-thread gravel-bed
reaches of rivers in Canada, USA and Great Britain, they were able to obtain dimensionless
relations which show a remarkable degree of universality despite the wide range of variation of
river geometries investigated. The approach they employed relied on dimensional analysis and
interpolation of the observed data. It is noteworthy that the relationships they derived apply to
reaches of single-thread gravel bed rivers, with stable width, surface median grain size greater than
25 mm, definable channels and flood plains, regardless of the type of banks and channel planform.

The quasi-universal relations read as follows:

B̃ = 4.63 Q̃0.0667, D̃ = 0.382 Q̃−0.0004, Sbf = 0.101 Q̃−0.344, (457)
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The reader interested in plots showing how accurately the above relationships fit the available
data is referred to Parker et al. (2007). The same equations take the following dimensional form:
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Equations (459a,b) predict that a doubling of bankfull discharge results in an increase in
bankfull depth by a factor of 1.32 and in bankfull width by 1.38. Note that the bankfull width is
proportional to the 0.467 power of the discharge (close to the exponent 0.5 of equation (438a))
and to the −0.167 power of the sediment diameter; moreover, the exponent in equation (459b) is
the same as in (438b).

Furthermore, Parker et al. (2007) performed a back-calculation to identify parameters (expo-
nents and coefficients) of three physical relationships taken to be the governing laws of bankfull
morphodynamics of gravel-bed rivers: a generalized Manning-Strickler resistance relation; a rela-
tion for the channel-forming Shields number (in accordance with the results obtained by Parker
(1978a)); a relation for gravel yield at bankfull flow. These relationships read as follows:

Ubf

uτbf
= aU

(
Dbf
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)nr

, τ̄∗bf = aτ τ∗c0, Q̃b
s = aQ (Q̃)ny . (460a,b,c)

Application of the equation (460a) may lead to some inaccuracies associated with the following
facts: the skin friction due to grain roughness is usually associated with sizes coarser than d50
such as d90 or d84; at bankfull flow, form drag (due to a number of factors such as the presence of
bars, planform shape, bank undulations and bank vegetation) may play a non-negligible role. Note
that, in equation (460b), aτ can be interpreted as a surrogate for bank strength. Moreover, the
equation (460c) empirically stipulates that river catchments organize themselves at bankfull flow
such that the gravel discharge Q̃b

s scales as proportional to some power of the water discharge.
Substituting from (457) into (460) and using water continuity as well as the bed load transport

relationship proposed by Parker (1978a), the following physically based relationships are finally
obtained:

Ubf

uτbf
= 3.71

(
Dbf
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, (461a)

τ̄∗bf = 0.0233 Q̃0.0561, (461b)

Q̃b
s = 0.0033 Q̃0.551. (461c)

A few notes are in order:
- The exponent in the right hand side of equation (461a) is larger than the classical value of the
Manning-Strickler exponent (1/6 ≃ 0.165);
- The very low exponent in the right hand side of equation (461b) reveals that the bankfull Shields
number exhibits an almost negligible dependence on Q̃, also recalling that in gravel bed rivers τ∗bf
attains an average value of about 0.05;
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- The exponent in the gravel yield equation (461c) indicates that the gravel transport rate at
bankfull flow increases roughly with the square root of the bankfull discharge. Moreover, since the
latter typically increases nearly linearly with the contributing drainage area, this relation predicts
that the volume concentration of transported gravel declines downstream. The reason for this is
likely related to the decrease in bed slope with increasing flow discharge (see equation (459c)), as
well as with the obvious fact that the hillslopes adjacent to the river course become progressively
less steep and thus deliver less sediment for the same unit rainfall.

5.2.4 The equilibrium shape of channels able to transport sediments: sand rivers

In a companion paper, Parker (1978b) extended the previous analysis for the gravel case (Parker,
1978a) to the case where suspension is the dominant component of sediment transport. This
extension was performed keeping the cohesionless assumption for the channel boundary, including
both the bed and the banks. With this, admittedly severe and somewhat unrealistic constraint,
Parker (1978b) was able to show that a mechanism leading to cross-section equilibrium can still
be envisaged. Two components of the lateral sediment flux, acting in the opposite directions, are
now present: a gravity driven bed load flux directed from the banks to the central region and a
diffusive flux of suspended sediment from the central region, where concentration is maximum,
to the banks where concentration is minimum and sand is deposited. Imposing that these fluxes
balance everywhere in the cross-section, Parker (1978b) was able to determine its shape. This
analysis, later corrected by Ikeda and Izumi (1991), represented the first attempt to provide a
mechanistic interpretation of the equilibrium cross-section of sand bed rivers. However, other
features of natural rivers ignored in the latter works, such as cohesion and form drag of river banks,
play a major role.

More recently, Wilkerson and Parker (2011) turned to field observations and extended the work
of Parker et al. (2007) to the case of single-thread sand bed rivers. The analysis was based on the
interpolation of a world-wide dataset including rivers with characteristic median surface diameter
between 0.062 mm and 0.50 mm.

The following relationships were derived by data interpolation:

B̃ = 0.00398 Q̃0.269 R0.494
p , D̃ = 22.9 Q̃−0.124 R−0.31

p , Sbf = 19.1 Q̃−0.394 R−0.196
p , (462)

where dimensionless quantities are defined as in equation (458). Note that, in contrast with
correlations (457) for the gravel case, the particle Reynolds number Rp is explicitly included as
independent variable in (462). This is not surprising as such variable is needed to account for the
presence of both fine (d50 ≤ 0.062 mm) and coarse (0.062 mm ≤ d50 ≤ 0.50 mm) suspended-load.
The reader interested in plots showing how accurately the above relationships fit the available
data is referred to Wilkerson and Parker (2011).

Equations (462), in dimensional form, read:

Bbf = 0.0398

(√
s− 1

ν

)0.494

g−0.0875 Q0.669
bf d0.068550 , (463a)
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)−0.310

g−0.293 Q0.276
bf d−0.155

50 , (463b)

Sbf = 19.1

(√
s− 1

ν

)−0.196

g0.099 Q−0.394
bf d0.69150 , (463c)

with s relative particle density. Comparing equations (463) with their gravel counterparts (459),
it appears that the channel width Bbf increases with flow discharge Qbf faster (exponent 0.669)
than for gravel-bed rivers (exponent 0.467), and even faster than predicted by the regime equations
(438) (exponent 0.4). On the contrary, the flow depth Dbf increases at a lower rate (exponent
0.276) than in the gravel case (exponent 0.4). Finally, the slope Sbf of sand- and gravel-bed rivers
decreases with flow discharge at similar rates.
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Furthermore, following the approach of Parker et al. (2007), Wilkerson and Parker (2011)
performed a back-calculation to identify parameters of three physical relationships taken to be the
governing laws of bankfull morphodynamics of sand-bed rivers, namely:

Ubf

uτbf
= bU

(
Dbf

d50

)ns

, τ̄∗bf = bτ Q̃
mτ , Q̃s = bQ Q̃my . (464a,b,c)

As noted by the authors, equation (464a) is a bulk resistance relationship and neglects the presence
of bed form thus leading to some inaccuracies. Equation (464b) is again based on the assumption
that river basins are self-organized such that the banfkull Shields stress can be expressed as a
function of the channel-forming bankfull discharge. Equation (464c) has the same structure as
its counterpart (equation (460c)) for gravel-bed rivers, but involves the total sediment transport
outflowing from the river basin at bankfull conditions.

Substituting from equations (464) into equations (463) and using Engelund-Hansen formula to
evaluate the total sediment transport, one ends up with the following expressions:

Ubf

uτbf
= 0.144R0.197

p

(
Dbf

d50

)0.413

, (465a)

τ̄∗bf = 265R−0.506
p Q̃−0.118, (465b)

Q̃s = 80.5R−0.633
p Q̃0.602. (465c)

Various observations arise from a glance at (465). Equation (465a) suggests that, as pointed
out by Wilkerson and Parker (2011), when dealing with sand-bed rivers no physical basis exists
for using an exponent of 1/6 in the resistance relationship: the exponent for Dbf is 2.5 times
larger than the classical exponent of the Manning-Strickler relationship. The reason for this large
difference is likely connected with the presence of bed forms at bankfull flow. Equation (465b)
points out the tendency of the bankfull Shields number to decrease with particle Reynolds number,
i.e. with grain size. Equation (465c) suggests that the sediment load increases with bankfull
discharge but sand concentration decreases. This trend is similar to that found for gravel-bed
rivers (see equation (461c)).

These findings are the result of incorporating the observed hydraulic geometry relationships
into the proposed physical framework. They provide a dimensionally homogeneous tool to predict
the bankfull discharge as a function of bankfull width, bankfull depth, bed slope, and bed-material
median grain size in the case of sand bed rivers.

More recently, Francalanci et al. (2020) pointed out the importance of explicitly accounting
for channel bank influence on the flow to better clarify the basic mechanisms whereby a river
selects its width. Focusing their attention on lowland rivers with cohesive banks, they formulated
a theoretical model that evaluates the equilibrium width of river cross sections modelling the
interaction between the core flow in the central part of the channel section and the boundary
layers that form near to the cohesive banks. The model computes equilibrium configuration of
the cross-section such that the shear stresses on the banks equal a critical threshold value, τc,bank.
These stresses are computed by partitioning the total shear stress into an effective grain roughness
component and a form component (Kean and Smith, 2006a), as described in the Section 4.5.6.
The model is applied to a large data set, concerning the features of both sand and gravel bed rivers
at bankfull conditions, and it is used to determine the relations expressing the channel width and
the bankfull flow depth as function of the bankfull discharge, which appear to provide a unitary
description of bankfull hydraulic geometry.

In particular, the model was first used in conjunction with power law regressions of the available
river data to express the average height of the bank undulations and the critical shear stress at
the bank as a function of the bankfull discharge through the relations:

areg
d50

= 0.0768 Q̃0.3967, (466a)

τ∗c,bank = 0.0003679 Q̃0.2878, (466b)
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- The exponent in the gravel yield equation (461c) indicates that the gravel transport rate at
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likely related to the decrease in bed slope with increasing flow discharge (see equation (459c)), as
well as with the obvious fact that the hillslopes adjacent to the river course become progressively
less steep and thus deliver less sediment for the same unit rainfall.
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In a companion paper, Parker (1978b) extended the previous analysis for the gravel case (Parker,
1978a) to the case where suspension is the dominant component of sediment transport. This
extension was performed keeping the cohesionless assumption for the channel boundary, including
both the bed and the banks. With this, admittedly severe and somewhat unrealistic constraint,
Parker (1978b) was able to show that a mechanism leading to cross-section equilibrium can still
be envisaged. Two components of the lateral sediment flux, acting in the opposite directions, are
now present: a gravity driven bed load flux directed from the banks to the central region and a
diffusive flux of suspended sediment from the central region, where concentration is maximum,
to the banks where concentration is minimum and sand is deposited. Imposing that these fluxes
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analysis, later corrected by Ikeda and Izumi (1991), represented the first attempt to provide a
mechanistic interpretation of the equilibrium cross-section of sand bed rivers. However, other
features of natural rivers ignored in the latter works, such as cohesion and form drag of river banks,
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More recently, Wilkerson and Parker (2011) turned to field observations and extended the work
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The following relationships were derived by data interpolation:

B̃ = 0.00398 Q̃0.269 R0.494
p , D̃ = 22.9 Q̃−0.124 R−0.31

p , Sbf = 19.1 Q̃−0.394 R−0.196
p , (462)

where dimensionless quantities are defined as in equation (458). Note that, in contrast with
correlations (457) for the gravel case, the particle Reynolds number Rp is explicitly included as
independent variable in (462). This is not surprising as such variable is needed to account for the
presence of both fine (d50 ≤ 0.062 mm) and coarse (0.062 mm ≤ d50 ≤ 0.50 mm) suspended-load.
The reader interested in plots showing how accurately the above relationships fit the available
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with s relative particle density. Comparing equations (463) with their gravel counterparts (459),
it appears that the channel width Bbf increases with flow discharge Qbf faster (exponent 0.669)
than for gravel-bed rivers (exponent 0.467), and even faster than predicted by the regime equations
(438) (exponent 0.4). On the contrary, the flow depth Dbf increases at a lower rate (exponent
0.276) than in the gravel case (exponent 0.4). Finally, the slope Sbf of sand- and gravel-bed rivers
decreases with flow discharge at similar rates.
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Furthermore, following the approach of Parker et al. (2007), Wilkerson and Parker (2011)
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As noted by the authors, equation (464a) is a bulk resistance relationship and neglects the presence
of bed form thus leading to some inaccuracies. Equation (464b) is again based on the assumption
that river basins are self-organized such that the banfkull Shields stress can be expressed as a
function of the channel-forming bankfull discharge. Equation (464c) has the same structure as
its counterpart (equation (460c)) for gravel-bed rivers, but involves the total sediment transport
outflowing from the river basin at bankfull conditions.

Substituting from equations (464) into equations (463) and using Engelund-Hansen formula to
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Various observations arise from a glance at (465). Equation (465a) suggests that, as pointed
out by Wilkerson and Parker (2011), when dealing with sand-bed rivers no physical basis exists
for using an exponent of 1/6 in the resistance relationship: the exponent for Dbf is 2.5 times
larger than the classical exponent of the Manning-Strickler relationship. The reason for this large
difference is likely connected with the presence of bed forms at bankfull flow. Equation (465b)
points out the tendency of the bankfull Shields number to decrease with particle Reynolds number,
i.e. with grain size. Equation (465c) suggests that the sediment load increases with bankfull
discharge but sand concentration decreases. This trend is similar to that found for gravel-bed
rivers (see equation (461c)).

These findings are the result of incorporating the observed hydraulic geometry relationships
into the proposed physical framework. They provide a dimensionally homogeneous tool to predict
the bankfull discharge as a function of bankfull width, bankfull depth, bed slope, and bed-material
median grain size in the case of sand bed rivers.

More recently, Francalanci et al. (2020) pointed out the importance of explicitly accounting
for channel bank influence on the flow to better clarify the basic mechanisms whereby a river
selects its width. Focusing their attention on lowland rivers with cohesive banks, they formulated
a theoretical model that evaluates the equilibrium width of river cross sections modelling the
interaction between the core flow in the central part of the channel section and the boundary
layers that form near to the cohesive banks. The model computes equilibrium configuration of
the cross-section such that the shear stresses on the banks equal a critical threshold value, τc,bank.
These stresses are computed by partitioning the total shear stress into an effective grain roughness
component and a form component (Kean and Smith, 2006a), as described in the Section 4.5.6.
The model is applied to a large data set, concerning the features of both sand and gravel bed rivers
at bankfull conditions, and it is used to determine the relations expressing the channel width and
the bankfull flow depth as function of the bankfull discharge, which appear to provide a unitary
description of bankfull hydraulic geometry.

In particular, the model was first used in conjunction with power law regressions of the available
river data to express the average height of the bank undulations and the critical shear stress at
the bank as a function of the bankfull discharge through the relations:
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where areg is the amplitude of an equivalent regular sequence of bumps surrogating the actual
distribution of bank undulations, d50 is the mean grain size of the channel bed, and τ∗c,bank is the
Shields stress associated with the the threshold for bank erosion (= τc,bank/[(ϱs − ϱ) g d50]).

Next, using areg and τc,bank as relevant parameters, and through power law regressions of
the available data set, Francalanci et al. (2020) were eventually able to derive, and subsequently
validate, the following power law relations, appropriate for both gravel- and sand-bed rivers

Bbf

areg
= 10.294

(
Q̃ τ0.20∗c,bank

)0.4429
, (467a)

Dbf

areg
= 0.7658

(
Q̃ τ0.15∗c,bank

)0.3456
. (467b)

These relations (467) can be used to predict the water depth and the equilibrium cross-section
width on the basis of the dimensionless bankfull discharge, Q̃, and the parameters areg and τ∗c,banks.
These two latter quantities, in turn, can be either known directly from field measurements, or
determined through equations (466), requiring, besides Q̃, knowledge of the median sediment grain
size d50 of the channel bed.

The bankfull equilibrium relations (467) are plotted in Figure 80 together with the quasi-
universal relations (457) and (462) derived by (Parker et al., 2007) and (Wilkerson and Parker,
2011), respectively. Despite some scatter, the collapse of gravel- and sand-bed data around the
universal relations (467) is remarkable and indirectly confirms the importance of bank undulations
in controlling, through skin friction, grain-by-grain bank erosion and, ultimately, the equilibrium
bankfull geometry of both sand-bed and gravel-bed rivers with cohesive banks.

The importance of the role exerted by the critical shear stress of the material composing
the banks has also been confirmed by the analysis carried out by Dunne and Jerolmack (2020)
combining a global dataset of river data with a specific field study. The analysis supports the idea
that the cross-section of alluvial rivers adjusts its geometry to the threshold fluid stress for particle
entrainment of the most resistant material lining the channel. Hence, in accordance with the
finding of Francalanci et al. (2020), a threshold-limiting channel model is a suitable tool to describe
the average hydraulic state of alluvial river cross-sections across a wide range of conditions.
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Free and forced bars in straight channels

Figure 80. Comparison of the universal relations derived by Francalanci et al. (2020) for both gravel-bed and
sand-bed rivers with cohesive banks (FAL20, equations (467)) with the quasi-universal relations derived empirically
through linear regression and back data analysis by (Parker et al., 2007) for gravel-bed rivers (PAL07, equations
(457)) and by Wilkerson and Parker (2011) for sand-bed rivers (WP11, (462)), for two different values of particle

Reynolds number, Rp.
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where areg is the amplitude of an equivalent regular sequence of bumps surrogating the actual
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in controlling, through skin friction, grain-by-grain bank erosion and, ultimately, the equilibrium
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The importance of the role exerted by the critical shear stress of the material composing
the banks has also been confirmed by the analysis carried out by Dunne and Jerolmack (2020)
combining a global dataset of river data with a specific field study. The analysis supports the idea
that the cross-section of alluvial rivers adjusts its geometry to the threshold fluid stress for particle
entrainment of the most resistant material lining the channel. Hence, in accordance with the
finding of Francalanci et al. (2020), a threshold-limiting channel model is a suitable tool to describe
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6. Free and forced bars in straight channels

The present Chapter is devoted to a survey of the large body of research developed to
understand theoretically and experimentally the physical mechanisms underlying the formation
and development of bars. As briefly outlined in Chapter 1, they consist of rhythmic sequences of
regions of scour (pools) and deposit (riffles), i.e. bed interfacial waves, with wavelengths scaling
with channel width and amplitudes scaling with flow depth. We also pointed out that bars may
develop spontaneously at the bed interface as a result of a bottom instability. In this case they are
called free bars and are typically migrating features. Alternatively, they may arise in response to
some steady, local or distributed, forcing: in this case they are called forced bars and are typically
non-migrating features.

This distinction was first introduced by Seminara and Tubino (1989) and immediately lends
itself to an obvious question: may free bars coexist with forced bars? The first answer to this
fundamental question was provided by an outstanding Japanese geomorphologist (Kinoshita, 1961),
who published an extensive set of field observations, performed on the Ishikari River few years
after the publication of Leopold and Wolman (1957). Unfortunately, the works of Kinoshita were
published in Japanese and thus remained largely unknown to the western scientific community.
However, thirty years later, G. Parker kindly provided a translation of one of Kinoshita’s paper
(Kinoshita and Miwa, 1974), where a major observation was reported: free bars may migrate
through meandering rivers, thus coexisting with the forced (point) bars driven by curvature, as
long as the river sinuosity does not exceed some threshold value. In the companion Monograph we
will formulate a rational theory of fluvial meandering and provide a mechanistic interpretation
of the fundamental observation of Kinoshita and Miwa (1974). However, in the present chapter
we will see that the issue of the coexistence of free and forced bars is a fundamental one and is
encountered also in the case of straight channels.

Below, we start with a brief phenomenological introduction on the characteristics of bars
observed in laboratory experiments (Section 6.1) that raise a number of questions requiring
theoretical understanding. We then formulate the mathematical problem of bar morphodynamics
in dimensionless form (Section 6.2). Next, we present the theories that explain the formation
of free (Section 6.3) and forced (Section 6.4) bars, their development in the weakly nonlinear
regime where they attain finite but moderately large amplitudes (Section 6.5), and their fully
nonlinear evolution (Section 6.6). We conclude with a discussion of the additional complexities
usually observed in the field. This will allow us to outline the role of some further effects on bar
development, including unsteadiness of the basic flow, insufficient sediment supply, sorting, and
the coexistence of bars with smaller scale bedforms (Section 6.7).

The whole theoretical treatment relies heavily on the classical methods of stability theory. For
the benefit of the reader unfamiliar with the subject we have added a Mathematical Appendix
(Chapter 9) where we provide an introduction to some mathematical tools employed in the present
Monograph, and in particular we summarize the main ideas of stability theory. Note that by no
means this Mathematical Appendix pretends to provide a comprehensive survey of the subject. It
is limited to a presentation of the least set of introductory concepts and routine techniques needed
to understand the formation and development of bars investigated in this Chapter.
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means this Mathematical Appendix pretends to provide a comprehensive survey of the subject. It
is limited to a presentation of the least set of introductory concepts and routine techniques needed
to understand the formation and development of bars investigated in this Chapter.
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Theoretical Morphodynamics Straight Channels

6.1. Free and forced bars in the laboratory

Laboratory observations have played a major role to guide theoretical interpretations of bar
formation and bar development, as they allow one to isolate single processes reducing the complexity
of the natural phenomenon. In particular, sediment may be modeled at first as uniform, the
laboratory channel is straight and rectangular, the flow is steady. Field observations have recently
become more feasible thanks to the development of modern measuring techniques, like in situ flow
and bathymetric surveys, remote sensing-satellite imagery and ground penetrating radar. Field
studies do not suffer from the intrinsic limits of laboratory experiments, though it is less easy to
extract from the collected data general indications about the underlying physical mechanisms. In
the present Section, we restrict ourselves to laboratory observations, that provide an appropriate
introduction to the theoretical analysis developed later on. We will go back to field observations
in Section 6.7 where we will also discuss recent attempts to assess the applicability of theoretical
models to the real world.

After a number of previous non systematic attempts by various Authors, a detailed and
comprehensive set of laboratory observations of free bars was reported by Fujita and Muramoto
(1985) (but see also the previous work of Fujita and Muramoto, 1982). This is a cornerstone
paper for the development of bar morphodynamics. For two reasons. Firstly, the large size of
the facilities employed reduced the scale effects that unavoidably affect experiments of this kind.
Three flumes of the Ujigawa Hydraulic Laboratory of the Disaster Prevention Research Institute
of Kyoto University were used, the largest of them was 7.5 m wide, 1.5 m deep and 243 m long.
Secondly, the goal of the investigation was not purely descriptive but aimed at understanding
the mechanisms of bar formation and bar development. Indeed, various important observations
emerged from the experiments, as shown in Figure 81, illustrating the temporal development of
bars in the initial reach of the experimental flume. Short diagonal forms appear in the very initial
stage, they then develop into well defined forms exhibiting diagonal fronts with clearly recognizable
wavelength. Note that bars develop both in time and in space and reach eventually an equilibrium
state, characterized by an equilibrium height and an equilibrium wavelength, both exhibiting
small fluctuations (Figure 82). It is also noteworthy that the initial bar wavelength is significantly
smaller than its equilibrium value. We will show that nonlinearity is responsible for this effect.
Linear theories of bar formation do predict values of the bar wavelength much smaller than those
predicted by fully nonlinear theories.

A second significant set of laboratory observations was published by Lanzoni (2000a) (but see
also Lanzoni, 1995). Also these experiments employed a quite large flume (a rectangular channel
55 m long, 1.5 m wide, 1 m deep) and were performed under well controlled steady flow conditions.
Novel features of Lanzoni (2000a) experiments were:

- differently from Fujita and Muramoto (1985), where the Froude number was relatively large
(roughly falling in the range 0.8− 1.2), the flow conditions in Lanzoni (2000a) fell in the low
Froude number range;

- the initial bed configuration was covered by ripples and/or dunes;

- besides the free bar tests, the formation of forced bars was also investigated: forcing consisted
of a localized reduction of channel width obtained by inserting a plate orthogonal to the left
wall near the flume inlet.

The free bar tests of Lanzoni (2000a) essentially confirmed the observations of Fujita and
Muramoto (1985). On the other hand, Figure 83 shows the results of three forced bar tests. Note
that the plotted values were calculated averaging over 19, 29, and 26 independent soundings,
respectively. Moreover, data were filtered by using a four points moving average procedure, in
order to smooth out the effect of small scale bedforms.

The pattern observed in the forced experiments is of great interest and calls for some theoretical
explanation. In two runs (P1204 and P2804) the bar perturbation driven by the initial forcing
exhibited a strong downstream damping. On the contrary, in one run (P1202) the pattern was not
damped. Thus various issues arise. In particular, what controls the degree of spatial damping
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Figure 81. Sketch of the spatially and temporally developing bars observed in run H2 of Fujita and Muramoto
(1985) (modified from the latter paper)

(or amplification) undergone by the forced bar sequence? In the case of bar amplification, is an
equilibrium amplitude reached asymptotically in space? Is the forcing effect of the obstruction felt
only downstream or may there be an upstream influence? All these questions will be answered in
this Chapter.

A second important observation of Lanzoni (2000a) concerns the possible coexistence of forced
and free bars: in each of the forced runs an extremely irregular sequence of free bars was detected
toward the downstream end of the flume and their amplitude was apparently reduced by their
coexistence with forced bars. Again, this observation raises an important theoretical question:
under what conditions free and forced bars may coexist?

Note, that similar flume observations of forced bars had been previously made in experiments
of Struiksma and Crosato (1989) (Figure 84). The investigated flow regime fell again in the low
Froude number range, sediment was fine sand and small scale bedforms were present. Stationary
forced bars (wavelength about 6.6 m), mildly damped in the longitudinal direction, were found to
coexist with shorter free bars (wavelength about 3.9 m) migrating downstream at the speed of 10
cm/h.

More recently, Crosato et al. (2012) repeated the latter experiment in the context of a numerical
and laboratory investigation aimed at ascertaining the existence of free non-migrating bars. The
distinct feature of this experiment consisted of its long duration as runs lasted several weeks. The
outcome of the investigation was twofold.

In the forced experiment a transverse plate was located at the entrance section. Migrating
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Figure 82. (a) Sketch of the temporal increase of the bar height Hb and the bar wavelength Lb in the experiments
of Fujita and Muramoto (1985). Hbe and Lbe denote their equilibrium values; (b) Spatial and temporal evolution of
the bed elevation at the side walls and at the channel centerline in run C-2 (redrawn from Fujita and Muramoto,

1985).

bars were found to coexist with the stationary spatially damped bars forced by the initial channel
obstruction, although the former migrating features were present only in the second half of the
flume. Migrating bars appeared to be suppressed in the region where steady bars had a comparable
or larger amplitude. The Authors also reported some cyclic fluctuation of the amplitude of
migrating bars that sometimes vanished to reform later.

In the free experiment, carried out without the transverse plate at the flume entrance, the
picture reported was surprisingly similar to that of the forced experiment. Both migrating and
stationary bars formed. Initially, migrating bars were present along almost the entire flume length
but four weeks later, they were observed only in the second half of the flume. This change of
morphodynamic behaviour occurred simultaneously with the emergence of a steady bar in the
upstream part of the flume. Finally, the migrating bars had again a cyclic behavior, forming,
reducing in size, and reforming roughly every two weeks.

All these observations, and in particular the presence of a stationary bar in the free experiment
call for a clear theoretical explanation, noting that the latter feature did not emerge in the
numerical experiments performed by Crosato et al. (2012).

6.2. Bars: The simplest theoretical framework.

The simplest framework adequate to explain the formation and development of free bars in
open erodible channels consists of analyzing how the initially uniform flow and bed topography in
a sufficiently wide rectangular channel responds to perturbations, ignoring the role of the side wall
boundary layers that play a fairly passive role in the process. The latter assumption allows one to
simplify the structure of the basic state, that may be assumed to consist of an effectively plane
uniform open channel flow in equilibrium with its erodible bed (see Chapter 2). Consequently,
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Free and forced bars in straight channels

Figure 83. Longitudinal distribution of the bed elevation at the side walls and at the channel centerline in runs a)
P2102, b) P1204 and c) P2804 of Lanzoni (2000a) (left plots) and difference between right and left side bed

elevation(∆η) in the same runs (right plots) (modified from Lanzoni, 2000a).

the basic state is independent of the longitudinal coordinate (uniform), of the lateral coordinate
(plane) and of time (steady). Albeit these assumptions are inessential, they greatly simplify the
analysis.

Hydrodynamics

Let us then consider a wide rectangular channel with width 2B, slope S, erodible bottom and
inerodible side-walls. We refer the flow to a cartesian reference system (x,y,z) with x longitudinal
and y lateral coordinate lying on the undisturbed plane bed (Figure 85). Moreover, let t denote
the time variable. We adopt the notation of Section 2.3.3 for the case of infinitely wide channels.
Hence, we denote by Du and Uu the flow depth and the vertically averaged flow speed, respectively,
and by Cfu, Fru and uτu the corresponding values of the friction coefficient, the Froude number
and the friction velocity, respectively. We also recall that the above quantities satisfy the following
relationships:

u2
τu = CfuU

2
u = gSDu, F 2

ru =
U2
u

gDu
. (468a,b)

We then formulate the problem of morphodynamics in dimensionless form. Since field observa-
tions suggest that the bar wavelength scales with channel width (Figure 3), it is convenient to
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We then formulate the problem of morphodynamics in dimensionless form. Since field observa-
tions suggest that the bar wavelength scales with channel width (Figure 3), it is convenient to
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Figure 84. Longitudinal distribution of the bed elevation close to a side wall and of the flow speed in the forced bar
experiment of Struiksma and Crosato (1989) (modified from Struiksma and Crosato, 1989).

Figure 85. Flow over a free bar in a straight channel: sketch and notations

set:
(x̃, ỹ) =

(x, y)

B
, t̃ =

t

B/Uu
, (Ũ , Ṽ ) =

(U, V )

Uu
, D̃ =

D

Du
, H̃ =

H

F 2
ru Du

, (469)
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where a tilde denotes a dimensionless quantity. Note that time has been scaled by the hydrodynamic
temporal scale B/Uu, namely the time required by the base flow to travel a distance equal to
the spatial scale B. However, other temporal scales may play an important role. A flood time
scale may be externally imposed if the flow discharge supplied to the channel reach varies in
time. Moreover, as illustrated below, a morphological time scale controls the response of the bed
interface to spatial variations of sediment transport capacity. Flood and morphological time scales
are often comparable and are much larger than the hydrodynamic time scale. This suggests that
in most cases, though not always, the flow field may be assumed to adapt almost instantaneously
to temporal variations of sediment supply and morphological changes.

Also, note that the scaling adopted for free surface elevation H allows us to remove Fru from the
formulation. This occurs because the size of perturbations of free surface elevation is O(F 2

ru). This
means that they are negligible at low Froude numbers and may be significant in the transitional
and high Froude number regimes.

With the help of the latter definitions, the shallow water equations take the following dimen-
sionless form:

∂D̃

∂t̃
+

∂(D̃ Ũ)

∂x̃
+

∂(D̃ Ṽ )

∂ỹ
= 0, (470)

∂Ũ

∂t̃
+ Ũ

∂Ũ

∂x̃
+ Ṽ

∂Ũ

∂ỹ
+

∂H̃

∂x̃
+ β Cf

Ũ
√

Ũ2 + Ṽ 2

D̃
= 0, (471)

∂Ṽ

∂t̃
+ Ũ

∂ Ṽ

∂x̃
+ Ṽ

∂ Ṽ

∂ỹ
+

∂H̃

∂ỹ
+ β Cf

Ṽ
√

Ũ2 + Ṽ 2

D̃
= 0. (472)

In this formulation, the two dimensionless parameters controlling the process under investigation
emerge.

- The first is the local and instantaneous value of the friction coefficient, Cf . The reader should
recall that in rough uniform turbulent flow this parameter depends on the relative bottom
roughness.

- The second is the aspect ratio β defined as:

β =
B

Du
. (473)

Below we will show that β plays a major role in the instability process from which bars
originate.

Also, note that employing the governing equations in dimensionless form has a second major
advantage: it allows one to seek solutions based on rational perturbation procedures. This will be
illustrated in the next Sections.

Evolution of the bed interface

In order to obtain a dimensionless form of the evolution equation of the bed interface, we start
from the simplified form of the two-dimensional Exner equation (245) with negligible suspended
load and define the dimensionless quantities:

η̃ =
η

Du
, (Q̃b

sx, Q̃
b
sy) =

(Qb
sx, Q

b
sy)√

(s− 1) g d3
. (474)

Here, η is the elevation of the bed surface relative to the unperturbed plane bed with constant
slope S. Moreover, again, a tilde denotes dimensionless quantities and the Eistein scale has been
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Here, η is the elevation of the bed surface relative to the unperturbed plane bed with constant
slope S. Moreover, again, a tilde denotes dimensionless quantities and the Eistein scale has been
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used for the bedload contribution Qb
s to the total sediment flux Qs. With the help of the above

definitions and some algebraic manipulations we eventually find:

∂η̃

∂t̃
+ ϵM

(
∂Q̃b

sx

∂x̃
+

∂Q̃b
sy

∂ỹ

)
= 0. (475)

The parameter ϵM represents the ratio between the chosen morphological and hydrodynamic
time scales, namely:

ϵM =

√
(s− 1) g d3

cM Du Uu
. (476)

It usually attains quite small values. For example, assuming Uu ∼ 1 m/s, Du ∼ 1 m, d ∼ 1 mm,
it follows that ϵM ∼ O(10−4) and this estimate decreases rapidly for finer sediments.

The equation (475) thus implies that the bed morphology undergoes very small (O(ϵM ))
changes on the fast hydrodynamic time scale. In other words, morphological changes are slow
processes described by the slow variable t̃M = ϵM t̃. Hence, (475) may be written in the alternative
clearer dimensionless form:

∂η̃

∂t̃M
+

Q̃b
sx

∂x̃
+

Q̃b
sy

∂ỹ
= 0. (477)

In the general case, we must include also the contribution of the components of the sediment
flux transported in suspension, for which the appropriate scale is Cu Du Uu, where Cu is the depth
averaged concentration of the basic uniform flow. Hence we write:

(Q̃s
sx, Q̃

s
sy) =

(Qs
sx, Q

s
sy)

Cu Du Uu
. (478)

Recalling equation (245), the complete dimensionless form of the evolution equation of the bed
interface reads:
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= 0 , (479)

where rsb is the following dimensionless parameter:

rsb =
1

ϵM

Cu

cM
. (480)

Note that for dilute suspensions (Cu ≪ cM ), the first term of (479) is typically negligible. Ignoring
this term, the general dimensionless form of the evolution equation of the bed interface takes the
final form:

∂η̃

∂t̃M
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∂Q̃b
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+

∂Q̃b
sy

∂ỹ
+ rsb

(
∂Q̃s
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∂x̃
+

∂Q̃s
sy

∂ỹ

)
= 0. (481)

The role of suspended load may be negligible with respect to, comparable with or dominant over
that of bed load, depending on the values experienced by the dimensionless parameter rsb.

Closures

In order to make any progress with (481), we need the closure relationships for the dimensionless
quantities Q̃b

s and Q̃s
s presented in Chapter 3. Moreover, closure is needed for the friction coefficient

Cf .
As far as Q̃b

s is concerned, we may make use of the relationships (334a), (334b), (350) ,(351)
appropriate to bedload transport on sloping beds. However, caution is needed as those relationships
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were established assuming a cartesian coordinate system with x aligned with the tangential stress
at the bottom. In order to apply them to a fluvial context where x is aligned with the longitudinal
component of flow velocity, we must allow for the effects of rotation of the (x, y) coordinate axes
by an angle equal to the angle χ that the bottom stress forms with the longitudinal axis. In the
context of a linearized approximation (weakly sloping beds) adopted here, we readily find that:

sinχ =
Ṽ√

Ũ2 + Ṽ 2
. (482)

With the help of this relationship, we end up with the following closures for Q̃b
sx and Q̃b

sy:

Q̃b
sx = Φb

0

(
1−Rx

∂η̃

∂x̃

)
, Q̃b

sy = Φb
0

(
Ṽ√

Ũ2 + Ṽ 2
−Ry

∂η̃

∂ỹ

)
, (483a,b)

where

Rx = − 1

Φb
0

τ∗c0
β µs

[
dΦb

dτ∗c

]

τ∗c0

, Ry =
r

β
√
τ∗

, (484a,b)

and Φb
0 = Φb

∣∣
τ∗,τ∗c0

. We stress that in (483) the coordinates x̃ and ỹ, as well as the bed elevation η̃

are dimensionless. This leads to the presence of the width to depth parameter β in the denominator
of the expressions for Rx and Ry. The fact that β is most often large enough confirms the validity
of the weakly sloping approximation, except close to possible fairly sharp fronts of the bed interface.

Closure for the dimensionless suspended flux per unit width Q̃s
s can be obtained using the full

3D formulation (261) for the advection-diffusion equation. Alternatively, under spatially and/or
temporally slowly varying conditions in the sense discussed in Chapter 4, one may employ a simpler
2D (depth averaged) approach. Bars are sedimentary patterns, sufficiently long and slow to justify
the use of such an approach. Using the notations of Section 4.3.2 and noting that the longitudinal
scale appropriate to free bars is B, we set:

δ =
Uu

ws β
. (485)

Recalling the dimensionless closure relationship (295), we may eventually write:

(Q̃s
sx, Q̃

s
sy) = D̃

(
Ũ , Ṽ

) [
Φs

0 + δΦs
1 +O(δ2)

]
, (486)

where Φs
0 and Φs

1 are respectively given by the relationships (298) and (300), with the coefficient γ
set equal to one.

Closure for the friction coefficient depends on whether the undisturbed bed may be treated as
plane or covered by small scale bedforms, to be treated as macro-roughness elements as discussed
in Section 4.5.

6.3. The formation of free bars: Linear stability analysis

6.3.1 Bar formation under bedload dominated conditions

Let us now investigate the formation of free bars theoretically, starting from the case when
sediment is dominantly transported as bed load.

As pointed out in Section 6.1, free bars develop because a uniform turbulent open channel flow
over an erodible cohesionless bed is most often unstable. Physically, instability arises because the
bed topography is never perfectly plane (even in a laboratory experiment) and the associated flow
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used for the bedload contribution Qb
s to the total sediment flux Qs. With the help of the above

definitions and some algebraic manipulations we eventually find:

∂η̃

∂t̃
+ ϵM

(
∂Q̃b

sx

∂x̃
+

∂Q̃b
sy

∂ỹ
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The parameter ϵM represents the ratio between the chosen morphological and hydrodynamic
time scales, namely:
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(s− 1) g d3
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. (476)

It usually attains quite small values. For example, assuming Uu ∼ 1 m/s, Du ∼ 1 m, d ∼ 1 mm,
it follows that ϵM ∼ O(10−4) and this estimate decreases rapidly for finer sediments.
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In the general case, we must include also the contribution of the components of the sediment
flux transported in suspension, for which the appropriate scale is Cu Du Uu, where Cu is the depth
averaged concentration of the basic uniform flow. Hence we write:

(Q̃s
sx, Q̃

s
sy) =

(Qs
sx, Q

s
sy)

Cu Du Uu
. (478)
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interface reads:
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Note that for dilute suspensions (Cu ≪ cM ), the first term of (479) is typically negligible. Ignoring
this term, the general dimensionless form of the evolution equation of the bed interface takes the
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The role of suspended load may be negligible with respect to, comparable with or dominant over
that of bed load, depending on the values experienced by the dimensionless parameter rsb.

Closures

In order to make any progress with (481), we need the closure relationships for the dimensionless
quantities Q̃b

s and Q̃s
s presented in Chapter 3. Moreover, closure is needed for the friction coefficient

Cf .
As far as Q̃b

s is concerned, we may make use of the relationships (334a), (334b), (350) ,(351)
appropriate to bedload transport on sloping beds. However, caution is needed as those relationships
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were established assuming a cartesian coordinate system with x aligned with the tangential stress
at the bottom. In order to apply them to a fluvial context where x is aligned with the longitudinal
component of flow velocity, we must allow for the effects of rotation of the (x, y) coordinate axes
by an angle equal to the angle χ that the bottom stress forms with the longitudinal axis. In the
context of a linearized approximation (weakly sloping beds) adopted here, we readily find that:

sinχ =
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. We stress that in (483) the coordinates x̃ and ỹ, as well as the bed elevation η̃

are dimensionless. This leads to the presence of the width to depth parameter β in the denominator
of the expressions for Rx and Ry. The fact that β is most often large enough confirms the validity
of the weakly sloping approximation, except close to possible fairly sharp fronts of the bed interface.

Closure for the dimensionless suspended flux per unit width Q̃s
s can be obtained using the full

3D formulation (261) for the advection-diffusion equation. Alternatively, under spatially and/or
temporally slowly varying conditions in the sense discussed in Chapter 4, one may employ a simpler
2D (depth averaged) approach. Bars are sedimentary patterns, sufficiently long and slow to justify
the use of such an approach. Using the notations of Section 4.3.2 and noting that the longitudinal
scale appropriate to free bars is B, we set:

δ =
Uu
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. (485)

Recalling the dimensionless closure relationship (295), we may eventually write:
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) [
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]
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where Φs
0 and Φs

1 are respectively given by the relationships (298) and (300), with the coefficient γ
set equal to one.

Closure for the friction coefficient depends on whether the undisturbed bed may be treated as
plane or covered by small scale bedforms, to be treated as macro-roughness elements as discussed
in Section 4.5.

6.3. The formation of free bars: Linear stability analysis

6.3.1 Bar formation under bedload dominated conditions

Let us now investigate the formation of free bars theoretically, starting from the case when
sediment is dominantly transported as bed load.

As pointed out in Section 6.1, free bars develop because a uniform turbulent open channel flow
over an erodible cohesionless bed is most often unstable. Physically, instability arises because the
bed topography is never perfectly plane (even in a laboratory experiment) and the associated flow
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field is never perfectly uniform. In other words, the basic uniform state is invariably perturbed in
the real world. Perturbations may be unable to grow, if their growth is inhibited by sufficiently
strong damping mechanisms. On the contrary, instability arises if destabilizing mechanisms prevail
on damping effects. The mathematical framework developed to ascertain under what conditions a
basic state is unstable and to predict the new state arising from the instability process is known as
stability theory, the elements of which are outlined in the Mathematical Appendix to the present
Monograph (Chapter 9).

In order to ascertain instability, the first step is to restrict the class of perturbations assumed
to act on the basic state considering small (strictly infinitesimal) perturbations. This simplifies the
analysis considerably as the governing equations may be linearized. A number of linear stability
theories dealing with free bar formation in straight erodible channels with inerodible banks have
been proposed since the late 1960’s (see, among others, Adachi, 1967; Hansen, 1967; Callander,
1969; Hayashi, 1971; Hayashi and Ozaki, 1980; Engelund and Skovgaard, 1973; Parker, 1976;
Fredsøe, 1978). Most of them were ultimately motivated by the aim to understand the mechanism
of river meandering and river braiding, with the implicit assumption that the formation of alternate
bars would be the precursor of meander formation (bar theory) and the formation of multiple row
bars would evolve into a braided pattern. In the companion Monograph we will discuss and pursue
a different viewpoint that originated from the seminal work of Ikeda et al. (1981) and was later
developed by Blondeaux and Seminara (1985). The idea was to relax the assumption of inerodible
banks and associate the formation of meanders with a mechanism of planform instability driven
by bank erosion (bend instability theory).

However, in this Chapter we ignore the implications for river meandering and restrict our
attention to the process of bar formation in straight channels with erodible bed but inerodible
banks. Let us then consider a basic state, consisting of a uniform turbulent open channel flow.
Below, we will employ the dimensionless formulation removing the tildes for the sake of simplicity.
With the notations of Section 6.2, the basic state in dimensionless form reads:

U = 1, V = 0, D = 1, H = H0(x) = H00 − β S x, (487)

Here, H00 sets the (dimensionless) free surface elevation at some initial cross-section.
Next, we perturb the basic state by infinitesimal perturbations, expanding U , V , D and H as

follows:
(U, V,D,H) = (1, 0, 1, H0) + ϵ (U1, V1, D1, H1) +O(ϵ2), (488)

with ϵ small (strictly infinitesimal) parameter measuring the amplitude of perturbations.
We then substitute from the expansions (488) into the governing equations (470, 471, 472,

477) and the closure relationships (483, 484). Since the flow field evolves on a hydrodynamic time
scale which is much faster than the morphodynamic time scale, temporal derivative are neglected
in equations (470)-(472). Next, we perform the linearization procedure, consisting of expanding
each quantity in powers of the small parameter ϵ and retaining only terms O(ϵ0) and O(ϵ). At
O(ϵ0) one recovers the basic state, while the O(ϵ) equations provide the sought differential system
governing the evolution of small perturbations.

Linearization

We now provide some details of the linearization procedure.
In order to linearize the bottom stress, we need to expand the friction coefficient. Assuming that

small scale bedforms are not present and the sediment size (i.e. the absolute bottom roughness) is
uniform, the friction coefficient may vary spatially and temporally only because the flow depth
varies. Let us then set Cf = Cf (D) and expand:

Cf = Cf0 + ϵ
dCf

dD

∣∣∣
1
D1 +O(ϵ2) = Cf0

[
1 + ϵ cfD D1 +O(ϵ2)

]
, (489)

where Cf0 = Cfu and

cfD =
1

Cf0

dCf

dD

∣∣∣
1
. (490)
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Substituting from (488, 489) into the shallow water equations (470, 471, 472) and performing the
linearization, we find the following results.

O(ϵ0)

The only equation contributing to the leading order is the longitudinal momentum equation,
which reduces to:

F 2
ru =

S

Cf0
, (491)

that is simply a dimensionless version of Chézy law.

O(ϵ)

∂U1

∂x
+

∂V1

∂y
+

∂D1

∂x
= 0, (492)

∂U1

∂x
+

∂H1

∂x
+ βCf0 [2U1 + (cfD − 1)D1] = 0, (493)

∂V1

∂x
+

∂H1

∂y
+ βCf0 V1 = 0. (494)

In order to linearize the evolution equation of the bed interface, we expand the Shields stress
as follows

τ∗ =
ϱCf0 U

2
u

(ϱs − ϱ) g d

Cf

Cf0

(
U2 + V 2

)

= τ∗u
[
1 + ϵ cfD D1 +O(ϵ2)

] [
1 + ϵ (2U1) +O(ϵ2)

]

= τ∗u
[
1 + ϵ (cfD D1 + 2U1) +O(ϵ2)

]
. (495)

Recalling that η is equal to F 2
ruH −D, we then linearize (483) and (484) to find:

Qb
sx = Φb

u

{
1 + ϵ

[
Φb

T (cfD D1 + 2U1)−Rxu

(
F 2
ru

∂H1

∂x
− ∂D1

∂x

)]
+O(ϵ2)

}
, (496a)

Qb
sy = ϵΦb

u

[
V1 −Ryu

(
F 2
ru

∂H1

∂y
− ∂D1

∂y

)]
+O(ϵ2), (496b)

where we have used the following notations:

Φb
u = Φb

0

∣∣
τ∗u

, Φb
T =

τ∗u
Φb

u

dΦb
0

dτ∗

∣∣∣
τ∗u

, (497a)

Ryu = Ry

∣∣
τ∗u

, Rxu = Rx

∣∣
τ∗u

. (497b)

With the help of (496a, 496b) we can next linearize the bed evolution equation to find:
(
F 2
ru

∂H1

∂t
− ∂D1

∂t

)
+ ϵM Φb

u

[
Φb

T

(
cfD

∂D1

∂x
+ 2

∂U1

∂x

)
−Rxu

(
F 2
ru

∂2H1

∂x2
− ∂2D1

∂x2

)]

+ ϵM Φb
u

[
∂V1

∂y
−Ryu

(
F 2
ru

∂2H1

∂y2
− ∂2D1

∂y2

)]
= 0. (498)

The boundary conditions associated with the linearized governing equations (492), (493),
(494) and (498) impose that the lateral components of the flow velocity and sediment flux
vanish at the banks, hence, recalling (496b):

V1

∣∣∣
y=±1

= 0,

[
F 2
ru

∂H1

∂y
− ∂D1

∂y

]

y=±1

= 0, (499)
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field is never perfectly uniform. In other words, the basic uniform state is invariably perturbed in
the real world. Perturbations may be unable to grow, if their growth is inhibited by sufficiently
strong damping mechanisms. On the contrary, instability arises if destabilizing mechanisms prevail
on damping effects. The mathematical framework developed to ascertain under what conditions a
basic state is unstable and to predict the new state arising from the instability process is known as
stability theory, the elements of which are outlined in the Mathematical Appendix to the present
Monograph (Chapter 9).

In order to ascertain instability, the first step is to restrict the class of perturbations assumed
to act on the basic state considering small (strictly infinitesimal) perturbations. This simplifies the
analysis considerably as the governing equations may be linearized. A number of linear stability
theories dealing with free bar formation in straight erodible channels with inerodible banks have
been proposed since the late 1960’s (see, among others, Adachi, 1967; Hansen, 1967; Callander,
1969; Hayashi, 1971; Hayashi and Ozaki, 1980; Engelund and Skovgaard, 1973; Parker, 1976;
Fredsøe, 1978). Most of them were ultimately motivated by the aim to understand the mechanism
of river meandering and river braiding, with the implicit assumption that the formation of alternate
bars would be the precursor of meander formation (bar theory) and the formation of multiple row
bars would evolve into a braided pattern. In the companion Monograph we will discuss and pursue
a different viewpoint that originated from the seminal work of Ikeda et al. (1981) and was later
developed by Blondeaux and Seminara (1985). The idea was to relax the assumption of inerodible
banks and associate the formation of meanders with a mechanism of planform instability driven
by bank erosion (bend instability theory).

However, in this Chapter we ignore the implications for river meandering and restrict our
attention to the process of bar formation in straight channels with erodible bed but inerodible
banks. Let us then consider a basic state, consisting of a uniform turbulent open channel flow.
Below, we will employ the dimensionless formulation removing the tildes for the sake of simplicity.
With the notations of Section 6.2, the basic state in dimensionless form reads:

U = 1, V = 0, D = 1, H = H0(x) = H00 − β S x, (487)

Here, H00 sets the (dimensionless) free surface elevation at some initial cross-section.
Next, we perturb the basic state by infinitesimal perturbations, expanding U , V , D and H as

follows:
(U, V,D,H) = (1, 0, 1, H0) + ϵ (U1, V1, D1, H1) +O(ϵ2), (488)

with ϵ small (strictly infinitesimal) parameter measuring the amplitude of perturbations.
We then substitute from the expansions (488) into the governing equations (470, 471, 472,

477) and the closure relationships (483, 484). Since the flow field evolves on a hydrodynamic time
scale which is much faster than the morphodynamic time scale, temporal derivative are neglected
in equations (470)-(472). Next, we perform the linearization procedure, consisting of expanding
each quantity in powers of the small parameter ϵ and retaining only terms O(ϵ0) and O(ϵ). At
O(ϵ0) one recovers the basic state, while the O(ϵ) equations provide the sought differential system
governing the evolution of small perturbations.

Linearization

We now provide some details of the linearization procedure.
In order to linearize the bottom stress, we need to expand the friction coefficient. Assuming that

small scale bedforms are not present and the sediment size (i.e. the absolute bottom roughness) is
uniform, the friction coefficient may vary spatially and temporally only because the flow depth
varies. Let us then set Cf = Cf (D) and expand:

Cf = Cf0 + ϵ
dCf
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1
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Substituting from (488, 489) into the shallow water equations (470, 471, 472) and performing the
linearization, we find the following results.
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The only equation contributing to the leading order is the longitudinal momentum equation,
which reduces to:
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that is simply a dimensionless version of Chézy law.
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In order to linearize the evolution equation of the bed interface, we expand the Shields stress
as follows
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Recalling that η is equal to F 2
ruH −D, we then linearize (483) and (484) to find:
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where we have used the following notations:

Φb
u = Φb

0

∣∣
τ∗u

, Φb
T =

τ∗u
Φb

u

dΦb
0

dτ∗

∣∣∣
τ∗u

, (497a)

Ryu = Ry
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With the help of (496a, 496b) we can next linearize the bed evolution equation to find:
(
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The boundary conditions associated with the linearized governing equations (492), (493),
(494) and (498) impose that the lateral components of the flow velocity and sediment flux
vanish at the banks, hence, recalling (496b):
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Normal modes

We then perform a normal mode analysis of perturbations. As clarified in Chapter 9, the steady
character of the basic state implies that the linear system admits of solutions that are exponential
in time. Moreover, the spatial uniformity of the basic state allows us to represent the perturbations
as Fourier integrals in the longitudinal coordinate (that is unbounded) and Fourier series in the
lateral coordinate (that is defined in the finite interval [−1, 1]). Taking advantage of the linearity
of the problem, we can investigate each component of the perturbation separately. Thus we set:

(U1, D1, H1, V1) =
[
(um, dm, hm)Sm(y); vm Cm(y)

]
exp i(λx− ω t) + c.c. , (500)

where c.c. stands for the complex conjugate of a complex number and we have used the following
notations:

Sm(y) = sin
(π
2
my

)
, Cm(y) = cos

(π
2
my

)
(odd m), (501a)

Sm(y) = cos
(π
2
my

)
, Cm(y) = sin

(π
2
my

)
(even m). (501b)

Moreover, λ is the (real) bar wavenumber and ω (= ωr + i ωi) is a complex growth rate. Note that
lateral Fourier modes have been chosen in (500) such to satisfy the boundary conditions (499) at
the banks.

Let us further clarify the structure of the perturbation. Consider the perturbation of flow
depth and assume its amplitude dm is a real quantity. We may then write the perturbation in the
clearer real form:

D1 = 2 dm sin
(π
2
my

)
exp(ωi t) cos(λx− ωr t). (502)

Hence, each mode, identified by an integer value of m, is essentially a wave characterized by a
dimensionless longitudinal wavenumber λ and a dimensionless angular frequency ωr, such that:

λ =
2π B

L
, ωr =

2π B/Uu

T
, (503)

with L wavelength and T wave period. The wave amplifies (or decays) depending on the dimen-
sionless growth rate ωi being positive or negative. The wave migrates with dimensionless wavespeed
c = ωr/λ: migration is downstream if ωr > 0 and upstream if ωr < 0. The aim of the stability
analysis is precisely to determine the growth rate (and speed) of perturbations as functions of
the bar wavenumber and of the physical parameters that characterize the hydrodynamics and
sediment transport.

Also note that other properties of the perturbation (velocity, free surface elevation) are waves
that exhibit a phase lag with respect to the perturbation of the flow depth. Mathematically, this is
equivalent to stating that the amplitudes of the velocity (or free surface) perturbation are not real
quantities in general. Indeed, examine the perturbation of free surface elevation with hm assumed
to be complex, i.e. of the form |hm| exp(−i ϕ). Then, ϕ is precisely the phase lag of free surface
elevation relative to flow depth, as illustrated by the following relationship:

H1 = 2 |hm| sin
(π
2
my

)
exp(ωi t) cos(λx− ωr t− ϕ). (504)

The Figure 86 shows the shape of different bar modes. The mode m = 1 is called alternate bar,
modes with m > 1 are referred to as multiple row bars. In particular the case m = 2 is associated
with central bars. Alternate bars lead the thread of high velocity to follow a meandering path
and this is the reason why alternate bars have been considered as precursors of river meanders.
Central bars are often precursors of island formation as a result of vegetation growth whereby bar
migration is stopped. Multiple row bars are considered as precursors of river braiding. The reader
will then immediately appreciate why the analysis of bar formation has played an important role
in the development of fluvial morphodynamics.
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Figure 86. Sketch displaying the bed topography of different linear bar modes. Bed elevation is
scaled by the bar amplitude. Note the alternate sequence of pools (blue regions) and deposits

(yellow regions) that leads the thread of high velocity to follow a meandering (m = 1) or braiding
(m > 1) pattern.

Normal mode analysis

On substituting from (500) into the linearized form of the governing differential equations (492, 493,
494, 498), one readily finds the following linear algebraic homogeneous system for the perturbation
amplitudes um, vm, dm and hm:

a1j um + a2j vm + a3j hm + a4j dm = 0 (j = 1, 4), (505)

where:

a11 = iλ, a21 = −M, a31 = 0, a41 = i λ, (506a)
a12 = i λ+ 2β Cf0, a22 = 0, a32 = i λ, a42 = β Cf0 (cfD − 1), (506b)
a13 = 0, a23 = i λ+ β Cf0, a33 = M, a43 = 0, (506c)

a14 = 2 i λΦb
T , (506d)

a24 = −M, a34 = F 2
ru

(
− i ω

ϵM Φb
u

+ λ2Rxu +M2 Ryu

)
, (506e)

a44 =
i ω

ϵM Φb
u

−M2Ryu + i λ cfDΦb
T − λ2Rxu , (506f)

while the parameter M is defined as follows:

M =
π

2
m. (507)

The homogeneous character of the linear algebraic system (505) implies that a solvability
condition must be satisfied. This consists of imposing that the determinant of the matrix associated
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Normal modes
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[
(um, dm, hm)Sm(y); vm Cm(y)

]
exp i(λx− ω t) + c.c. , (500)
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(π
2
my

)
, Cm(y) = cos

(π
2
my

)
(odd m), (501a)

Sm(y) = cos
(π
2
my

)
, Cm(y) = sin

(π
2
my

)
(even m). (501b)

Moreover, λ is the (real) bar wavenumber and ω (= ωr + i ωi) is a complex growth rate. Note that
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Let us further clarify the structure of the perturbation. Consider the perturbation of flow
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D1 = 2 dm sin
(π
2
my

)
exp(ωi t) cos(λx− ωr t). (502)
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L
, ωr =

2π B/Uu

T
, (503)

with L wavelength and T wave period. The wave amplifies (or decays) depending on the dimen-
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c = ωr/λ: migration is downstream if ωr > 0 and upstream if ωr < 0. The aim of the stability
analysis is precisely to determine the growth rate (and speed) of perturbations as functions of
the bar wavenumber and of the physical parameters that characterize the hydrodynamics and
sediment transport.

Also note that other properties of the perturbation (velocity, free surface elevation) are waves
that exhibit a phase lag with respect to the perturbation of the flow depth. Mathematically, this is
equivalent to stating that the amplitudes of the velocity (or free surface) perturbation are not real
quantities in general. Indeed, examine the perturbation of free surface elevation with hm assumed
to be complex, i.e. of the form |hm| exp(−i ϕ). Then, ϕ is precisely the phase lag of free surface
elevation relative to flow depth, as illustrated by the following relationship:
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The Figure 86 shows the shape of different bar modes. The mode m = 1 is called alternate bar,
modes with m > 1 are referred to as multiple row bars. In particular the case m = 2 is associated
with central bars. Alternate bars lead the thread of high velocity to follow a meandering path
and this is the reason why alternate bars have been considered as precursors of river meanders.
Central bars are often precursors of island formation as a result of vegetation growth whereby bar
migration is stopped. Multiple row bars are considered as precursors of river braiding. The reader
will then immediately appreciate why the analysis of bar formation has played an important role
in the development of fluvial morphodynamics.
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Figure 86. Sketch displaying the bed topography of different linear bar modes. Bed elevation is
scaled by the bar amplitude. Note the alternate sequence of pools (blue regions) and deposits

(yellow regions) that leads the thread of high velocity to follow a meandering (m = 1) or braiding
(m > 1) pattern.

Normal mode analysis

On substituting from (500) into the linearized form of the governing differential equations (492, 493,
494, 498), one readily finds the following linear algebraic homogeneous system for the perturbation
amplitudes um, vm, dm and hm:

a1j um + a2j vm + a3j hm + a4j dm = 0 (j = 1, 4), (505)

where:

a11 = iλ, a21 = −M, a31 = 0, a41 = i λ, (506a)
a12 = i λ+ 2β Cf0, a22 = 0, a32 = i λ, a42 = β Cf0 (cfD − 1), (506b)
a13 = 0, a23 = i λ+ β Cf0, a33 = M, a43 = 0, (506c)
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while the parameter M is defined as follows:

M =
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The homogeneous character of the linear algebraic system (505) implies that a solvability
condition must be satisfied. This consists of imposing that the determinant of the matrix associated
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with the linear system must vanish. We find:

− i ω

ϵM Φb
u

= −λ2Rxu −M2Ryu + λ
A0 +A1 λ+A2 λ

2 +A3 λ
3

B0 +B1 λ+B2 λ2 +B3 λ3
, (508)

where

A0 = −iM2 β Cf0

(
− 3 + cfD + 2Φb

T

)
, A1 = −M2

(
1− cfD Φb

T

)
, (509a)

A2 = −i β Cf0 Φ
b
T

(
cfD − 2

)
, A3 = Φb

T

(
cfD − 2

)
, (509b)

B0 = −2M2 β Cf0, B1 = i
[
−M2 + F 2

ru

(
β Cf0

)2(
cfD − 3

)]
, (509c)

B2 = β Cf0

[
− 1 + F 2

ru

(
4− cfD

)]
, B3 = i

(
F 2
ru − 1

)
. (509d)

The algebraic constraint (508) establishes a relationship between the complex growth rate −i ω
and the relevant physical parameters, namely the dimensionless bar wavenumber λ, the aspect
ratio β, the undisturbed Shields stress τ∗u and the relative roughness ds defined as:

ds =
d

Du
. (510)

Note that the latter parameter determines the undisturbed friction coefficient Cf0 in the absence
of small scale bedforms. The equation (508) is called dispersion relationship.

A few observations arise immediately from a glance at (508).

Long bars are invariably stable. Indeed,

lim
λ→0

Re[−i ω] = −ϵMΦb
u M

2 Ryu, (511)

i.e. the bar growth rate ωi is invariably negative.

A similar behavior is found in the opposite limit of short bars:

lim
λ→∞

Re[−i ω] = −ϵM Φb
u λ2 Rxu. (512)

The reader should note that, in both cases, the stabilizing mechanism is gravity, acting either
in the lateral direction or in the longitudinal direction.

One further limit, the case of very wide channels (β → ∞), deserves attention. This limit was
investigated by Hall (2007) who showed that, as β → ∞, the parameter β can be scaled out of the
analysis and the bar characteristics scale with flow depth.

The above results differ from those derived by Blondeaux and Seminara (1985) only for the
inclusion of the effect of spatial variations of the local longitudinal slope on the longitudinal
component of the depth averaged sediment flux (term proportional to Rxu in the dispersion
relationship).

One further point deserves attention. As first pointed out by Fredsøe (1978), m can be scaled
out of the dispersion relationship (508) through the simple transformations:

ω
∣∣
m

= mω
∣∣
1
, β

∣∣
m

= mβ
∣∣
1
, λ

∣∣
m

= mλ
∣∣
1
. (513)

Essentially, the complex growth rate for mode m at (mλ,mβ) is m times the growth rate of
the first mode at (λ, β). In particular, the marginal stability curve of mode m is obtained from
the marginal stability curve of the first mode through the transformation (513) and the critical
conditions for mode m can be written in the form:

βcm = mβc1, λcm = mλc1. (514)
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It is customary to represent the dispersion relationship in a plane with the value of some control
parameter (β in our case) in the ordinate and the value of the perturbation wavenumber (λ in our
case) in the abscissa. For any given mode m and given values of τ∗u and ds, any point in this plane
is associated with a unique value of the bar growth rate Im[ωm] and the bar wavespeed Re[ωm]/λ.
One may then draw iso-growth lines and iso-speed lines for any mode (Figure 87). In particular,
the zero-growth line (assuming it exists) is commonly called marginal or neutral stability curve.
When the marginal stability curve exhibits a minimum, as in Figure 87, this minimum determines
the so called critical conditions for linear instability, i.e. a critical wavenumber λcm and a critical
value of the control parameter βcm. Under these conditions the linear theory predicts that bars
of mode m amplify as the aspect ratio exceeds its critical value βcm and the fastest growing
perturbation has wavenumber λcm and wavespeed Re[ωcm]/λcm.
The dependence of βc from the parameters τ∗u and ds is shown in Figure 88.

Figure 87. Formation of bars of mode m. The grey line separating the stable (white) and unstable (coloured)
regions represents a typical neutral curve. The black line intersecting the neutral curve at (λR, βR)/m represents
the zero bar speed line and separates the region of the stability plane where bars migrate downstream from the

region where bars migrate upstream. On the white solid line bars are characterized by the maximum growth rate
(adapted from Seminara, 2010).

Another important feature emerging from the plot shown in Figure 87 is the zero-speed line,
that will be seen to play a special role in the bend theory of river meanders. Bars characterized by
values of β and λ lying on the zero-speed line are non-migrating. They may be stable, marginally
stable or unstable but, in the present linear context, they do not develop spontaneously because
they are not the fastest growing perturbations, as clearly emerges if one compares the zero speed
line and the maximum growth line in Figure 87. This notwithstanding, forcing mechanisms may
excite the formation of non-migrating disturbances. Below we denote by βR and λR the values of β
and λ associated with the intersection of the zero-growth line with the zero-speed line. Also, note
that the fastest growing bars migrate downstream, but upstream migrating bars are also allowed by
the system. Again, upstream migrating bars do not develop spontaneously, at least at a linear level,
as they are not the fastest migrating perturbations. But, in sufficiently wide channels (β > βR),
upstream bar migration may be forced by external mechanisms. This is an interesting feature
with fundamental implications as migrating bars are also vectors of morphodynamic information.
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and the relevant physical parameters, namely the dimensionless bar wavenumber λ, the aspect
ratio β, the undisturbed Shields stress τ∗u and the relative roughness ds defined as:
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Note that the latter parameter determines the undisturbed friction coefficient Cf0 in the absence
of small scale bedforms. The equation (508) is called dispersion relationship.
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i.e. the bar growth rate ωi is invariably negative.
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The reader should note that, in both cases, the stabilizing mechanism is gravity, acting either
in the lateral direction or in the longitudinal direction.

One further limit, the case of very wide channels (β → ∞), deserves attention. This limit was
investigated by Hall (2007) who showed that, as β → ∞, the parameter β can be scaled out of the
analysis and the bar characteristics scale with flow depth.

The above results differ from those derived by Blondeaux and Seminara (1985) only for the
inclusion of the effect of spatial variations of the local longitudinal slope on the longitudinal
component of the depth averaged sediment flux (term proportional to Rxu in the dispersion
relationship).

One further point deserves attention. As first pointed out by Fredsøe (1978), m can be scaled
out of the dispersion relationship (508) through the simple transformations:
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Essentially, the complex growth rate for mode m at (mλ,mβ) is m times the growth rate of
the first mode at (λ, β). In particular, the marginal stability curve of mode m is obtained from
the marginal stability curve of the first mode through the transformation (513) and the critical
conditions for mode m can be written in the form:

βcm = mβc1, λcm = mλc1. (514)
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It is customary to represent the dispersion relationship in a plane with the value of some control
parameter (β in our case) in the ordinate and the value of the perturbation wavenumber (λ in our
case) in the abscissa. For any given mode m and given values of τ∗u and ds, any point in this plane
is associated with a unique value of the bar growth rate Im[ωm] and the bar wavespeed Re[ωm]/λ.
One may then draw iso-growth lines and iso-speed lines for any mode (Figure 87). In particular,
the zero-growth line (assuming it exists) is commonly called marginal or neutral stability curve.
When the marginal stability curve exhibits a minimum, as in Figure 87, this minimum determines
the so called critical conditions for linear instability, i.e. a critical wavenumber λcm and a critical
value of the control parameter βcm. Under these conditions the linear theory predicts that bars
of mode m amplify as the aspect ratio exceeds its critical value βcm and the fastest growing
perturbation has wavenumber λcm and wavespeed Re[ωcm]/λcm.
The dependence of βc from the parameters τ∗u and ds is shown in Figure 88.

Figure 87. Formation of bars of mode m. The grey line separating the stable (white) and unstable (coloured)
regions represents a typical neutral curve. The black line intersecting the neutral curve at (λR, βR)/m represents
the zero bar speed line and separates the region of the stability plane where bars migrate downstream from the

region where bars migrate upstream. On the white solid line bars are characterized by the maximum growth rate
(adapted from Seminara, 2010).

Another important feature emerging from the plot shown in Figure 87 is the zero-speed line,
that will be seen to play a special role in the bend theory of river meanders. Bars characterized by
values of β and λ lying on the zero-speed line are non-migrating. They may be stable, marginally
stable or unstable but, in the present linear context, they do not develop spontaneously because
they are not the fastest growing perturbations, as clearly emerges if one compares the zero speed
line and the maximum growth line in Figure 87. This notwithstanding, forcing mechanisms may
excite the formation of non-migrating disturbances. Below we denote by βR and λR the values of β
and λ associated with the intersection of the zero-growth line with the zero-speed line. Also, note
that the fastest growing bars migrate downstream, but upstream migrating bars are also allowed by
the system. Again, upstream migrating bars do not develop spontaneously, at least at a linear level,
as they are not the fastest migrating perturbations. But, in sufficiently wide channels (β > βR),
upstream bar migration may be forced by external mechanisms. This is an interesting feature
with fundamental implications as migrating bars are also vectors of morphodynamic information.
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Figure 88. (a) The critical value of the aspect ratio βc for alternate bar formation predicted by the theory of
Blondeaux and Seminara (1985) (Rxu = 0) is plotted versus τ∗u for some values of ds; (b) Comparison with the

case of a non-vanishing Rxu for ds = 0.005 (in both cases the unperturbed bed is assumed to be plane) .

In other words, we are implicitly stating that, under suitable conditions, river morphodynamics
may display upstream influence. This issue will be discussed in the companion Monograph, in the
context of the theory of river meandering.

The physical mechanism of bar instability

The physical mechanism controlling the onset of instability is related to the spatial distributions
of the longitudinal and transverse components of bedload. Indeed, Exner equation predicts that
a bedform amplifies provided the divergence of bedload transport is negative at the crest. The
bed perturbation drives spatial variations of flow and sediment transport, which exhibit some lag
with respect to the bottom profile. Perturbations will then be amplified provided the longitudinal
transport decreases at the crests and/or the lateral transport is directed from the troughs towards
the crests (Figure 89). To clarify this point, we follow Colombini et al. (1987) and write:

η1 = F 2
ruH1 −D1 = ηr sin

(π
2
my

)
exp(ωi t) cos(λx− ωr t), (515)

with ηr arbitrarily small amplitude of the initial bed perturbation. Any other property P of the
linear perturbation can be written as proportional to cos(λx− ωr t− δP ) where δP is the phase
lag of the property P relative to bottom elevation. In particular, we may write

Qb
sx1 = Qb

sxr sin
(π
2
my

)
exp(ωi t) cos(λx− ωr t− δQsx

), (516a)

Qb
sy1 = Qb

syr cos
(π
2
my

)
exp(ωi t) cos(λx− ωr t− δQsy

), (516b)

where δQsx
and δQsy

are the phase lags of the longitudinal and lateral components of the pertur-
bation of sediment flux. Substituting from (515), (516a) and (516b) into the Exner equation (475),
one readily finds:

ωi

ϵM
= −λQb

sxr

ηr
sin

(
δQsx

)
+

M Qb
syr

ηr
cos

(
δQsy

)
, (517)

where we have chosen the origin of the x-axis such that λx = ωr t. Note that the peak of the
longitudinal component of bottom stress is very close to the peak of the longitudinal component
of bed load. The latter typically occurs upstream of the peak of bed elevation, i.e. δQsx

falls
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in the interval (π, 2π), which implies a destabilizing contribution to bar growth. However, as λ
increases, the peak of the longitudinal component of the bedload flux moves towards the bar crest
and eventually overcomes the crest: at this stage, the longitudinal component of the bedload flux
no longer plays a destabilizing role. On the other hand, the contribution of the lateral component
of sediment transport to the bar growth rate consists of two terms. The former is proportional
to the lateral component of the shear stress, which lags behind bed elevation, with δτy falling in
the interval (3π/2, 2π), hence this contribution is destabilizing. The second contribution of the
lateral component of sediment transport is associated with the effect of gravity which is obviously
stabilizing. As a result, the phase lag of the transverse sediment transport δQsy

ranges between
π/2 and π, thus implying a stabilizing contribution to ωi. This effect is inversely proportional to
the width ratio (recall equations 484 and 508), which explains the existence of the threshold value
of β below which bars cannot form. The stabilizing effect is also proportional to M2. This inhibits
the development of high-order modes and the balance of this effect with the destabilizing effects
previously discussed determines the number of braids (m) selected by the instability process.

Figure 89. The phase lags of various flow and sediment properties with respect to bed profile are plotted versus bar
wavenumber according to Lanzoni and Tubino (1999). The relevant parameters are: β = 15; τ∗u = 0.08; mean

dimensionless sediment size ds = 0.001.

Alternate bars: theory and observations

Let us first check if the theory is successful in predicting the conditions for bar formation. The line
β = βc in Figure 90 separates the region where alternate bars are not expected to form on the basis
of the theory of Blondeaux and Seminara (1985) from the region where they are expected to form.
Symbols correspond to data of a variety of Authors. The agreement is quite satisfactory with
some scatter in the region close to τ∗c, owing to the uncertainties associated with the predictors of
incipient particle motion and the rapid variability of βc as τ∗c is approached. Also, note that the
theory fails in a neighborhood of the critical condition as sediment transport may not occur in the
whole region.
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Figure 88. (a) The critical value of the aspect ratio βc for alternate bar formation predicted by the theory of
Blondeaux and Seminara (1985) (Rxu = 0) is plotted versus τ∗u for some values of ds; (b) Comparison with the

case of a non-vanishing Rxu for ds = 0.005 (in both cases the unperturbed bed is assumed to be plane) .

In other words, we are implicitly stating that, under suitable conditions, river morphodynamics
may display upstream influence. This issue will be discussed in the companion Monograph, in the
context of the theory of river meandering.

The physical mechanism of bar instability

The physical mechanism controlling the onset of instability is related to the spatial distributions
of the longitudinal and transverse components of bedload. Indeed, Exner equation predicts that
a bedform amplifies provided the divergence of bedload transport is negative at the crest. The
bed perturbation drives spatial variations of flow and sediment transport, which exhibit some lag
with respect to the bottom profile. Perturbations will then be amplified provided the longitudinal
transport decreases at the crests and/or the lateral transport is directed from the troughs towards
the crests (Figure 89). To clarify this point, we follow Colombini et al. (1987) and write:
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where we have chosen the origin of the x-axis such that λx = ωr t. Note that the peak of the
longitudinal component of bottom stress is very close to the peak of the longitudinal component
of bed load. The latter typically occurs upstream of the peak of bed elevation, i.e. δQsx
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in the interval (π, 2π), which implies a destabilizing contribution to bar growth. However, as λ
increases, the peak of the longitudinal component of the bedload flux moves towards the bar crest
and eventually overcomes the crest: at this stage, the longitudinal component of the bedload flux
no longer plays a destabilizing role. On the other hand, the contribution of the lateral component
of sediment transport to the bar growth rate consists of two terms. The former is proportional
to the lateral component of the shear stress, which lags behind bed elevation, with δτy falling in
the interval (3π/2, 2π), hence this contribution is destabilizing. The second contribution of the
lateral component of sediment transport is associated with the effect of gravity which is obviously
stabilizing. As a result, the phase lag of the transverse sediment transport δQsy

ranges between
π/2 and π, thus implying a stabilizing contribution to ωi. This effect is inversely proportional to
the width ratio (recall equations 484 and 508), which explains the existence of the threshold value
of β below which bars cannot form. The stabilizing effect is also proportional to M2. This inhibits
the development of high-order modes and the balance of this effect with the destabilizing effects
previously discussed determines the number of braids (m) selected by the instability process.

Figure 89. The phase lags of various flow and sediment properties with respect to bed profile are plotted versus bar
wavenumber according to Lanzoni and Tubino (1999). The relevant parameters are: β = 15; τ∗u = 0.08; mean

dimensionless sediment size ds = 0.001.

Alternate bars: theory and observations

Let us first check if the theory is successful in predicting the conditions for bar formation. The line
β = βc in Figure 90 separates the region where alternate bars are not expected to form on the basis
of the theory of Blondeaux and Seminara (1985) from the region where they are expected to form.
Symbols correspond to data of a variety of Authors. The agreement is quite satisfactory with
some scatter in the region close to τ∗c, owing to the uncertainties associated with the predictors of
incipient particle motion and the rapid variability of βc as τ∗c is approached. Also, note that the
theory fails in a neighborhood of the critical condition as sediment transport may not occur in the
whole region.
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Figure 90. Comparison between the criterion for alternate-bar formation according to the theory of Blondeaux and
Seminara (1985) and experimental observations of various authors documenting the formation (◦) or the absence

(•) of alternate bars.

Let us next compare our predicted critical wavelengths with experimental values. This
comparison is shown in Figure 91. Note that the critical wavelength is typically larger than that

Figure 91. (a) The wavelength Lth of alternate bars (scaled by the half channel width B) associated with the
maximum growth rate as predicted by the linear theory of Blondeaux and Seminara (1985) is compared with

experimental data Lexp of various authors: ◦ Jaeggi (1983) PVC; • Jaeggi (1983) sand; Sukegawa (1971); Kinoshita
(1961); ⋄ Muramoto and Fujita (1978); Ashida and Shiomi (1966); △ Ikeda (1982b); Chang et al. (1971). (b)

Similar comparison for the bar wavelength at critical conditions Lcr.

selected by maximum linear growth. Moreover, though the theory is qualitatively in agreement with
observations, a significant scatter is present. This is partly unavoidable, due to the semiempirical
nature of the closures employed. But the intrinsic limits of the model are not the whole story. We
will show in Section 6.6 that the wavelength of alternate bars increases considerably during the
growth process. In other words, when bars have achieved a finite amplitude, their wavelength has
changed significantly with respect to the wavelength observed in the initial stage of the process.
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Hence, a more appropriate comparison should be performed using theoretical predictions for bar
wavelength in the finite amplitude regime.

6.3.2 Free bar formation: the effect of suspended load

The effect of suspended load on bar formation has been investigated by Fredsøe (1978), Olesen
(1984), Talmon (1992), Tubino et al. (1999) and Federici and Seminara (2006). It is not easy to
perform a comparison among results of different Authors, as their approaches employ different
parameters which make a detailed comparison hard. Here, we will refer to the works of Federici
and Seminara (2006) and Tubino et al. (1999), who adopted the approach presented in this
Monograph. In particular, in Tubino et al. (1999) a fully 3D formulation was employed for both
the hydrodynamics and the concentration field. The closures adopted in the model concerned:
the vertical structures of eddy viscosity (Dean, 1974) and eddy diffusivity (McTigue, 1981); the
friction coefficient (Engelund and Fredsøe, 1982) and the sediment entrainment in suspension (Van
Rijn, 1984b; Garcia and Parker, 1991).

A normal mode analysis was then performed. The solution of the linearized governing equations
(including the advection-diffusion equation for the concentration) was expanded in a form analogous
to (500). Reduction of the linear algebraic system obtained through this approach leads to a
dispersion relationship from which one can determine the marginal stability conditions.

Figure 92. Typical neutral curves for alternate-bar formation with transport in suspension for a value of the
undisturbed Shields parameter τ∗u = 1.5 and Rp = 4. The undisturbed bed has been assumed to be either (a)
plane, or (b) dune covered, with ds = 0.0001. The plots compare the marginal stability curves obtained at the

leading order of approximation O(ϵδ0) and at first-order O(ϵδ) by the 2-D formulation of Federici and Seminara
(2006) with those obtained by the fully 3-D approach of Tubino et al. (1999) (reproduced from Federici and

Seminara, 2006).

The overall effect of suspended load turns out to be destabilizing. The critical value of the
aspect ratio βc decreases and tends to vanish as τ∗u increases, i.e. as the ratio of suspended load to
bed load increases. This occurs in the case of both plane and dune covered beds. As pointed out
by Tubino et al. (1999), the tendency of βc to vanish is due to the decreasing role of the stabilizing
effect of gravity as τ∗u increases (recall equations (483a,b) and the coefficients (484a,b) therein).
Moreover, as the Shields stress increases, the aspect ratio β does no longer play the role of control
parameter of bar instability as suspended load has a significant effect. It appears that, at large
values of τ∗u, the width of the unstable region decreases and the unstable wavenumber range is
gradually shifted towards smaller values of λ, that is to longer bars. Moreover, the bar growth rate
is largely dominated by suspended load and bar perturbations in the range λ = 0.3 − 0.6, that
would be unstable under bedload dominated conditions, are now strongly damped.

A further interesting feature of the results obtained by Tubino et al. (1999) deserves to be
mentioned. Unlike in the case of dominant bed load, where βcm satisfies the condition (514), in the
presence of suspended load the critical conditions for different lateral modes tend to collapse within
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The overall effect of suspended load turns out to be destabilizing. The critical value of the
aspect ratio βc decreases and tends to vanish as τ∗u increases, i.e. as the ratio of suspended load to
bed load increases. This occurs in the case of both plane and dune covered beds. As pointed out
by Tubino et al. (1999), the tendency of βc to vanish is due to the decreasing role of the stabilizing
effect of gravity as τ∗u increases (recall equations (483a,b) and the coefficients (484a,b) therein).
Moreover, as the Shields stress increases, the aspect ratio β does no longer play the role of control
parameter of bar instability as suspended load has a significant effect. It appears that, at large
values of τ∗u, the width of the unstable region decreases and the unstable wavenumber range is
gradually shifted towards smaller values of λ, that is to longer bars. Moreover, the bar growth rate
is largely dominated by suspended load and bar perturbations in the range λ = 0.3 − 0.6, that
would be unstable under bedload dominated conditions, are now strongly damped.

A further interesting feature of the results obtained by Tubino et al. (1999) deserves to be
mentioned. Unlike in the case of dominant bed load, where βcm satisfies the condition (514), in the
presence of suspended load the critical conditions for different lateral modes tend to collapse within
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a very narrow range of values of the aspect ratio. As a consequence, when the role of suspended
load is dominant, the equilibrium topography is likely to result from the nonlinear competition
among several unstable lateral modes, a scenario conforming to the flume observations of Lanzoni
(1995).

The physical mechanism underlying the effect of suspended load on bar growth was clarified by
Tubino et al. (1999). It turns out that, when suspended load is dominant, the stabilizing effect
of the lateral transport plays a minor role and bar instability crucially depends on the phase lag
of the longitudinal transport relative to the peak of bed elevation. For small wavelengths the
longitudinal component of sediment flux lags behind bed elevation, and thus plays a destabilizing
role. As the bar wavenumber increases the peak of longitudinal transport moves ahead of the bar
crest and its role is no longer destabilizing. As the Shields parameter increases, the threshold
wavenumber at which the contribution of suspended load to bar growth rate becomes negative
shifts to smaller and smaller values.

The above picture has essentially been confirmed by Federici and Seminara (2006), who tested
the suitability of the simpler depth averaged approach of Bolla Pittaluga and Seminara (2003) to
investigate bar instability. Employing the latter, it turns out that a depth averaged approach to
bar instability is adequate even in the presence of significant suspended load, leading to predictions
in fairly satisfactory agreement with those of Tubino et al. (1999) (Figure 92). The approach
fails when the size of sediments is so small that gravitational settling becomes comparable with
advection. Under these conditions the slowly varying framework is no longer valid and the full 3D
model of transport in suspension is required.

Recently, Bertagni and Camporeale (2018) extended the analysis of Federici and Seminara
(2006) to the weakly nonlinear level using the Center Manifold Projection technique (Wiggins,
2003) to derive a Stuart-Landau equation (see Section 6.5.1) eventually yielding the bar amplitude.
The results confirm that suspended load reduces both the critical aspect ratio for bar formation
and the corresponding wavenumber, and therefore leads to finite amplitude longer bars under
conditions for which the bedload is not even sufficient to trigger the instability.

Surprisingly, systematic laboratory observations of bars under conditions of substantial transport
in suspension have not appeared in the literature and this has prevented to substantiate the
theoretical findings presented above. This is an important topic for future research.

6.3.3 Convective versus absolute instability

The distinction between convective and absolute instabilities has to do with the way the system
responds to the occurrence of an initially localized disturbance. It has been established that
two fundamentally distinct mechanisms may operate and identify the nature of the instability.
Instability is described as locally convective provided an initial small perturbation localized in space
is swept away from the source and convected downstream leaving the flow domain unperturbed as
time tends to infinity. By contrast, instability is described as absolute whenever the initial small
localized perturbation spreads in any direction as time grows, affecting eventually the whole flow
domain (Figure 93).

This distinction was originally proposed in the field of plasma physics (see Briggs, 1964; Bers,
1975, 1983) and has since then been applied and developed in hydrodynamic stability by several
authors (see the review of Huerre and Monkewitz, 1990).

Temporal stability analyses of bar formation of the kind performed by most investigators,
as analysed in Sections 6.3.1 and 6.3.2, consider small perturbations which amplify in time,
starting from some initial spatially periodic configuration. This corresponds to assuming that the
perturbation wavenumber λ is real while its frequency ω is complex (equation (500)). Temporal
analyses allow us to distinguish between stable configurations (all wavenumbers decay in time)
and unstable systems (some wavenumbers are amplified as in Figure 87). When the nature of
the instability is convective a spatial stability analysis is applicable, considering perturbations
which evolve in space, starting from a given temporal distribution at some initial location. This
is equivalent to assuming that the perturbation wavenumber is complex and the perturbation
frequency is real.

In order to ascertain the nature of the instability, the response of the system to impulsive forcing

200

Free and forced bars in straight channels

Figure 93. Sketch illustrating the response to a localized impulsive perturbation in (a) convectively unstable and (b)
absolutely unstable flows.

must be investigated. This analysis, originally proposed by Briggs (1964), requires some tools that
are outlined in the Mathematical Appendix (Chapter 9), to which the reader interested in the
mathematical aspects of the problem is referred. Here, we limit ourselves to discuss the results of
the application of the above analysis to the case of free bar instability, a problem investigated by
Federici and Seminara (2003). The main outcome of the latter paper is to show that bar instability
is invariably convective. In other words, the linear response of flow and bed topography to either
randomly distributed or localized spatial initial perturbations gives rise to the unbounded growth
of wave groups which migrate downstream leaving the flow domain unperturbed. This conclusion,
reached by an analytical approach, is confirmed by the numerical solution of the initial value
problem posed by the linearized hydrodynamic equations (492, 493, 494), the linearized Exner
equation (498), the boundary conditions (499) and the following initial conditions:
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= 0, (518)

with ηr an arbitrarily small function that describes the shape of the initial perturbation of bed
elevation. This numerical exercise is left to the reader. The above findings have been further
substantiated at a nonlinear level by the numerical simulations on the fully nonlinear equations
governing the morphodynamical problem performed by Federici and Seminara (2003). This will be
discussed in Section 6.6.1.

6.3.4 A conceptual digression: is 2D morphodynamics a well-posed problem?

The mathematical framework employed in the present chapter has proven fairly successful
in predicting river morphodynamics, suggesting that, in spite of the simplifications introduced
and the (mild) use of empirical inputs, the main physics of the process is successfully captured.
However, recently, Chavarrías et al. (2019), following previous contributions of Ribberink (1987)
and Stecca et al. (2014), noted that a fundamental problem arises when the above framework is
extended to the case of mixed size sediments. Under certain conditions the formulation of the
mathematical problem of morphodynamics is no longer well-posed, i.e. it does not admit of a
unique solution depending continuously on the data (Hadamard, 1923). The occurrence of these
conditions is strongly suggestive of the failure of the physical model, which must lack some crucial
ingredient needed to fully capture the essence of the real phenomenon. However, Chavarrías et al.
(2019)’s results suggest that, in the case of uniform sediments, the problem is invariably well-posed.

6.4. Forced bars in straight channels

6.4.1 Excitation of non migrating spatial modes in straight rectangular channels
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is invariably convective. In other words, the linear response of flow and bed topography to either
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with ηr an arbitrarily small function that describes the shape of the initial perturbation of bed
elevation. This numerical exercise is left to the reader. The above findings have been further
substantiated at a nonlinear level by the numerical simulations on the fully nonlinear equations
governing the morphodynamical problem performed by Federici and Seminara (2003). This will be
discussed in Section 6.6.1.

6.3.4 A conceptual digression: is 2D morphodynamics a well-posed problem?

The mathematical framework employed in the present chapter has proven fairly successful
in predicting river morphodynamics, suggesting that, in spite of the simplifications introduced
and the (mild) use of empirical inputs, the main physics of the process is successfully captured.
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and Stecca et al. (2014), noted that a fundamental problem arises when the above framework is
extended to the case of mixed size sediments. Under certain conditions the formulation of the
mathematical problem of morphodynamics is no longer well-posed, i.e. it does not admit of a
unique solution depending continuously on the data (Hadamard, 1923). The occurrence of these
conditions is strongly suggestive of the failure of the physical model, which must lack some crucial
ingredient needed to fully capture the essence of the real phenomenon. However, Chavarrías et al.
(2019)’s results suggest that, in the case of uniform sediments, the problem is invariably well-posed.
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6.4.1 Excitation of non migrating spatial modes in straight rectangular channels
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The analysis presented so far has concerned the spontaneous formation of free bars in straight
channels, i.e. large scale perturbations that grow/decay in time and migrate in the longitudinal
direction. On the contrary, at a given time, these perturbations do not display any spatial
growth/decay. For these reasons, in the language of stability theory, they are also called temporal
modes.

However, as discussed in Section 6.3.3, an open channel with erodible bottom and inerodible
banks subject to a steady uniform turbulent stream admits of a second class of perturbations, that
do not amplify in time but do amplify/decay in space. They are called spatial modes and can be
represented in the same form as temporal modes (500), simply allowing λ to be complex rather
than real and, viceversa, constraining ω to be real.

In the present Section, we are concerned with a particular class of spatial modes, those
characterized by vanishing migration speed, i.e. such that ω = 0. They play an important role in
practical applications, as they are excited by the occurrence of some steady forcing perturbations
at some initial cross-section.

In real form, linear non migrating spatial modes read:

(U1, D1, H1,V1) = 2
[
(um, dm, hm) Sm, vm Cm

]
exp(−λi x) cos(λr x). (519)

Here, Sm and Cm are defined by (501). Moreover, λr is the wavenumber and (−λi) is the spatial
growth rate. Perturbations are thus stationary waves that may grow (λi < 0), decay (λi > 0,
Figure 94) or keep their initial amplitude (λi = 0).

Figure 94. Sketch illustrating the shape of a decaying non-migrating spatial mode of the alternate bar type (m =1).
The flow is from left to right.

We emphasize that, although these perturbations are allowed by the system (i.e., they satisfy
the linearized governing equations), they are not free modes as they do not develop spontaneously
(their temporal growth rate vanishes). However, provided some forcing effect is present, they do
form. Forcing effects (Figure 95) may be the presence of a permanent obstacle in a straight channel
(see the laboratory experiments of Struiksma and Crosato, 1989; Lanzoni, 1995; Crosato et al.,
2012) or permanent bed perturbations maintained at some initial cross-section by some other
mechanism, as in a straight reach following a curved reach (e.g. in the experiments of Struiksma
et al., 1985; Zolezzi et al., 2005).

Spatial non-migrating modes were first investigated by Olesen (1984) in the bed load dominated
case. More recently, Zolezzi and Seminara (2001) have reexamined their role, showing that it also
determines the direction along which the morphodynamic influence propagates and, consequently,
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Figure 95. Sketch of (a) a channel with a permanent obstacle narrowing the cross-section and (b) a straight reach
following a curved reach that imposes an external forcing on the the downstream channel bed.

controls the planform development of meandering rivers (Seminara et al., 2001a). These aspects
will be discussed in the companion Monograph.

In the case of bars forming in straight channels, Federici and Seminara (2006) analyzed the
characteristics of spatial non-migrating modes for dominant bedload and then also in the presence
of suspended load. The dispersion relationship obtained allowing λ to be complex and setting
ω = 0 in equation (508) was found to reduce to a fourth order algebraic equation for λ, if one
ignores the small term associated with the longitudinal effect of gravity on sediment transport.
This fourth order equation admits of four complex solutions λjm (j =1-4). For dominant bedload
transport, a typical dependence of these four solutions on the aspect ratio β is plotted in Figure
96 for given values of the Shields stress τ∗u, particle Reynolds number Rp, relative roughness ds
and for the first spatial mode m = 1.

Figure 96. The four complex wavenumbers describing the first spatial mode (m=1) are plotted versus β for the case
of dominant bed load (ds = 0.001, τ∗u = 0.5, Rp = 40) (reproduced from Federici and Seminara, 2006, Figure 5c).

It is important to observe that two solutions, λ1 and λ2, play a minor role as they are purely
imaginary and have values around 1, with opposite signs. Hence, they describe non oscillatory
spatial perturbations which grow/decay fairly fast either downstream or upstream. Indeed, recalling
that they are dimensionless quantities scaled by the channel half-width, it follows that these spatial
modes vary on a spatial scale of the order of one channel width. The other two solutions λ3 and λ4

play a major role in bar morphodynamics. They are complex conjugate with real and imaginary
parts having values around 0.1. Hence they describe spatially oscillatory perturbations which vary
fairly slowly, i.e. their influence is felt over a considerable channel length. It is important to point
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It is important to observe that two solutions, λ1 and λ2, play a minor role as they are purely
imaginary and have values around 1, with opposite signs. Hence, they describe non oscillatory
spatial perturbations which grow/decay fairly fast either downstream or upstream. Indeed, recalling
that they are dimensionless quantities scaled by the channel half-width, it follows that these spatial
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parts having values around 0.1. Hence they describe spatially oscillatory perturbations which vary
fairly slowly, i.e. their influence is felt over a considerable channel length. It is important to point
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out the role played by the aspect ratio β: the sign of Im(λ3) (= Im(λ4)) is positive or negative
depending on β being smaller or larger than a threshold value, βR. This mathematical feature
has major physical consequences: for β > βR the influence of the perturbation is felt (amplifies)
in the upstream direction. On the contrary, for β < βR the influence of the perturbation is felt
downstream. The upstream influence was firstly pointed out by Zolezzi and Seminara (2001). At
threshold the perturbations are purely oscillatory and, for the lowest mode, they describe a periodic
sequence of non migrating and non amplifying alternate bars quite similar to the sequence of point
bars observed in meandering channels. Indeed, we will see in the companion Monograph that these
spatial non-migrating modes can be resonantly excited in meanders with a periodic distribution of
channel curvature (Blondeaux and Seminara, 1985). For this reason, we will describe channels
characterized by aspect ratios β such that β < βR as sub-resonant whereas channels with β > βR

will be called as super-resonant.
The first experimental verification of the role of spatial modes was achieved by the curved flume

experiments of Struiksma et al. (1985) that will also be discussed in the companion Monograph.
For straight channels, the above picture has received some substantiation through the laboratory
experiments of Lanzoni (2000a). Indeed, as discussed in Section 6.1, both spatially damped and
spatially periodic bars were generated in those experiments introducing a lateral obstruction at
the flume entrance. Moreover, the values of βR calculated for runs P1204 and P2804, exhibiting
spatially damped bars, fell slightly below resonant conditions (β = 10, βR = 10.5), whilst run
P2102, characterized by spatially periodic bars, had a value of β (10.3) well above the resonant
value βR (5.5). The forced experiment of Struiksma and Crosato (1989) did also substantiate

Figure 97. Comparison between experimental results for the spatial mode in the forced experiment of Struiksma
and Crosato (1989) and the theoretical interpretation of the same Authors in terms of linear spatially damped

modes (modified from Struiksma and Crosato, 1989, Figure 9).

theoretical predictions. The configuration was clearly sub-resonant and was successfully interpreted
in terms of the linear spatially damped modes predicted by the theory of Struiksma et al. (1985)
(Figure 97).

The effect of suspended load on spatial modes

The effect of suspended load on the characteristics of spatial modes was also analyzed by Federici
and Seminara (2006) and can be envisaged from Figure 98 (where the plot b) is simply an
enlargement of plot a)). This effect can be summarized as follows.

Firstly, the value of βR such that both ω and Im(λ) vanish is significantly reduced. For the
case depicted in Figure 98, depending on whether bed load or suspended load is dominant, βR

reduces from 12 to 3.5. Secondly, a further threshold value β1 appears such that in the super
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Figure 98. The four complex wavenumbers describing the first spatial mode (m=1) are plotted versus β for the case
of sediment transport including suspended load. The plot (b) shows an enlargement of the region of (a) around βR

and β1 (ds = 0.00001, τ∗u = 1, Rp = 4) (reproduced from Federici and Seminara, 2006, Figure 5).

resonant region corresponding to βR < β < β1, the picture found in the bed load dominated case
is modified as follows. The two eigenvalues λ1 and λ2 which were purely imaginary and O(1)
now become complex with small real part, while the remaining two are still complex conjugates
and small. They again describe the morphodynamic influence discussed above (see Section 6.4.1).
Thirdly, for β > β1 the two complex conjugates solutions keep complex but lose their conjugate
character. Furthermore their real parts are fairly small, such that the solutions become nearly
purely imaginary in this regime, under suspended load dominated conditions. Physically, this
implies that upstream influence displays itself through spatially damped oscillations which do not
have the characteristics of a bar. The relevance of this last regime is however difficult to assess as
it involves relatively large values of β such that higher order modes might prevail. Anyhow, to our
knowledge, no experimental validation of the above findings has been obtained so far.

6.4.2 Bars forced by channel width variations

It is a common observation that rivers often display spatial oscillations of their widths. This is
particularly true for actively migrating meandering rivers (Leopold and Wolman, 1960; Richards,
1976; Brice, 1984; Luchi et al., 2010). Two examples are reported in Figure 99. The first (Figure
99a) suggests that channel width may be maximum close to bend apexes and minimum close to
bend crossings. Conversely, the second example (Figure 99b) refers to a case in which the channel
width peaks at inflection points. The above distinction is reproduced in existing geomorphic
classifications of alluvial channel patterns. In particular, Brice (1984) defines as sinuous point bar
rivers (wide-bend streams) fluvial patterns of the former type, with prominent point bars, typically
scrolled and visible at normal stage. On the contrary, according to Brice (1984) classification,
sinuous canaliform rivers (equi-width streams) have weakly variable width, not clearly correlated
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and small. They again describe the morphodynamic influence discussed above (see Section 6.4.1).
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character. Furthermore their real parts are fairly small, such that the solutions become nearly
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it involves relatively large values of β such that higher order modes might prevail. Anyhow, to our
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It is a common observation that rivers often display spatial oscillations of their widths. This is
particularly true for actively migrating meandering rivers (Leopold and Wolman, 1960; Richards,
1976; Brice, 1984; Luchi et al., 2010). Two examples are reported in Figure 99. The first (Figure
99a) suggests that channel width may be maximum close to bend apexes and minimum close to
bend crossings. Conversely, the second example (Figure 99b) refers to a case in which the channel
width peaks at inflection points. The above distinction is reproduced in existing geomorphic
classifications of alluvial channel patterns. In particular, Brice (1984) defines as sinuous point bar
rivers (wide-bend streams) fluvial patterns of the former type, with prominent point bars, typically
scrolled and visible at normal stage. On the contrary, according to Brice (1984) classification,
sinuous canaliform rivers (equi-width streams) have weakly variable width, not clearly correlated
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with channel curvature, and narrow, crescent-shaped, point bars. These observations will need
some clarification in the context of the theory of meandering channels presented in our companion
Monograph. Width variations are also a distinctive feature of the individual channels of the

Figure 99. Typical behaviour of channel width in two meandering rivers. In (a) (Brazos River, Texas) the
maximum widths are experienced at bend apexes; in (b) (tributary of the Amazon River, Brazil) the minimum
widths are found at bend apexes and local widening is experienced in straight reaches (source Google Earth,

courtesy of Rossella Luchi).

networks that shape braided rivers. Mosley (1976) suggested that a sequence of a channel
narrowing with a deep central pool, followed by a wider reach with a central bar may be considered
as the unit pattern of braided rivers. Repetto et al. (2002) state: “width variations appear to be
crucial in understanding the bifurcation mechanism that leads to production of new channels in
braided rivers". Ashmore (1982, 1991) point out a further fundamental mechanism associated with
width variations, namely the suppression of free migrating bars, a process similar to that observed
by Kinoshita and Miwa (1974) in meandering rivers, where sufficiently high curvature is able to
suppress free bar migration through meandering bends.

An even more important role, albeit much less investigated, is played by streamline divergence
in the case of alluvial fans. Here, divergence is not only self-generated by the stream flowing on
the bar topography, but is also forced by the natural tendency of the stream to expand over the
fan (see the work of Tambroni et al., 2019).

While braiding and fans fall outside the scope of the present Monograph, the observation that
actively migrating meandering rivers often display spatial oscillations of their widths deserves
some attention herein. The above observation has motivated a number of contributions dealing
with straight rivers with variable width, starting from the work of Bittner (1994). Below, we
refer closely to the comprehensive analysis of Repetto (2000) (but see also Repetto et al., 2002).
These Authors investigated, both theoretically and through laboratory experiments, the steady
three-dimensional flow field and bottom topography in a straight channel with small amplitude
sinusoidal width oscillations.

1D approach

The first consequence of the presence of spatial oscillations of channel width under steady equi-
librium conditions is the development of spatial oscillations of the cross-sectionally averaged
flow properties. This is readily shown employing a simplest 1D formulation. We then seek the
morphodynamic equilibrium of an erodible stream undergoing spatial oscillations of channel width.
Strictly speaking, an erodible stream is in morphodynamic equilibrium provided its boundary does
not undergo any temporal changes. Hence, its bed should neither aggrade nor degrade (∂η/∂t ≡ 0)
and its banks should neither retreat nor advance. Below, we restrict our attention on the former
constraint and treat river banks as fixed at this stage. Also, for the sake of simplicity, we assume
that the channel has a rectangular cross-section such that the free surface width coincides with the
width of the bed. With the notations of Figure 100 and referring again to dimensional variables,
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we then assume that:

B = B0 + δ B1(x) = B0

[
1 + δ(exp i λb x+ c.c.)], (520)

with δ small parameter and λb (dimensional) wavenumber of the spatial oscillations of channel
width.

Figure 100. Sketch and notations for a channel with small amplitude sinusoidal width oscillations.

Strict equilibrium naturally requires also steady hydrodynamic conditions, that is the cross-
sectional area Ω does not vary in time (∂Ω/∂t ≡ 0). With the notations of Chapter 2, the 1D
governing equations of morphodynamics then reduce to the form (404), (405) and (406).

Below, for the sake of simplicity the correction coefficient for stream momentum βcor will be set
equal to 1, and we will assume the cross-section wide enough to approximate the hydraulic radius
with the flow depth. The latter system must be solved with the help of some closure relationship
for the average sediment flux per unit width Qs(x, t) and for the average friction coefficient Cf .
Let us assume:

Qs = 2B
√

(s− 1) g d3 n
(
τ̄∗ − τ∗c)

m, C
−1/2
f =

ks√
g
D1/6, (521)

with n empirical constant, m empirical exponent larger than one, ks average Strickler coefficient,
D the cross-sectionally averaged flow depth and τ̄∗ laterally averaged Shields stress. The latter
quantity, which couples morphodynamics to hydrodynamics (see Section 5.1.2), reads:

τ̄∗ =
Q2 Cf

Ω2 (s− 1) g d
, (522)

with the sediment size d assumed uniform.
Note that the equation (405) states that the condition insuring bed equilibrium is that the total

sediment discharge keeps spatially constant throughout the reach investigated. This is a dynamic
equilibrium condition which predicts a distinct equilibrium state associated with any given set of
forcing conditions, namely given values of flow and sediment discharges.
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sectional area Ω does not vary in time (∂Ω/∂t ≡ 0). With the notations of Chapter 2, the 1D
governing equations of morphodynamics then reduce to the form (404), (405) and (406).

Below, for the sake of simplicity the correction coefficient for stream momentum βcor will be set
equal to 1, and we will assume the cross-section wide enough to approximate the hydraulic radius
with the flow depth. The latter system must be solved with the help of some closure relationship
for the average sediment flux per unit width Qs(x, t) and for the average friction coefficient Cf .
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with n empirical constant, m empirical exponent larger than one, ks average Strickler coefficient,
D the cross-sectionally averaged flow depth and τ̄∗ laterally averaged Shields stress. The latter
quantity, which couples morphodynamics to hydrodynamics (see Section 5.1.2), reads:
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with the sediment size d assumed uniform.
Note that the equation (405) states that the condition insuring bed equilibrium is that the total

sediment discharge keeps spatially constant throughout the reach investigated. This is a dynamic
equilibrium condition which predicts a distinct equilibrium state associated with any given set of
forcing conditions, namely given values of flow and sediment discharges.
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For the present configuration the solution for the equilibrium state is readily obtained taking
advantage of the assumption of small amplitude oscillations of channel width, that suggests to
expand the solution in powers of the small parameter δ as follows:

(
D,U , τ̄∗, Cf

)
=

(
D0,U0, τ̄∗0, Cf0

)
+ δ

(
D1,U1, τ̄∗1, Cf1), (523)

where (
D1

D0
,
U1

U0
,
τ̄∗1
τ̄∗0

,
Cf1

Cf0

)
=

(
d1, u1, t∗1, ξ1

)
exp(i λb x) + c.c. . (524)

Moreover, the laterally averaged free surface elevation H̄ is expanded in the form:

H̄ = H0 + δ H1 = H00 − S x+ δ D0

(
h1 exp(i λb x

)
+ c.c.). (525)

with S channel slope and H00 value of H0 at some initial cross-section.
Substituting from (523, 524, 525) into the governing equations, one may readily derive their

linearized form and, with the help of algebraic manipulations that are left to the reader, the
solution is eventually found to read:

d1 =
3

7m
(1− τ∗c

τ̄∗0
)− 6

7
, u1 = − 3

7m
(1− τ∗c

τ̄∗0
)− 1

7
, (526a)

h1 = F 2
0

(
1 + d1

)
− i

S

λb D0

(
2 +

10

3
d1

)
. (526b)

with F0 Froude number of the unperturbed uniform flow (F 2
0 ≡ Q2/(4 g B2

0 D
3
0)).

Since m > 1, (526a) suggests that d1 and u1 are real negative quantities, hence the oscillations
of average flow depth and average velocity are out of phase relative to oscillations of channel width.
In other words, the flow depth and the flow speed peak at the narrowest cross-sections and are
minimum at the widest cross-sections. On the contrary, h1 is a complex quantity with positive
real part: it describes a spatial oscillation which lags relative to channel width (see Figure 101).
The reader will readily show that the phase lag ϕ reads:

ϕ = arctan

(
− S

F 2
0 λb D0

10
7m

(
1− τ∗c

τ̄∗0

)
− 6

7
3

7m

(
1− τ∗c

τ̄∗0

)
+ 1

7

)
. (527)

Assuming a value 3/2 for the exponent m, (527) predicts values of ϕ ranging from negative to
positive as τ̄∗0 exceeds a value equal to 10 τ∗c.

2D approach

The above 1D approach is able to capture the response of the cross-sectionally averaged flow and
bed topography to width variations, but is obviously unable to reproduce the tendency to form
forced bars. The work of Repetto et al. (2002) overcomes this limitation. The reader is referred to
the latter paper for details of the analysis. Here, we outline the main features of the results.

One may at first expect that a 2D approach might be sufficient to reproduce bar formation.
However, this expectation turns out to be wrong. Indeed, the linear analysis of Repetto (2000)
shows that results of a 2D approach do not differ significantly from results of our previous simpler
1D model. Figure 102a shows that the perturbation of bed elevation relative to the mean uniform
slope consists of a sequence of undulations out of phase with respect to width oscillations.

This behavior appears clearly in Figure 102b showing the corresponding perturbation of
longitudinal and lateral depth averaged velocities relative to the uniform flow, as well as the
perturbation of the bed elevation at the banks. In particular, the longitudinal perturbations of
cross-sectionally averaged velocity and bed elevation exhibit a trend quite similar to that predicted
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Figure 101. Longitudinal profiles of the perturbations of the cross-sectionally averaged flow depth and velocity, as
well as of the laterally averaged bottom stress and free surface elevation obtained by the 1D model. Dimensionless

parameters have been chosen in order to reproduce the same flow conditions employed in Figure 102: m = 1.5,
τ∗c=0.047, τ̄∗0 = 0.07, F0=0.85, S/(D0 λb) = 0.43.

by the 1D model, with maximum scour and maximum longitudinal speed occurring almost exactly
at the narrowest cross-section. Also, note that the predicted lateral variations of the flow field are
very weak as compared with longitudinal variations. However, there is a major novel feature of the
2D solution, that the 1D approach is unable to predict. The 2D solution displays the occurrence
of a resonant response under suitable values of the relevant dimensionless parameters. Specifically,
resonance occurs when the average aspect ratio of the channel β and the wavenumber of width
oscillations λb are close to the values βR and λR that characterize steady non migrating bars
allowed by the channel for the given values of τ̄∗0 and ds = d/D defined in Section 6.3.1. Under
these conditions the width forcing excites a steady free response of the channel. The possibility of
resonance of free and forced bars was first discovered by Blondeaux and Seminara (1985) in the
case of meandering channels where forcing is associated with curvature and may excite free bars of
the alternate type. This will be extensively discussed in the companion Monograph. In the case of
width oscillations, the forcing effect is symmetrical with respect to the channel axis, hence only
symmetrical modes, such as central bars (or possibly higher-order even modes) may be excited.

An example of resonance is given in Figure 103. The amplitude of bed elevation at the centreline
relative to its value at the bank, plotted versus λb, displays an infinite peak. Of course, close to
resonance, the linear theory fails and nonlinearity must be accounted for. Needless to say, exact
resonance hardly occurs in reality. However, the distinction between sub- and super-resonant
conditions has fundamental implications that have been investigated in the meandering case by
Zolezzi and Seminara (2001) (see the companion Monograph).

3D approach

The limit of the 2D model is its inability to represent secondary flows appropriately. Secondary
flows are generated because the spatial oscillations of channel width force the streamlines to follow
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For the present configuration the solution for the equilibrium state is readily obtained taking
advantage of the assumption of small amplitude oscillations of channel width, that suggests to
expand the solution in powers of the small parameter δ as follows:
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bed topography to width variations, but is obviously unable to reproduce the tendency to form
forced bars. The work of Repetto et al. (2002) overcomes this limitation. The reader is referred to
the latter paper for details of the analysis. Here, we outline the main features of the results.

One may at first expect that a 2D approach might be sufficient to reproduce bar formation.
However, this expectation turns out to be wrong. Indeed, the linear analysis of Repetto (2000)
shows that results of a 2D approach do not differ significantly from results of our previous simpler
1D model. Figure 102a shows that the perturbation of bed elevation relative to the mean uniform
slope consists of a sequence of undulations out of phase with respect to width oscillations.

This behavior appears clearly in Figure 102b showing the corresponding perturbation of
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parameters have been chosen in order to reproduce the same flow conditions employed in Figure 102: m = 1.5,
τ∗c=0.047, τ̄∗0 = 0.07, F0=0.85, S/(D0 λb) = 0.43.

by the 1D model, with maximum scour and maximum longitudinal speed occurring almost exactly
at the narrowest cross-section. Also, note that the predicted lateral variations of the flow field are
very weak as compared with longitudinal variations. However, there is a major novel feature of the
2D solution, that the 1D approach is unable to predict. The 2D solution displays the occurrence
of a resonant response under suitable values of the relevant dimensionless parameters. Specifically,
resonance occurs when the average aspect ratio of the channel β and the wavenumber of width
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3D approach

The limit of the 2D model is its inability to represent secondary flows appropriately. Secondary
flows are generated because the spatial oscillations of channel width force the streamlines to follow
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Figure 102. (a) Typical equilibrium bed configuration and (b) longitudinal profiles of the perturbations of the bed
elevation (η1) and of the depth-averaged velocity components (U1, V1) at the bank, obtained by the 2D model of
Repetto (2000) The relevant dimensionless parameters are: wavenumber of the width oscillation λb = 0.2/B0,
average aspect ratio β ≡ B0/D0=15, average Shields stress τ̄∗0=0.07 and average relative channel roughness

ds = d/D0=0.05 (modified from Figures 3.2 and 3.3 of Repetto, 2000).

curvilinear paths. As a result, one may think of a channel with oscillating width as a pair of back
to back meandering channels, each generating a sequence of point bars and pools at the wide
and narrow reaches respectively. It is then not surprising that the 3D model of Repetto et al.
(2002) predicts the formation of a central bar in phase with channel width (Figure 104). Indeed,
a central bar may be interpreted as a pair of point bars arising from streamline curvature. The
analysis carried out by Repetto (2000) also shows that the amplitude of the central bar varies
with λb and peaks for λb ≃ 0.3/B0, a value which corresponds to a longitudinal wavelength of
about 10 channel widths. Under these conditions, the amplitude of the bar is comparable with the
amplitude of the mean oscillations. Higher-order lateral modes are also present but keep small for
all values of λb. These findings have been substantiated through a set of experiments which led to
results in reasonable agreement with the theory.

Finally, let us mention that the work of Repetto (2000) and Repetto et al. (2002) on the
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Free and forced bars in straight channels

Figure 103. The amplitude of bed elevation ∆η (value at the centreline relative to its value at the bank in the
widest cross-section) is plotted versus λb, for different values of the aspect ratio β. The values of the relevant

parameters are: βR = 15.85, τ̄∗0 = 0.07, d/D0 = 0.05 (reproduced from Figure 3.8 of Repetto, 2000).

Figure 104. The bed topography predicted by the 3D model of Repetto (2000), displaying the formation of a central
bar in phase with width oscillations. The relevant parameters are: λb = 0.3/B0, β = 15, τ̄∗0 = 0.1, d/D0 = 0.05

(reproduced from Figure 3.6 of Repetto, 2000).

formation of forced bars in channels with oscillating width, was later revisited by Wu and Yeh
(2005), who proposed a slightly modified version of the 2-D theoretical model. The reader is
referred to the latter paper for details.
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6.5. The development of free and forced bars of finite amplitude: weakly nonlinear theories

Linear instability theories are unable to predict the final fate of perturbations as linearization is
a valid approximation only in the initial stage of the process, when the amplitudes of perturbations
are small (strictly infinitesimal). As perturbations grow, the role of nonlinear interactions among
the various components of the perturbation increases and this may prevent the indefinite growth of
the linearly most unstable mode. To overcome the linear restriction, one may resort to numerical
approaches that allow to follow the evolution of perturbations from the initial stage to their fully
nonlinear state. This exercise has been performed for free bars by various Authors, as we will see
in Section 6.6.

However, before discussing full numerical simulations, it proves instructive to gain some
understanding of how perturbations evolve in what is called the weakly nonlinear regime, i.e. in a
sufficiently small neighborhood of the critical conditions for linear instability. The analysis requires
some technicalities that are presented in the Mathematical Appendix (Chapter 9) to which we
refer the reader interested in the mathematical aspects of the problem. Below, we limit ourselves
to outlining the main ideas of the analysis and discuss results obtained in the case of bars. It is
convenient to distinguish the case of free bars from that of forced bars.

6.5.1 Weakly nonlinear free bars

Below we report results of two distinct approaches to the weakly nonlinear analysis. The
former approach, originally postulated by Landau (1944) and later derived by Stuart (1958) for the
hydrodynamic instability of parallel laminar flows, consists of predicting the nonlinear evolution of
the most unstable wave predicted by the linear theory. For free bars this approach was followed by
Colombini et al. (1987). The latter approach was proposed by Ginzburg and Landau (1950) and
consists of analyzing the nonlinear evolution of the whole spectrum of unstable waves within a
neighborhood of the critical conditions. For free bars this approach was applied by Schielen et al.
(1993).

In both cases, we seek a finite-amplitude solution, assuming that the control parameter of free
bar instability, namely the aspect ratio β falls within a neighborhood of the critical conditions for
linear instability defined by the relationship:

β = βc (1 + b ϵ2). (528)

where ϵ ≪ 1 and b is a dummy parameter the sign of which determines whether we are considering
super- or sub-critical conditions (Figure 105).

Figure 105. Sketch illustrating the region of the stability plane where the weakly nonlinear analysis of free bars is
expected to hold.
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The weakly nonlinear evolution of the single most unstable wave

The seminal work of Colombini et al. (1987) considers the bar formation as a process fully belonging
to the realm of nonlinear Mechanics. To understand the general ideas behind the weakly nonlinear
analysis, it is instructive to analyze the form taken by the linear solution within the neighborhood
of the critical conditions defined by (528). Recalling the dispersion relationship (508) we may
expand ω in powers of (β − βc) as follows:

ω = ωc +
∂ω

∂β

∣∣∣
λc,βc

(
β − βc) +H.O.T. = ωc +

(
νβ + i µβ

)
βc b ϵ

2 +H.O.T., (529)

where ωc is a real number as the growth rate vanishes at criticality.
Next, we substitute from (529) into the linear solution for the perturbation. For example, the

perturbation of the longitudinal component of the flow velocity, reads:

U1 = A0 sin(π y) exp i (λc x− ωc t) exp
[
µβ

(
β − βc

)
+ . . .

]
t+H.O.T., (530)

where A0 is an arbitrary infinitesimal constant and we have neglected the O(ϵ2) correction of the
angular frequency ωc associated with the coefficient νβ . This relationship shows that the growth
rate in the neighborhood of critical conditions is proportional to (β − βc), i.e. it is of O(ϵ2). We
may then rearrange (530) in the compact form:

U1 = sin(π y)A(τ) exp i
(
λc x− ωc t

)
, (531)

where τ is the following slow variable:
τ = ϵ2 t, (532)

and the linear form of the amplitude function A(τ) reads:

A(τ) = exp
[
µβ b βc

]
τ. (533)

The compact form of the linear solution (531) clarifies that the critical wave with wavenumber
λc and frequency ωc is modulated through an amplitude function A depending on the slow time
variable ϵ2 t. Growth occurs on a time scale which is O(ϵ−2) larger than the characteristic period
of the critical wave 2π/ωc.

The above analysis clarifies that, the main scope of the weakly nonlinear approach is to derive
a nonlinear evolution equation for the amplitude function A(τ) and the derivation must be able to
take into account the dependence of the process on both the fast scale (t) and the slow scale (τ).
As discussed in the Mathematical Appendix reported in Chapter 9, the mathematical technique
appropriate to this goal is the so called method of multiple scales (see Nayfeh, 2000). The outcome
of the analysis is the so-called Landau-Stuart amplitude equation for A(τ), which reads:

dA

dτ
= b βc

[
µβ + i νβ

]
A+

[
ar + i ai

]
A2 Ā. (534)

where an overbar denotes complex conjugate. It is a nonlinear ordinary differential equation that
describes the long-term behavior of the single most unstable wave. The reader will readily verify
that, neglecting the nonlinear term, the solution of (534) reduces to the linear form (533). In the
nonlinear case, the equation is readily solved in closed form, as discussed in the Mathematical
Appendix, and leads to a rich picture, encompassing two fundamentally distinct cases.

The first case is described as super-critical instability. It occurs when the coefficient ar is
negative. Under this condition perturbations tend to an equilibrium solution, asymptotically
reached as τ → ∞ (Figure 106a), such that:

|Ae|2 = −b βc µβ

ar
. (535)
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Figure 106. Sketch illustrating the solution of Landau-Stuart equation in the (a) super-critical and (b) sub-critical
case.

Moreover, this equilibrium solution is stable. Hence, in the context of a Landau-Stuart approach,
one is able to predict the final fate of bar perturbations undergoing a so called super-critical
bifurcation in the unstable region of the linear theory.

Bar instability is an example of supercritical bifurcation as the coefficient ar is found to be
negative. With the help of (535) one can thus compute the height of alternate bars at equilibrium,
defined as the difference between the maximum and minimum bed elevations within a bar unit
(Ikeda, 1982b). This quantity, scaled by Du, will be denoted by HBM and, neglecting O(ϵ3) terms,
reads:

HBM = b1

[
(β − βc)

βc

]1/2
+ b2

[
(β − βc)

βc

]
, (536)

where b1(τ∗u, ds) and b2(τ∗u, ds) are functions of the components of flow field at O(ϵ) and O(ϵ2).
The coefficients b1 and b2 are plotted in Figure 107.

Figure 108a shows a comparison between the experimental values of HBM and the theoretical
predictions obtained using (536). Since |Ae| takes values about (0.2− 0.3) the range of values of ϵ
included in Figure 108a is rather wide, showing that a satisfactory agreement is found even for
values of ϵ of O(1). A satisfactory agreement is also found between the weakly nonlinear prediction
of the maximum relative scour (ηM/HBM ), around 0.57 (Figure 108b), and the value 0.5 reported
by Ikeda (1982b). Note that the maximum scour ηM is defined as the difference between the
elevation of the bed profile averaged over a bar unit and the minimum bed elevation observed in
the same unit.

Finally, Figure 109 provides an overall prospectic view of the bed topography predicted by
Colombini et al. (1987) truncating their expansion at O(ϵ): physical parameters were chosen
such to reproduce the experimental run n.22 of Ikeda (1982b). Although this representation is
obviously inaccurate due to the approximate nature of the weakly nonlinear expansion, some of
the features of alternate bars observed in nature, in particular the formation of diagonal fronts
and the increased steepness of the bed profile downstream of the fronts, do emerge. This is a sign
of the tendency to flow separation that cannot be fully predicted in the present context due to the
limitations of the shallow water representation of the flow field.
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Figure 107. The coefficients b1 and b2 of the relationship (536) for the height of alternate bars at equilibrium are
plotted as functions of the unperturbed Shields stress τ∗u and the relative roughness ds = d/Du (modified from

Colombini et al., 1987).

Figure 108. (a) The dimensionless values of the height of alternate bars at equilibrium predicted by the relationship
(536) are compared with values observed by various Authors: ◦, Jaeggi (1983) PVC; •, Jaeggi (1983) sand; □,
Sukegawa (1971); ■, Kinoshita (1961); ♢,Muramoto and Fujita (1978); ♦ Ashida and Shiomi (1966); △, Ikeda
(1982b). Data falling between solid lines are such that |(HBM )th − (HBM )exp| < 40% (HBM )exp. (b) The

dimensionless maximum scour ηM calculated for the values of (τ∗u, ds) corresponding to the experiments listed
above is plotted versus the dimensionless maximum bar height HBM . The solid line represents the average

dependence reported by Ikeda (1982b) (redrawn from Colombini et al., 1987).

A second type of instability, described as sub-critical instability, occurs when the coefficient
ar of Landau-Stuart equation is positive (Figure 106b). Under these conditions an equilibrium
amplitude of the perturbation is asymptotically reached as τ → −∞ in the sub-critical regime
(β < βc) corresponding to negative values of the dummy parameter b. As illustrated in the
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Figure 106. Sketch illustrating the solution of Landau-Stuart equation in the (a) super-critical and (b) sub-critical
case.
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amplitude of the perturbation is asymptotically reached as τ → −∞ in the sub-critical regime
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Figure 109. Prospectic view of the bed topography predicted by Colombini et al. (1987) for the run n. 22 of Ikeda
(1982b). The weakly nonlinear expansion was truncated at O(ϵ) (reproduced from Colombini et al., 1987).

Mathematical Appendix, this equilibrium solution sets a threshold amplitude for the perturbation,
such that perturbations exceeding this threshold are able to destabilize the system that is stable
to infinitesimal perturbations. On the contrary, finite amplitude perturbations that do not exceed
the threshold decay. The notion of subcritical instability clarifies that, in some cases, the linear
stability theory is unable to predict that the system is unstable, as instability depends on the ’size’
of the perturbation acting on the system.

The weakly nonlinear evolution of the spectrum of unstable waves

The above analysis is quite successful but it is restricted to the evolution of the most unstable
wave predicted by the linear theory. However, we know that a spectrum of waves is excited as
the critical conditions for linear instability is exceeded. In order to take this feature into account,
the Landau-Stuart approach must be appropriately corrected, following the analysis of Ginzburg
and Landau (1950). This approach was applied to the bar case by Schielen (1995), but see also
Schielen et al. (1993).

Again, it is firstly instructive to analyze the form taken by the linear solution within the
neighborhood of the critical conditions defined by (528) allowing the wavenumber λ to vary within
a small neighborhood of its critical value λc. Recalling the dispersion relationship we may then
expand ω in powers of (β − βc) and (λ− λc) as follows:

ω = ωc + νλ (λ− λc) + (νβ + i µβ)(β − βc) +
1

2
(νλ2 + i µλ2)(λ− λc)

2 +H.O.T. (537)

where:

νλ =
∂ω

∂λ

∣∣∣
λc,βc

, νβ + i µβ =
∂ω

∂β

∣∣∣
λc,βc

, νλ2 + i µλ2 =
∂2ω

∂λ2

∣∣∣
λc,βc

. (538)

The term proportional to (λ− λc) in (537) is purely real as the growth rate has a maximum at
criticality. Also, note that the coefficient νλ is the group velocity. This relationship shows that the
growth rate in the neighborhood of critical conditions has now two contributions. Besides the term
proportional to (β−βc), that is of O(ϵ2), a second contribution, proportional to (λ−λc)

2, appears.
In order for the two contributions to have the same order, we then require that (λ− λc) ∼ O(ϵ)
and set the following expansion:

λ = λc (1 + rλ ϵ), (539)

with rλ an O(1) parameter.
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Substituting from (537) and (539) into the linear solution for the perturbation, we obtain:

U1 = sin(π y)A(τ, ξ) exp i(λc x− ωc t). (540)

Hence, the amplitude function A is now dependent on the following two slow variables, τ and ξ:

τ = ϵ2 t, ξ = ϵ (x− νλ t). (541)

The linear form of A(τ, ξ) reads:

A(τ, ξ) = exp
[(
µβ b βc +

1

2
µλ2 λ2

c r
2
λ

)
τ
]
exp i

(
λc rλ ξ

)
. (542)

The compact form of the linear solution (540) suggests that the critical wave with wavenumber λc

and frequency ωc is now modulated through an amplitude function A that describes both a slow
temporal growth and a slow migration of the envelope of the wave packet. The slow migration is
accounted for by the dependence of A on the slow, moving coordinate, ξ, which travels with the
group velocity νλ.

The derivation of a nonlinear evolution equation for the amplitude function A(τ, ξ) is pursued
by the method of multiple scales (see the Mathematical Appendix) and leads to a fundamental
nonlinear partial differential equation known as the Ginzburg-Landau equation (Ginzburg and
Landau, 1950):

∂A

∂τ
= b βc

[
µβ + i νβ

]
A− 1

2

[
µλ2 + i νλ2

] ∂2A

∂ξ2
+
[
ar + i ai

]
A2 Ā. (543)

Some discussion of the properties of Ginzburg-Landau equation is given in the Mathematical
Appendix. Herewith, we limit ourselves to point out that it admits of periodic solutions of the
form:

A(ξ, τ) = A exp i (K ξ − Ω τ). (544)

with A, K and Ω real quantities. The amplitude A takes the form:

A2 = |Ae,Landau|2 −
1

2

µλ2

ar
K2. (545)

Hence, noting that the coefficient µλ2 is negative and recalling that we are considering supercritical
bifurcations (ar < 0), it follows that A peaks and coincides with the equilibrium amplitude Ae0

predicted by the Landau-Stuart equation (534) for K = 0. This solution, associated with the
critical value of the perturbation wavenumber, is called Stokes wave. As |K| increases in the
interval |K| < KM , with KM = (−2 b βcµβ/µλ2)1/2, the perturbation amplitude decreases. For
|K| > KM the Stokes wave does no longer exist. The condition |K| = KM defines a nonlinear
marginal stability curve (dotted line in Figure 110). Moreover, periodic solutions may be unstable.
More precisely within the region of the (λ, β) plane bounded by the nonlinear marginal stability
curve, two subregions can be defined. In the inner region periodic solutions are stable, whilst they
are unstable in the outer region (Figure 110).

Schielen (1995) also shows that the criterion that controls the shift from stable to unstable
periodic solutions depends on the values of the friction coefficient Cf0 and of the exponent bs
of the transport formula employed by these authors, which expresses the volumetric sediment
discharge as proportional to the bs power of the modulus of the local flow velocity. Figure 111
shows that instability is predicted only for values of bs >3, corresponding roughly to dune-covered
beds. In other words, the periodic bar pattern predicted by the Landau-Stuart approach employed
by Colombini et al. (1987) is stable if the unperturbed bed is plane, while when the bed is dune
covered, more complicated bed profiles may be expected, depending on the value of Cf0.

Numerical simulations carried out by Schielen (1995) showed that in the unstable region of
periodic solutions, various other types of solutions are possible. Besides the stable periodic Stokes
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Figure 109. Prospectic view of the bed topography predicted by Colombini et al. (1987) for the run n. 22 of Ikeda
(1982b). The weakly nonlinear expansion was truncated at O(ϵ) (reproduced from Colombini et al., 1987).

Mathematical Appendix, this equilibrium solution sets a threshold amplitude for the perturbation,
such that perturbations exceeding this threshold are able to destabilize the system that is stable
to infinitesimal perturbations. On the contrary, finite amplitude perturbations that do not exceed
the threshold decay. The notion of subcritical instability clarifies that, in some cases, the linear
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The weakly nonlinear evolution of the spectrum of unstable waves
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The term proportional to (λ− λc) in (537) is purely real as the growth rate has a maximum at
criticality. Also, note that the coefficient νλ is the group velocity. This relationship shows that the
growth rate in the neighborhood of critical conditions has now two contributions. Besides the term
proportional to (β−βc), that is of O(ϵ2), a second contribution, proportional to (λ−λc)

2, appears.
In order for the two contributions to have the same order, we then require that (λ− λc) ∼ O(ϵ)
and set the following expansion:

λ = λc (1 + rλ ϵ), (539)

with rλ an O(1) parameter.
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Substituting from (537) and (539) into the linear solution for the perturbation, we obtain:

U1 = sin(π y)A(τ, ξ) exp i(λc x− ωc t). (540)

Hence, the amplitude function A is now dependent on the following two slow variables, τ and ξ:

τ = ϵ2 t, ξ = ϵ (x− νλ t). (541)

The linear form of A(τ, ξ) reads:
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The compact form of the linear solution (540) suggests that the critical wave with wavenumber λc

and frequency ωc is now modulated through an amplitude function A that describes both a slow
temporal growth and a slow migration of the envelope of the wave packet. The slow migration is
accounted for by the dependence of A on the slow, moving coordinate, ξ, which travels with the
group velocity νλ.

The derivation of a nonlinear evolution equation for the amplitude function A(τ, ξ) is pursued
by the method of multiple scales (see the Mathematical Appendix) and leads to a fundamental
nonlinear partial differential equation known as the Ginzburg-Landau equation (Ginzburg and
Landau, 1950):
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bifurcations (ar < 0), it follows that A peaks and coincides with the equilibrium amplitude Ae0

predicted by the Landau-Stuart equation (534) for K = 0. This solution, associated with the
critical value of the perturbation wavenumber, is called Stokes wave. As |K| increases in the
interval |K| < KM , with KM = (−2 b βcµβ/µλ2)1/2, the perturbation amplitude decreases. For
|K| > KM the Stokes wave does no longer exist. The condition |K| = KM defines a nonlinear
marginal stability curve (dotted line in Figure 110). Moreover, periodic solutions may be unstable.
More precisely within the region of the (λ, β) plane bounded by the nonlinear marginal stability
curve, two subregions can be defined. In the inner region periodic solutions are stable, whilst they
are unstable in the outer region (Figure 110).

Schielen (1995) also shows that the criterion that controls the shift from stable to unstable
periodic solutions depends on the values of the friction coefficient Cf0 and of the exponent bs
of the transport formula employed by these authors, which expresses the volumetric sediment
discharge as proportional to the bs power of the modulus of the local flow velocity. Figure 111
shows that instability is predicted only for values of bs >3, corresponding roughly to dune-covered
beds. In other words, the periodic bar pattern predicted by the Landau-Stuart approach employed
by Colombini et al. (1987) is stable if the unperturbed bed is plane, while when the bed is dune
covered, more complicated bed profiles may be expected, depending on the value of Cf0.

Numerical simulations carried out by Schielen (1995) showed that in the unstable region of
periodic solutions, various other types of solutions are possible. Besides the stable periodic Stokes
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Figure 110. The stability plane (λ, β) arising from the analysis of the Ginzburg-Landau equation (543). Various
regions may be identified. Within the region bounded by the solid line bars are linearly unstable; a second order
(nonlinear) correction of the linear marginal stability curve is the dotted line, that identifies the region where

nonlinear periodic bars exist. Finally, the dashed line separates an inner region where periodic solutions are stable,
from an outer region where they are unstable (modified from Figure 2.5 of Schielen, 1995).

Figure 111. The marginal stability curve for periodic bar patterns in the bs − Cf0 plane, separating the region
where the standard Landau-Stuart approach applies from a region where different bed profiles may be expected

(modified from Figure 2.6 of Schielen, 1995).

waves, quasi-periodic patterns were also found: they displayed a range of frequencies that are
integer combinations of two fundamental frequencies which are mutually irrational (Figure 112).

Although chaotic solutions of the Ginzburg-Landau equation have been found in other contexts
(Keefe, 1985; Doelman, 1991), no chaotic patterns emerged from the simulations of Schielen (1995).
In summary, the analysis carried out by Schielen (1995) is surely of great conceptual relevance.
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Figure 112. An example of quasi-periodic bars obtained as solutions of the Ginzburg-Landau equation by Schielen
(1995). The values of the relevant parameters were chosen as follows: bs = 5, ϵ = 0.2, Cf0 = 0.001 (reproduced

from Figure 2.10 of Schielen, 1995).

The novel features brought up by the Ginzburg-Landau model applied to free bar instability would
then deserve to be confirmed by laboratory or field observations.

6.5.2 Weakly nonlinear forced bars

We now consider the nonlinear evolution of non-migrating bars forced by some initial condition
of the type discussed in Section 6.4.1. There, we pointed out that in the laboratory experiments
of Lanzoni (1995), where both super-resonant and sub-resonant spatial bars were generated
introducing an obstruction at the flume entrance, it clearly emerged that sub-resonant bars
decayed, whilst super-resonant bars developed a finite amplitude.

In this Section, we show that this behavior is theoretically founded. This goal is achieved
developing a weakly nonlinear expansion in a neighborhood of the resonant conditions, as shown
by Seminara and Tubino (1992). This approach is similar to that employed in the previous Section
for the case of free temporally growing migrating bars, but for two fundamental differences:

- the solution is centered around the critical conditions for spatial (rather than temporal)
growth, namely Re(λ) = λR, β = βR, ω = 0, hence solutions are sought in the weakly
nonlinear regime defined as follows:

Re(λ) = λR, β = βR (1 + b ϵ2), (546)

with ϵ ≪ 1.

- the complex amplitude A is a function of the slow spatial (rather than temporal) coordinate
ξ = ϵ2 x.
In other words, any property of the perturbation, say the longitudinal component of the flow
velocity U1, at leading order reads:

U1 = ϵ uR
1 sin(π y)A(ξ) exp(i λR x), (547)

where R denotes resonant conditions, and the scope of the weakly nonlinear analysis is to
derive an evolution equation for the amplitude function A(ξ).

Physically, this approach interprets the outcome of an experiment performed on a uniform
straight channel flow with cohesionless bottom and aspect ratio β slightly perturbed with respect to
the threshold value βR for spatial growth of non-migrating mode-1 (i.e. alternate) bar perturbations.
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Figure 110. The stability plane (λ, β) arising from the analysis of the Ginzburg-Landau equation (543). Various
regions may be identified. Within the region bounded by the solid line bars are linearly unstable; a second order
(nonlinear) correction of the linear marginal stability curve is the dotted line, that identifies the region where

nonlinear periodic bars exist. Finally, the dashed line separates an inner region where periodic solutions are stable,
from an outer region where they are unstable (modified from Figure 2.5 of Schielen, 1995).

Figure 111. The marginal stability curve for periodic bar patterns in the bs − Cf0 plane, separating the region
where the standard Landau-Stuart approach applies from a region where different bed profiles may be expected

(modified from Figure 2.6 of Schielen, 1995).

waves, quasi-periodic patterns were also found: they displayed a range of frequencies that are
integer combinations of two fundamental frequencies which are mutually irrational (Figure 112).

Although chaotic solutions of the Ginzburg-Landau equation have been found in other contexts
(Keefe, 1985; Doelman, 1991), no chaotic patterns emerged from the simulations of Schielen (1995).
In summary, the analysis carried out by Schielen (1995) is surely of great conceptual relevance.
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Figure 112. An example of quasi-periodic bars obtained as solutions of the Ginzburg-Landau equation by Schielen
(1995). The values of the relevant parameters were chosen as follows: bs = 5, ϵ = 0.2, Cf0 = 0.001 (reproduced

from Figure 2.10 of Schielen, 1995).

The novel features brought up by the Ginzburg-Landau model applied to free bar instability would
then deserve to be confirmed by laboratory or field observations.

6.5.2 Weakly nonlinear forced bars

We now consider the nonlinear evolution of non-migrating bars forced by some initial condition
of the type discussed in Section 6.4.1. There, we pointed out that in the laboratory experiments
of Lanzoni (1995), where both super-resonant and sub-resonant spatial bars were generated
introducing an obstruction at the flume entrance, it clearly emerged that sub-resonant bars
decayed, whilst super-resonant bars developed a finite amplitude.

In this Section, we show that this behavior is theoretically founded. This goal is achieved
developing a weakly nonlinear expansion in a neighborhood of the resonant conditions, as shown
by Seminara and Tubino (1992). This approach is similar to that employed in the previous Section
for the case of free temporally growing migrating bars, but for two fundamental differences:

- the solution is centered around the critical conditions for spatial (rather than temporal)
growth, namely Re(λ) = λR, β = βR, ω = 0, hence solutions are sought in the weakly
nonlinear regime defined as follows:

Re(λ) = λR, β = βR (1 + b ϵ2), (546)

with ϵ ≪ 1.

- the complex amplitude A is a function of the slow spatial (rather than temporal) coordinate
ξ = ϵ2 x.
In other words, any property of the perturbation, say the longitudinal component of the flow
velocity U1, at leading order reads:

U1 = ϵ uR
1 sin(π y)A(ξ) exp(i λR x), (547)

where R denotes resonant conditions, and the scope of the weakly nonlinear analysis is to
derive an evolution equation for the amplitude function A(ξ).

Physically, this approach interprets the outcome of an experiment performed on a uniform
straight channel flow with cohesionless bottom and aspect ratio β slightly perturbed with respect to
the threshold value βR for spatial growth of non-migrating mode-1 (i.e. alternate) bar perturbations.
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A steady perturbation is imposed at the initial cross-section and is allowed to grow (or decay)
spatially. The sought amplitude equation should enable us to ascertain under what conditions the
mode-1 component of the initial perturbation grows and reaches asymptotically an equilibrium
amplitude.

Given the analogy with the approach pursued by Colombini et al. (1987) in the case of free
migrating bars (but see Seminara and Tubino (1992) for the details), it is not surprising that the
outcome of the analysis is an amplitude equation of a form similar to (534):

[
αR
r + i αR

i

] dA
dξ

= b βR

[
µR
β + i νRβ

]
A+

[
aRr + i aRi

]
A2 Ā. (548)

where the complex coefficients of both the linear and nonlinear terms in the right hand side of
(548) are identical with the corresponding terms of (534) evaluated at the resonant conditions
(λR, βR).

Equation (548) is again a nonlinear ordinary differential equation of Landau-Stuart type. It
is solved in the same closed form reported in the Mathematical Appendix, and allows for the
two distinct cases of super-critical (here super-resonant) and sub-critical (here sub-resonant)
bifurcations, depending on the sign of aRr . In Figure 113 we plot the real parts of the two
coefficients that determine the character of the bifurcation. These plots show the supercritical
character of the bifurcation within a wide range of values of the Shields parameter and of the
relative grain roughness. Hence, under super-resonant conditions, an initial S1 perturbation does
develop asymptotically in space into an equilibrium periodic configuration consisting of steady
alternate bars with equilibrium amplitude:

|Ae|2 = −b βR

µR
β

aRr
. (549)

In general, the initial perturbation will contain more than one lateral mode. If the width
parameter falls close to the resonant value for the first lateral mode, then higher modes will be
sub-resonant and will decay in space leaving only the alternate bar mode. We may conclude noting
that the above analysis confirms qualitatively the observations of Lanzoni (1995); a quantitative
verification has not been performed yet.

6.6. Fully nonlinear free and forced bars

The weakly nonlinear approach discussed in the previous Section is of great conceptual relevance,
but it is still restricted to a small region of the parameter space close to the critical conditions
for free or forced bar formation. The latter constraint may be relaxed resorting to full numerical
solutions of the governing equations. Below, we will again treat free and forced bars separately.

6.6.1 Numerical simulations of finite amplitude free bars

Several Authors engaged in numerical simulations of the nonlinear development of free bars,
mostly under steady conditions. Pioneering works are due to Nelson and Smith (1989) and Shimizu
and Itakura (1989). In particular, Nelson and Smith (1989), using a finite difference method, were
the first to point out that finite amplitude free bars, during their nonlinear development, lengthen
and slow down, in agreement with the experimental observations of Fujita and Muramoto (1985),
later confirmed by Lanzoni (1995) (see also Lanzoni, 2000a). Colombini and Tubino (1991), using
a spectral method, focused on the importance of strongly nonlinear interactions among various
harmonics during bar development.

More recently, Defina (2003) investigated the dependence of the bar response on the type of
initial disturbance triggering bar formation. Numerical simulations were performed on a numerical
flume with length 117.5 m and width 1.5 m, long enough to host several bar units and allow
their development towards an equilibrium state. The most important result, emerged from these
simulations, was described by the Author as follows: “the initial disturbance is quickly eroded but
lasts long enough to promote the formation of new bars close downstream . . . the height of the first
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Figure 113. The real part of (a) the linear coefficient and (b) of the nonlinear coefficient of the Landau-Stuart
amplitude equation (548) of spatial bars (modified from Seminara and Tubino, 1992).

bars generated by the initial bump, . . . gently decay after a slow initial growth. This is a general
behavior found in all the simulations". Although the Author did not interpret this finding in terms
of the distinction between convective and absolute instabilities, he had demonstrated numerically
the convective nature of free bar instability. Not being aware of the implications of the above
distinction, the Author did not perform simulations with a persisting perturbation imposed at the
initial cross-section. As a result, perturbations did not actually reach equilibrium conditions.

Let us be more precise. A set of simulations were performed assuming an initial perturbation
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A steady perturbation is imposed at the initial cross-section and is allowed to grow (or decay)
spatially. The sought amplitude equation should enable us to ascertain under what conditions the
mode-1 component of the initial perturbation grows and reaches asymptotically an equilibrium
amplitude.

Given the analogy with the approach pursued by Colombini et al. (1987) in the case of free
migrating bars (but see Seminara and Tubino (1992) for the details), it is not surprising that the
outcome of the analysis is an amplitude equation of a form similar to (534):
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(548) are identical with the corresponding terms of (534) evaluated at the resonant conditions
(λR, βR).

Equation (548) is again a nonlinear ordinary differential equation of Landau-Stuart type. It
is solved in the same closed form reported in the Mathematical Appendix, and allows for the
two distinct cases of super-critical (here super-resonant) and sub-critical (here sub-resonant)
bifurcations, depending on the sign of aRr . In Figure 113 we plot the real parts of the two
coefficients that determine the character of the bifurcation. These plots show the supercritical
character of the bifurcation within a wide range of values of the Shields parameter and of the
relative grain roughness. Hence, under super-resonant conditions, an initial S1 perturbation does
develop asymptotically in space into an equilibrium periodic configuration consisting of steady
alternate bars with equilibrium amplitude:
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In general, the initial perturbation will contain more than one lateral mode. If the width
parameter falls close to the resonant value for the first lateral mode, then higher modes will be
sub-resonant and will decay in space leaving only the alternate bar mode. We may conclude noting
that the above analysis confirms qualitatively the observations of Lanzoni (1995); a quantitative
verification has not been performed yet.

6.6. Fully nonlinear free and forced bars

The weakly nonlinear approach discussed in the previous Section is of great conceptual relevance,
but it is still restricted to a small region of the parameter space close to the critical conditions
for free or forced bar formation. The latter constraint may be relaxed resorting to full numerical
solutions of the governing equations. Below, we will again treat free and forced bars separately.

6.6.1 Numerical simulations of finite amplitude free bars

Several Authors engaged in numerical simulations of the nonlinear development of free bars,
mostly under steady conditions. Pioneering works are due to Nelson and Smith (1989) and Shimizu
and Itakura (1989). In particular, Nelson and Smith (1989), using a finite difference method, were
the first to point out that finite amplitude free bars, during their nonlinear development, lengthen
and slow down, in agreement with the experimental observations of Fujita and Muramoto (1985),
later confirmed by Lanzoni (1995) (see also Lanzoni, 2000a). Colombini and Tubino (1991), using
a spectral method, focused on the importance of strongly nonlinear interactions among various
harmonics during bar development.

More recently, Defina (2003) investigated the dependence of the bar response on the type of
initial disturbance triggering bar formation. Numerical simulations were performed on a numerical
flume with length 117.5 m and width 1.5 m, long enough to host several bar units and allow
their development towards an equilibrium state. The most important result, emerged from these
simulations, was described by the Author as follows: “the initial disturbance is quickly eroded but
lasts long enough to promote the formation of new bars close downstream . . . the height of the first
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Figure 113. The real part of (a) the linear coefficient and (b) of the nonlinear coefficient of the Landau-Stuart
amplitude equation (548) of spatial bars (modified from Seminara and Tubino, 1992).

bars generated by the initial bump, . . . gently decay after a slow initial growth. This is a general
behavior found in all the simulations". Although the Author did not interpret this finding in terms
of the distinction between convective and absolute instabilities, he had demonstrated numerically
the convective nature of free bar instability. Not being aware of the implications of the above
distinction, the Author did not perform simulations with a persisting perturbation imposed at the
initial cross-section. As a result, perturbations did not actually reach equilibrium conditions.

Let us be more precise. A set of simulations were performed assuming an initial perturbation
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Figure 114. Results of simulation of the evolution of bed topography for the flume experiment P1505 of Lanzoni
(2000a). Note that scales are distorted: the longitudinal scale is half the lateral scale (courtesy of Andrea Defina).

in the form of a small bump. According to the Author, these numerical experiments gave results
comparing favourably with the experimental observations of Fujita and Muramoto (1985) and
Lanzoni (2000a). Essentially, results showed that, following the generation of a first bar, a train of
bars formed and propagated downstream in the form of a wave group leaving its tail unperturbed
(Figure 114). As a result, no actual steady state was reached. Below, we discuss the work of
Federici and Seminara (2003), appeared the same year as that of Defina (2003), where it was shown
that, due to the convective nature of the free bar instability, a persisting perturbation must indeed
exist at the initial cross-section of the channel in order for a steady state to be actually reached
asymptotically in space and time. Hence, the agreement found by Defina (2003) was based on a
comparison of the frontal region of a train of numerically generated bars migrating downstream
with the characteristics of the steady state bars observed in the laboratory experiments. This
notwithstanding, a number of important features of the actual phenomenon emerged from the
simulations. In particular, the shape of bars was initially in reasonable agreement with the shape of
linear bars. As the bars grew, nonlinear effects led fronts to become much steeper and rotate such
to produce the characteristic diagonal patterns predicted by the weakly nonlinear theories (Figure
114). Simulations also confirmed the processes of bar lengthening and slowing down occurring
when bars reach finite amplitudes.

The analysis performed by Federici and Seminara (2003) was aimed at clarifying the fundamental
nature of free bar instability in both a linear and nonlinear context. The linear aspects of the
problem have already been discussed in Section 6.3.3. Federici and Seminara (2003) substantiated
the linear analysis by numerical experiments performed on the full nonlinear governing equations.
More precisely, these Authors performed numerical simulations of bar evolution under two different
initial conditions. In the first case, similarly to Defina (2003), a localized spatial perturbation
of bed topography in the form of a bump with an emi-symmetric lateral profile and a sinusoidal
longitudinal shape was forced at the beginning of the flume. In the second case, a randomly
distributed perturbation of bed topography was assigned throughout the channel at the start of
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the simulation. Both the initial conditions gave rise to the growth of wave groups which migrated
downstream leaving the flow domain unperturbed, for every aspect ratio of the channel (Figure
115). The convective nature of free bar instability was thus confirmed at a nonlinear level.

Figure 115. (a) Bed topography at the initial time and at tM = 500 in a simulation where bars were triggered by an
initial localized bump (β = 15. τ∗u = 0.09, ds = 0.04). The bump gives rise to wave groups that grow and migrate
downstream. (b) Bed topography at tM = 500, 1000 and 1500, in a simulation where bars are generated by an

initial small randomly distributed perturbation (β = 12, τ∗u = 0.09, ds = 0.04). Time tM is scaled by the
morphodynamic time scale defined in Section 6.2. Longitudinal and lateral coordinates are scaled by half the

channel width (modified from Federici and Seminara, 2003).

The main consequence of the latter finding is that the equilibrium pattern of bars actually
observed in the laboratory may only arise from some persistent forcing, no matter how small. Thus,
Federici and Seminara (2003) investigated the dependence of the nonlinear development of free bars
on the type of persistent forcing present at the initial cross-section. Numerical simulations were
also aimed at answering some questions that arise naturally, namely: Does the bar development
lead to the establishment of an equilibrium amplitude as predicted by Colombini et al. (1987)?
Is such an equilibrium amplitude dependent on the amplitude of the perturbation forced at the
initial cross-section? How long must a flume be in order to allow for the spatial development of
the initial perturbation to reach its equilibrium state? Does the selection of the bar mode depend
on the spatial rather than temporal character of bar development?

In the first numerical experiment, denoted as ’1Freq’, forcing consisted of a small amplitude
perturbation of bottom elevation at the initial cross-section of the flow domain. The perturbation
had a lateral distribution corresponding to an alternate bar and oscillated with the frequency
associated with the most unstable wavenumber of the linear theory. Figure 116a-c shows the
outcome of simulations in the form of plots of bed topography at different dimensionless times.
In this case, a wave group still forms and migrates downstream undergoing spatial and temporal
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Figure 114. Results of simulation of the evolution of bed topography for the flume experiment P1505 of Lanzoni
(2000a). Note that scales are distorted: the longitudinal scale is half the lateral scale (courtesy of Andrea Defina).

in the form of a small bump. According to the Author, these numerical experiments gave results
comparing favourably with the experimental observations of Fujita and Muramoto (1985) and
Lanzoni (2000a). Essentially, results showed that, following the generation of a first bar, a train of
bars formed and propagated downstream in the form of a wave group leaving its tail unperturbed
(Figure 114). As a result, no actual steady state was reached. Below, we discuss the work of
Federici and Seminara (2003), appeared the same year as that of Defina (2003), where it was shown
that, due to the convective nature of the free bar instability, a persisting perturbation must indeed
exist at the initial cross-section of the channel in order for a steady state to be actually reached
asymptotically in space and time. Hence, the agreement found by Defina (2003) was based on a
comparison of the frontal region of a train of numerically generated bars migrating downstream
with the characteristics of the steady state bars observed in the laboratory experiments. This
notwithstanding, a number of important features of the actual phenomenon emerged from the
simulations. In particular, the shape of bars was initially in reasonable agreement with the shape of
linear bars. As the bars grew, nonlinear effects led fronts to become much steeper and rotate such
to produce the characteristic diagonal patterns predicted by the weakly nonlinear theories (Figure
114). Simulations also confirmed the processes of bar lengthening and slowing down occurring
when bars reach finite amplitudes.

The analysis performed by Federici and Seminara (2003) was aimed at clarifying the fundamental
nature of free bar instability in both a linear and nonlinear context. The linear aspects of the
problem have already been discussed in Section 6.3.3. Federici and Seminara (2003) substantiated
the linear analysis by numerical experiments performed on the full nonlinear governing equations.
More precisely, these Authors performed numerical simulations of bar evolution under two different
initial conditions. In the first case, similarly to Defina (2003), a localized spatial perturbation
of bed topography in the form of a bump with an emi-symmetric lateral profile and a sinusoidal
longitudinal shape was forced at the beginning of the flume. In the second case, a randomly
distributed perturbation of bed topography was assigned throughout the channel at the start of
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the simulation. Both the initial conditions gave rise to the growth of wave groups which migrated
downstream leaving the flow domain unperturbed, for every aspect ratio of the channel (Figure
115). The convective nature of free bar instability was thus confirmed at a nonlinear level.

Figure 115. (a) Bed topography at the initial time and at tM = 500 in a simulation where bars were triggered by an
initial localized bump (β = 15. τ∗u = 0.09, ds = 0.04). The bump gives rise to wave groups that grow and migrate
downstream. (b) Bed topography at tM = 500, 1000 and 1500, in a simulation where bars are generated by an

initial small randomly distributed perturbation (β = 12, τ∗u = 0.09, ds = 0.04). Time tM is scaled by the
morphodynamic time scale defined in Section 6.2. Longitudinal and lateral coordinates are scaled by half the

channel width (modified from Federici and Seminara, 2003).

The main consequence of the latter finding is that the equilibrium pattern of bars actually
observed in the laboratory may only arise from some persistent forcing, no matter how small. Thus,
Federici and Seminara (2003) investigated the dependence of the nonlinear development of free bars
on the type of persistent forcing present at the initial cross-section. Numerical simulations were
also aimed at answering some questions that arise naturally, namely: Does the bar development
lead to the establishment of an equilibrium amplitude as predicted by Colombini et al. (1987)?
Is such an equilibrium amplitude dependent on the amplitude of the perturbation forced at the
initial cross-section? How long must a flume be in order to allow for the spatial development of
the initial perturbation to reach its equilibrium state? Does the selection of the bar mode depend
on the spatial rather than temporal character of bar development?

In the first numerical experiment, denoted as ’1Freq’, forcing consisted of a small amplitude
perturbation of bottom elevation at the initial cross-section of the flow domain. The perturbation
had a lateral distribution corresponding to an alternate bar and oscillated with the frequency
associated with the most unstable wavenumber of the linear theory. Figure 116a-c shows the
outcome of simulations in the form of plots of bed topography at different dimensionless times.
In this case, a wave group still forms and migrates downstream undergoing spatial and temporal
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amplification, but, unlike in the previous simulations, the tail of the group does not leave the
generation area. Moreover, nonlinear saturation of the perturbation leads to the establishment of
an equilibrium amplitude. This is clearly shown by Figure 116d where the distribution of bottom
elevation along the right bank is plotted for different times.

Figure 116. Bed topography generated numerically in run ’1Freq’ by forcing a single harmonic oscillation of bottom
elevation at the initial cross-section. The monitored instants correspond to tM = (a) 2800, (b) 3700, (c) 4200. The

plot in (d) shows the distribution of bed elevation along the right bank of the channel at different times
(τ∗u = 0.057, ds = 0.053, β = 8 and βc = 5.6). Time tM is scaled by the morphodynamic time scale defined in
Section 6.2. Longitudinal and lateral coordinates, as well as bed elevation are scaled by half the channel width

(modified from Federici and Seminara, 2003).

Moreover, the equilibrium amplitude does not depend on the chosen amplitude of the initial
perturbation. This is shown in Figure 117 where we plot the outcomes of two different simulations
with identical initial conditions except for the amplitudes of the prescribed perturbations that
differed by a factor two. It appears that the equilibrium amplitude is practically identical in the
two simulations. On the contrary, the distance from the initial cross-section where equilibrium is
reached increases with decreasing values of the initial amplitude.

In a second set of numerical experiments the initial perturbation was chosen such to model the
random character of actual perturbations that are invariably present in the real world. The most
appropriate procedure would have been to impose in the initial cross-section a random oscillation
with the same lateral structure as in the ’1Freq’ experiment. However, this leads to numerical
instabilities due to the presence of too large frequencies in a random forcing. To avoid this problem,
Federici and Seminara (2003) chose an initial perturbation consisting of the superposition of
20 harmonics with equal amplitudes. Their frequencies were chosen as those prescribed by the
dispersion relationship for 20 equally spaced unstable wavenumbers at a given value of the aspect
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Figure 117. The distribution of bed elevation along the right bank of the channel in two numerical simulations with
identical initial conditions except for the amplitudes a of the prescribed dimensionless perturbations that differed
by a factor two. The system was forced with a single harmonic perturbation of the bottom elevation at the initial
cross-section. Solid line, a = 0.001; dashed line, a = 0.002 (τ∗u = 0.057, ds = 0.053, β = 8 and βc = 5.6). Time is
scaled by the morphodynamic time scale. Longitudinal and lateral coordinates are scaled by half the channel width

(modified from Federici and Seminara, 2003).

ratio β (Figure 118). In order to ascertain the possible dependence of the bar response on the
harmonic content of the initial perturbation, simulations were then repeated halving the number
of components of the forcing oscillation (run denoted ’10Freq’).

Figure 118. (a) The sketch shows 20 equally spaced unstable wavenumbers for a given value of the aspect ratio β,
chosen employing the linear dispersion relationship and determining the harmonic content of the initial perturbation

of run ’20Freq’ (τ∗u = 0.057, ds = 0.053, β = 8 and βc = 5.6). The circle indicates the linearly most unstable
wavenumber for the given aspect ratio β; the cross indicates the critical wavenumber. (b) Temporal development of

the bar wavenumber observed at different cross-sections (reproduced from Federici and Seminara, 2003).

Results show that the spatial-temporal amplification of the initial perturbation leads to the
asymptotic emergence of a preferred mode. The equilibrium wavenumber turns out to be close
to (but smaller than) the wavenumber characterized by the maximum linear growth rate for the
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amplification, but, unlike in the previous simulations, the tail of the group does not leave the
generation area. Moreover, nonlinear saturation of the perturbation leads to the establishment of
an equilibrium amplitude. This is clearly shown by Figure 116d where the distribution of bottom
elevation along the right bank is plotted for different times.
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(τ∗u = 0.057, ds = 0.053, β = 8 and βc = 5.6). Time tM is scaled by the morphodynamic time scale defined in
Section 6.2. Longitudinal and lateral coordinates, as well as bed elevation are scaled by half the channel width

(modified from Federici and Seminara, 2003).

Moreover, the equilibrium amplitude does not depend on the chosen amplitude of the initial
perturbation. This is shown in Figure 117 where we plot the outcomes of two different simulations
with identical initial conditions except for the amplitudes of the prescribed perturbations that
differed by a factor two. It appears that the equilibrium amplitude is practically identical in the
two simulations. On the contrary, the distance from the initial cross-section where equilibrium is
reached increases with decreasing values of the initial amplitude.

In a second set of numerical experiments the initial perturbation was chosen such to model the
random character of actual perturbations that are invariably present in the real world. The most
appropriate procedure would have been to impose in the initial cross-section a random oscillation
with the same lateral structure as in the ’1Freq’ experiment. However, this leads to numerical
instabilities due to the presence of too large frequencies in a random forcing. To avoid this problem,
Federici and Seminara (2003) chose an initial perturbation consisting of the superposition of
20 harmonics with equal amplitudes. Their frequencies were chosen as those prescribed by the
dispersion relationship for 20 equally spaced unstable wavenumbers at a given value of the aspect
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Figure 117. The distribution of bed elevation along the right bank of the channel in two numerical simulations with
identical initial conditions except for the amplitudes a of the prescribed dimensionless perturbations that differed
by a factor two. The system was forced with a single harmonic perturbation of the bottom elevation at the initial
cross-section. Solid line, a = 0.001; dashed line, a = 0.002 (τ∗u = 0.057, ds = 0.053, β = 8 and βc = 5.6). Time is
scaled by the morphodynamic time scale. Longitudinal and lateral coordinates are scaled by half the channel width

(modified from Federici and Seminara, 2003).

ratio β (Figure 118). In order to ascertain the possible dependence of the bar response on the
harmonic content of the initial perturbation, simulations were then repeated halving the number
of components of the forcing oscillation (run denoted ’10Freq’).

Figure 118. (a) The sketch shows 20 equally spaced unstable wavenumbers for a given value of the aspect ratio β,
chosen employing the linear dispersion relationship and determining the harmonic content of the initial perturbation

of run ’20Freq’ (τ∗u = 0.057, ds = 0.053, β = 8 and βc = 5.6). The circle indicates the linearly most unstable
wavenumber for the given aspect ratio β; the cross indicates the critical wavenumber. (b) Temporal development of

the bar wavenumber observed at different cross-sections (reproduced from Federici and Seminara, 2003).

Results show that the spatial-temporal amplification of the initial perturbation leads to the
asymptotic emergence of a preferred mode. The equilibrium wavenumber turns out to be close
to (but smaller than) the wavenumber characterized by the maximum linear growth rate for the
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given value of the aspect ratio β. It is worth noting that neither the equilibrium amplitude nor
the equilibrium wavenumber and wavespeed asymptotically reached by the perturbation are affected
significantly by the harmonic content of the initial perturbation. Simulations also confirm that,
during the evolution process, perturbations lengthen (Figure 118b) and slow down significantly.

More recently, Crosato et al. (2011) have published the results of a series of numerical simulations
aimed at ascertaining whether stationary bars may also arise freely, i.e. in the absence of permanent
forcing of the type previously investigated by Struiksma and Crosato (1989) and Lanzoni (2000a).
Simulations were performed using a fully nonlinear, time-dependent, 2D morphological model.
Their distinct feature was the size of the system considered in the simulation: a channel with
length of 20 km and longitudinal bed slope 10−4. Moreover, the duration of the process simulated
was of the order of tens of years, such that some runs took more than 40 days to be completed even
adopting a value of the so called morphological factor as large as 10. Essentially, the morphological
factor employed in some numerical models of morphodynamic processes is the ratio between the
time step of morphological updating of the bottom topography and the time step of hydrodynamic
simulations (see Roelvink, 2006).

Two runs were performed with initial conditions at the entrance section consisting of a uniform
flow perturbed by small amplitude random perturbations of the inflow discharge imposed at each
node of the computational grid. In the first run the maximum amplitude of perturbations was
equal to 1% of the discharge and the frequency was 1min−1; in the second run these values were
changed to 5% and 3.5 h−1. The boundary condition at the downstream end consisted of imposing
the uniform flow depth.

(a)

(b)

(c)

(d)

Figure 119. The plots show the longitudinal bed profile at 15 m from the left bank at various times from the start
of the ’free’ simulation (RUN 1) of Crosato et al. (2011). In the simulation the uniform inflow was perturbed

imposing at each node of the inlet section random perturbations with maximum amplitude equal to (a,b) 5% and
(c,d) 1% of the average discharge (data from Crosato et al., 2011).
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Results did not differ initially from those obtained in previous simulations, in that a train
of migrating bars in the form of a wave group formed rapidly. Bars were fairly short but their
wavelengths gradually increased and their migration speed decreased. However, after a long
time (of the order of decades) part of the bars stopped migrating. Figure 119 shows that this
feature appeared in the upstream reach in the 1% discharge perturbation experiment and in the
downstream reach in the 5% discharge perturbation experiment. Simulations were stopped as
soon as the first bars reduced significantly their migration speed, hence in the final configuration
shown in Figure 119 part of the bar train was not stationary. The Authors conclude stating that
"Apparently, fast growing migrating bars represent a transient stage and are not representative for
the final channel bed topography". However this conclusion has no theoretical substantiation yet.
Indeed, the theoretical foundations of bar theory are quite firm and the main body of knowledge
established so far is substantiated by a number of laboratory observations, as discussed in this
Chapter. Of course, new features of the process may always emerge but they will remain elusive
until it will be demonstrated that they are amenable to a sound theoretical interpretation.

And, indeed, in a follow up paper, Crosato et al. (2012) repeated similar long term simulations
with slightly changed simulation parameters (longitudinal bed slope 2 × 10−4, random initial
perturbation with amplitude equal to 0.5% of the discharge and frequency 2.3 day−1, simulated
time 7 years, morphological factor 25): results of these simulations did not confirm the formation
of steady bars observed by Crosato et al. (2011). Moreover, a sharp decrease of bar amplitude was
found to occur periodically, as shown in Figure 120. The latter finding is clearly reminiscent of the

Figure 120. Temporal evolution of the longitudinal bed profile near the right and left bank at the cross-section
located 15 km downstream from the inlet section in Run 2 of Crosato et al. (2012) (data from Crosato et al., 2012).

results obtained by Schielen et al. (1993) on the instability of the periodic solutions of Ginzburg
Landau equation discussed in Section 6.5.1. Nevertheless, just like for free stationary bars, no
clear theoretical interpretation of the modulation of bar amplitude displayed by Figure 120 has
been proposed so far.

6.6.2 Numerical simulations of finite amplitude forced bars

Less attention has been devoted in the literature to numerical simulations of finite amplitude
forced bars. Two recent works on the subject are the already mentioned paper by Crosato et al.
(2011) and the contribution by (Siviglia et al, 2013). Besides the free numerical experiments
discussed in Section 6.6.1, Crosato et al. (2011) performed also a forced experiment. A permanent
finite perturbation (a groyne) similar to those employed by Struiksma and Crosato (1989) and
Lanzoni (2000a) was imposed at the upstream boundary. Figure 121 shows that forcing gives
rise to a wave group which reaches asymptotically a stationary periodic equilibrium pattern: this
suggests that the flow conditions in this run were near-resonant, rather than sub-resonant as stated
in the paper.

Considering a similar forced configuration (an asymmetric obstacle that locally reduces the
cross-section width to its half value), Stecca (2012) (but see also Siviglia et al, 2013) carried out
experiments keeping τ∗u, ds and, hence the resonant value βR, fixed. Both sub-resonant (β < βR)
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given value of the aspect ratio β. It is worth noting that neither the equilibrium amplitude nor
the equilibrium wavenumber and wavespeed asymptotically reached by the perturbation are affected
significantly by the harmonic content of the initial perturbation. Simulations also confirm that,
during the evolution process, perturbations lengthen (Figure 118b) and slow down significantly.

More recently, Crosato et al. (2011) have published the results of a series of numerical simulations
aimed at ascertaining whether stationary bars may also arise freely, i.e. in the absence of permanent
forcing of the type previously investigated by Struiksma and Crosato (1989) and Lanzoni (2000a).
Simulations were performed using a fully nonlinear, time-dependent, 2D morphological model.
Their distinct feature was the size of the system considered in the simulation: a channel with
length of 20 km and longitudinal bed slope 10−4. Moreover, the duration of the process simulated
was of the order of tens of years, such that some runs took more than 40 days to be completed even
adopting a value of the so called morphological factor as large as 10. Essentially, the morphological
factor employed in some numerical models of morphodynamic processes is the ratio between the
time step of morphological updating of the bottom topography and the time step of hydrodynamic
simulations (see Roelvink, 2006).

Two runs were performed with initial conditions at the entrance section consisting of a uniform
flow perturbed by small amplitude random perturbations of the inflow discharge imposed at each
node of the computational grid. In the first run the maximum amplitude of perturbations was
equal to 1% of the discharge and the frequency was 1min−1; in the second run these values were
changed to 5% and 3.5 h−1. The boundary condition at the downstream end consisted of imposing
the uniform flow depth.

(a)

(b)

(c)

(d)

Figure 119. The plots show the longitudinal bed profile at 15 m from the left bank at various times from the start
of the ’free’ simulation (RUN 1) of Crosato et al. (2011). In the simulation the uniform inflow was perturbed

imposing at each node of the inlet section random perturbations with maximum amplitude equal to (a,b) 5% and
(c,d) 1% of the average discharge (data from Crosato et al., 2011).
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wavelengths gradually increased and their migration speed decreased. However, after a long
time (of the order of decades) part of the bars stopped migrating. Figure 119 shows that this
feature appeared in the upstream reach in the 1% discharge perturbation experiment and in the
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soon as the first bars reduced significantly their migration speed, hence in the final configuration
shown in Figure 119 part of the bar train was not stationary. The Authors conclude stating that
"Apparently, fast growing migrating bars represent a transient stage and are not representative for
the final channel bed topography". However this conclusion has no theoretical substantiation yet.
Indeed, the theoretical foundations of bar theory are quite firm and the main body of knowledge
established so far is substantiated by a number of laboratory observations, as discussed in this
Chapter. Of course, new features of the process may always emerge but they will remain elusive
until it will be demonstrated that they are amenable to a sound theoretical interpretation.
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time 7 years, morphological factor 25): results of these simulations did not confirm the formation
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results obtained by Schielen et al. (1993) on the instability of the periodic solutions of Ginzburg
Landau equation discussed in Section 6.5.1. Nevertheless, just like for free stationary bars, no
clear theoretical interpretation of the modulation of bar amplitude displayed by Figure 120 has
been proposed so far.

6.6.2 Numerical simulations of finite amplitude forced bars
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Lanzoni (2000a) was imposed at the upstream boundary. Figure 121 shows that forcing gives
rise to a wave group which reaches asymptotically a stationary periodic equilibrium pattern: this
suggests that the flow conditions in this run were near-resonant, rather than sub-resonant as stated
in the paper.

Considering a similar forced configuration (an asymmetric obstacle that locally reduces the
cross-section width to its half value), Stecca (2012) (but see also Siviglia et al, 2013) carried out
experiments keeping τ∗u, ds and, hence the resonant value βR, fixed. Both sub-resonant (β < βR)
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Figure 121. The plots show the longitudinal bed profile at 15 m from the left bank at various times from the start
of the forced simulation (RUN 1) of Crosato et al. (2011) (data from Crosato et al., 2011).

and super-resonant (β > βR) conditions were analyzed. In the early stages of each simulation,
the channel bed was typically subject to a relatively fast evolution, with migrating alternate bars
forming downstream of the obstacle. As the simulations proceeded, new bars were generated
either downstream (Figure 122a) or upstream (Figure 122b) of the obstacle, depending on the
sub-resonant or super-resonant character of the simulation. These bars grew in amplitude at a
relatively slow rate, progressively elongating and slowing down, eventually ceasing to migrate. The
final wavelengths of these forced bars were invariably larger than those typical of free migrating
bars (ranging about 7-8 channel widths). Specifically the wavelength of sub-resonant forced bars
was about 16 channel widths, while under super-resonant conditions forced bars exhibited a slightly
smaller wavelength, around 12 channel widths.

Figure 122. The plot shows variations of bed elevations scaled by the uniform flow depth, computed for a straight
channel containing a local asymmetric obstacle that halves the cross-section width. Upper panel refers to

sub-resonant conditions (β = 10.42), whereas lower panel corresponds to super-resonant conditions (β = 16.72).
The relevant parameters had the following values: τ∗u = 0.1, ds = 0.067, βR = 13.28, βc = 8.06 (reproduced from

Figure 7.10 of Stecca, 2012, under License Creative Commons Attribution Non-commercial No Derivatives).

6.6.3 Interaction between free and forced bars in straight cohesionless channels
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The interaction between free and forced bars driven by width variations was investigated
theoretically by Repetto (2000) (but see also Repetto and Tubino, 1999a,b) who developed a
weakly non linear analytical approach, assuming a small amplitude periodic width oscillations.
Denoting by δ a dimensionless measure of such amplitude, scaled by the averaged channel width,
they found that the linear growth rate of free bars exhibits an O(δ2) correction due to width
changes. This correction which was found to depend on the dimensionless wavenumber of width
oscillations λb, was invariably negative and its intensity increased with the Shields parameter.
Furthermore, width variations slowed down the propagation of free bars, except in the range of
small λb values. The analysis allowed to determine a threshold value of δ above which bars are
suppressed. The predicted value of the δ threshold is plotted in Figure 123 as a function of the
width ratio β for different values of the unperturbed Shields stress τ∗0. However, the reader should
note that, at threshold, the O(δ2) correction of the bar growth rate has the same magnitude and
opposite sign of the unperturbed growth rate: under these conditions the assumed asymptotic
character of the expansion does not strictly apply.

Figure 123. The threshold value of the dimensionless amplitude of width oscillations for free bar suppression
predicted by Repetto (2000) is plotted versus the width ratio β for different values of the unperturbed Shields

stress τ∗0. Grain size scaled by unperturbed flow depth ds = 0.05; dimensionless wavenumber of width oscillations
λb = 0.3 (reproduced from Figure 4.3 of Repetto, 2000).

Repetto (2000) (but see also Repetto et al., 2002) performed also some laboratory experiments
on a flume whose banks had a sinusoidal shape, thus allowing for periodic width oscillations. For
small amplitudes of the latter (δ = 0.125) and sufficiently large width to depth ratio, migrating
alternate bars were observed to form in the flume, as expected based on theoretical predictions of
Colombini et al. (1987). However, their development was strongly affected by bank oscillations,
leading to highly unsteady, irregular bars. More precisely, central bars formed initially in the wider
sections of the flume and, once they reached a sufficint amplitude, they migrated downstream.
However, as the front of the bars approached the narrowest section of the flume, they slowed
down significantly: typically, they were unable to migrate through the constraint, whilst a new
bar formed in the upstream expansion. Eventually, the central bar decayed into a series of short
migrating alternate bars, though regular bar trains migrating through the full channel length were
never observed: on the contrary, bars with variable lengths and heights repeatedly formed and
disappeared in a sequence of pulses. At δ = 0.25 alternate bars were suppressed in favor of a steady
forced bed configuration, consisting of a strong longitudinal deformation almost in phase with the
bank profile along with a transverse deformation, in the form of a central bar located at the wide
section. Repetto (2000) concludes that periodic width variations (of sufficient amplitude) may
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Figure 121. The plots show the longitudinal bed profile at 15 m from the left bank at various times from the start
of the forced simulation (RUN 1) of Crosato et al. (2011) (data from Crosato et al., 2011).
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final wavelengths of these forced bars were invariably larger than those typical of free migrating
bars (ranging about 7-8 channel widths). Specifically the wavelength of sub-resonant forced bars
was about 16 channel widths, while under super-resonant conditions forced bars exhibited a slightly
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Denoting by δ a dimensionless measure of such amplitude, scaled by the averaged channel width,
they found that the linear growth rate of free bars exhibits an O(δ2) correction due to width
changes. This correction which was found to depend on the dimensionless wavenumber of width
oscillations λb, was invariably negative and its intensity increased with the Shields parameter.
Furthermore, width variations slowed down the propagation of free bars, except in the range of
small λb values. The analysis allowed to determine a threshold value of δ above which bars are
suppressed. The predicted value of the δ threshold is plotted in Figure 123 as a function of the
width ratio β for different values of the unperturbed Shields stress τ∗0. However, the reader should
note that, at threshold, the O(δ2) correction of the bar growth rate has the same magnitude and
opposite sign of the unperturbed growth rate: under these conditions the assumed asymptotic
character of the expansion does not strictly apply.

Figure 123. The threshold value of the dimensionless amplitude of width oscillations for free bar suppression
predicted by Repetto (2000) is plotted versus the width ratio β for different values of the unperturbed Shields

stress τ∗0. Grain size scaled by unperturbed flow depth ds = 0.05; dimensionless wavenumber of width oscillations
λb = 0.3 (reproduced from Figure 4.3 of Repetto, 2000).

Repetto (2000) (but see also Repetto et al., 2002) performed also some laboratory experiments
on a flume whose banks had a sinusoidal shape, thus allowing for periodic width oscillations. For
small amplitudes of the latter (δ = 0.125) and sufficiently large width to depth ratio, migrating
alternate bars were observed to form in the flume, as expected based on theoretical predictions of
Colombini et al. (1987). However, their development was strongly affected by bank oscillations,
leading to highly unsteady, irregular bars. More precisely, central bars formed initially in the wider
sections of the flume and, once they reached a sufficint amplitude, they migrated downstream.
However, as the front of the bars approached the narrowest section of the flume, they slowed
down significantly: typically, they were unable to migrate through the constraint, whilst a new
bar formed in the upstream expansion. Eventually, the central bar decayed into a series of short
migrating alternate bars, though regular bar trains migrating through the full channel length were
never observed: on the contrary, bars with variable lengths and heights repeatedly formed and
disappeared in a sequence of pulses. At δ = 0.25 alternate bars were suppressed in favor of a steady
forced bed configuration, consisting of a strong longitudinal deformation almost in phase with the
bank profile along with a transverse deformation, in the form of a central bar located at the wide
section. Repetto (2000) concludes that periodic width variations (of sufficient amplitude) may
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trigger the transition from migrating alternate bars to steady central bars with the longitudinal
wavenumber of the bank profile. Qualitatively similar conclusions had been previously reached by
Bittner (1994), who performed analogous laboratory experiments.

The weakly non linear analysis of Repetto (2000) was later extended numerically to the fully
nonlinear regime by Wu et al. (2011), who solved the full depth averaged shallow water equations
and the two-dimensional Exner equation corrected for secondary flows induced by streamline
curvature as in Wu and Yeh (2005). A finite element method, based on a characteristic dissipative
Galerkin up-winding scheme, was used to discretize the resulting system of partial differential
equations. A sinusoidal perturbation was imposed to the channel width, with dimensionless
amplitude δ and wavelength λb, both scaled by half the channel width. The overall forcing effect
was measured through a single factor,

Fb = δ expλb. (550)

Results of Wu et al. (2011) confirm that width variations invariably tend to damp both the height
and wavelength of free bars, and this reduction effect increases with the intensity of the width
variations imposed to the channel. Conversely, as the forcing progressively increases, bar celerity
first undergoes a slight increase and subsequently experiences a damping for large values of Fb.
The maximum increase in bar celerity exceeds the migration speed developed in the reference
straight channel by less than 5%.

Note that, for the investigated ranges of values of δ (0.1-0.4) and λb (0.2-0.8) free bars were
always observed to form, even when Ab exceeded the threshold value (0.2 for the considered
morphodynamic parameters) below which the weakly nonlinear stability analysis would predict
a full free bar suppression (Figure 123). This discrepancy still needs to be explained. Clearly,
the small perturbation assumption adopted in the linear stability analysis does not account for
self-interactions among the various modes.

However, free bar suppression was also observed in the laboratory experiments of both Bittner
(1994) (“as the channel width perturbation was increased, it was found that migrating bedforms were
totally suppressed ”) and Repetto (2000). This sheds some uncertainty on the numerical results,
leaving the issue of free bar suppression in the present context as yet unsettled.

6.7. Bars in the field: additional complexities of bar morphodynamics

6.7.1 The effect of flow unsteadiness

A feature of the natural phenomenon ignored in most laboratory experiments and theoretical
investigations is the unsteady character of the flows responsible for pattern formation. Taking into
account this effect turns out to be crucial if one wants to interpret field observations correctly.
Indeed, during the propagation of a flood in a channelized river, the flow discharge increases,
reaches a peak and then decays until a new event occurs. The flow depth has a similar trend and
drives an opposite behavior of the width to depth ratio β, which decreases throughout the rising
limb of the flood, reaches a minimum and then increases again.

In conclusion, if one simply interprets the response of free alternate bars to flood propagation
based on results discussed for the steady case and assumes, for the time being, that βc keeps
constant through the flood, then the following scenario would arise. Bars form at some relatively
low stage (sufficient to mobilize sediments), develop a finite amplitude that decreases throughout
the rising limb of the flood (as (β − βc) decreases), may even vanish at some high stage (when
β ≤ βc) to increase during the falling stage (when (β − βc) increases).

On the other hand, the critical value of the width to depth ratio βc varies as a function of the
Shield stress (that follows a trend similar to the flow discharge) and of the roughness parameter
(that is proportional to the inverse of the flow depth), as shown in Figure 88. As a result, the
picture would be slightly more complex than described above.

Is the expected picture correct? In other words, can we interpret the response of alternate bars
as a slowly varying sequence of equilibrium states associated with the instantaneous discharge?
Or, alternatively, can we define, for a given hydrograph, some reference flow stage to which we can
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attach the concept of a finite equilibrium amplitude of bars established by Colombini et al. (1987)?
And, in this case, can we establish some relationship between the actual amplitude attained by the
bed configuration in response to a flood (or a sequence of floods) and the equilibrium amplitude
associated with the reference state mentioned above? The works of Tubino and Seminara (1987)
(hereafter TS) and Tubino (1991) attempt to provide an answer to the above questions based on
an extension of the weakly nonlinear analysis of Colombini et al. (1987) as well as on laboratory
experiments.

Theory

The starting point of the theoretical analysis of TS is the recognition of the existence of three time
scales in the process under investigation:

- a hydrodynamic time scale, say B/U0, with U0 reference speed associated with some chosen
mean flow;

- a morhodynamic time scale, say B/(U0 ϵM ), with ϵM appropriately defined in the present
context;

- a flood time scale TF defined by a typical hydrograph. This scale is typically much larger than
the hydrodynamic time scale, i.e. it is such that the dimensionless parameter σ ≡ B/(U0 TF )
is also small.

TS then introduces a dimensionless parameter ϵM/σ measuring the ratio between the flood
time scale and the morhodynamic time scale, hence three conditions are conceivable:

- ϵM/σ ≫ 1: in this case, bars develop much more slowly than the basic flow, whose variations
are thus unable to affect bar development;

- ϵM/σ ≪ 1: bars develop much faster than the basic flow, such to reach their steady equilibrium
amplitudes corresponding to the instantaneous flow characteristics;

- ϵM/σ ∼ O(1): bars develop as fast as the basic flow, implying that flow changes do affect bar
development.

We will see that typically the last condition is encountered in nature and calls for an appropriate
analysis. TS first assume that the average reference state falls within a neighborhood of the critical
conditions for alternate bar formation, such that one may write:

q = 1, D = 1, β0 = βc (1 + b ϵ2), (551)

where q is the dimensionless flow discharge per unit width, scaled by (D0 U0), D is the dimensionless
flow depth scaled by D0, and β0 is the width to depth ratio at the reference state B/D0.

Moreover, let us recall that the slow time variable describing bar growth is defined in the form
of equation (532). TS assume that the basic unsteady state varies on a similar time scale (i.e.
ϵM/σ ∼ O(1)). Moreover, he restricts the analysis to the case of weak unsteadiness, such that the
unsteady basic state can be expressed in the following form:

q = 1 + ϵ2 q1(τ), D = 1 + ϵ2 D1(τ), β = β0

(
1− ϵ2 D1(τ)

)
. (552)

Note that this weak unsteadiness assumption should not be regarded as a too severe constraint,
as gravel-bed rivers typically become active at high flows such that only a portion of the hydrograph
is able to mobilize the bed. On the other hand, this is quite a convenient assumption as it allows
to extend easily the weakly nonlinear theory of Colombini et al. (1987) to the unsteady case. And,
indeed, following closely the approach of Colombini et al. (1987), TS obtained the following slightly
modified version of the Landau-Stuart amplitude equation (534):

dA

dτ
=

[
b βc (µβ + i νβ) + α0 q1(τ)

]
A+ (ar + i ai) A

2 Ā. (553)
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trigger the transition from migrating alternate bars to steady central bars with the longitudinal
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Bittner (1994), who performed analogous laboratory experiments.
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Fb = δ expλb. (550)
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In conclusion, if one simply interprets the response of free alternate bars to flood propagation
based on results discussed for the steady case and assumes, for the time being, that βc keeps
constant through the flood, then the following scenario would arise. Bars form at some relatively
low stage (sufficient to mobilize sediments), develop a finite amplitude that decreases throughout
the rising limb of the flood (as (β − βc) decreases), may even vanish at some high stage (when
β ≤ βc) to increase during the falling stage (when (β − βc) increases).

On the other hand, the critical value of the width to depth ratio βc varies as a function of the
Shield stress (that follows a trend similar to the flow discharge) and of the roughness parameter
(that is proportional to the inverse of the flow depth), as shown in Figure 88. As a result, the
picture would be slightly more complex than described above.

Is the expected picture correct? In other words, can we interpret the response of alternate bars
as a slowly varying sequence of equilibrium states associated with the instantaneous discharge?
Or, alternatively, can we define, for a given hydrograph, some reference flow stage to which we can
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attach the concept of a finite equilibrium amplitude of bars established by Colombini et al. (1987)?
And, in this case, can we establish some relationship between the actual amplitude attained by the
bed configuration in response to a flood (or a sequence of floods) and the equilibrium amplitude
associated with the reference state mentioned above? The works of Tubino and Seminara (1987)
(hereafter TS) and Tubino (1991) attempt to provide an answer to the above questions based on
an extension of the weakly nonlinear analysis of Colombini et al. (1987) as well as on laboratory
experiments.

Theory

The starting point of the theoretical analysis of TS is the recognition of the existence of three time
scales in the process under investigation:

- a hydrodynamic time scale, say B/U0, with U0 reference speed associated with some chosen
mean flow;

- a morhodynamic time scale, say B/(U0 ϵM ), with ϵM appropriately defined in the present
context;

- a flood time scale TF defined by a typical hydrograph. This scale is typically much larger than
the hydrodynamic time scale, i.e. it is such that the dimensionless parameter σ ≡ B/(U0 TF )
is also small.

TS then introduces a dimensionless parameter ϵM/σ measuring the ratio between the flood
time scale and the morhodynamic time scale, hence three conditions are conceivable:

- ϵM/σ ≫ 1: in this case, bars develop much more slowly than the basic flow, whose variations
are thus unable to affect bar development;

- ϵM/σ ≪ 1: bars develop much faster than the basic flow, such to reach their steady equilibrium
amplitudes corresponding to the instantaneous flow characteristics;

- ϵM/σ ∼ O(1): bars develop as fast as the basic flow, implying that flow changes do affect bar
development.

We will see that typically the last condition is encountered in nature and calls for an appropriate
analysis. TS first assume that the average reference state falls within a neighborhood of the critical
conditions for alternate bar formation, such that one may write:

q = 1, D = 1, β0 = βc (1 + b ϵ2), (551)

where q is the dimensionless flow discharge per unit width, scaled by (D0 U0), D is the dimensionless
flow depth scaled by D0, and β0 is the width to depth ratio at the reference state B/D0.

Moreover, let us recall that the slow time variable describing bar growth is defined in the form
of equation (532). TS assume that the basic unsteady state varies on a similar time scale (i.e.
ϵM/σ ∼ O(1)). Moreover, he restricts the analysis to the case of weak unsteadiness, such that the
unsteady basic state can be expressed in the following form:

q = 1 + ϵ2 q1(τ), D = 1 + ϵ2 D1(τ), β = β0

(
1− ϵ2 D1(τ)

)
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Note that this weak unsteadiness assumption should not be regarded as a too severe constraint,
as gravel-bed rivers typically become active at high flows such that only a portion of the hydrograph
is able to mobilize the bed. On the other hand, this is quite a convenient assumption as it allows
to extend easily the weakly nonlinear theory of Colombini et al. (1987) to the unsteady case. And,
indeed, following closely the approach of Colombini et al. (1987), TS obtained the following slightly
modified version of the Landau-Stuart amplitude equation (534):

dA

dτ
=

[
b βc (µβ + i νβ) + α0 q1(τ)

]
A+ (ar + i ai) A

2 Ā. (553)
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where the complex coefficients (µβ + i νβ) and (ar + i ai) are identical with those of the steady
case and α0 is a further complex parameter that accounts for the effect of the unsteadiness of the
basic flow. All these coefficients are functions of the average values of the Shields parameter τ∗0
and roughness parameter ds0.

The equation (553) shows that unsteadiness is felt by the bar growth at a linear level, i.e. it
affects the instantaneous bar growth rate and the phase of bar perturbations. For any given time
dependence of the basic flow, described by the function q1(τ), equation (553) can be readily solved
in closed form and allows one to determine the unsteady response of bar amplitude to a single
flood or a sequence of floods. TS applied the above formulation to some field data available at the
time, namely observations carried out by Lewin (1976) on a reach of the Ystwyth River that had
been artificially straightened. Unfortunately, Lewin did not measure the amplitude of bars, but
the flood event could be qualitatively reconstructed (Figure 124a) and application of the theory
led to results depicted in Figure 124b.

Figure 124. (a) The flood event propagated through an artificially straightened reach of the Ystwyth River,
reconstructed by TS on the basis of Lewin (1976) observations. (b) Temporal evolution of the modulus of the bar
amplitude predicted by TS theory for the reconstructed event: nonlinear unsteady solution (solid line); equilibrium
solution corresponding to the instantaneous flow conditions (dashed line); linear unsteady solution (continuous-dot

line) (modified from TS).

The picture arising from Figure 124 suggests that during the rising stage (τ ≲ 0.1) bars undergo
a quasi-linear growth, followed by a weak decay at the peak stage (0.1 ≲ τ ≲ 0.3 ) when the width
to depth ratio falls below its critical value. The falling stage (0.3 ≲ τ ≲ 1) is the actual formative
part of the flood, where nonlinear bar growth is experienced.

In order to assess the role of the unsteadiness parameter ϵM/σ, TS then performed a set of
simulations assuming the following hydrograph shape function:

q1(τ) = (1 + q̂1) sin
{
log

[
1 + τ

(
exp(π)− 1

)]}
− 1. (554)

The ratio between the actual bar amplitude reached at the end of the flood AF and the equilibrium
amplitude associated with the final state ATF turns out to depend on the unsteadiness parameter
ϵM/σ and on the initial value A0 of the bar perturbation, for given values of q̂1 and of the additional
parameter −Re(α0)/(b βc µβ). Results are plotted in Figure 125 that confirms that three possible
conditions may occur. Indeed, the final bed configuration is the result of a strong interaction
between bar development and unsteady flow provided ϵM/σ falls within a limited range of values
close to 1, whereas AF → A0 if ϵM/σ ≫ 1 and AF → ATF if ϵM/σ ≪ 1. Moreover, it is found
that the final bar amplitude AF increases as the initial value A0 increases, such that the final
amplitude reached by perturbations may tend to ATF after a sequence of flood events.

Laboratory experiments

Tubino (1991) performed also two series of laboratory experiments to substantiate the above
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Figure 125. The bar amplitude reached at the end of the flood event AF , scaled by the equilibrium amplitude
associated with the final state ATF , as predicted by the nonlinear solution of TS for the hydrograph (554), is
plotted versus the unsteadiness parameter ϵM/σ for different values of q̂1 (A0 = 0.1, Re(α0)/(b βc µβ) = −0.8)

(modified from TS).

picture. Each series was characterized by the same initial slope and the same (triangular) shape of
the hydrograph, simulated using a step-like sequence of discharges. The duration TF of various
runs was different but the relative duration of single steps was identical in each run. Results of
these experiments (Figure 126) show that:

- in each series the final bar height HF exhibited a strong dependence on the duration of the
flood TF ;

- the dependence on the unsteadiness parameter ϵM/σ shown by the ratio between the bar
height reached at the end of the flood event HF and the equilibrium bar height associated with
the final state HTF follows the trend predicted theoretically. In particular, in the experiments
the interaction between bar development and flow unsteadiness occurs mainly for values of
ϵM/σ close to unity, as predicted theoretically;

- the quasi-linear initial growth, the bar damping at the flood peak and the formative role of
the falling limb of the flood are all confirmed by the experiments;

- the Figure 126b suggests clearly that the bar height reached at the end of a sequence of flood
events tends to an upper bound consisting of the final value HTF of bar height corresponding
to the instantaneous response.

Field observations

Besides the already mentioned field investigations performed by Lewin (1976), a further interesting
field work was performed by Welford (1994) to test the theory by Tubino (1991). The study site was
a channelized section of the Embarras River (Champaign, Illinois), with length 60m, width 12m,
depth 1.5m, bed material sorted to well-sorted, mean grain size of 0.53mm. The hydrographic
regime of the river consists of low quasi-steady flows interspersed by brief summer flood events,
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where the complex coefficients (µβ + i νβ) and (ar + i ai) are identical with those of the steady
case and α0 is a further complex parameter that accounts for the effect of the unsteadiness of the
basic flow. All these coefficients are functions of the average values of the Shields parameter τ∗0
and roughness parameter ds0.

The equation (553) shows that unsteadiness is felt by the bar growth at a linear level, i.e. it
affects the instantaneous bar growth rate and the phase of bar perturbations. For any given time
dependence of the basic flow, described by the function q1(τ), equation (553) can be readily solved
in closed form and allows one to determine the unsteady response of bar amplitude to a single
flood or a sequence of floods. TS applied the above formulation to some field data available at the
time, namely observations carried out by Lewin (1976) on a reach of the Ystwyth River that had
been artificially straightened. Unfortunately, Lewin did not measure the amplitude of bars, but
the flood event could be qualitatively reconstructed (Figure 124a) and application of the theory
led to results depicted in Figure 124b.

Figure 124. (a) The flood event propagated through an artificially straightened reach of the Ystwyth River,
reconstructed by TS on the basis of Lewin (1976) observations. (b) Temporal evolution of the modulus of the bar
amplitude predicted by TS theory for the reconstructed event: nonlinear unsteady solution (solid line); equilibrium
solution corresponding to the instantaneous flow conditions (dashed line); linear unsteady solution (continuous-dot

line) (modified from TS).

The picture arising from Figure 124 suggests that during the rising stage (τ ≲ 0.1) bars undergo
a quasi-linear growth, followed by a weak decay at the peak stage (0.1 ≲ τ ≲ 0.3 ) when the width
to depth ratio falls below its critical value. The falling stage (0.3 ≲ τ ≲ 1) is the actual formative
part of the flood, where nonlinear bar growth is experienced.

In order to assess the role of the unsteadiness parameter ϵM/σ, TS then performed a set of
simulations assuming the following hydrograph shape function:

q1(τ) = (1 + q̂1) sin
{
log

[
1 + τ

(
exp(π)− 1

)]}
− 1. (554)

The ratio between the actual bar amplitude reached at the end of the flood AF and the equilibrium
amplitude associated with the final state ATF turns out to depend on the unsteadiness parameter
ϵM/σ and on the initial value A0 of the bar perturbation, for given values of q̂1 and of the additional
parameter −Re(α0)/(b βc µβ). Results are plotted in Figure 125 that confirms that three possible
conditions may occur. Indeed, the final bed configuration is the result of a strong interaction
between bar development and unsteady flow provided ϵM/σ falls within a limited range of values
close to 1, whereas AF → A0 if ϵM/σ ≫ 1 and AF → ATF if ϵM/σ ≪ 1. Moreover, it is found
that the final bar amplitude AF increases as the initial value A0 increases, such that the final
amplitude reached by perturbations may tend to ATF after a sequence of flood events.

Laboratory experiments

Tubino (1991) performed also two series of laboratory experiments to substantiate the above
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Figure 125. The bar amplitude reached at the end of the flood event AF , scaled by the equilibrium amplitude
associated with the final state ATF , as predicted by the nonlinear solution of TS for the hydrograph (554), is
plotted versus the unsteadiness parameter ϵM/σ for different values of q̂1 (A0 = 0.1, Re(α0)/(b βc µβ) = −0.8)

(modified from TS).

picture. Each series was characterized by the same initial slope and the same (triangular) shape of
the hydrograph, simulated using a step-like sequence of discharges. The duration TF of various
runs was different but the relative duration of single steps was identical in each run. Results of
these experiments (Figure 126) show that:

- in each series the final bar height HF exhibited a strong dependence on the duration of the
flood TF ;

- the dependence on the unsteadiness parameter ϵM/σ shown by the ratio between the bar
height reached at the end of the flood event HF and the equilibrium bar height associated with
the final state HTF follows the trend predicted theoretically. In particular, in the experiments
the interaction between bar development and flow unsteadiness occurs mainly for values of
ϵM/σ close to unity, as predicted theoretically;

- the quasi-linear initial growth, the bar damping at the flood peak and the formative role of
the falling limb of the flood are all confirmed by the experiments;

- the Figure 126b suggests clearly that the bar height reached at the end of a sequence of flood
events tends to an upper bound consisting of the final value HTF of bar height corresponding
to the instantaneous response.

Field observations

Besides the already mentioned field investigations performed by Lewin (1976), a further interesting
field work was performed by Welford (1994) to test the theory by Tubino (1991). The study site was
a channelized section of the Embarras River (Champaign, Illinois), with length 60m, width 12m,
depth 1.5m, bed material sorted to well-sorted, mean grain size of 0.53mm. The hydrographic
regime of the river consists of low quasi-steady flows interspersed by brief summer flood events,
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Figure 126. (a) The bar height HF reached at the end of the flood event in the experiments of Tubino (1991) (black
circles) is plotted versus the unsteadiness parameter ϵM/σ. The bar height HF is scaled by the equilibrium bar

height associated with the final state HTF . The solid line represents theoretical results. (b) Temporal variation of
the dimensionless bar height H (scaled by the reference flow depth D0). The solid line corresponds to the weakly

nonlinear theory of TS, the dashed line represents the theoretical equilibrium value HT associated with the
instantaneous conditions. Data (black circles) refer to the two runs D72 and D721 characterized by identical

hydrographs but different initial conditions. The former run started from a plane-bed initial configuration, whereas
in the run D721 the bed configuration obtained at the end of experiment D72 was used as initial configuration

(modified from Tubino, 1991).

during which alternate bars develop rapidly. This turned out as a most appropriate site for the
tests pursued by the Author. The general trend in bar height observed during flood evolution
exhibited the main feature of the theoretical solution. In particular, bar damping occurred close
to the peak of the hydrograph and was followed by bar growth in the decay stage of the flood.
However, not surprisingly, in many cases the weakly nonlinear assumption was violated and a
strong dependence of the final bar height on the value assumed for the initial amplitude emerged.
Finally, Welford (1994) noted that pre-existing bars, with different sediment size distributions,
may be present along the reach under investigation, and affect the bed response to new floods.
This feature could not be accounted for by TS’ theory which assumed uniform grain size and
Welford (1994) concludes suggesting the need to extend the theoretical approach, such to account
for the effects of strong nonlinearities and grain sorting.

More recently, a somewhat similar field investigation was pursued by Eekhout (2014) (but see
also Eekhout et al., 2013) on the Hooge Raam, a tributary of the river Meuse, a lowland Dutch
sandy stream (median grain size of 218µm). A 600m reach of this small river was straightened in
2009 in the context of a stream restoration project that included the construction of a sinuous
channel pattern, just downstream of the straight reach. Figure 127 shows an important feature of
this investigation. After 320−350 days from the start of the experiment dense vegetation appeared
in the upstream reach, possibly due to nutrient supply from the neighboring agricultural lands.
As a result, an irregular bed morphology, without a clear pattern of alternate bars, was observed
upstream and a regular alternate bar pattern developed in the downstream reach. Digital Elevation
Models (DEMs) of bed topography were constructed, based on 13 GPS-surveys characterized by
an accuracy of 1− 2 cm, conveniently filtered by subtracting the average bed elevation associated
with the average longitudinal channel slope and further using a LOESS regression algorithm
(Figure 128). The pattern emerged from this procedure was initially fairly regular, with individual
bars clearly distinguishable. In total, six bars were identified, three on each side of the channel,
having excluded the most downstream bar, that the Authors assume was possibly affected by the
downstream boundary. Later, starting from the fifth survey, a sort of sinuous thalweg appeared
and the bed pattern became more complex. The bar development was investigated analyzing the
variations of bar wavelength, bar amplitude, and longitudinal bar position.
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Figure 127. Three aerial photos of the river patterns taken on the Hooge Raam, at different times from the start of
the field experiment (flow from bottom to top). Note, in the middle photo the irregular vegetated pattern in the
upstream reach, as opposed to the regular alternate bar pattern in the downstream reach (reproduced from Figure

3.3 of Eekhout, 2014, courtesy of Joris Eekhout).

Figure 128. Bed topography from the 13 GPS-surveys of the Hooge Raam reach investigated by Eekhout (2014).
The bars are numbered to locate them easily. Flow from bottom to top (reproduced from Figure 3.6 of Eekhout,

2014, courtesy of Joris Eekhout).

Figure 129 shows that the bars lengthen until the fifth survey and then reach an approximate
equilibrium. The bar amplitude exhibits a similar trend, although much less regular. Note
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Figure 126. (a) The bar height HF reached at the end of the flood event in the experiments of Tubino (1991) (black
circles) is plotted versus the unsteadiness parameter ϵM/σ. The bar height HF is scaled by the equilibrium bar

height associated with the final state HTF . The solid line represents theoretical results. (b) Temporal variation of
the dimensionless bar height H (scaled by the reference flow depth D0). The solid line corresponds to the weakly

nonlinear theory of TS, the dashed line represents the theoretical equilibrium value HT associated with the
instantaneous conditions. Data (black circles) refer to the two runs D72 and D721 characterized by identical

hydrographs but different initial conditions. The former run started from a plane-bed initial configuration, whereas
in the run D721 the bed configuration obtained at the end of experiment D72 was used as initial configuration

(modified from Tubino, 1991).

during which alternate bars develop rapidly. This turned out as a most appropriate site for the
tests pursued by the Author. The general trend in bar height observed during flood evolution
exhibited the main feature of the theoretical solution. In particular, bar damping occurred close
to the peak of the hydrograph and was followed by bar growth in the decay stage of the flood.
However, not surprisingly, in many cases the weakly nonlinear assumption was violated and a
strong dependence of the final bar height on the value assumed for the initial amplitude emerged.
Finally, Welford (1994) noted that pre-existing bars, with different sediment size distributions,
may be present along the reach under investigation, and affect the bed response to new floods.
This feature could not be accounted for by TS’ theory which assumed uniform grain size and
Welford (1994) concludes suggesting the need to extend the theoretical approach, such to account
for the effects of strong nonlinearities and grain sorting.

More recently, a somewhat similar field investigation was pursued by Eekhout (2014) (but see
also Eekhout et al., 2013) on the Hooge Raam, a tributary of the river Meuse, a lowland Dutch
sandy stream (median grain size of 218µm). A 600m reach of this small river was straightened in
2009 in the context of a stream restoration project that included the construction of a sinuous
channel pattern, just downstream of the straight reach. Figure 127 shows an important feature of
this investigation. After 320−350 days from the start of the experiment dense vegetation appeared
in the upstream reach, possibly due to nutrient supply from the neighboring agricultural lands.
As a result, an irregular bed morphology, without a clear pattern of alternate bars, was observed
upstream and a regular alternate bar pattern developed in the downstream reach. Digital Elevation
Models (DEMs) of bed topography were constructed, based on 13 GPS-surveys characterized by
an accuracy of 1− 2 cm, conveniently filtered by subtracting the average bed elevation associated
with the average longitudinal channel slope and further using a LOESS regression algorithm
(Figure 128). The pattern emerged from this procedure was initially fairly regular, with individual
bars clearly distinguishable. In total, six bars were identified, three on each side of the channel,
having excluded the most downstream bar, that the Authors assume was possibly affected by the
downstream boundary. Later, starting from the fifth survey, a sort of sinuous thalweg appeared
and the bed pattern became more complex. The bar development was investigated analyzing the
variations of bar wavelength, bar amplitude, and longitudinal bar position.
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Figure 127. Three aerial photos of the river patterns taken on the Hooge Raam, at different times from the start of
the field experiment (flow from bottom to top). Note, in the middle photo the irregular vegetated pattern in the
upstream reach, as opposed to the regular alternate bar pattern in the downstream reach (reproduced from Figure

3.3 of Eekhout, 2014, courtesy of Joris Eekhout).

Figure 128. Bed topography from the 13 GPS-surveys of the Hooge Raam reach investigated by Eekhout (2014).
The bars are numbered to locate them easily. Flow from bottom to top (reproduced from Figure 3.6 of Eekhout,

2014, courtesy of Joris Eekhout).

Figure 129 shows that the bars lengthen until the fifth survey and then reach an approximate
equilibrium. The bar amplitude exhibits a similar trend, although much less regular. Note
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that when (around half of the experiment) the regular pattern of alternate bars evolved into
an irregular one, the bar amplitudes declined. Bar migration was observed to occur around the
half of the experiment and then declined just like the bar lengthening. The Authors interpreted

Figure 129. Temporal variations of (a) the bar wavelength, (b) the bar amplitude, (c) the bar migration rates and
(d) the bar elongation, averaged over five bars (modified from Figure 3.7 of Eekhout, 2014, courtesy of Joris

Eekhout).

these observations noting that, during the experiment, the bed slope decreased and reached half
its initial value after 938 days. In response to the declined bed slope, the average flow velocity,
the average Shields parameter and the average Froude number also declined, such that the flow
conditions became increasingly unfavorable for alternate bar formation. Moreover, the declining
observed values of the bar migration rates led the Authors to classify bars as nonmigrating.

Once again, the physical and theoretical basis justifying these conclusions remains unexplored.
In particular, one would like to answer some reasonable questions. In particular: were the initial
bars able to migrate through the meandering reach? Indeed, as pointed out at the beginning
of this chapter, it has been known since the work of Kinoshita and Miwa (1974) that sufficient
sinuosity makes free bars unable to migrate through a meandering channel. If this were the case
in the experiments of Eekhout (2014), then the explanation of the observed behavior might point
at the presence of a meandering reach downstream of the straight reach that would force bars to
stop migrating. Further work will be needed to clarify these aspects.

6.7.2 Recent field observations of alternate bar migration

As mentioned in Section 6.1, field observations have recently become easier with the help of a
variety of modern techniques. Many of the recent field studies focus on wandering (e.g. Church and
Rice, 2009) or braiding rivers (e.g. Henshaw et al., 2013). Few studies focus on the dynamics of
alternate bars, in an attempt to verify the applicability of the outcomes of theoretical analysis and
laboratory observations to the actual phenomenon observed in the field. The most comprehensive
of these studies is perhaps the work of Adami (2016) (but see also Adami et al., 2016), that focuses
on the long-term dynamics of alternate bars in the Alpine Rhine River. This is the most classical
example of channelized river where a long and regular sequence of alternate bars has formed and
has been monitored for decades since the pioneering work of Jaeggi (1984). The hydrology of this
river is dominated by snow-melt in spring-summer and larger floods in autumn, with artificial
perturbations due to hydropower production. The sequence of hydrographs recorded in a period
of around 30 years, starting from 1984 is reported in Figure 130.

Data for the wavelength, height and migration speed of alternate bars were calculated from
images acquired by Landsat 4-5 TM (30 m resolution), Landsat 7 ETM+, and Landsat 8 OLI (15
m resolution of the panchromatic band) in the 58 dates displayed in Figure 130. Emerged gravel
bars were clearly visible only for discharge values lower than a threshold QF = 350m3s−1, whilst
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Figure 130. Sequence of hydrographs recorded in the Alpine Rhine River during the period 1984-2012. Grey circles
correspond to dates when the analyzed Landsat images were acquired. Fully wet discharge QFW ≃ 300 m3s−1

(solid line); discharge for full cross-sectional transport QFT ≃ 650 m3s−1 (dashed line); critical discharge for
alternate bar formation (Colombini et al., 1987) Qcr ≃ 1900 m3s−1 (dotted line) (reproduced from Adami, 2016,

under License Creative Commons Attribution Non-commercial No Derivatives).

the discharges covered by the complete data set fell in the range 64− 540m3s−1.
The Figure 131a shows the spatial distribution of the cumulative migration of single bars

over the period 1999-2010. Downstream migration amounting to 9-10 river widths peaks in the
downstream region; minima (smaller than one river width) occur in the upstream region near
planform obstacles; only 3 bars out of 77 showed a slight upstream migration. At the scale of a
single flood event, it turned out that bars migrated at most a few channel widths even during the
largest floods. Moreover, bars never disappeared completely to reform later. Two different sets of
bars were identified (Figure 131b): stationary bars, located in the upstream reach near bends and
ramps, and migrating bars, located in the downstream reach, sufficiently far from bends and ramps.
The Figure 131b also shows that bar migration occurred exclusively during larger floods. In the
absence of significant events (e.g. in 2006-2007) hardly any migration occurred, even in the case
of free bars. Steady bars (closed symbols) moved slightly upstream and downstream in a narrow
range of about two river widths, and were not affected by floods. Analyzing the effect of different
floods on bar migration in the whole observation period, Adami (2016) defined a morphologically
relevant threshold for the flow discharge Q2 = 780m3s−1, such that full transport occurred in
the cross-sections whilst no significant bar migration was detected for less intense floods. As Q
increased starting from Q2, migration increased, peaked at Q = 1800m3s−1 and then decreased
until it vanished for the largest floods when bar formation was prevented.

The ensemble of bar wavelengths of each monitored bar unit is plotted in Figure 132, along
with their lengthening/shortening, i.e. the (positive or negative) variations of bar lengths recorded
in the period 1999 − 2010. The bar wavelengths fall in the range 750 − 1700m, corresponding
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that when (around half of the experiment) the regular pattern of alternate bars evolved into
an irregular one, the bar amplitudes declined. Bar migration was observed to occur around the
half of the experiment and then declined just like the bar lengthening. The Authors interpreted

Figure 129. Temporal variations of (a) the bar wavelength, (b) the bar amplitude, (c) the bar migration rates and
(d) the bar elongation, averaged over five bars (modified from Figure 3.7 of Eekhout, 2014, courtesy of Joris

Eekhout).
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sinuosity makes free bars unable to migrate through a meandering channel. If this were the case
in the experiments of Eekhout (2014), then the explanation of the observed behavior might point
at the presence of a meandering reach downstream of the straight reach that would force bars to
stop migrating. Further work will be needed to clarify these aspects.

6.7.2 Recent field observations of alternate bar migration

As mentioned in Section 6.1, field observations have recently become easier with the help of a
variety of modern techniques. Many of the recent field studies focus on wandering (e.g. Church and
Rice, 2009) or braiding rivers (e.g. Henshaw et al., 2013). Few studies focus on the dynamics of
alternate bars, in an attempt to verify the applicability of the outcomes of theoretical analysis and
laboratory observations to the actual phenomenon observed in the field. The most comprehensive
of these studies is perhaps the work of Adami (2016) (but see also Adami et al., 2016), that focuses
on the long-term dynamics of alternate bars in the Alpine Rhine River. This is the most classical
example of channelized river where a long and regular sequence of alternate bars has formed and
has been monitored for decades since the pioneering work of Jaeggi (1984). The hydrology of this
river is dominated by snow-melt in spring-summer and larger floods in autumn, with artificial
perturbations due to hydropower production. The sequence of hydrographs recorded in a period
of around 30 years, starting from 1984 is reported in Figure 130.

Data for the wavelength, height and migration speed of alternate bars were calculated from
images acquired by Landsat 4-5 TM (30 m resolution), Landsat 7 ETM+, and Landsat 8 OLI (15
m resolution of the panchromatic band) in the 58 dates displayed in Figure 130. Emerged gravel
bars were clearly visible only for discharge values lower than a threshold QF = 350m3s−1, whilst
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Figure 130. Sequence of hydrographs recorded in the Alpine Rhine River during the period 1984-2012. Grey circles
correspond to dates when the analyzed Landsat images were acquired. Fully wet discharge QFW ≃ 300 m3s−1

(solid line); discharge for full cross-sectional transport QFT ≃ 650 m3s−1 (dashed line); critical discharge for
alternate bar formation (Colombini et al., 1987) Qcr ≃ 1900 m3s−1 (dotted line) (reproduced from Adami, 2016,

under License Creative Commons Attribution Non-commercial No Derivatives).

the discharges covered by the complete data set fell in the range 64− 540m3s−1.
The Figure 131a shows the spatial distribution of the cumulative migration of single bars

over the period 1999-2010. Downstream migration amounting to 9-10 river widths peaks in the
downstream region; minima (smaller than one river width) occur in the upstream region near
planform obstacles; only 3 bars out of 77 showed a slight upstream migration. At the scale of a
single flood event, it turned out that bars migrated at most a few channel widths even during the
largest floods. Moreover, bars never disappeared completely to reform later. Two different sets of
bars were identified (Figure 131b): stationary bars, located in the upstream reach near bends and
ramps, and migrating bars, located in the downstream reach, sufficiently far from bends and ramps.
The Figure 131b also shows that bar migration occurred exclusively during larger floods. In the
absence of significant events (e.g. in 2006-2007) hardly any migration occurred, even in the case
of free bars. Steady bars (closed symbols) moved slightly upstream and downstream in a narrow
range of about two river widths, and were not affected by floods. Analyzing the effect of different
floods on bar migration in the whole observation period, Adami (2016) defined a morphologically
relevant threshold for the flow discharge Q2 = 780m3s−1, such that full transport occurred in
the cross-sections whilst no significant bar migration was detected for less intense floods. As Q
increased starting from Q2, migration increased, peaked at Q = 1800m3s−1 and then decreased
until it vanished for the largest floods when bar formation was prevented.

The ensemble of bar wavelengths of each monitored bar unit is plotted in Figure 132, along
with their lengthening/shortening, i.e. the (positive or negative) variations of bar lengths recorded
in the period 1999 − 2010. The bar wavelengths fall in the range 750 − 1700m, corresponding
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Figure 131. (a) Cumulative bar migration of single bars in the Alpine Rhine River during the period 1999-2010. (b)
Temporal variation of the migration of four bars monitored in the period 1999-2010. Open symbols: migrating bars;
closed symbols: steady bars. Vertical lines represent the sequence of hydrographs recorded in the same period, with

the discharge Q scaled by QFT (reproduced from Adami, 2016, under License Creative Commons Attribution
Non-commercial No Derivatives).

roughly to 7− 17 average channel widths. The local elongation/shortening of bars is driven by
ramps (solid vertical lines in Figure 132), single bends or sequences of bends (dashed vertical
lines), that generate discontinuities in the process of bar formation. Comparison with the theory
of Colombini et al. (1987) showed that almost every flood (with only two exceptions in 30 years)
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Figure 132. (a) Bar wavelength of each monitored bar unit, based on the complete Landsat imagery data set
(1984− 2013). Light grey area: theoretical wavelength range of free bars; dark grey area: theoretical range of forced

bars. (b) Bar elongation in the period 1999− 2010. Vertical dashed lines represent bends, solid vertical lines
represent ramps (reproduced from Adami, 2016, under License Creative Commons Attribution Non-commercial No

Derivatives).

had peak value falling within the regime where alternate bars should form and, most of the time
when the discharge exceeded the QFT threshold, the channel was subject to free bar instability.

Also, linear theory predicted values of the most unstable free bar wavelengths around 750m,
a nearly constant value in the whole reach. Note that, unlike the bar height, the most unstable
bar wavelength is very weakly dependent on the width to depth ratio, hence its critical value may
be reasonably taken as representative of bar instability for the whole duration of the flood. The
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Figure 131. (a) Cumulative bar migration of single bars in the Alpine Rhine River during the period 1999-2010. (b)
Temporal variation of the migration of four bars monitored in the period 1999-2010. Open symbols: migrating bars;
closed symbols: steady bars. Vertical lines represent the sequence of hydrographs recorded in the same period, with

the discharge Q scaled by QFT (reproduced from Adami, 2016, under License Creative Commons Attribution
Non-commercial No Derivatives).

roughly to 7− 17 average channel widths. The local elongation/shortening of bars is driven by
ramps (solid vertical lines in Figure 132), single bends or sequences of bends (dashed vertical
lines), that generate discontinuities in the process of bar formation. Comparison with the theory
of Colombini et al. (1987) showed that almost every flood (with only two exceptions in 30 years)
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Figure 132. (a) Bar wavelength of each monitored bar unit, based on the complete Landsat imagery data set
(1984− 2013). Light grey area: theoretical wavelength range of free bars; dark grey area: theoretical range of forced

bars. (b) Bar elongation in the period 1999− 2010. Vertical dashed lines represent bends, solid vertical lines
represent ramps (reproduced from Adami, 2016, under License Creative Commons Attribution Non-commercial No

Derivatives).

had peak value falling within the regime where alternate bars should form and, most of the time
when the discharge exceeded the QFT threshold, the channel was subject to free bar instability.

Also, linear theory predicted values of the most unstable free bar wavelengths around 750m,
a nearly constant value in the whole reach. Note that, unlike the bar height, the most unstable
bar wavelength is very weakly dependent on the width to depth ratio, hence its critical value may
be reasonably taken as representative of bar instability for the whole duration of the flood. The
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predicted value of wavelengths of migrating alternate bars is slightly smaller than the measured
values (750− 1000m). One may reasonably wonder why, as we have seen that nonlinear effects do
lengthen bars significantly. The likely explanation is possibly related to the small duration of the
floods. Indeed, Adami (2016) states that the value of the unsteadiness parameter ϵM/σ of Tubino
(1991), computed for several floods examined in their study, is approximately as large as 20. This
is a very large value that does not allow free bars to develop their nonlinear equilibrium states
during a single flood.

On the other hand, Adami (2016) computed the wavelength of forced steady bars according to
the theory of Zolezzi and Seminara (2001) and found that it falls in the range 2000− 3200m. This
is almost twice as much as the observed wavelengths (1200− 1500m) of the bars they classified as
non-migrating. This is a severe discrepancy that calls for theoretical understanding. Adami (2016)
suggests the possibility that the interaction between free and forced bars might be responsible for
the shortening of stationary bars.

Figure 133. Longitudinal distribution of bar heights along the Alpine Rhine river centerline in the observations of
Adami (2016). Vertical dashed lines represent bends; solid vertical lines represent ramps (reproduced from Adami,

2016, under License Creative Commons Attribution Non-commercial No Derivatives).

Finally, bar height fell in the range 2.5−4m, amounting to about 1-1.5 times the reach averaged
water depth (Figure 133), with fluctuations near bends and ramps where bar height was damped.
Observed values were compared with the values of the equilibrium amplitude of free migrating
bars predicted by Colombini et al. (1987) and Ikeda (1982b). This exercise, however, is not an easy
one as in both formulations the bar height is a function of the width to depth ratio, which varies
strongly during a flood. Hence, applying such theories leads to bar heights decreasing from an
upper limit, associated with the flow discharge Q2, to zero as Q approaches Qcr. Choosing a flow
discharge to perform a comparison theory versus observations is then quite arbitrary as clarified
by the theory of Tubino (1991). This notwithstanding, Adami (2016) evaluated the bar height
for Q = Q2 and found that the observed bar heights were on average smaller than the predicted
values.

6.7.3 The role of sediment heterogeneity: sorting patterns

Sorting is a process whereby, starting from a spatially uniform grain size distribution, the
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distinct motion of different grain sizes leads to clearly identifiable, organized non uniformities in
the horizontal and/or in the vertical directions. The expression of such non-uniformities are typical
patterns. As pointed out by Seminara (1995), some fluvial bedforms are genuinely sorting patterns,
in that they exist only if the bed consists of heterogeneous sediments. They are generated by a
rearrangement of the grain size distribution of the surface layer, hence the active layer approach of
Hirano (1971) is an appropriate tool to model the process. Below, we outline two such horizontal
patterns, namely bedload sheets and longitudinal streaks.

More challenging sorting phenomena are those which arise in free bedforms characterized by
amplitudes much larger than grain size. In this case, besides the horizontal rearrangement of the
grain size distribution, bedform migration leads to vertical mixing and consequent vertical sorting.
The latter process cannot be modeled in the context of the classical active layer framework except
for the very initial stage of bedform development, when the amplitude of perturbations is very
small. Below, we provide a brief overview of the effects of sorting on the characteristics of free
bars.

Sorting patterns originating from a rearrangement of the grain size distribution of the surface layer

Although, in this Monograph we focus on large scale bedforms, it is instructive to provide a brief
overview of small scale sorting patterns.

Bedload sheets

Bedload sheets are the smallest dune-type transverse bedforms observed in gravel bed rivers
(Whiting et al., 1988) and consist of rhythmic sequences of coarse and fine material (Figure 134).
Their amplitudes are very low (of the order of few grain sizes) and they are observed to migrate

Figure 134. Bedload sheets observed in the laboratory. Courtesy of Peter Whiting.

downstream, i.e. they are sorting waves. Whiting et al. (1988) note that “Bed load sheets form
and migrate downstream as a consequence of the catch and mobilize process, in which large grains
are caught in the wakes of other large grains, followed by infilling of their interstices by smaller
particles, which can in turn smooth out hydraulic wakes causing large particles to be remobilized”.
A theoretical explanation of the mechanism of bedload sheet formation was provided by Seminara
et al. (1996) who formulated the first stability theory of fluvial bedforms in heterogeneous sediments.
They showed that bedload sheets are sorting waves, exhibiting distinct coarse fronts which arise

241



Theoretical Morphodynamics Straight Channels

predicted value of wavelengths of migrating alternate bars is slightly smaller than the measured
values (750− 1000m). One may reasonably wonder why, as we have seen that nonlinear effects do
lengthen bars significantly. The likely explanation is possibly related to the small duration of the
floods. Indeed, Adami (2016) states that the value of the unsteadiness parameter ϵM/σ of Tubino
(1991), computed for several floods examined in their study, is approximately as large as 20. This
is a very large value that does not allow free bars to develop their nonlinear equilibrium states
during a single flood.

On the other hand, Adami (2016) computed the wavelength of forced steady bars according to
the theory of Zolezzi and Seminara (2001) and found that it falls in the range 2000− 3200m. This
is almost twice as much as the observed wavelengths (1200− 1500m) of the bars they classified as
non-migrating. This is a severe discrepancy that calls for theoretical understanding. Adami (2016)
suggests the possibility that the interaction between free and forced bars might be responsible for
the shortening of stationary bars.

Figure 133. Longitudinal distribution of bar heights along the Alpine Rhine river centerline in the observations of
Adami (2016). Vertical dashed lines represent bends; solid vertical lines represent ramps (reproduced from Adami,

2016, under License Creative Commons Attribution Non-commercial No Derivatives).

Finally, bar height fell in the range 2.5−4m, amounting to about 1-1.5 times the reach averaged
water depth (Figure 133), with fluctuations near bends and ramps where bar height was damped.
Observed values were compared with the values of the equilibrium amplitude of free migrating
bars predicted by Colombini et al. (1987) and Ikeda (1982b). This exercise, however, is not an easy
one as in both formulations the bar height is a function of the width to depth ratio, which varies
strongly during a flood. Hence, applying such theories leads to bar heights decreasing from an
upper limit, associated with the flow discharge Q2, to zero as Q approaches Qcr. Choosing a flow
discharge to perform a comparison theory versus observations is then quite arbitrary as clarified
by the theory of Tubino (1991). This notwithstanding, Adami (2016) evaluated the bar height
for Q = Q2 and found that the observed bar heights were on average smaller than the predicted
values.

6.7.3 The role of sediment heterogeneity: sorting patterns

Sorting is a process whereby, starting from a spatially uniform grain size distribution, the
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distinct motion of different grain sizes leads to clearly identifiable, organized non uniformities in
the horizontal and/or in the vertical directions. The expression of such non-uniformities are typical
patterns. As pointed out by Seminara (1995), some fluvial bedforms are genuinely sorting patterns,
in that they exist only if the bed consists of heterogeneous sediments. They are generated by a
rearrangement of the grain size distribution of the surface layer, hence the active layer approach of
Hirano (1971) is an appropriate tool to model the process. Below, we outline two such horizontal
patterns, namely bedload sheets and longitudinal streaks.

More challenging sorting phenomena are those which arise in free bedforms characterized by
amplitudes much larger than grain size. In this case, besides the horizontal rearrangement of the
grain size distribution, bedform migration leads to vertical mixing and consequent vertical sorting.
The latter process cannot be modeled in the context of the classical active layer framework except
for the very initial stage of bedform development, when the amplitude of perturbations is very
small. Below, we provide a brief overview of the effects of sorting on the characteristics of free
bars.

Sorting patterns originating from a rearrangement of the grain size distribution of the surface layer

Although, in this Monograph we focus on large scale bedforms, it is instructive to provide a brief
overview of small scale sorting patterns.

Bedload sheets

Bedload sheets are the smallest dune-type transverse bedforms observed in gravel bed rivers
(Whiting et al., 1988) and consist of rhythmic sequences of coarse and fine material (Figure 134).
Their amplitudes are very low (of the order of few grain sizes) and they are observed to migrate

Figure 134. Bedload sheets observed in the laboratory. Courtesy of Peter Whiting.

downstream, i.e. they are sorting waves. Whiting et al. (1988) note that “Bed load sheets form
and migrate downstream as a consequence of the catch and mobilize process, in which large grains
are caught in the wakes of other large grains, followed by infilling of their interstices by smaller
particles, which can in turn smooth out hydraulic wakes causing large particles to be remobilized”.
A theoretical explanation of the mechanism of bedload sheet formation was provided by Seminara
et al. (1996) who formulated the first stability theory of fluvial bedforms in heterogeneous sediments.
They showed that bedload sheets are sorting waves, exhibiting distinct coarse fronts which arise
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from a peculiar instability of the grain size distribution. Their growth is strictly due to grain
sorting, which drives spatial variations of bottom roughness, which in turn modifies the fluid
motion. This leads to perturbations of bedload transport which give rise to small perturbations of
bed elevation with amplitude scaling with grain size.

Bedload sheets are dune-like but differ from dunes as sorting is the dominant effect controlling
their growth, whilst sorting in dunes is a relatively small perturbation of a pattern which would
exist anyway, independently of sorting. Note that a sort of sheets, i.e. secondary dunes of a few
grain diameters in height and a few tens of grain diameters in length, have been reported to form
in experiments with unimodal bed material (gravel with diameter ranging 6-64 mm with no sand)
(Gomez et al., 1989). Later observations of Nelson et al. (2009) in sand free experiments suggest
that it is the heterogeneous character of the sediment (ratio of coarse to fine grain sizes) rather
than the presence or absence of sand that drives the formation of bedload sheets. This finding is
in agreement with the theory of Seminara et al. (1996).

Bedload sheets belong to a wider class of patterns that geomorphologists call patches (Dietrich
et al., 2005; Nelson et al., 2009). A clear classification of these sorting features does not seem
to exist. Nelson et al. (2009) distinguish between free and forced patches (with a further class
of fixed patches in between). Free patches develop spontaneously in the absence of topographic
forcing, i.e. they coincide with bedload sheets. Forced patches are driven by external forcing (e.g.
curvature in meandering rivers or obstacles affecting the flow and sediment transport). Nelson
et al. (2009) include among the forced patches also the sorting patterns developing when large
amplitude bedforms migrate in the channel. Migrating bedforms are actually free patterns as
they arise spontaneously. However, in this case, sorting is forced by the spatial variations of the
bottom stress due to the spatially varying topography, as well as by the vertical mixing induced
by bedform migration.

Below, we outline some observations on free patches. The first set of experiments (Dietrich
et al., 1989; Kirchner et al., 1990) was conducted at the University of Tsukuba in Japan in 1987.
The sediment supply to a small flume was progressively reduced, keeping the water discharge, the
flume slope and the bulk (sediment feed) grain size distribution constant. The width-to-depth
ratio was maintained small enough to suppress the development of any large scale bedform. The
main observation consisted of the fact that the bed surface displayed the formation of patches, i.e.
regions with some recognizable degree of coarseness, measured by their coarse mean grain size,
varying for different patches. Four distinct patch types were observed. They were classified as

Figure 135. Sorting pattern map in the Tsukuba experiments of Dietrich et al. (1989) at the end of the runs
characterized by sediment feeds (a) 17.4 g/min cm and (b) 6.1 g/min cm, respectively. Courtesy of Peter Nelson.
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smooth, transitional, congested and inactive, corresponding to increasing values of their coarse
mean grain size. The last type displayed no active bed load transport. Figure 135 provides a visual
picture of patches under different sediment feed conditions. Moreover, as mentioned by Dietrich
et al. (1989), “inactive and congested zones expanded as the sediment supply was reduced. Active
transport became confined to a corridor down the center of the channel, the width of which narrowed
as sediment supply was reduced. At the lowest sediment transport rate the bed ultimately exhibited a
virtually uniform pavement”. Similar results were obtained in a second set of experiments (Nelson
et al., 2009), conducted at the University of California in 2005.

To our knowledge no theoretical interpretation of these experiments in the line of the work of
Seminara et al. (1996) has been provided so far.

Longitudinal streaks

These patterns consist of rows of streaks aligned with the flow in a straight channel. They are
not genuine sorting patterns as they form also if the sediment is homogeneous. In this case they
are usually called sand ridges and their expression consists of lateral periodic oscillations of bed
elevation. The process from which they originate is an instability mechanism which drives the

Figure 136. Sketch of sand ridges with lateral recirculation cells.

development of lateral recirculation cells. Note that instability is strictly linked to the anisotropy
of turbulence, hence a second order closure model is required to provide a theoretical interpretation.
The theory of Colombini (1993) successfully predicts the formation of longitudinal streaks. The
secondary flow associated with recirculation cells tends to displace grains from the bottom troughs
towards the bottom crests. Equilibrium is achieved when the tangential force associated with the
secondary flow at the bed is balanced by the tangential lateral component of the grain weight
(Figure 136). The amplitude of sand ridges is rarely larger than one or two grain diameters, and
the transverse spacing is invariably of the order of the flow depth. Linear stability results suggest
that sand ridge formation apparently requires rather high values of the Shields stress, i.e. rather
strong sediment transport. However, sand ridges are commonly observed at Shields stresses as low
as only slightly above the threshold of motion.

If sediments are heterogeneous a second independent (sorting) mechanism contributes to the
destabilization of the bed. Finer (coarser) material accumulates on the crests (troughs) of the
ridges and the resulting bedforms are then called longitudinal streaks. The theory of Colombini
and Parker (1995) shows that allowing for even slight heterogeneity of bed sediment results in the
formation of streaks at any Shields stress above the threshold of motion (Figure 137).
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from a peculiar instability of the grain size distribution. Their growth is strictly due to grain
sorting, which drives spatial variations of bottom roughness, which in turn modifies the fluid
motion. This leads to perturbations of bedload transport which give rise to small perturbations of
bed elevation with amplitude scaling with grain size.

Bedload sheets are dune-like but differ from dunes as sorting is the dominant effect controlling
their growth, whilst sorting in dunes is a relatively small perturbation of a pattern which would
exist anyway, independently of sorting. Note that a sort of sheets, i.e. secondary dunes of a few
grain diameters in height and a few tens of grain diameters in length, have been reported to form
in experiments with unimodal bed material (gravel with diameter ranging 6-64 mm with no sand)
(Gomez et al., 1989). Later observations of Nelson et al. (2009) in sand free experiments suggest
that it is the heterogeneous character of the sediment (ratio of coarse to fine grain sizes) rather
than the presence or absence of sand that drives the formation of bedload sheets. This finding is
in agreement with the theory of Seminara et al. (1996).

Bedload sheets belong to a wider class of patterns that geomorphologists call patches (Dietrich
et al., 2005; Nelson et al., 2009). A clear classification of these sorting features does not seem
to exist. Nelson et al. (2009) distinguish between free and forced patches (with a further class
of fixed patches in between). Free patches develop spontaneously in the absence of topographic
forcing, i.e. they coincide with bedload sheets. Forced patches are driven by external forcing (e.g.
curvature in meandering rivers or obstacles affecting the flow and sediment transport). Nelson
et al. (2009) include among the forced patches also the sorting patterns developing when large
amplitude bedforms migrate in the channel. Migrating bedforms are actually free patterns as
they arise spontaneously. However, in this case, sorting is forced by the spatial variations of the
bottom stress due to the spatially varying topography, as well as by the vertical mixing induced
by bedform migration.

Below, we outline some observations on free patches. The first set of experiments (Dietrich
et al., 1989; Kirchner et al., 1990) was conducted at the University of Tsukuba in Japan in 1987.
The sediment supply to a small flume was progressively reduced, keeping the water discharge, the
flume slope and the bulk (sediment feed) grain size distribution constant. The width-to-depth
ratio was maintained small enough to suppress the development of any large scale bedform. The
main observation consisted of the fact that the bed surface displayed the formation of patches, i.e.
regions with some recognizable degree of coarseness, measured by their coarse mean grain size,
varying for different patches. Four distinct patch types were observed. They were classified as

Figure 135. Sorting pattern map in the Tsukuba experiments of Dietrich et al. (1989) at the end of the runs
characterized by sediment feeds (a) 17.4 g/min cm and (b) 6.1 g/min cm, respectively. Courtesy of Peter Nelson.
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smooth, transitional, congested and inactive, corresponding to increasing values of their coarse
mean grain size. The last type displayed no active bed load transport. Figure 135 provides a visual
picture of patches under different sediment feed conditions. Moreover, as mentioned by Dietrich
et al. (1989), “inactive and congested zones expanded as the sediment supply was reduced. Active
transport became confined to a corridor down the center of the channel, the width of which narrowed
as sediment supply was reduced. At the lowest sediment transport rate the bed ultimately exhibited a
virtually uniform pavement”. Similar results were obtained in a second set of experiments (Nelson
et al., 2009), conducted at the University of California in 2005.

To our knowledge no theoretical interpretation of these experiments in the line of the work of
Seminara et al. (1996) has been provided so far.

Longitudinal streaks

These patterns consist of rows of streaks aligned with the flow in a straight channel. They are
not genuine sorting patterns as they form also if the sediment is homogeneous. In this case they
are usually called sand ridges and their expression consists of lateral periodic oscillations of bed
elevation. The process from which they originate is an instability mechanism which drives the

Figure 136. Sketch of sand ridges with lateral recirculation cells.

development of lateral recirculation cells. Note that instability is strictly linked to the anisotropy
of turbulence, hence a second order closure model is required to provide a theoretical interpretation.
The theory of Colombini (1993) successfully predicts the formation of longitudinal streaks. The
secondary flow associated with recirculation cells tends to displace grains from the bottom troughs
towards the bottom crests. Equilibrium is achieved when the tangential force associated with the
secondary flow at the bed is balanced by the tangential lateral component of the grain weight
(Figure 136). The amplitude of sand ridges is rarely larger than one or two grain diameters, and
the transverse spacing is invariably of the order of the flow depth. Linear stability results suggest
that sand ridge formation apparently requires rather high values of the Shields stress, i.e. rather
strong sediment transport. However, sand ridges are commonly observed at Shields stresses as low
as only slightly above the threshold of motion.

If sediments are heterogeneous a second independent (sorting) mechanism contributes to the
destabilization of the bed. Finer (coarser) material accumulates on the crests (troughs) of the
ridges and the resulting bedforms are then called longitudinal streaks. The theory of Colombini
and Parker (1995) shows that allowing for even slight heterogeneity of bed sediment results in the
formation of streaks at any Shields stress above the threshold of motion (Figure 137).
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Figure 137. Longitudinal streaks with ripples superimposed on the fine streaks. Flow is from bottom to top
(courtesy of Gary Parker).

Very recently, Scherer et al. (2022) have reconsidered the problem for the case of homogeneous
sediments with the help of Karsluhe’s computational model that we have discussed in Section
3.3.3. Their results also reproduce the formation of secondary cells.

Sorting patterns originating from rearrangement of the grain size distribution in both horizontal and vertical
directions: free bars

We briefly describe some observations of sorting patterns in large scale fluvial bedforms and outline
first attempts at providing mechanistic interpretations of their formation.

The heterogeneous character of natural sediments generates mechanisms of grain sorting that
may affect bar development. Early laboratory investigations, performed by Lisle et al. (1991),
showed a sequence of events. Coarse particles accumulated at bar heads; flow and bedload transport
were diverted across the flume towards a pool; sorting in the pool directed coarse particles onto
the next bar head downstream. As a result of coarsening of bar heads, erosion at the heads was
prevented and, consequently, downstream migration of bars was inhibited. The later extensive
investigation of Lanzoni (2000b) confirmed that selective transport of individual size fractions
leads to intense longitudinal sorting and coarsening of the bar crests. As a consequence, bar
height turned out to be invariably damped with respect to the case of uniform sediment, while
the trend exhibited by the bar wavelength was less clear (Figure 138). Note that the damping
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effect associated with sediment heterogeneity was found to increase as the unperturbed Shields
parameter τ∗g0 decreased, leading to a maximum 50% reduction of bar height when τ∗g0 fell in the
range 0.05− 0.06. As τ∗g0 approached the value 0.1, damping disappeared.

Figure 138. Experimental results of Lanzoni et al. (1994) for (a) maximum bar height HBM (scaled by the
unperturbed uniform flow depth Du) and (b) bar wavelength Lb (scaled by channel half-width B). These results
were obtained in experiments where uniform glass spheres with size 1.5 mm (open circles) and bimodal mixtures of

glass spheres with sizes of 1 mm and 2 mm (full circles) were used. Data are plotted versus the unperturbed
average Shields parameter (reproduced from Lanzoni and Tubino, 1999).

A few contributions (Seminara, 1995; Lanzoni and Tubino, 1999) have also attempted to
analyze theoretically the effect of sorting on bar formation through appropriate modifications of
the classical stability theories. The approach employed in these papers follows closely the lead of
Seminara et al. (1996). It may be of interest for the reader to appreciate the novel features of the
stability analysis brought up by the heterogeneous character of the sediments. We then outline
briefly the work of Lanzoni and Tubino (1999).

The formulation of the problem differs from the classical free bar stability analysis for the
distinct approach required to model sediment transport. Hence, we still consider the flow in a
straight wide alluvial channel with non-erodible banks and model the flow as 2D. The motion
of the sediment mixture is however modeled as discussed in Section 4.7. In particular, Lanzoni
and Tubino (1999) use the active layer approach of Hirano, which had successfully been employed
by Seminara et al. (1996) to explain the formation of gravel sheets. As already pointed out this
model rules out the possibility to account for vertical sorting, implying that the validity of the
analysis will be restricted to the incipient formation of free bars, when vertical mixing does not
play a significant role yet.

We employ notations and methods discussed in Section 6.3 to investigate the linear response
of a uniform turbulent open channel stream flowing over a cohesionless heterogeneous bottom
to infinitesimal perturbations of bed topography and grain size distribution. In the present case,
besides (U, V,D,H), unknown functions of (x, y, t), an additional unknown is the probability
density function of grain size f(ϕ;x, y, t), with ϕ geologic scale for the grain size. Note that Lanzoni
and Tubino (1999) follow the original Hirano approach and assume that fi = fa = f , i.e. they
denote by f(ϕ;x, y, t) the probability density function of grain size in the active layer which they
assume to coincide with its value at the interface between the active layer and the substrate.

Using the dimensionless formulation introduced in Section 6.3, our basic state reads:

U = 1, V = 0, D = 1, H = H0(x) = H00 − β S x, f = f0(ϕ). (555)

Here, f0(ϕ) is the unperturbed probability density function of grain size.
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Figure 137. Longitudinal streaks with ripples superimposed on the fine streaks. Flow is from bottom to top
(courtesy of Gary Parker).

Very recently, Scherer et al. (2022) have reconsidered the problem for the case of homogeneous
sediments with the help of Karsluhe’s computational model that we have discussed in Section
3.3.3. Their results also reproduce the formation of secondary cells.

Sorting patterns originating from rearrangement of the grain size distribution in both horizontal and vertical
directions: free bars

We briefly describe some observations of sorting patterns in large scale fluvial bedforms and outline
first attempts at providing mechanistic interpretations of their formation.

The heterogeneous character of natural sediments generates mechanisms of grain sorting that
may affect bar development. Early laboratory investigations, performed by Lisle et al. (1991),
showed a sequence of events. Coarse particles accumulated at bar heads; flow and bedload transport
were diverted across the flume towards a pool; sorting in the pool directed coarse particles onto
the next bar head downstream. As a result of coarsening of bar heads, erosion at the heads was
prevented and, consequently, downstream migration of bars was inhibited. The later extensive
investigation of Lanzoni (2000b) confirmed that selective transport of individual size fractions
leads to intense longitudinal sorting and coarsening of the bar crests. As a consequence, bar
height turned out to be invariably damped with respect to the case of uniform sediment, while
the trend exhibited by the bar wavelength was less clear (Figure 138). Note that the damping
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effect associated with sediment heterogeneity was found to increase as the unperturbed Shields
parameter τ∗g0 decreased, leading to a maximum 50% reduction of bar height when τ∗g0 fell in the
range 0.05− 0.06. As τ∗g0 approached the value 0.1, damping disappeared.

Figure 138. Experimental results of Lanzoni et al. (1994) for (a) maximum bar height HBM (scaled by the
unperturbed uniform flow depth Du) and (b) bar wavelength Lb (scaled by channel half-width B). These results
were obtained in experiments where uniform glass spheres with size 1.5 mm (open circles) and bimodal mixtures of

glass spheres with sizes of 1 mm and 2 mm (full circles) were used. Data are plotted versus the unperturbed
average Shields parameter (reproduced from Lanzoni and Tubino, 1999).

A few contributions (Seminara, 1995; Lanzoni and Tubino, 1999) have also attempted to
analyze theoretically the effect of sorting on bar formation through appropriate modifications of
the classical stability theories. The approach employed in these papers follows closely the lead of
Seminara et al. (1996). It may be of interest for the reader to appreciate the novel features of the
stability analysis brought up by the heterogeneous character of the sediments. We then outline
briefly the work of Lanzoni and Tubino (1999).

The formulation of the problem differs from the classical free bar stability analysis for the
distinct approach required to model sediment transport. Hence, we still consider the flow in a
straight wide alluvial channel with non-erodible banks and model the flow as 2D. The motion
of the sediment mixture is however modeled as discussed in Section 4.7. In particular, Lanzoni
and Tubino (1999) use the active layer approach of Hirano, which had successfully been employed
by Seminara et al. (1996) to explain the formation of gravel sheets. As already pointed out this
model rules out the possibility to account for vertical sorting, implying that the validity of the
analysis will be restricted to the incipient formation of free bars, when vertical mixing does not
play a significant role yet.

We employ notations and methods discussed in Section 6.3 to investigate the linear response
of a uniform turbulent open channel stream flowing over a cohesionless heterogeneous bottom
to infinitesimal perturbations of bed topography and grain size distribution. In the present case,
besides (U, V,D,H), unknown functions of (x, y, t), an additional unknown is the probability
density function of grain size f(ϕ;x, y, t), with ϕ geologic scale for the grain size. Note that Lanzoni
and Tubino (1999) follow the original Hirano approach and assume that fi = fa = f , i.e. they
denote by f(ϕ;x, y, t) the probability density function of grain size in the active layer which they
assume to coincide with its value at the interface between the active layer and the substrate.

Using the dimensionless formulation introduced in Section 6.3, our basic state reads:

U = 1, V = 0, D = 1, H = H0(x) = H00 − β S x, f = f0(ϕ). (555)

Here, f0(ϕ) is the unperturbed probability density function of grain size.
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Next, we perturb the basic state by infinitesimal perturbations, expanding U , V , D, H and f
as follows:

(U, V,D,H, f) = (1, 0, 1, H0, f0) + ϵ (U1, V1, D1, H1, f1) +O(ϵ2), (556)

with ϵ a small (strictly infinitesimal) parameter measuring the amplitude of perturbations. A
similar expansion is used to express the longitudinal and transverse components of bedload and
bottom stress, like in the uniform sediment case.

Having perturbed the probability density function of grain size, it follows that the average
grain size ϕg, the standard deviation σ of the distribution and the thickness of the active layer La

(which is typically taken to be proportional to the size of the coarse fraction) are also perturbed as
follows:

(ϕg, σ, La) = (ϕg0, σ0, La0) + ϵ (ϕg1, σ1, La1) +O(ϵ2), (557)

where:
ϕg =

∫ ∞

−∞
f ϕ dϕ, σ =

∫ ∞

−∞
f (ϕ− ϕg)

2 dϕ. (558)

On substituting from (556) and (557) into the flow and sediment transport equations and
performing linearization, one obtains a linear partial differential system, amenable to a normal
mode solution of the form:

(U1, D1, H1, V1, f1) =
[(

Û1(t), D̂1(t), Ĥ1(t), f̂1(ϕ, t)
)
S1(y); V̂1(t) C1(y)

]
ei λ x + c.c., (559)

where S1 and C1 are defined as in (501) and, for the sake of simplicity, the analysis is restricted to
the first lateral mode.

Employing (559), the linearized form of the flow equations leads to a linear algebraic relation
involving the quantities Û1(t), D̂1(t), Ĥ1(t), V̂1(t), f̂1(ϕ, t). It reads:

3∑
j=1

[
a1j Û1(t) + a2j V̂1(t) + a3j Ĥ1(t) + a4j D̂1(t) + a5j

(
ϕ̂g1 − σ̂1

)]
= 0, (560)

where akj (k = 1, 2, 3, 4, j = 1, 2, 3) are identical with the coefficients (506) for the case of
homogeneous sediments and

a51 = 0, a52 = −β Cf0 dσ cfD ln 2, a53 = 0, (561)

with dσ = dg 2
σ.

The reader should note that, in the context of the present theory, the heterogeneous character
of sediments affects the flow field only through its effect on bottom roughness. On the contrary,
the grain size specific form of the sediment continuity equation is drastically different from its
homogeneous counterpart. Making use of (560) and expressing Û1(t), V̂1(t), D̂1(t), Ĥ1(t) in the
form [

Û1, V̂1, D̂1, Ĥ1

]
=

(
b10, b20, b30, b40

)
η̂1 +

(
b11, b21, b31, b41

) (
ϕ̂g1 − σ̂1

)
, (562)

with bkj (k = 1, 2, 3, 4, j = 1, 2) known coefficients, as reported by Lanzoni and Tubino (1999), the
linearized form of the Exner sediment balance equation takes the form

f0 η̂1,t + La0 f̂1,t = Γf f̂1 + f0

(
Γϕ ϕ̂g1 + Γσ σ̂1 + Γη η̂1

)
, (563)

where Γf , Γϕ, Γσ and Γη are functions of the parameters of the problem and, except for Γf , they
also depend on grain size ϕ (see Lanzoni and Tubino (1999), relations 3.20a-d). The ϕ-dependence
of (563) can be removed imposing the integral condition (389) which, at O(ϵ), reads:

∫ ∞

−∞
f̂1(ϕ) dϕ = 0. (564)
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Requiring that (563) must satisfy (564), one ends up with the following integro-differential equation:

η̂1,t = ϕ̂g1

∫ ∞

−∞
f0 Γϕ dϕ+ σ̂1

∫ ∞

−∞
f0 Γσ dϕ+ η̂1

∫ ∞

−∞
f0 Γη dϕ+

∫ ∞

−∞
Γf f̂1 dϕ. (565)

Note that the integro-differential nature of (565) is the price one has to pay to get rid of the
ϕ-dependence in the sediment continuity equation.

We can finally substitute from (565) into (563) to find:

La0f̂1,t =

[
Γf f̂1 − f0

∫ ∞

−∞
f̂1 Γf dϕ

]
+ f0

[
Γϕ −

∫ ∞

−∞
f0 Γϕ dϕ

]
ϕ̂g1

+ f0

[
Γσ −

∫ ∞

−∞
f0 Γσ dϕ

]
σ̂1 + f0

[
Γη −

∫ ∞

−∞
f0 Γη dϕ

]
η̂1. (566)

This is also an integro-differential equation that, along with (565), represents the main novel
feature of the stability analysis for heterogeneous sediments. These equations show that, on one
hand, the heterogeneous character of sediments affects the evolution equation for bed topography
(565), on the other hand flow and bed topography do affect the spatial distribution of grain size
(equation 566).

The above two integro-differential equations essentially govern the growth of perturbations of
bed elevation and grain size distribution and were solved by Lanzoni and Tubino (1999) following
the analytical approach proposed by Seminara et al. (1996). The sediment mixture is represented
by N discrete sizes, such that the probability density function f is expressed as a sum of N delta
Dirac functions δ(ϕ− ϕi), each centred at ϕi. Hence, one writes:

[
f0(ϕ, t), f̂1(ϕ, t)

]
=

N∑
i=1

[
f0(t), f̂1i(t)

]
δ(ϕ− ϕi). (567)

With the help of (567), the equations (565),(566) can be transformed into N ordinary differential
equations describing the temporal evolution of (N-1) perturbations f1i(t) of the grain size distribu-
tion function and of the perturbation of bed elevation η̂1(t). Details of the analysis are found in
Lanzoni and Tubino (1999).

Eventually, one obtains a homogeneous differential system with constant (i.e. time independent)
coefficients. This system is then readily transformed into an algebraic eigenvalue problems setting:

[
η̂1(t), f̂1i(t)

]
=

N∑
k=1

[
η̂1k, f̂1ik

]
exp(−i ωk t). (568)

Here, ωk(k = 1, 2, ..N) is the complex frequency of the k-th mode, with Im(ωk) growth rate and
Re(ωk) angular frequency.

Results for the case of a bimodal mixture suggested the following effects of sediment hetero-
geneity.

The critical value of the width parameter β for bar instability is only slightly affected, but a
significant reduction of the growth rate of bar perturbations generally occurs. Damping is found
to increase for small values of the unperturbed Shields stress τ∗g0 and relative grain roughness dg0
(Figure 139). As dg0 increases, sorting may even play a slightly destabilizing role (Figure 139(b)).
Figure 140 reports the theoretical predictions for the maximum growth rate and angular frequency
corresponding to the experimental data of Lanzoni et al. (1994) (see Figure 138). Comparison
between open and full circles allows one to estimate the effect of heterogeneity in those experiments.
Theory is qualitatively in agreement with observations as the predicted damping effect (Figure
140a) is stronger at low values of τ∗g0 and vanishes as τ∗g0 reaches a value around 0.1. The
latter finding is not surprising as, at large values of Shields stress, equal mobility is progressively
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Next, we perturb the basic state by infinitesimal perturbations, expanding U , V , D, H and f
as follows:

(U, V,D,H, f) = (1, 0, 1, H0, f0) + ϵ (U1, V1, D1, H1, f1) +O(ϵ2), (556)

with ϵ a small (strictly infinitesimal) parameter measuring the amplitude of perturbations. A
similar expansion is used to express the longitudinal and transverse components of bedload and
bottom stress, like in the uniform sediment case.

Having perturbed the probability density function of grain size, it follows that the average
grain size ϕg, the standard deviation σ of the distribution and the thickness of the active layer La

(which is typically taken to be proportional to the size of the coarse fraction) are also perturbed as
follows:

(ϕg, σ, La) = (ϕg0, σ0, La0) + ϵ (ϕg1, σ1, La1) +O(ϵ2), (557)

where:
ϕg =

∫ ∞

−∞
f ϕ dϕ, σ =

∫ ∞

−∞
f (ϕ− ϕg)

2 dϕ. (558)

On substituting from (556) and (557) into the flow and sediment transport equations and
performing linearization, one obtains a linear partial differential system, amenable to a normal
mode solution of the form:

(U1, D1, H1, V1, f1) =
[(

Û1(t), D̂1(t), Ĥ1(t), f̂1(ϕ, t)
)
S1(y); V̂1(t) C1(y)

]
ei λ x + c.c., (559)

where S1 and C1 are defined as in (501) and, for the sake of simplicity, the analysis is restricted to
the first lateral mode.

Employing (559), the linearized form of the flow equations leads to a linear algebraic relation
involving the quantities Û1(t), D̂1(t), Ĥ1(t), V̂1(t), f̂1(ϕ, t). It reads:

3∑
j=1

[
a1j Û1(t) + a2j V̂1(t) + a3j Ĥ1(t) + a4j D̂1(t) + a5j

(
ϕ̂g1 − σ̂1

)]
= 0, (560)

where akj (k = 1, 2, 3, 4, j = 1, 2, 3) are identical with the coefficients (506) for the case of
homogeneous sediments and

a51 = 0, a52 = −β Cf0 dσ cfD ln 2, a53 = 0, (561)

with dσ = dg 2
σ.

The reader should note that, in the context of the present theory, the heterogeneous character
of sediments affects the flow field only through its effect on bottom roughness. On the contrary,
the grain size specific form of the sediment continuity equation is drastically different from its
homogeneous counterpart. Making use of (560) and expressing Û1(t), V̂1(t), D̂1(t), Ĥ1(t) in the
form [

Û1, V̂1, D̂1, Ĥ1

]
=

(
b10, b20, b30, b40

)
η̂1 +

(
b11, b21, b31, b41

) (
ϕ̂g1 − σ̂1

)
, (562)

with bkj (k = 1, 2, 3, 4, j = 1, 2) known coefficients, as reported by Lanzoni and Tubino (1999), the
linearized form of the Exner sediment balance equation takes the form

f0 η̂1,t + La0 f̂1,t = Γf f̂1 + f0

(
Γϕ ϕ̂g1 + Γσ σ̂1 + Γη η̂1

)
, (563)

where Γf , Γϕ, Γσ and Γη are functions of the parameters of the problem and, except for Γf , they
also depend on grain size ϕ (see Lanzoni and Tubino (1999), relations 3.20a-d). The ϕ-dependence
of (563) can be removed imposing the integral condition (389) which, at O(ϵ), reads:

∫ ∞

−∞
f̂1(ϕ) dϕ = 0. (564)
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Requiring that (563) must satisfy (564), one ends up with the following integro-differential equation:

η̂1,t = ϕ̂g1

∫ ∞

−∞
f0 Γϕ dϕ+ σ̂1

∫ ∞

−∞
f0 Γσ dϕ+ η̂1

∫ ∞

−∞
f0 Γη dϕ+

∫ ∞

−∞
Γf f̂1 dϕ. (565)

Note that the integro-differential nature of (565) is the price one has to pay to get rid of the
ϕ-dependence in the sediment continuity equation.

We can finally substitute from (565) into (563) to find:

La0f̂1,t =

[
Γf f̂1 − f0

∫ ∞

−∞
f̂1 Γf dϕ

]
+ f0

[
Γϕ −

∫ ∞

−∞
f0 Γϕ dϕ

]
ϕ̂g1

+ f0

[
Γσ −

∫ ∞

−∞
f0 Γσ dϕ

]
σ̂1 + f0

[
Γη −

∫ ∞

−∞
f0 Γη dϕ

]
η̂1. (566)

This is also an integro-differential equation that, along with (565), represents the main novel
feature of the stability analysis for heterogeneous sediments. These equations show that, on one
hand, the heterogeneous character of sediments affects the evolution equation for bed topography
(565), on the other hand flow and bed topography do affect the spatial distribution of grain size
(equation 566).

The above two integro-differential equations essentially govern the growth of perturbations of
bed elevation and grain size distribution and were solved by Lanzoni and Tubino (1999) following
the analytical approach proposed by Seminara et al. (1996). The sediment mixture is represented
by N discrete sizes, such that the probability density function f is expressed as a sum of N delta
Dirac functions δ(ϕ− ϕi), each centred at ϕi. Hence, one writes:

[
f0(ϕ, t), f̂1(ϕ, t)

]
=

N∑
i=1

[
f0(t), f̂1i(t)

]
δ(ϕ− ϕi). (567)

With the help of (567), the equations (565),(566) can be transformed into N ordinary differential
equations describing the temporal evolution of (N-1) perturbations f1i(t) of the grain size distribu-
tion function and of the perturbation of bed elevation η̂1(t). Details of the analysis are found in
Lanzoni and Tubino (1999).

Eventually, one obtains a homogeneous differential system with constant (i.e. time independent)
coefficients. This system is then readily transformed into an algebraic eigenvalue problems setting:

[
η̂1(t), f̂1i(t)

]
=

N∑
k=1

[
η̂1k, f̂1ik

]
exp(−i ωk t). (568)

Here, ωk(k = 1, 2, ..N) is the complex frequency of the k-th mode, with Im(ωk) growth rate and
Re(ωk) angular frequency.

Results for the case of a bimodal mixture suggested the following effects of sediment hetero-
geneity.

The critical value of the width parameter β for bar instability is only slightly affected, but a
significant reduction of the growth rate of bar perturbations generally occurs. Damping is found
to increase for small values of the unperturbed Shields stress τ∗g0 and relative grain roughness dg0
(Figure 139). As dg0 increases, sorting may even play a slightly destabilizing role (Figure 139(b)).
Figure 140 reports the theoretical predictions for the maximum growth rate and angular frequency
corresponding to the experimental data of Lanzoni et al. (1994) (see Figure 138). Comparison
between open and full circles allows one to estimate the effect of heterogeneity in those experiments.
Theory is qualitatively in agreement with observations as the predicted damping effect (Figure
140a) is stronger at low values of τ∗g0 and vanishes as τ∗g0 reaches a value around 0.1. The
latter finding is not surprising as, at large values of Shields stress, equal mobility is progressively
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Figure 139. Theoretical predictions for the maximum bar growth rate are plotted versus the aspect ratio β for some
values of the unperturbed Shields stress τ∗g0 and relative grain roughness dg0 (solid lines). They are also compared
with the corresponding theoretical curves for the uniform sediment case (dotted lines): (a) dg0 = 0.001; (b) dg0 =

0.01 (reproduced from Lanzoni and Tubino, 1999).

Figure 140. Theoretical predictions for (a) the maximum bar growth rate and (b) angular frequency corresponding
to the experimental data of Lanzoni et al. (1994) (see Figure 138). Open (full) circles refer to uniform (bimodal)
sediments. Calculations have been carried out setting b = 0.2 in relation (383) (reproduced from Lanzoni and

Tubino, 1999).

attained, such that the transport function G(ζ) (equation 382) becomes independent of grain size.
Theoretical predictions (Figure 140b) also reproduce the tendency of sediment heterogeneity to
slow down bar migration as found by Lisle et al. (1991) in flume experiments with strongly graded
sediments.

Theory also agreed with the observation that bar wavelengths are shortened with respect to the
case of uniform sediments. The tendency of coarser particles to pile up at the bar crests was also
confirmed. The above results appear to be fairly encouraging. However, they leave the effect of
vertical sorting completely unexplored. This mechanism is strictly associated with bar migration,
whereby transported sediments settle at the troughs, are buried by front migration and reemerge
as the bar has migrated one wavelength. Some progress in this area of research has been recently
made (e.g. Blom et al., 2008; Stecca et al., 2014, 2016; Cordieret al., 2019), suggesting that an
assessment of the whole subject will likely be needed in the near future.

6.7.4 The role of insufficient sediment supply

Sediment supply is one of the controlling factors of bar topography in alluvial channels. However,
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the mechanisms whereby such control is expressed have not been investigated in depth.
Lisle (1982) performed some field observations on various creeks following a large flood

occurred in 1964 in northern California. Channels had undergone significant widening and strong
aggradation with fining of bed material. Moreover, as a result of the excessive sediment load, pools
had diminished and bar relief had decreased. Lisle (1982) observed that, as a consequence of these
changes, the morphodynamic effectiveness of moderate discharges in the following years increased.
Later, Lisle et al. (1993) analyzed in a laboratory flume the response of a cohesionless channel
with coarse sediment and quasi-stationary bars formed under equilibrium conditions, to reductions
in sediment supply. The feed rate was first reduced to one third and then to one tenth of the
initial value whilst the discharge was held constant. The main observation of the Authors was the
coarsening of bed surface, along with a sharp channel incision (twice the mean water depth on
average) followed by emergence of distal bars as terrace like features.

A somewhat similar experiment modeling a gravel bedded river was later performed by Venditti
et al. (2012) to investigate the role of sediment supply in bar formation and stability. Two large
flumes were employed in two linked experiments with distinct unimodal sediment mixtures.

In the smaller scale (Berkeley) experiment, alternate bars formed in the initial stage when
the flow was steady and the sediment supply constant. Figure 141 shows the bed topography
surveyed at different stages of the experiment. In the first phase (Figure 141b-f), with flow and
sediment supply constant, bars migrated downstream, lengthened and slowed down, as expected.
Also, the surfaces at the bar fronts were coarser than the pools. As the sediment supply was
removed (Figure 141g-q), 22 h from the start of the experiment, the immediate response of the
bed was the erosion of the bars, that migrated out of the flume and were not replaced by new bars
in the upstream end of the flume, though new bars did form in the lower end. This result differs
from the earlier observations in the experiment of Lisle et al. (1993) where bars did not disappear
but rather emerged. Here, the bed, following the cut in sediment supply, appeared to loose any
pattern, including a sharp reduction of surface grain-size heterogeneity, with slightly coarsened
surface and slightly reduced slope.

In the larger scale (SAFL) experiment, forced (non migrating) bars were induced by an
imposed upstream flow constriction and no free migrating bars formed. After sediment supply
was terminated, bars were progressively eroded, the bed surface coarsened and the slope was
significantly reduced. The alternate bar pattern reformed after the sediment supply was restored
and sufficient deposition had occurred to regenerate the original channel slope.

This investigation was further developed in the work of Bankert and Nelson (2018) where
migrating alternate bars were initially developed in a gravel-sand mixture under constant discharge
and sediment supply, exhibiting the known sorting pattern, with coarse bar tops and fine pools.
Supply was then increased in various stages. During the first of them, the bars remained stable
while the pools aggraded; the second supply increase led to further pool aggradation and increased
boundary shear stress over the bar tops. As a result, the bars recovered the capacity to migrate
downstream and eventually stabilize. During aggradation, the subsurface maintained its original
sediment sorting pattern, thus generating a heterogeneous stratigraphy. Next, the supply was
reduced back to its initial rate, leading the bed to degrade through that stratigraphy. As a result,
incision occurred through the pools and the bars eroded laterally until coarse sediment deposited
during the previous bar-building phase was exposed. The conclusion was that a heterogeneous
stratigraphy can play an important role in determining whether bars persist or disappear after a
sediment supply reduction.

As a final note, let us point out that the above interesting investigations underline the link
between sorting, sediment supply and bed topography, suggesting a relation between bar disap-
pearance and suppression of sediment supply. The mechanics of such processes awaits to be fully
explored theoretically.

6.7.5 Further effects that influence the development of alternate bars in the field

A further effect that may influence the properties of alternate bars observed in the field is the
non-alluvial character of the channel that will be dealt with in the next chapter. The effect of
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Figure 139. Theoretical predictions for the maximum bar growth rate are plotted versus the aspect ratio β for some
values of the unperturbed Shields stress τ∗g0 and relative grain roughness dg0 (solid lines). They are also compared
with the corresponding theoretical curves for the uniform sediment case (dotted lines): (a) dg0 = 0.001; (b) dg0 =

0.01 (reproduced from Lanzoni and Tubino, 1999).

Figure 140. Theoretical predictions for (a) the maximum bar growth rate and (b) angular frequency corresponding
to the experimental data of Lanzoni et al. (1994) (see Figure 138). Open (full) circles refer to uniform (bimodal)
sediments. Calculations have been carried out setting b = 0.2 in relation (383) (reproduced from Lanzoni and

Tubino, 1999).

attained, such that the transport function G(ζ) (equation 382) becomes independent of grain size.
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sediments.
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6.7.4 The role of insufficient sediment supply

Sediment supply is one of the controlling factors of bar topography in alluvial channels. However,
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the mechanisms whereby such control is expressed have not been investigated in depth.
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imposed upstream flow constriction and no free migrating bars formed. After sediment supply
was terminated, bars were progressively eroded, the bed surface coarsened and the slope was
significantly reduced. The alternate bar pattern reformed after the sediment supply was restored
and sufficient deposition had occurred to regenerate the original channel slope.

This investigation was further developed in the work of Bankert and Nelson (2018) where
migrating alternate bars were initially developed in a gravel-sand mixture under constant discharge
and sediment supply, exhibiting the known sorting pattern, with coarse bar tops and fine pools.
Supply was then increased in various stages. During the first of them, the bars remained stable
while the pools aggraded; the second supply increase led to further pool aggradation and increased
boundary shear stress over the bar tops. As a result, the bars recovered the capacity to migrate
downstream and eventually stabilize. During aggradation, the subsurface maintained its original
sediment sorting pattern, thus generating a heterogeneous stratigraphy. Next, the supply was
reduced back to its initial rate, leading the bed to degrade through that stratigraphy. As a result,
incision occurred through the pools and the bars eroded laterally until coarse sediment deposited
during the previous bar-building phase was exposed. The conclusion was that a heterogeneous
stratigraphy can play an important role in determining whether bars persist or disappear after a
sediment supply reduction.

As a final note, let us point out that the above interesting investigations underline the link
between sorting, sediment supply and bed topography, suggesting a relation between bar disap-
pearance and suppression of sediment supply. The mechanics of such processes awaits to be fully
explored theoretically.

6.7.5 Further effects that influence the development of alternate bars in the field

A further effect that may influence the properties of alternate bars observed in the field is the
non-alluvial character of the channel that will be dealt with in the next chapter. The effect of
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Figure 141. Sequence of bed topographies observed at different stages of Berkeley’s experiment. The bed was
initially flat. Alternate bars developed and slowed down when sediments were fed. As supply was removed, bars

were eroded, disappeared from the upstream reach but reformed downstream (courtesy of Peter Nelson).

interactions with vegetation will be mentioned in the final Chapter 8 as part of the developments
foreseen for the near future.
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7. Introduction to the morphodynamics of mixed alluvial-bedrock straight
channels

Although more refined classifications of channel type have been proposed in the geomorphologic
literature (e.g. Howard, 1980, 1987; Howard et al., 1994) the simplest classification, encompassing
two major channel types, namely alluvial and bedrock channels is sufficient for our present
introductory purposes. At one extreme, bedrock channels may be defined as channels lacking an
alluvial bed, a condition occurring when their sediment transport capacity exceeds the sediment
supply rate associated with all grain sizes. Alluvial channels are found at the other extreme, i.e.
when the underlying bedrock is nowhere exposed (Figure 142). In practice, a continuum of

Figure 142. Pictures of two different reaches of the Shimanto River, Shihoku (Japan), taken in March 2013: (a)
bedrock; (b) alluvial (courtesy of Gary Parker).

patterns is observed in nature, where actively incising channels often exhibit a mixed bedrock-
alluvial character, with exposed bedrock surrounded by regions of coarse alluvium. Also, note that
mixed bedrock-alluvial channel characteristics can also be found in sand-bed rivers. This is the
case of the lowermost Mississippi River near its outlet (Figure 143), where recent observations have
shown that “. . . despite proximity to its outlet and marine- and deltaic-depositional settings . . . the
channel bed is incompletely covered with alluvial sediment . . .Alluvial sediments are intermixed
amongst channel-bottom substrate and sidewall substrate ” (Nittrouer, 2010).

7.1. Detachment limited versus transport limited

The basic distinction between bedrock and alluvial channels has a major consequence in terms
of the fundamental equation of conservation of sediment mass. In alluvial channels, the local
net variation of bed elevation (absolute variation minus tectonic uplift) is determined by the
divergence of the sediment transport capacity of the stream. This is the well known Exner equation
that has been our major tool of investigation so far. Alluvial channels are thus described by
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Figure 143. Bathimetry of the French Quarter bend of the Mississippi River in New Orleans. Note the mixed
rock-alluvial character of the channel. Alluvial sediment is absent from the bottom of the outer region of the bend.

The limit of alluvial sand is shown by a dashed line (reproduced from Figure 2.11 of Nittrouer, 2010).

geomorphologists as transport limited environments. In an important paper, Howard et al. (1994)
introduced the notion of detachment limited systems, noting that in bedrock channels it is the
detachment capacity of the stream, measured by the absolute erosion rate E (≡ LT−1), that
determines the local net variation of bed elevation. Under these conditions, sediment continuity
takes the following simplest form:

∂η

∂t
= Ut − E . (569)

where Ut (≡ LT−1) is the rate of tectonic uplift (the subscript is introduced to avoid confusion with
the cross sectionally averaged stream velocity U). As described in the next Section, E is determined
by a number of processes. Their understanding will require the development of physically based
models, some of which will be discussed in Section 7.5.

7.2. Mechanisms of bedrock erosion

River incision into bedrock is driven by the mechanisms outlined below (see, e.g. Whipple et al.
(2000) and the review of Whipple (2004)).

Abrasion

Although the term abrasion should be more appropriate to describe the wear induced by particles
sliding with friction over the bedrock surface (Chatanantavet and Parker, 2009), in the bedrock
literature the common usage of the word refers to the wear induced by the impact of both suspended
and bedload particles on the boundary of bedrock channels. Abrasion dominated channels are
typically characterized by bed and banks sculpted by small scale patterns called flutes and potholes
(see next Section).

252

Introduction to the morphodynamics of mixed alluvial-bedrock straight channels

Plucking

Also known as quarrying and jacking, it consists of the destabilization of blocks of the channel
boundary, which progressively detach from the adjacent blocks due to crack widening, crack
propagation and chemical-physical weathering (Figure 144). Once detached, a block can be
entrained by the stream under the action of lift and drag forces (Whipple et al., 2000; Chatanantavet
and Parker, 2009).

Figure 144. Bed structure in a plucking-dominated bedrock stream (Southern Indiana), courtesy of Pailin
Chatanantavet.

Dissolution

This is a process which affects soluble rocks (including limestone, marble and evaporites) and
chemically reactive rocks (including feldspars, olivine and sulfide minerals). Their degradation
gives rise to products which are readily entrained by the flow. Dissolution may be enhanced by
the growth of algae, moss and lichen (Richardson and Carling, 2005).

Physical weathering

Further mechanisms may operate in specific contexts. In particular, physical weathering may be
induced by wetting and drying cycles, crystallization of salts and freeze-thaw cycles.

7.3. Morphology of bedrock channels
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Figure 143. Bathimetry of the French Quarter bend of the Mississippi River in New Orleans. Note the mixed
rock-alluvial character of the channel. Alluvial sediment is absent from the bottom of the outer region of the bend.

The limit of alluvial sand is shown by a dashed line (reproduced from Figure 2.11 of Nittrouer, 2010).
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gives rise to products which are readily entrained by the flow. Dissolution may be enhanced by
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Further mechanisms may operate in specific contexts. In particular, physical weathering may be
induced by wetting and drying cycles, crystallization of salts and freeze-thaw cycles.

7.3. Morphology of bedrock channels
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An extensive descriptive literature has been devoted to field observations of the morphological
characteristics of bedrock channels. Various recent comprehensive assessments are available (e.g.
Whipple, 2004; Richardson and Carling, 2005; Lamb et al., 2015). The reader interested in a wide
overview of the subject is then referred to the latter reviews and to the literature cited therein.

7.3.1 Large scale morphological features of bedrock channels

As pointed out by Whipple (2004), the average width B of bedrock channels displays a distinct
correlation with some power of the upstream drainage area A, considered as a proxy for water and
sediment discharge. The observed exponent falls in the range 0.3− 0.5. This dependence is also a
well known feature of alluvial channels (Hack, 1957). The recent assessment of field data of Wohl
and David (2008) suggests the validity of similar power law relationships for both alluvial and
bedrock channels: namely, B ∼ A0.3 and B ∼ Q0.5 for channel width, D ∼ A0.2 and D ∼ Q0.3 for
the flow depth, respectively. In other words, these Authors suggest that “the erosional resistance of
channel boundaries is not the primary control on scaling relations for channel geometry”. Whether
river width does also depend on the rock uplift rate is left as an unsettled issue, though Finnegan
et al. (2005) developed a relation between width, discharge, slope, and roughness suitable to be
applied to terrain with spatially nonuniform rock uplift rates with some apparent success.

The longitudinal bed profile of bedrock rivers is often characterized by discontinuities in either
channel elevation or slope called knickpoints. They have been extensively discussed in the literature,
although Crosby and Whipple (2006) point out that their origin and dynamics are not wholly clear
yet. Essentially, knickpoints are thought to be the expression of the dynamic response of bedrock
rivers to disequilibrium conditions associated with regional or local perturbations, e.g. a base-level
fall, the channel encountering a resistant substrate, changes in tectonic uplift rates, climate-induced
changes in river incision rate and glaciation. These responses lead to the development of landforms
that can range from high gradient rapids to waterfalls. However, sequence of knickpoints, in
the form of waterfalls formed in a fairly homogeneous rock formation (the Kohala Peninsula,
Hawaii, USA), in the absence of any apparent external forcing was also observed (Scheingross
et al., 2019). Observations of this kind led Mike Lamb and Joel Scheingross to take a different
viewpoint, developed in a series of papers culminating in an experimental paper (Scheingross et al.,
2019) and a recent review paper (Scheingross et al., 2020). Essentially, these Authors argue that
waterfalls may also form as a free instability process, whereby bottom perturbations are amplified
by a feedback between water flow, sediment transport and bedrock incision, in the absence of any
external forcing. In other words, waterfalls would result from the finite amplitude evolution of the
so called cyclic steps, i.e the repeating sequence of undulating chutes and pools forming in incising
steep river beds. Cyclic steps differ from waterfalls, because their step heights is small relative to
their wavelengths, and they lack a free falling jet. A mechanistic interpretation of this process was
proposed by Scheingross and Lamb (2017) and, due to its relevance for the general theme of the
present Monograph, it will be briefly discussed in Section 7.6.3.

Between successive knickpoints the profile is typically concave-up and such to satisfy a distinct
correlation of channel slope with some negative power θ of the upstream drainage area. This law
is found to apply for A > Acr, with Acr some critical value for A of the order of 1 km2, below
which channel slope is likely to be limited by the role of debris flows. Sklar and Dietrich (2008)
note that the expected value of the exponent θ (concavity index ) has been the subject of much
debate. Simple scaling arguments proposed by Howard and Kerby (1983) and Rodriguez-Iturbe
and Rinaldo (2010) predict 0.35 < θ < 0.5. However, according to Sklar and Dietrich (2008), over
the length of a bedrock channel between the critical point and the alluvial transition, θ may reach
values up to 1.2. Sklar and Dietrich (2008) point out further limits based on empirical analysis of
the slope-area scaling. In particular, headwater channel slopes, dominated by debris flow scour
(Stock and Dietrich, 2003), do not appear to exhibit a log-log linear relationship between slope
and drainage area.

Some progress over the above empirical approach has been made with the help of the mechanistic
approach of Sklar and Dietrich (2008) and will be outlined in Section 7.6.2.

7.3.2 Small scale morphological features of bedrock channels
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Figure 145. The 40 metre, 3-tiered Kitekite falls (Auckland, New Zealand), along with the cascades above the falls
and the natural pool at its base. (Credit: By MattWT - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=4584188SA 3.0).

Small scale bedrock patterns share some properties of alluvial bedforms. In particular, they
may develop in the form of single isolated patterns or as trains of perturbations. However, they
also exhibit distinct features. Indeed, they are purely erosional forms, unlike alluvial patterns
which evolve in response to the balance between erosion and deposition of sediments transported by
the stream. This raises an interesting question of whether and how purely erosional features may
reach equilibrium conditions. Some trains of migrating concave features called scallops have indeed
been observed to reach equilibrium, displaying a permanent shape while migrating (Curl, 1966;
Blumberg and Curl, 1974). Other concave sub-spherical features called potholes, do not migrate
and retain constant form as they grow (Springer and Wohl, 2002). A variety of classification
criteria can be used for small scale bedrock patterns, as extensively discussed by Richardson
and Carling (2005) (but see also Carling et al., 2009). These Authors provide wide reference to
previous works, starting from the early seminal contributions of Allen (1971a,b). For the present
purposes, it is sufficient to identify a few typologies of small scale patterns which call for theoretical
interpretation. A rich illustration of the variety of patterns observed in nature is also contained in
Bourke and Viles (2007).

A first useful classification criterion consists of distinguishing between abrasion driven patterns
and dissolution driven forms.

Abrasion driven patterns

A further morphological subdivision of this class of patterns was made by Richardson and Carling
(2005), who distinguished between concave and convex-undulating forms. The common feature
of concave forms is the presence of local concave depressions. They display variable degrees of
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the slope-area scaling. In particular, headwater channel slopes, dominated by debris flow scour
(Stock and Dietrich, 2003), do not appear to exhibit a log-log linear relationship between slope
and drainage area.

Some progress over the above empirical approach has been made with the help of the mechanistic
approach of Sklar and Dietrich (2008) and will be outlined in Section 7.6.2.

7.3.2 Small scale morphological features of bedrock channels
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Figure 145. The 40 metre, 3-tiered Kitekite falls (Auckland, New Zealand), along with the cascades above the falls
and the natural pool at its base. (Credit: By MattWT - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=4584188SA 3.0).

Small scale bedrock patterns share some properties of alluvial bedforms. In particular, they
may develop in the form of single isolated patterns or as trains of perturbations. However, they
also exhibit distinct features. Indeed, they are purely erosional forms, unlike alluvial patterns
which evolve in response to the balance between erosion and deposition of sediments transported by
the stream. This raises an interesting question of whether and how purely erosional features may
reach equilibrium conditions. Some trains of migrating concave features called scallops have indeed
been observed to reach equilibrium, displaying a permanent shape while migrating (Curl, 1966;
Blumberg and Curl, 1974). Other concave sub-spherical features called potholes, do not migrate
and retain constant form as they grow (Springer and Wohl, 2002). A variety of classification
criteria can be used for small scale bedrock patterns, as extensively discussed by Richardson
and Carling (2005) (but see also Carling et al., 2009). These Authors provide wide reference to
previous works, starting from the early seminal contributions of Allen (1971a,b). For the present
purposes, it is sufficient to identify a few typologies of small scale patterns which call for theoretical
interpretation. A rich illustration of the variety of patterns observed in nature is also contained in
Bourke and Viles (2007).

A first useful classification criterion consists of distinguishing between abrasion driven patterns
and dissolution driven forms.

Abrasion driven patterns

A further morphological subdivision of this class of patterns was made by Richardson and Carling
(2005), who distinguished between concave and convex-undulating forms. The common feature
of concave forms is the presence of local concave depressions. They display variable degrees of
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Figure 146. Bourke’s Luck Potholes in quartz arenite, Blyde River, Mpumalanga, South Africa (reproduced from
https://pixabay.com/photos/bourke-luck-potholes-south-africa-163065, pixabay licence).

elongation. The latter may range from weak (as in round-elliptical plan views typical of potholes,
Figure 146), to strong (as in furrows). This latter group of features includes patterns suggestive
of active suspended load abrasion denoted as flutes. Note that the spectrum of potholes and
furrows observed in the field is very wide, encompassing a variety of orientations (from longitudinal
to transverse). Also, note that field observations of Nittrouer (2010) have revealed that the
channel-bottom substrate of the lowermost reach of the Mississippi River displays similar erosional
features.

Convex-undulating forms comprise a smaller variety of typologies. Their common expression
is the presence of bedrock undulations, either rounded or sharp-crested, called hummocky forms.
Examples found in limestone environments are fairly regular sequences of bedforms resembling
alluvial ripples or dunes depending on their scale. They are called pseudo-ripples (Figure147a)
and pseudo-dunes (Figure 147b), respectively.

Dissolution driven forms

These forms develop significantly in soluble rocks and particularly in limestone. The classification
proposed by Richardson and Carling (2005) includes: solution pits and scallops.

Solution pits are small depressions, of millimeter-centimeter size, that may also act as initial
perturbations to trigger further more intense erosion, eventually leading to the development of
larger bedforms, such as potholes, flutes and scallops (Figure 148).

Scallops are sequences of depressions bounded by sharp transversely oriented crests (Figure
149). Following Allen (1971a) and Allen (1971b), Richardson and Carling (2005) argue that all
scallops derive from the coalescence and mutual interaction of flutes and/or solution pits.

Note that the above classification is based on morphology. The mechanisms underlying the
formation of the above patterns are unexplored, though some preliminary attempts (e.g. the
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Figure 147. (a) Pseudo-ripples in Andesite observed at Than Rattana, Thailand. Scale: notebook 15 cm. (b)
Pseudo-dunes in granite observed at Allt Ceitlein, UK. Scale: camera bag, 20 cm. In both cases flow is from left to

right, courtesy of Keith Richardson and Paul Carling.

Figure 148. (a): Deep circular solution pit in granitic gneiss observed at Nam Mae Chaem (Ob Luang), Thailand.
(b): Shallow circular solution pits in limestone observed in the River Dee, UK. Flow is from top to bottom. Scale:

hammer (30 cm). Courtesy of Keith Richardson and Paul Carling.

analysis of the formation of longitudinal incisional grooves of Inoue and Nelson (2020)) have
appeared in the recent literature. Theoretical understanding will likely allow revisiting the above
descriptive classification.

7.4. Early morphological models of the reach-basin scale

In the early literature on the subject (see e.g. the review by Howard et al., 1994) a number
of semi-empirical relationships expressing E in terms of global properties of the river basin were
proposed. They can all be written in the form of power laws as follows:

E = kE Am Sn. (570)

Here, A is the drainage area of the river basin at the given cross section, S is channel slope, m and
n are positive exponents and kE is an empirical constant. The particular case m = n = 1 has been
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https://pixabay.com/photos/bourke-luck-potholes-south-africa-163065, pixabay licence).
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These forms develop significantly in soluble rocks and particularly in limestone. The classification
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Solution pits are small depressions, of millimeter-centimeter size, that may also act as initial
perturbations to trigger further more intense erosion, eventually leading to the development of
larger bedforms, such as potholes, flutes and scallops (Figure 148).

Scallops are sequences of depressions bounded by sharp transversely oriented crests (Figure
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analysis of the formation of longitudinal incisional grooves of Inoue and Nelson (2020)) have
appeared in the recent literature. Theoretical understanding will likely allow revisiting the above
descriptive classification.

7.4. Early morphological models of the reach-basin scale

In the early literature on the subject (see e.g. the review by Howard et al., 1994) a number
of semi-empirical relationships expressing E in terms of global properties of the river basin were
proposed. They can all be written in the form of power laws as follows:

E = kE Am Sn. (570)

Here, A is the drainage area of the river basin at the given cross section, S is channel slope, m and
n are positive exponents and kE is an empirical constant. The particular case m = n = 1 has been
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Figure 149. (a): Two-dimensional scallops in limestone. Flow from bottom left to top right. (b): Three-dimensional
scallops in limestone. Flow from bottom to top. Both features have been observed at Sleightholme Beck, UK

(courtesy of Keith Richardson and Paul Carling).

interpreted as the condition whereby erosion rate would be proportional to unit stream power P,
i.e. the stream power per unit bed area. According to Howard et al. (1994), this interpretation
would rely on the assumption that the bankfull flow discharge at a given cross section Q would
be proportional to the drainage area. Since P = ρ g (Q/B)S, the actual assumption required to
state that E ≈ P would be (Q/B) ≈ A. However, the latter relationship is not supported by the
field observations of Wohl and David (2008), discussed in Section 7.3.1.

The empirical character of (570) is reflected in its dimensional nature. In particular, the
factor kE has different dimensions depending on the value chosen for the exponent m. This
notwithstanding, the above formulation for the erosion rate has been widely employed to develop
1D simulation models of stream profile evolution. Instructive simulations were performed by
Howard et al. (1994). They considered a channel characterized by drainage area and flow discharge
increasing as the square of distance downstream. Moreover, the stream was assumed to be initially
bedrock with a concave profile in equilibrium with a slow, constant rate of base level lowering.
Simulations were able to predict stream profiles developed in response to a base level lowering
scenario characterized by long periods of stability interrupted by brief episodes of uplift. It turns
out that, as gradients decline due to bed erosion, a minimum gradient, just sufficient to transport
sediment supplied from upstream, is reached. The stream cross section where this condition is
met is then converted from rock to alluvial. This occurs first at the downstream end and then
migrates upstream. Thus, the model is able to predict the occurrence of a transition from bedrock
to alluvial bed and its dependence on the history of tectonic uplift.

The detachment limited model of Howard et al. (1994) was further explored by a number
of Authors, notably Whipple and Tucker (1999) (but see also Whipple, 2004). These Authors
exploited a property of the model already noted by Rosenbloom and Anderson (1994). Indeed,
substituting from (570) into (569), one derives an evolution equation for the bed profile which has
the form of a nonlinear kinematic wave equation:

∂η

∂t
+ c(S, x)

∂η

∂x
= Ut(x, t), (571)

where the wavespeed c(S, x) reads:

c(S, x) = kE Am Sn−1sgn
(∂η
∂x

)
. (572)
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Hence, c(S, x) depends nonlinearly on the local bed slope S ≡
∣∣∂η/∂x∣∣ and on the longitudinal

coordinate x through the drainage area A. Also, note that, as ∂η/∂x is typically negative, (572)
shows that perturbations migrate upstream. It is well known (Whitham, 1974) that a kinematic
wave equation is readily transformed into a total derivative equation for an observer moving along
a characteristic line C defined as follows:

C :
dx

dt
= c(S, x). (573)

Such an observer sees variations of bed elevation governed by (571), that, with the help of (573),
takes the form:

dη

dt
=

∂η

∂t
+

dx

dt

∂η

∂x
= Ut. (574)

The model lends itself to exploring a number of issues that are discussed at length in the papers
cited above. Here, we are only interested in some conceptually important outcomes that emerge
immediately from the model.

Firstly, the environmental control on the morphodynamic evolution of a bedrock channel arises
from two physical mechanisms, namely uplift (tectonic forcing) and bottom erosion (climatic-
lithologic forcing). Whipple and Tucker (1999) derive a dimensionless parameter measuring the
ratio between the intensities of the two effects.

Secondly, a steady configuration of the river profile is only possible provided the rate of tectonic
uplift does not vanish. Indeed, for a temporally constant value of Ut, setting ∂η/∂t = 0 in equation
(569) and recalling (570), one readily finds

Se = −dη

dx
=

(
Ut

kE

)1/n

Am/n, (575)

having denoted by Se the local slope at equilibrium. With some Hack’s type relationship for the
x-dependence of the drainage area (say A = ka x

h), the latter ordinary differential equation allows
one to derive the bed elevation profile η(x). For the simplest case of spatially constant rate of
tectonic uplift, uniform lithology, precipitation, and erodibility (kE = const), m = n = 1 and
h = 1/2, the bed profile solution is a parabola with upward concavity (Figure 150, t = 0).

Thirdly, the model allows one to evaluate the response of a bedrock channel to changes in
tectonic and climatic conditions. Figure 150 shows the temporal evolution of a bedrock profile
starting from the initial equilibrium profile associated with some spatially uniform rate of tectonic
uplift. At t = 0+, a sudden base level drop is imposed at x = 0. Thereafter Ut is assumed to
vanish everywhere. Under these conditions, equation (574) simply tells us that the sudden base
level drop occurred at x = 0 migrates upstream in the form of a so called knickpoint to a distance
depending on time according to the solution of the characteristic equation (573). This procedure
is visualized in Figure 150, t > 0.

The main conclusion reached by Whipple and Tucker (1999) was that “both the magnitude
and timescale of the bedrock channel response to an imposed tectonic or climatic forcing are
largely governed by a single dimensionless parameter, the uplift-erosion number, raised to a power
determined by the slope exponent in the stream power erosion law ” (see equation 570).

A number of further investigations have explored the dependence of long-term bedrock incision
on the magnitude and variability of flow events. The interested reader is referred to Lague et al.
(2005) and references therein.

7.5. Mechanistic models of bedrock erosion

The approach discussed in the previous section, in the many versions appeared in the literature,
has played a useful role in the development of the subject. However, it is intrinsically limited by
the lack of a mechanistic basis for the empirical correlations which are meant to account for the
effects of rock strength, channel slope, discharge, sediment supply and grain size. In the last two
decades, physics based models of bedrock erosion have overcome some of the above limitations.
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Figure 149. (a): Two-dimensional scallops in limestone. Flow from bottom left to top right. (b): Three-dimensional
scallops in limestone. Flow from bottom to top. Both features have been observed at Sleightholme Beck, UK

(courtesy of Keith Richardson and Paul Carling).

interpreted as the condition whereby erosion rate would be proportional to unit stream power P,
i.e. the stream power per unit bed area. According to Howard et al. (1994), this interpretation
would rely on the assumption that the bankfull flow discharge at a given cross section Q would
be proportional to the drainage area. Since P = ρ g (Q/B)S, the actual assumption required to
state that E ≈ P would be (Q/B) ≈ A. However, the latter relationship is not supported by the
field observations of Wohl and David (2008), discussed in Section 7.3.1.

The empirical character of (570) is reflected in its dimensional nature. In particular, the
factor kE has different dimensions depending on the value chosen for the exponent m. This
notwithstanding, the above formulation for the erosion rate has been widely employed to develop
1D simulation models of stream profile evolution. Instructive simulations were performed by
Howard et al. (1994). They considered a channel characterized by drainage area and flow discharge
increasing as the square of distance downstream. Moreover, the stream was assumed to be initially
bedrock with a concave profile in equilibrium with a slow, constant rate of base level lowering.
Simulations were able to predict stream profiles developed in response to a base level lowering
scenario characterized by long periods of stability interrupted by brief episodes of uplift. It turns
out that, as gradients decline due to bed erosion, a minimum gradient, just sufficient to transport
sediment supplied from upstream, is reached. The stream cross section where this condition is
met is then converted from rock to alluvial. This occurs first at the downstream end and then
migrates upstream. Thus, the model is able to predict the occurrence of a transition from bedrock
to alluvial bed and its dependence on the history of tectonic uplift.

The detachment limited model of Howard et al. (1994) was further explored by a number
of Authors, notably Whipple and Tucker (1999) (but see also Whipple, 2004). These Authors
exploited a property of the model already noted by Rosenbloom and Anderson (1994). Indeed,
substituting from (570) into (569), one derives an evolution equation for the bed profile which has
the form of a nonlinear kinematic wave equation:
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coordinate x through the drainage area A. Also, note that, as ∂η/∂x is typically negative, (572)
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wave equation is readily transformed into a total derivative equation for an observer moving along
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tectonic uplift, uniform lithology, precipitation, and erodibility (kE = const), m = n = 1 and
h = 1/2, the bed profile solution is a parabola with upward concavity (Figure 150, t = 0).

Thirdly, the model allows one to evaluate the response of a bedrock channel to changes in
tectonic and climatic conditions. Figure 150 shows the temporal evolution of a bedrock profile
starting from the initial equilibrium profile associated with some spatially uniform rate of tectonic
uplift. At t = 0+, a sudden base level drop is imposed at x = 0. Thereafter Ut is assumed to
vanish everywhere. Under these conditions, equation (574) simply tells us that the sudden base
level drop occurred at x = 0 migrates upstream in the form of a so called knickpoint to a distance
depending on time according to the solution of the characteristic equation (573). This procedure
is visualized in Figure 150, t > 0.

The main conclusion reached by Whipple and Tucker (1999) was that “both the magnitude
and timescale of the bedrock channel response to an imposed tectonic or climatic forcing are
largely governed by a single dimensionless parameter, the uplift-erosion number, raised to a power
determined by the slope exponent in the stream power erosion law ” (see equation 570).

A number of further investigations have explored the dependence of long-term bedrock incision
on the magnitude and variability of flow events. The interested reader is referred to Lague et al.
(2005) and references therein.

7.5. Mechanistic models of bedrock erosion

The approach discussed in the previous section, in the many versions appeared in the literature,
has played a useful role in the development of the subject. However, it is intrinsically limited by
the lack of a mechanistic basis for the empirical correlations which are meant to account for the
effects of rock strength, channel slope, discharge, sediment supply and grain size. In the last two
decades, physics based models of bedrock erosion have overcome some of the above limitations.
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Figure 150. Temporal evolution of a bedrock profile. t < 0: initial equilibrium profile associated with some spatially
uniform rate of tectonic uplift; t=0: sudden base level drop; ti (i=1,2,3,): profiles at various times showing the

location reached by the migrating knickpoint.

These models have mainly concerned the abrasion mechanism. Below, we concentrate on the latter
and ignore other mechanisms (but see Chatanantavet and Parker (2009) and Wilkinson et al.
(2018) for an introduction to the mechanics of plucking).

7.5.1 The saltation-abrasion model

The development of the subject has been deeply influenced by a cornerstone paper, Sklar and
Dietrich (2004), that marks the first successful attempt to formulate a physically based model of
bedrock abrasion driven by saltating bed load. This work disclosed the dependence of the process
on the fraction of the bed that is not armored by transient deposits of alluvium, which is in turn
related to the ratio of coarse sediment supply to bed load transport capacity. Note that Sklar
and Dietrich (2004) neglect any other erosion mechanism concentrating on the effect of bed load
which they assume to be dominant. The later extension of the model to account for the effect of
suspended load will be discussed in Section 7.5.3.

In a preliminary experimental investigation that employed a bedrock abrasion mill, Sklar and
Dietrich (2001) measured bedrock wear resulting from the impact of saltating particles. These
experiments supported the view of the process of bedrock incision proposed in the early work
of Gilbert (1877). Incision would be controlled by two contrasting effects of sediment supply.
Supply provides the abrasive tools needed for bedrock erosion (tool effect) but it may also lead
to temporary deposits which prevent contacts of saltating particles with the bedrock substrate
(cover effect). In other words, river incision requires that the sediment supply be lower than the
transport capacity of the stream.

The model of Sklar and Dietrich (2004) assumes that a constant fluid discharge flows in a
rectangular channel with a plane bed consisting of a bedrock surface, on which patches of alluvial
deposits with uniform grain size are present. The bedrock erosion rate is expressed as follows:

E = Vi Ir Fe, (576)

where Vi is the average volume of rock detached per particle impact, Ir is the number of particle
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impacts per unit area and unit time, and Fe is the fraction of the river bed where the bedrock
substrate is exposed. Note that, in the context of Sklar and Dietrich (2004) model, E , Vi and
Ir are assumed to be uniformly distributed in the lateral direction. Alternatively, they may be
assumed to provide an average measure of the integrated effect of bedrock erosion throughout the
cross section.

The evaluation of Vi was based on early work of Bitter (1963) concerning the erosion of elastic
brittle materials by repeated impacts. This process is called deformation wear and arises from the
dynamics of the network of cracks generated by the tensile stresses excited by the deformation
of the rock in a neighborhood of the impact point. As pointed out by Engle (1978), the volume
eroded by a single impact, averaged over a large number of impacts, scales with the kinetic energy
transferred to the rock surface through particle collisions. As the magnitude of the peak tensile
stress generated by the particle impact depends on the component of the impact velocity orthogonal
to the rock surface (Engle, 1978), the wear model of Bitter (1963) was cast in the form

Vi =
1

eu

(
1

2
mp w

2
p − Et

)
, (577)

where mp is the particle mass, wp is the component of the impact velocity orthogonal to the rock
surface, Et is the threshold energy required for detachment to occur and eu is the energy required
to erode a unit volume of rock. Note that the above model assumes that the particle mass keeps
constant and ignores the contribution to erosion driven by the tangential component of particle
velocity, significant for ductile materials (cutting wear).

The linear relationship (577) was essentially confirmed by the later experiments of Head and
Harr (1970). However, no erosion threshold was detected, contrary to the observations of Bitter
(1963), who had used ductile rather than brittle abrasive material. Similar conclusions were later
reached by Sklar and Dietrich (2001), who found that measurable bedrock wear was induced even
by fine sand. As a result, Sklar and Dietrich (2004) simply neglected Et in (577). The parameter
eu is a measure of the material toughness, namely the rock resistance to abrasion by impacting
particles. Following Engle (1978), Sklar and Dietrich (2004) expressed this quantity in terms
of the capacity of the material to store energy elastically (β), measured by the area under the
stress-strain curve at the yield stress. Hence, they set:

eu = kv β = kv
σ2
T

2Y
, (578)

where σT is the rock tensile yield strength, Y is Young elastic modulus, and kv is a dimensionless
empirical coefficient depending on the material properties of the impacting particle.

The number of particles impacting the bedrock surface per unit time and per unit area (Ir) is
readily calculated dividing the number of bedload particles per unit time and unit width, namely
Qsup/

(
π d3/6

)
, by the average distance traveled by particles between impacts, i.e. the saltation

length Ls. Note, that the number of particles participating in the bedload transport per unit time
and unit width is determined by the sediment supply rate per unit width Qsup, which does not
coincide with the bedload transport capacity per unit width Qb. Hence, Sklar and Dietrich (2004)
write:

Ir =
6Qsup

ρs π d3 Ls
. (579)

Finally, based on their own flume observations (Sklar and Dietrich, 2002), they simply assume
that the fraction of the exposed bedrock varies linearly with the defect of sediment supply rate
Qsup relative to the bedload transport capacity Qb (both per unit width), i.e

Fe = 1− Qsup

Qb
. (580)

With the help of (577), (578), (579), (580), the expression (576) leads to the following final
relationship for E :

E =
Qsup w

2
p Y

Ls kv σ2
T

(
1− Qsup

Qb

)
. (581)
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Figure 150. Temporal evolution of a bedrock profile. t < 0: initial equilibrium profile associated with some spatially
uniform rate of tectonic uplift; t=0: sudden base level drop; ti (i=1,2,3,): profiles at various times showing the

location reached by the migrating knickpoint.
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and ignore other mechanisms (but see Chatanantavet and Parker (2009) and Wilkinson et al.
(2018) for an introduction to the mechanics of plucking).
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Dietrich (2004), that marks the first successful attempt to formulate a physically based model of
bedrock abrasion driven by saltating bed load. This work disclosed the dependence of the process
on the fraction of the bed that is not armored by transient deposits of alluvium, which is in turn
related to the ratio of coarse sediment supply to bed load transport capacity. Note that Sklar
and Dietrich (2004) neglect any other erosion mechanism concentrating on the effect of bed load
which they assume to be dominant. The later extension of the model to account for the effect of
suspended load will be discussed in Section 7.5.3.

In a preliminary experimental investigation that employed a bedrock abrasion mill, Sklar and
Dietrich (2001) measured bedrock wear resulting from the impact of saltating particles. These
experiments supported the view of the process of bedrock incision proposed in the early work
of Gilbert (1877). Incision would be controlled by two contrasting effects of sediment supply.
Supply provides the abrasive tools needed for bedrock erosion (tool effect) but it may also lead
to temporary deposits which prevent contacts of saltating particles with the bedrock substrate
(cover effect). In other words, river incision requires that the sediment supply be lower than the
transport capacity of the stream.

The model of Sklar and Dietrich (2004) assumes that a constant fluid discharge flows in a
rectangular channel with a plane bed consisting of a bedrock surface, on which patches of alluvial
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impacts per unit area and unit time, and Fe is the fraction of the river bed where the bedrock
substrate is exposed. Note that, in the context of Sklar and Dietrich (2004) model, E , Vi and
Ir are assumed to be uniformly distributed in the lateral direction. Alternatively, they may be
assumed to provide an average measure of the integrated effect of bedrock erosion throughout the
cross section.

The evaluation of Vi was based on early work of Bitter (1963) concerning the erosion of elastic
brittle materials by repeated impacts. This process is called deformation wear and arises from the
dynamics of the network of cracks generated by the tensile stresses excited by the deformation
of the rock in a neighborhood of the impact point. As pointed out by Engle (1978), the volume
eroded by a single impact, averaged over a large number of impacts, scales with the kinetic energy
transferred to the rock surface through particle collisions. As the magnitude of the peak tensile
stress generated by the particle impact depends on the component of the impact velocity orthogonal
to the rock surface (Engle, 1978), the wear model of Bitter (1963) was cast in the form

Vi =
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eu

(
1

2
mp w

2
p − Et

)
, (577)

where mp is the particle mass, wp is the component of the impact velocity orthogonal to the rock
surface, Et is the threshold energy required for detachment to occur and eu is the energy required
to erode a unit volume of rock. Note that the above model assumes that the particle mass keeps
constant and ignores the contribution to erosion driven by the tangential component of particle
velocity, significant for ductile materials (cutting wear).

The linear relationship (577) was essentially confirmed by the later experiments of Head and
Harr (1970). However, no erosion threshold was detected, contrary to the observations of Bitter
(1963), who had used ductile rather than brittle abrasive material. Similar conclusions were later
reached by Sklar and Dietrich (2001), who found that measurable bedrock wear was induced even
by fine sand. As a result, Sklar and Dietrich (2004) simply neglected Et in (577). The parameter
eu is a measure of the material toughness, namely the rock resistance to abrasion by impacting
particles. Following Engle (1978), Sklar and Dietrich (2004) expressed this quantity in terms
of the capacity of the material to store energy elastically (β), measured by the area under the
stress-strain curve at the yield stress. Hence, they set:

eu = kv β = kv
σ2
T

2Y
, (578)

where σT is the rock tensile yield strength, Y is Young elastic modulus, and kv is a dimensionless
empirical coefficient depending on the material properties of the impacting particle.

The number of particles impacting the bedrock surface per unit time and per unit area (Ir) is
readily calculated dividing the number of bedload particles per unit time and unit width, namely
Qsup/

(
π d3/6

)
, by the average distance traveled by particles between impacts, i.e. the saltation

length Ls. Note, that the number of particles participating in the bedload transport per unit time
and unit width is determined by the sediment supply rate per unit width Qsup, which does not
coincide with the bedload transport capacity per unit width Qb. Hence, Sklar and Dietrich (2004)
write:

Ir =
6Qsup

ρs π d3 Ls
. (579)

Finally, based on their own flume observations (Sklar and Dietrich, 2002), they simply assume
that the fraction of the exposed bedrock varies linearly with the defect of sediment supply rate
Qsup relative to the bedload transport capacity Qb (both per unit width), i.e

Fe = 1− Qsup

Qb
. (580)

With the help of (577), (578), (579), (580), the expression (576) leads to the following final
relationship for E :
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p Y

Ls kv σ2
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1− Qsup
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)
. (581)

261



Theoretical Morphodynamics Straight Channels

In order to complete the formulation, Sklar and Dietrich (2004) needed closure relationships for
Qb, Ls and wp as functions of Shields stress and grain size. The bedload capacity was evaluated
using the formula of Fernandez Luque and van Beek (1976)

Qb = 5.75 ρs
√

(s− 1) g d3
(
τ∗ − τ∗c

)3/2
, (582)

The properties of saltation trajectories were obtained through appropriate relationships that best
fit the trends of a large set of published data. The final form of the saltation-abrasion bedrock
incision model of Sklar and Dietrich (2004) was then found to read:
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]3/2

, (583)

where ws is the settling speed of sediment particles and uτ is the friction velocity of the flow. Note
that the term between square brackets accounts for the shift from bedload mode to suspended
mode, which is taken to occur when ws = uτ . In this model, above the latter threshold, the length
of saltation hops rapidly diverges and erosion driven by the impact of saltating particles vanishes.
In the real world, transport in suspension coexists with bedload motion, such that a fraction of the
erosion rate is driven by saltating bed load particles even when suspended load is significant. This
feature is accounted for in the extension of Sklar and Dietrich (2004) model discussed in Section
7.5.3.

A simpler form of (583) was obtained neglecting the suspension effect term, i.e. restricting the
analysis to excess shear stresses well below the threshold of suspension (say, 0 < (τ∗/τ∗c − 1) < 10)
and to values of the sediment supply rate smaller than the bedload transport capacity. Under
these conditions, substituting from the relationship (582) into (583) and rearranging, Sklar and
Dietrich (2004) find:

E = k1
Qsup(

τ∗/τ∗c − 1
)1/2 − k2

Q2
sup

d3/2
(
τ∗/τ∗c − 1

)2 , (584)

with
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T ρs τ

3/2
∗c
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The form (584) of the bedrock incision formula has the advantage to display distinctly the roles
of the tool effect (first term) and of the cover effect (second term). The dimensionless factor kv
was estimated from the experimental measurements of bedrock wear of Sklar and Dietrich (2001).
Its value, corrected for a typo in the original paper of Sklar and Dietrich (2004)(Peter Nelson,
personal communication), reads: kv ≃ 106.

Figure 151 shows the dependence of the erosion rate predicted by equation (583) on the rate
of supply of sediment mass (ρs Qsup). Also shown are the single factors contributing to E . The
main message delivered by Figure 151 is that, for increasing sediment supply, at low supply rates
incision rate is dominated by the increase in the impact rate (Ir) which prevails on the decrease of
the bed area exposed to particle impact (Fe). On the contrary, at high supply rates, the incision
rate decreases as the reduction in the fraction of bed area exposed prevails over the increase in
the impact rate. When the variation of the tool effect balances the variation of the cover effect,
the incision rate attains a peak. Three limits for which the erosion rate vanishes deserve special
interest: vanishing sediment supply rate, fully alluvial bed (sediment supply rate equal to bedload
transport capacity) and transport stage approaching the threshold of transport in suspension. This
is further clarified in Figure 152 where the dimensionless erosion rate Ẽ = E σ2

T /
[
ρs Y (g d)3/2

]
is plotted in the plane (τ∗/τ∗c, Qsup/Q

b). The erosion rates predicted by the saltation-abrasion
model were compared with the laboratory measurements in rotational bedrock abrasion mills
performed by Sklar and Dietrich (2004) with the primary goal of calibrating the free parameter kv
of the model. The erosion rates predicted by the saltation-abrasion model closely fit the observed
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Figure 151. The erosion rate E predicted by equation (583) is plotted as a function of the rate of supply of sediment
mass ρs Qsup. The single factors contributing to the erosion rate, namely the average volume of rock detached per
particle impact (Vi), the number of particle impacts per unit area and unit time (Ir) and the fraction of the river
bed where the bedrock substrate is exposed (Fe) are also plotted. Input parameters, shown in the legend, were
chosen to model a gauged reach of the South Fork Eel River, Mendocino County, California. The open circle

denotes the predicted instantaneous erosion rate at this reference site (modified from Sklar and Dietrich, 2004).

Figure 152. The dimensionless erosion rate 10−15 Ẽ (Ẽ ≡ E σ2
T /

[
ρs Y (gd)3/2

]
) is plotted in the plane

(τ∗/τ∗c, Qsup/Qb) (modified from Sklar and Dietrich, 2004).

trend as grain size decreases from near the threshold of motion (d = 0.035 m) to the threshold of
suspension (d = 0.001 m). On the contrary, erosion rates for sand sizes could not be adequately
predicted because the model does not account for the dynamics of suspended sediment transport.

7.5.2 Developments of Sklar-Dietrich model

Various Authors built up on the work of Sklar and Dietrich (2004) to propose modifications of
that model.

Exponential decay of the cover effect

Turowski et al. (2007) derived a new functional form for the cover effect based on the following
argument. The channel bed erosion rate may be reasonably taken to be proportional to the ratio
Ra = aexp/atot of bed area exposed to particle impact aexp to the total bed area atot. Denoting
by q the ratio Qsup/Q

b, Turowski et al. (2007) argue that an infinitesimal increment of relative
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where ws is the settling speed of sediment particles and uτ is the friction velocity of the flow. Note
that the term between square brackets accounts for the shift from bedload mode to suspended
mode, which is taken to occur when ws = uτ . In this model, above the latter threshold, the length
of saltation hops rapidly diverges and erosion driven by the impact of saltating particles vanishes.
In the real world, transport in suspension coexists with bedload motion, such that a fraction of the
erosion rate is driven by saltating bed load particles even when suspended load is significant. This
feature is accounted for in the extension of Sklar and Dietrich (2004) model discussed in Section
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A simpler form of (583) was obtained neglecting the suspension effect term, i.e. restricting the
analysis to excess shear stresses well below the threshold of suspension (say, 0 < (τ∗/τ∗c − 1) < 10)
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The form (584) of the bedrock incision formula has the advantage to display distinctly the roles
of the tool effect (first term) and of the cover effect (second term). The dimensionless factor kv
was estimated from the experimental measurements of bedrock wear of Sklar and Dietrich (2001).
Its value, corrected for a typo in the original paper of Sklar and Dietrich (2004)(Peter Nelson,
personal communication), reads: kv ≃ 106.

Figure 151 shows the dependence of the erosion rate predicted by equation (583) on the rate
of supply of sediment mass (ρs Qsup). Also shown are the single factors contributing to E . The
main message delivered by Figure 151 is that, for increasing sediment supply, at low supply rates
incision rate is dominated by the increase in the impact rate (Ir) which prevails on the decrease of
the bed area exposed to particle impact (Fe). On the contrary, at high supply rates, the incision
rate decreases as the reduction in the fraction of bed area exposed prevails over the increase in
the impact rate. When the variation of the tool effect balances the variation of the cover effect,
the incision rate attains a peak. Three limits for which the erosion rate vanishes deserve special
interest: vanishing sediment supply rate, fully alluvial bed (sediment supply rate equal to bedload
transport capacity) and transport stage approaching the threshold of transport in suspension. This
is further clarified in Figure 152 where the dimensionless erosion rate Ẽ = E σ2
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b). The erosion rates predicted by the saltation-abrasion
model were compared with the laboratory measurements in rotational bedrock abrasion mills
performed by Sklar and Dietrich (2004) with the primary goal of calibrating the free parameter kv
of the model. The erosion rates predicted by the saltation-abrasion model closely fit the observed
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Figure 151. The erosion rate E predicted by equation (583) is plotted as a function of the rate of supply of sediment
mass ρs Qsup. The single factors contributing to the erosion rate, namely the average volume of rock detached per
particle impact (Vi), the number of particle impacts per unit area and unit time (Ir) and the fraction of the river
bed where the bedrock substrate is exposed (Fe) are also plotted. Input parameters, shown in the legend, were
chosen to model a gauged reach of the South Fork Eel River, Mendocino County, California. The open circle

denotes the predicted instantaneous erosion rate at this reference site (modified from Sklar and Dietrich, 2004).

Figure 152. The dimensionless erosion rate 10−15 Ẽ (Ẽ ≡ E σ2
T /

[
ρs Y (gd)3/2

]
) is plotted in the plane

(τ∗/τ∗c, Qsup/Qb) (modified from Sklar and Dietrich, 2004).

trend as grain size decreases from near the threshold of motion (d = 0.035 m) to the threshold of
suspension (d = 0.001 m). On the contrary, erosion rates for sand sizes could not be adequately
predicted because the model does not account for the dynamics of suspended sediment transport.

7.5.2 Developments of Sklar-Dietrich model

Various Authors built up on the work of Sklar and Dietrich (2004) to propose modifications of
that model.

Exponential decay of the cover effect

Turowski et al. (2007) derived a new functional form for the cover effect based on the following
argument. The channel bed erosion rate may be reasonably taken to be proportional to the ratio
Ra = aexp/atot of bed area exposed to particle impact aexp to the total bed area atot. Denoting
by q the ratio Qsup/Q

b, Turowski et al. (2007) argue that an infinitesimal increment of relative
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sediment supply dq will not give rise to an equal decrement of relative exposed bedrock area (as
implied by the linear assumption of Sklar and Dietrich (2004)). Part of dq will affect portions of
the channel bed that are already (statically) covered by sediment. In other words, Turowski et al.
(2007) assume that the decrement of the relative exposed bedrock area −dRa is equal to a fraction
dq of the relative portion Ra of bed area already exposed to the flow. This assumption leads to a
simple ordinary differential equation for Ra, readily solved to give an exponential (rather than
linear) decay of Ra with increasing q. Using the latter relationship one can then calculate the
erosion rate as a function of sediment supply. Figure 153 shows the dependence of erosion rate

Figure 153. The dependence of bedrock erosion rate (multiplied by square of tensile strength) on the total mass of
sediment in the abrasion mill experiments of Sklar and Dietrich (2001) is compared with theoretical predictions of

Sklar and Dietrich (2004) (dashed line) and the best fit curve obtained through the corrected formulation of
Turowski et al. (2007) (solid line) (modified from Turowski et al., 2007).

on sediment load data obtained by Sklar and Dietrich (2001) in their abrasion mill experiments.
Note that data refer to three rock types. In order to remove the dependence on the rock type,
the Authors multiply the erosion rate E (measured in g/h) by the squared tensile strength σ2

T
(measured in MP 2

a ) (recall equation (581)). The quantity plotted in the abscissa is the total
mass of sediment placed in the abrasion mill, which controls the sediment supply rate. In each
experiment the grain size and the lithology of both bedrock and sediment were held constant. It
clearly appears that the best fit obtained through the corrected formulation of Turowski et al.
(2007) does improve the agreement of theory versus experiments as compared with the theoretical
predictions provided by the original saltation-abrasion model of Sklar and Dietrich (2004).

Discrete element simulations

An interesting confirmation of the soundness of the saltation-abrasion model of Sklar and Dietrich
(2004) and of the correction proposed by Turowski et al. (2007), has been recently provided by
Aubert et al. (2016). The approach pursued by the latter Authors was based on the method
of discrete-element simulations commonly employed for granular materials. Essentially, Aubert
et al. (2016) simulate the dynamics of spherical pebbles entrained by a turbulent water flow over a
fixed rough bedrock surface area of width B and length L. Roughness is modeled by glueing on a
horizontal surface a number of spheres, of radius R equal to that of saltating pebbles, centred at
some reference height. They are fixed, i.e. they are part of the bedrock and model natural patches
of immobile pebbles.

The bedload is modeled by a set of N spheres of given density and radius R, taken as constant
through all the simulation. An important parameter is the so called dimensionless surface density
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σ, defined as the ratio between the N bedload spheres and the maximum number of spheres that
can be accommodated on the bedrock surface area (B L/(4R2) assuming the spheres are arranged
in a square grid). A uniform turbulent flow is assumed to act over the bedrock surface. Aubert
et al. (2016) do not perform a two-way coupling, i.e. they do not account for variations of the
turbulent flow resulting from the presence and motion of bedload particles. Rather, they rely on
the recent 2D model of Duran et al. (2012) who, accounting for the reactions of solid particles on
the water flow, found that the fluid velocity vanishes where the local solid fraction is high enough
(say one or two grain diameters within the bedload layer), and tends towards a logarithmic profile
in the clear water region. Hence, at each time step, Aubert et al. (2016) compute the average solid
fraction in horizontal slices. Next, they assume that the velocity profile is logarithmic, i.e. not
affected by the presence of solid particles, if the average solid fraction is less than 0.5 and vanish
otherwise.

The motion of particles is tracked solving the equations of motion with semiempirical closures
for the drag and torque coefficients. Particle-particle and particle-wall collisions are modeled
introducing a restitution coefficient and modeling the tangential force generated at contact by a
regularized form of Coulomb law of solid friction. The cover fraction evolves in time and is updated
assuming that pebbles with velocity lower than 1/10 of the maximum velocity are immobile.
Denoting by n(t) the number of cells covered by immobile pebbles at time t, the time-averaged
static cover fraction C is evaluated as n(t) 4R2/(W L). Finally, all the energy lost during an
impact with the bedrock is assumed to contribute to its abrasion.

With the help of the above procedure Aubert et al. (2016) are able to estimate the amount
of energy that successive impacts of bedload particles transfer to the bedrock surface (a proxy
for bedrock erosion), as a function of both the amount of sediment available, strictly related to
the dimensionless surface density, and the Shields number. Results show that as the bedload flux

Figure 154. The static cover fraction C obtained by the numerical simulations of Aubert et al. (2016) is plotted as a
function of the dimensionless surface density σ, measuring the intensity of sediment supply, for different values of

the Shields number. The dashed line represents the function C = σ (modified from Aubert et al., 2016) (work
distributed under the Creative Commons Attribution 3.0 License).

of sediments increases, the dimensionless surface density increases and saturates when exceeding
some threshold value σ0 which increases linearly with the Shields stress. The asymptotic value of
the bedload flux of sediments (measuring the bedload transport capacity of the stream) increases
with the Shields stress following a trend compatible with known bedload transport formulas. The
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sediment supply dq will not give rise to an equal decrement of relative exposed bedrock area (as
implied by the linear assumption of Sklar and Dietrich (2004)). Part of dq will affect portions of
the channel bed that are already (statically) covered by sediment. In other words, Turowski et al.
(2007) assume that the decrement of the relative exposed bedrock area −dRa is equal to a fraction
dq of the relative portion Ra of bed area already exposed to the flow. This assumption leads to a
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linear) decay of Ra with increasing q. Using the latter relationship one can then calculate the
erosion rate as a function of sediment supply. Figure 153 shows the dependence of erosion rate
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Turowski et al. (2007) (solid line) (modified from Turowski et al., 2007).
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mass of sediment placed in the abrasion mill, which controls the sediment supply rate. In each
experiment the grain size and the lithology of both bedrock and sediment were held constant. It
clearly appears that the best fit obtained through the corrected formulation of Turowski et al.
(2007) does improve the agreement of theory versus experiments as compared with the theoretical
predictions provided by the original saltation-abrasion model of Sklar and Dietrich (2004).

Discrete element simulations

An interesting confirmation of the soundness of the saltation-abrasion model of Sklar and Dietrich
(2004) and of the correction proposed by Turowski et al. (2007), has been recently provided by
Aubert et al. (2016). The approach pursued by the latter Authors was based on the method
of discrete-element simulations commonly employed for granular materials. Essentially, Aubert
et al. (2016) simulate the dynamics of spherical pebbles entrained by a turbulent water flow over a
fixed rough bedrock surface area of width B and length L. Roughness is modeled by glueing on a
horizontal surface a number of spheres, of radius R equal to that of saltating pebbles, centred at
some reference height. They are fixed, i.e. they are part of the bedrock and model natural patches
of immobile pebbles.

The bedload is modeled by a set of N spheres of given density and radius R, taken as constant
through all the simulation. An important parameter is the so called dimensionless surface density
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turbulent flow resulting from the presence and motion of bedload particles. Rather, they rely on
the recent 2D model of Duran et al. (2012) who, accounting for the reactions of solid particles on
the water flow, found that the fluid velocity vanishes where the local solid fraction is high enough
(say one or two grain diameters within the bedload layer), and tends towards a logarithmic profile
in the clear water region. Hence, at each time step, Aubert et al. (2016) compute the average solid
fraction in horizontal slices. Next, they assume that the velocity profile is logarithmic, i.e. not
affected by the presence of solid particles, if the average solid fraction is less than 0.5 and vanish
otherwise.

The motion of particles is tracked solving the equations of motion with semiempirical closures
for the drag and torque coefficients. Particle-particle and particle-wall collisions are modeled
introducing a restitution coefficient and modeling the tangential force generated at contact by a
regularized form of Coulomb law of solid friction. The cover fraction evolves in time and is updated
assuming that pebbles with velocity lower than 1/10 of the maximum velocity are immobile.
Denoting by n(t) the number of cells covered by immobile pebbles at time t, the time-averaged
static cover fraction C is evaluated as n(t) 4R2/(W L). Finally, all the energy lost during an
impact with the bedrock is assumed to contribute to its abrasion.

With the help of the above procedure Aubert et al. (2016) are able to estimate the amount
of energy that successive impacts of bedload particles transfer to the bedrock surface (a proxy
for bedrock erosion), as a function of both the amount of sediment available, strictly related to
the dimensionless surface density, and the Shields number. Results show that as the bedload flux

Figure 154. The static cover fraction C obtained by the numerical simulations of Aubert et al. (2016) is plotted as a
function of the dimensionless surface density σ, measuring the intensity of sediment supply, for different values of

the Shields number. The dashed line represents the function C = σ (modified from Aubert et al., 2016) (work
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of sediments increases, the dimensionless surface density increases and saturates when exceeding
some threshold value σ0 which increases linearly with the Shields stress. The asymptotic value of
the bedload flux of sediments (measuring the bedload transport capacity of the stream) increases
with the Shields stress following a trend compatible with known bedload transport formulas. The
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static cover fraction C, i.e. the alluviated fraction of the bedrock surface, is plotted as a function
of the dimensionless surface density, for different values of the Shields number in Figure 154. Below
the critical value of the Shields stress, C first increases linearly with the sediment supply but
departs from the function C = σ beyond σ = 0.5 (Figure 154). Indeed a fraction of the bedrock
may be covered by two layers of immobile particles, while other areas may be bare. For values of
the Shields stress larger than critical, the static cover fraction is very small for σ < 1 while for
larger values of σ the fraction increases until it fills the entire bedrock surface for σ > 3.

Converting the energy transferred to the bedrock surface per unit time and unit area ΦE into
an average long-term bedrock incision rate, Aubert et al. (2016) make predictions consistent with
the experimental observations of Sklar and Dietrich (2001). This is shown in Figure 155. Various

Figure 155. Numerical predictions of Aubert et al. (2016) for the energy flux ΦE transferred to the bedrock surface
(full circles) are compared with erosion rates measured experimentally by Sklar and Dietrich (2001) (empty

symbols), and the best fits of Sklar and Dietrich (2004) (dashed line) and Turowski et al. (2007) (solid line). The
peak of ΦE has been forced to coincide with the maximum erosion rate observed experimentally (modified from

Aubert et al., 2016) (work distributed under the Creative Commons Attribution 3.0 License).

features emerge. Firstly, the tool and the cover effects are clearly confirmed. The cover term
turns out to decay almost linearly at low sediment supply, while the trend is exponential at high
sediment supply, thus supporting the corrections proposed by Turowski et al. (2007). The total
energy transferred to the bedrock surface vanishes for σ > 3 as the bedrock surface is completely
alluviated at that stage.

The only feature that does not confirm previous results is the growth of the incision rate with
the Shields number for given sediment supply.

Effects of fluctuations of bedrock elevation

Various contributions have emphasized the need to overcome a limit of Sklar and Dietrich (2004)
model, namely the assumption that abrasion occurs on an approximately planar river bed. Indeed,
as pointed out by Huda and Small (2014), bed irregularities may affect abrasion by saltating
sediment due to a variety of factors. Firstly, the horizontal component of particle velocity is an
order of magnitude larger than its vertical component, hence a horizontal impact transfers a much
larger kinetic energy to the bedrock surface. Secondly, the impact rate likely increases. Thirdly,
the near bed flow characteristics may change significantly, leading to an increased form drag and
a decrease of the boundary shear stress. Fourthly, the mechanics of sediment transport is likely
affected.
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Huda (2013) (but see also Huda and Small, 2014) examined some of these aspects and showed
that, including schematically the effects of bedrock topography leads to significant changes in the
relationship between erosion, transport stage and grain size. The analysis incorporates most of the
assumptions made by Sklar and Dietrich (2004), in particular it is restricted to abrasion of rock
by bed load and neglects all other incision mechanisms.

Model modifications include the following. Firstly, the bed profile consists of a regular sequence
of triangular 2D bumps with steeper stoss side (Figure 156) and the scale of bumps is much larger
than sediment size, such that saltating grains can be modeled as point particles. Secondly, particle

Figure 156. Sketch of the bed profile employed by Huda (2013) with the indication of sample trajectories calculated
for particles of grain size of 7 mm with two different values of the Shields stress. The grey region indicates the area
where trajectory 2 could fall depending on the turbulent intensity. Three types of impact emerge: (1) up-slope

ascending; (2) down-slope; and (3) up-slope descending (reproduced from Figure 2.2 of Huda, 2013).

trajectories are computed assuming that the presence of bumps does not alter the solution of the
equations of motion in the plane bed case. Thirdly, the calculated component of particle velocity in
the direction normal to the local bed alignment is assumed to determine local erosion. The volume
eroded per impact then changes significantly depending on whether impacts occurs up-slope during
the descending part of the trajectory (blue region in Figure 157a), up-slope during the ascending
part of the trajectory (red region in Figure 157a) or down-slope (black circles in Figure 157a).
Finally, averaging over a large number of particles moving from random initial locations, using
model parameters appropriate to the South Fork Eel River, California, Huda (2013) calculates the
yearly averaged value of the bedrock incision rate.

Figure 157b shows the results obtained using two variants of the saltation-abrasion model: the
planar model originally developed by Sklar and Dietrich (2004), based on a planar bed topography
and the energy transferred by the vertical velocity component of particles impacting the bed; the
bump-normal model, based on a bumped topography and the energy transfer associated with the
normal component of velocity of impacting grains. Results show that the introduction of bed
topography leads to erosion rates much higher (from 10 to 100 times) than for the case of planar
bed. Moreover, erosion rate increases monotonically with transport stage, a trend opposite to
that found in the planar case. A third feature emerging from numerical simulations concerns
the dependence of erosion rate on grain size for given bed geometry, Shields stress and sediment
supply. The erosion rate decreases monotonically with grain size, unlike in the planar case where
maximum erosion occurs at some intermediate grain size.

While the work of Huda (2013) warns that an important role may be played by macro-roughness,
however it ignores the strong interaction between the presence of macro-roughness and the turbulent
flow field, as well as the fact that the process of bed alluviation is likely to be strongly affected
by sharp fluctuations of bed elevation. A different (statistical) approach to account for the latter
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static cover fraction C, i.e. the alluviated fraction of the bedrock surface, is plotted as a function
of the dimensionless surface density, for different values of the Shields number in Figure 154. Below
the critical value of the Shields stress, C first increases linearly with the sediment supply but
departs from the function C = σ beyond σ = 0.5 (Figure 154). Indeed a fraction of the bedrock
may be covered by two layers of immobile particles, while other areas may be bare. For values of
the Shields stress larger than critical, the static cover fraction is very small for σ < 1 while for
larger values of σ the fraction increases until it fills the entire bedrock surface for σ > 3.

Converting the energy transferred to the bedrock surface per unit time and unit area ΦE into
an average long-term bedrock incision rate, Aubert et al. (2016) make predictions consistent with
the experimental observations of Sklar and Dietrich (2001). This is shown in Figure 155. Various

Figure 155. Numerical predictions of Aubert et al. (2016) for the energy flux ΦE transferred to the bedrock surface
(full circles) are compared with erosion rates measured experimentally by Sklar and Dietrich (2001) (empty

symbols), and the best fits of Sklar and Dietrich (2004) (dashed line) and Turowski et al. (2007) (solid line). The
peak of ΦE has been forced to coincide with the maximum erosion rate observed experimentally (modified from

Aubert et al., 2016) (work distributed under the Creative Commons Attribution 3.0 License).

features emerge. Firstly, the tool and the cover effects are clearly confirmed. The cover term
turns out to decay almost linearly at low sediment supply, while the trend is exponential at high
sediment supply, thus supporting the corrections proposed by Turowski et al. (2007). The total
energy transferred to the bedrock surface vanishes for σ > 3 as the bedrock surface is completely
alluviated at that stage.

The only feature that does not confirm previous results is the growth of the incision rate with
the Shields number for given sediment supply.

Effects of fluctuations of bedrock elevation

Various contributions have emphasized the need to overcome a limit of Sklar and Dietrich (2004)
model, namely the assumption that abrasion occurs on an approximately planar river bed. Indeed,
as pointed out by Huda and Small (2014), bed irregularities may affect abrasion by saltating
sediment due to a variety of factors. Firstly, the horizontal component of particle velocity is an
order of magnitude larger than its vertical component, hence a horizontal impact transfers a much
larger kinetic energy to the bedrock surface. Secondly, the impact rate likely increases. Thirdly,
the near bed flow characteristics may change significantly, leading to an increased form drag and
a decrease of the boundary shear stress. Fourthly, the mechanics of sediment transport is likely
affected.
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Huda (2013) (but see also Huda and Small, 2014) examined some of these aspects and showed
that, including schematically the effects of bedrock topography leads to significant changes in the
relationship between erosion, transport stage and grain size. The analysis incorporates most of the
assumptions made by Sklar and Dietrich (2004), in particular it is restricted to abrasion of rock
by bed load and neglects all other incision mechanisms.

Model modifications include the following. Firstly, the bed profile consists of a regular sequence
of triangular 2D bumps with steeper stoss side (Figure 156) and the scale of bumps is much larger
than sediment size, such that saltating grains can be modeled as point particles. Secondly, particle

Figure 156. Sketch of the bed profile employed by Huda (2013) with the indication of sample trajectories calculated
for particles of grain size of 7 mm with two different values of the Shields stress. The grey region indicates the area
where trajectory 2 could fall depending on the turbulent intensity. Three types of impact emerge: (1) up-slope

ascending; (2) down-slope; and (3) up-slope descending (reproduced from Figure 2.2 of Huda, 2013).

trajectories are computed assuming that the presence of bumps does not alter the solution of the
equations of motion in the plane bed case. Thirdly, the calculated component of particle velocity in
the direction normal to the local bed alignment is assumed to determine local erosion. The volume
eroded per impact then changes significantly depending on whether impacts occurs up-slope during
the descending part of the trajectory (blue region in Figure 157a), up-slope during the ascending
part of the trajectory (red region in Figure 157a) or down-slope (black circles in Figure 157a).
Finally, averaging over a large number of particles moving from random initial locations, using
model parameters appropriate to the South Fork Eel River, California, Huda (2013) calculates the
yearly averaged value of the bedrock incision rate.

Figure 157b shows the results obtained using two variants of the saltation-abrasion model: the
planar model originally developed by Sklar and Dietrich (2004), based on a planar bed topography
and the energy transferred by the vertical velocity component of particles impacting the bed; the
bump-normal model, based on a bumped topography and the energy transfer associated with the
normal component of velocity of impacting grains. Results show that the introduction of bed
topography leads to erosion rates much higher (from 10 to 100 times) than for the case of planar
bed. Moreover, erosion rate increases monotonically with transport stage, a trend opposite to
that found in the planar case. A third feature emerging from numerical simulations concerns
the dependence of erosion rate on grain size for given bed geometry, Shields stress and sediment
supply. The erosion rate decreases monotonically with grain size, unlike in the planar case where
maximum erosion occurs at some intermediate grain size.

While the work of Huda (2013) warns that an important role may be played by macro-roughness,
however it ignores the strong interaction between the presence of macro-roughness and the turbulent
flow field, as well as the fact that the process of bed alluviation is likely to be strongly affected
by sharp fluctuations of bed elevation. A different (statistical) approach to account for the latter
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Figure 157. (a) Spatial distribution of volume eroded per impact. The dashed line shows the position of the bump
crest. Blue and red points represent up-slope descending and up-slope ascending impacts, respectively, while black

points represent down-slope impacts. (b) Erosion rate is plotted versus transport stage for the planar and
bump-normal models for given grain size, bedform geometry and sediment supply (modified from Figures 3.1 and

3.4 of Huda, 2013).

effects was pursued by Zhang et al. (2015) in a paper aimed at removing another constraint of
Sklar and Dietrich (2004) model, namely the assumption that local bed load transport coincides
with sediment supply. We outline its main outcomes in Section 7.7.5.

Effects of wet-dry cycles on the rate of bedrock erosion

Inoue et al. (2017) performed laboratory experiments to ascertain the effect of wet-dry weathering
cycles on the rate of erosion of bedrock river channels by saltating gravel. They found that the
tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles
according to the relationship:

σT = σT0 exp

[
−cT N Wa0

σT0

]
, (586)

where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption, N
is the number of wet-dry cycles, and cT is a constant.

Moreover, they confirmed that the dependence of erosion rate on tensile strength varies from
σ−2
T0 for fresh bedrock to σ−1.5

T0 for weathered bedrocks.

7.5.3 Extension of the saltation-abrasion model to total load

A limit of Sklar and Dietrich (2004) model was its restriction to conditions of dominant bedload.
Indeed, as pointed out in Section 7.3, the role of suspended sediment may be as important as
that of bedload or even dominant, in streams characterized by the presence of polished bedrock
surfaces and erosional patterns like flutes, potholes, and undulating canyon walls. This led Lamb
(2008) (but see also Lamb et al., 2008) to extend the model of Sklar and Dietrich (2004) removing
the constraint of dominant bedload.

The approach of Lamb (2008) followed closely that of Sklar and Dietrich (2004), hence a planar
bed was considered and the bedrock erosion rate E was expressed using the relationship (576).
Some novelties were instead introduced in order to evaluate the rate of particle impacts per unit
bed area Ir and the fraction of exposed bedrock on the river bed Fe.
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The quantity Ir could not be estimated in terms of observed trajectories of suspended particles.
It was then assumed to be on average proportional to the normal component of the average
sediment settling flux, i.e. to the product of the near-bed sediment concentration, Cb, by the
particle velocity normal to the bed, Wi. The number of particles impacting on the bed per unit
area and unit time is then obtained dividing the product Cb Wi by the particle volume. Hence,
Lamb (2008) writes

Ir =
A1 Cb Wi

π d3
, (587)

with the dimensionless coefficient A1 accounting for the fact that not all the particles settling near
the bed do impact the bed. Some of them are resuspended by near bed ejection events. Note that
the settling velocity ws of falling particles at impact depends on the fall distance and does not
necessarily coincide with the terminal (constant) settling velocity as the falling distance may not
be sufficient. Hence, Lamb (2008) first derived a relationship for the dependence of ws on the
falling distance. Next, he calculated an effective falling distance Hf performing an average over
all the settling particles. This average accounted for two effects. On one hand, settling particles
originated from a variable falling height z; on the other hand, the proportion of sediments settling
from the falling height z varied with z in proportion to the volumetric concentration C(z).

Calculation of the average impact velocity was based on a major hypothesis: sediments were
assumed to behave as passive tracers, i.e. such to follow the motion of the fluid phase. We know
from Chapter 3 that this assumption is rational only for sufficiently small sediment size (small
Stokes numbers) and fails for sediment of the size of gravel. This notwithstanding, Lamb (2008)
summed up the component of the gravitational settling velocity with the vertical component of the
turbulent velocity fluctuation w′, which was assumed to have a gaussian distribution. Integrating
over all possible values of the turbulent fluctuation such that the total particle velocity was directed
toward the wall, they were finally able to estimate the particle impact velocity. Note, that the
importance of turbulent fluctuations is enhanced by the fact that the erosion rate depends on the
cube of the individual particle velocities. For this reason, Lamb (2008) defined an effective impact
velocity obtained by nonlinear averaging as follows:

Wi,eff =

[∫ 6σw

−ws

(
ws + w′)3 P dw′

]1/3
(588)

where P is the probability density function for particle velocity fluctuations, σw is the corresponding
standard deviation and integration is extended to the range of non negligible positive values of
particle velocity fluctuations.

Also note that, even for gravel particles, the gravitational settling velocity is unlikely to be
much larger than turbulent velocity fluctuations.

The second novel feature of the analysis carried out by Lamb (2008) concerned the evaluation
of the near bed sediment concentration Cb. Indeed, we know that, in alluvial rivers with unlimited
sediment supply, the value of Cb under steady state conditions is set by the requirement that the
settling sediment flux per unit area at the bed must be equal to the entrainment capacity of the
stream from the same area. Under supply limited conditions, it is argued that the concentration
of particles in suspension (hence Cb) is independent of the entrainment capacity and is rather
determined by the sediment supplied to the flowing stream from the bed, banks, and the upstream
reach. Hence, Lamb (2008) wrote:

Qsup = Qb
sup +Qs

sup = Cb

(
U Dχ+ Vp Hb

)
(589)

Here, Qsup, Qb
sup and Qs

sup are the volumetric flux of sediment supplied per unit width, its
bedload component and its suspended component, respectively. Note that sediment is assumed
to be homogeneous, i.e. the same size is transported as bedload and suspended load. U and D
are depth averaged flow speed and flow depth, respectively. The coefficient χ accounts for the
vertical distributions of the flow speed (assumed to be logarithmic) and of the suspended sediment
concentration (assumed to follow the Rouse equilibrium profile, as shown in Figure 158). Moreover,
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Figure 157. (a) Spatial distribution of volume eroded per impact. The dashed line shows the position of the bump
crest. Blue and red points represent up-slope descending and up-slope ascending impacts, respectively, while black

points represent down-slope impacts. (b) Erosion rate is plotted versus transport stage for the planar and
bump-normal models for given grain size, bedform geometry and sediment supply (modified from Figures 3.1 and

3.4 of Huda, 2013).

effects was pursued by Zhang et al. (2015) in a paper aimed at removing another constraint of
Sklar and Dietrich (2004) model, namely the assumption that local bed load transport coincides
with sediment supply. We outline its main outcomes in Section 7.7.5.

Effects of wet-dry cycles on the rate of bedrock erosion

Inoue et al. (2017) performed laboratory experiments to ascertain the effect of wet-dry weathering
cycles on the rate of erosion of bedrock river channels by saltating gravel. They found that the
tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles
according to the relationship:

σT = σT0 exp

[
−cT N Wa0

σT0

]
, (586)

where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption, N
is the number of wet-dry cycles, and cT is a constant.

Moreover, they confirmed that the dependence of erosion rate on tensile strength varies from
σ−2
T0 for fresh bedrock to σ−1.5

T0 for weathered bedrocks.

7.5.3 Extension of the saltation-abrasion model to total load

A limit of Sklar and Dietrich (2004) model was its restriction to conditions of dominant bedload.
Indeed, as pointed out in Section 7.3, the role of suspended sediment may be as important as
that of bedload or even dominant, in streams characterized by the presence of polished bedrock
surfaces and erosional patterns like flutes, potholes, and undulating canyon walls. This led Lamb
(2008) (but see also Lamb et al., 2008) to extend the model of Sklar and Dietrich (2004) removing
the constraint of dominant bedload.

The approach of Lamb (2008) followed closely that of Sklar and Dietrich (2004), hence a planar
bed was considered and the bedrock erosion rate E was expressed using the relationship (576).
Some novelties were instead introduced in order to evaluate the rate of particle impacts per unit
bed area Ir and the fraction of exposed bedrock on the river bed Fe.
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The quantity Ir could not be estimated in terms of observed trajectories of suspended particles.
It was then assumed to be on average proportional to the normal component of the average
sediment settling flux, i.e. to the product of the near-bed sediment concentration, Cb, by the
particle velocity normal to the bed, Wi. The number of particles impacting on the bed per unit
area and unit time is then obtained dividing the product Cb Wi by the particle volume. Hence,
Lamb (2008) writes

Ir =
A1 Cb Wi

π d3
, (587)

with the dimensionless coefficient A1 accounting for the fact that not all the particles settling near
the bed do impact the bed. Some of them are resuspended by near bed ejection events. Note that
the settling velocity ws of falling particles at impact depends on the fall distance and does not
necessarily coincide with the terminal (constant) settling velocity as the falling distance may not
be sufficient. Hence, Lamb (2008) first derived a relationship for the dependence of ws on the
falling distance. Next, he calculated an effective falling distance Hf performing an average over
all the settling particles. This average accounted for two effects. On one hand, settling particles
originated from a variable falling height z; on the other hand, the proportion of sediments settling
from the falling height z varied with z in proportion to the volumetric concentration C(z).

Calculation of the average impact velocity was based on a major hypothesis: sediments were
assumed to behave as passive tracers, i.e. such to follow the motion of the fluid phase. We know
from Chapter 3 that this assumption is rational only for sufficiently small sediment size (small
Stokes numbers) and fails for sediment of the size of gravel. This notwithstanding, Lamb (2008)
summed up the component of the gravitational settling velocity with the vertical component of the
turbulent velocity fluctuation w′, which was assumed to have a gaussian distribution. Integrating
over all possible values of the turbulent fluctuation such that the total particle velocity was directed
toward the wall, they were finally able to estimate the particle impact velocity. Note, that the
importance of turbulent fluctuations is enhanced by the fact that the erosion rate depends on the
cube of the individual particle velocities. For this reason, Lamb (2008) defined an effective impact
velocity obtained by nonlinear averaging as follows:

Wi,eff =

[∫ 6σw

−ws

(
ws + w′)3 P dw′

]1/3
(588)

where P is the probability density function for particle velocity fluctuations, σw is the corresponding
standard deviation and integration is extended to the range of non negligible positive values of
particle velocity fluctuations.

Also note that, even for gravel particles, the gravitational settling velocity is unlikely to be
much larger than turbulent velocity fluctuations.

The second novel feature of the analysis carried out by Lamb (2008) concerned the evaluation
of the near bed sediment concentration Cb. Indeed, we know that, in alluvial rivers with unlimited
sediment supply, the value of Cb under steady state conditions is set by the requirement that the
settling sediment flux per unit area at the bed must be equal to the entrainment capacity of the
stream from the same area. Under supply limited conditions, it is argued that the concentration
of particles in suspension (hence Cb) is independent of the entrainment capacity and is rather
determined by the sediment supplied to the flowing stream from the bed, banks, and the upstream
reach. Hence, Lamb (2008) wrote:

Qsup = Qb
sup +Qs

sup = Cb

(
U Dχ+ Vp Hb

)
(589)

Here, Qsup, Qb
sup and Qs

sup are the volumetric flux of sediment supplied per unit width, its
bedload component and its suspended component, respectively. Note that sediment is assumed
to be homogeneous, i.e. the same size is transported as bedload and suspended load. U and D
are depth averaged flow speed and flow depth, respectively. The coefficient χ accounts for the
vertical distributions of the flow speed (assumed to be logarithmic) and of the suspended sediment
concentration (assumed to follow the Rouse equilibrium profile, as shown in Figure 158). Moreover,
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Figure 158. Sketch showing the vertical profiles of sediment concentration C and flow speed U calculated by Lamb
(2008) for conditions typical of the Eel River and for a 1 mm sand. Also shown are the thickness of the bed load
layer Hb and the effective particle fall height Hf as well as the near-bed sediment concentration Cb (modified from

Figure 1, p. 249 of Lamb, 2008).

Vp and Hb are the average speed of saltating particles and the thickness of the bedload layer,
respectively.

With the help of the above relationships Lamb (2008) expressed the bedrock erosion rate in
the presence of suspended load as

E =
A1 ρs Y

kv σ2
T

Qsup W
3
i,eff

U Dχ+ Vp Hb

(
1−

Qb
sup

Qb

)
, (590)

where we recall that Qb denotes the bedload transport capacity per unit width. Note that the
supplied bedload flux per unit width can be readily obtained from equation (589), expressing Cb

in terms of the total sediment flux supplied per unit width. Hence,

Qb
sup = Cb Vp Hb =

Vp Hb

U Dχ+ Vp Hb
Qsup. (591)

Using the above formulation and further empirical closures, Lamb (2008) was able to predict the
dependence of the bedrock erosion rate on the controlling parameters. In particular, Figure 159
shows the predicted instantaneous erosion rate as a function of transport stage for 60 mm gravel
and 1 mm sand. Note that predicted values (31 mm/yr and 10 mm/yr for the representative event
of the South Fork Eel River, respectively) must be multiplied by an appropriate intermittency factor
to account only for events that cause erosion. Using an intermittency factor of 0.06, appropriate
to the Eel River, yields an average erosion rate of 1.9 mm/yr for 60 mm gravel and 0.6 mm/yr
for 1 mm sand.

In the gravel case, erosion vanishes for transport stage in the range τ∗/τ∗c < 1.5 where the
bed turns out to be alluviated. As the transport stage increases, the bed is exposed and erosion
increases. A peak is reached at τ∗/τ∗c ≃ 2.5 and then erosion starts to decrease with transport
stage. This trend persists for any transport stage in the constant slope case. On the contrary, in
the constant depth case, erosion reaches a minimum at τ∗/τ∗c ≃ 50 and then increases indefinitely
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Figure 159. The erosion rate predicted by Lamb (2008) is plotted as a function of transport stage for 60 mm gravel
and 1 mm sand. Solid lines correspond to the case of given channel slope (S = 0.0053) and flow depth varying with
transport stage. Dashed lines correspond to the case of given flow depth (D = 0.95 m) and channel slope varying

with transport stage. The rate of volumetric sediment supply is assigned at 8.9× 10−4 m2/s. The dotted line
shows results of the saltation-abrasion model only for 60 mm gravel. The black circles correspond to conditions for

the field site of the Eel River (modified from Figure 4, p. 264 of Lamb, 2008).

with stage. In order to interpret these trends, one has to evaluate the dependence of the flow and
sediment parameters controlling the erosion rate on Shields stress, for given sediment supply, grain
size and channel slope (or channel depth). This exercise is left to the reader. Predictions for 1
mm sand are qualitatively similar.

It is of great interest to compare predictions from the saltation-abrasion model for the 60 mm
gravel with those of the total load model (dotted line in Figure 159). The two trends are similar
for small transport stage (with a slightly higher erosion peak for the total load case) but differ
significantly for large transport stages, when the saltation-abrasion model forces the erosion rate
to vanish. For 1 mm sand, the saltation-abrasion model invariably predicts vanishing erosion due
to alluviation for almost all transport stages.

Figure 160 shows the erosion rate as a function of relative sediment supply for 60 mm gravel and
1 mm sand, and hydraulic conditions corresponding to transport stages 1.7 and 102, respectively.
With constant values of transport stage, flow depth, and channel slope, the saltation-abrasion
model predicts a peak in erosion rate when the supplied sediment flux is one half the bed load
transport capacity. Moreover, the erosion rate obviously vanishes as supply vanishes or supply
equals bed load capacity, thus leading to alluviation. On the contrary, the total load model
predicts that erosion is still possible for supply exceeding the bed load capacity, as the part of
load transported in suspension prevents bed alluviation. This effect is obviously more pronounced
for sand than for gravel.

A number of simplifying assumptions adopted in the model will require improvements. Lamb
et al. (2008) discuss some of them. In particular, the assumption that particle impacts invariably
cause erosion is unlikely to hold for fine particles whose motion approaching the wall may be
damped by fluid viscosity. This is suggested by theoretical and experimental results (e.g. Joseph
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Figure 158. Sketch showing the vertical profiles of sediment concentration C and flow speed U calculated by Lamb
(2008) for conditions typical of the Eel River and for a 1 mm sand. Also shown are the thickness of the bed load
layer Hb and the effective particle fall height Hf as well as the near-bed sediment concentration Cb (modified from

Figure 1, p. 249 of Lamb, 2008).

Vp and Hb are the average speed of saltating particles and the thickness of the bedload layer,
respectively.

With the help of the above relationships Lamb (2008) expressed the bedrock erosion rate in
the presence of suspended load as

E =
A1 ρs Y

kv σ2
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sup
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)
, (590)

where we recall that Qb denotes the bedload transport capacity per unit width. Note that the
supplied bedload flux per unit width can be readily obtained from equation (589), expressing Cb

in terms of the total sediment flux supplied per unit width. Hence,

Qb
sup = Cb Vp Hb =

Vp Hb

U Dχ+ Vp Hb
Qsup. (591)

Using the above formulation and further empirical closures, Lamb (2008) was able to predict the
dependence of the bedrock erosion rate on the controlling parameters. In particular, Figure 159
shows the predicted instantaneous erosion rate as a function of transport stage for 60 mm gravel
and 1 mm sand. Note that predicted values (31 mm/yr and 10 mm/yr for the representative event
of the South Fork Eel River, respectively) must be multiplied by an appropriate intermittency factor
to account only for events that cause erosion. Using an intermittency factor of 0.06, appropriate
to the Eel River, yields an average erosion rate of 1.9 mm/yr for 60 mm gravel and 0.6 mm/yr
for 1 mm sand.

In the gravel case, erosion vanishes for transport stage in the range τ∗/τ∗c < 1.5 where the
bed turns out to be alluviated. As the transport stage increases, the bed is exposed and erosion
increases. A peak is reached at τ∗/τ∗c ≃ 2.5 and then erosion starts to decrease with transport
stage. This trend persists for any transport stage in the constant slope case. On the contrary, in
the constant depth case, erosion reaches a minimum at τ∗/τ∗c ≃ 50 and then increases indefinitely
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Figure 159. The erosion rate predicted by Lamb (2008) is plotted as a function of transport stage for 60 mm gravel
and 1 mm sand. Solid lines correspond to the case of given channel slope (S = 0.0053) and flow depth varying with
transport stage. Dashed lines correspond to the case of given flow depth (D = 0.95 m) and channel slope varying

with transport stage. The rate of volumetric sediment supply is assigned at 8.9× 10−4 m2/s. The dotted line
shows results of the saltation-abrasion model only for 60 mm gravel. The black circles correspond to conditions for

the field site of the Eel River (modified from Figure 4, p. 264 of Lamb, 2008).

with stage. In order to interpret these trends, one has to evaluate the dependence of the flow and
sediment parameters controlling the erosion rate on Shields stress, for given sediment supply, grain
size and channel slope (or channel depth). This exercise is left to the reader. Predictions for 1
mm sand are qualitatively similar.

It is of great interest to compare predictions from the saltation-abrasion model for the 60 mm
gravel with those of the total load model (dotted line in Figure 159). The two trends are similar
for small transport stage (with a slightly higher erosion peak for the total load case) but differ
significantly for large transport stages, when the saltation-abrasion model forces the erosion rate
to vanish. For 1 mm sand, the saltation-abrasion model invariably predicts vanishing erosion due
to alluviation for almost all transport stages.

Figure 160 shows the erosion rate as a function of relative sediment supply for 60 mm gravel and
1 mm sand, and hydraulic conditions corresponding to transport stages 1.7 and 102, respectively.
With constant values of transport stage, flow depth, and channel slope, the saltation-abrasion
model predicts a peak in erosion rate when the supplied sediment flux is one half the bed load
transport capacity. Moreover, the erosion rate obviously vanishes as supply vanishes or supply
equals bed load capacity, thus leading to alluviation. On the contrary, the total load model
predicts that erosion is still possible for supply exceeding the bed load capacity, as the part of
load transported in suspension prevents bed alluviation. This effect is obviously more pronounced
for sand than for gravel.

A number of simplifying assumptions adopted in the model will require improvements. Lamb
et al. (2008) discuss some of them. In particular, the assumption that particle impacts invariably
cause erosion is unlikely to hold for fine particles whose motion approaching the wall may be
damped by fluid viscosity. This is suggested by theoretical and experimental results (e.g. Joseph
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Figure 160. The erosion rate is plotted as a function of relative sediment supply for 60 mm gravel and 1 mm sand
and hydraulic conditions corresponding to a transport stages equal to 1.7 and 102, respectively. The dotted line

shows results of the saltation-abrasion model only for 60 mm gravel. The black circles correspond to conditions for
the field site of the Eel River (modified from Figure 6, p. 268 of Lamb, 2008).

and Hunt, 2004), which clearly show that the degree of damping is a function of the particle Stokes
number St at impact conditions. Specifically, impacts of glass spheres were found to be partially
damped for St < 100 and completely damped for St < 30. Improvements are also needed to model
the near bed concentration established under mixed bedload-suspended load conditions, a subject
very little explored in the literature.

The above limits do not undermine the merits of the total load erosion model which displays
significant differences from the saltation-abrasion model for high transport stages and high relative
sediment supply rates. As pointed out by Lamb et al. (2008), these differences may play a major
role for gravels subject to very large stresses during intense floods and in mountain streams
but may also be important for fine sediments, which can experience frequent high transport
stages. Modeling results of Lamb (2008) were substantiated by the laboratory experiments of
Scheingross (2016) (but see also Scheingross et al., 2014) performed in abrasion mills identical
to those used by Sklar and Dietrich (2001) in their study of erosion rates in the bedload regime.
Observations allowed to identify a suspension erosion-regime with near bed particle impacts and
active interchange between a highly concentrated bedload layer and an upper, less concentrated,
suspended-load layer. A reduction of the erosion rates was observed moving from the bedload
to the suspension regime. This was due to the experimental procedure whereby grain size was
reduced, with sediment load and flow speed held constant. Figure 161a shows a comparison
between the various models described so far. The saltation-abrasion model of Sklar and Dietrich
(2004) predicts vanishing erosion for d ≲ 2 mm corresponding to the onset of suspension. The
total-load model of Lamb (2008) with no viscous damping of particle impacts overpredicts erosion
rates in the suspension regime. Finally, the total-load abrasion model with impacts viscously
damped for St < 75 leads to the best fit with the experimental observations of Scheingross (2016).
However, note that the erosion rate in the suspension regime would be comparable or much larger
than in the bedload-regime if sediment load were allowed to increase with the friction velocity
holding grain size constant (Figure 161b).
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Figure 161. (a) Volumetric erosion rates observed in the foam experiments of Scheingross (2016) (⋄) and in the
limestone experiments of Sklar and Dietrich (2001) (•) are compared with the saltation-abrasion model of Sklar

and Dietrich (2004) (dashed dotted line), the total-load model of Lamb (2008) with no viscous damping of particle
impacts (dashed line), and the total-load abrasion model with impacts viscously damped for St < 75, which leads
to the best fit with the experimental observations (solid line). (b) Volumetric erosion rates are plotted as a function
of the transport stage in the two cases of variable grain size (continuous line) and variable friction velocity (dashed

line) (modified from Figures 3.3 and 3.4 of Scheingross, 2016).

7.6. Mechanics of bedrock channel incision

7.6.1 Insight on the bedrock incision process from laboratory observations

Various laboratory investigations of the bedrock incision processes have been performed.
Leaving aside earlier studies, we start outlining the work of Finnegan (2007), but see also Finnegan
et al. (2007), who explored how channel incision and morphology responded to variations of
sediment supply. More precisely, in the transient evolution of the laboratory bedrock channel they
investigated, channel slope, width, roughness, alluvial cover, and incision rate were left free to
adjust.

The material used to model bedrock was a mixture of cement, fine sand (< 600 µm), fly ash,
and a flow additive. The flume was equipped with a motor-driven auger sediment able to feed
gravel at a fixed rate at the upstream end of the channel, an equipment to measure the bed load
flux debouched at the downstream end of the flume and a laser scanning system for high resolution
measurements of bed elevation. An initial trapezoidal channel was excavated throughout the flume
(Figure 162a). Initial channel geometry, bed slope and sediment grain size were chosen such to
give rise to mean Shields stresses allowing for the transport of a wide range of sediment supply
rates without significant bed aggradation. Moreover, the grain size was large enough to drive
rapid, measurable bed incision, while hindering suspension. Also, the channel aspect ratio was
large enough to allow sediment transport in a significant portion of the cross section and produce
partial bed cover.

The main observations at the end of the 60 hours experiment may be summarized as follows:

- a weakly meandering slot incision with width varying from 2 to 20 cm developed along the
channel (Figure 162d-f);
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Figure 160. The erosion rate is plotted as a function of relative sediment supply for 60 mm gravel and 1 mm sand
and hydraulic conditions corresponding to a transport stages equal to 1.7 and 102, respectively. The dotted line

shows results of the saltation-abrasion model only for 60 mm gravel. The black circles correspond to conditions for
the field site of the Eel River (modified from Figure 6, p. 268 of Lamb, 2008).

and Hunt, 2004), which clearly show that the degree of damping is a function of the particle Stokes
number St at impact conditions. Specifically, impacts of glass spheres were found to be partially
damped for St < 100 and completely damped for St < 30. Improvements are also needed to model
the near bed concentration established under mixed bedload-suspended load conditions, a subject
very little explored in the literature.

The above limits do not undermine the merits of the total load erosion model which displays
significant differences from the saltation-abrasion model for high transport stages and high relative
sediment supply rates. As pointed out by Lamb et al. (2008), these differences may play a major
role for gravels subject to very large stresses during intense floods and in mountain streams
but may also be important for fine sediments, which can experience frequent high transport
stages. Modeling results of Lamb (2008) were substantiated by the laboratory experiments of
Scheingross (2016) (but see also Scheingross et al., 2014) performed in abrasion mills identical
to those used by Sklar and Dietrich (2001) in their study of erosion rates in the bedload regime.
Observations allowed to identify a suspension erosion-regime with near bed particle impacts and
active interchange between a highly concentrated bedload layer and an upper, less concentrated,
suspended-load layer. A reduction of the erosion rates was observed moving from the bedload
to the suspension regime. This was due to the experimental procedure whereby grain size was
reduced, with sediment load and flow speed held constant. Figure 161a shows a comparison
between the various models described so far. The saltation-abrasion model of Sklar and Dietrich
(2004) predicts vanishing erosion for d ≲ 2 mm corresponding to the onset of suspension. The
total-load model of Lamb (2008) with no viscous damping of particle impacts overpredicts erosion
rates in the suspension regime. Finally, the total-load abrasion model with impacts viscously
damped for St < 75 leads to the best fit with the experimental observations of Scheingross (2016).
However, note that the erosion rate in the suspension regime would be comparable or much larger
than in the bedload-regime if sediment load were allowed to increase with the friction velocity
holding grain size constant (Figure 161b).
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7.6.1 Insight on the bedrock incision process from laboratory observations
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Leaving aside earlier studies, we start outlining the work of Finnegan (2007), but see also Finnegan
et al. (2007), who explored how channel incision and morphology responded to variations of
sediment supply. More precisely, in the transient evolution of the laboratory bedrock channel they
investigated, channel slope, width, roughness, alluvial cover, and incision rate were left free to
adjust.

The material used to model bedrock was a mixture of cement, fine sand (< 600 µm), fly ash,
and a flow additive. The flume was equipped with a motor-driven auger sediment able to feed
gravel at a fixed rate at the upstream end of the channel, an equipment to measure the bed load
flux debouched at the downstream end of the flume and a laser scanning system for high resolution
measurements of bed elevation. An initial trapezoidal channel was excavated throughout the flume
(Figure 162a). Initial channel geometry, bed slope and sediment grain size were chosen such to
give rise to mean Shields stresses allowing for the transport of a wide range of sediment supply
rates without significant bed aggradation. Moreover, the grain size was large enough to drive
rapid, measurable bed incision, while hindering suspension. Also, the channel aspect ratio was
large enough to allow sediment transport in a significant portion of the cross section and produce
partial bed cover.

The main observations at the end of the 60 hours experiment may be summarized as follows:

- a weakly meandering slot incision with width varying from 2 to 20 cm developed along the
channel (Figure 162d-f);
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Figure 162. (a) Bed profiles at the initial and final stages of the laboratory experiment performed by Finnegan
(2007)(Ch. 3). Dotted lines are linear fits to the upper and lower halves of the flume. (b,c) Shape of cross section
and water surface elevation at two flume locations at the initial and final stages of the experiment. (d-f) Patterns

and intensities of bedrock incision observed during three consecutive periods each lasting 12 h in which the
sediment supply rate was set to (d) 0.059 kg/s, (e) 0.025 kg/s and (f) 0.011 kg/s. A distorted 5 : 1 scale has been

used in the three plots (reproduced from Figure 4 and Figure 10 of Finnegan, 2007).

- an average bed degradation was experienced by the entire bed (Figure 162a);

- local incision reached peaks of 9 cm (Figure 162c);

- the walls of the initial trapezoidal channel were not eroded except in a few cross sections that
experienced some lateral erosion at the bank toe.

A consistent response of channel incision to variations of sediment supply was observed. The
Authors distinguished between slot-averaged incision (SAI ), and bed-averaged incision (BAI ). The
former average is performed only over the bed area where the incising slot is active. Observations
revealed that the SAI rate declined steadily when the sediment supply rate was kept constant,
a condition which led to a progressively increasing alluviation of the bed area (Figure 163a-c).
On the other hand, a reduction in the rate of sediment supply led to an increase of the SAI rate,
associated with temporary removal of alluvial cover. Conversely, slot incision vanished when the
rate of bed load supply increased and a thick alluvial layer filled the incised slot. Moreover, since
incision was concentrated within the strip where active bedload transport occurred, the width of
the incising slot varied correspondingly (Figure 163a,b).
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Figure 163. (a-c) Rapid variation of the extension of the alluvial cover observed in the upper ∼ 2 m of the flume
used by Finnegan (2007) to study bedrock channel incision for a constant bed load supply of 0.059 kg/s. (d)

Changes undergone by the channel cross section as the sediment supply rate and the alluvial cover varied with time
t (expressed in h). Arrows denote the approximate level of alluvial fill developed in the interval 24-42 h. (e)

Vertical incision calculated as differences of the bed elevation shown in (d) (reproduced from Figure 7 and Figure 13
of Finnegan, 2007).

The above observations are summarized and detailed in Figure 163d,e showing the temporal
sequence of bed elevations and the associated incisions experienced by a typical cross section. Note
the initial incision driven by the first value of sediment supply rate (t = 0-12 h), the subsequent
narrowing and continued incision following the reduction in sediment supply rate (t = 12-24 h)
and the extensive alluvial cover developed as the sediment supply rate was returned to its initial
value (t = 24-42 h). In this last stage, vertical incision moved at the intersection of the alluvial
deposit with the channel boundary, driving widening of the slot.

The final conclusion of Finnegan et al. (2007) was: “Our experiments suggest that variation
in sediment supply relative to transport capacity results in complex patterns of incision within a
channel related to the changing width of bed load transport and due to formation of alluvial cover
. . . natural stochasticity in both river stage and sediment delivery, although difficult to recreate in
the laboratory, is likely to be essential to understanding the dynamics of natural channels . . . In our
experiments, bed load supply varied at a much shorter timescale than the timescale of adjustment
for the whole channel. Consequently, a channel with a single width never evolved. Rather, the
channel was a composite of the initial channel and the slots formed under the various bed load
supply rates (Figure 164a).” Note that an implication of this work is that an alluvial cover shields
the bedrock surface from the erosive effect of bedload particle impact. This issue was analyzed
in detail by Turowski and Bloem (2015) through laboratory experiments where these Authors
measured the decline of energy transferred through sediment covers of increasing thickness. It
turned out that, although the cover thickness does heavily influence the energy transmission at a
given point, “when averaging over the whole bed, cover-free areas dominate total energy delivery,
making partial energy transfer through the cover negligible when a small or intermediate fraction
of the bed is covered by sediment”, hence “partial energy delivery to the bed through a sediment
layer can be neglected for most modeling purposes”.

Examples of bedrock channels exhibiting the presence of a sequence of wider channels reminiscent
of geological periods when the channel was characterized by larger sediment supply rates are not
uncommon in nature. A striking example, a reach of the Watkins Glen Canyon, New York, was
pointed out by Finnegan (2007) and is shown in Figure 164b.

Experiments similar to those performed by Finnegan (2007) were reported by Johnson and
Whipple (2007, 2010). They confirmed the feedbacks between erosion and sediment transport
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Figure 162. (a) Bed profiles at the initial and final stages of the laboratory experiment performed by Finnegan
(2007)(Ch. 3). Dotted lines are linear fits to the upper and lower halves of the flume. (b,c) Shape of cross section
and water surface elevation at two flume locations at the initial and final stages of the experiment. (d-f) Patterns

and intensities of bedrock incision observed during three consecutive periods each lasting 12 h in which the
sediment supply rate was set to (d) 0.059 kg/s, (e) 0.025 kg/s and (f) 0.011 kg/s. A distorted 5 : 1 scale has been

used in the three plots (reproduced from Figure 4 and Figure 10 of Finnegan, 2007).

- an average bed degradation was experienced by the entire bed (Figure 162a);

- local incision reached peaks of 9 cm (Figure 162c);

- the walls of the initial trapezoidal channel were not eroded except in a few cross sections that
experienced some lateral erosion at the bank toe.

A consistent response of channel incision to variations of sediment supply was observed. The
Authors distinguished between slot-averaged incision (SAI ), and bed-averaged incision (BAI ). The
former average is performed only over the bed area where the incising slot is active. Observations
revealed that the SAI rate declined steadily when the sediment supply rate was kept constant,
a condition which led to a progressively increasing alluviation of the bed area (Figure 163a-c).
On the other hand, a reduction in the rate of sediment supply led to an increase of the SAI rate,
associated with temporary removal of alluvial cover. Conversely, slot incision vanished when the
rate of bed load supply increased and a thick alluvial layer filled the incised slot. Moreover, since
incision was concentrated within the strip where active bedload transport occurred, the width of
the incising slot varied correspondingly (Figure 163a,b).
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t (expressed in h). Arrows denote the approximate level of alluvial fill developed in the interval 24-42 h. (e)

Vertical incision calculated as differences of the bed elevation shown in (d) (reproduced from Figure 7 and Figure 13
of Finnegan, 2007).

The above observations are summarized and detailed in Figure 163d,e showing the temporal
sequence of bed elevations and the associated incisions experienced by a typical cross section. Note
the initial incision driven by the first value of sediment supply rate (t = 0-12 h), the subsequent
narrowing and continued incision following the reduction in sediment supply rate (t = 12-24 h)
and the extensive alluvial cover developed as the sediment supply rate was returned to its initial
value (t = 24-42 h). In this last stage, vertical incision moved at the intersection of the alluvial
deposit with the channel boundary, driving widening of the slot.

The final conclusion of Finnegan et al. (2007) was: “Our experiments suggest that variation
in sediment supply relative to transport capacity results in complex patterns of incision within a
channel related to the changing width of bed load transport and due to formation of alluvial cover
. . . natural stochasticity in both river stage and sediment delivery, although difficult to recreate in
the laboratory, is likely to be essential to understanding the dynamics of natural channels . . . In our
experiments, bed load supply varied at a much shorter timescale than the timescale of adjustment
for the whole channel. Consequently, a channel with a single width never evolved. Rather, the
channel was a composite of the initial channel and the slots formed under the various bed load
supply rates (Figure 164a).” Note that an implication of this work is that an alluvial cover shields
the bedrock surface from the erosive effect of bedload particle impact. This issue was analyzed
in detail by Turowski and Bloem (2015) through laboratory experiments where these Authors
measured the decline of energy transferred through sediment covers of increasing thickness. It
turned out that, although the cover thickness does heavily influence the energy transmission at a
given point, “when averaging over the whole bed, cover-free areas dominate total energy delivery,
making partial energy transfer through the cover negligible when a small or intermediate fraction
of the bed is covered by sediment”, hence “partial energy delivery to the bed through a sediment
layer can be neglected for most modeling purposes”.

Examples of bedrock channels exhibiting the presence of a sequence of wider channels reminiscent
of geological periods when the channel was characterized by larger sediment supply rates are not
uncommon in nature. A striking example, a reach of the Watkins Glen Canyon, New York, was
pointed out by Finnegan (2007) and is shown in Figure 164b.

Experiments similar to those performed by Finnegan (2007) were reported by Johnson and
Whipple (2007, 2010). They confirmed the feedbacks between erosion and sediment transport
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Figure 164. (a): Shape of the channel formed in the experiment of Finnegan (2007), after 60 h of incision at
variable bed load supply rates. (b): Picture of Watkins Glen Canyon, New York. This is an example of a similar
incision process observed in nature, exhibiting a reduction in channel width driven by the progressive incision. The
latter occurred as sediment supply dropped throughout the late Pleistocene and early Holocene (reproduced from

Figure 19 of Finnegan, 2007).

discussed above. In particular, a gently sinuous incised groove developed over most of the flume
length and local erosion rate clearly depended on the local sediment flux, reflecting first tool
and then cover effects. In addition, some specific observations emerged. In the highest slope
experiment (10%) of Johnson and Whipple (2007), short scale oscillations of bed elevation formed
and migrated downstream with migration rate somewhat larger than the vertical incision rates.
Moreover, wall undulations and potholes developed, showing morphological similarities with those
observed in many natural bedrock channels. Finally, the controversial prediction of the saltation-
abrasion model that erosion rates would decrease at high shear stresses was not confirmed by the
observations.

The experiments of Chatanantavet and Parker (2008) focused on understanding the dependence
of bedrock channel alluviation on sediment supply and hydraulic conditions. Their investigation
extended previous work of Demeter et al. (2005), which had focused on very low channel slope
(≤ 0.007), very low width to depth ratios (≤ 3) chosen such to suppress alternate bar formation
and fairly low bedrock roughness. The experiments of Chatanantavet and Parker (2008) started
from an initial configuration characterized by the presence of some previous cover of alluvium,
examined a range of slopes much larger than in previous experiments, and considered width-depth
ratios between 11 and 31, much larger than in Demeter et al. (2005), thus allowing for bar
formation. Moreover, simulated bedrock morphologies encompassed three types of roughness,
namely longitudinal grooves, smooth random abrasion and rough random abrasion.

Results showed that a major control on the outcome of the experiments was the initial condition.
This is clarified in Figure 165. The plot of Figure 165a shows results from three experiments which
started from a bare bed. In the two runs characterized by relatively high slopes (S = 0.02 and
S = 0.0115), as the sediment supply rate was increased, the bed always remained bare of sediment
until the sediment supply rate reached some threshold value (Qsup,0) at which runaway alluviation
occurred suddenly. However, in the third run, characterized by lower slope (S = 0.003) alluviation
increased gradually, i.e. the bed exposure gradually reduced to zero, as the sediment flux reached
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a second threshold value Qsup,al different from Qsup,0. Also, note that the decrease of the fraction
of bed exposure with the ratio Qsup/Qsup,al was found to be approximately linear as predicted by
the model of Sklar and Dietrich (2004).

Figure 165. Results of the experiments carried out by Chatanantavet and Parker (2008). (a) Experiments starting
from a bare bed. (b) Experiments starting from an initial condition of complete cover. Depending on whether the
initial alluvium thickness hsi was below or above some critical value hsic a complete wash off of the alluvial cover

or a partial bed alluviation were observed, respectively (modified from Chatanantavet and Parker, 2008).

In the range of higher slopes, partial bed cover may be produced under below-capacity conditions
provided the initial condition is one of complete cover. More precisely, two scenarios emerged. If
the initial thickness of the alluvium hsi was below some critical value hsic, then the alluvial cover
was completely washed off as time progressed, i.e. the response of the channel replicated that
found in runs where the initial condition was one of bare bed. This is shown in Figure 165b (runs
with hsi = 0 and hsi = 1 cm). On the contrary, if hsi exceeded the critical value, the response
of the channel at equilibrium displayed partial bed alluviation, i.e. cover fraction less than one
(Figure 165b, runs with hsi = 2, 4, 6 cm). Moreover, the exposed fraction of bedrock area decreased
as the sediment supply rate increased and reached unity for a value of the sediment supply rate
Qsup,al significantly smaller than Qsup,0.

Various other observations emerged from the work of Chatanantavet and Parker (2008). In
particular, the exposed fraction of the bed turned out to depend strongly on the ratio Qsup/Qsup,al

as well as on the slope S, but did not show significant dependence on the Shields number. Moreover,
the addition of boulders, in the high slope case prevented bed exposure in the range of low values
of Qsup/Qsup,al.

Chatanantavet and Parker (2008) concluded that the linear formulation of Sklar and Dietrich
(2004) for the relationship between the degree of bedrock exposure and the ratio of sediment supply
rate to transport capacity is appropriate for low bed slopes (less than 0.005 in their experiments) or
for very large bed roughness (say in the presence of boulders). The discontinuous model, whereby
the bed configuration shifts abruptly from bare to alluviated as the sediment supply exceeds the
transport capacity (Howard et al., 1994) applies to sufficiently high slopes (larger than 0.015 in
their experiments).

Hodge and Hoey (2012) revisited the work of Chatanantavet and Parker (2008) with the help
of a cellular automaton model and concluded that the behavior displayed in Figure 165 is crucially
dependent on the difference in grain dynamics on bedrock and alluvial surfaces.

Experimental observations aimed at investigating how the bed roughness affects the alluvial
cover were performed by Inoue et al. (2014) on a 0.8 m wide and 300 m long artificial channel
excavated near the left bank of a reach of the Ishikari River, Japan. Their main conclusion was
that hydraulic roughness decreases as the alluvial cover increases. Moreover, the erosion rate of
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Figure 164. (a): Shape of the channel formed in the experiment of Finnegan (2007), after 60 h of incision at
variable bed load supply rates. (b): Picture of Watkins Glen Canyon, New York. This is an example of a similar
incision process observed in nature, exhibiting a reduction in channel width driven by the progressive incision. The
latter occurred as sediment supply dropped throughout the late Pleistocene and early Holocene (reproduced from

Figure 19 of Finnegan, 2007).
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(Figure 165b, runs with hsi = 2, 4, 6 cm). Moreover, the exposed fraction of bedrock area decreased
as the sediment supply rate increased and reached unity for a value of the sediment supply rate
Qsup,al significantly smaller than Qsup,0.
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the addition of boulders, in the high slope case prevented bed exposure in the range of low values
of Qsup/Qsup,al.

Chatanantavet and Parker (2008) concluded that the linear formulation of Sklar and Dietrich
(2004) for the relationship between the degree of bedrock exposure and the ratio of sediment supply
rate to transport capacity is appropriate for low bed slopes (less than 0.005 in their experiments) or
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the bed configuration shifts abruptly from bare to alluviated as the sediment supply exceeds the
transport capacity (Howard et al., 1994) applies to sufficiently high slopes (larger than 0.015 in
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of a cellular automaton model and concluded that the behavior displayed in Figure 165 is crucially
dependent on the difference in grain dynamics on bedrock and alluvial surfaces.
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excavated near the left bank of a reach of the Ishikari River, Japan. Their main conclusion was
that hydraulic roughness decreases as the alluvial cover increases. Moreover, the erosion rate of
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cover-free sections was found to be proportional to the sediment supply rate and independent of
the bed shear stress.

More recently, Mishra and Inoue (2020) have further investigated the same issue and found
that the dependence of the alluvial cover on sediment supply rate is controlled by hydraulic
roughness. More precisely, if the hydraulic roughness of the bedrock substrate is larger than the
hydraulic roughness of the alluvial bed, then the alluvial cover increases proportionally to the
sediment supply rate and reaches an equilibrium state. In the opposite case, i.e. bed smoother
than transported sediment, no deposition occurs unless the rate of sediment supply exceeds the
transport capacity, such that the whole bed is abruptly alluviated.

The experimental findings discussed in this section have generated various theoretical efforts to
develop physically based models of the morphodynamics of bedrock and mixed bedrock-alluvial
channels that will be discussed in the next sections.

7.6.2 1D incision models

Sklar and Dietrich (2008) investigated implications of the saltation-abrasion model at a
landscape scale, and used their model to assess the relative merits and limits of various other
models.

They first show how the saltation-abrasion model, which is based on the analysis of individual
particle impacts, i.e. on processes involving small spatial and temporal scales, can be scaled up in
time and space such to interpret the process of landscape adjustment to rock uplift. The scaling
up procedure involves an estimate of various parameters, namely an intermittency parameter
measuring the fraction of total time during which a conveniently defined representative discharge
occurs, the fraction of the total runoff carried by high flows and the bedload fraction of the total
load.

They next apply their model to the prediction of the channel slope at equilibrium Se. Under
equilibrium conditions, one can set Ut = E (recall equation (569)) and write the bedrock incision
formula (583) in the form:

Ut =
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with Rh hydraulic radius of the stream treated as uniform. This equation can be solved for
the equilibrium slope Se once the rock properties, sediment size, representative flow rate and
sediment supply rate are given. Note, that Rh is also dependent on Se through Chézy relationship.
Parameters were tuned by the Authors such that the model would predict the assumed long-term
incision rate at the South Fork Eel reference site. Their calculations showed that the channel slope
at steady state attains typical values in the range 3× 10−3 - 3× 10−2 as the rate of tectonic uplift
varies in a wide range (Figure 166).

Variations of the equilibrium slope are found to depend mainly on grain size, with the supply
rate of coarse sediments playing the second most important role. Changes in rock uplift rate and
rock strength do not affect the equilibrium slope significantly except for their possible indirect
influence on the size distribution of sediments delivered to channel networks by hillslopes. Finally,
comparison between the saltation-abrasion model and a range of other bedrock incision models,
shows that each of them fails to capture at least one of the four effects of sediment emerged from
the saltation-abrasion model (threshold of motion effect, cover effect, tool effect, suspension).

A notable observation concerns the actual existence of a steady-state profile. Indeed, the
saltation-abrasion model of Sklar and Dietrich (2004) predicts that the rate of bedrock incision
by bedload abrasion increases with excess shear stress up to a maximum, attained when the
progressive elongation of saltation hop trajectories leads to a reduction of the particle impact
frequency at a rate faster than the rate of increase of impact energy. Hence, for given discharge,
sediment supply, grain size and rock strength, a slope producing the maximum possible incision
rate exists. If the latter is smaller than the rate of rock uplift, then steady state cannot be achieved
throughout the profile. The importance of this observation is related to the interpretation of field
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Figure 166. Channel slope at steady state according to the saltation-abrasion model of Sklar and Dietrich (2006) is
plotted as a function of the rate of tectonic uplift. Representative parameters were chosen such that the model
predicts the long-term incision rate estimated for the South Fork Eel reference site (modified from Sklar and

Dietrich, 2006).

observations which suggest the frequent occurrence of knickpoints and fluvial hanging valleys at
junctions when the small tributaries are characterized by lithology more resistant than that of the
main channel (Crosby, 2006; Crosby et al., 2007). Indeed, if the slope of the tributary exceeds
the maximum, then a further increase in slope leads to lower values of the incision rate, hence a
runaway increase in slope with the formation of a knickpoint can occur (Figure 167). As pointed
out by Sklar and Dietrich (2008), for steady-state relative base level lowering the knickpoint can
then grow infinitely large.

In the work of Sklar and Dietrich (2008) the saltation-abrasion model is used to further
investigate the relative influence of discharge, grain size, sediment supply, rock uplift rate and rock
strength on the concavity and relief of the bed profile. Scaling up of the model is achieved as in
Sklar and Dietrich (2006), hence all transport of coarse sediment and bedrock incision is assumed
to take place during a representative high-flow discharge with duration equal to some fraction
Ft = 0.0437 of the total time. The long-term incision rate Et is then evaluated as Ei Ft, with Ei
instantaneous incision rate calculated using Sklar and Dietrich (2004) formula. Assuming a steady
state condition, it follows that the tectonic uplift rate (Ut) must be equal to the long-term incision
rate Et. This condition allows one to estimate the coarse sediment supply rate Qsup. Indeed the
rate of production of sediment volume (due to long-term incision) delivered to a given cross section
can be expressed as Et A/Ft. Hence,

Qsup =
Et A
Ft

Fb, (593)

where Fb is the bedload fraction of the total sediment load. Channel width and flow discharge
were assumed to be power functions of drainage area A, which was expressed as a given power
function of distance downstream of the channel head. Similar assumption was made for grain size.
With the help of the above assumptions, Sklar and Dietrich (2008) can impose the steady state
condition, namely rate of rock uplift balancing rate of bedrock incision, at any cross section along
the river profile.
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cover-free sections was found to be proportional to the sediment supply rate and independent of
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with Rh hydraulic radius of the stream treated as uniform. This equation can be solved for
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saltation-abrasion model of Sklar and Dietrich (2004) predicts that the rate of bedrock incision
by bedload abrasion increases with excess shear stress up to a maximum, attained when the
progressive elongation of saltation hop trajectories leads to a reduction of the particle impact
frequency at a rate faster than the rate of increase of impact energy. Hence, for given discharge,
sediment supply, grain size and rock strength, a slope producing the maximum possible incision
rate exists. If the latter is smaller than the rate of rock uplift, then steady state cannot be achieved
throughout the profile. The importance of this observation is related to the interpretation of field
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Figure 166. Channel slope at steady state according to the saltation-abrasion model of Sklar and Dietrich (2006) is
plotted as a function of the rate of tectonic uplift. Representative parameters were chosen such that the model
predicts the long-term incision rate estimated for the South Fork Eel reference site (modified from Sklar and

Dietrich, 2006).

observations which suggest the frequent occurrence of knickpoints and fluvial hanging valleys at
junctions when the small tributaries are characterized by lithology more resistant than that of the
main channel (Crosby, 2006; Crosby et al., 2007). Indeed, if the slope of the tributary exceeds
the maximum, then a further increase in slope leads to lower values of the incision rate, hence a
runaway increase in slope with the formation of a knickpoint can occur (Figure 167). As pointed
out by Sklar and Dietrich (2008), for steady-state relative base level lowering the knickpoint can
then grow infinitely large.

In the work of Sklar and Dietrich (2008) the saltation-abrasion model is used to further
investigate the relative influence of discharge, grain size, sediment supply, rock uplift rate and rock
strength on the concavity and relief of the bed profile. Scaling up of the model is achieved as in
Sklar and Dietrich (2006), hence all transport of coarse sediment and bedrock incision is assumed
to take place during a representative high-flow discharge with duration equal to some fraction
Ft = 0.0437 of the total time. The long-term incision rate Et is then evaluated as Ei Ft, with Ei
instantaneous incision rate calculated using Sklar and Dietrich (2004) formula. Assuming a steady
state condition, it follows that the tectonic uplift rate (Ut) must be equal to the long-term incision
rate Et. This condition allows one to estimate the coarse sediment supply rate Qsup. Indeed the
rate of production of sediment volume (due to long-term incision) delivered to a given cross section
can be expressed as Et A/Ft. Hence,

Qsup =
Et A
Ft

Fb, (593)

where Fb is the bedload fraction of the total sediment load. Channel width and flow discharge
were assumed to be power functions of drainage area A, which was expressed as a given power
function of distance downstream of the channel head. Similar assumption was made for grain size.
With the help of the above assumptions, Sklar and Dietrich (2008) can impose the steady state
condition, namely rate of rock uplift balancing rate of bedrock incision, at any cross section along
the river profile.
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Figure 167. Google Earth image of a part of the Waipoua River catchment in the North Island of New Zealand,
showing sub-catchments separated from the main stem by large steps in channel elevation.

They also introduce an intuitively appealing decomposition of the total shear stress τt into
three components

τt = τc +∆ τQsup +∆τE , (594)

with τc shear stress required to initiate grain motion, ∆τQsup
increment of shear stress required

to transport the bedload at the supply rate and ∆τE further increment of shear stress required
to erode bedrock at the rate of rock uplift. Analytical expressions for the first two components
are readily obtained from the definition of critical Shields stress and from the bedload transport
formula employed. The further contribution ∆τE can be determined from Sklar and Dietrich (2004)
erosion formula.

The decomposition (594) is best illustrated in the plane defined by the relative sediment
supply (Qsup/Qb) and the transport stage τ∗/τ∗c. Figure 168 shows this plane where contours
of the dimensionless bedrock incision rate (Ẽ) are plotted according to Sklar and Dietrich (2004)
saltation-abrasion model. The bed keeps fully alluviated for values of τ∗t less than τ∗c +∆τ∗Qsup .
As the latter threshold is overcome, i.e. some bed shear stress ∆τ∗E is available for erosion, then
bedrock incision occurs. The heavy line shows a typical trajectory followed as τ∗t increases for a
representative case. Increasing the shear stress, a fraction of the channel bed is exposed as the
transport capacity exceeds supply (downward shift of the plotting position) and incision occurs.

An example of steady-state profile was calculated by Sklar and Dietrich (2008) using values for
the relevant physical parameters appropriate to the South Fork Eel River, in Northern California
(Figure 169). For simplicity, the rock uplift rate, the rock strength, the channel roughness and
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Figure 168. Illustration of the decomposition of the total dimensionless Shields stress τ∗t into its three contributions
(τ∗c, ∆τ∗Qsup , ∆τ∗E) in the plane defined by the relative sediment supply Qsup/Qb and the transport stage
τ∗/τ∗c. Contour lines denote the dimensionless bedrock incision rate Ẽ. The heavy line shows the trajectory

followed in this map as τ∗t increases for Qsup = 0.06 m3/s, d = 0.06 m, B = 18 m, σT = 7 MPa (modified from
Sklar and Dietrich, 2008).

runoff were assumed to be spatially uniform. Moreover, the fraction of total load transported as
bedload was also taken to be constant along the channel. Figure 169 shows that the equilibrium
profile predicted by the saltation-abrasion model has the expected features: it is concave-up
and exhibits approximately log-log linear scaling between channel slope and drainage area, with
θ = 0.41.

An attempt to assess the adequacy of various incision models to describe the temporal develop-
ment of bedrock incision for a single bedload transport event was pursued by Beer and Turowski
(2015). These Authors performed very accurate field measurements of hydraulic and bedload
transport properties on an artificial bedrock slab installed in a steep mountain stream. They used
these data to evaluate the incision rate with the help of various theoretical or empirical models
and then compared results of the calculations with observed values of the rate of incision, recorded
with high accuracy. It turned out that, for the basin under investigation, the influence of bedload
transport on erosion rate (the tools effect) dominated over other effects. This led the Authors
to propose a simplest model for the temporal evolution of incision where the erosion rate was
assumed to be proportional to bedload transport rate. The Authors conclude that “this simple
model performs similarly well or better than more complex models from the literature, including
the mechanistically based saltation-abrasion model (Sklar and Dietrich (2004)), and several models
from the stream-power incision model family”. However, while this conclusion may apply to the
field site analyzed in this paper, it may hardly be generalized as the importance of the cover effect
has been confirmed by a number of field observations.

In particular, a thorough investigation of the role of sediment cover in bedrock channel incision
was performed through field observations in the Henry Mountains, Utah (Johnson et al., 2009).
The chosen site is particularly suited for such an investigation as it contains several small channels
that share tributary junctions and have incised into the same sedimentary bedrock unit (Navajo
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Figure 167. Google Earth image of a part of the Waipoua River catchment in the North Island of New Zealand,
showing sub-catchments separated from the main stem by large steps in channel elevation.

They also introduce an intuitively appealing decomposition of the total shear stress τt into
three components

τt = τc +∆ τQsup +∆τE , (594)

with τc shear stress required to initiate grain motion, ∆τQsup
increment of shear stress required

to transport the bedload at the supply rate and ∆τE further increment of shear stress required
to erode bedrock at the rate of rock uplift. Analytical expressions for the first two components
are readily obtained from the definition of critical Shields stress and from the bedload transport
formula employed. The further contribution ∆τE can be determined from Sklar and Dietrich (2004)
erosion formula.

The decomposition (594) is best illustrated in the plane defined by the relative sediment
supply (Qsup/Qb) and the transport stage τ∗/τ∗c. Figure 168 shows this plane where contours
of the dimensionless bedrock incision rate (Ẽ) are plotted according to Sklar and Dietrich (2004)
saltation-abrasion model. The bed keeps fully alluviated for values of τ∗t less than τ∗c +∆τ∗Qsup .
As the latter threshold is overcome, i.e. some bed shear stress ∆τ∗E is available for erosion, then
bedrock incision occurs. The heavy line shows a typical trajectory followed as τ∗t increases for a
representative case. Increasing the shear stress, a fraction of the channel bed is exposed as the
transport capacity exceeds supply (downward shift of the plotting position) and incision occurs.

An example of steady-state profile was calculated by Sklar and Dietrich (2008) using values for
the relevant physical parameters appropriate to the South Fork Eel River, in Northern California
(Figure 169). For simplicity, the rock uplift rate, the rock strength, the channel roughness and
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Figure 168. Illustration of the decomposition of the total dimensionless Shields stress τ∗t into its three contributions
(τ∗c, ∆τ∗Qsup , ∆τ∗E) in the plane defined by the relative sediment supply Qsup/Qb and the transport stage
τ∗/τ∗c. Contour lines denote the dimensionless bedrock incision rate Ẽ. The heavy line shows the trajectory

followed in this map as τ∗t increases for Qsup = 0.06 m3/s, d = 0.06 m, B = 18 m, σT = 7 MPa (modified from
Sklar and Dietrich, 2008).

runoff were assumed to be spatially uniform. Moreover, the fraction of total load transported as
bedload was also taken to be constant along the channel. Figure 169 shows that the equilibrium
profile predicted by the saltation-abrasion model has the expected features: it is concave-up
and exhibits approximately log-log linear scaling between channel slope and drainage area, with
θ = 0.41.

An attempt to assess the adequacy of various incision models to describe the temporal develop-
ment of bedrock incision for a single bedload transport event was pursued by Beer and Turowski
(2015). These Authors performed very accurate field measurements of hydraulic and bedload
transport properties on an artificial bedrock slab installed in a steep mountain stream. They used
these data to evaluate the incision rate with the help of various theoretical or empirical models
and then compared results of the calculations with observed values of the rate of incision, recorded
with high accuracy. It turned out that, for the basin under investigation, the influence of bedload
transport on erosion rate (the tools effect) dominated over other effects. This led the Authors
to propose a simplest model for the temporal evolution of incision where the erosion rate was
assumed to be proportional to bedload transport rate. The Authors conclude that “this simple
model performs similarly well or better than more complex models from the literature, including
the mechanistically based saltation-abrasion model (Sklar and Dietrich (2004)), and several models
from the stream-power incision model family”. However, while this conclusion may apply to the
field site analyzed in this paper, it may hardly be generalized as the importance of the cover effect
has been confirmed by a number of field observations.

In particular, a thorough investigation of the role of sediment cover in bedrock channel incision
was performed through field observations in the Henry Mountains, Utah (Johnson et al., 2009).
The chosen site is particularly suited for such an investigation as it contains several small channels
that share tributary junctions and have incised into the same sedimentary bedrock unit (Navajo
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Figure 169. Steady-state profile predicted by Sklar and Dietrich (2008) for values of the relevant parameters fitting
the South Fork Eel River reference site (indicated by an open circle). (a) Bed profile. (b) Reduction of channel

slope as drainage area increases: model prediction (heavy line) and best-fit log-log linear regression (thin line). (c)
Increase of flow discharge Q and rate of the supplied sediment mass ρs Qsup with drainage area (modified from

Sklar and Dietrich, 2008).

Sandstone). Moreover, different tributaries contain differing amounts of coarse diorite clasts
depending on the spatial distribution of sediment sources. As a result, the diorite-poor tributaries
were found to have incised more deeply and achieved average slopes lower than found for tributaries
containing abundant clasts, i.e. diorite-rich. Moreover, coarse sediment blanketing bedrock channel
beds appeared to reduce the efficiency of incision, thus validating the role of the cover effect in
the incision process. A further issue analyzed by Johnson et al. (2009) was to ascertain what
mechanism sets the slope of bedrock channels. It appears that when abundant sediment is available,
the channel slope needed to transport the sediment load can be larger than that needed to erode
bedrock, hence it is the transport capacity to control bedrock channel slope.

7.6.3 Stability of the longitudinal bed profile and autogenic development of knickpoints

Having established the occurrence of an equilibrium longitudinal bed profile, it is natural to
investigate whether such equilibrium state is stable. This is a fairly wide subject recently reviewed
by Scheingross et al. (2020) and may be described as the shaping of erosional landscapes by what
geomorphologists call autogenic mechanisms. In our language, they are essentially free unstable
responses of erosional environments to the occurrence of spontaneous perturbations. Here, we
briefly discuss one of the various processes reviewed by Scheingross et al. (2020), namely the
autogenic development of knickpoints introduced in Section 7.3.1.
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The hypothesis that bedrock waterfalls can develop as finite amplitude evolution of cyclic steps,
i.e. of autogenic erosional patterns, was tested by Scheingross (2016) (but see also Scheingross
et al., 2019) with the help of laboratory experiments. They constructed a steep bedrock channel
using foam, a uniform material able to resist erosion by water and devoid of any of the lithologic
heterogeneities known to cause waterfall formation in nature. The scaling of erosion rate driven by
bedload transport was chosen such to simulate incision of natural rivers with a temporal scale of
approx 30 years per experiment hour. The experimental observations, described in Figure 170,
displayed the following sequence of processes.

- An initial formation of a slot canyon by bed abrasion and channel incision.

- The development of a sequence of small amplitude perturbations (of the order of 10−1 m)
in the form of convex bedrock crests followed by concave depressions, which amplified and
formed cyclic steps, similar to previously observed features (Taki and Parker, 2005). These
steps migrated downstream due to erosion of the upstream side of the crests; the flow was
supercritical in chutes and subcritical in pools with hydraulic jumps in between (Figure 170b).

- The development of some cyclic steps into waterfalls, roughly after after 2-3 hours of experiment.
Deeper pools trapped sediment that prevented further base erosion, while the following chute
continued to erode and steepened. Steepening eventually led to flow detachment with the
formation of a fully ventilated jet and plunge pool. Note, that, unlike cyclic steps, waterfalls
did not display any significant migration.

- Waterfall destruction, after about 20 min of experiment (roughly 100 years in natural rivers)
as erosion at the waterfall brink led to flow reattachment to the river bed.

- Incipient formation of a new waterfall and plunge pool as, following waterfall destruction, the
plunge-pool lip upstream of the waterfall steepened.

The conclusion of Scheingross et al. (2019) is that knickzones and waterfalls do not necessarily
represent the response of landscapes to external forcing, as commonly assumed. Rather, the above
results suggest that they may spontaneously develop in uniform lithologies undergoing no external
perturbation. A satisfactory theoretical interpretation of the above observations will require the
formulation of a stability theory of the type proposed by Parker and Izumi (2000) and Izumi et al.
(2017).

7.6.4 The interplay of incision and alluviation in shaping the cross section of bedrock channels

Various 2D numerical models have been proposed to determine the evolution of the cross
section of bedrock channels subject to erosive actions under uniform flow conditions.

In particular, the works of Stark (2006), Wobus et al. (2006, 2008) and Turowski et al. (2009)
have some common features. They quantify the erosive action of the stream in terms of some
power of the excess shear stress relative to an erosional threshold, following the early approach of
Howard et al. (1994). Hence, they are unable to account for the dependence of the incision process
on the characteristics of sediment transport. Secondly, they assume detachment limited conditions,
hence they ignore the possible role of the interaction between bedload erosion and alluvial cover.
Thirdly, they evaluate the distribution of bed shear stress adopting simplified approaches that are
adequate for sufficiently wide and smooth cross sectional shapes. These models are ultimately
aimed at predicting the characteristics of the cross section at equilibrium, i.e. under conditions
such that the average incision rate is equal to the rate of tectonic uplift. Hence, they provide
some insight on how discharge and slope variations, as well as tectonic effects, can influence width
adjustment in bedrock channels.

A different viewpoint was pursued by Nelson and Seminara (2011), who modeled the evolution
of the bedrock channel shape in response to the erosive action of saltating particles carried by
bed load. The basic goal of this investigation is to show that it is the shape of the channel
which ultimately controls the mechanics of bed erosion and determines the fraction Fe of bed area
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Figure 169. Steady-state profile predicted by Sklar and Dietrich (2008) for values of the relevant parameters fitting
the South Fork Eel River reference site (indicated by an open circle). (a) Bed profile. (b) Reduction of channel

slope as drainage area increases: model prediction (heavy line) and best-fit log-log linear regression (thin line). (c)
Increase of flow discharge Q and rate of the supplied sediment mass ρs Qsup with drainage area (modified from

Sklar and Dietrich, 2008).

Sandstone). Moreover, different tributaries contain differing amounts of coarse diorite clasts
depending on the spatial distribution of sediment sources. As a result, the diorite-poor tributaries
were found to have incised more deeply and achieved average slopes lower than found for tributaries
containing abundant clasts, i.e. diorite-rich. Moreover, coarse sediment blanketing bedrock channel
beds appeared to reduce the efficiency of incision, thus validating the role of the cover effect in
the incision process. A further issue analyzed by Johnson et al. (2009) was to ascertain what
mechanism sets the slope of bedrock channels. It appears that when abundant sediment is available,
the channel slope needed to transport the sediment load can be larger than that needed to erode
bedrock, hence it is the transport capacity to control bedrock channel slope.

7.6.3 Stability of the longitudinal bed profile and autogenic development of knickpoints

Having established the occurrence of an equilibrium longitudinal bed profile, it is natural to
investigate whether such equilibrium state is stable. This is a fairly wide subject recently reviewed
by Scheingross et al. (2020) and may be described as the shaping of erosional landscapes by what
geomorphologists call autogenic mechanisms. In our language, they are essentially free unstable
responses of erosional environments to the occurrence of spontaneous perturbations. Here, we
briefly discuss one of the various processes reviewed by Scheingross et al. (2020), namely the
autogenic development of knickpoints introduced in Section 7.3.1.
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The hypothesis that bedrock waterfalls can develop as finite amplitude evolution of cyclic steps,
i.e. of autogenic erosional patterns, was tested by Scheingross (2016) (but see also Scheingross
et al., 2019) with the help of laboratory experiments. They constructed a steep bedrock channel
using foam, a uniform material able to resist erosion by water and devoid of any of the lithologic
heterogeneities known to cause waterfall formation in nature. The scaling of erosion rate driven by
bedload transport was chosen such to simulate incision of natural rivers with a temporal scale of
approx 30 years per experiment hour. The experimental observations, described in Figure 170,
displayed the following sequence of processes.

- An initial formation of a slot canyon by bed abrasion and channel incision.

- The development of a sequence of small amplitude perturbations (of the order of 10−1 m)
in the form of convex bedrock crests followed by concave depressions, which amplified and
formed cyclic steps, similar to previously observed features (Taki and Parker, 2005). These
steps migrated downstream due to erosion of the upstream side of the crests; the flow was
supercritical in chutes and subcritical in pools with hydraulic jumps in between (Figure 170b).

- The development of some cyclic steps into waterfalls, roughly after after 2-3 hours of experiment.
Deeper pools trapped sediment that prevented further base erosion, while the following chute
continued to erode and steepened. Steepening eventually led to flow detachment with the
formation of a fully ventilated jet and plunge pool. Note, that, unlike cyclic steps, waterfalls
did not display any significant migration.

- Waterfall destruction, after about 20 min of experiment (roughly 100 years in natural rivers)
as erosion at the waterfall brink led to flow reattachment to the river bed.

- Incipient formation of a new waterfall and plunge pool as, following waterfall destruction, the
plunge-pool lip upstream of the waterfall steepened.

The conclusion of Scheingross et al. (2019) is that knickzones and waterfalls do not necessarily
represent the response of landscapes to external forcing, as commonly assumed. Rather, the above
results suggest that they may spontaneously develop in uniform lithologies undergoing no external
perturbation. A satisfactory theoretical interpretation of the above observations will require the
formulation of a stability theory of the type proposed by Parker and Izumi (2000) and Izumi et al.
(2017).

7.6.4 The interplay of incision and alluviation in shaping the cross section of bedrock channels

Various 2D numerical models have been proposed to determine the evolution of the cross
section of bedrock channels subject to erosive actions under uniform flow conditions.

In particular, the works of Stark (2006), Wobus et al. (2006, 2008) and Turowski et al. (2009)
have some common features. They quantify the erosive action of the stream in terms of some
power of the excess shear stress relative to an erosional threshold, following the early approach of
Howard et al. (1994). Hence, they are unable to account for the dependence of the incision process
on the characteristics of sediment transport. Secondly, they assume detachment limited conditions,
hence they ignore the possible role of the interaction between bedload erosion and alluvial cover.
Thirdly, they evaluate the distribution of bed shear stress adopting simplified approaches that are
adequate for sufficiently wide and smooth cross sectional shapes. These models are ultimately
aimed at predicting the characteristics of the cross section at equilibrium, i.e. under conditions
such that the average incision rate is equal to the rate of tectonic uplift. Hence, they provide
some insight on how discharge and slope variations, as well as tectonic effects, can influence width
adjustment in bedrock channels.

A different viewpoint was pursued by Nelson and Seminara (2011), who modeled the evolution
of the bedrock channel shape in response to the erosive action of saltating particles carried by
bed load. The basic goal of this investigation is to show that it is the shape of the channel
which ultimately controls the mechanics of bed erosion and determines the fraction Fe of bed area
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Figure 170. (a) Evolution of the profiles of the laboratory bedrock channel and of the water surface observed by
Scheingross (2016) at different times. (b) Formation of cyclic steps and their development into waterfalls. Waterfall

destruction and incipient waterfall rebuilding. Shaded areas mark extent of sediment cover (reproduced from
Figures 6.3 and 6.10 of Scheingross, 2016).

exposed to the erosive action of saltating particles. This occurs because the lateral slope of the
bed tends to concentrate the bedload flux towards the lowest parts of the cross section. The work
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then clarifies the actual meaning of the Fe term in Sklar and Dietrich (2004) erosion law, which
may be thought of as a parameter that incorporates the effects of channel shape on the pattern of
bed load transport and local alluviation.

To illustrate this concept, we consider a straight uniform channel with the schematic cross section
depicted in Figure 171, referred to cross-stream and vertical coordinates (y and z, respectively).

Figure 171. (a) Sketch of the configuration considered by Nelson and Seminara (2011). Bed load transport occurs
between yLs and yRs, with a maximum elevation zbl. Local alluviation is assumed to occur within the strip where

zbl − z(y) > th, with th empirical threshold value. In this example, the red solid horizontal line is the upper
boundary of the alluviated region. (b) Distribution of boundary shear stress computed with the help of the

ray-isovel model (RIM). The locally uniform bottom stress distribution ρ g D(y)S is also shown for comparison
(modified from Nelson and Seminara, 2011).

The fundamental assumption made by Nelson and Seminara (2011) is that, over the long-term,
gravitational effects should force bed load to concentrate in the lowest portions of the channel.
There, it would be transported at the local sediment transport capacity per unit width, Qb(y),
which can be evaluated with the help of a bed load transport equation, e.g. relation (582) proposed
by Fernandez Luque and van Beek (1976). With the latter assumption, it is then easy to calculate
the width of the strip where bed load transport concentrates. Indeed, imposing that the total
sediment flux in the cross section must be equal to the imposed sediment supply rate Qsup, one
finds:

Qsup =

∫ yRs

yLs

Qb(y) dy. (595)

Here, yLs and yRs are the locations of the left and right edges of the bed load layer. These values
can be iteratively determined by starting at the lowest point in the channel and moving outward
along the boundary until equation (595) is satisfied. Once yLs and yRs have been determined, one
can determine whether part of the channel will alluviate. Nelson and Seminara (2011) assume
that alluviation occurs within the strip zbl − z(y) > th , where zbl is the bedrock elevation at yLs

and yRs, z(y) is the bedrock elevation at the coordinate y, and th is an alluviation threshold (see
Figure 171a). Based on the observations of Finnegan et al. (2007) (Figure 10) and Johnson and
Whipple (2010) (Figure 4), Nelson and Seminara (2011) tentatively assume that th ∼ 5 d.

Of course, in order to pursue the above procedure, one needs to know the distribution of
shear stress along the cross sectional boundary. The flow model needed to achieve this goal
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Figure 170. (a) Evolution of the profiles of the laboratory bedrock channel and of the water surface observed by
Scheingross (2016) at different times. (b) Formation of cyclic steps and their development into waterfalls. Waterfall

destruction and incipient waterfall rebuilding. Shaded areas mark extent of sediment cover (reproduced from
Figures 6.3 and 6.10 of Scheingross, 2016).

exposed to the erosive action of saltating particles. This occurs because the lateral slope of the
bed tends to concentrate the bedload flux towards the lowest parts of the cross section. The work
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then clarifies the actual meaning of the Fe term in Sklar and Dietrich (2004) erosion law, which
may be thought of as a parameter that incorporates the effects of channel shape on the pattern of
bed load transport and local alluviation.

To illustrate this concept, we consider a straight uniform channel with the schematic cross section
depicted in Figure 171, referred to cross-stream and vertical coordinates (y and z, respectively).

Figure 171. (a) Sketch of the configuration considered by Nelson and Seminara (2011). Bed load transport occurs
between yLs and yRs, with a maximum elevation zbl. Local alluviation is assumed to occur within the strip where

zbl − z(y) > th, with th empirical threshold value. In this example, the red solid horizontal line is the upper
boundary of the alluviated region. (b) Distribution of boundary shear stress computed with the help of the

ray-isovel model (RIM). The locally uniform bottom stress distribution ρ g D(y)S is also shown for comparison
(modified from Nelson and Seminara, 2011).

The fundamental assumption made by Nelson and Seminara (2011) is that, over the long-term,
gravitational effects should force bed load to concentrate in the lowest portions of the channel.
There, it would be transported at the local sediment transport capacity per unit width, Qb(y),
which can be evaluated with the help of a bed load transport equation, e.g. relation (582) proposed
by Fernandez Luque and van Beek (1976). With the latter assumption, it is then easy to calculate
the width of the strip where bed load transport concentrates. Indeed, imposing that the total
sediment flux in the cross section must be equal to the imposed sediment supply rate Qsup, one
finds:

Qsup =

∫ yRs

yLs

Qb(y) dy. (595)

Here, yLs and yRs are the locations of the left and right edges of the bed load layer. These values
can be iteratively determined by starting at the lowest point in the channel and moving outward
along the boundary until equation (595) is satisfied. Once yLs and yRs have been determined, one
can determine whether part of the channel will alluviate. Nelson and Seminara (2011) assume
that alluviation occurs within the strip zbl − z(y) > th , where zbl is the bedrock elevation at yLs

and yRs, z(y) is the bedrock elevation at the coordinate y, and th is an alluviation threshold (see
Figure 171a). Based on the observations of Finnegan et al. (2007) (Figure 10) and Johnson and
Whipple (2010) (Figure 4), Nelson and Seminara (2011) tentatively assume that th ∼ 5 d.

Of course, in order to pursue the above procedure, one needs to know the distribution of
shear stress along the cross sectional boundary. The flow model needed to achieve this goal
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must be sufficiently refined to be able to describe both wide and narrow cross sections, possibly
characterized by fairly sharp variations of boundary curvature. The choice made by Nelson and
Seminara (2011) was to employ the ray-isovel model, described in Section 2.3.5. Figure 171b shows
the computed boundary shear stress distribution. Also shown is the bottom shear stress τu(y)
(= ρ g D(y)S) that would be experienced in a uniform flow with flow depth D(y). Comparison
shows that, in this example, τu(y) dramatically overpredicts the boundary shear stress in the
deepest part of this relatively narrow channel.

Another novel feature of the approach of Nelson and Seminara (2011) concerns the way bedrock
erosion is calculated. Bedrock erosion is again assumed to be entirely the consequence of abrasion
by saltating bed load particles but the approach of Sklar and Dietrich (2004) is now adapted to be
employed in the context of a local theory. As a consequence, only two of the three contributions
to the erosion rate E in Sklar and Dietrich (2004) model, namely the volume of bedrock eroded
per particle impact (Vi) and the number of impacts per unit time (Ir), must be retained. Indeed,
the model of Nelson and Seminara (2011) explicitly calculates where sediment transport occurs
and, hence, the fraction of the bed area exposed in the whole cross section arises at each step from
the approach outlined above. The local erosion rate E(y) is eventually evaluated as

E(y) =
{ Vi(y) Ir(y) 0 < zbl − z(y) < th

0 otherwise
(596)

where Ir must be evaluated in terms of the local value of the bedload transport capacity per unit
width Qb(y). The above formulation ensures that bedrock is eroded only at locations where bed
load transport is occurring (zbl − z(y) ≥ 0) but not in topographically low areas that have been
alluviated (zbl − z(y) > th). To remain consistent with the assumptions implicit in the Sklar and
Dietrich (2004) model, the erosion rate calculated in equation (596) is directed vertically. In other
words, the lateral erosion driven by particle saltation over sloping surfaces is neglected.

The above model was tested applying it to the experimental setting of Finnegan et al. (2007).
This is an ideal test case as, in that experiment, the sediment supplied to the experimental bedrock
channel was varied and the channel was allowed to adapt its geometry to variations of the external
forcing. Figure 172 compares the results of the numerical simulations of Nelson and Seminara
(2011) with the experimental observations of Finnegan et al. (2007). It appears that the model,
while overpredicting width and depth of erosion in some places, does capture the essential dynamics
observed in the experiment. Indeed, it reproduces the formation of an erosional slot which becomes
narrow when the sediment supply is reduced (in the time interval 12− 24 h). Also, the low part of
the channel alluviates when the sediment supply is subsequently increased (in the time interval
24− 42 h), and erosion then concentrates on the higher, lateral portions of the cavity.

Finally, Nelson and Seminara (2011) reproduce and provide a theoretical interpretation of
the so-called tools and cover effects that Sklar and Dietrich (2004) modeled through the Fe term
included in their formulation. To achieve this goal Nelson and Seminara (2011) derive from their
local theory a cross sectionally averaged formulation, defining a laterally averaged value of the
erosion rate Ē in the form:

Ē =
1

yRw − yLw

∫ yRw

yLw

E(y) dy, (597)

where yRw and yLw are the lateral coordinates of the right and left edges of the water surface,
respectively. They then calculate Ē as a function of the sediment flux Qsup supplied to a parabolic
channel for given average boundary shear stress.

The resulting curve is plotted in Figure 173 and compared with the corresponding curve
obtained using Sklar and Dietrich (2004) model. Both of them exhibit a rising (tools-dominated)
limb followed by a falling (cover-dominated) limb. Note that in the theoretical model of Nelson and
Seminara (2011) the falling limb initiates when the rate of sediment supply is such that alluviation
starts. Moreover, as the quantities yLs, yRs, and zbl are strongly dependent upon channel shape,
the shape of the theoretical curve will be different for different channel shapes.

In conclusion, in zero-dimensional saltation-abrasion models (e.g. Sklar and Dietrich, 2004;
Turowski et al., 2007) the shape of the curve relating erosion rate to sediment supply (Figure 173)
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Figure 172. (a) The bed topography predicted by Nelson and Seminara (2011) for the experimental setting of
Finnegan et al. (2007) is compared with (c) the experimental observations at the end of each period of constant
sediment feed, i.e. ϱs Qsup = 59 g/s from 0− 12 h; 25 g/s from 12− 24 h; 59 g/s from 24− 42 h; 11 g/s from

42− 60 h. (b,d) Distribution of the erosion experienced by the bed during each feed period, obtained by
differencing the bed profiles of Figures 172a and 172c (reproduced from Nelson and Seminara, 2011).

depends upon the choice of the function Fe, which is expressed in terms of the ratio between the
rate of sediment supplied to the whole channel and its transport capacity. This function takes
values increasing from 0 to 1 as the latter ratio increases from 0 to 1. In the local model of Nelson
and Seminara (2011), essentially, the local value of Fe is always either 1 (in the region where
bedload occurs and is assumed to be always transported at capacity) or 0 (in bare regions). It
is the integrated effect of the local value of Fe over the cross section that leads to a relationship
between the laterally averaged erosion rate and the sediment supplied to the whole channel similar
to those of zero-dimensional models. In other words, it is ultimately the channel shape that
controls where bed load occurs, alluviation is possibly produced, and erosion is active depending
on the amount of sediments supplied to the channel.

7.7. Towards a theoretical framework for the morphodynamics of mixed bedrock-alluvial channels

7.7.1 Particle entrainment in mixed bedrock-alluvial channels

An important observation, common to the experiments of Finnegan et al. (2007) and Chatanan-
tavet and Parker (2008), was that, even if the experiment started from a random distribution of
gravel patches, a coherent pattern of bedload transport develops. The mechanism underlying the
first set of observations was theoretically explained by Nelson and Seminara (2011) in terms of the
gravitational effect of the lateral slope of the bed surface. On the other hand, the pattern observed
by Chatanantavet and Parker (2008) consisted of a sequence of bars in the “form of a longitudinal
strip of alluvial cover that curved alternately from one side of the channel to the other ”. This strip
was observed to propagate downstream and maintain a constant amount of bedrock exposure. For
low sediment volumes dispersed patches and bars are typically one or two grains thick, but, as
the sediment volume increases, their areal extent grows and their depth may reach thicknesses
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must be sufficiently refined to be able to describe both wide and narrow cross sections, possibly
characterized by fairly sharp variations of boundary curvature. The choice made by Nelson and
Seminara (2011) was to employ the ray-isovel model, described in Section 2.3.5. Figure 171b shows
the computed boundary shear stress distribution. Also shown is the bottom shear stress τu(y)
(= ρ g D(y)S) that would be experienced in a uniform flow with flow depth D(y). Comparison
shows that, in this example, τu(y) dramatically overpredicts the boundary shear stress in the
deepest part of this relatively narrow channel.

Another novel feature of the approach of Nelson and Seminara (2011) concerns the way bedrock
erosion is calculated. Bedrock erosion is again assumed to be entirely the consequence of abrasion
by saltating bed load particles but the approach of Sklar and Dietrich (2004) is now adapted to be
employed in the context of a local theory. As a consequence, only two of the three contributions
to the erosion rate E in Sklar and Dietrich (2004) model, namely the volume of bedrock eroded
per particle impact (Vi) and the number of impacts per unit time (Ir), must be retained. Indeed,
the model of Nelson and Seminara (2011) explicitly calculates where sediment transport occurs
and, hence, the fraction of the bed area exposed in the whole cross section arises at each step from
the approach outlined above. The local erosion rate E(y) is eventually evaluated as

E(y) =
{ Vi(y) Ir(y) 0 < zbl − z(y) < th

0 otherwise
(596)

where Ir must be evaluated in terms of the local value of the bedload transport capacity per unit
width Qb(y). The above formulation ensures that bedrock is eroded only at locations where bed
load transport is occurring (zbl − z(y) ≥ 0) but not in topographically low areas that have been
alluviated (zbl − z(y) > th). To remain consistent with the assumptions implicit in the Sklar and
Dietrich (2004) model, the erosion rate calculated in equation (596) is directed vertically. In other
words, the lateral erosion driven by particle saltation over sloping surfaces is neglected.

The above model was tested applying it to the experimental setting of Finnegan et al. (2007).
This is an ideal test case as, in that experiment, the sediment supplied to the experimental bedrock
channel was varied and the channel was allowed to adapt its geometry to variations of the external
forcing. Figure 172 compares the results of the numerical simulations of Nelson and Seminara
(2011) with the experimental observations of Finnegan et al. (2007). It appears that the model,
while overpredicting width and depth of erosion in some places, does capture the essential dynamics
observed in the experiment. Indeed, it reproduces the formation of an erosional slot which becomes
narrow when the sediment supply is reduced (in the time interval 12− 24 h). Also, the low part of
the channel alluviates when the sediment supply is subsequently increased (in the time interval
24− 42 h), and erosion then concentrates on the higher, lateral portions of the cavity.

Finally, Nelson and Seminara (2011) reproduce and provide a theoretical interpretation of
the so-called tools and cover effects that Sklar and Dietrich (2004) modeled through the Fe term
included in their formulation. To achieve this goal Nelson and Seminara (2011) derive from their
local theory a cross sectionally averaged formulation, defining a laterally averaged value of the
erosion rate Ē in the form:

Ē =
1

yRw − yLw

∫ yRw

yLw

E(y) dy, (597)

where yRw and yLw are the lateral coordinates of the right and left edges of the water surface,
respectively. They then calculate Ē as a function of the sediment flux Qsup supplied to a parabolic
channel for given average boundary shear stress.

The resulting curve is plotted in Figure 173 and compared with the corresponding curve
obtained using Sklar and Dietrich (2004) model. Both of them exhibit a rising (tools-dominated)
limb followed by a falling (cover-dominated) limb. Note that in the theoretical model of Nelson and
Seminara (2011) the falling limb initiates when the rate of sediment supply is such that alluviation
starts. Moreover, as the quantities yLs, yRs, and zbl are strongly dependent upon channel shape,
the shape of the theoretical curve will be different for different channel shapes.

In conclusion, in zero-dimensional saltation-abrasion models (e.g. Sklar and Dietrich, 2004;
Turowski et al., 2007) the shape of the curve relating erosion rate to sediment supply (Figure 173)
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Figure 172. (a) The bed topography predicted by Nelson and Seminara (2011) for the experimental setting of
Finnegan et al. (2007) is compared with (c) the experimental observations at the end of each period of constant
sediment feed, i.e. ϱs Qsup = 59 g/s from 0− 12 h; 25 g/s from 12− 24 h; 59 g/s from 24− 42 h; 11 g/s from

42− 60 h. (b,d) Distribution of the erosion experienced by the bed during each feed period, obtained by
differencing the bed profiles of Figures 172a and 172c (reproduced from Nelson and Seminara, 2011).

depends upon the choice of the function Fe, which is expressed in terms of the ratio between the
rate of sediment supplied to the whole channel and its transport capacity. This function takes
values increasing from 0 to 1 as the latter ratio increases from 0 to 1. In the local model of Nelson
and Seminara (2011), essentially, the local value of Fe is always either 1 (in the region where
bedload occurs and is assumed to be always transported at capacity) or 0 (in bare regions). It
is the integrated effect of the local value of Fe over the cross section that leads to a relationship
between the laterally averaged erosion rate and the sediment supplied to the whole channel similar
to those of zero-dimensional models. In other words, it is ultimately the channel shape that
controls where bed load occurs, alluviation is possibly produced, and erosion is active depending
on the amount of sediments supplied to the channel.

7.7. Towards a theoretical framework for the morphodynamics of mixed bedrock-alluvial channels

7.7.1 Particle entrainment in mixed bedrock-alluvial channels

An important observation, common to the experiments of Finnegan et al. (2007) and Chatanan-
tavet and Parker (2008), was that, even if the experiment started from a random distribution of
gravel patches, a coherent pattern of bedload transport develops. The mechanism underlying the
first set of observations was theoretically explained by Nelson and Seminara (2011) in terms of the
gravitational effect of the lateral slope of the bed surface. On the other hand, the pattern observed
by Chatanantavet and Parker (2008) consisted of a sequence of bars in the “form of a longitudinal
strip of alluvial cover that curved alternately from one side of the channel to the other ”. This strip
was observed to propagate downstream and maintain a constant amount of bedrock exposure. For
low sediment volumes dispersed patches and bars are typically one or two grains thick, but, as
the sediment volume increases, their areal extent grows and their depth may reach thicknesses
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Figure 173. The width-averaged erosion rate predicted by Nelson and Seminara (2011) for the parabolic
cross-section shown in the inset and constant average boundary shear stress (τ̄∗/τ∗c = 5) is plotted versus the

sediment supply rate ρs Qsup. Also shown is the erosion rate computed with the help of Sklar and Dietrich (2004)
model. The circled point corresponds to the water surface and alluviated layer shown in the inset figure. Parameters

employed in the simulation are reported in the original paper (modified from Nelson and Seminara, 2011).

of the order of a meter. Hence, the motion of saltating particles may occur on a continuum of
bed configurations associated with increasing rates of sediment supply. This finding calls for the
need to analyze the mechanics of bedload transport under different conditions of bed alluviation,
a subject that has been recently investigated by various Authors.

Indeed, the knowledge established in the field of sediment transport of alluvial rivers (see
Chapters 3 and 4) suggests that particle entrainment is affected by the particle size, as well as by
the flow velocity (hence surface roughness) and by the sheltering effect of adjacent grains.

Hodge et al. (2011) employ the model of Kirchner et al. (1990) to ascertain how differently the
above factors operate in alluvial and bedrock areas of a mixed alluvial-bedrock channel. The model
of Kirchner et al. (1990) elaborates on the approach of Wiberg and Smith (1987) (see Section
4.7.1), applying it to direct measurements of friction angles, grain projection and exposure, and
small-scale topographic structure on a variety of water-worked, mixed-grain sediment surfaces.
These applications show that the distribution of critical shear stress for idealized spherical grains
on the measured bed topography is characterized by a probability distribution, rather than a
single value. This is due to the friction angle, projection, and exposure of single grain sizes varying
widely from point to point within a given bed surface. Hodge et al. (2011) model the bed surface
of a mixed bedrock-alluvial channel as a granular material with grain size k. When a grain with
size d is entrained from an alluvial portion of the bed surface both d and k are drawn from the
same grain size distribution. When a grain is entrained from a bedrock portion of the surface, the
size k determines the local roughness of the surface. Modeling based on this simple idea leads to
values of the critical Shields stress for a particle lying within the bedrock area that are about an
order of magnitude lower than for the same grain lying on the alluvial surface. This bears a direct
relevance to the grain dynamics, as particles initially entrained from an alluvial region require
a significantly lower shear stress when they are re-entrained from a bedrock region. Moreover,
for the same shear stress, the excess shear stress (τ∗ − τ∗c) for a grain transported on a bedrock
surface is larger than for a grain in motion across an alluvial surface.

In a more recent paper Hodge et al. (2016) investigated the production and erosion of sediment
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patches. The presence or absence of patches was shown to have a major effect on the flow hydraulics
and particle entrainment. In particular, when sediment patches have formed in the flume, isolated
grains are entrained at a comparable mean discharge to grains in the sediment patches. In other
words, the critical shear stress in bedrock-alluvial channels appears to be a function of the extent
of the sediment cover. As discharge is increased, patches are eroded at approximately linear rate.
Erosion leads to patch reshaping, with patches becoming more flow oriented and sometimes more
elongated.

Chatanantavet et al. (2013) (following previous works quoted therein) performed laboratory
experiments on coarse grain saltation dynamics in supercritical flows in bedrock channels with
smooth bed. Their main conclusions do not modify the general picture available from previous
extensive investigations on this longstanding subject. However, the new saltation data were
interpreted adopting a scaling different from the one traditionally employed. Indeed, Chatanantavet
et al. (2013) note that a Froude (rather than Shields) based scaling is more successful to fit both the
new data and data from previous investigations, encompassing a wide range of channel roughness
and including alluvial transport. This is mainly due to the fact that the classical Shields scaling
involves an estimate of the critical Shields stress τ⋆c which is subject to large uncertainty.

A number of further models aimed at predicting the mechanics of the cover effect have appeared
in the recent literature, including the probabilistic approach of Turowski and Hodge (2017), that
describes the formation of sediment cover in terms of the probability of sediment being deposited
on already alluviated areas of the bed.

7.7.2 Modeling bedload transport in mixed bedrock-alluvial channels

Let us now model the effects of sediment patches on bedload. To this aim we consider a mixed
bedrock-alluvial channel and refer it to cartesian longitudinal and lateral coordinates, x and y,
respectively. In non fully alluviated portions of the bed, we may assume the presence of a one-grain
layer of sediments with a spatial-temporal dependent areal concentration Ca(x, y, t), defined as
the volume of the surface sediment layer per unit area of the bed. Hence, [Ca] = L and its value
may vary between zero and a maximum Cm corresponding to the bed being fully alluviated.
Assuming that the sediment consists of spheres of uniform diameter d, a simple calculation shows
that Cm = πd/6. It is then convenient to define a dimensionless areal concentration C̃a = Ca/Cm

such that 0 < C̃a < 1, with C̃a = 0 corresponding to a fully exposed bed and C̃a = 1 to a fully
alluviated bed.

We know that bed load particles are entrained in response to local turbulent fluctuations. It
is then reasonable to formulate a simple but fundamental extension of the classical approach
to bedload transport in alluvial environments to the present mixed bedrock-alluvial case. This
extension is based on the following assumptions:

- the intensity of the local bed load transport rate is proportional to the areal concentration Ca

of sediment available on the bed;

- for consistency with the alluvial case, the bedload flux per unit with for mixed bedrock-alluvial
channels Qbr must satisfy the relationship

∣∣Qbr
∣∣ = C̃a Q

b, (598)

where Qb is the bedload transport capacity per unit width for an alluvial channel under the
same conditions;

- the direction of bed load flux deviates from the direction of the local average bottom stress
vector τ b by an amount proportional to the bed slope vector ∇η according to the relationships
(334a), (334b), (351), (350) established for the alluvial case. Note that in the present context,
η is the sum of the elevation of the bedrock surface ηR and the thickness of the alluvial cover
e.
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Figure 173. The width-averaged erosion rate predicted by Nelson and Seminara (2011) for the parabolic
cross-section shown in the inset and constant average boundary shear stress (τ̄∗/τ∗c = 5) is plotted versus the

sediment supply rate ρs Qsup. Also shown is the erosion rate computed with the help of Sklar and Dietrich (2004)
model. The circled point corresponds to the water surface and alluviated layer shown in the inset figure. Parameters

employed in the simulation are reported in the original paper (modified from Nelson and Seminara, 2011).

of the order of a meter. Hence, the motion of saltating particles may occur on a continuum of
bed configurations associated with increasing rates of sediment supply. This finding calls for the
need to analyze the mechanics of bedload transport under different conditions of bed alluviation,
a subject that has been recently investigated by various Authors.

Indeed, the knowledge established in the field of sediment transport of alluvial rivers (see
Chapters 3 and 4) suggests that particle entrainment is affected by the particle size, as well as by
the flow velocity (hence surface roughness) and by the sheltering effect of adjacent grains.

Hodge et al. (2011) employ the model of Kirchner et al. (1990) to ascertain how differently the
above factors operate in alluvial and bedrock areas of a mixed alluvial-bedrock channel. The model
of Kirchner et al. (1990) elaborates on the approach of Wiberg and Smith (1987) (see Section
4.7.1), applying it to direct measurements of friction angles, grain projection and exposure, and
small-scale topographic structure on a variety of water-worked, mixed-grain sediment surfaces.
These applications show that the distribution of critical shear stress for idealized spherical grains
on the measured bed topography is characterized by a probability distribution, rather than a
single value. This is due to the friction angle, projection, and exposure of single grain sizes varying
widely from point to point within a given bed surface. Hodge et al. (2011) model the bed surface
of a mixed bedrock-alluvial channel as a granular material with grain size k. When a grain with
size d is entrained from an alluvial portion of the bed surface both d and k are drawn from the
same grain size distribution. When a grain is entrained from a bedrock portion of the surface, the
size k determines the local roughness of the surface. Modeling based on this simple idea leads to
values of the critical Shields stress for a particle lying within the bedrock area that are about an
order of magnitude lower than for the same grain lying on the alluvial surface. This bears a direct
relevance to the grain dynamics, as particles initially entrained from an alluvial region require
a significantly lower shear stress when they are re-entrained from a bedrock region. Moreover,
for the same shear stress, the excess shear stress (τ∗ − τ∗c) for a grain transported on a bedrock
surface is larger than for a grain in motion across an alluvial surface.

In a more recent paper Hodge et al. (2016) investigated the production and erosion of sediment
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patches. The presence or absence of patches was shown to have a major effect on the flow hydraulics
and particle entrainment. In particular, when sediment patches have formed in the flume, isolated
grains are entrained at a comparable mean discharge to grains in the sediment patches. In other
words, the critical shear stress in bedrock-alluvial channels appears to be a function of the extent
of the sediment cover. As discharge is increased, patches are eroded at approximately linear rate.
Erosion leads to patch reshaping, with patches becoming more flow oriented and sometimes more
elongated.

Chatanantavet et al. (2013) (following previous works quoted therein) performed laboratory
experiments on coarse grain saltation dynamics in supercritical flows in bedrock channels with
smooth bed. Their main conclusions do not modify the general picture available from previous
extensive investigations on this longstanding subject. However, the new saltation data were
interpreted adopting a scaling different from the one traditionally employed. Indeed, Chatanantavet
et al. (2013) note that a Froude (rather than Shields) based scaling is more successful to fit both the
new data and data from previous investigations, encompassing a wide range of channel roughness
and including alluvial transport. This is mainly due to the fact that the classical Shields scaling
involves an estimate of the critical Shields stress τ⋆c which is subject to large uncertainty.

A number of further models aimed at predicting the mechanics of the cover effect have appeared
in the recent literature, including the probabilistic approach of Turowski and Hodge (2017), that
describes the formation of sediment cover in terms of the probability of sediment being deposited
on already alluviated areas of the bed.

7.7.2 Modeling bedload transport in mixed bedrock-alluvial channels

Let us now model the effects of sediment patches on bedload. To this aim we consider a mixed
bedrock-alluvial channel and refer it to cartesian longitudinal and lateral coordinates, x and y,
respectively. In non fully alluviated portions of the bed, we may assume the presence of a one-grain
layer of sediments with a spatial-temporal dependent areal concentration Ca(x, y, t), defined as
the volume of the surface sediment layer per unit area of the bed. Hence, [Ca] = L and its value
may vary between zero and a maximum Cm corresponding to the bed being fully alluviated.
Assuming that the sediment consists of spheres of uniform diameter d, a simple calculation shows
that Cm = πd/6. It is then convenient to define a dimensionless areal concentration C̃a = Ca/Cm

such that 0 < C̃a < 1, with C̃a = 0 corresponding to a fully exposed bed and C̃a = 1 to a fully
alluviated bed.

We know that bed load particles are entrained in response to local turbulent fluctuations. It
is then reasonable to formulate a simple but fundamental extension of the classical approach
to bedload transport in alluvial environments to the present mixed bedrock-alluvial case. This
extension is based on the following assumptions:

- the intensity of the local bed load transport rate is proportional to the areal concentration Ca

of sediment available on the bed;

- for consistency with the alluvial case, the bedload flux per unit with for mixed bedrock-alluvial
channels Qbr must satisfy the relationship

∣∣Qbr
∣∣ = C̃a Q

b, (598)

where Qb is the bedload transport capacity per unit width for an alluvial channel under the
same conditions;

- the direction of bed load flux deviates from the direction of the local average bottom stress
vector τ b by an amount proportional to the bed slope vector ∇η according to the relationships
(334a), (334b), (351), (350) established for the alluvial case. Note that in the present context,
η is the sum of the elevation of the bedrock surface ηR and the thickness of the alluvial cover
e.
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The above assumptions deserve some comments. The first assumption may look similar to
the basic relationship (191) adopted to express the bedload transport rate in alluvial channels.
However, there is a fundamental difference which should be appreciated. In the fully alluviated
case the areal concentration Ca is a temporally and spatially averaged quantity: averaging smooths
out the small scale effects of turbulent fluctuations. As a result, Ca depends only on Shields and
possibly particle Reynolds numbers. This implies that, in the fully alluviated case, Ca may be
spatially and temporally dependent only implicitly, through the spatial-temporal dependence of
the Shields stress. In the present mixed bedrock-alluvial case the spatial-temporal dependence of
Ca is explicit as variations of Ca are also driven by spatial-temporal sediment redistribution on
the bedrock surface leading to variations of sediment availability for transport.

The assumption leading to (598) is a first reasonable guess. However, as discussed in Section
7.7.1, the mechanics of bedload transport of isolated grains on bedrock may differ from that
of grains saltating on alluviated portions of the bed surface. In the latter scheme, this effect
is only felt through the factor Qb, which is a function of C̃a through the dependence of flow
roughness on the amount of sediment locally available for transport under partially alluviated
conditions. Indeed, Nelson and Seminara (2012) assume that the absolute roughness kt, which
controls the flow hydrodynamics and the transport capacity through the bottom shear stress, can
be estimated accounting for contributions from both bedrock and sediment. More precisely, as a
first approximation, they weigh the contribution of sediment roughness to total roughness by the
local mean areal sediment concentration C̃a according to the following relationship:

kt = ks
[
C̃a + (1− C̃a) k̃r

]
(599)

Here, ks is the absolute sediment roughness (e.g. ks = 2.5 d according to Engelund and Hansen
(1967)), kr is the absolute roughness of the rock surface, and k̃r = kr/ks. This relationship predicts
a linear variation of kt in the range [kr,ks] as C̃a increases from zero to one. Progress in the
understanding of bedload mechanics under mixed bedrock-alluvial conditions will likely allow to
improve the above formulation in the near future. It is also worth pointing out that a similar
roughness relationship was used by Luu et al. (2004) and, later, by Inoue et al. (2014).

7.7.3 Bed evolution equations for mixed bedrock-alluvial rivers

The distinct feature of bedrock channels is the coexistence of three different environments,
namely fully exposed bedrock surface, partially covered bedrock surface and alluviated bed. As
a result, the morphodynamic evolution of bedrock channels arises from two classes of processes
characterized by significantly different time scales. A very long time scale is associated with
tectonic uplift and bedrock incision while a fairly small timescale is associated with sediment
redistribution and aggradation-degradation processes. As the two timescales differ by orders of
magnitude, the mathematical description of the two classes of phenomena may be decoupled.
Physically, this implies that the rate of sediment production driven by channel incision is so small
that its contribution to sediment mass conservation may be neglected. Hence, the classical Exner
equation for alluvial rivers must be replaced here by two distinct statements.

To describe the short time scale we need an appropriate statement of sediment conservation
able to account for both sediment redistribution on a partially covered bedrock surface (a process
characterized by no variation of bed elevation) and aggradation-degradation of the alluviated
portions of the bed. Nelson and Seminara (2012) propose the following modified form of the 2D
Exner equation:

∂Ca

∂t
+ (1− p)

∂e

∂t
+∇ ·Qbr = 0, (600)

where p denotes porosity of the alluvial cover. This framework is able to describe the evolution of
both alluviated and non alluviated regions of the bed surface. Indeed:

- in alluviated regions C̃a = 1, hence ∂Ca/∂t = 0: the thickness of the alluvial cover e changes
in response to the divergence of sediment transport and its changes have a direct feedback on
the hydrodynamics;
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- in non alluviated regions (C̃a < 1), e does not change and the divergence of sediment transport
leads to sediment redistribution over the bedrock surface, i.e. to spatial and temporal variations
of Ca. These variations, in turn, have an indirect feedback on the hydrodynamics and local
transport through modifications of the local roughness.

The long-term morphodynamic processes governing channel incision are governed by equation
(569) with η = ηR. The elevation of the bedrock surface ηR will then evolve in response to tectonic
uplift and bedrock incision.

A similar, though not identical, form of the Exner equation was used by Inoue et al. (2016)
(following a previous formulation proposed for heterogeneous sediments by Luu et al. (2004)).
Essentially, these Authors replace the volume of the surface sediment layer per unit area of the
bed (i.e. the areal concentration Ca employed in Nelson and Seminara, 2012) by the volume of
sediment transported in the bedload layer Vb, which is assumed to vary between zero and an upper
saturated value Vbc. Correspondingly, the ratio Vb/Vbc replaces the dimensionless quantity C̃a.
The formulation is otherwise identical. There is, however, a subtle difference between the two
formulations, as Nelson and Seminara (2012) postulate that the physical mechanism controlling
the intensity of the local bed load transport rate is the actual availability of sediment on the bed.

7.7.4 Consistency of the theoretical framework: Free bars in mixed bedrock-alluvial channels

We now test the consistency of the framework proposed in the previous section, investigating
the following issue: is an initial, uniform distribution of sediment cover on a flat bed stable?
Answering this question will allow us to ascertain whether the adopted framework is able to predict
the observed short-term tendency of sediment to concentrate into regions where distinct mixed
bedrock-alluvial patterns form. Such a tendency leads to the development of a variety of patterns
reported in the literature. They encompass small scale 3D isolated patterns migrating downstream
like barchan dunes (e.g. Hersen, 2005), large scale free patterns of the alternate bar type where
alluvial regions migrating downstream are separated by exposed portions of the bed surface (e.g
Chatanantavet and Parker, 2008), and large scale forced patterns of the point bar type, i.e. steady
alluvial regions observed in inner bends of meandering rivers whose outer bed surface is exposed
(e.g. Nittrouer et al., 2011). In the present section we concentrate on the formation of perturbations
of the alternate bar type. The case of point bars will be dealt with in the companion Monograph.

The formulation of a linear theory of alternate bar formation in mixed bedrock-alluvial channels
proposed by Nelson and Seminara (2012) follows the lines of the corresponding formulation for
alluvial rivers, with some notable differences. The major difference is that coupling between the
hydrodynamics and the morphodynamics occurs through the dependence of bed roughness on bed
areal concentration (recall equation (599)) while no perturbation of the thickness of the alluvial
cover e is allowed (∂e/∂t = 0 in the Exner equation (600)). The latter assumption has a significant
consequence: the stabilizing effect on the initial growth of bar perturbations associated with the
laterally sloping character of the bed, a crucial mechanism for alluvial bars, is missing in the mixed
bedrock-alluvial case. Of course, the assumption only applies at the initial stage of bar formation
and must be relaxed as soon as sediment redistribution leads to the alluviation of part of the bed.
In the absence of the gravitational mechanism the aspect ratio of the channel is no longer a control
parameter for the selection of the bar wavelength. The only physical mechanism operating in the
present case is the effect of the different values of roughness of the bare bedrock compared with
that of sediments.

Nelson and Seminara (2012) consider a basic state consisting of a uniform flow with a uniform
distribution of dimensionless areal sediment concentration C̃a0 < 1. Associated with this basic
state are a basic Shields stress τ∗0 and an associated sediment supply C̃a0 Q

b
0. A normal mode

analysis of small amplitude perturbations of the basic state of the free bar type is then performed,
focusing on the first lateral mode, corresponding to alternate bars in the alluvial analogy. As
usual, the longitudinal structure of the perturbation is described by the function exp i(λx− ω t),
representing a harmonic wave with dimensionless longitudinal wavenumber λ = 2π/(L/B). Here,
L is bar wavelength and B is channel half-width. This wave migrates in the downstream direction
with dimensionless wavespeed ωr/λ, and grows with dimensional growth rate ωi T , with T (=
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The above assumptions deserve some comments. The first assumption may look similar to
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The assumption leading to (598) is a first reasonable guess. However, as discussed in Section
7.7.1, the mechanics of bedload transport of isolated grains on bedrock may differ from that
of grains saltating on alluviated portions of the bed surface. In the latter scheme, this effect
is only felt through the factor Qb, which is a function of C̃a through the dependence of flow
roughness on the amount of sediment locally available for transport under partially alluviated
conditions. Indeed, Nelson and Seminara (2012) assume that the absolute roughness kt, which
controls the flow hydrodynamics and the transport capacity through the bottom shear stress, can
be estimated accounting for contributions from both bedrock and sediment. More precisely, as a
first approximation, they weigh the contribution of sediment roughness to total roughness by the
local mean areal sediment concentration C̃a according to the following relationship:
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Here, ks is the absolute sediment roughness (e.g. ks = 2.5 d according to Engelund and Hansen
(1967)), kr is the absolute roughness of the rock surface, and k̃r = kr/ks. This relationship predicts
a linear variation of kt in the range [kr,ks] as C̃a increases from zero to one. Progress in the
understanding of bedload mechanics under mixed bedrock-alluvial conditions will likely allow to
improve the above formulation in the near future. It is also worth pointing out that a similar
roughness relationship was used by Luu et al. (2004) and, later, by Inoue et al. (2014).

7.7.3 Bed evolution equations for mixed bedrock-alluvial rivers

The distinct feature of bedrock channels is the coexistence of three different environments,
namely fully exposed bedrock surface, partially covered bedrock surface and alluviated bed. As
a result, the morphodynamic evolution of bedrock channels arises from two classes of processes
characterized by significantly different time scales. A very long time scale is associated with
tectonic uplift and bedrock incision while a fairly small timescale is associated with sediment
redistribution and aggradation-degradation processes. As the two timescales differ by orders of
magnitude, the mathematical description of the two classes of phenomena may be decoupled.
Physically, this implies that the rate of sediment production driven by channel incision is so small
that its contribution to sediment mass conservation may be neglected. Hence, the classical Exner
equation for alluvial rivers must be replaced here by two distinct statements.

To describe the short time scale we need an appropriate statement of sediment conservation
able to account for both sediment redistribution on a partially covered bedrock surface (a process
characterized by no variation of bed elevation) and aggradation-degradation of the alluviated
portions of the bed. Nelson and Seminara (2012) propose the following modified form of the 2D
Exner equation:
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where p denotes porosity of the alluvial cover. This framework is able to describe the evolution of
both alluviated and non alluviated regions of the bed surface. Indeed:

- in alluviated regions C̃a = 1, hence ∂Ca/∂t = 0: the thickness of the alluvial cover e changes
in response to the divergence of sediment transport and its changes have a direct feedback on
the hydrodynamics;
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- in non alluviated regions (C̃a < 1), e does not change and the divergence of sediment transport
leads to sediment redistribution over the bedrock surface, i.e. to spatial and temporal variations
of Ca. These variations, in turn, have an indirect feedback on the hydrodynamics and local
transport through modifications of the local roughness.

The long-term morphodynamic processes governing channel incision are governed by equation
(569) with η = ηR. The elevation of the bedrock surface ηR will then evolve in response to tectonic
uplift and bedrock incision.

A similar, though not identical, form of the Exner equation was used by Inoue et al. (2016)
(following a previous formulation proposed for heterogeneous sediments by Luu et al. (2004)).
Essentially, these Authors replace the volume of the surface sediment layer per unit area of the
bed (i.e. the areal concentration Ca employed in Nelson and Seminara, 2012) by the volume of
sediment transported in the bedload layer Vb, which is assumed to vary between zero and an upper
saturated value Vbc. Correspondingly, the ratio Vb/Vbc replaces the dimensionless quantity C̃a.
The formulation is otherwise identical. There is, however, a subtle difference between the two
formulations, as Nelson and Seminara (2012) postulate that the physical mechanism controlling
the intensity of the local bed load transport rate is the actual availability of sediment on the bed.

7.7.4 Consistency of the theoretical framework: Free bars in mixed bedrock-alluvial channels

We now test the consistency of the framework proposed in the previous section, investigating
the following issue: is an initial, uniform distribution of sediment cover on a flat bed stable?
Answering this question will allow us to ascertain whether the adopted framework is able to predict
the observed short-term tendency of sediment to concentrate into regions where distinct mixed
bedrock-alluvial patterns form. Such a tendency leads to the development of a variety of patterns
reported in the literature. They encompass small scale 3D isolated patterns migrating downstream
like barchan dunes (e.g. Hersen, 2005), large scale free patterns of the alternate bar type where
alluvial regions migrating downstream are separated by exposed portions of the bed surface (e.g
Chatanantavet and Parker, 2008), and large scale forced patterns of the point bar type, i.e. steady
alluvial regions observed in inner bends of meandering rivers whose outer bed surface is exposed
(e.g. Nittrouer et al., 2011). In the present section we concentrate on the formation of perturbations
of the alternate bar type. The case of point bars will be dealt with in the companion Monograph.

The formulation of a linear theory of alternate bar formation in mixed bedrock-alluvial channels
proposed by Nelson and Seminara (2012) follows the lines of the corresponding formulation for
alluvial rivers, with some notable differences. The major difference is that coupling between the
hydrodynamics and the morphodynamics occurs through the dependence of bed roughness on bed
areal concentration (recall equation (599)) while no perturbation of the thickness of the alluvial
cover e is allowed (∂e/∂t = 0 in the Exner equation (600)). The latter assumption has a significant
consequence: the stabilizing effect on the initial growth of bar perturbations associated with the
laterally sloping character of the bed, a crucial mechanism for alluvial bars, is missing in the mixed
bedrock-alluvial case. Of course, the assumption only applies at the initial stage of bar formation
and must be relaxed as soon as sediment redistribution leads to the alluviation of part of the bed.
In the absence of the gravitational mechanism the aspect ratio of the channel is no longer a control
parameter for the selection of the bar wavelength. The only physical mechanism operating in the
present case is the effect of the different values of roughness of the bare bedrock compared with
that of sediments.

Nelson and Seminara (2012) consider a basic state consisting of a uniform flow with a uniform
distribution of dimensionless areal sediment concentration C̃a0 < 1. Associated with this basic
state are a basic Shields stress τ∗0 and an associated sediment supply C̃a0 Q
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analysis of small amplitude perturbations of the basic state of the free bar type is then performed,
focusing on the first lateral mode, corresponding to alternate bars in the alluvial analogy. As
usual, the longitudinal structure of the perturbation is described by the function exp i(λx− ω t),
representing a harmonic wave with dimensionless longitudinal wavenumber λ = 2π/(L/B). Here,
L is bar wavelength and B is channel half-width. This wave migrates in the downstream direction
with dimensionless wavespeed ωr/λ, and grows with dimensional growth rate ωi T , with T (=
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Cm B/
√

(s− 1) g d3) relevant time scale. We do not reproduce the analysis here: the reader
has developed sufficient expertise at this stage to attempt pursuing the analysis her/him-self or,
alternatively, may refer to Nelson and Seminara (2012). Here, it suffices to state that the above

Figure 174. The dimensionless growth rate ωi of mixed bedrock-alluvial bars is plotted as a function of the bar
wavenumber λ for various values of relative bedrock roughnesses k̃r and of unperturbed areal concentrations C̃a0.

(a): C̃a0 = 0.3, k̃r = 0.01, 0.1, 0.5, 0.9; (b): k̃r = 0.1; C̃a0 = 0.01, 0.1, 03, 0.9. (c) Marginal stability curves for
k̃r = 0.1, C̃a0 = 0.3. Perturbations grow for values of the wavenumber smaller than a threshold which is weakly

dependent on stage. In all plots the values of the relevant physical parameters have been estimated from
experiment 1-A2 of Chatanantavet and Parker (2008): B = 0.45 m, D0 = 0.338 m, d = 2 mm, s = 2.65,

τ∗0 = 0.118, τ∗c = 0.0549 (modified from Nelson and Seminara, 2012).

analysis allows one to derive a dispersion relationship for the complex frequency ω as a function of
the bar wavenumber λ. The function ωi(λ) is plotted in Figure 174 by either keeping fixed C̃a0

and varying k̃r (Figure 174a), or fixing k̃r and varying C̃a0 (Figure 174b). In all cases, the growth
rate is positive for values of λ smaller than about 1.4, indicating that the system is unstable to
bar type perturbations with wavelengths longer than about 2 m. The maximum growth rate is
found to be associated with values of λ in the range 0.35 - 0.49, corresponding to wavelengths L
between 5.8 and 8.05 m. This estimate is in satisfactory agreement with the length (6.5 - 8 m) of
the slightly sinuous longitudinal strip observed in the experiments of Chatanantavet and Parker
(2008) (see their Figure 8). Moreover, the wave speed of the most unstable perturbations is found
to be positive (between 0.014 m/s and 0.025 m/s) in agreement with observations.

Marginal stability curves (ωi = 0 in the plane (λ,β)) are nearly vertical lines (Figure 174c).
This suggests that, in contrast with the case of alluvial alternate bars, the initial instability of
areal sediment concentration in bedrock channels does not depend on the aspect ratio β. Moreover,
instability is found to depend only weakly on stage, i.e. on the ratio τ∗0/τ∗c.

Finally, note that in the above analysis it has been assumed that the most unstable bar mode
is the first (alternate bar) mode. This is an arbitrary assumption. Indeed, in the absence of the
effects of alluviation, which are known to suppress the onset of higher order braiding modes for
relatively narrow channels, we have no alternative stabilizing mechanism.

An instructive exercise to achieve a better understanding of the instability mechanism consists
of investigating the limit of the dispersion relationship when the friction coefficient of the basic
state tends to vanish, i.e. for β Cf0 → 0. Since the aspect ratio of bedrock channels is often

292

Introduction to the morphodynamics of mixed alluvial-bedrock straight channels

relatively small and a reasonable estimate for Cf0 is smaller than 10−2, the latter assumption
appears to be reasonable. Neglecting terms O(β Cf0,

√
Cf0) (or smaller) in the (dimensionless)

dispersion relationship (S6) reported in the Appendix of Nelson and Seminara (2012), the reader
will readily find the following simplified form:

ωi = −5
C̃a0 Q

b
0 β C

3/2
f0 (1− k̃r)√

(s− 1) g d3
[
k̃r + C̃a0

(
1− k̃r

)]
[
1−

(
3 τ∗0

τ∗0 − τ∗c

)
+

12 τ∗0
τ∗0 − τ∗c

λ2

π2

]
(601)

Imposing the instability constrain ωi > 0 on (601) the reader will then find the following instability
criterion:

λ <
π√
6

√
1 +

1

2

τ∗c
τ0

(602)

which predicts values for the critical wavenumber λc in the range 1.28− 1.57 as τ∗0 varies in the
interval (∞, τ∗c]. Note that this critical condition for instability is insensitive to variations of the
relative bedrock roughness k̃r even though the growth rate decreases as k̃r increases and vanishes
when the difference in roughness between bedrock and sediments vanishes (k̃r = 1, see equation
(601)).

The reader will also readily find that the shift from stable to unstable conditions occurs
approximately when the lateral component of the perturbation velocity changes sign. This finding
suggests that, not surprisingly, it is the sign of the lateral component of sediment transport that
dominantly determines whether the local defect (excess) of concentration driven by the initial
perturbation will be enhanced or damped. The weak dependence of the instability criterion on
τ∗0 also suggests that a minor role is played by perturbations of the longitudinal component of
sediment transport associated with the initial perturbation of the areal concentration.

Note that the solution obtained in the limit β Cf0 → 0 is not uniform and fails for small values
of the bar wavenumber λ, as comparison between (601) and Figure 174 immediately confirms.

Developments

Any development of the theory outlined above must abandon the linear approximation, allowing for
perturbations to attain finite amplitude. The occurrence of a discontinuity, as soon as perturbations
lead to alluviation of part of the bed surface, implies that a numerical approach is needed in the
nonlinear regime. Inoue et al. (2016) have investigated numerically the development of alternate
bars under mixed bedrock-alluvial conditions in the finite amplitude regime. Their formulation
has similarities with that of Nelson and Seminara (2012) but also some major differences that are
worth examining.

Inoue et al. (2016) employ the shallow water equations to describe the hydrodynamics. Closure
for the sediment transport and the formulation of Exner equation are quite similar to those of
Nelson and Seminara (2012). However, Inoue et al. (2016) do not take into account the effect
of the difference between bedrock and sediment roughnesses. Since the theory of Nelson and
Seminara (2012) has shown that the latter effect is the only mechanism able to trigger instability
in the absence of perturbations of bed elevation, one may reasonably wonder what triggers bar
instability in the model of Inoue et al. (2016). In order to answer this question one needs to
appreciate the second major difference of the model of the latter Authors: they do not decouple the
morphodynamic evolution of the channel associated with bar deposition from the incision process
driven by bedrock erosion. They describe the latter process through a simple linear relationship
between the rate of bedrock erosion and the product between the intensity of bed load transport
and the fraction of bed exposure. As a result, simulations carried out with a sediment supply
close to transport capacity, show the development of erosion driven perturbations of bed elevation
that propagate downstream. It appears that only when such perturbations attain sufficiently
large amplitudes, bar deposition occurs. We are then led to the puzzling conclusion that the
development of secondary flows needed to drive lateral sediment transport and bar formation in
Inoue et al. (2016) is a consequence of topographic perturbations associated with bedrock incision.
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Figure 174. The dimensionless growth rate ωi of mixed bedrock-alluvial bars is plotted as a function of the bar
wavenumber λ for various values of relative bedrock roughnesses k̃r and of unperturbed areal concentrations C̃a0.
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analysis allows one to derive a dispersion relationship for the complex frequency ω as a function of
the bar wavenumber λ. The function ωi(λ) is plotted in Figure 174 by either keeping fixed C̃a0

and varying k̃r (Figure 174a), or fixing k̃r and varying C̃a0 (Figure 174b). In all cases, the growth
rate is positive for values of λ smaller than about 1.4, indicating that the system is unstable to
bar type perturbations with wavelengths longer than about 2 m. The maximum growth rate is
found to be associated with values of λ in the range 0.35 - 0.49, corresponding to wavelengths L
between 5.8 and 8.05 m. This estimate is in satisfactory agreement with the length (6.5 - 8 m) of
the slightly sinuous longitudinal strip observed in the experiments of Chatanantavet and Parker
(2008) (see their Figure 8). Moreover, the wave speed of the most unstable perturbations is found
to be positive (between 0.014 m/s and 0.025 m/s) in agreement with observations.

Marginal stability curves (ωi = 0 in the plane (λ,β)) are nearly vertical lines (Figure 174c).
This suggests that, in contrast with the case of alluvial alternate bars, the initial instability of
areal sediment concentration in bedrock channels does not depend on the aspect ratio β. Moreover,
instability is found to depend only weakly on stage, i.e. on the ratio τ∗0/τ∗c.

Finally, note that in the above analysis it has been assumed that the most unstable bar mode
is the first (alternate bar) mode. This is an arbitrary assumption. Indeed, in the absence of the
effects of alluviation, which are known to suppress the onset of higher order braiding modes for
relatively narrow channels, we have no alternative stabilizing mechanism.

An instructive exercise to achieve a better understanding of the instability mechanism consists
of investigating the limit of the dispersion relationship when the friction coefficient of the basic
state tends to vanish, i.e. for β Cf0 → 0. Since the aspect ratio of bedrock channels is often
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relatively small and a reasonable estimate for Cf0 is smaller than 10−2, the latter assumption
appears to be reasonable. Neglecting terms O(β Cf0,
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which predicts values for the critical wavenumber λc in the range 1.28− 1.57 as τ∗0 varies in the
interval (∞, τ∗c]. Note that this critical condition for instability is insensitive to variations of the
relative bedrock roughness k̃r even though the growth rate decreases as k̃r increases and vanishes
when the difference in roughness between bedrock and sediments vanishes (k̃r = 1, see equation
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The reader will also readily find that the shift from stable to unstable conditions occurs
approximately when the lateral component of the perturbation velocity changes sign. This finding
suggests that, not surprisingly, it is the sign of the lateral component of sediment transport that
dominantly determines whether the local defect (excess) of concentration driven by the initial
perturbation will be enhanced or damped. The weak dependence of the instability criterion on
τ∗0 also suggests that a minor role is played by perturbations of the longitudinal component of
sediment transport associated with the initial perturbation of the areal concentration.

Note that the solution obtained in the limit β Cf0 → 0 is not uniform and fails for small values
of the bar wavenumber λ, as comparison between (601) and Figure 174 immediately confirms.

Developments

Any development of the theory outlined above must abandon the linear approximation, allowing for
perturbations to attain finite amplitude. The occurrence of a discontinuity, as soon as perturbations
lead to alluviation of part of the bed surface, implies that a numerical approach is needed in the
nonlinear regime. Inoue et al. (2016) have investigated numerically the development of alternate
bars under mixed bedrock-alluvial conditions in the finite amplitude regime. Their formulation
has similarities with that of Nelson and Seminara (2012) but also some major differences that are
worth examining.

Inoue et al. (2016) employ the shallow water equations to describe the hydrodynamics. Closure
for the sediment transport and the formulation of Exner equation are quite similar to those of
Nelson and Seminara (2012). However, Inoue et al. (2016) do not take into account the effect
of the difference between bedrock and sediment roughnesses. Since the theory of Nelson and
Seminara (2012) has shown that the latter effect is the only mechanism able to trigger instability
in the absence of perturbations of bed elevation, one may reasonably wonder what triggers bar
instability in the model of Inoue et al. (2016). In order to answer this question one needs to
appreciate the second major difference of the model of the latter Authors: they do not decouple the
morphodynamic evolution of the channel associated with bar deposition from the incision process
driven by bedrock erosion. They describe the latter process through a simple linear relationship
between the rate of bedrock erosion and the product between the intensity of bed load transport
and the fraction of bed exposure. As a result, simulations carried out with a sediment supply
close to transport capacity, show the development of erosion driven perturbations of bed elevation
that propagate downstream. It appears that only when such perturbations attain sufficiently
large amplitudes, bar deposition occurs. We are then led to the puzzling conclusion that the
development of secondary flows needed to drive lateral sediment transport and bar formation in
Inoue et al. (2016) is a consequence of topographic perturbations associated with bedrock incision.
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Results of simulations where sediment supply was much smaller than transport capacity exhibited
the development of erosion driven longitudinal grooves.

7.7.5 The effect of macro-roughness

Bedrock channels are often characterized by hydraulically rough bedrock surfaces, with fluctu-
ations of bedrock elevation large compared to the characteristic size of the clasts constituting the
alluvium (Figure 142a).

These fluctuations are described as macro-roughness by Zhang et al. (2015) and the length-scale
of their amplitude is denoted by LMR (see sketch in Figure 175). Zhang et al. (2015) propose a
formulation for mixed bedrock-alluvial morphodynamics where the role of macro-roughness adds
novel features to the formulation of Nelson and Seminara (2012). The effect of macro-roughness
is modeled in terms of a statistical structure function (a hypsometric curve for local bedrock
topography) analogous to that used in Parker et al. (2000) for alluvial beds. With reference to the
sketch in Figure 175, the areal fraction fa of bedrock surface covered with alluvium is assumed to
be a function of the ratio χ between the elevation of the alluvial surface e and the macroroughness
scale LMR. Hence, within the framework of Zhang et al. (2015), the spatial-temporal dependence
of fa is not free but forced by the spatial-temporal dependence of the elevation e of the alluvial
surface.
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The 1D form of the Exner equation (600) under mixed bedrock-alluvial conditions and in the
presence of macro-roughness then takes the following form:
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where fa = fa
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]
is now some assigned, statistically defined, hypsometric curve. The reader

should note the nonlinear character of (603), which becomes more evident performing some further
algebraic manipulations to obtain:
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Here, cA is an alluvial wavespeed that reads:

cA =
Qb

(1− p) fa

dfa
de

(605)

Nonlinearity of (604) arises from the dependence of cA on the bed elevation e.
Zhang et al. (2015) rewrite (604) in the form of an advective-diffusion equation, by multiplying

and dividing the instantaneous bedload transport capacity Qb by the instantaneous average slope
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S = −∂η/∂x = −
(
∂e/∂x+ ∂ηR/∂x

)
(Figure 175), and collecting the other terms into a diffusion

coefficient. The resulting equation then reads:
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where DA is an alluvial diffusivity

DA =
1

(1− p)

Qb

S
. (607)

Note, that DA is a nonlinear function of the local and instantaneous value of the Shields stress,
which depends on the local and instantaneous value of the slope of the alluvial bed surface.

In conclusion, the Exner equation for mixed bedrock-alluvial channels with macro-roughness
takes the form of a nonlinear advection-diffusion equation with a source term arising from the
slope of the bedrock surface. Its solution requires closure relationships for the hypsometric curve
fa = fa(e) and for the bedload transport capacity per unit width Qb, that allow one to determine
the alluvial wave-speed cA and the alluvial diffusivity DA.

Zhang et al. (2015) point out that models that relate the cover to the ratio of sediment supply
to capacity transport rate, are unable to interpret transient processes involving spatial-temporal
developments of the alluvial cover. They provide some examples (alluvial rarification driven by a
drop of sediment supply, development of an alluvial cover over a bare bed in response to increased
sediment supply, advection-diffusion of an alluvial pulse over a bare bed) that are successfully
treated with the help of (606).

Zhang et al. (2015) pursue also the ambitious goal to couple the simulation of processes
occurring on the fast time scale associated with spatial-temporal developments of the alluvial cover
with the process of bedrock incision driven by the saltation-abrasion mechanism, i.e. the very slow
process described by a kinematic wave equation with a source term associated with tectonic uplift.
The two formulations are linked by a closure relationship for the cover fraction. The reader is
referred to the original paper for details of the analysis and some instructive examples.
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developments of the alluvial cover. They provide some examples (alluvial rarification driven by a
drop of sediment supply, development of an alluvial cover over a bare bed in response to increased
sediment supply, advection-diffusion of an alluvial pulse over a bare bed) that are successfully
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occurring on the fast time scale associated with spatial-temporal developments of the alluvial cover
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8. Epilogue

Having completed our journey, it is natural to discuss what this book has hopefully accomplished
and what further developments appear to be needed for the near future.

8.1. Achievements and limits of recent developments

In order to appreciate to what extent progress in understanding has been achieved in the last
few decades, it may be worth recalling that, before the 1970s, in spite of longstanding efforts
of various scientific communities, the variety of fluvial patterns existing in nature had not been
systematically observed nor they had been clearly identified. The pioneering works of Leopold and
Wolman (1957) and Kinoshita (1961) have essentially provided the observational foundations of
large scale river morphodynamics. At the time, however, no satisfactory answer was available to
fundamental questions concerning the origin of the observed patterns. This book has presented
a rational theoretical framework based on the growth of scientific knowledge, able to explain, at
least qualitatively, the mechanisms underlying the origin of most of the large scale fluvial patterns.
We feel that the picture emerging from our assessment may be considered reasonably successful, in
spite of our yet insufficient knowledge on the Mechanics of sediment transport, which affects our
capability to predict the precise conditions for pattern formation and the precise characteristic
features of the emerging fluvial patterns.

The main reason which determines our limited ability to analyze large scale morphodynamic
processes is that they need sufficiently simple closures for bedload and suspended load. In recent
years, as discussed in Chapter 2 and Chapter 3, research developments in the field of turbulence and
sediment transport modeling have taken advantage from the ever increasing power of computational
tools and this has produced a major shift in attitude of researchers, who make a growing use of
sophisticated numerical approaches, with the goal to achieve detailed descriptions of turbulent
processes. LES techniques have already started to play a role in contexts where the channel
geometry does not justify the use of simpler ’slowly varying ’ type of approaches. DNS techniques
are still hard to apply at the large Reynolds numbers that characterize turbulent flows in rivers.
Even more so if one wishes to pursue a fully coupled simulation of flow and sediment motion when
a large number of sediment particles is involved. Moreover, the complexity of two way coupling
increases as sediment particles approach a rough wall and interact with it. One would like to
reproduce the details of near wall coherent structures responsible for particle entrainment, as
well as of the squeezing flow of the thin fluid layer between the moving particle and the wall,
which controls wall-particle interactions. Also, as particle concentration increases, particle-particle
hydrodynamic interactions cannot be neglected. This implies a computationally quite heavy task,
unlikely to be feasible in the near future for large systems of sediment particles. Progress in this
field would also allow a better understanding of the near bed processes occurring when bedload
and suspended load coexist at high Shields stresses, conditions that are hard to investigate in
detail in the laboratory. This is presently an active area of research, which is likely to be intensified
in the future. And, even though fully coupled simulations under realistic conditions are unlike in
the near future, however, as discussed in Section 3.3.3, progress based on simulations for limited
numbers of particles is quite useful to substantiate the available physically founded closures of

Giovanni Seminara, University of Genoa, Italy, giovanni.seminara@unige.it, 0000-0002-0360-2029
Stefano Lanzoni, University of Padua, Italy, stefano.lanzoni@unipd.it, 0000-0002-6621-2386
Nicoletta Tambroni, University of Genoa, Italy, nicoletta.tambroni@unige.it, 0000-0002-2952-7290

FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)

Giovanni Seminara, Stefano Lanzoni, Nicoletta Tambroni (edited by), Theoretical Morphodynamics Straight Channels, © 2021Author(s),
content CC BY 4.0 International, metadata CC0 1.0 Universal, published by Firenze University Press (www.fupress.com), ISSN 009-
009(online), ISBN 978-88-00-00-00(PDF), DOI 10.36253/45-678



8. Epilogue

Having completed our journey, it is natural to discuss what this book has hopefully accomplished
and what further developments appear to be needed for the near future.

8.1. Achievements and limits of recent developments

In order to appreciate to what extent progress in understanding has been achieved in the last
few decades, it may be worth recalling that, before the 1970s, in spite of longstanding efforts
of various scientific communities, the variety of fluvial patterns existing in nature had not been
systematically observed nor they had been clearly identified. The pioneering works of Leopold and
Wolman (1957) and Kinoshita (1961) have essentially provided the observational foundations of
large scale river morphodynamics. At the time, however, no satisfactory answer was available to
fundamental questions concerning the origin of the observed patterns. This book has presented
a rational theoretical framework based on the growth of scientific knowledge, able to explain, at
least qualitatively, the mechanisms underlying the origin of most of the large scale fluvial patterns.
We feel that the picture emerging from our assessment may be considered reasonably successful, in
spite of our yet insufficient knowledge on the Mechanics of sediment transport, which affects our
capability to predict the precise conditions for pattern formation and the precise characteristic
features of the emerging fluvial patterns.

The main reason which determines our limited ability to analyze large scale morphodynamic
processes is that they need sufficiently simple closures for bedload and suspended load. In recent
years, as discussed in Chapter 2 and Chapter 3, research developments in the field of turbulence and
sediment transport modeling have taken advantage from the ever increasing power of computational
tools and this has produced a major shift in attitude of researchers, who make a growing use of
sophisticated numerical approaches, with the goal to achieve detailed descriptions of turbulent
processes. LES techniques have already started to play a role in contexts where the channel
geometry does not justify the use of simpler ’slowly varying ’ type of approaches. DNS techniques
are still hard to apply at the large Reynolds numbers that characterize turbulent flows in rivers.
Even more so if one wishes to pursue a fully coupled simulation of flow and sediment motion when
a large number of sediment particles is involved. Moreover, the complexity of two way coupling
increases as sediment particles approach a rough wall and interact with it. One would like to
reproduce the details of near wall coherent structures responsible for particle entrainment, as
well as of the squeezing flow of the thin fluid layer between the moving particle and the wall,
which controls wall-particle interactions. Also, as particle concentration increases, particle-particle
hydrodynamic interactions cannot be neglected. This implies a computationally quite heavy task,
unlikely to be feasible in the near future for large systems of sediment particles. Progress in this
field would also allow a better understanding of the near bed processes occurring when bedload
and suspended load coexist at high Shields stresses, conditions that are hard to investigate in
detail in the laboratory. This is presently an active area of research, which is likely to be intensified
in the future. And, even though fully coupled simulations under realistic conditions are unlike in
the near future, however, as discussed in Section 3.3.3, progress based on simulations for limited
numbers of particles is quite useful to substantiate the available physically founded closures of

Giovanni Seminara, University of Genoa, Italy, giovanni.seminara@unige.it, 0000-0002-0360-2029
Stefano Lanzoni, University of Padua, Italy, stefano.lanzoni@unipd.it, 0000-0002-6621-2386
Nicoletta Tambroni, University of Genoa, Italy, nicoletta.tambroni@unige.it, 0000-0002-2952-7290

FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)

Giovanni Seminara, Stefano Lanzoni, Nicoletta Tambroni (edited by), Theoretical Morphodynamics Straight Channels, © 2021Author(s),
content CC BY 4.0 International, metadata CC0 1.0 Universal, published by Firenze University Press (www.fupress.com), ISSN 009-
009(online), ISBN 978-88-00-00-00(PDF), DOI 10.36253/45-678

Giovanni Seminara, University of Genoa, Italy, giovanni.seminara@unige.it, 0000-0002-0360-2029
Stefano Lanzoni, University of Padoa, Italy, stefano.lanzoni@unipd.it, 0000-0002-6621-2386
Nicoletta Tambroni, University of Genoa, Italy, nicoletta.tambroni@unige.it, 0000-0002-2952-7290
Referee List (DOI 10.36253/fup_referee_list)
FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)
Giovanni Seminara, Stefano Lanzoni, Nicoletta Tambroni, Theoretical Morphodynamics: Straight Channels, © 2023 Author(s), CC BY 4.0, 
published by Firenze University Press, ISBN 979-12-215-0213-8, DOI 10.36253/979-12-215-0213-8

mailto:giovanni.seminara@unige.it
https://orcid.org/0000-0002-0360-2029
mailto:stefano.lanzoni@unipd.it
https://orcid.org/0000-0002-6621-2386
mailto:nicoletta.tambroni@unige.it
https://orcid.org/0000-0002-2952-7290
https://doi.org/10.36253/fup_referee_list
https://doi.org/10.36253/fup_best_practice
http://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.36253/979-12-215-0213-8


Theoretical Morphodynamics Straight Channels

sediment transport or suggest better ones.
In particular, the available closures concerning the direction of bedload transport on sloping

beds are crucial for morphodynamic modeling but are based on fairly simple models, which assume
plane bed conditions with dominant bed load transport. The presence of small scale bedforms
as well as the combined effect of bedload and suspended load are not fully understood nor they
are accounted for in a satisfactory way. This is a general, albeit insufficiently investigated, area
of research that will require both numerical and experimental tools. An instructive experiment
would be to let a bedform pattern develop in a straight channel under mobile bed conditions such
that dunes coexist with bars. The bed could then be ’frozen’ and the dynamics of individual
or groups of sediment particles supplied at the entrance and saltating over the fixed dune-bar
bottom pattern in clear water could be monitored in detail with the help of suitable visualization
techniques. Extensive sets of data would help elucidating the fundamental mechanisms and provide
a benchmark for numerical models.

We realize that we are unavoidably approaching the challenging exercise to envisage what new
research directions will possibly emerge in the near future. This is a difficult task, as suggested by
the famous Niels Bohr’s warning:“Prediction is very difficult, especially if it’s about the future”.
Hence, we will not engage in the above exercise.

However, for the benefit of young researchers, it may be useful to mention some insufficiently
explored areas of research that would be worth addressing in the near future.

One of the major such areas concerns the transport of heterogeneous sediments and, in
particular, the mechanism of vertical sorting. We have not discussed this process in detail in this
book. The reason for this choice was our belief that books should assess fairly well established
knowledge and, although various interesting attempts have been proposed, we feel that further
analysis will be needed before the process of vertical sorting can be considered as fully understood.

Let us clarify our concerns by formulating a conceptually simple problem. Consider a rectangular,
infinitely long channel, with constant slope and cohesionless bed. A given constant fluid discharge
per unit width (Q) and an associated constant discharge per unit width (Qs) of a mixture of
sediments with assigned grain size distribution F0(ϕ) are supplied to the channel. Also, suppose
that supply equals capacity and hydrodynamic conditions are such that a periodic train of 2D
dunes form at the bed interface. With the notations of Figure 176, the bed elevation η of the dune
pattern may be written in the form af(x−ct), with x longitudinal coordinate, c dune speed, a dune
amplitude and t time. Under the above conditions, an equilibrium stationary solution must exist
for the grain size distribution F (ϕ;X, z), with z vertical coordinate and X ≡ (x− ct) longitudinal
coordinate perceived by an observer translating with the constant speed of the migrating bedform.
For dominant bedload, the physical mechanism underlying the establishment of this steady state
solution is dominated by gravity and apparently straightforward, at least in principle: front
migration leads to the burial of bedload and to the reemergence of previously buried sediments.
Yet, a sound deterministic physically based model of this simplest, albeit fundamental, vertical
sorting problem is unavailable.

Solving this problem would provide the basic ingredient that might then be incorporated into
a more general framework, able to analyze the more complex vertical sorting process associated
with the propagation of irregularly distributed bedforms (dunes or bars) in natural rivers.

We may call stationary free bar conundrum an insufficiently understood issue in the theory of
free bars. This is somewhat surprising as the latter theory, presented in Chapter 6, represents one of
the most successful achievements of theoretical morphodynamics. In particular, the formation and
the characteristics of stationary forced bars are fully justified on theoretical ground. We know that
stationary forced bars may arise in a cohesionless channel in response to non uniform boundary
conditions (e.g. in a straight channel following a bend) or to geometrical spatial variations of the
channel configuration (e.g. channel widening). On the contrary, the linear theory of free bars
shows that non migrating features are generally not the most unstable ones (recall Figure 87),
thus suggesting that they are not the prevailing perturbations, at least in the initial phase of
their growth. We also know that nonlinearity slows bars down in the finite amplitude regime, but
not to the extent to let them turn into stationary features (recall Figure 118b). Finally, it is not
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Figure 176. Sketch illustrating a periodic sequence of 2D dunes migrating in a channel with constant slope. Dunes
continuously rework their cohesionless bed through vertical mixing of bedload sediments buried at the dune front

which reemerge as a result of dune migration.

surprising that, on the contrary, vegetated bars may become steady features as outlined below.
With such premises, how can one interpret the recent contributions discussed in Chapter 6, which
claim that free un-vegetated bars would asymptotically tend to become stationary features? Is
there some hidden, as yet unveiled, theoretical feature to be discovered?

The morphodynamics of mixed bedrock-alluvial channels also expects to be fully explored. In
particular, in Section 7.7.4 we have outlined a theoretical framework which allowed Nelson and
Seminara (2012) to provide a theoretical interpretation of the incipient bar formation observed in
the laboratory experiments of Chatanantavet and Parker (2008). The actual soundness of the above
theoretical framework needs further substantiation, possibly with the help of DNS simulations of
the kind discussed in Section 3.3.3. Once a framework, will have been firmly established, then it
will be possible to investigate theoretically the development of free bars in the finite amplitude
regime, a process which occurs on the morphodynamic time scale in the absence of significant
bedrock erosion. This study would be worth pursuing both theoretically and experimentally as it
might disclose the existence of novel patterns in mixed bedrock-alluvial environments or provide a
deeper understanding of the origin of patches.

We conclude our journey suggesting a further natural development of morphodynamics. Indeed,
the body of research discussed in this book is the outcome of a first change in paradigm occurred in
fluvial research about half a century ago, namely the shift from hydrodynamics to morphodynamics.
More recently, a second change in paradigm has emerged in the ongoing research, namely the
intrusion of ecology into morphodynamics and the birth of eco-morphodynamics. Indeed, the
reasonably coherent theoretical framework for the analysis of large scale fluvial patterns developed
in this book includes bio-geomorphic processes only implicitly (e.g. through the erosion properties
of the river banks or the effect of riverbed vegetation on flow resistance). Recently, the active role of
biogeomorphic processes, i.e. the interaction of biological dynamics with fluvial morphodynamics
has increasingly attracted the attention of researchers in the field, motivated by the growing
awareness that river management must be ’sustainable’. Various biogeomorphic processes play
an active role: the above-ground biomass, besides its passive effect on the flow hydrodynamics,
directly affects the morphodynamics inducing sediment trapping; similarly, the below-ground
biomass affects the properties of the substrate, modifying its moisture regime and bed erodibility.
Also, the role of vegetation undergoes fluctuations associated with its growth cycle, as well as with
hydrological perturbations and climate evolution.

Specific contributions have examined the two-way coupling between vegetation and the de-
velopment of some sedimentary patterns of interest for the present monograph. One example is
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of the river banks or the effect of riverbed vegetation on flow resistance). Recently, the active role of
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directly affects the morphodynamics inducing sediment trapping; similarly, the below-ground
biomass affects the properties of the substrate, modifying its moisture regime and bed erodibility.
Also, the role of vegetation undergoes fluctuations associated with its growth cycle, as well as with
hydrological perturbations and climate evolution.

Specific contributions have examined the two-way coupling between vegetation and the de-
velopment of some sedimentary patterns of interest for the present monograph. One example is
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sufficient to illustrate this new line of research. Bertoldi et al. (2014) showed that bars may shift
from an un-vegetated equilibrium state to stable vegetated patterns depending on small variations
in water availability or species composition. These ideas were expanded by Serlet (2018) (but see
also Serlet et al., 2018), who investigated the coupled evolution of alternate bars and vegetation
along a 33 km reach of the Isère River (France), in response to regulation works (straightening,
embankments, flow regulation, sediment mining, and vegetation management). It emerged that,
over a period of 80 years, bars decreased their density, lengthened and slowed down. Moreover,
bars shifted from a bare unvegetated state to a permanent vegetated equilibrium state (Figure 177).
Serlet (2018) notes that this is in contrast “with the contemporary evolution of other embanked,
regulated river systems such as the Alpine Rhine (see illustration at the bottom of Figure 177)
which is located in an analogous geographic setting (bottom of an Alpine valley), has a similar
pre-channelization planform morphology (braided – wandering), and has an analogous history
of human stressors (gravel mining, complex hydropower regulation, vegetation clearance)”. This
suggests that the triggering mechanism of vegetation colonization is as yet unclear, though some
interesting attempts to formulate theoretical interpretations have been recently made (Bertagni
et al., 2018; Jourdain et al., 2020). They essentially add to the classical governing equations of
morphodynamics a ’vegetation module’, modeling the growth and decay of vegetation in response
to local flow conditions. This allows one to formulate a stability analysis of the classical bar
type including perturbations of the vegetation cover coupled to perturbations of flow and bed
topography.

Figure 177. Images of the shift from unvegetated to vegetated bar patterns observed in two sub-reaches of the Isère
River near Aiton, France, which have undergone several regulation works in the second half of the last century.

Also shown is a similar reach of the embanked Alpine Rhine in 2014. (reproduced from Figure 3.19 of Serlet, 2018).

Without violating Bohr’s axiom, one may reasonably expect a growing interest of the scientific
community in the general subject of bio-morphodynamics, although the newcomer must be aware
that significant progress in the field will not be possible without a close collaboration among
ecologists, geomorphologists and hydraulic engineers. Such a progress should involve also the
important long term exchanges of water and sediments between the river and the flood plain,
mediated through the vegetation dynamics and affecting the planform evolution of rivers.
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8.2. Final warning

In his beautiful autobiography, an Italian intellectual (Pintor, 1991) writes: “Un libro serve a
chi lo scrive, raramente a chi lo legge, perciò le biblioteche sono piene di libri inutili” (A book is
useful to the writer, seldom to the reader, this is why shelves are full of useless books). We are
aware of the risk pointed out by Pintor but we also encourage the reader to take good notice of
the important Voltaire’s aphorism: “The most useful books are those where the readers themselves
make half the work: deepening arguments that are just outlined, correcting what appears to them
as flawed, reinforcing with their own thoughts what appears to them to be weak ” (Voltaire, 1765).
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9. Mathematical Appendix

The aim of this Chapter is to expose the reader to some basic concepts of stability theory
(Section 9.3). The present treatment can be followed by readers who know the fundamental notions
acquired in the classical lecture courses of Calculus offered in science and engineering schools,
including the theory of complex variables and contour integration in the complex plane. We
then assume that the reader is familiar with the latter topics and refer to the extensive literature
on the subject for deeper understanding. In particular, the application oriented books of Aris
(1962); Morse and Feshbach (1953); Carrieret al. (2005) and Borisenko and Tarapov (1968) are
recommended.

Stability theory does also employ extensively so called perturbation methods, which are not
usually presented in first courses of Calculus. In Sections 9.1 and 9.2 we then provide some
elementary knowledge on the notion of an asymptotic expansion and introduce the reader to few
perturbation techniques employed in this Monograph.

9.1. Asymptotic expansions

The material presented below cannot provide an exhaustive treatment of the topic. Our goal
is to present the least amount of knowledge required for the applications discussed in the next
Sections. Extensive treatments can be found in standard books on the subject (e.g. Kevorkian
and Cole, 1981; Nayfeh, 2000).

9.1.1 A simple example of asymptotic representation

In order to introduce the notion of asymptotic series and asymptotic expansions, it is instructive
to start with a simple enlightening example. Let us consider the so called exponential integral
function, that can be defined in the form (Abramowitz and Stegun, 1964, Section 5.1):

E1(z) =

∫ ∞

z

e−t

t
dt, (608)

with z complex number such that |arg(z)| < π. Hence, z is any complex number defined in the
complex plane, with a cut along the negative real axis. Below, we restrict our analysis to real
positive values of z (z = x). E1(x) is plotted in Fig. 178. Note that the integrand is singular at
the origin. However, for our present purposes, we do not need to care about this singularity as we
seek appropriate approximations of the latter integral for large positive values of x.

Also, note that representations of the integral in terms of convergent series are available in
the literature (Abramowitz and Stegun, 1964, Sect. 5.1.11, p. 229). However, they are hardly
useful as the number of terms they require to provide a reasonable approximation of the function
increases rapidly as x increases. Below, we show that a more efficient alternative to convergent
series may be obtained through the use of an asymptotic series.

Let us then perform an integration by parts of the integral (608). The reader will readily find
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Figure 178. Plot of the exponential integral function.

Table 1. Modulus of the n-th term of the series (609) for given x.

x n |an(xn, n)|
2 2 3.38 ·10−2

5 1.01 ·10−1

10 3.99 ·10 1

20 1.57 ·1010

10 2 4.54 ·10−7

5 1.09 ·10−8

30 4.01 ·10−4

50 2.76 ·10 8

the following relationship:

E1(x) = e−x

[
1

x
− 1

x2
+

2!

x3
− · · ·+ (−1)n+1(n− 1)!

xn

]
+ (−1)nn!

∫ ∞

x

e−t

tn+1
dt. (609)

On one hand, this representation suggests that, for given value of the real variable x, the series
(609) diverges. Indeed, Table 1 shows that the modulus of the n-th term an(x, n) of the series
tends to infinity, for given x as n → ∞.

On the other hand, one may take a different viewpoint. The function E1(x) can be approximated
by the first n-terms of (609) provided the remainder of the latter series (the last term of (609)) can
be neglected. A glance at the form of the remainder immediately suggests the following inequality:

∣∣∣∣(−1)nn!

∫ ∞

x

e−t

tn+1
dt

∣∣∣∣ <
n!

xn+1

∫ ∞

x

e−t dt = e−x n!

xn+1
. (610)

From (610), one readily infers that, for a given number n of retained terms, the remainder
tends to vanish as x → ∞. In other words, for sufficiently large values of x we may obtain a
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Table 2. Relative error r of the approximation achieved retaining n terms in the expansion (609).

n x r(%)

2 2 100
5 10
10 2.22
100 2.02 ·10−2

4 2 600
5 4.6
10 0.26
100 2.42 ·10−5

reasonable approximation of E1(x) retaining a finite number of terms of the divergent series (609).
Comparing (609) and (610), the relative error r of this approximation is found from the following
relationship:

r ≤
n!

xn+1[
1
x − 1

x2 + 2!
x3 − · · ·+ (−1)n+1(n−1)!

xn

] . (611)

Table 2 shows that, for given n, r tends to vanish as x → ∞. However, note that increasing n
improves the accuracy of the representation only provided x is large enough. Indeed, for x = 2,
the accuracy obtained retaining four terms is much lower than if one retains only two terms.

9.1.2 Asymptotic expansions

In order to provide some general definitions of asymptotic expansions it is preliminarily
convenient to introduce the definition of order symbols.

We say that the function f(ϵ) is of order g(ϵ) as ϵ → 0 and write:

f(ϵ) ∼ O(g(ϵ)), (612)

provided that

lim
ϵ→0

f(ϵ)

g(ϵ)
= c, (613)

with |c| finite.
Similarly, we say that the function f(ϵ) tends to its limit faster than the function g(ϵ) as ϵ → 0

and write:
f(ϵ) ∼ o(g(ϵ)), (614)

provided that

lim
ϵ→0

f(ϵ)

g(ϵ)
= 0. (615)

For example the reader will readily prove that sin ϵ ∼ O(ϵ) and sin ϵ ∼ o(ϵ1/n) with n any
integer larger than one.

We may now define a sequence of gauge functions gn(ϵ) (n=1, 2, . . . ) as asymptotic provided
that

gn(ϵ) ∼ o[gn−1(ϵ)], (616)

as ϵ → 0.
A function f(ϵ) may be represented in terms of an asymptotic expansion as ϵ → 0, using the

asymptotic sequence gn(ϵ) (n=1, 2, . . . ) in the form:

f(ϵ) =

∞∑
n=1

angn(ϵ). (617)
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For any given N , the modulus of the remainder |f(ϵ)−
∑N

n=1 angn| of the above series is o[gn(ϵ)].
Most commonly, the gauge functions are chosen to be powers of the small parameter ϵ, i.e.

such that gn = ϵn, although the latter choice may be insufficient in many physical problems.
Asymptotic expansions satisfy a number of properties. In particular:

- provided an asymptotic expansion of the type (617) exists, this expansion is unique and its
coefficients are defined by the following relationships:

a0 = lim
ϵ→0

f(ϵ)

g0(ϵ)
, (618a)

a1 = lim
ϵ→0

f(ϵ)− a0 g0(ϵ)

g1(ϵ)
, (618b)

................................................ (618c)

an = lim
ϵ→0

f(ϵ)−
∑n−1

j=0 aj gj(ϵ)

gn(ϵ)
, (618d)

- the same asymptotic expansion may apply to different functions;
- asymptotic expansions are usually, but not necessarily, divergent;
- asymptotic expansions may be subjected to usual operations (linear combinations, multiplica-

tion, term by term integration, term by term differentiation).

9.1.3 The asymptotic forms of some integrals: method of steepest descents

An example of asymptotic technique is the method of steepest descents, also called saddle-point
method, which proves quite useful to derive the asymptotic form of integrals of the type:

I(t) =

∫

C
et γ(z) dz, (619)

in the limit of t → ∞. In (619), z = |z|eiϕ is a complex number, t is a real parameter, C is a
contour in the complex plane, γ(z) is an analytic function in the domain D of the complex plane.
The basic idea is to seek an approximation for the integral by deforming the contour of integration
such that the major contribution to the integral arises from a small portion of the new path,
the more so as the parameter t grows. Mathematical problems of this kind are encountered for
example when dealing with the long term evolution of unstable wave trains (e.g. free bars, see
Section 6.3.3).

Let us briefly illustrate the method. First of all, we note that for a given value of the phase
ϕ, large values of |z| result in some very rapid fluctuations of the integrand. Indeed, writing
the function γ(z) in terms of its real part f(x, y) and imaginary part g(x, y), it is immediately
observed that exp[i t g(x, y)] will oscillate rapidly as t increases. The existence of such oscillations
makes it difficult to evaluate the integral because of the resultant cancellations of the integrand.
To overcome this problem, the integration contour needs to be suitably chosen.

In general the contour should be taken through regions where t f(x, y) is positive and other
regions where it is negative. The former regions are more important, since there the integrand
function exp[t f(x, y)] is larger. There, it is important to reduce the oscillations associated with
exp[i t g(x, y)]. We thus search for a contour along which t g(x, y) is fairly constant and exp[t f(x, y)]
is largest. The considered integral can then be rewritten as:

I(t) =

∫

C
et γ(z) dz = ei t g(z)

∫

C
et f(z) dz. (620)

We now show that the appropriate path leading to (620) consists of the steepest descent issuing
from a saddle point z0 (Figure 179), i.e. such that

[
dγ

dz

]

z0

= 0,

[
d2γ

dz2

]

z0

̸= 0. (621)
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Figure 179. Choice of paths through a saddle point.

Consider the function f(x, y) in a neighborhood of z0 = (x0, y0), geometrically this function
represents a surface passing through the point z0. The gradient vector ∇f |z0 allows one to calculate
the directional derivative of the function f along the direction of the unit vector ês:

∂f

∂s

∣∣∣∣
z0

= ∇f |z0 · ês. (622)

Hence: ∣∣∣∣∣
[
∂f

∂s

]

z0

∣∣∣∣∣ = |[∇f ]z0 | cosθ, (623)

where θ is the angle between the vector ∇f |z0 = (∂f∂x ,
∂f
∂y ) and ês. This implies that the directional

derivative is maximum if cos θ = 1, i.e. if ês is aligned with the gradient. In other words, the
gradient defines the direction of steepest ascents from z = z0 (line CD in Figure 179). Similarly,
the directional derivative is minimum if cos θ = −1, hence the vector −∇f |z0 defines the direction
of steepest descent (line AB in Figure 179). Finally, if ês is orthogonal to the gradient, then the
directional derivative vanishes: hence, the lines orthogonal to ∇f are lines of constant f .

Next, consider the function g(x, y) in a neightborhood of z0 = (x0, y0) and the vector ∇g|z0 .
Recalling the Cauchy-Riemann conditions for the complex analytic function γ(z), this vector may
be written as:

∇g = (g,x, g,y) = (−f,y, f,x), (624)

and is normal to the surface z = g(x, y) in z0 = (x0, y0). Hence, the vectors ±(−g,y, g,x) (orthogonal
to ∇g as their scalar product vanishes) are tangent to the surface. Moreover, (624) shows that the
latter vectors coincide with ±∇f , hence they lie in the direction of steepest ascent-descent through
the point z0. Finally, the lines of constant g are also orthogonal to ∇g|z0 , hence they also lie in
the direction of steepest ascent-descent. These lines are the appropriate integration path issuing
from the saddle point z0. Indeed, consider the quantity δγ = δf + i δg. It follows that |δf | ≤ |δγ|
and the quantity |δf | is maximum in z0 only if δg vanishes, i.e. along the lines of constant g.

The above arguments suggest that the integration path consists of the ’steepest descents’
issuing from the saddle point z0. At this point of the complex plane, using the Taylor expansion
we can write:

γ(z) = γ(z0) +
1

2

d2γ

dz2

∣∣∣∣
z0

(z − z0)
2 +O(z − z0)

3 = γ(z0)− µ2, (625)
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such that gn = ϵn, although the latter choice may be insufficient in many physical problems.
Asymptotic expansions satisfy a number of properties. In particular:

- provided an asymptotic expansion of the type (617) exists, this expansion is unique and its
coefficients are defined by the following relationships:

a0 = lim
ϵ→0

f(ϵ)

g0(ϵ)
, (618a)

a1 = lim
ϵ→0

f(ϵ)− a0 g0(ϵ)

g1(ϵ)
, (618b)

................................................ (618c)

an = lim
ϵ→0

f(ϵ)−
∑n−1

j=0 aj gj(ϵ)

gn(ϵ)
, (618d)

- the same asymptotic expansion may apply to different functions;
- asymptotic expansions are usually, but not necessarily, divergent;
- asymptotic expansions may be subjected to usual operations (linear combinations, multiplica-

tion, term by term integration, term by term differentiation).

9.1.3 The asymptotic forms of some integrals: method of steepest descents

An example of asymptotic technique is the method of steepest descents, also called saddle-point
method, which proves quite useful to derive the asymptotic form of integrals of the type:

I(t) =

∫

C
et γ(z) dz, (619)

in the limit of t → ∞. In (619), z = |z|eiϕ is a complex number, t is a real parameter, C is a
contour in the complex plane, γ(z) is an analytic function in the domain D of the complex plane.
The basic idea is to seek an approximation for the integral by deforming the contour of integration
such that the major contribution to the integral arises from a small portion of the new path,
the more so as the parameter t grows. Mathematical problems of this kind are encountered for
example when dealing with the long term evolution of unstable wave trains (e.g. free bars, see
Section 6.3.3).

Let us briefly illustrate the method. First of all, we note that for a given value of the phase
ϕ, large values of |z| result in some very rapid fluctuations of the integrand. Indeed, writing
the function γ(z) in terms of its real part f(x, y) and imaginary part g(x, y), it is immediately
observed that exp[i t g(x, y)] will oscillate rapidly as t increases. The existence of such oscillations
makes it difficult to evaluate the integral because of the resultant cancellations of the integrand.
To overcome this problem, the integration contour needs to be suitably chosen.

In general the contour should be taken through regions where t f(x, y) is positive and other
regions where it is negative. The former regions are more important, since there the integrand
function exp[t f(x, y)] is larger. There, it is important to reduce the oscillations associated with
exp[i t g(x, y)]. We thus search for a contour along which t g(x, y) is fairly constant and exp[t f(x, y)]
is largest. The considered integral can then be rewritten as:

I(t) =

∫

C
et γ(z) dz = ei t g(z)

∫

C
et f(z) dz. (620)

We now show that the appropriate path leading to (620) consists of the steepest descent issuing
from a saddle point z0 (Figure 179), i.e. such that

[
dγ

dz

]

z0

= 0,

[
d2γ

dz2

]

z0

̸= 0. (621)
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Figure 179. Choice of paths through a saddle point.

Consider the function f(x, y) in a neighborhood of z0 = (x0, y0), geometrically this function
represents a surface passing through the point z0. The gradient vector ∇f |z0 allows one to calculate
the directional derivative of the function f along the direction of the unit vector ês:

∂f

∂s

∣∣∣∣
z0

= ∇f |z0 · ês. (622)

Hence: ∣∣∣∣∣
[
∂f

∂s

]

z0

∣∣∣∣∣ = |[∇f ]z0 | cosθ, (623)

where θ is the angle between the vector ∇f |z0 = (∂f∂x ,
∂f
∂y ) and ês. This implies that the directional

derivative is maximum if cos θ = 1, i.e. if ês is aligned with the gradient. In other words, the
gradient defines the direction of steepest ascents from z = z0 (line CD in Figure 179). Similarly,
the directional derivative is minimum if cos θ = −1, hence the vector −∇f |z0 defines the direction
of steepest descent (line AB in Figure 179). Finally, if ês is orthogonal to the gradient, then the
directional derivative vanishes: hence, the lines orthogonal to ∇f are lines of constant f .

Next, consider the function g(x, y) in a neightborhood of z0 = (x0, y0) and the vector ∇g|z0 .
Recalling the Cauchy-Riemann conditions for the complex analytic function γ(z), this vector may
be written as:

∇g = (g,x, g,y) = (−f,y, f,x), (624)

and is normal to the surface z = g(x, y) in z0 = (x0, y0). Hence, the vectors ±(−g,y, g,x) (orthogonal
to ∇g as their scalar product vanishes) are tangent to the surface. Moreover, (624) shows that the
latter vectors coincide with ±∇f , hence they lie in the direction of steepest ascent-descent through
the point z0. Finally, the lines of constant g are also orthogonal to ∇g|z0 , hence they also lie in
the direction of steepest ascent-descent. These lines are the appropriate integration path issuing
from the saddle point z0. Indeed, consider the quantity δγ = δf + i δg. It follows that |δf | ≤ |δγ|
and the quantity |δf | is maximum in z0 only if δg vanishes, i.e. along the lines of constant g.

The above arguments suggest that the integration path consists of the ’steepest descents’
issuing from the saddle point z0. At this point of the complex plane, using the Taylor expansion
we can write:

γ(z) = γ(z0) +
1

2

d2γ

dz2

∣∣∣∣
z0

(z − z0)
2 +O(z − z0)

3 = γ(z0)− µ2, (625)
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and, consequently,

I(t) = et γ(z0)
∫

C
e−t µ2

dz. (626)

The integration contour C is now modified such that it passes through the saddle point z0 and
is such that t f(z) is largest at z0 while t g(z) can be considered equal to the constant t g(z0) in
the neighborhood of z0. With these assumptions, the variable µ defined by (625) is real and, as t
increases, the integrand in (626) becomes steeper and less of the contour becomes important. We
may therefore replace the contour integral by a real integral covering the range from −∞ to ∞,
namely:

I(t) = et γ(z0)
∫ ∞

−∞
e−t µ2 dz

dµ
dµ. (627)

Neglecting higher order terms and assuming that [d2γ/dz2]z0 is not small leads to:

dz

dµ
=

√
−2

[d2γ/dz2]z0
, (628)

and, performing the integration, we eventually obtain:

lim
t→∞

I(t) = et γ(z0)
√

−2π

t [d2γ/dz2]z0
. (629)

9.2. Elements of perturbation methods

Perturbation methods are employed to derive an asymptotic representation of the solution
of mathematical problems involving a small parameter ϵ. In this Monograph, we have used
these techniques repeatedly when searching for the solution of the governing equations of fluvial
morphodynamics. Most typically, the approach consists of expanding the unknown functions in
powers of the small parameter ϵ. This procedure is illustrated in Section 9.2.2. This straightforward
approach may turn out to apply to the whole domain of independent variables where the solution is
sought: in this case, the perturbation expansion is said to be uniform. However, non-uniformities
are not uncommon and require suitable countermeasures. Various techniques have been developed
to remove their effects. In Section 9.2.3 we introduce the reader to one of these techniques, called
Method of multiple scales, that is widely employed, most notably in the context of stability theory.

We will illustrate the above ideas using the case of a weakly damped linear oscillator as
instructive example (see Nayfeh, 2000).

9.2.1 Weakly damped linear oscillator: exact solution

Let us consider the following simple ordinary differential problem:

d2f

dt2
+ f = −2 ϵ

df

dt
, (630a)

f = 0 (t = 0), (630b)
df

dt
= 1 (t = 0), (630c)

with ϵ small parameter.
The above differential system is linear with constant coefficients. Hence, it is readily solved

exactly in the form:
f(t) = c1e

λ1t + c2e
λ2t, (631)

with c1 and c2 constants to be determined and:

λ1 = −ϵ+
√

ϵ2 − 1 = −ϵ+ i
√

1− ϵ2, λ2 = −ϵ− i
√

1− ϵ2. (632)
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Imposing the initial conditions one finds:

c1 =
1

λ1 − λ2
= − i

2
√
1− ϵ2

, c2 = −c1. (633)

We leave to the reader the exercise of showing that the above solution can also be expressed in the
following clearer form:

f(t) =
e−ϵ t

√
1− ϵ2

sin(
√

1− ϵ2 t). (634)

Figure 180 (black lines) shows a plot of the exact solution (634) for some values of the small
parameter.

9.2.2 Perturbation solution based on a straightforward expansion

Let us next check the performance of an asymptotic solution of the same problem derived
taking advantage of the presence of the small parameter ϵ. This suggests the possibility to seek a
solution in terms of a straightforward expansion of f in powers of the small parameter. We then
express f in the form:

f = f0(t) + ϵ f1(t) +O(ϵ2). (635)

For our present purposes, there is no need to proceed to higher orders of approximation. The
solution procedure is as follows.

The expansion (635) is substituted into the differential equation (630a) and its associated initial
conditions. Next, one imposes that the equations must be satisfied at each order of approximation:
in other words, the governing differential system for f is replaced by N distinct systems obtained
equating terms of order O(ϵj) (j = 1, 2, . . . , N) in the governing equation and associated initial
conditions. Note that this step is a consequence of the assumed asymptotic character of the
expansion. Finally, differential systems are solved sequentially, each of them involving the solutions
obtained at lower orders of approximation.

Let us apply this procedure to our weakly damped linear oscillator. One readily finds:
[
d2f0
dt2

+ f0

]
+ ϵ

[
d2f1
dt2

+ f1 + 2
df0
dt

]
+O(ϵ2) = 0, (636a)

f0 + ϵf1 +O(ϵ2) = 0 (t = 0), (636b)
df0
dt

+ ϵ
df1
dt

+O(ϵ2) = 1 (t = 0). (636c)

Equating terms O(ϵ0) one ends up with the differential problem governing the leading order
approximation of our solution f0(t):

d2f0
dt2

+ f0 = 0, (637a)

f0 = 0 (t = 0), (637b)
df0
dt

= 1 (t = 0), (637c)

which is readily solved in the form:
f0 = sin t. (638)

Proceeding to O(ϵ) one finds the differential problem governing the first order

d2f1
dt2

+ f1 = −2
df0
dt

= −2 cos t, (639a)

f1 = 0 (t = 0), (639b)
df1
dt

= 0 (t = 0). (639c)
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and, consequently,

I(t) = et γ(z0)
∫

C
e−t µ2

dz. (626)

The integration contour C is now modified such that it passes through the saddle point z0 and
is such that t f(z) is largest at z0 while t g(z) can be considered equal to the constant t g(z0) in
the neighborhood of z0. With these assumptions, the variable µ defined by (625) is real and, as t
increases, the integrand in (626) becomes steeper and less of the contour becomes important. We
may therefore replace the contour integral by a real integral covering the range from −∞ to ∞,
namely:

I(t) = et γ(z0)
∫ ∞

−∞
e−t µ2 dz

dµ
dµ. (627)

Neglecting higher order terms and assuming that [d2γ/dz2]z0 is not small leads to:

dz

dµ
=

√
−2

[d2γ/dz2]z0
, (628)

and, performing the integration, we eventually obtain:

lim
t→∞

I(t) = et γ(z0)
√

−2π

t [d2γ/dz2]z0
. (629)

9.2. Elements of perturbation methods

Perturbation methods are employed to derive an asymptotic representation of the solution
of mathematical problems involving a small parameter ϵ. In this Monograph, we have used
these techniques repeatedly when searching for the solution of the governing equations of fluvial
morphodynamics. Most typically, the approach consists of expanding the unknown functions in
powers of the small parameter ϵ. This procedure is illustrated in Section 9.2.2. This straightforward
approach may turn out to apply to the whole domain of independent variables where the solution is
sought: in this case, the perturbation expansion is said to be uniform. However, non-uniformities
are not uncommon and require suitable countermeasures. Various techniques have been developed
to remove their effects. In Section 9.2.3 we introduce the reader to one of these techniques, called
Method of multiple scales, that is widely employed, most notably in the context of stability theory.

We will illustrate the above ideas using the case of a weakly damped linear oscillator as
instructive example (see Nayfeh, 2000).

9.2.1 Weakly damped linear oscillator: exact solution

Let us consider the following simple ordinary differential problem:

d2f

dt2
+ f = −2 ϵ

df

dt
, (630a)

f = 0 (t = 0), (630b)
df

dt
= 1 (t = 0), (630c)

with ϵ small parameter.
The above differential system is linear with constant coefficients. Hence, it is readily solved

exactly in the form:
f(t) = c1e

λ1t + c2e
λ2t, (631)

with c1 and c2 constants to be determined and:

λ1 = −ϵ+
√

ϵ2 − 1 = −ϵ+ i
√

1− ϵ2, λ2 = −ϵ− i
√

1− ϵ2. (632)
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Imposing the initial conditions one finds:

c1 =
1

λ1 − λ2
= − i

2
√
1− ϵ2

, c2 = −c1. (633)

We leave to the reader the exercise of showing that the above solution can also be expressed in the
following clearer form:

f(t) =
e−ϵ t

√
1− ϵ2

sin(
√

1− ϵ2 t). (634)

Figure 180 (black lines) shows a plot of the exact solution (634) for some values of the small
parameter.

9.2.2 Perturbation solution based on a straightforward expansion

Let us next check the performance of an asymptotic solution of the same problem derived
taking advantage of the presence of the small parameter ϵ. This suggests the possibility to seek a
solution in terms of a straightforward expansion of f in powers of the small parameter. We then
express f in the form:

f = f0(t) + ϵ f1(t) +O(ϵ2). (635)

For our present purposes, there is no need to proceed to higher orders of approximation. The
solution procedure is as follows.

The expansion (635) is substituted into the differential equation (630a) and its associated initial
conditions. Next, one imposes that the equations must be satisfied at each order of approximation:
in other words, the governing differential system for f is replaced by N distinct systems obtained
equating terms of order O(ϵj) (j = 1, 2, . . . , N) in the governing equation and associated initial
conditions. Note that this step is a consequence of the assumed asymptotic character of the
expansion. Finally, differential systems are solved sequentially, each of them involving the solutions
obtained at lower orders of approximation.

Let us apply this procedure to our weakly damped linear oscillator. One readily finds:
[
d2f0
dt2

+ f0

]
+ ϵ

[
d2f1
dt2

+ f1 + 2
df0
dt

]
+O(ϵ2) = 0, (636a)

f0 + ϵf1 +O(ϵ2) = 0 (t = 0), (636b)
df0
dt

+ ϵ
df1
dt

+O(ϵ2) = 1 (t = 0). (636c)

Equating terms O(ϵ0) one ends up with the differential problem governing the leading order
approximation of our solution f0(t):

d2f0
dt2

+ f0 = 0, (637a)

f0 = 0 (t = 0), (637b)
df0
dt

= 1 (t = 0), (637c)

which is readily solved in the form:
f0 = sin t. (638)

Proceeding to O(ϵ) one finds the differential problem governing the first order

d2f1
dt2

+ f1 = −2
df0
dt

= −2 cos t, (639a)

f1 = 0 (t = 0), (639b)
df1
dt

= 0 (t = 0). (639c)
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Figure 180. Plot of the exact solution (equation (634), black line) of a weakly damped linear oscillator (630a) for
two values of the damping parameter ϵ. Also shown is the approximate solution (641) obtained by a

straightforward expansion truncated at O(ϵ) (red line).

This is also readily solved to give:
f1 = −t sin t, (640)

and the complete solution up to O(ϵ2) reads:

f = sin t− ϵ t sin t+O(ϵ2t). (641)

A glance at (641) immediately suggests that the straightforward expansion leads to a non
uniform solution. Indeed, the above representation fails, i.e. it loses its asymptotic character, for
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large enough values of the independent variable t, such that ϵt ∼ O(ϵ0). Terms proportional to
(ϵt) are called secular terms as they let the expansion fail for large time (seculus is a latin word
meaning century and terms of this type occur in astronomical applications where time scales are of
the order of centuries). For the expansion to be uniform no secular term must be present. Figure
180 shows a comparison between the exact solution (black lines) and the approximate solution
obtained by the straightforward expansion truncated at O(ϵ) (red lines). The role of secular terms
appears clearly. As the time increases the straightforward expansion starts to fail and this occurs
sooner as the small parameter ϵ decreases.

In the next Section we will learn a technique, the method of multiple scales, which replaces
the straightforward expansion by a more appropriate perturbation technique which prevents the
occurrence of secular terms. However, before we proceed in the latter direction, it is instructive to
analyze the origin of secular terms. We achieve this goal expanding the exact solution in Taylor
series of the small parameter.

The origin of secular terms.

Expanding (634) in powers of ϵ, one readily finds:

e−ϵ t =

∞∑
n=0

1

n!
(−ϵ t)n, (642a)

1√
1− ϵ2

= 1 +
1

2
ϵ2 +O(ϵ4), (642b)

sin(
√

1− ϵ2 t) = sin t− ϵ2
t

2
cos t +O(ϵ4 t). (642c)

It is not surprising that, with the help of (642b, 642c, 642a), the expansion of the exact solution
(634) takes a form identical to the solution (641) obtained by the straightforward expansion.

Having established the equivalence of the two approaches, we observe that the secular terms
arise from the Taylor expansions of both the functions exp(−ϵ t) and sin(

√
1− ϵ2 t). The former

series (equation 642a) converges for any value of (−ϵ t). However, as pointed out by Nayfeh (2000),
any approximation of the series obtained retaining a finite number of terms is bound to fail at
sufficiently large times (i.e., t ∼ O(ϵ−1)). This is clarified in Figure 181a. Similarly, the series
(642c) involves terms proportional to ϵ2 t, ϵ4 t, . . . which imply failure of the expansion for times
t ∼ O(ϵ−2), t ∼ O(ϵ−4), respectively (Figure 181b).

9.2.3 Dealing with non-uniformities: The method of multiple scales

The basic idea underlying the perturbation approaches aimed at removing the non-uniformity
of the straightforward expansion arises from the problem noted in the last statement of the previous
Section, namely the presence of terms proportional to ϵjt (j > 0) in the expansion. The latter
observation implies that the unknown function f cannot be simply assumed to depend on the fast
variable t, but also on slow variables Tj = ϵjt. The word slow indicates that O(1) variations of
the variable Tj occur on very large fast time scales t ∼ O(ϵ−j).

We then assume:

f = f(t, T1, T2, . . . ), (643a)

Tj = ϵj t (j = 1, 2, 3, . . . ), (643b)

and use the chain rule to evaluate the temporal derivatives of the unknown function f . Hence:

∂

∂t
→ ∂

∂t
+ ϵ

∂

∂T1
+ ϵ2

∂

∂T2
+ . . . , (644a)

∂2

∂t2
→

(
∂

∂t
+ ϵ

∂

∂T1
+ ϵ2

∂

∂T2
+ . . .

)(
∂

∂t
+ ϵ

∂

∂T1
+ ϵ2

∂

∂T2
+ . . .

)
, (644b)
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Figure 180. Plot of the exact solution (equation (634), black line) of a weakly damped linear oscillator (630a) for
two values of the damping parameter ϵ. Also shown is the approximate solution (641) obtained by a

straightforward expansion truncated at O(ϵ) (red line).

This is also readily solved to give:
f1 = −t sin t, (640)

and the complete solution up to O(ϵ2) reads:

f = sin t− ϵ t sin t+O(ϵ2t). (641)

A glance at (641) immediately suggests that the straightforward expansion leads to a non
uniform solution. Indeed, the above representation fails, i.e. it loses its asymptotic character, for
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large enough values of the independent variable t, such that ϵt ∼ O(ϵ0). Terms proportional to
(ϵt) are called secular terms as they let the expansion fail for large time (seculus is a latin word
meaning century and terms of this type occur in astronomical applications where time scales are of
the order of centuries). For the expansion to be uniform no secular term must be present. Figure
180 shows a comparison between the exact solution (black lines) and the approximate solution
obtained by the straightforward expansion truncated at O(ϵ) (red lines). The role of secular terms
appears clearly. As the time increases the straightforward expansion starts to fail and this occurs
sooner as the small parameter ϵ decreases.

In the next Section we will learn a technique, the method of multiple scales, which replaces
the straightforward expansion by a more appropriate perturbation technique which prevents the
occurrence of secular terms. However, before we proceed in the latter direction, it is instructive to
analyze the origin of secular terms. We achieve this goal expanding the exact solution in Taylor
series of the small parameter.

The origin of secular terms.

Expanding (634) in powers of ϵ, one readily finds:

e−ϵ t =

∞∑
n=0

1

n!
(−ϵ t)n, (642a)

1√
1− ϵ2

= 1 +
1

2
ϵ2 +O(ϵ4), (642b)

sin(
√

1− ϵ2 t) = sin t− ϵ2
t

2
cos t +O(ϵ4 t). (642c)

It is not surprising that, with the help of (642b, 642c, 642a), the expansion of the exact solution
(634) takes a form identical to the solution (641) obtained by the straightforward expansion.

Having established the equivalence of the two approaches, we observe that the secular terms
arise from the Taylor expansions of both the functions exp(−ϵ t) and sin(

√
1− ϵ2 t). The former

series (equation 642a) converges for any value of (−ϵ t). However, as pointed out by Nayfeh (2000),
any approximation of the series obtained retaining a finite number of terms is bound to fail at
sufficiently large times (i.e., t ∼ O(ϵ−1)). This is clarified in Figure 181a. Similarly, the series
(642c) involves terms proportional to ϵ2 t, ϵ4 t, . . . which imply failure of the expansion for times
t ∼ O(ϵ−2), t ∼ O(ϵ−4), respectively (Figure 181b).

9.2.3 Dealing with non-uniformities: The method of multiple scales

The basic idea underlying the perturbation approaches aimed at removing the non-uniformity
of the straightforward expansion arises from the problem noted in the last statement of the previous
Section, namely the presence of terms proportional to ϵjt (j > 0) in the expansion. The latter
observation implies that the unknown function f cannot be simply assumed to depend on the fast
variable t, but also on slow variables Tj = ϵjt. The word slow indicates that O(1) variations of
the variable Tj occur on very large fast time scales t ∼ O(ϵ−j).

We then assume:

f = f(t, T1, T2, . . . ), (643a)

Tj = ϵj t (j = 1, 2, 3, . . . ), (643b)

and use the chain rule to evaluate the temporal derivatives of the unknown function f . Hence:

∂

∂t
→ ∂

∂t
+ ϵ

∂

∂T1
+ ϵ2

∂

∂T2
+ . . . , (644a)

∂2

∂t2
→

(
∂

∂t
+ ϵ

∂

∂T1
+ ϵ2

∂

∂T2
+ . . .

)(
∂

∂t
+ ϵ

∂

∂T1
+ ϵ2

∂

∂T2
+ . . .

)
, (644b)

311



Theoretical Morphodynamics Straight Channels

Figure 181. The various approximations to the Taylor series expansions of exp(−ϵt) (a) and sin(
√
1− ϵ2t) (b)

obtained retaining an increasing number of terms in the corresponding series (equations (642a) and (642c),
respectively).

i.e.

∂2

∂t2
→ ∂2

∂t2
+ 2 ϵ

∂2

∂t ∂T1
+ ϵ2

[
∂2

∂T 2
1

+ 2
∂2

∂t ∂T2

]
+ . . . (645)
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Next, we replace the straightforward expansion by the following one:

f = f0 (t, T1, T2, . . . ) + ϵ f1 (t, T1, T2, . . . ) + ϵ2f2 (t, T1, T2, . . . ) + . . . (646)

Substituting from (644a,645,646) into the differential system (630a), we find:

∂2f0
∂t2

+ f0

+ ϵ

[
∂2f1
∂t2

+ f1 + 2
∂2f0
∂t∂T1

+ 2
∂f0
∂t

]

+ ϵ2
[
∂2f2
∂t2

+ f2 + 2
∂f1
∂t

+ 2
∂f0
∂T1

+
∂2f0
∂T 2

1

+ 2
∂2f1
∂t∂T1

+ 2
∂2f0
∂t∂T2

]

+ · · · = 0. (647a)

The classical procedure, employed for the case of straightforward expansions, consists of equat-
ing terms of the same order of magnitude to find a sequence of differential problems at various orders.

O(ϵ0)

∂2f0
∂t2

+ f0 = 0. (648)

This equation is readily solved in the form:

f0 = A0(T1, T2) exp(i t) + c.c., (649)

where c.c. denotes the complex conjugate and A0(T1, T2) is an amplitude function to be determined,
which depends on the slow variables. Below, we restrict our analysis to second order, hence the
only slow variables of relevance for our approach are T1 and T2.

O(ϵ)

∂2f1
∂t2

+ f1 = −2
∂2f0
∂t∂T1

− 2
∂f0
∂t

= −2 i

(
∂A0

∂T1
+A0

)
exp(i t) + c.c.. (650)

This equation is also readily solved in the form:

f1 = A1(T1, T2) exp(i t)−
(
∂A0

∂T1
+A0

)
t exp(i t) + c.c., (651)

where A1(T1, T2) is a new amplitude function to be determined.
The solution for f1 contains a secular term (i.e., O(ϵt)) that must be suppressed if we wish the

expansion to be uniform. We then set:

∂A0

∂T1
+A0 = 0. (652)

This is an amplitude equation for A0 which admits of the simple solution:

A0 = A00(T2) exp(−T1), (653)

where A00(T2) is a new amplitude function that will be determined at the next order.
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Figure 181. The various approximations to the Taylor series expansions of exp(−ϵt) (a) and sin(
√
1− ϵ2t) (b)

obtained retaining an increasing number of terms in the corresponding series (equations (642a) and (642c),
respectively).

i.e.

∂2

∂t2
→ ∂2

∂t2
+ 2 ϵ

∂2

∂t ∂T1
+ ϵ2

[
∂2

∂T 2
1

+ 2
∂2

∂t ∂T2

]
+ . . . (645)

312

Mathematical Appendix

Next, we replace the straightforward expansion by the following one:

f = f0 (t, T1, T2, . . . ) + ϵ f1 (t, T1, T2, . . . ) + ϵ2f2 (t, T1, T2, . . . ) + . . . (646)

Substituting from (644a,645,646) into the differential system (630a), we find:

∂2f0
∂t2

+ f0

+ ϵ

[
∂2f1
∂t2

+ f1 + 2
∂2f0
∂t∂T1

+ 2
∂f0
∂t

]

+ ϵ2
[
∂2f2
∂t2

+ f2 + 2
∂f1
∂t

+ 2
∂f0
∂T1

+
∂2f0
∂T 2

1

+ 2
∂2f1
∂t∂T1

+ 2
∂2f0
∂t∂T2

]

+ · · · = 0. (647a)

The classical procedure, employed for the case of straightforward expansions, consists of equat-
ing terms of the same order of magnitude to find a sequence of differential problems at various orders.

O(ϵ0)

∂2f0
∂t2

+ f0 = 0. (648)

This equation is readily solved in the form:

f0 = A0(T1, T2) exp(i t) + c.c., (649)

where c.c. denotes the complex conjugate and A0(T1, T2) is an amplitude function to be determined,
which depends on the slow variables. Below, we restrict our analysis to second order, hence the
only slow variables of relevance for our approach are T1 and T2.

O(ϵ)

∂2f1
∂t2

+ f1 = −2
∂2f0
∂t∂T1

− 2
∂f0
∂t

= −2 i

(
∂A0

∂T1
+A0

)
exp(i t) + c.c.. (650)

This equation is also readily solved in the form:

f1 = A1(T1, T2) exp(i t)−
(
∂A0

∂T1
+A0

)
t exp(i t) + c.c., (651)

where A1(T1, T2) is a new amplitude function to be determined.
The solution for f1 contains a secular term (i.e., O(ϵt)) that must be suppressed if we wish the

expansion to be uniform. We then set:

∂A0

∂T1
+A0 = 0. (652)

This is an amplitude equation for A0 which admits of the simple solution:

A0 = A00(T2) exp(−T1), (653)

where A00(T2) is a new amplitude function that will be determined at the next order.
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O(ϵ2)

∂2f2
∂t2

+ f2 =

− 2
∂f1
∂t

− 2
∂f0
∂T1

− ∂2f0
∂T 2

1

− 2
∂2f1
∂t∂T1

− 2
∂2f0
∂t∂T2

= −2ieit
[
∂A1

∂T1
+A1 + e−T1

(
∂A00

∂T2
+

A00

2
i

)]
. (654a)

This equation is also readily solved in the form:

f2 = A2(T1, T2)e
it−[

∂A1

∂T1
+A1 + e−T1

(
∂A00

∂T2
+

A00

2
i

)]
t exp(i t) + c.c., (655a)

where A2(T1, T2) is a new amplitude function to be determined.
The solution for f2 contains a new secular term that must also be suppressed for uniformity.

We then set:
∂A1

∂T1
+A1 = −e−T1

(
∂A00

∂T2
+

i

2
A00

)
. (656)

This is an amplitude equation for A1 which admits of the simple solution:

A1 = A10(T2)e
−T1 − T1e

−T1

(
∂A00

∂T2
+

i

2
A00

)
, (657)

where A10(T2) is a new amplitude function that could be determined proceeding to the next order.
Note that the solution (657) also includes a secular term that must be suppressed and this

leads to a further amplitude equation for A00:

∂A00

∂T2
+

i

2
A00 = 0, (658)

which is readily solved:
A00 = c00 e−

i
2T2 , (659)

with c00 complex constant to be determined imposing the initial conditions.

The analysis can be pursued further, proceedings to higher orders. For our present purposes, it
suffices to summarize our findings noting that, using (649), (653) and (659), the multiple scale
solution at leading order is found to read:

f = c00 exp

[
i t− ϵ t− i

2
ϵ2 t

]
+ c.c.. (660)

Imposing the initial conditions (630b) and (630c) at the leading order of approximation one
then finds:

c00 + c̄00 = 2Re(c00) = 0,

i c00 − i c̄00 = 1, ⇒ Im(c00) = −1

2
, (661a)
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Figure 182. Plot of the exact solution (equation (634), black line) and the multiple scale solution at the leading
order (equation (662), green line) of a weakly damped linear oscillator (630a). Also shown is the approximate

solution (641) obtained by a straightforward expansion truncated at O(ϵ) (red line).

and the final form of the multiple scale solution at leading order becomes:

f = e−ϵ t sin

[(
1− 1

2
ϵ2
)
t

]
. (662)

Comparison between (662) and the exact solution (634) immediately shows the achievements
of the multiple scale technique. The phase of the multiple scale solution at leading order differs
from that of the exact solution by terms O(ϵ4t), hence failure of the expansion is expected for
times O(ϵ−4), much larger than those (O(ϵ−1)) for which failure of the straightforward expansion
at leading order is expected. The amplitude of the multiple scale solution at leading order differs
from that of the exact solution by terms O(ϵ2) uniformly in time, as the slow time variable T1 = ϵt
takes care of the exponential damping exactly.

The Figure 182 provides a visual representation of the comparison between the multiple scale
and the exact solutions.

9.3. An introduction to stability theory

9.3.1 The general notion of stability

In very general terms, stability theory has to do with the states a system may take depending
on the values of the relevant control parameters.

In order to grasp the basic idea, let us first consider a simple mechanical system, which is
definitely familiar to the reader, namely a pendulum (Figure 183).

It is well known that a pendulum admits of two vertical equilibrium states, the former (A in
Figure 183) pointing downwards, the latter (B in Figure 183) pointing upwards. It is also known
that, as a result of small perturbations of the state B, say a small rotation of the system around a
horizontal axis, the pendulum will definitively abandon its initial equilibrium state and will start
performing oscillations. Due to the damping effects of air resistance and friction experienced at
the hinge, oscillations will progressively reduce their amplitudes and lead asymptotically to a new
equilibrium state, namely the state A. On the contrary, a pendulum initially in the A state, in
response to similar perturbations, will again experience damped oscillations which however will
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O(ϵ2)

∂2f2
∂t2

+ f2 =

− 2
∂f1
∂t

− 2
∂f0
∂T1

− ∂2f0
∂T 2

1

− 2
∂2f1
∂t∂T1

− 2
∂2f0
∂t∂T2

= −2ieit
[
∂A1

∂T1
+A1 + e−T1

(
∂A00

∂T2
+

A00

2
i

)]
. (654a)

This equation is also readily solved in the form:

f2 = A2(T1, T2)e
it−[

∂A1

∂T1
+A1 + e−T1

(
∂A00

∂T2
+

A00

2
i

)]
t exp(i t) + c.c., (655a)

where A2(T1, T2) is a new amplitude function to be determined.
The solution for f2 contains a new secular term that must also be suppressed for uniformity.

We then set:
∂A1

∂T1
+A1 = −e−T1

(
∂A00

∂T2
+

i

2
A00

)
. (656)

This is an amplitude equation for A1 which admits of the simple solution:

A1 = A10(T2)e
−T1 − T1e

−T1

(
∂A00

∂T2
+

i

2
A00

)
, (657)

where A10(T2) is a new amplitude function that could be determined proceeding to the next order.
Note that the solution (657) also includes a secular term that must be suppressed and this

leads to a further amplitude equation for A00:

∂A00

∂T2
+

i

2
A00 = 0, (658)

which is readily solved:
A00 = c00 e−

i
2T2 , (659)

with c00 complex constant to be determined imposing the initial conditions.

The analysis can be pursued further, proceedings to higher orders. For our present purposes, it
suffices to summarize our findings noting that, using (649), (653) and (659), the multiple scale
solution at leading order is found to read:

f = c00 exp

[
i t− ϵ t− i

2
ϵ2 t

]
+ c.c.. (660)

Imposing the initial conditions (630b) and (630c) at the leading order of approximation one
then finds:

c00 + c̄00 = 2Re(c00) = 0,

i c00 − i c̄00 = 1, ⇒ Im(c00) = −1

2
, (661a)
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Figure 182. Plot of the exact solution (equation (634), black line) and the multiple scale solution at the leading
order (equation (662), green line) of a weakly damped linear oscillator (630a). Also shown is the approximate

solution (641) obtained by a straightforward expansion truncated at O(ϵ) (red line).

and the final form of the multiple scale solution at leading order becomes:

f = e−ϵ t sin

[(
1− 1

2
ϵ2
)
t

]
. (662)

Comparison between (662) and the exact solution (634) immediately shows the achievements
of the multiple scale technique. The phase of the multiple scale solution at leading order differs
from that of the exact solution by terms O(ϵ4t), hence failure of the expansion is expected for
times O(ϵ−4), much larger than those (O(ϵ−1)) for which failure of the straightforward expansion
at leading order is expected. The amplitude of the multiple scale solution at leading order differs
from that of the exact solution by terms O(ϵ2) uniformly in time, as the slow time variable T1 = ϵt
takes care of the exponential damping exactly.

The Figure 182 provides a visual representation of the comparison between the multiple scale
and the exact solutions.

9.3. An introduction to stability theory

9.3.1 The general notion of stability

In very general terms, stability theory has to do with the states a system may take depending
on the values of the relevant control parameters.

In order to grasp the basic idea, let us first consider a simple mechanical system, which is
definitely familiar to the reader, namely a pendulum (Figure 183).

It is well known that a pendulum admits of two vertical equilibrium states, the former (A in
Figure 183) pointing downwards, the latter (B in Figure 183) pointing upwards. It is also known
that, as a result of small perturbations of the state B, say a small rotation of the system around a
horizontal axis, the pendulum will definitively abandon its initial equilibrium state and will start
performing oscillations. Due to the damping effects of air resistance and friction experienced at
the hinge, oscillations will progressively reduce their amplitudes and lead asymptotically to a new
equilibrium state, namely the state A. On the contrary, a pendulum initially in the A state, in
response to similar perturbations, will again experience damped oscillations which however will
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Figure 183. Sketch illustrating the two possible equilibrium states of a pendulum (A and B) and their stabilities

asymptotically lead to restore its initial A state. The very fundamental concept of stability is clear
in this simplest example: the state A is stable, the state B is unstable.

In the language of hydrodynamic stability the state whose stability is analyzed is called base
state. However, the reader should appreciate that the base state is a mathematical idealization.
In real systems base states are invariably perturbed : no pendulum in the real world will attain a
perfectly vertical alignment. This notwithstanding, if the base state is stable, then the observed
state is a good approximation of it, as perturbations keep small enough. On the contrary, if the
base state is unstable, then perturbations amplify and that state is never observed.

Having grasped the basic concept, the reader should next appreciate that the definition of
stability involves a number of further aspects that deserve to be considered.

Some of them concern the nature of the base state.

- In the pendulum example, the base states are equilibrium states, i.e. they are static. This
helps simplifying the picture but is, however, inessential. The notion of stability applies similarly
to dynamic base states. In the bar instability examined in Chapter 6, the base state is the uniform
flow in an open channel in equilibrium with its erodible bed. Instability is thus sought investigating
the response of flow and bed topography to spatially and/or temporally varying perturbations of
the bed interface.

- Similarly inessential is the temporal dependence of the base state. In the bar case the base
state will be steady, but similar ideas apply to oscillatory base states, as those encountered in the
neighboring fields of coastal and tidal morphodynamics.

- Inessential is also the spatial dependence of the base state. In the bar case, the base state will
be spatially uniform, but in spatially varying flows, e.g. diverging flows occurring in alluvial fans,
similar instabilities are observed.

Other important features to be considered concern the nature of perturbations experienced by
the system.

- Stability implies that some convenient measure E(t) of the energy of perturbations satisfies
the following condition:

lim
t→∞

E(t)
E(0)

→ 0. (663)

316

Mathematical Appendix

Mathematicians call the latter condition asymptotic stability in the mean. This condition may
be satisfied independently of the value of the initial energy of the perturbation E(0), in which case
the base state is said unconditionally or globally stable. Alternatively, asymptotic stability may be
satisfied only provided E(0) does not exceed some threshold value, in which case (i.e. when initial
perturbations are sufficiently small), the base state is said to be conditionally stable.

Stability theory has thus developed methods appropriate to investigate the response of systems
to infinitesimal perturbations (linear stability theory), as well as to perturbations with some finite
but appropriately small size (weakly nonlinear stability theories), or perturbations with size not
constrained a priori (fully nonlinear analysis).

- Size is not the only characteristic of perturbations which may affect the system stability.
Further features that play a role are their stationary or migrating character as well as their
spatial-temporal scale. Different classes of perturbations are referred to as different modes. The
same system may be unstable to a variety of modes, e.g. ripples, dunes, antidunes and bars are
different perturbation modes allowed by fluvial streams. In some cases different modes may even
coexist: e.g. ripples are observed superimposed on dunes and both of them may form on the top
of bars.

- Finally, the reader familiar with classical hydrodynamic instability should appreciate that
morphodynamic instability is fundamentally distinct from hydrodynamic instability. The latter
deals with the stability of flows. The former concerns instabilities of a free boundary, namely the
bed interface.

In conclusion, ascertaining the stable or unstable character of the base state requires an
investigation of the response of the system to different classes of perturbations (i.e. different
modes). The final aim of any stability theory is to determine stability criteria identifying the
region of the parameter space where the base state is stable to a specific class of perturbations.
Moreover, one wishes to determine the characteristics of the new states eventually attained by
unstable perturbations. The branch of stability theory dealing with the latter issue is known as
bifurcation theory.

9.3.2 The toy model

In order to introduce the reader to stability analysis, we consider a model system governed by
a single partial differential equation in three independent variables. To retain a language analogy
with the physical problem of our interest, we will term x the longitudinal coordinate, y a coordinate
orthogonal to the flow direction and t the temporal coordinate. Moreover, we will interpret the
dependent variable u as a ’flow speed’ and assume the ’flow’ to occur in an infinitely wide channel
bounded by two parallel plane walls located at y = 0 and y = 1. The upper wall moves in the
longitudinal direction with assigned speed and drives the flow of the fluid within the channel.

Let the model partial differential problem read:

∂u

∂t
− ∂2u

∂y2
+

∂4u

∂x4
+ (R− 1)

∂2u

∂x2
+

∂u

∂y

(
∂u

∂x
+

∂2u

∂x2

)
= 0, (664a)

u = 0 (y = 0), (664b)
u = 1 (y = 1). (664c)

The above problem involves only one control parameter R, say our ’Reynolds number’. The reader
will note that both linear and nonlinear terms are included in (664a). The differential problem can
then be conveniently rewritten in the form:

∂u

∂t
+ Lu+Nu = 0, (665a)

u = 0 (y = 0), (665b)
u = 1 (y = 1). (665c)
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Figure 183. Sketch illustrating the two possible equilibrium states of a pendulum (A and B) and their stabilities

asymptotically lead to restore its initial A state. The very fundamental concept of stability is clear
in this simplest example: the state A is stable, the state B is unstable.

In the language of hydrodynamic stability the state whose stability is analyzed is called base
state. However, the reader should appreciate that the base state is a mathematical idealization.
In real systems base states are invariably perturbed : no pendulum in the real world will attain a
perfectly vertical alignment. This notwithstanding, if the base state is stable, then the observed
state is a good approximation of it, as perturbations keep small enough. On the contrary, if the
base state is unstable, then perturbations amplify and that state is never observed.

Having grasped the basic concept, the reader should next appreciate that the definition of
stability involves a number of further aspects that deserve to be considered.

Some of them concern the nature of the base state.

- In the pendulum example, the base states are equilibrium states, i.e. they are static. This
helps simplifying the picture but is, however, inessential. The notion of stability applies similarly
to dynamic base states. In the bar instability examined in Chapter 6, the base state is the uniform
flow in an open channel in equilibrium with its erodible bed. Instability is thus sought investigating
the response of flow and bed topography to spatially and/or temporally varying perturbations of
the bed interface.

- Similarly inessential is the temporal dependence of the base state. In the bar case the base
state will be steady, but similar ideas apply to oscillatory base states, as those encountered in the
neighboring fields of coastal and tidal morphodynamics.

- Inessential is also the spatial dependence of the base state. In the bar case, the base state will
be spatially uniform, but in spatially varying flows, e.g. diverging flows occurring in alluvial fans,
similar instabilities are observed.

Other important features to be considered concern the nature of perturbations experienced by
the system.

- Stability implies that some convenient measure E(t) of the energy of perturbations satisfies
the following condition:

lim
t→∞

E(t)
E(0)

→ 0. (663)
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Mathematicians call the latter condition asymptotic stability in the mean. This condition may
be satisfied independently of the value of the initial energy of the perturbation E(0), in which case
the base state is said unconditionally or globally stable. Alternatively, asymptotic stability may be
satisfied only provided E(0) does not exceed some threshold value, in which case (i.e. when initial
perturbations are sufficiently small), the base state is said to be conditionally stable.

Stability theory has thus developed methods appropriate to investigate the response of systems
to infinitesimal perturbations (linear stability theory), as well as to perturbations with some finite
but appropriately small size (weakly nonlinear stability theories), or perturbations with size not
constrained a priori (fully nonlinear analysis).

- Size is not the only characteristic of perturbations which may affect the system stability.
Further features that play a role are their stationary or migrating character as well as their
spatial-temporal scale. Different classes of perturbations are referred to as different modes. The
same system may be unstable to a variety of modes, e.g. ripples, dunes, antidunes and bars are
different perturbation modes allowed by fluvial streams. In some cases different modes may even
coexist: e.g. ripples are observed superimposed on dunes and both of them may form on the top
of bars.

- Finally, the reader familiar with classical hydrodynamic instability should appreciate that
morphodynamic instability is fundamentally distinct from hydrodynamic instability. The latter
deals with the stability of flows. The former concerns instabilities of a free boundary, namely the
bed interface.

In conclusion, ascertaining the stable or unstable character of the base state requires an
investigation of the response of the system to different classes of perturbations (i.e. different
modes). The final aim of any stability theory is to determine stability criteria identifying the
region of the parameter space where the base state is stable to a specific class of perturbations.
Moreover, one wishes to determine the characteristics of the new states eventually attained by
unstable perturbations. The branch of stability theory dealing with the latter issue is known as
bifurcation theory.

9.3.2 The toy model

In order to introduce the reader to stability analysis, we consider a model system governed by
a single partial differential equation in three independent variables. To retain a language analogy
with the physical problem of our interest, we will term x the longitudinal coordinate, y a coordinate
orthogonal to the flow direction and t the temporal coordinate. Moreover, we will interpret the
dependent variable u as a ’flow speed’ and assume the ’flow’ to occur in an infinitely wide channel
bounded by two parallel plane walls located at y = 0 and y = 1. The upper wall moves in the
longitudinal direction with assigned speed and drives the flow of the fluid within the channel.

Let the model partial differential problem read:

∂u

∂t
− ∂2u

∂y2
+

∂4u

∂x4
+ (R− 1)

∂2u

∂x2
+

∂u

∂y

(
∂u

∂x
+

∂2u

∂x2

)
= 0, (664a)

u = 0 (y = 0), (664b)
u = 1 (y = 1). (664c)

The above problem involves only one control parameter R, say our ’Reynolds number’. The reader
will note that both linear and nonlinear terms are included in (664a). The differential problem can
then be conveniently rewritten in the form:

∂u

∂t
+ Lu+Nu = 0, (665a)

u = 0 (y = 0), (665b)
u = 1 (y = 1). (665c)
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Here, L(·) and N(·) are linear and nonlinear differential operators, respectively, defined as follows:

L ≡ − ∂2

∂y2
+

∂4

∂x4
+ (R− 1)

∂2

∂x2
, (666a)

N ≡ ∂

∂y
·
(

∂

∂x
+

∂2

∂x2

)
. (666b)

9.3.3 The base state

The equation (664a) with the boundary conditions (664b) and (664c) admits of a simplest
steady uniform solution u = u0(y) that satisfies the following ordinary differential problem:

d2u0

dy2
= 0, (667a)

u0 = 0 (y = 0), (667b)
u0 = 1 (y = 1). (667c)

Hence:
u0 = y. (668)

Below, (668) will be taken as our base state. The next step is to investigate its stability.

9.3.4 Linear stability analysis: Temporal normal modes

It is convenient to start with a linear stability analysis, whereby we seek the response of the
system to infinitesimal perturbations of the steady base solution (668). To pursue this goal we
write:

u(x, y, t) = u0(y) + ϵu1(x, y, t) +O(ϵ2), (669)

with ϵ an infinitesimal parameter.
The assumption of infinitesimal perturbations allows us to linearize the differential problem.

Substituting from (669) into (665a-c) and neglecting terms of order ϵ2 or higher, noting that the
base state is steady and independent of x, we obtaino:

∂u1

∂t
+ Lu1 +

∂u1

∂x
+

∂2u1

∂x2
= 0, (670a)

u1 = 0 (y = 0), (670b)
u1 = 0 (y = 1). (670c)

At this stage, it is convenient to restrict the class of perturbations to be considered, noting
that (670a) admits of solutions that are exponentially dependent on time. We then separate the
temporal dependence of the solution from its spatial dependence and write:

u1(x, y, t) = û1(x, y) exp(−i ω t) + c.c., (671)

0 Formal substitution from (669) into (665a-c) gives:

∂u0

∂t
+ Lu0 +

(
∂u0

∂x
+

∂2u0

∂x2

)
∂u0

∂y
+ ϵ

∂u1

∂t
+ ϵ Lu1 + ϵ

(
∂u0

∂x
+

∂2u0

∂x2

)
∂u1

∂y

+ ϵ

(
∂2u1

∂x2
+

∂u1

∂x

)
∂u0

∂y
+O(ϵ2) = 0,

The equation (670a) is then readily obtained noting that du0
dt

= Lu0 = ∂u0
∂x

= ∂2u0
∂x2 = 0 and du0

dy
= 1 (recall

eq. 668).
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where i =
√
−1 is the imaginary unit, c.c. denotes the complex conjugate of a complex number and

ω = ωr + iωi is a complex parameter to be determined. It is clear that ωi represents the temporal
growth rate of the perturbation, hence its sign controls the stable (ωi < 0) or unstable (ωi > 0)
character of the basic state subject to this class of perturbations. The ultimate goal of a linear
stability analysis is precisely to derive the dependence of ω on the relevant external parameters (R
for our model problem) as well as any further parameter defining the spatial characteristics of
perturbations.

Let us then substitute from (682) into (670a-c) to obtain
(
−i ω +

∂4

∂x4
+R

∂2

∂x2
+

∂

∂x
− ∂2

∂y2

)
û1 = 0, (672a)

û1 = 0 (y = 0), (672b)
û1 = 0 (y = 1). (672c)

Hence, we end up with an eigenvalue problem for ω, i.e a homogeneous partial differential equation,
with homogeneous boundary conditions, defined in a longitudinally unbounded domain. This
problem has solutions only provided ω takes appropriate values to be determined. To solve the
above eigenvalue problem, noting that the differential equation has constant coefficients, we may
rely on the so called normal mode analysis whereby u1 is represented as a Fourier integral of the
form:

u1(x, y, t) =

∫ ∞

−∞
f1(y) exp[i(λx− ω t)] dλ, (673)

where λ is a real number denoting the wavenumber of perturbations. In physical terms, we are
considering perturbations consisting of a continuous spectrum of waves. Each wave propagates in
the x−direction with wavelength (2π/λ) and migration speed [ωr/λ]. Moreover, it has a lateral
structure described by the function f1(y) and amplifies (or decays) in time with growth rate ωi.
Each wave may also be written in the form:

f1(y) exp(ωi t) exp[i(λx− ωr t)]. (674)

Upon substitution of (673) into (672a-c), we end up with the following ordinary differential
eigenvalue problem for ω as a function of the parameters λ and R:

d2f1
dy2

− µ2f1 = 0, (675a)

f1 = 0 (y = 0), (675b)
f1 = 0 (y = 1), (675c)

with
µ2 = −λ2 R+ λ4 − i ω + i λ. (676)

The general solution of (675) reads:

f1 = c1 exp(µ y) + c2 exp(−µ y). (677)

Recalling the boundary conditions (675b,c), one readily shows that, c1 = −c2 and, in order for the
above solution to be non trivial, the following condition has to be satisfied

exp(µ)− exp(−µ) = 0, (678)

which implies that µ = imπ with m integer.
Equation (677) thus becomes:

f1(y) = 2 i c1 sin(mπ y). (679)
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Here, L(·) and N(·) are linear and nonlinear differential operators, respectively, defined as follows:

L ≡ − ∂2

∂y2
+

∂4

∂x4
+ (R− 1)

∂2

∂x2
, (666a)

N ≡ ∂

∂y
·
(

∂

∂x
+

∂2

∂x2

)
. (666b)

9.3.3 The base state

The equation (664a) with the boundary conditions (664b) and (664c) admits of a simplest
steady uniform solution u = u0(y) that satisfies the following ordinary differential problem:

d2u0

dy2
= 0, (667a)

u0 = 0 (y = 0), (667b)
u0 = 1 (y = 1). (667c)

Hence:
u0 = y. (668)

Below, (668) will be taken as our base state. The next step is to investigate its stability.

9.3.4 Linear stability analysis: Temporal normal modes

It is convenient to start with a linear stability analysis, whereby we seek the response of the
system to infinitesimal perturbations of the steady base solution (668). To pursue this goal we
write:

u(x, y, t) = u0(y) + ϵu1(x, y, t) +O(ϵ2), (669)

with ϵ an infinitesimal parameter.
The assumption of infinitesimal perturbations allows us to linearize the differential problem.

Substituting from (669) into (665a-c) and neglecting terms of order ϵ2 or higher, noting that the
base state is steady and independent of x, we obtaino:

∂u1

∂t
+ Lu1 +

∂u1

∂x
+

∂2u1

∂x2
= 0, (670a)

u1 = 0 (y = 0), (670b)
u1 = 0 (y = 1). (670c)

At this stage, it is convenient to restrict the class of perturbations to be considered, noting
that (670a) admits of solutions that are exponentially dependent on time. We then separate the
temporal dependence of the solution from its spatial dependence and write:

u1(x, y, t) = û1(x, y) exp(−i ω t) + c.c., (671)

0 Formal substitution from (669) into (665a-c) gives:

∂u0

∂t
+ Lu0 +

(
∂u0

∂x
+

∂2u0

∂x2

)
∂u0

∂y
+ ϵ

∂u1

∂t
+ ϵ Lu1 + ϵ

(
∂u0

∂x
+

∂2u0

∂x2

)
∂u1

∂y

+ ϵ

(
∂2u1

∂x2
+

∂u1

∂x

)
∂u0

∂y
+O(ϵ2) = 0,

The equation (670a) is then readily obtained noting that du0
dt

= Lu0 = ∂u0
∂x

= ∂2u0
∂x2 = 0 and du0

dy
= 1 (recall

eq. 668).
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where i =
√
−1 is the imaginary unit, c.c. denotes the complex conjugate of a complex number and

ω = ωr + iωi is a complex parameter to be determined. It is clear that ωi represents the temporal
growth rate of the perturbation, hence its sign controls the stable (ωi < 0) or unstable (ωi > 0)
character of the basic state subject to this class of perturbations. The ultimate goal of a linear
stability analysis is precisely to derive the dependence of ω on the relevant external parameters (R
for our model problem) as well as any further parameter defining the spatial characteristics of
perturbations.

Let us then substitute from (682) into (670a-c) to obtain
(
−i ω +

∂4

∂x4
+R

∂2

∂x2
+

∂

∂x
− ∂2

∂y2

)
û1 = 0, (672a)

û1 = 0 (y = 0), (672b)
û1 = 0 (y = 1). (672c)

Hence, we end up with an eigenvalue problem for ω, i.e a homogeneous partial differential equation,
with homogeneous boundary conditions, defined in a longitudinally unbounded domain. This
problem has solutions only provided ω takes appropriate values to be determined. To solve the
above eigenvalue problem, noting that the differential equation has constant coefficients, we may
rely on the so called normal mode analysis whereby u1 is represented as a Fourier integral of the
form:

u1(x, y, t) =

∫ ∞

−∞
f1(y) exp[i(λx− ω t)] dλ, (673)

where λ is a real number denoting the wavenumber of perturbations. In physical terms, we are
considering perturbations consisting of a continuous spectrum of waves. Each wave propagates in
the x−direction with wavelength (2π/λ) and migration speed [ωr/λ]. Moreover, it has a lateral
structure described by the function f1(y) and amplifies (or decays) in time with growth rate ωi.
Each wave may also be written in the form:

f1(y) exp(ωi t) exp[i(λx− ωr t)]. (674)

Upon substitution of (673) into (672a-c), we end up with the following ordinary differential
eigenvalue problem for ω as a function of the parameters λ and R:

d2f1
dy2

− µ2f1 = 0, (675a)

f1 = 0 (y = 0), (675b)
f1 = 0 (y = 1), (675c)

with
µ2 = −λ2 R+ λ4 − i ω + i λ. (676)

The general solution of (675) reads:

f1 = c1 exp(µ y) + c2 exp(−µ y). (677)

Recalling the boundary conditions (675b,c), one readily shows that, c1 = −c2 and, in order for the
above solution to be non trivial, the following condition has to be satisfied

exp(µ)− exp(−µ) = 0, (678)

which implies that µ = imπ with m integer.
Equation (677) thus becomes:

f1(y) = 2 i c1 sin(mπ y). (679)
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Figure 184. Marginal stability curves are plotted in the plane λ−R for the three most unstable modes of our toy
model. The absolute minimum of the first and most unstable mode defines the critical values (λc1 and Rc1) of the

wavenumber and of the control parameter, respectively.

In conclusion, we end up with the following eigen-relationship for ω:

D(ω, λ;R,m) = −i ω + i λ− λ2 R+m2 π2 + λ4 = 0. (680)

The solution for the linear perturbation u1 associated with the above eigenrelationship (i.e. the
eigenfunction) then takes the form:

u1(x, y, t) = a sin(mπ y)

∫ ∞

−∞
exp[i(λx− ω t)] dλ. (681)

Here, ω is a function of λ defined by (680) and a = 2ic1 is an arbitrary constant that, in the context
of a linear stability theory, remains unspecified. Indeed, linear theories predict an unbounded
growth of perturbations. Accounting for nonlinear effects will be needed in order to predict the
size asymptotically reached by the amplitude of perturbations.

Let us analyze our results. The eigenrelationship (680) shows that for our toy model, ω is a
complex number, namely:

ω = λ+ i (λ2 R−m2 π2 − λ4). (682)

If we set ωi = 0 in (682), we determine a discrete set of so called marginal (or neutral) stability
curves in the plane (λ,R), one for each mode m. These curves, which separate the region of the
plane where the m-th mode is unstable from those where it is stable, are plotted in Figure 184.
Moreover, from the eigenrelationship (682) one finds that ωr = λ. Hence, perturbations allowed
by the system migrate downstream (i.e. in the positive x-direction) with constant wavespeed
c = ωr/λ = 1. If the marginal stability curve associated with mode m exhibits an absolute
minimum for values (λcm, Rcm) of the relevant physical parameters, then Rcm and λcm are called
critical value of the control parameter R and critical wavenumber of mode m, respectively. For
our model problem, one finds:

Rcm = 2mπ, λcm =
√
mπ, (683)
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and the eigenfunction of the problem at criticality reads:

u1 = a sin(mπ y) exp[i λcm(x− t)]. (684)

Stability of the base state to infinitesimal perturbation is then ensured by the condition R <
min(Rcm)|m=1,2,...,∞. For our toy model the simple condition R < 2π must be satisfied.

This completes our linear stability analysis.

9.3.5 The initial value problem for linear perturbations and the convective-absolute nature of the instability

Temporal stability analyses of the kind presented in the previous Section consider spatially
periodic perturbations which amplify in time, i.e. they assume that the perturbation wavenumber
λ is real while its frequency ω is complex. Such analyses allow us to distinguish between stable
configurations (all the wavenumbers decay in time) and unstable systems (some wavenumbers
are amplified). Alternatively, one may conceive a different approach, a so called spatial stability
analysis, considering perturbations which evolve in space, starting from some initial distribution,
i.e. assuming that the perturbation wavenumber is complex and the perturbation frequency is
real. When is the latter approach appropriate? In order to answer the latter question, one has to
ascertain the nature of the instability.

Indeed, as mentioned in Chapter 6, instability is described as convective provided an initial
small perturbation localized in space is convected in one direction (say downstream) leaving, as
time tends to infinity, the flow domain unperturbed (see Figure 93). On the contrary, instability is
described as absolute whenever the initial small localized perturbation spreads in all directions
(say both upstream and downstream) as time grows, affecting eventually the whole domain. Such
a fundamental distinction was originally proposed in the field of plasma physics by Briggs (1964),
Bers (1975) and Bers (1983). It has then been applied and developed in hydrodynamic stability
by several authors (see the review of Huerre and Monkewitz, 1990).

In order to ascertain the nature of instability, the response of the system to impulsive forcing
must be investigated.

For the sake of simplicity, we illustrate the approach removing the dependence of the problem
on the y coordinate. To this aim we consider the general transverse mode m and set:

u1(x, y, t) = U1(x, t) sin(mπ y), (685)

that obviously satisfies the boundary conditions at y = 0 and y = 1. The linear response of mode
m, starting from some given initial condition, is then obtained as the solution of the following
initial-value problem:

[
∂

∂t
+

∂4

∂x4
+R

∂2

∂x2
+

∂

∂x
+m2π2

]
U1 = 0, (686a)

U1 = U10(x) (t = 0), (686b)

where U10(x) is some arbitrary initial distribution. The approach commonly employed to solve
this problem is to determine the Green function G(x, t), i.e. the impulse response of the system.
The Green function is the solution of the following differential equation:

[
∂

∂t
+

∂4

∂x4
+R

∂2

∂x2
+

∂

∂x
+m2 π2

]
G = δ(x) δ(t). (687)

Here, δ(x) δ(t) represents a perturbation that at time t = 0 concentrates within an infinitesimally
small region close to the origin of the x axis. Indeed, the Dirac distribution δ(ξ) has the fundamental
property that ∫ +∞

−∞
f(ξ) δ(ξ − a) dξ = f(a), (688)
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Figure 184. Marginal stability curves are plotted in the plane λ−R for the three most unstable modes of our toy
model. The absolute minimum of the first and most unstable mode defines the critical values (λc1 and Rc1) of the

wavenumber and of the control parameter, respectively.

In conclusion, we end up with the following eigen-relationship for ω:

D(ω, λ;R,m) = −i ω + i λ− λ2 R+m2 π2 + λ4 = 0. (680)

The solution for the linear perturbation u1 associated with the above eigenrelationship (i.e. the
eigenfunction) then takes the form:

u1(x, y, t) = a sin(mπ y)

∫ ∞

−∞
exp[i(λx− ω t)] dλ. (681)

Here, ω is a function of λ defined by (680) and a = 2ic1 is an arbitrary constant that, in the context
of a linear stability theory, remains unspecified. Indeed, linear theories predict an unbounded
growth of perturbations. Accounting for nonlinear effects will be needed in order to predict the
size asymptotically reached by the amplitude of perturbations.

Let us analyze our results. The eigenrelationship (680) shows that for our toy model, ω is a
complex number, namely:

ω = λ+ i (λ2 R−m2 π2 − λ4). (682)

If we set ωi = 0 in (682), we determine a discrete set of so called marginal (or neutral) stability
curves in the plane (λ,R), one for each mode m. These curves, which separate the region of the
plane where the m-th mode is unstable from those where it is stable, are plotted in Figure 184.
Moreover, from the eigenrelationship (682) one finds that ωr = λ. Hence, perturbations allowed
by the system migrate downstream (i.e. in the positive x-direction) with constant wavespeed
c = ωr/λ = 1. If the marginal stability curve associated with mode m exhibits an absolute
minimum for values (λcm, Rcm) of the relevant physical parameters, then Rcm and λcm are called
critical value of the control parameter R and critical wavenumber of mode m, respectively. For
our model problem, one finds:

Rcm = 2mπ, λcm =
√
mπ, (683)
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and the eigenfunction of the problem at criticality reads:

u1 = a sin(mπ y) exp[i λcm(x− t)]. (684)

Stability of the base state to infinitesimal perturbation is then ensured by the condition R <
min(Rcm)|m=1,2,...,∞. For our toy model the simple condition R < 2π must be satisfied.

This completes our linear stability analysis.

9.3.5 The initial value problem for linear perturbations and the convective-absolute nature of the instability

Temporal stability analyses of the kind presented in the previous Section consider spatially
periodic perturbations which amplify in time, i.e. they assume that the perturbation wavenumber
λ is real while its frequency ω is complex. Such analyses allow us to distinguish between stable
configurations (all the wavenumbers decay in time) and unstable systems (some wavenumbers
are amplified). Alternatively, one may conceive a different approach, a so called spatial stability
analysis, considering perturbations which evolve in space, starting from some initial distribution,
i.e. assuming that the perturbation wavenumber is complex and the perturbation frequency is
real. When is the latter approach appropriate? In order to answer the latter question, one has to
ascertain the nature of the instability.

Indeed, as mentioned in Chapter 6, instability is described as convective provided an initial
small perturbation localized in space is convected in one direction (say downstream) leaving, as
time tends to infinity, the flow domain unperturbed (see Figure 93). On the contrary, instability is
described as absolute whenever the initial small localized perturbation spreads in all directions
(say both upstream and downstream) as time grows, affecting eventually the whole domain. Such
a fundamental distinction was originally proposed in the field of plasma physics by Briggs (1964),
Bers (1975) and Bers (1983). It has then been applied and developed in hydrodynamic stability
by several authors (see the review of Huerre and Monkewitz, 1990).

In order to ascertain the nature of instability, the response of the system to impulsive forcing
must be investigated.

For the sake of simplicity, we illustrate the approach removing the dependence of the problem
on the y coordinate. To this aim we consider the general transverse mode m and set:

u1(x, y, t) = U1(x, t) sin(mπ y), (685)

that obviously satisfies the boundary conditions at y = 0 and y = 1. The linear response of mode
m, starting from some given initial condition, is then obtained as the solution of the following
initial-value problem:

[
∂

∂t
+

∂4

∂x4
+R

∂2

∂x2
+

∂

∂x
+m2π2

]
U1 = 0, (686a)

U1 = U10(x) (t = 0), (686b)

where U10(x) is some arbitrary initial distribution. The approach commonly employed to solve
this problem is to determine the Green function G(x, t), i.e. the impulse response of the system.
The Green function is the solution of the following differential equation:

[
∂

∂t
+

∂4

∂x4
+R

∂2

∂x2
+

∂

∂x
+m2 π2

]
G = δ(x) δ(t). (687)

Here, δ(x) δ(t) represents a perturbation that at time t = 0 concentrates within an infinitesimally
small region close to the origin of the x axis. Indeed, the Dirac distribution δ(ξ) has the fundamental
property that ∫ +∞

−∞
f(ξ) δ(ξ − a) dξ = f(a), (688)
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and, in particular,
∫ +∞
−∞ δ(ξ) dξ = 1. Hence, it may intuitively be thought of as a function that at-

tains an infinite peak at the origin, vanishes elsewhere, and is such that its integral along the ξ axis
is finite. The Green function G then describes how the initial localized perturbation evolves into a
wave packet. We will seek its asymptotic behavior as t → ∞ and introduce the following definitions:

- the system is linearly stable provided G(x, t → ∞) = 0 along any ray x/t = const.
- the system is linearly unstable provided G(x, t → ∞) → ∞ along at least one ray x/t = const.

In order to determine G(x, t), we note that the perturbation initially located in the origin of
the (x, t) plane can be expressed as a mixture of components of all frequencies and wavenumbers
through the Fourier transforms:

δ(x) =
1

2π

∫ +∞

−∞
ei λ x dλ, δ(t) =

1

2π

∫ +∞

−∞
e−i ω t dω, (689)

where we have used different signs in the Fourier representations of δ(x) and δ(t) for the sake of
convenience. Similarly, we can map G(x, t) in the (λ− ω) plane by means of the following Fourier
transforms:

G(x, t) =
1

2π

∫

Cλ

Ĝ(λ, t) ei λ x dλ, Ĝ(λ, t) =
1

2π

∫

Cω

G̃(λ, ω) e−i ω t dω, (690)

where Cλ and Cω are appropriate integration contours in the complex planes λ and ω, respectively.
By using (689) and (690), equation (687) leads to:

G̃(λ, ω) =
1

D(ω, λ;R,m)
, (691)

and, applying the inverse Fourier transforms, we eventually obtain

G(x, t) =
1

(2π)2

∫

Cλ

dλ

∫

Cω

ei (λx−ω t)

D(ω, λ;R,m)
dω, (692)

where D(ω, λ;R,m) is the function defined by the dispersion relationship (680).
The contour Cω in the complex ω plane is chosen as a straight line lying above all the singularities

ωd(λ) of the function D(ω, λ;R,m) = 0 (continuous line in Figure 185a). When t < 0 this straight
line is closed at infinity, thus ensuring that G(x, t) vanishes, a condition called causality. On the
other hand, when t > 0 a semicircle is added below the line to close the circuit (dashed line in
Figure 185a), such that the residue theorem can be used to compute the integral.

Let ωd(λ) be any zero of the dispersion relationship (680). Expanding D in Taylor series in a
neighborhood of ωd(λ), the integrand of (692) becomes:

ei (λx−ω t)

D(ω, λ;R,m)
=

ei (λx−ω t)

(ω − ωd)[∂D/∂ω]ωd
+O([ω − ωd]2)

, (693)

The residue associated with the integrand of (692) can then be computed according to the relation

a−1 =
1

(k − 1)!
lim
z→a

dk−1

dzk−1

[
(z − a)k f(z)

]
, (694)

yielding the a−1 coefficient of the Laurent series about ωd(λ) for a single pole (k = 1). Hence,
application the residue theorem to (692), with the help of (693) gives:

G(x, t) =
i

2π

∫

Cλ

ei [λx−ωd(λ) t]

[∂D/∂ω]ωd

dλ = − 1

2π

∫

Cλ

ei t[λx/t−ωd] dλ. (695)
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Figure 185. (a) The contour lines Cω in the complex ω-plane; (b) The contour lines Cλ in the complex λ-plane.

The next step is to perform the integration in the complex λ plane. It is sufficient for our
purposes to seek the solution of (695) in the limit t → ∞. This can be achieved employing the
method of steepest descents outlined in Section 9.1.3 and, in particular, the asymptotic relation
(629). With the help of (680), we thus set,

γ(λ) = i
[
λ
x

t
− ωd(λ)

]
= i λ

(x
t
− 1

)
− (λ4 − λ2 R+m2 π2). (696)

The saddle point λ0 associated with the complex function exp(t γ) is obtained from the condition:

dγ

dλ
= i

(x
t
− 1

)
− 4λ3

0 + 2λ0 R = 0, (697)

implying that [
dωd

dλ

]

λ0

=
x

t
. (698)

From (697), with the help of some algebra, one readily finds that λ0r and λ0i are solutions of the
following algebraic system:

λ0r

[
2λ2

0r − 6λ2
0i −R

]
= 0, (699)

4λ3
0i + λ0i

(
−12λ2

0r + 2R
)
= 1− x

t
. (700)

This system has a purely imaginary solution and two complex solutions in general.

Using the relation (629) we finally obtain the following form of the Green function:

G(x,∞) = − i

2
√
π

exp[i t (λ0 x/t− ω0)[√
t (R− 6λ2

0)
, (701)

with ω0 = ωd(λ0). The Green function then takes the form of a wave packet in the (x, t) plane.
Among the wavenumbers contained in the impulsive source, the dynamical system selects along
each ray x/t = const the wavenumber given by (698). The group velocity of the wave packet is
then real and equal to x/t. On the other hand, the temporal growth rate of the wavenumber λ0

along the ray is given by:

σ = Re
[
i t

(
λ0

x

t
− ω0

)]
= ω0i − λ0i

x

t
, (702)
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and, in particular,
∫ +∞
−∞ δ(ξ) dξ = 1. Hence, it may intuitively be thought of as a function that at-

tains an infinite peak at the origin, vanishes elsewhere, and is such that its integral along the ξ axis
is finite. The Green function G then describes how the initial localized perturbation evolves into a
wave packet. We will seek its asymptotic behavior as t → ∞ and introduce the following definitions:

- the system is linearly stable provided G(x, t → ∞) = 0 along any ray x/t = const.
- the system is linearly unstable provided G(x, t → ∞) → ∞ along at least one ray x/t = const.

In order to determine G(x, t), we note that the perturbation initially located in the origin of
the (x, t) plane can be expressed as a mixture of components of all frequencies and wavenumbers
through the Fourier transforms:

δ(x) =
1

2π

∫ +∞

−∞
ei λ x dλ, δ(t) =

1

2π

∫ +∞

−∞
e−i ω t dω, (689)

where we have used different signs in the Fourier representations of δ(x) and δ(t) for the sake of
convenience. Similarly, we can map G(x, t) in the (λ− ω) plane by means of the following Fourier
transforms:

G(x, t) =
1

2π

∫

Cλ

Ĝ(λ, t) ei λ x dλ, Ĝ(λ, t) =
1

2π

∫

Cω

G̃(λ, ω) e−i ω t dω, (690)

where Cλ and Cω are appropriate integration contours in the complex planes λ and ω, respectively.
By using (689) and (690), equation (687) leads to:

G̃(λ, ω) =
1

D(ω, λ;R,m)
, (691)

and, applying the inverse Fourier transforms, we eventually obtain

G(x, t) =
1

(2π)2

∫

Cλ

dλ

∫

Cω

ei (λx−ω t)

D(ω, λ;R,m)
dω, (692)

where D(ω, λ;R,m) is the function defined by the dispersion relationship (680).
The contour Cω in the complex ω plane is chosen as a straight line lying above all the singularities

ωd(λ) of the function D(ω, λ;R,m) = 0 (continuous line in Figure 185a). When t < 0 this straight
line is closed at infinity, thus ensuring that G(x, t) vanishes, a condition called causality. On the
other hand, when t > 0 a semicircle is added below the line to close the circuit (dashed line in
Figure 185a), such that the residue theorem can be used to compute the integral.

Let ωd(λ) be any zero of the dispersion relationship (680). Expanding D in Taylor series in a
neighborhood of ωd(λ), the integrand of (692) becomes:

ei (λx−ω t)

D(ω, λ;R,m)
=

ei (λx−ω t)

(ω − ωd)[∂D/∂ω]ωd
+O([ω − ωd]2)

, (693)

The residue associated with the integrand of (692) can then be computed according to the relation

a−1 =
1

(k − 1)!
lim
z→a

dk−1

dzk−1

[
(z − a)k f(z)

]
, (694)

yielding the a−1 coefficient of the Laurent series about ωd(λ) for a single pole (k = 1). Hence,
application the residue theorem to (692), with the help of (693) gives:

G(x, t) =
i

2π

∫

Cλ

ei [λx−ωd(λ) t]

[∂D/∂ω]ωd

dλ = − 1

2π

∫

Cλ

ei t[λx/t−ωd] dλ. (695)
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Figure 185. (a) The contour lines Cω in the complex ω-plane; (b) The contour lines Cλ in the complex λ-plane.

The next step is to perform the integration in the complex λ plane. It is sufficient for our
purposes to seek the solution of (695) in the limit t → ∞. This can be achieved employing the
method of steepest descents outlined in Section 9.1.3 and, in particular, the asymptotic relation
(629). With the help of (680), we thus set,

γ(λ) = i
[
λ
x

t
− ωd(λ)

]
= i λ

(x
t
− 1

)
− (λ4 − λ2 R+m2 π2). (696)

The saddle point λ0 associated with the complex function exp(t γ) is obtained from the condition:

dγ

dλ
= i

(x
t
− 1

)
− 4λ3

0 + 2λ0 R = 0, (697)

implying that [
dωd

dλ

]

λ0

=
x

t
. (698)

From (697), with the help of some algebra, one readily finds that λ0r and λ0i are solutions of the
following algebraic system:

λ0r

[
2λ2

0r − 6λ2
0i −R

]
= 0, (699)

4λ3
0i + λ0i

(
−12λ2

0r + 2R
)
= 1− x

t
. (700)

This system has a purely imaginary solution and two complex solutions in general.

Using the relation (629) we finally obtain the following form of the Green function:

G(x,∞) = − i

2
√
π

exp[i t (λ0 x/t− ω0)[√
t (R− 6λ2

0)
, (701)

with ω0 = ωd(λ0). The Green function then takes the form of a wave packet in the (x, t) plane.
Among the wavenumbers contained in the impulsive source, the dynamical system selects along
each ray x/t = const the wavenumber given by (698). The group velocity of the wave packet is
then real and equal to x/t. On the other hand, the temporal growth rate of the wavenumber λ0

along the ray is given by:

σ = Re
[
i t

(
λ0

x

t
− ω0

)]
= ω0i − λ0i

x

t
, (702)
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Figure 186. The two rays (x/t)±limbounding the wave packet are plotted as a function of the parameter R for the
model problem investigated in this section. (a) Purely imaginary solution (704); (b) complex solution (705).

where ω0i denotes the imaginary part of ω0. From (702) one immediately finds that the growth
rate of the wave packet vanishes along the rays such that (x/t)lim = ω0i/λ0i. With the help of the
dispersion relationship, one finds:

(x/t)lim = 1 +
R

(
λ2
0r − λ2

0i

)
+R2/4−m2 π2 −

[
λ4
0r + λ4

0i − 6λ2
0r λ

2
0i

]
λ0i

. (703)

The reader will readily solve (700) and (710) for λ0r, λ0i and (x/t)lim as functions of R.
A first solution for λ0 is purely imaginary and such to satisfy the following relationships:

λ±
01i|σ=0 = ±

√
R+

√
R2 + 12m2 π2

6
, (704a)

1− (x/t)lim =
[
4λ3

01i + 2Rλ01i

]
σ=0

(704b)

One further solution is complex and reads:

λ±
02i|σ=0 = ±

√
−R+

√
7R2 − 24m2 π2

24
, (705a)

1− (x/t)lim =
[
−32λ3

02i − 4Rλ02i

]
σ=0

(705b)

The values of (x/t)±lim for the above solutions are plotted in Figure 186. For both solutions the
wave packet is confined within a wedge bounded by the two rays (x/t)±lim. Note also that, except
within a narrow range close to critical conditions, one of the rays (x/t)lim invariably lies in the
first quadrant while the other one lies in the second quadrant.

The nature of the instability can be assessed by ascertaining where the x/t = 0 ray locates with
respect to the two limiting rays (x/t)lim. The instability is absolute if the x/t = 0 ray is contained
within the wedge region and the associated wavenumber is such that ω0i > 0. Conversely, the
instability is convective if the x/t = 0 ray is outside the wedge region and ω0i < 0. Figure 186
suggests that in both solutions the x/t = 0 ray is contained within the wedge region except, for
the complex solution, very close to criticality. Let us finally check if the value of ω0i associated
with the solutions for λ0|x/t=0 is indeed positive.

For our model problem, the solutions for λ0r and λ0i associated with the ray x/t = 0 are
immediately obtained from (700). Three solutions for λ0r and λ0i are found. They depend only
on the control parameter R (Figure 187).
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Figure 187. The (a) real and (b) imaginary parts of the three solutions λ0 associated with the ray x/t = 0 are
plotted as functions of R.

The first solution is again purely imaginary and reads:

λ01r = 0,

λ01i =
1

2


 3


1−


1 +

8

27
R3 +

3


1 +


1 +

8

27
R3


 . (706)

The second and third solutions are complex. Some algebraic work shows that

λ02i = λ03i = −1

2
λ01i, λ2

02,3r = ±


3λ2
02i +

R

2
, (707)

and, hence, λ03 = −λ̄02.
The dispersion relationship (682) then allows to evaluate the growth rate ωi|λ0

, which reads:

ωi|λ0
= λ0iR (λ2

0r − λ2
0i)−m2π2 − (λ2

0r − λ2
0i)

2 + 4λ2
0rλ

2
0i. (708)

For the first solution λ01 we find that

ωi|λ01
= λ01i −Rλ2

01i −m2 π2 − λ4
01i. (709)

As shown in Figure 188, this solution is invariably negative and, hence, describes a wave group
that decays asymptotically as t → ∞.

The other two complex solutions (λ02 and λ03) are characterized by the same value of ωi|λ0,
which turns out to be:

ωi|λ02 = ωi|λ03 = λ02i + 8λ4
02i + 2Rλ2

02i +
R2

4
−m2 π2. (710)

Figure 188 shows that the value of ωi|λ02
is positive for values of the control parameter R

larger than Rc. Hence, out of the three solutions (706)-(707), only the two complex solutions (λ02

and −λ̄02) are associated with an absolute instability. Note that the case R < Rc is irrelevant as
any initial instability with lateral Fourier mode m decays and the base state is stable.

These findings have been confirmed by the numerical solution of the complete nonlinear problem.
In particular, we performed numerical simulations starting from a localized spatial perturbation
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Figure 186. The two rays (x/t)±limbounding the wave packet are plotted as a function of the parameter R for the
model problem investigated in this section. (a) Purely imaginary solution (704); (b) complex solution (705).

where ω0i denotes the imaginary part of ω0. From (702) one immediately finds that the growth
rate of the wave packet vanishes along the rays such that (x/t)lim = ω0i/λ0i. With the help of the
dispersion relationship, one finds:

(x/t)lim = 1 +
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)
+R2/4−m2 π2 −

[
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0r + λ4
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. (703)

The reader will readily solve (700) and (710) for λ0r, λ0i and (x/t)lim as functions of R.
A first solution for λ0 is purely imaginary and such to satisfy the following relationships:

λ±
01i|σ=0 = ±
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, (704a)

1− (x/t)lim =
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4λ3
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σ=0
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One further solution is complex and reads:

λ±
02i|σ=0 = ±

√
−R+

√
7R2 − 24m2 π2

24
, (705a)

1− (x/t)lim =
[
−32λ3

02i − 4Rλ02i

]
σ=0

(705b)

The values of (x/t)±lim for the above solutions are plotted in Figure 186. For both solutions the
wave packet is confined within a wedge bounded by the two rays (x/t)±lim. Note also that, except
within a narrow range close to critical conditions, one of the rays (x/t)lim invariably lies in the
first quadrant while the other one lies in the second quadrant.

The nature of the instability can be assessed by ascertaining where the x/t = 0 ray locates with
respect to the two limiting rays (x/t)lim. The instability is absolute if the x/t = 0 ray is contained
within the wedge region and the associated wavenumber is such that ω0i > 0. Conversely, the
instability is convective if the x/t = 0 ray is outside the wedge region and ω0i < 0. Figure 186
suggests that in both solutions the x/t = 0 ray is contained within the wedge region except, for
the complex solution, very close to criticality. Let us finally check if the value of ω0i associated
with the solutions for λ0|x/t=0 is indeed positive.

For our model problem, the solutions for λ0r and λ0i associated with the ray x/t = 0 are
immediately obtained from (700). Three solutions for λ0r and λ0i are found. They depend only
on the control parameter R (Figure 187).
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Figure 187. The (a) real and (b) imaginary parts of the three solutions λ0 associated with the ray x/t = 0 are
plotted as functions of R.

The first solution is again purely imaginary and reads:

λ01r = 0,

λ01i =
1

2
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The second and third solutions are complex. Some algebraic work shows that

λ02i = λ03i = −1

2
λ01i, λ2

02,3r = ±


3λ2
02i +

R

2
, (707)

and, hence, λ03 = −λ̄02.
The dispersion relationship (682) then allows to evaluate the growth rate ωi|λ0

, which reads:

ωi|λ0
= λ0iR (λ2

0r − λ2
0i)−m2π2 − (λ2

0r − λ2
0i)

2 + 4λ2
0rλ

2
0i. (708)

For the first solution λ01 we find that

ωi|λ01
= λ01i −Rλ2

01i −m2 π2 − λ4
01i. (709)

As shown in Figure 188, this solution is invariably negative and, hence, describes a wave group
that decays asymptotically as t → ∞.

The other two complex solutions (λ02 and λ03) are characterized by the same value of ωi|λ0,
which turns out to be:

ωi|λ02 = ωi|λ03 = λ02i + 8λ4
02i + 2Rλ2

02i +
R2

4
−m2 π2. (710)

Figure 188 shows that the value of ωi|λ02
is positive for values of the control parameter R

larger than Rc. Hence, out of the three solutions (706)-(707), only the two complex solutions (λ02

and −λ̄02) are associated with an absolute instability. Note that the case R < Rc is irrelevant as
any initial instability with lateral Fourier mode m decays and the base state is stable.

These findings have been confirmed by the numerical solution of the complete nonlinear problem.
In particular, we performed numerical simulations starting from a localized spatial perturbation
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Figure 188. The growth rate ωi(λ0) for the three solutions as a function of R for m = 1.

of u, namely a bump with an emisymmetric lateral profile in the middle of the computational
domain. Figure 189 shows that the initial perturbation gives rise to the growth of wave groups
which migrate both downstream and upstream (Figure 189a) except within a small neighborhood
of the critical conditions (Figure 189b), i.e. the nature of instability at a nonlinear level conforms
to the behaviour predicted by the linear theory discussed above.

9.3.6 Weakly nonlinear stability analysis

In the previous Section we have shown that, when the control parameter R exceeds a critical
value Rc, the basic state is unstable. The linear theory predicts that, under the latter conditions,
a spectrum of perturbations will grow exponentially in time and migrate.

However, the linear theory is unable to predict the final fate of perturbations as linearization is
a valid approximation only in the initial stage of the process, when the amplitudes of perturbations
are infinitesimally small. As perturbations grow, nonlinear interactions among the various linearly
unstable components occur, such to prevent their indefinite growth. Although numerical approaches
have reached a quite advanced stage that allows to follow the evolution of perturbations from the
initial stage to their fully nonlinear state, however it proves extremely instructive to develop a
fully analytical theory in what is called the weakly nonlinear regime.

The linear form of the perturbation in the weakly nonlinear region

Essentially, nonlinearity is weak provided the control parameter exceeds its critical value only
slightly. In mathematical terms, this assumption is stated by setting (see Figure 190):

R = Rc(1 + r ϵ2). (711)

Here ϵ is a small parameter and r is a dummy parameter that may take the value 1 (supercritical
conditions) or −1 (subcritical conditons).

Let us first analyze the form taken by our linear solution (Section 9.3.4) within a neighborhood
of the critical conditions defined by (711) and by allowing some small perturbation of λ relative to
λc. Recalling the dispersion relationship we may expand ω in powers of (R−Rc) and (λ− λc) as
follows:

ω = ωc + νλ(λ− λc) + (νr + i µr)(R−Rc) +
1

2
(νλ2 + iµλ2)(λ− λc)

2 +H.O.T., (712)

where ωc is a real number (the growth rate vanishes at criticality) and

νλ =
∂ω

∂λ

∣∣∣
λc,Rc

, νr + i µr =
∂ω

∂R

∣∣∣
λc,Rc

, νλ2 + i µλ2 =
∂2ω

∂λ2

∣∣∣
λc,Rc

. (713)

The reader will note that the term proportional to (λ− λc) in (712) is purely real as the growth
rate ωi(λ) peaks at criticality. Also, note that the coefficient νλ is the group velocity. Applying the
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Figure 189. (a) The time evolution of the solution u1 in y = 0.5 at R = 7. The initial localized bump in x = 0 gives
rise to wave groups that grow and migrate both downstream and upstream with time, the instability is absolute (b)

Idem at R = 6.3: the wave group convects away, the instability is convective.

Figure 190. Sketch illustrating the region where the weakly nonlinear theory is developed.
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Figure 188. The growth rate ωi(λ0) for the three solutions as a function of R for m = 1.

of u, namely a bump with an emisymmetric lateral profile in the middle of the computational
domain. Figure 189 shows that the initial perturbation gives rise to the growth of wave groups
which migrate both downstream and upstream (Figure 189a) except within a small neighborhood
of the critical conditions (Figure 189b), i.e. the nature of instability at a nonlinear level conforms
to the behaviour predicted by the linear theory discussed above.

9.3.6 Weakly nonlinear stability analysis

In the previous Section we have shown that, when the control parameter R exceeds a critical
value Rc, the basic state is unstable. The linear theory predicts that, under the latter conditions,
a spectrum of perturbations will grow exponentially in time and migrate.

However, the linear theory is unable to predict the final fate of perturbations as linearization is
a valid approximation only in the initial stage of the process, when the amplitudes of perturbations
are infinitesimally small. As perturbations grow, nonlinear interactions among the various linearly
unstable components occur, such to prevent their indefinite growth. Although numerical approaches
have reached a quite advanced stage that allows to follow the evolution of perturbations from the
initial stage to their fully nonlinear state, however it proves extremely instructive to develop a
fully analytical theory in what is called the weakly nonlinear regime.

The linear form of the perturbation in the weakly nonlinear region

Essentially, nonlinearity is weak provided the control parameter exceeds its critical value only
slightly. In mathematical terms, this assumption is stated by setting (see Figure 190):

R = Rc(1 + r ϵ2). (711)

Here ϵ is a small parameter and r is a dummy parameter that may take the value 1 (supercritical
conditions) or −1 (subcritical conditons).

Let us first analyze the form taken by our linear solution (Section 9.3.4) within a neighborhood
of the critical conditions defined by (711) and by allowing some small perturbation of λ relative to
λc. Recalling the dispersion relationship we may expand ω in powers of (R−Rc) and (λ− λc) as
follows:

ω = ωc + νλ(λ− λc) + (νr + i µr)(R−Rc) +
1

2
(νλ2 + iµλ2)(λ− λc)

2 +H.O.T., (712)

where ωc is a real number (the growth rate vanishes at criticality) and

νλ =
∂ω

∂λ

∣∣∣
λc,Rc

, νr + i µr =
∂ω

∂R

∣∣∣
λc,Rc

, νλ2 + i µλ2 =
∂2ω

∂λ2

∣∣∣
λc,Rc

. (713)

The reader will note that the term proportional to (λ− λc) in (712) is purely real as the growth
rate ωi(λ) peaks at criticality. Also, note that the coefficient νλ is the group velocity. Applying the
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Figure 189. (a) The time evolution of the solution u1 in y = 0.5 at R = 7. The initial localized bump in x = 0 gives
rise to wave groups that grow and migrate both downstream and upstream with time, the instability is absolute (b)

Idem at R = 6.3: the wave group convects away, the instability is convective.

Figure 190. Sketch illustrating the region where the weakly nonlinear theory is developed.
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definitions (713) to the dispersion relationship (680), we readily find that, for our model problem
with m = 1:

νλ = 1, νr + i µr = i π, νλ2 + i µλ2 = −8 i π. (714)

Next, it is instructive to substitute from (712) into the linear solution for the first mode of the
perturbation, to obtain:

u1 = a sin(π y) exp[i(λx− ω t)]

= a sin(π y) exp[i(λc x− ωc t)] exp

[
t

(
µr (R−Rc) +

1

2
µλ2 (λ− λc)

2

)]

exp[i (λ− λc) (x− νλ t)] +H.O.T., (715)

with a arbitrary constant. This relationship shows that the growth rate in the neighborhood of
critical conditions has two contributions. The former is proportional to (R−Rc), hence, recalling
(711), it is of O(ϵ2). The latter is proportional to (λ− λc)

2. In order for these two contributions
to have the same order, we then require that (λ− λc) ∼ O(ϵ) and set the following expansion:

λ = λc(1 + rλ ϵ), (716)

with rλ an O(1) parameter. With the help of (716), we may rearrange (715) in the compact form:

u1 = sin(π y)A(τ, ξ) exp[i(λc x− ωc t)], (717)

where τ and ξ are the following slow variables:

τ = ϵ2 t, ξ = ϵ(x− νλ t), (718)

and the amplitude function A(τ, ξ) reads:

A(τ, ξ) = a exp [(µr r Rc +
1

2
µλ2 λ2

c r
2
λ) τ ] exp [i(λc rλ ξ)]. (719)

The compact form of the linear solution (717) clarifies that the critical wave with wavenumber λc

and frequency ωc is modulated through an amplitude function A that describes a slow temporal
growth and a slow migration of the envelope of the wave packet. Growth is described by the slow
time variable ϵ2 t, i.e. it occurs on a time scale which is O(ϵ−2) larger than the characteristic
period of the critical wave 2π/ωc. The slow migration is described by the dependence of A on the
slow, moving coordinate, ξ, travelling with the group velocity.

The above analysis clarifies that the main scope of the weakly nonlinear approach is to derive
a nonlinear evolution equation for the amplitude function A(τ, ξ). Moreover, the derivation must
be able to take into account the dependence of the process on both the fast scales (x,y,t) and the
slow scales (τ, ξ). This is a perfect context to apply the method of multiple scales.

The multiple scale solution

Let us write the solution of our toy model in the form:

u = u0 + φ(x, y, t; τ, ξ), (720)

with u0 basic state and φ perturbation. The dependence of φ on both fast and slow variables
suggests the need to reformulate the mathematical problem using the chain rules:

∂

∂t
→ ∂

∂t
− ϵνλ

∂

∂ξ
+ ϵ2

∂

∂τ
,

∂

∂x
→ ∂

∂x
+ ϵ

∂

∂ξ
. (721)
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Substituting from (711) and (721) into the differential equation (665a) and noting that the repeated
application of the chain rule gives:

∂2

∂x2
→ ∂2

∂x2
+ 2 ϵ

∂2

∂x ∂ξ
+ ϵ2

∂2

∂ξ2
,

∂4

∂x4
→ ∂4

∂x4
+ 4 ϵ

∂4

∂x3 ∂ξ
+ 6 ϵ2

∂4

∂x2 ∂ξ2
+O(ϵ3), (722)

with the help of some algebra, one finds:

Lφ = −∂φ

∂y

[
∂φ

∂x
+

∂2φ

∂x2

]

+ ϵ

[
(νλ − 1)

∂φ

∂ξ
− 2Rc

∂2φ

∂x∂ξ
− 4

∂4φ

∂x3 ∂ξ
− ∂φ

∂y

(
∂φ

∂ξ
+ 2

∂2φ

∂x∂ξ

)]

+ ϵ2
[
−∂φ

∂τ
− r Rc

∂2φ

∂x2
− (Rc +

∂φ

∂y
)
∂2 φ

∂ξ2
− 6

∂4φ

∂x2 ∂ξ2

]
+O(ϵ3), (723a)

L ≡ ∂

∂t
− ∂2

∂y2
+

∂4

∂x4
+Rc

∂2

∂x2
+

∂

∂x
, (723b)

φ = 0 (y = 0, 1). (723c)

We now expand the solution in powers of the small parameter ϵ, assuming that the amplitude of
the perturbation at the leading order of approximation is O(ϵ). The latter assumption is by no
means obvious but it will be clarified below. Let us then write:

φ = ϵ u1 + ϵ2 u2 + ϵ3 u3 +O(ϵ4). (724)

Substituting from (724) into (723) and equating likewise powers of ϵ we find the following sequence
of differential problems:

O(ϵ)

Lu1 = 0, (725a)
u1 = 0 (y = 0, 1). (725b)

O(ϵ2)

Lu2 = −∂u1

∂y

[
∂u1

∂x
+

∂2u1

∂x2

]
(726a)

+ (νλ − 1)
∂u1

∂ξ
− 2Rc

∂2u1

∂x ∂ξ
− 4

∂4u1

∂x3 ∂ξ
,

u2 = 0 (y = 0, 1). (726b)

O(ϵ3)

Lu3 = −∂u1

∂y

[
∂u2

∂x
+

∂2u2

∂x2

]
− ∂u2

∂y

[
∂u1

∂x
+

∂2u1

∂x2

]
(727a)

+ (νλ − 1)
∂u2

∂ξ
− 2Rc

∂2u2

∂x ∂ξ
− 4

∂4u2

∂x3 ∂ξ
− ∂u1

∂y

[
∂u1

∂ξ
+ 2

∂2u1

∂x ∂ξ

]

− 6
∂4u1

∂x2 ∂ξ2
− ∂u1

∂τ
− r Rc

∂2u1

∂x2
−Rc

∂2u1

∂ξ2
,

u3 = 0 (y = 0, 1). (727b)
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definitions (713) to the dispersion relationship (680), we readily find that, for our model problem
with m = 1:

νλ = 1, νr + i µr = i π, νλ2 + i µλ2 = −8 i π. (714)

Next, it is instructive to substitute from (712) into the linear solution for the first mode of the
perturbation, to obtain:

u1 = a sin(π y) exp[i(λx− ω t)]

= a sin(π y) exp[i(λc x− ωc t)] exp

[
t

(
µr (R−Rc) +

1

2
µλ2 (λ− λc)

2

)]

exp[i (λ− λc) (x− νλ t)] +H.O.T., (715)

with a arbitrary constant. This relationship shows that the growth rate in the neighborhood of
critical conditions has two contributions. The former is proportional to (R−Rc), hence, recalling
(711), it is of O(ϵ2). The latter is proportional to (λ− λc)

2. In order for these two contributions
to have the same order, we then require that (λ− λc) ∼ O(ϵ) and set the following expansion:

λ = λc(1 + rλ ϵ), (716)

with rλ an O(1) parameter. With the help of (716), we may rearrange (715) in the compact form:

u1 = sin(π y)A(τ, ξ) exp[i(λc x− ωc t)], (717)

where τ and ξ are the following slow variables:

τ = ϵ2 t, ξ = ϵ(x− νλ t), (718)

and the amplitude function A(τ, ξ) reads:

A(τ, ξ) = a exp [(µr r Rc +
1

2
µλ2 λ2

c r
2
λ) τ ] exp [i(λc rλ ξ)]. (719)

The compact form of the linear solution (717) clarifies that the critical wave with wavenumber λc

and frequency ωc is modulated through an amplitude function A that describes a slow temporal
growth and a slow migration of the envelope of the wave packet. Growth is described by the slow
time variable ϵ2 t, i.e. it occurs on a time scale which is O(ϵ−2) larger than the characteristic
period of the critical wave 2π/ωc. The slow migration is described by the dependence of A on the
slow, moving coordinate, ξ, travelling with the group velocity.

The above analysis clarifies that the main scope of the weakly nonlinear approach is to derive
a nonlinear evolution equation for the amplitude function A(τ, ξ). Moreover, the derivation must
be able to take into account the dependence of the process on both the fast scales (x,y,t) and the
slow scales (τ, ξ). This is a perfect context to apply the method of multiple scales.

The multiple scale solution

Let us write the solution of our toy model in the form:

u = u0 + φ(x, y, t; τ, ξ), (720)

with u0 basic state and φ perturbation. The dependence of φ on both fast and slow variables
suggests the need to reformulate the mathematical problem using the chain rules:

∂

∂t
→ ∂

∂t
− ϵνλ

∂

∂ξ
+ ϵ2

∂

∂τ
,

∂

∂x
→ ∂

∂x
+ ϵ

∂

∂ξ
. (721)
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Substituting from (711) and (721) into the differential equation (665a) and noting that the repeated
application of the chain rule gives:

∂2

∂x2
→ ∂2

∂x2
+ 2 ϵ

∂2

∂x ∂ξ
+ ϵ2

∂2

∂ξ2
,

∂4

∂x4
→ ∂4

∂x4
+ 4 ϵ

∂4

∂x3 ∂ξ
+ 6 ϵ2

∂4

∂x2 ∂ξ2
+O(ϵ3), (722)

with the help of some algebra, one finds:

Lφ = −∂φ

∂y

[
∂φ

∂x
+

∂2φ

∂x2

]

+ ϵ

[
(νλ − 1)

∂φ

∂ξ
− 2Rc

∂2φ

∂x∂ξ
− 4

∂4φ

∂x3 ∂ξ
− ∂φ

∂y

(
∂φ

∂ξ
+ 2

∂2φ

∂x∂ξ

)]

+ ϵ2
[
−∂φ

∂τ
− r Rc

∂2φ

∂x2
− (Rc +

∂φ

∂y
)
∂2 φ

∂ξ2
− 6

∂4φ

∂x2 ∂ξ2

]
+O(ϵ3), (723a)

L ≡ ∂

∂t
− ∂2

∂y2
+

∂4

∂x4
+Rc

∂2

∂x2
+

∂

∂x
, (723b)

φ = 0 (y = 0, 1). (723c)

We now expand the solution in powers of the small parameter ϵ, assuming that the amplitude of
the perturbation at the leading order of approximation is O(ϵ). The latter assumption is by no
means obvious but it will be clarified below. Let us then write:

φ = ϵ u1 + ϵ2 u2 + ϵ3 u3 +O(ϵ4). (724)

Substituting from (724) into (723) and equating likewise powers of ϵ we find the following sequence
of differential problems:

O(ϵ)

Lu1 = 0, (725a)
u1 = 0 (y = 0, 1). (725b)

O(ϵ2)

Lu2 = −∂u1

∂y

[
∂u1

∂x
+

∂2u1

∂x2

]
(726a)

+ (νλ − 1)
∂u1

∂ξ
− 2Rc

∂2u1

∂x ∂ξ
− 4

∂4u1

∂x3 ∂ξ
,

u2 = 0 (y = 0, 1). (726b)

O(ϵ3)

Lu3 = −∂u1

∂y

[
∂u2

∂x
+

∂2u2

∂x2

]
− ∂u2

∂y

[
∂u1

∂x
+

∂2u1

∂x2

]
(727a)

+ (νλ − 1)
∂u2

∂ξ
− 2Rc

∂2u2

∂x ∂ξ
− 4

∂4u2

∂x3 ∂ξ
− ∂u1

∂y

[
∂u1

∂ξ
+ 2

∂2u1

∂x ∂ξ

]

− 6
∂4u1

∂x2 ∂ξ2
− ∂u1

∂τ
− r Rc

∂2u1

∂x2
−Rc

∂2u1

∂ξ2
,

u3 = 0 (y = 0, 1). (727b)
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Hence, at O(ϵ) we recover the linear eigenvalue problem. Its solution then reads:

u1 = A(ξ, τ)S1 E1 + c.c., (728)

where A(ξ, τ) is the complex amplitude function to be determined and we have employed the
following notation:

Sm = sin(mπ y), Em = exp[im(λc x− ωc t)]. (729)

Proceeding to O(ϵ2), substituting from (728) into the differential system (726), with the help of
some algebra, we find:

Lu2 = −π

2
S2

[
(i λc − λ2

c)A
2 E2 + (−i λc − λ2

c)AĀ
]

+ S1

[
νλ − 1 + i λc(−2Rc + 4λ2

c)
] ∂A
∂ξ

E1 + c.c.,
(730)

where an overbar denotes, as usual, the complex conjugate of a complex number. The reader
should note that the forcing terms on the right hand side of (730) include the effect of nonlinear
interactions between the fundamental and itself or its complex conjugate.

Noting that the quantity [νλ − 1 + iλc(−2Rc + 4λ2
c)] vanishes, the latter differential system is

readily solved in the form:
u2 = S2(u20AĀ+ u22A

2E2) + c.c., (731)

with
u20 =

1

8
(1 +

1√
π
i), u22 =

1

24
(1− 1√

π
i). (732)

Let us finally proceed to O(ϵ3). Substituting from (728) and (731) into the differential system
(727), one finds:

Lu3 = S1 E1{−
∂A

∂τ
+ (λ2

c r Rc)A+ (6λ2
c −Rc)

∂2A

∂ξ2

+ π [iλc(u20 + ū20 − u22) − λ2
c(u20 + ū20 + u22)− u22(i λc − 2λ2

c)
]
A2 Ā}

+ terms proportional to S1 E3, S3 E1, S3 E3, S2 E0, S2E2, (733)

where we have written explicitly only the terms proportional to S1 E1 in the right hand side of
(733) as they are the only ones needed to derive the sought evolution equation for the amplitude
function A(τ, ξ). Terms proportional to S1 E1 are secular (see Section 9.2.2) and have the same
structure of the linear mode. As a result they would lead to an unbounded contribution in the
solution for u3. The reader will readily appreciate this point noting that, making use of the linear
dispersion relationship, the differential problem:

Lu3 = F (A)S1 E1 (734a)
u3 = 0 (y = 0, 1),

is solved in the form:
u3 = xS1 E1

F (A)

1 + 2 i λc Rc − 4 i λ3
c

. (735)

It is apparent that the latter solution is unbounded as x → ∞. In order to prevent this behavior
we must impose a solvability condition that, in the present case, simply consists of constraining the
function F (A) to vanish. This leads to the so called Ginzburg-Landau evolution equation of the
amplitude function A(τ, ξ). The name Ginzburg-Landau comes from a paper on superconductivity
(Ginzburg and Landau, 1950), although in that context the equation is part of a larger system of
equations. In general, with the notations employed here, this equation reads:

∂A

∂τ
= rRc [µr + iνr]A− 1

2
[µλ2 + iνλ2 ]

∂2A

∂ξ2
+ [cr + ici]A

2Ā. (736)
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For our toy model, recalling (733), some algebra shows that the coefficient (cr + ici) takes the
form:

cr + ici = −π2

24

[
5 +

2

π
− i

3√
π

]
. (737)

The reader should note that, for more complex differential systems, imposing the solvability
condition requires some more sophisticated mathematical argument, referred to as Fredholm
alternative. It essentially consists of imposing the orthogonality of the secular terms to the solution
of the adjoint linear differential problem. Here, we do not present the general approach, which is
fairly technical, and refer the reader to specialized books (e.g. Coddington and Levinson, 1955;
Nayfeh, 2000).

The particular case of Landau-Stuart equation

The Ginzburg-Landau equation derived above describes the spatial-temporal evolution of the
narrow spectrum of waves that becomes unstable near critical conditions. A particular case of
the latter equation had been previously proposed by Landau (Landau, 1944) and was derived by
Stuart (Stuart, 1958) for the instability of laminar parallel flows. The Landau-Stuart equation
(hereafter LS) describes the long-term behaviour of the single most unstable wave and reads:

dA

dτ
= rRc [µr + iνr]A+ [cr + ici]A

2Ā. (738)

This equation is readily seen to be obtained from (736) setting ∂2

∂ξ2 ≡ 0.
It proves quite instructive to examine the solution of the latter equation in some detail. Let us

multiply (738) by Ā and sum the resulting equation to that obtained multiplying the complex
conjugate of (738) by A, to find the following equation for |A|2:

d|A|2

dτ
= 2rRc µr|A|2 + 2cr|A|4. (739)

This equation is readily solved(0) in the following closed form:

|A|2 =
rRc µr|A0|2 exp(2rRc µrτ)

rRc µr + cr|A0|2 [1− exp(2rRc µrτ)]
, (740)

having denoted by |A0| the value of |A| at τ = 0.
In order to clarify the behavior of the solution (745), we must distinguish between two

fundamentally different cases.
The first case is described as supercritical instability. It occurs when the coefficient cr is negative

with r = 1. Under these conditions perturbations tend to an equilibrium solution, asymptotically
reached as τ → ∞, such that:

|Ae|2 = −Rcµr

cr
. (744)

0 Solution is obtained by separating the variables and noting that the equation

df

dτ
= af + bf2, (741)

may be rewritten in the form:
df

af + bf2
=

df

a

[
1

f
−

b

a+ bf

]
= dτ, (742)

which is immediately integrated between 0 and τ to obtain:

f =
af0eaτ

a+ bf0(1− eaτ )
. (743)

.
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Hence, at O(ϵ) we recover the linear eigenvalue problem. Its solution then reads:

u1 = A(ξ, τ)S1 E1 + c.c., (728)

where A(ξ, τ) is the complex amplitude function to be determined and we have employed the
following notation:

Sm = sin(mπ y), Em = exp[im(λc x− ωc t)]. (729)

Proceeding to O(ϵ2), substituting from (728) into the differential system (726), with the help of
some algebra, we find:

Lu2 = −π

2
S2

[
(i λc − λ2

c)A
2 E2 + (−i λc − λ2

c)AĀ
]

+ S1

[
νλ − 1 + i λc(−2Rc + 4λ2

c)
] ∂A
∂ξ

E1 + c.c.,
(730)

where an overbar denotes, as usual, the complex conjugate of a complex number. The reader
should note that the forcing terms on the right hand side of (730) include the effect of nonlinear
interactions between the fundamental and itself or its complex conjugate.

Noting that the quantity [νλ − 1 + iλc(−2Rc + 4λ2
c)] vanishes, the latter differential system is

readily solved in the form:
u2 = S2(u20AĀ+ u22A

2E2) + c.c., (731)

with
u20 =

1

8
(1 +

1√
π
i), u22 =

1

24
(1− 1√

π
i). (732)

Let us finally proceed to O(ϵ3). Substituting from (728) and (731) into the differential system
(727), one finds:

Lu3 = S1 E1{−
∂A

∂τ
+ (λ2

c r Rc)A+ (6λ2
c −Rc)

∂2A

∂ξ2

+ π [iλc(u20 + ū20 − u22) − λ2
c(u20 + ū20 + u22)− u22(i λc − 2λ2

c)
]
A2 Ā}

+ terms proportional to S1 E3, S3 E1, S3 E3, S2 E0, S2E2, (733)

where we have written explicitly only the terms proportional to S1 E1 in the right hand side of
(733) as they are the only ones needed to derive the sought evolution equation for the amplitude
function A(τ, ξ). Terms proportional to S1 E1 are secular (see Section 9.2.2) and have the same
structure of the linear mode. As a result they would lead to an unbounded contribution in the
solution for u3. The reader will readily appreciate this point noting that, making use of the linear
dispersion relationship, the differential problem:

Lu3 = F (A)S1 E1 (734a)
u3 = 0 (y = 0, 1),

is solved in the form:
u3 = xS1 E1

F (A)

1 + 2 i λc Rc − 4 i λ3
c

. (735)

It is apparent that the latter solution is unbounded as x → ∞. In order to prevent this behavior
we must impose a solvability condition that, in the present case, simply consists of constraining the
function F (A) to vanish. This leads to the so called Ginzburg-Landau evolution equation of the
amplitude function A(τ, ξ). The name Ginzburg-Landau comes from a paper on superconductivity
(Ginzburg and Landau, 1950), although in that context the equation is part of a larger system of
equations. In general, with the notations employed here, this equation reads:

∂A

∂τ
= rRc [µr + iνr]A− 1

2
[µλ2 + iνλ2 ]

∂2A

∂ξ2
+ [cr + ici]A

2Ā. (736)
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For our toy model, recalling (733), some algebra shows that the coefficient (cr + ici) takes the
form:

cr + ici = −π2

24

[
5 +

2

π
− i

3√
π

]
. (737)

The reader should note that, for more complex differential systems, imposing the solvability
condition requires some more sophisticated mathematical argument, referred to as Fredholm
alternative. It essentially consists of imposing the orthogonality of the secular terms to the solution
of the adjoint linear differential problem. Here, we do not present the general approach, which is
fairly technical, and refer the reader to specialized books (e.g. Coddington and Levinson, 1955;
Nayfeh, 2000).

The particular case of Landau-Stuart equation

The Ginzburg-Landau equation derived above describes the spatial-temporal evolution of the
narrow spectrum of waves that becomes unstable near critical conditions. A particular case of
the latter equation had been previously proposed by Landau (Landau, 1944) and was derived by
Stuart (Stuart, 1958) for the instability of laminar parallel flows. The Landau-Stuart equation
(hereafter LS) describes the long-term behaviour of the single most unstable wave and reads:

dA

dτ
= rRc [µr + iνr]A+ [cr + ici]A

2Ā. (738)

This equation is readily seen to be obtained from (736) setting ∂2

∂ξ2 ≡ 0.
It proves quite instructive to examine the solution of the latter equation in some detail. Let us

multiply (738) by Ā and sum the resulting equation to that obtained multiplying the complex
conjugate of (738) by A, to find the following equation for |A|2:

d|A|2

dτ
= 2rRc µr|A|2 + 2cr|A|4. (739)

This equation is readily solved(0) in the following closed form:

|A|2 =
rRc µr|A0|2 exp(2rRc µrτ)

rRc µr + cr|A0|2 [1− exp(2rRc µrτ)]
, (740)

having denoted by |A0| the value of |A| at τ = 0.
In order to clarify the behavior of the solution (745), we must distinguish between two

fundamentally different cases.
The first case is described as supercritical instability. It occurs when the coefficient cr is negative

with r = 1. Under these conditions perturbations tend to an equilibrium solution, asymptotically
reached as τ → ∞, such that:

|Ae|2 = −Rcµr

cr
. (744)

0 Solution is obtained by separating the variables and noting that the equation

df

dτ
= af + bf2, (741)

may be rewritten in the form:
df

af + bf2
=

df

a

[
1

f
−

b

a+ bf

]
= dτ, (742)

which is immediately integrated between 0 and τ to obtain:

f =
af0eaτ

a+ bf0(1− eaτ )
. (743)

.

331



Theoretical Morphodynamics Straight Channels

Figure 191. Sketch illustrating the solution of Landau-Stuart equation in the supercritical case. (a) Temporal
dependence (b) Bifurcation diagram

Solution (745) can be thus rewritten as:

|A|2 =
|A0|2

|A0|2/|Ae|2 + (1− |A0|2/|Ae|2) exp(2cr|Ae|2τ)
. (745)

The solution is plotted in Figure 191a. Note that it shows that perturbations with an initial
amplitude |A0| < |Ae| grow leaving the linear exponential regime and tend asymptotically to the
finite equilibrium amplitude |Ae|. On the other hand, the perturbations with an initial amplitude
|A0| larger than |Ae| decay asymptotically to the finite equilibrium amplitude |Ae|. The above
equilibrium solution is stable. This is readily shown by perturbing the equilibrium solution in the
form:

|A|2 = |Ae|2 + δ â, (746)

with δ infinitesimal. Substituting from (746) into LS equation and retaining only terms linear in δ,
one finds the following differential equation for the perturbation â:

dâ

dτ
= [2Rcµr + 4cr|Ae|2]â = 2cr|Ae|2â. (747)

Since cr is negative (747) admits of exponentially decaying solution, showing the stable character
of the supercritical equilibria. This is also illustrated in the bifurcation diagram of Figure 191b.
Note that the direction of arrows indicates whether perturbations let the solution depart from the
equilibrium state, which is said to bifurcate from the null solution as R exceeds Rc.

The second case is described as subcritical instability. It occurs when the coefficient cr is
positive. Under these conditions an equilibrium amplitude of the perturbation is asymptotically
reached as τ → −∞ in the subcritical regime (R < Rc), the dummy parameter r being equal to −1.
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Figure 192. Sketch illustrating the solution of Landau-Stuart equation in the subcritical case. (a) Temporal
dependence (b) Bifurcation diagram.
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Figure 191. Sketch illustrating the solution of Landau-Stuart equation in the supercritical case. (a) Temporal
dependence (b) Bifurcation diagram

Solution (745) can be thus rewritten as:

|A|2 =
|A0|2

|A0|2/|Ae|2 + (1− |A0|2/|Ae|2) exp(2cr|Ae|2τ)
. (745)

The solution is plotted in Figure 191a. Note that it shows that perturbations with an initial
amplitude |A0| < |Ae| grow leaving the linear exponential regime and tend asymptotically to the
finite equilibrium amplitude |Ae|. On the other hand, the perturbations with an initial amplitude
|A0| larger than |Ae| decay asymptotically to the finite equilibrium amplitude |Ae|. The above
equilibrium solution is stable. This is readily shown by perturbing the equilibrium solution in the
form:

|A|2 = |Ae|2 + δ â, (746)

with δ infinitesimal. Substituting from (746) into LS equation and retaining only terms linear in δ,
one finds the following differential equation for the perturbation â:

dâ

dτ
= [2Rcµr + 4cr|Ae|2]â = 2cr|Ae|2â. (747)

Since cr is negative (747) admits of exponentially decaying solution, showing the stable character
of the supercritical equilibria. This is also illustrated in the bifurcation diagram of Figure 191b.
Note that the direction of arrows indicates whether perturbations let the solution depart from the
equilibrium state, which is said to bifurcate from the null solution as R exceeds Rc.

The second case is described as subcritical instability. It occurs when the coefficient cr is
positive. Under these conditions an equilibrium amplitude of the perturbation is asymptotically
reached as τ → −∞ in the subcritical regime (R < Rc), the dummy parameter r being equal to −1.
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Figure 192. Sketch illustrating the solution of Landau-Stuart equation in the subcritical case. (a) Temporal
dependence (b) Bifurcation diagram.
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This equilibrium solution sets a threshold amplitude for the perturbation. The linear stability of
the equilibrium solution shows that, in this case, perturbations exceeding the threshold amplitude
are able to destabilize the system that is stable to infinitesimal perturbations. On the contrary,
finite amplitude perturbations that do not exceed the threshold are stable. This is illustrated in
Figure 192 which also shows that the amplitude of unstable perturbations tend to infinity at the
finite τlim = ln [|A0|2/(|A0|2 − |Ae|2)]/cr|Ae|2.

Let us conclude this analysis noting that, in our toy model, the bifurcation is supercritical and
the amplitude predicted by the LS equation reads:

|Ae| =
1

ϵ

√
24(R−Rc)

π
=

√
48π

5π + 2
. (748)

Solutions of the Ginzburg-Landau equation

The properties of the solutions of the Ginzburg-Landau equation (736) have been analyzed in
depth by several Authors. Here, we restrict ourselves to few fundamental results that are relevant
to our morphodynamic problems.

Following Schielen et al. (1993) we first seek periodic solutions of (736) and set:

A(ξ, τ) = A exp i(Kξ − Ωτ), (749)

with A, K and Ω real quantities.
Substituting into (736), the real and imaginary parts of the equation lead to the following

algebraic constraints:

Ω = −rRcνr −
1

2
K2νλ2 − ciA2, (750)

0 = rRcµr +
1

2
K2µλ2 + crA2. (751)

From (751), assuming supercritical conditions (r=1), we derive the following relationship for the
amplitude A:

A2 = |Ae|2LS − 1

2

µλ2

cr
K2. (752)

Since, for our toy model, both cr and the coefficient µλ2 (see equation (714)) are negative, the
amplitude predicted by the Ginzburg-Landau equation peaks and coincides with that predicted
by the LS equation for K = 0, i.e. for the critical value of the perturbation wavenumber. This
solution is called a Stokes wave. It has an amplitude that decreases from its maximum |Ae|LS at
K = 0, to zero at |K| = KM =

√
−2Rcµr/µλ2 . For |K| > KM the Stokes wave does no longer

exist. For our toy model, one readily find that |KM | =
√

(R−Rc)/2ϵ. The region of the (λ,R)
plane, where periodic solutions of the Ginzburg-Landau equation exist, is plotted in Figure 193.
Here, the dashed line (|K|=KM ) may be considered as the second order approximation of the
marginal stability curve.

The algebraic constraints (750) is essentially a nonlinear dispersion relationship, which predicts
that the frequency Ω, besides depending on the wavenumber as in linear systems, is also affected
by the perturbation amplitude. In our toy model, the coefficient ci is found to be positive, hence
the frequency Ω and the speed of perturbations (ωc + ϵνλK + Ωϵ2)/(λc + ϵK) decrease as the
amplitude increases. Let us finally write the complete solution at leading order. Recalling (718),
(728) and (749) we write:

u1 = AS1exp [i(λc + ϵK)x− i(ωc + ϵνλK +Ωϵ2)t]. (753)

This shows that nonlinearity affects the frequency and the speed of perturbations which decrease as
the amplitude increases. This property is common to the so called anormal dispersive waves.
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Figure 193. Sketch illustrating the region of the (λ,R) plane where nonlinear periodic solutions of the
Ginzburg-Landau equation exists for our toy model, compared with the marginal stability curve of linear theory

One further feature of the Ginzburg-Landau equation is that it allows to ascertain the stable-
unstable character of the periodic solutions derived above. Instability may arise from interactions
between the various components of the wave group and could not be detected in the context of the
LS approach, which considers the nonlinear development of a single harmonic. An application of
the analysis to the nonlinear instability of free fluvial bars was presented by Schielen et al. (1993).
We will not discuss this issue in detail as the reader should at this stage be able to carry on the
linear stability analysis by himself. It suffices here to show the main result of the analysis, which
is depicted in Figure 193. In the region of the (λ,R) plane bounded by the nonlinear marginal
stability curve, two subregions can be defined. In the inner region periodic solutions are stable,
whilst they are unstable in the outer region.

In order to determine the structure of the solution in the latter regions, one may employ
numerical tools. Extensive numerical analysis was carried on by Keefe (1985) and Doelman (1991).
Various types of solution emerged depending on the values of the coefficients of the equation.
Solutions may converge to a stable periodic Stokes wave, or to a so called quasi-periodic pattern
(such that all frequencies of the solution are integer combinations of two fundamental frequencies
which are mutually irrational) or even to chaotic patterns. These results have conceptual relevance,
but practical implications in morphodynamic problems have never been demonstrated.
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This equilibrium solution sets a threshold amplitude for the perturbation. The linear stability of
the equilibrium solution shows that, in this case, perturbations exceeding the threshold amplitude
are able to destabilize the system that is stable to infinitesimal perturbations. On the contrary,
finite amplitude perturbations that do not exceed the threshold are stable. This is illustrated in
Figure 192 which also shows that the amplitude of unstable perturbations tend to infinity at the
finite τlim = ln [|A0|2/(|A0|2 − |Ae|2)]/cr|Ae|2.

Let us conclude this analysis noting that, in our toy model, the bifurcation is supercritical and
the amplitude predicted by the LS equation reads:
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=
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. (748)

Solutions of the Ginzburg-Landau equation

The properties of the solutions of the Ginzburg-Landau equation (736) have been analyzed in
depth by several Authors. Here, we restrict ourselves to few fundamental results that are relevant
to our morphodynamic problems.

Following Schielen et al. (1993) we first seek periodic solutions of (736) and set:

A(ξ, τ) = A exp i(Kξ − Ωτ), (749)

with A, K and Ω real quantities.
Substituting into (736), the real and imaginary parts of the equation lead to the following

algebraic constraints:

Ω = −rRcνr −
1

2
K2νλ2 − ciA2, (750)

0 = rRcµr +
1

2
K2µλ2 + crA2. (751)

From (751), assuming supercritical conditions (r=1), we derive the following relationship for the
amplitude A:

A2 = |Ae|2LS − 1

2

µλ2

cr
K2. (752)

Since, for our toy model, both cr and the coefficient µλ2 (see equation (714)) are negative, the
amplitude predicted by the Ginzburg-Landau equation peaks and coincides with that predicted
by the LS equation for K = 0, i.e. for the critical value of the perturbation wavenumber. This
solution is called a Stokes wave. It has an amplitude that decreases from its maximum |Ae|LS at
K = 0, to zero at |K| = KM =

√
−2Rcµr/µλ2 . For |K| > KM the Stokes wave does no longer

exist. For our toy model, one readily find that |KM | =
√

(R−Rc)/2ϵ. The region of the (λ,R)
plane, where periodic solutions of the Ginzburg-Landau equation exist, is plotted in Figure 193.
Here, the dashed line (|K|=KM ) may be considered as the second order approximation of the
marginal stability curve.

The algebraic constraints (750) is essentially a nonlinear dispersion relationship, which predicts
that the frequency Ω, besides depending on the wavenumber as in linear systems, is also affected
by the perturbation amplitude. In our toy model, the coefficient ci is found to be positive, hence
the frequency Ω and the speed of perturbations (ωc + ϵνλK + Ωϵ2)/(λc + ϵK) decrease as the
amplitude increases. Let us finally write the complete solution at leading order. Recalling (718),
(728) and (749) we write:

u1 = AS1exp [i(λc + ϵK)x− i(ωc + ϵνλK +Ωϵ2)t]. (753)

This shows that nonlinearity affects the frequency and the speed of perturbations which decrease as
the amplitude increases. This property is common to the so called anormal dispersive waves.
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Figure 193. Sketch illustrating the region of the (λ,R) plane where nonlinear periodic solutions of the
Ginzburg-Landau equation exists for our toy model, compared with the marginal stability curve of linear theory

One further feature of the Ginzburg-Landau equation is that it allows to ascertain the stable-
unstable character of the periodic solutions derived above. Instability may arise from interactions
between the various components of the wave group and could not be detected in the context of the
LS approach, which considers the nonlinear development of a single harmonic. An application of
the analysis to the nonlinear instability of free fluvial bars was presented by Schielen et al. (1993).
We will not discuss this issue in detail as the reader should at this stage be able to carry on the
linear stability analysis by himself. It suffices here to show the main result of the analysis, which
is depicted in Figure 193. In the region of the (λ,R) plane bounded by the nonlinear marginal
stability curve, two subregions can be defined. In the inner region periodic solutions are stable,
whilst they are unstable in the outer region.

In order to determine the structure of the solution in the latter regions, one may employ
numerical tools. Extensive numerical analysis was carried on by Keefe (1985) and Doelman (1991).
Various types of solution emerged depending on the values of the coefficients of the equation.
Solutions may converge to a stable periodic Stokes wave, or to a so called quasi-periodic pattern
(such that all frequencies of the solution are integer combinations of two fundamental frequencies
which are mutually irrational) or even to chaotic patterns. These results have conceptual relevance,
but practical implications in morphodynamic problems have never been demonstrated.
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11. Notations

- f
f any scalar, vectorial or tensorial quantity
f̃ dimensionless form of f
⟨f⟩ large scale turbulent flow (macroscopic) average of f
f ′ fluctuations of f
f+

f̄ overbar is used for the instantaneus and local value of the volume (spatial) average of f
(microscopic average) and to denote the conjugate of a complex number
∇h two dimensional gradient operator (∂/∂x, ∂/∂y)
|f | modulus of the vector f

- a
a reference level for concentration
ap amplitude of bank undulations
areg amplitude of an equivalent regular sequence of bumps surrogating the actual distribution
of bank undulations
A cross sectional area in 5
Ad dune height
A dimensionless function for the particle velocity

- b
b1 dimensional unit width
bd dune width
B half width of the free surface
Bb half width of the bottom
BR/L lateral coordinates of the intersection beetween the free surface and the left/right bank
B0 scale for the channel width
BbR/L lateral coordinates of the intersection beetween the channel bottom and the left/right
bank

- c
c local, instantaneous volumetric concentration of the solid phase
c also dimensionless wavespeed in Chapter I.1.
cD drag coefficient
cDb drag coefficient associated to FDb

cL average lift coefficient
ca added mass coefficient
ca also mean concentration at some reference level a
Ca average areal concentration of bedload particles
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cM volumetric concentration of the granular medium
C depth averaged value of the Reynolds averaged local sediment concentration
Cu depth averaged value of the sediment concentration associated with the uniform flow
Cf friction coefficient
Cfu friction coefficient associated with the uniform flow
Cfw friction coefficient associated with the wind action on the free surface
C̄f cross sectionally averaged friction coefficient
C̄fw free surface averaged wind friction coefficient
Cfg friction coefficient associated with the grain roughness
C cross sectionally averaged concentration

- d
d sediment particle diameter
dg geometric mean grain size of a sediment mixture
ds relative roughness d/Du

d0 average grain size in the upstream reach
d50 average grain size
d90 sediment size such that 90% percent of the sample is finer
D(x, y, t) local instantaneous flow depth
D∗ Bonnefille dimensionless particle diameter
D0 scale for the flow depth
Dm depth in the center of the channel
Du uniform flow depth
Dug uniform flow depth that would occur in absence of bedforms
Db flow depth at the bank
D cross sectionally averaged flow depth
De equilibrium flow depth
De0 equilibrium flow depth in the upstream reach
DP particle diffusivity
D molecular diffusivity
Dt thermal diffusivity for heat transport
Dj j-th-component of the turbulent diffusivity vector

- e
e dimensionless parameter measuring the degree of particle exposure
es absolute bed roughness
ebanks absolute roughness at the banks
E entrainment function in Chapters 3 and 4
E (≡ LT−1) absolute bedrock erosion rate in Chapter I.1.

- f
f0(d) grain size density distribution
fa probability density function of the active layer also the areal fraction of bedrock surface
covered with alluvium in Chapter I.1. fs probability density function of the substrate

fG dimensionless function accounting for bed slope in the bedload sediment transport flux
FD drag force exerted on one particle
FDd intensity of the average drag force over one bedform wavelength
FDb form drag acting on an individual element of bank ondulation
FDg grain roughness component of the drag force
FDf form component of the drag force
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FG submerged gravity
FL lift force
Fµ static friction force
F hydrodynamic force on sediment particle
FSt Stokes drag
F 0 force that the ambient flow would exert on a fluid sphere instantaneously coincident with
the solid sphere
F 1 perturbation force on sediment particle associated with the modification of the undis-
turbed ambient flow due to the presence of the particle.
F0 shape function for the logaritmic vertical velocity profile
Fr Froude number
Fr0 typical value of the Froude number
Fru uniform flow Froude number

- g
g gravity vector
G (2×2) tensor accounting for bed slope in the bedload flux in weakly sloping beds

- h
hb thickness of the layer containing sediment particles in motion
hp metric coefficient of the lateral curvilinear coordinate
H(x, y, t) local, instantaneous free surface elevation
H0 free surface elevation at the initial cross section
Hb bar height
Hbe equilibrium bar height
H̄(x) laterally averaged free surface elevation
H total head

- i
I unit tensor
I parameter for the volumetric discharge of suspended sediments per unit width
Ii(i = 1, 2) Einstein integrals for the volumetric discharge of suspended sediments per unit
width
i interactive specific force for the fluid phase

- j
J energy slope

- k
k von Karman constant
kx longitudinal mixing coefficient
ky transversal mixing coefficient
K turbulent kinetic energy per unit mass
ks Strickler parameter

- l
l thickness of the sediment layer
L macroscale scale measuring the distance over which significant variations of the average
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properties of the mixture are experienced also wavelegth in Chapter I.1.
L0 scale of spatial variations of the ambient flow
La thickness of the active layer
Lb bar wavelength
LB channel convergence length
Lbe equilibrium bar wavelength
Ld dune wavelength
Lp wavelength of bank undulations
Lr reach length
Ls particle saltation length

ℓ characteristics length scale of the flow (e.g. flow depth) also scale for the average properties
of the mixture
ℓk spatial Kolmogorov microscale
ℓi scale of eddies in the inertial subrange

- m
m empirical exponent in the general relationship for transport capacity

- n
n empirical constant in the general relationship for transport capacity
N shape function for eddy viscosity
n̂ unit vector normal to the element, oriented in the outward direction
n̂f unit vector locally normal to the surface f
NP number of grains which crosses the unit width of the stream in the interval ∆t

- p
p(x, t) pressure
p sediment porosity also curvilinear coordinate defined along the wetted perimeter in Section
2
p(vj) probability density function of the variable vj
P Reynolds averaged pressure
Pw the wetted perimeter

- q
qs local total sediment flux per unit width
qb,s
s local (b bedload; s suspended) sediment flux per unit width

Q local fluid discharge per unit width
Q (modulus of the) local fluid discharge per unit width
Q flow discharge
Q0 value of the fluid discharge per unit width in the upstream reach
Qb

0 sediment supply per unit width of the reference uniform state
Qs local depth integrated total sediment flux per unit width
Qb,s

s local depth integrated (b bedload; s suspended) sediment flux per unit width
Qs modulus of the depth integrated total sediment flux per unit width
Qs0 upstream reach value of the depth integrated sediment flux per unit width
Qb,s

s modulus of the depth integrated (b bedload; s suspended) sediment flux per unit width
Q̃b

s dimensionless modulus of the depth integrated bedload sediment flux per unit width (it
coincides with Φb in plane bed conditions)
Qs[L

3T−1] total longitudinal sediment flux transported in the cross section Qi
s[L

3T−1] (i=b
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bedload; i=s suspended) sediment flux transported in the cross section

- r
Rℓ Reynolds number of the flow
Re relative Reynolds number of particle motion
Rk shear Reynolds number
RΩ rotational Reynolds number
Rp particle Reynolds number
Rτ particle Reynolds number based on the friction velocity
Rh hydraulic radius

- s
s is the relative particle density
s also longitudinal curvilinear coordinate in Section 2
s also microscale of the order of the average interparticle distance
S channel slope
Se equilibrium slope
Se0 equilibrium slope in the upstream reach
St Stokes number
Sf fluid portion of the boundary of V
Si boundary of the portions of solid particles contained in V
Ss solid portion of the boundary of V

- t
t time
t(x, t; n̂) instantaneous stress vector acting on a surface element of fluid located at x and
characterised by unit normal n̂
T (x, t) fluid stress tensor
T tot
k total stress tensor of the k phase (k = s, f)

T t
k Reynolds stress tensor of the k phase (k = s, f)

T t Reynolds stress tensor
T tM macroscopic Reynolds stress tensor
T transport stage parameter in Chapter I.1.
T also period of the bar wave in Chapter I.1.
T depth averaged Reynolds stress tensor
T (disp) dispersive stress tensor
T cross sectionally averaged value of the Reynolds stress Txx

- u
uτ friction velocity
uτu friction velocity of the uniform flow
uτ0 friction velocity scale
u longitudinal velocity scale
uref reference velocity for the study of bank ondulations
u = (u, v, w) Reynolds averaged fluid velocity
u′ = (u′

x, u
′
y, u

′
z) velocity fluctuations

up slip velocity
Uu depth averaged uniform flow velocity
U depth averaged longitudinal velocity
U0 scale of fluid velocity
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Lp wavelength of bank undulations
Lr reach length
Ls particle saltation length

ℓ characteristics length scale of the flow (e.g. flow depth) also scale for the average properties
of the mixture
ℓk spatial Kolmogorov microscale
ℓi scale of eddies in the inertial subrange

- m
m empirical exponent in the general relationship for transport capacity

- n
n empirical constant in the general relationship for transport capacity
N shape function for eddy viscosity
n̂ unit vector normal to the element, oriented in the outward direction
n̂f unit vector locally normal to the surface f
NP number of grains which crosses the unit width of the stream in the interval ∆t

- p
p(x, t) pressure
p sediment porosity also curvilinear coordinate defined along the wetted perimeter in Section
2
p(vj) probability density function of the variable vj
P Reynolds averaged pressure
Pw the wetted perimeter

- q
qs local total sediment flux per unit width
qb,s
s local (b bedload; s suspended) sediment flux per unit width

Q local fluid discharge per unit width
Q (modulus of the) local fluid discharge per unit width
Q flow discharge
Q0 value of the fluid discharge per unit width in the upstream reach
Qb

0 sediment supply per unit width of the reference uniform state
Qs local depth integrated total sediment flux per unit width
Qb,s

s local depth integrated (b bedload; s suspended) sediment flux per unit width
Qs modulus of the depth integrated total sediment flux per unit width
Qs0 upstream reach value of the depth integrated sediment flux per unit width
Qb,s

s modulus of the depth integrated (b bedload; s suspended) sediment flux per unit width
Q̃b

s dimensionless modulus of the depth integrated bedload sediment flux per unit width (it
coincides with Φb in plane bed conditions)
Qs[L

3T−1] total longitudinal sediment flux transported in the cross section Qi
s[L

3T−1] (i=b
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bedload; i=s suspended) sediment flux transported in the cross section

- r
Rℓ Reynolds number of the flow
Re relative Reynolds number of particle motion
Rk shear Reynolds number
RΩ rotational Reynolds number
Rp particle Reynolds number
Rτ particle Reynolds number based on the friction velocity
Rh hydraulic radius

- s
s is the relative particle density
s also longitudinal curvilinear coordinate in Section 2
s also microscale of the order of the average interparticle distance
S channel slope
Se equilibrium slope
Se0 equilibrium slope in the upstream reach
St Stokes number
Sf fluid portion of the boundary of V
Si boundary of the portions of solid particles contained in V
Ss solid portion of the boundary of V

- t
t time
t(x, t; n̂) instantaneous stress vector acting on a surface element of fluid located at x and
characterised by unit normal n̂
T (x, t) fluid stress tensor
T tot
k total stress tensor of the k phase (k = s, f)

T t
k Reynolds stress tensor of the k phase (k = s, f)

T t Reynolds stress tensor
T tM macroscopic Reynolds stress tensor
T transport stage parameter in Chapter I.1.
T also period of the bar wave in Chapter I.1.
T depth averaged Reynolds stress tensor
T (disp) dispersive stress tensor
T cross sectionally averaged value of the Reynolds stress Txx

- u
uτ friction velocity
uτu friction velocity of the uniform flow
uτ0 friction velocity scale
u longitudinal velocity scale
uref reference velocity for the study of bank ondulations
u = (u, v, w) Reynolds averaged fluid velocity
u′ = (u′

x, u
′
y, u

′
z) velocity fluctuations

up slip velocity
Uu depth averaged uniform flow velocity
U depth averaged longitudinal velocity
U0 scale of fluid velocity
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Uw longitudinal component of the wind velocity
U cross sectionally averaged flow speed
U1 cross sectionally averaged flow speed at the dune top
U2 cross-sectional averaged flow speed at the dune toe
Ut (≡ LT−1) rate of tectonic uplift

- v
v(x, t) local instantaneous fluid velocity
v0 initial conditions consisting of a divergence free flow
vs(x, t) instantaneous value of the velocity of the solid phase
vP (t) velocity of sediment particle
vk Kolmogorov velocity microscale
V lateral component of the depth averaged velocity
V0 scale of the lateral component of velocity
Vb volume of sediment transported in the bedload layer
Vp average speed of saltating particles
VP scale of the particle velocity
VH velocity of the free surface
Vw lateral component of the wind velocity
V volume of linear scale ℓ contained in the region instantaneusly occupied by the sediment
mixture in a neighborhood of x
Vf portion of V occupied by the fluid phase
Vs portion of V occupied by the solid phase
VP volume of sediment particle
V flow domain

- w
wP velocity of the particle relative to the ambient component of the fluid velocity
ws asymptotic steady value of the sediment settling speed
wf wake correction
Wf wake function
W0 scale of the vertical velocity component

- x
x0(t) location of the centre of the sediment particle at time t
x point vector
x also position
x3 axis aligned with the vertical direction and pointing upwards
xj , j = 1, 2, 3 Cartesian coordinate system

- z
z axis orthogonal to the channel axis
z+ z variable scaled by the viscous length scale
ẑ unit vector
ζ normalized vertical coordinate
Z Rouse parameter
Z0 reference Rouse parameter
z0 elevation where no-slip is imposed at the wall
zP conventional distance from the bed to estimate the average particle drag

368

Notations

- α

αx stream-wise inclination angle of the bottom
αy transverse inclination angle of the bottom

- β

β aspect ratio of the channel cross-section defined as half width over depth
βcor correction coefficient in the 1D momentum equation

- γ

Γη solid-liquid interface
ΓH free surface
Γin inflow part of the flow boundary
Γout outflow part of the flow boundary

- δ

δ dimensionless parameter of the advection-diffusion equation for sediment concentration
also a parameter measuring the degree of channel narrowing/widening in Chapter I.1.
δν viscous length scale
δi(i = 1, 4) dimensionless parameters of the advection-diffusion equation for sediment con-
centration
δij Kronecker index
δijk Ricci tensor
δP is the phase lag of the property P relative to bottom elevation
∆ parameter accounting for the lift force effects in the critical Shields stress

- ϵ

ϵ rate of energy dissipation per unit mass
ϵM ratio between the morphological and hydrodynamic time scales

- ζ

ζ dimensionless version of the z coordinate
ζ also coordinate normal to the boundary in Section 2
ζa dimensionless reference level for the mean concentration
ζ0 dimensionless elevation where no-slip is imposed at the wall

- η

η elevation of the bed interface
ηa elevation of the channel axis
η̄ cross sectionally averaged bottom elevation

- θ

θ inclination angle of the bed

- λ

λ longitudinal wavenumber of bars
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- µ

µ dynamic viscosity
µs static friction coefficient
µd dynamic friction coefficient

- ν

ν viscosity
νT eddy viscosity

- ϕ

ϕ angle of repose of the granular medium
ϕ also phase lag of free surface elevation relative to flow depth in Chapter I.1.
ϕ also geologic scale for the grain size in Chapter 7
ϕg average grain size
ϕ0 function describing the Rouse concentration distribution
Φ0d dimensionless bedload transport capacity of homogeneous sediments in a uniform stream
Φb dimensionless depth integrated bedload sediment flux per unit width under plane bed
conditions
Φs dimensionless depth integrated suspended sediment flux per unit width

- χ

χ flow conductance
χ also angle that the bottom stress forms with the longitudinal axis
χu flow conductance of uniform flows

- ψ

ψ angle that the velocity of the bedload particles forms with the bottom shear stress vector
τ

- ϱ

ϱ water density
ϱs density of sediment particles
ϱa air density

- σ

σ standard deviation of the grain size distribution
σg geometric standard deviation of the grain size distribution
σs standard deviation of the grain size distribution of the surface layer

- τ

τ flow shear stress
τk temporal Kolmogorov microscale
τu bottom value of the uniform shear stress
τ0 mean shear stress at the bed-fluid interface
τ̄0 longitudinal bottom shear stress τηx averaged along the wetted perimeter
τ̄0g longitudinal bottom shear stress associated with the grain roughness component of drag
averaged over a dune wavelength
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τ̄0f longitudinal bottom shear stress associated with the form component of drag averaged
over a dune wavelength
τc threshold shear stress for incipient sediment motion
τr residual bottom stress
τs threshold shear stress for incipient transport in suspension
τsd threshold shear stress for transition to sheet-debris mode
τT total botttom shear stress
τsf average component of τT associated with skin friction
τD average component of τT associated with form drag generated by the boundary irregolar-
ities
τm average bottom stress in an equivalent wide channel with flow depth equal to the flow
depth at the center of the channel
τ̂1, τ̂2 unit vectors in the plane locally tangent to the free surface
τ̂ unit vector tangential to the bottom
τH, air stress acting on the free surface
τη, τ stress on the bed interface

τ̄w shear stress at the free surface τHx averaged across the water surface

τ∗ local value of the dimensionless Shields stress
τ ′∗ Shields stress associated with the grain roughness
τ̄∗ laterally averaged value of the dimensionless Shields stress
τ∗c critical value of the Shields stress for incipient motion
τ∗c0 critical value of the Shields stress for incipient motion under conditions of nearly vanish-
ing bed slope
τ∗c1 dynamic critical Shields stress
τ∗e equilibrium Shields stress
τ∗e0 equilibrium Shields stress in the upstream reach
τ∗g Shields stress associated with the geometric mean size of the sediments in the surface
layer
τ∗r residual Shields stress
τ∗u dimensionless Shields stress of the uniform flow
τ̄∗f form component of the Shields stress

- ω

ω inverse of the characteristic temporal scale of the flow in Chapter I.1.
ω also growth rate in Chapter I.1.
ω vorticity
Ω mean vorticity, averaged over turbulence
ΩP angular velocity of sediment particles
Ω cross sectional area
Ω1 cross-sectional area at the dune top
Ω2 cross-sectional area at the dune toe
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