
Università degli Studi di Padova

Department of Information Engineering

Computer Science Engineering

Methods for Learning Ensembles of Deep
Neural Networks

Author:
Gianluca Maguolo

Supervisor:
Prof. Loris Nanni

September 30, 2021

2

Contents

1 Introduction 7

2 Related Work 11

2.1 Ensembles of Different Models 11

2.2 Ensembles Using Different Training Sets 14

2.3 Ensembles Using Different Training Algorithms 15

2.4 Decision Rules in Neural Ensembles 16

2.5 Diversity-Based Ensembles 17

2.6 Fast Ensembles . 19

3 Deep Ensembles Applications 23

3.1 CIFAR classification . 23

3.2 Face recognition . 24

3.3 Skin lesion recognition . 25

3.4 Computer-aided Diagnosis from X-Ray and MRI 26

3.5 Optical Charachter Recognition 28

3.6 Audio Classification . 28

4 Data Augmentation for Building Ensembles 31

4.1 Ensemble of Saliency Methods for Image Classification 33

4.1.1 Saliency Methods . 34

4.1.2 Results . 36

4.2 Ensembles of Different Data Augmentations 37

4.2.1 Audio Image Representations 39

4.2.2 Standard Signal Data Augmentation (SGN) 40

4.2.3 Short Signal Augmentation (SSA) 41

4.2.4 Super Signal Augmentation (SSiA) 41

4.2.5 Time Scale Modification (TSM) 42

4.2.6 Short Spectrogram Augmentation (SSpA) 42

4.2.7 Super Spectro Augmentation (SuSA) 43

4.2.8 Results . 44

4.3 Discussion . 48

3

4 CONTENTS

5 Ensembles of Different Activation Functions 51
5.1 Activation Functions for Neural Networks 51

5.1.1 Mexican and Gaussian Linear Units 54
5.2 Changing the Activation Functions 55
5.3 Results . 56
5.4 Discussion . 57

6 Ensembles of Different Trainings 61
6.1 Optimization Algorithms . 62

6.1.1 Adam . 62
6.1.2 AMSGrad . 63
6.1.3 diffGrad . 63

6.2 Methods . 64
6.2.1 DGrad . 64
6.2.2 Cos#1 and Cos#2 . 64

6.3 Experiments and Discussion 66

7 Ensembles of Siamese Networks 69
7.1 The Dissimilarity Space . 69
7.2 Siamese Architectures . 70
7.3 Clustering Methods . 72

7.3.1 K-Means . 74
7.3.2 K-Medoids . 74
7.3.3 Spectral Clustering . 75
7.3.4 Hierarchical Clustering 75

7.4 Results . 76
7.5 Discussion . 78

8 Generalization of Covid-19 Classifiers 79
8.1 Covid-19 Classification . 79
8.2 Related Works . 80
8.3 Datasets . 81
8.4 Methods . 82
8.5 Results and Discussion . 83

9 Discussion 87
References . 89

10 Bibliography 91

Abstract

In this thesis, I study methods to create ensembles of deep neural networks.
Ensembles of deep neural networks are sets of deep networks whose outputs
are aggregated together to obtain a single result. The idea behind ensembles
is that the overall prediction of multiple networks will be better than the
ones of the single networks.

I introduce many methods used in the literature to create ensembles
and I divide them into different categories depending on how the classifiers
are forced to learn different features of the input data. Our experiments
show that using deep networks that are different from each other in their
architectures, in their training or in their image preprocessing allows to reach
better performances than those that are reached by baseline ensembles of
well-performing but similar networks.

5

6 CONTENTS

Chapter 1

Introduction

Convolutional Neural Networks (CNNs) are one of the most effective tools
in modern computer vision [1]. Most state of the art performances on tasks
like image classification [2], image segmentation [3] and object recognition
[4] are currently achieved using CNNs. Experiments show that the perfor-
mance of CNNs can be improved by training a large number of models and
averaging their results. Such a set of neural networks is called an ensem-
ble [5, 6, 7, 8]. The idea behind averaging the results of multiple classifiers
is that multiple opinions are better than one. Besides, in this way every
network can specialize on a specific part of the data. Finally, a method to
aggregate the decision of the different networks is required.

Ensembles are very old tools in machine learning and date back to much
earlier than the rise of modern deep learning. The use of ensembles for
supervised learning has been explored by Tukey [5], who created an en-
semble of two linear regression models. He proposed to fit the first linear
regression model to the original data and the second one on the residuals.
Dasarathy and Sheela [6] used component classifiers trained from different
categories to create a classification tool, that managed to improve the ac-
curacy of identification systems. In 1990, Hansen and Salamon [7] proved
that ensembles of neural networks could decrease the generalization error of
neural networks. In the same year, Schapire [8] described how to outperform
one strong learner using multiple weak learners in a probably approximately
correct (PAC) sense. This work was the seed for the forthcoming AdaBoost
(adaptive boosting) algorithm. In the next years, the difference between
the performance of single models and ensembles was further investigated
and there was growing evidence that ensembles outperformed single models
[9, 10, 11, 12, 13, 14, 15]. Besides, the diversity of the predictions of the
models in the ensemble seemed to be a key for their effectiveness [11, 16].
However, it has been shown that using multiple strong models yields a bet-
ter results than creating weaker models that are forced to be diverse in their

7

8 CHAPTER 1. INTRODUCTION

predictions [17]. Hence, diversity in the ensembles should not be the only
requirement. The performance of the different models in an ensemble can
be combined in multiple ways that can be divided into two main categories:
learned and not learned. In the former case, the rule for combining the
results is trained using training or validation data. For example, the rule
might be a weighted average of the single softmax outputs of the classifiers.
In the latter case, the choices might be the average of the softmax output or
the class that represent the mode of the model predictions. The drawback
of ensemble methods is the fact that they require more computation than a
single model and they have more memory requirements.

An early application of CNN ensembles consisted in the prediction of Go
moves made by professional players [18]. That ensemble of CNN managed
to reach a performance that, at that time, was the state of the art, and
managed to outperform every single model. The widespread application of
ensemble techniques to CNNs is more recent and follows the popularity of
deep learning for computer vision problems. In the ImageNet Large-Scale
Visual Recognition Challenge 2012, the winner was an ensemble contain-
ing multiple networks with the same architecture, that is called Alexnet.
In the ImageNet Large-Scale Visual Recognition Challenge 2014 the win-
ner (GoogLeNet) and the runner-up (VGG) methods consisted of ensembles
of multiple architectures to maximize their performance. These ensembles
were made by simple retraining the same architecture multiple times with
different initializations and using the stochasticity of the training process.
In the following years, different methods for CNN ensemble learning were
proposed. Classical methods like model averaging, bagging, Adaboost and
stacking were applied to convolutional networks to try to get more diverse
models in the ensemble.

In general, there are many ways to create a diverse ensemble. The eas-
iest one consists in using different models and architectures. An other one
is to train the same model on different training sets. This can be done by
randomly splitting the training data into subsets, or by using different data
augmentation techniques in every training. For example, Nanni et al. [19]
trained an ensemble of networks using different a preprocessing for every
network. An other method relies on using different training processes for
every network, that leads to different minimums of the optimization land-
scape even when the models and the datasets are the same. Huang et al.
[20] created an ensemble of networks by training the same network for many
epochs with an oscillating learning rate and saved the network at different
points of the training process. In many computer vision tasks, the datasets
are not very large, hence old handcrafted features might be competitive
with CNNs. It has been shown in [19] that an ensemble of CNNs and SVMs
trained on handcrafted features outperform the ensemble of CNNs. This is
probably due to the fact that handcrafted features are deterministic algo-

9

rithms that search for relevant features of an input and are less prone to
overfitting. However, they have less representation power than CNNs and
do not use transfer learning, hence the diversity in such an ensemble is very
large. In this thesis, I present a large number of effective methods to create
and prune ensembles of CNNs. In Chapter 2 I present some state of the
art methods proposed in the literature. I discuss the methods to vary the
models, the training process, the training sets and the fusion rules that are
currently used in the literature. In Chapter 3 I summarize the ensemble
methods that are more common in the literature, divided by field of appli-
cation. In Chapter 4 I focus on methods to create ensembles using different
data augmentation and preprocessing techniques. In Chapter 5 I show how
to create ensemble by varying the activation functions of a given network
architecture. In Chapter 6, I show how training a model with different
training algorithms can produce diverse results that can be used to form an
ensemble. In Chapter 7 I introduce Siamese Neural Networks and I prove
that they can be used to create dissimilarity spaces to train an ensemble of
classifiers on the extracted data. In Chapter 8, I present a work of general
interest on the ability of neural networks to generalize well among datasets
investigating the existing literature in Covid-19 detection from X-Ray im-
ages. In Chapter 9 I draw some conclusions based on the results of the
previous chapters.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

An ensemble of CNNs can be created in several ways. The heuristics ap-
proach to build an ensemble, which is also supported by the experiments that
we shall do, is that the key to create a well performing ensemble consists
in using a large number of networks, whose performance is high and whose
predictions are as more independent as possible. I classify the strategies
to do that in the following way: training networks with different architec-
tures, using different training sets to train the same network architecture,
using different training algorithms and using different rules to combine the
networks. I shall now describe the different approaches.

It is worth mentioning that the literature on neural network ensembles
often lacks enough experimentation in terms of datasets and fair comparisons
from a scientific point of view. Most of the papers that I shall mention in this
chapter and in the following ones only test basic neural networks on a dataset
which is not highly competitive and show that the ensemble outperforms
the stand-alone model, which is not particularly surprising given the long
history of ensembles outperforming stand-alone models. Those papers are
introduced as a reference to give a snapshot of the history in this topic,
since many of the techniques that will be introduced in this thesis fall into
categories that have already been considered in the literature, although they
were not intensively tested. I shall briefly mention those works and spend
more words on the minority that contain more extensive experiments or that
established state-of-the-art performances on competitive datasets.

2.1 Ensembles of Different Models

The most intuitive way to create a diverse ensemble is to train different
models on the whole dataset. However, it is hard to find different models
whose performance is similar and using a large number of models might
lead to a performance which is very close to the one of the best model.
On the other hand, the predictions of high performing models might be

11

12 CHAPTER 2. RELATED WORK

strongly correlated and their ensemble might be as good as one single model.
Hence, the challenge consists in finding semi-independent models with high
accuracy.

Figure 2.1: Ensemble of different models

The most frequent method consists in using different CNN architectures.

Paul et al. [21] used an ensemble of CNNs to established a new state-of-
the-art on the National Lung Screening Trial (NLST), pushing it from 0.87
to 0.96 AUC. Their aim was to predict nodule malignancy from computed
tomography. Their approach consisted in a small ensemble of five classifiers,
three of which are simple CNN architectures trained from scratch and the
remaining two are a pretrained VGG16 and a SVM trained on 219 features
extracted from the input image specifically designed to create a radiomics
model. The result of the best custom CNN of 0.87 was already above the
state-of-the-art AUC, while the transfer learning and the radiomics models
did not reach a 0.8 AUC. However, the ensemble of the five models could
outperform the ensemble of the custom CNNs with a margin of 0.02 AUC,
showing that adding diverse features, some of which are handcrafted, im-
proves the results of the ensemble even when they perform much worse than
the other classifiers in the ensemble.

However, in most papers introduced here the authors only fine-tune or
train from scratch well-known architectures, average the results and show
that this result outperforms the stand-alone networks. For example, in [22]
Kassani et al. use an ensemble of VGG19 [23], MobileNet [24] and DenseNet
[2] to classify histopathological biopsy and the ensemble of the three net-
works consistently outperform every stand-alone network on four different
datasets. Qummar et al. [25] proposed an ensemble containing ResNet50
[26], Inception v3 [27], Xception [28], DenseNet121 and DenseNet169 [2] to
detect diabetic retinopathy. They do not report the results of the single net-

2.1. ENSEMBLES OF DIFFERENT MODELS 13

Ref Field Description Baseline Improvement

[21]
Lung Nodule De-
tection

Ensemble of custom CNNs, pretrained
VGG and SVM

state-of-the-art 0.87 to 0.96 AUC

[22]
4 biopsy classifi-
cation datasets

Ensemble of VGG19, MobileNet and
DenseNet

Best of stand-
alone

0.875 to 0.927 avg
accuracy

[25]
Diabetic
retinopathy

Ensemble of ResNet50, Inveption v3,
Xception, Densenet121 and DenseNet169

state-of-the-art
41.6 to 53.7 F1-
score

[29]
Facial expression
recognition

Ensemble of custom networks Best stand-alone
0.624 to 0.65 ac-
curacy

[31]
Medical image re-
trieval

Ensemble of SVMs trained on features ex-
tracted from Alexnet and Googlenet

Best stand-alone
0.808 to 0.825 ac-
curacy

[34] Food recognition
Concatenation of Alexnet, GoogleNet and
ResNet50 followed by a dense layer

Best stand-alone
0.663 to 0.728 ac-
curacy

[35] Image Retrieval 20 Alexnet and 20 NiN
Ensemble of sin-
gle architectures

0.523 to 0.5236
mean average pre-
cision

[37]
Biomedical Image
Classification

Ensemble of different architectures and
handcrafted features

state-of-the-art
0.92 to 0.952 F1-
score

[39]
Lung Nodule De-
tection

Eight CNNs of Different Networks Best stand-alone
0.817 to 0.840 ac-
curacy

works. Liu et al. [29] created an ensemble of three different CNNs that they
proposed in their paper and averaged their results. Their ensemble reached
an accuracy better than the best stand-alone model on the FER2013 dataset
[30]. Kumar et al. [31] proposed an ensemble of AlexNet and GoogleNet
[32] pretrained on ImageNet and finetuned on the ImageCLEF 2016 collec-
tion dataset [33]. Then they used the features extracted by the last fully
connected layers of those networks to train a SVM. Their method improves
the level of the CNN baselines and is competitive with the state-of-the-art
methods of that time. Pandey et al. [34] proposed FoodNet, an ensemble
of AlexNet, GoogleNet and ResNet50, finetuned to recognize food images.
After that, their output features are concatenated and passed to a fully con-
nected layer and a softmax classifier. Huang et al. [35] created an ensemble
of 20 AlexNet and 20 NIN [36] for image retrieval. Their output is then
summed to create a unique feature, using a weight of 0.5 for AlexNet and 1
for NIN, since it has a better performance. The proposed method outper-
forms both the ensembles of 20 AlexNets and 20 NINs. Nanni et al. [37]
used an ensemble of AlexNet, GoogleNet, VGG16, VGG19, ResNet50, In-
ception v3 and Inception-Resnet-v2 [38]. Besides, they extracted handcrated
features and trained SVMs on those features and on the ones extracted by
the last convolutional layer of the networks. They managed to reach perfor-
mances that were the state-of-the-art on several bioimage datasets when the
paper was published. Zhang et al. [39] used an ensemble of eigth CNNs with
different architectures to classify benign and malignant pulmonary nodules
using CT images. They showed that the correlation among deep learning
classifiers is much higher than the one among classical classifiers. Besides,
they showed that their ensemble performed better than every single network.

14 CHAPTER 2. RELATED WORK

2.2 Ensembles Using Different Training Sets

Using different training sets to train a classifier is an effective way to learn
semi-independent classifiers. This can be done in several ways. A classical
way to do this is bagging [40, 41, 42]. Bagging consists in generating m
training sets of size n out of a training set of size n by randomly choosing
the samples with uniform probability and with replacement. Then, the same
model is trained on every training set. Kim et al. [43] proposed an approach
based on bagging to train three different CNNs for vehicle type classification
and Dong et al. [44] used bagging and CNNs for short-term load forecasting
in smart grid, obtaining an improvement from 33.47 to 28.51 in mean abso-
lute percentage error (MAPE). Guo et al. [45] used eight different datasets
to train eight different networks for object detection. They obtained the
datasets by combining existing datasets in different ways. With this simple
approach they managaed to largely outperform the single models and to be
close to the state-of-the-art on a very competitive dataset like COCO 2012.
Savelli et al. [46] proposed an ensemble of CNNs for micro-calcification de-
tection on full-field digital mammograms and microaneurysm detection on
ocular fundus images. They trained five CNNs on image patches of differ-
ent size, so that every model learns to recognize a different context. They
showed that this approach improved the single model that was only trained
on the full images.

Figure 2.2: Ensemble of different preprocessings

In order to train the same network on different training sets, the same
model can be trained on the whole training set, but using different data
augmentation techniques in every dataset. Chen et al. [47] created an
ensemble to classify hyperspectral images. Their idea consisted in training
multiple models trained on different image bands. They randomly sampled

2.3. ENSEMBLES USING DIFFERENT TRAINING ALGORITHMS 15

Ref Field Description Baseline Improvement

[43]
Vehicle type clas-
sification

Ensemble of CNNs using bagging Large CNN
0.9760 to 0.9784
accuracy

[44]
Smart grid fore-
cast

Ensemble of CNNs using bagging
Best of stand-
alone

33.47 to 28.51 avg
MAPE

[45]
COCO 2012 ob-
ject detection

Ensemble of eight networks trained on dif-
ferent combinations of different training
datasets

state-of-the-art
70.7 to 70.1 mean
average precision

[46]
Microcalcification
detection

Ensemble of patches of various sizes
Stand-alone on
full image

0.78 to 0.825 aver-
gage accuracy

[47]
Hyperspectral im-
age classification

Ensemble of CNNs on subset of channels
Best stand-alone
trained on all
channels

0.919 to 0.935 av-
erage accuracy

[48]
Food Facial ex-
pression recogni-
tion

Ensemble of different image patches VGG-Face
0.736 to 0.767 av-
erage accuracy

3 of the 27 bands of a hyperspectral image dataset multiple times, and each
time they trained a deep network on those three bands. Hence, they created
an ensemble of images with different bands. They showed that this ensemble
consistently outperformed a single deep CNN on a large number of datasets,
which gives statistical value to their findings. However, they did not test
their ensemble against a baseline ensemble model, so the result of their study
is still not relevant.

The same holds for other papers on this topic, most of which do not
even have the merit to have extensively tested their method on multiple
datasets. Fan et al. [48] trained an ensemble of CNNs models for facial
expression recognition using different regions of the face for training every
network. Hence, every network learns different features of the dataset. In
order to make the test consistent with the training, the same bands are used
as inputs in the relative networks at inference time. In general, this kind of
approach can be described as creating different versions of the dataset using
different preprocessings on the training and test sets (in the case of Chen
et al. [47], this preprocessing is just a projection that deletes some of the
channels).

2.3 Ensembles Using Different Training Algorithms

The training algorithms used for convolutional neural networks have stochas-
tic trajectories and work on stochastic batches of data. Hence, the same net-
work trained multiple times might differ at the end of the training process.
However, in order to make the final models more different from each other,
they can be trained using different training algorithms. For example, Gan et
al. [49] created an ensemble for facial expression recognition using soft-label
perturbation, propagating different losses for different samples. Antiov et
al. [50] used different network initializations to train different networks for
gender predictions from face images.

16 CHAPTER 2. RELATED WORK

Figure 2.3: Ensemble of different training algorithms

2.4 Decision Rules in Neural Ensembles

An ensemble is a collection of neural networks whose output is combined to
get a single response. The way to combine the outputs of the networks is a
major decision in ensemble design. A simple rule is majority voting. Ma-
jority voting consists in choosing the output which is chosen by the relative
majority of the networks in the ensemble [51, 52, 53, 54]. A different way
to fuse the outputs is to average the softmax output of the networks. This
method is very popular and is the most common choice in the literature
[55, 11, 12].

More complicated rules have been proposed. Lumini et al. [56] compute
a learnt weighted average of the sotmax output. A special case of decision
rule is Adaboost. Adaboost [57] is a decision rule that consists in training a
sequence of classifiers, each of which focused on the samples misclassified by
the previous ones. In particular, let D = {di} be a set of weights associated
to the N samples of the training set. Every di =

1
N at the beginning. Then,

every model is trained using D as weights of the loss function. These weights
are always updated due to the following formula:

dm+1
i = dmi exp

(︃
−α

K − 1

K
log (pmi)

)︃
, (2.1)

whereK is the number of classes, α is a learning rate and pi is the probability
assigned to the correct class of the i-th sample by the m-th classifier. It is
clear that if the sample is classified correctly, then the next weight will be
very close to one, while if it is wrongly classified is much larger than one.

2.5. DIVERSITY-BASED ENSEMBLES 17

Then hmk (x) is defined as

hmk (x) = (K − 1)

⎛⎝log (pmk (x))− 1

K

m∑︂
k̃=1

log
(︂
pm
k̃
(x)
)︂⎞⎠ (2.2)

and the output of the model is defined as

C(x) = argmax
k

M∑︂
m=1

hmk (x) (2.3)

The definition of the algorithms might look unintuitive, however it is based
on iterative training error minimization. This algorithm gained popularity
before CNNs and it was used to boost the performance of weak classifiers,
however it was recently applied to CNNs. Tahernaki et al. [58] trained a
sequence of CNNs for classification, iteratively retraining the same network
using the weights of the previous step as initialization. They applied this
technique to imbalanced classification, with the idea that the first classifiers
would have learned the most frequent classes and that the classes in the tail
of the distribution can be learnt by the last classifiers. A similar approach
was used by Potes et al. [59] for heart sound recognition. They extracted
an image from the sound by mapping it into the frequency domain and
then used an ensemble of CNNs for the classification. Gao et al. [60] used
Adaboost for head regions proposal for video surveillance. They used CNNs
for feature extraction and then they train an ensemble of SVMs for region
proposal. Chen et al. [61] used Adaboost to train an ensemble of SVMs on
features extracted from a CNN for real-time vehicle classification. Zhou et
al. [62] proposed an algorithm based on Adaboost for online object tracking.
They trained deep networks for classification on the iteratively acquired data
during the online training. This allows online training for deep networks
without the need to retrain the models on the whole dataset.

2.5 Diversity-Based Ensembles

An important issue in ensemble learning algorithms is how to decorrelate the
predicitons of the base models, i.e: letting the networks understand differ-
ent features of the input samples space without decreasing their individual
accuracies. This is called ensemble diversity in the literature [10, 63].

Evolutionary approaches were very popular to choose the networks whose
predictions had the largest disagreement [64, 65, 66, 67]. However, those al-
gorithms are very slow. In [10] the models were trained with cross-validation
datasets, which means that the models were trained on other datasets to see
which ones had different outputs on those dataset, so that they could be
selected to be in the ensemble. They used a diversity metric to balance

18 CHAPTER 2. RELATED WORK

the covariance and the performance of the models. The trade-off between
bias and covariance led researchers to create ensembles whose overall predic-
tion had the minimum variance, so that it could be retained across different
datasets [63].

Negative correlation learning (NCL) [68, 69, 70, 71] consists in training
all the models in an ensemble using an indipendent loss for every model,
as the usual crossentropy, and a shared loss that calculates the correlation
among the networks in an ensemble [63]. A regularized version of NCL
techniques was introduced in [72], and managed to reduce the overfitting on
outliers. However, these models are not compared with other ensembles, so
the findings in the paper cannot be fully trusted.

Kariyappa et al. [73] proposed gradient alignment loss (GAL) to en-
courage diversity between different models in an ensemble and applied this
technique as defense against adversarial examples. The idea consists in find-
ing a good defence against black-box adversarial attacks, hence the attacker
does not know the weights of the model, he or she only knows the archi-
tecture and the training dataset. By training multiple models discouraging
gradient alignment, the authors made it less likely that the same perturba-
tion affected multiple models in the ensemble. This method is tested against
a baseline ensemble and it is shown to be effective against black-box attacks.
Dvornik et al. [74] used an opposite approach for few-shot classification, as
they trained multiple networks using a Kulback-Leiber loss to encourage
the newtorks to have similar predictions. They showed that this allowed
the single network to have a better performance and, surprisingly, also their
ensemble seemed to benefit from this approach. However, they acknowledge
that this method works for small ensembles, as larger ones contain networks
that are too similar to each other to provide a real contribution.

There are many measures of diversity in ensembles [9]. One of them is the
Q-statistics [75]. Given two classifiers i and j, let N1,1 be the number of test
samples correctly classified by both classifiers, N0,0 be the number of samples
wrongly classified by both, and N0,1 and N1,0 be the ones misclassified only
by, respectively, the first and the second classifier.The Q-statistics is defined
as

Qi,j =
N1,1N0,0 −N1,0N0,1

N1,1N0,0 +N1,0N0,1
. (2.4)

Another measure based on disagreement is the correlation coefficient [76]

ϕ =
N1,1N0,0 −N1,0N0,1√︁

(N1,1 +N0,1) + (N1,1 +N1,0) + (N0,0 +N0,1) + (N0,0 +N1,0)
. (2.5)

It can be proved that |ϕ| ≤ Q. The two measures are very similar, but
Q is much simpler to calculate.

2.6. FAST ENSEMBLES 19

The disagreement measure [77, 78] of two classifiers is defined as

Qi,j =
N1,0 +N0,1

N1,1 +N0,0 +N1,0 +N0,1
. (2.6)

and it calcultates the ratio between the number of samples classified in
a different way and the total number of samples. A very similar measure is
the double-fault measure [79]

Qi,j =
N0,0

N1,1 +N0,0 +N1,0 +N0,1
. (2.7)

that calculates how many samples are misclassified by both classifiers.
Li et. al [80] investigated the effect of diversity among the models in an

ensemble and they find that a larger diversity leads to a smaller hypothesis
space and to a better generalization. They provide a detailed theoretical
analysis on the relation between diversity and reduction of the error of the
ensemble, leading to Diversity Regularized Ensemble Pruning, which is an al-
gorithm to find the best subset of classifiers to create an ensemble. However,
their method is applied to standard classifiers and not to deep networks.

Cavalcanti et al. [81] also proposed a method for selecting a subset of
trained networks to create a diverse ensemble. They also acknowledge the
fact that the diversity between the networks is important to achieve a high
performance and use multiple methods to evaluate the correlations among
the trained networks. However, they used a genetic algorithm to decide
which networks to include in the ensemble and its performance is evaluated
on a validation set. They applied their method to a variety of datasets
and showed that their ensemble is competitive with the best performing
stand-alone network on every dataset. However, they also did not apply
this method to deep networks.

2.6 Fast Ensembles

During the training of a neural network, its weights continue to change even
after the moment when a local minimum is reached. This is due to the noise
of the training on batches, the momentum of the optimization method and
a possibily large learning rate. Hence, during training, one can get very
different networks whose performance is quite similar and that can be used
as an ensemble. This technique was called snapshot ensemble in [20] and has
the advantage that it requires a small amount of training time, with respect
to training multiple networks from scratch. They used a cyclic learning rate
defined by

λ(t) =
λ0

2

(︄
cos

(︄
πmod

(︁
t− 1,

[︁
T
M

]︁)︁[︁
T
M

]︁)︄
+ 1

)︄
, (2.8)

20 CHAPTER 2. RELATED WORK

Ref Field Description Baseline Improvement

[20] Cifar-100
Snapshot ensemble with variable learning
rate

Single model
0.257 to 0.228 er-
ror rate

[82] Fault diagnosis
Snapshot ensemble averaging learning
rates

Single Model
0.966 to 0.955 avg
accuracy

[45]
Signature verifi-
cation

Snapshot ensembles with multiple losses state-of-the-art
0.961 to 0.613
EER

[83] Cifar-100 Snapshot ensemble with Adaboost
Standard snap-
shot ensemble

0.731 to 0.745 avg
accuracy

[84]
Cervical cells
classification

Snapshot ensemble, transfer learning Single CNN
0.648 to 0.655 ac-
curacy

[85] Cifar-100 Ensemble by model perturbation Single model
0.648 to 0.647 av-
erage accuracy

where T is the training time, M are the number of cycles, t is the cur-
rent iteration and λ0 is the initial learning rate. This function reaches its
maximum when the argument of the cosine is 0 and its minimum when it
approaches π. Hence, at the end of every cycle, a new network is added
to the ensemble. After that, the sudden increase of the learning rate takes
the optimization process in an other point of the optimization landscape
and then it hopefully converges to a new local minimum. They show that
their method outperform the stand-alone baseline. Of course, the ensemble
method needs more inference time and memory, but the same training time.

Wen et al. [82] also proposed a similar method, but they averaged the
learning rate of Equation 2.8 with a positive number λ to ensure the fact
that the learning rate never reaches zero. They showed that this method
improves the baseline results of stand-alone networks in fault diagnosis in
three different datasets.

Masoudnia et al. [86] trained a network in a multi-loss framework. In
their paper they trained a network several times, always starting from the
end point of the previous training, and every time using a different loss.
They used all the end points in an ensemble for offline signature verification
and managed to show that this method outperformed every single network
trained with only one loss and also their ensemble. They improve the state-
of-the-art from 0.961 to 0.613 Equal Error Rate (EER)

Zhang et al. [83] used a discrete learning rate decay schedule that con-
sisted in multiplying it by 0.1 every time the validation loss got stucked and
was reset to the original value at the end of every training round. They also
used Adaboost to train the different networks, but used different decision
rules based on different meta learners trained on the validation set. They
showed that their method obtains better results than simple snapshot en-
sembling, but they did not compare ensembles of the same size. They tested
their method on the competitive CIFAR-10 and CIFAR-100 image datasets
[87] and on the IMDB dataset for sentiment analysis [88]. However, it is
worth noticing that they extract two validation sets that they use for train-
ing the ensemble that they proposed, but it is not mentioned if they are

2.6. FAST ENSEMBLES 21

somehow used for training the baseline models.
Chen et al. [84] addressed the problem of transfer learning in snap-

shot ensembles, as long training rounds might lead to overfitting in small
datasets. For example, they applied snapshot ensembling to cervical cells
classification, using a dataset that has a few hundred images. Hence, they
added a retraining of the first layers of their CNN on the dataset that was
initially used for transfer learning, in their case ImageNet.

An other way to create even faster ensembles is Parameter Ensembling
by Perurbation (PEP) [85]. Also in this case, only one network is trained.
However, the ensemble is created by perturbing the weights of the final net-
work with an additive Gaussian random noise. The authors show that this
method allows to outperform the original network using the right amount
of noise, that should be determined using a validation set.

22 CHAPTER 2. RELATED WORK

Chapter 3

Deep Ensembles Applications

In this chapter, I review the relevant literature dealing with the different
fields where deep ensembles have been and are nowadays applied. In these
papers, comparisons are always done between single models and ensembles,
with very few exceptions. Besides, the reported results are usually not com-
pared with the state-of-the-art if they are tested on a competitive dataset,
while other authors use a dataset they they own or introduce, so no rele-
vant comparisions with other methods are reported. I review these papers
since they stil give a relevant contribution in showing how deep learning and
ensembles can be used in different fields.

3.1 CIFAR classification

One of the most competitive fields in modern computer vision is the classifi-
cation of general images, since images can be very different from each other.
An example of this kind of task is the well-known CIFAR [87] dataset.

Chen et al. [89] created an ensemble of networks whose inputs are the
different layers of a common neural network. They took a deep network, and
then they used one of hidden layers to train a new network with a different
architecture. Then, they trained a different network starting from one of
the successive layers, and so on. In this way, they created an ensemble of
networks. At each iteration, they allowed the weights of the original network
to change, and in this way they managed to iteratively adjust the weights of
all its layers. They also used a loss function that encouraged the network to
predict rare classes. Using this strategy, they managed to outperform many
previous approaches on CIFAR-10 and CIFAR-100.

Fielding et al. [90] proposed Swarm Optimised Block Architecture En-
sembles, a method to automatically design deep CNN ensembles with a
shared weight repository to avoid storing the same information multiple
times. They trained their models using particle swarm optimisation. They
showed that their method managed to outperform the best single network

23

24 CHAPTER 3. DEEP ENSEMBLES APPLICATIONS

without significant memory overhead. However, the computation time was
much larger due to the size of the ensemble, which was 32 networks.

Huang et al. [35] proposed an ensemble of AlexNet and Network-In-
Network (NIN) to create image features for image retrieval. They extracted
image features by summing the final hidden layer of the networks in the
ensemble. These features were used to classify the images of the CIFAR-
10 and CIFAR-100 datasets and the authors showed that they managed to
outperform an ensemble of 20 NIN architectures independently trained.

Lee et al. proposed [91] Stochastic Multiple Choice Learning, a modifi-
cation of SGD that allows an ensemble of networks to train simultaneously
and at the same time and an oracle is trained to pick the correct output
based on the predictions of the network. They reach an accuracy larger
than 95% on CIFAR-10 using only 6 small networks.

Dutt et al. [92] proposed a method to extract an ensemble using different
branches of a neural network. They created these branches so that each one
of them was expert on a specific subset of labels. They showed that they
reached an accuracy of 97.08% on CIFAR-10 and 84.32% on CIFAR-100.

3.2 Face recognition

One of the most relevant applications of computer vision is face recognition.
Since this application is crucial in many fields, very large datasets are avail-
able. For example, the Labeled Faces in the Wild (LFW) dataset [93], the
CASIA-WebFace database [94] and the MS-Celeb-1M [95].

One the most famous methods for face recognition is DeepID2 [96]. It
consists of an ensemble of CNNs trained and evaluated on different patches.
Then, the output of those CNNs are concatenated and their dimension is
reduced using PCA. After that, they are classified using a Joint Bayesian
model [97]. They report a 98.92% acuracy on LWF.

Ding et al. [98] focused on the problem of robustness in face recogni-
tion, since multimedia applications like the ones they were studying usually
present large variance in pose, expression and illumination. They trained
multiple CNNs on different patches of the input images and used them to
create a feature vector by concatenating the final layer of every CNN. Then,
they used Stacked Autoencoders to reduce the dimension of the feature vec-
tor. Finally, the feature vector obtained in this way was then classified using
a Joint Bayesian model [97]. This method is very similar to DeepID2, but
it only uses eight networks and replaces the PCA with the autoencoders.
They report a 99.02% accuracy on LFW.

Masi et al. [99] proposed an ensemble of five networks to solve the
problem of pose invariance in face recognition by training each model with
images of pose with different angles. At inference time, they used a pose
estimator to decide which network to use for classification. They proved

3.3. SKIN LESION RECOGNITION 25

that their method was very effective, but it has the limitations that it really
benefits from having images of the same subject with multiple poses in the
training set.

Wu et al. [100] proposed a very effective and well tested method based
on a deep convolutional network and on nearest neighbour for low-shot face
recognition. They trained and evaluated their model on a large dataset that
contained multiple samples per person, then they used nearest neighbours
to classify the images representing those people that appeared only once in
the training set. They used the two models as an ensemble whose decision
rule consisted in evaluating the nearest neighbour of the target image and
if the neighbour is close enough then the image is classified with the same
label. On the other hand, if the target image is far from each one of the new
low-represented faces, then the convolutional network is used for the classi-
fication. They partecipated to the MS-Celeb1M Low-shot Face Recognition
Challenge and they managed to reach a 99.58% accuracy on the highly rep-
resented images and a 92.64% coverage at precision equal to 99% on the low
represented data. They managed to win this challenge, leaving the second
classified team to 77.48% on the low represented data, although with an
accuracy of 99.80% on the highly represented data.

Choi et al. [101] proposed an ensemble of CNNs with different prepro-
cessings for face recognition exploiting the fact that Gabor filters seem to
extract relevant features from human faces. They applied diffrent Gabor
filters to the same image and then used each image to train a different net-
work. Then, they used the corresponding network at test time. However,
their approach only reaches 93.6% accuracy.

3.3 Skin lesion recognition

Skin lesion segmentation is one of the most popular applications in computer
vision. Esteva et al. [102] showed that a trained convolutional network
could detect skin cancer with an accuracy similar to the one of a trained
dermatologist.

Harangi et al. [103] proposed a simple ensemble of AlexNet [104], VG-
GNet [23], GoogLeNet [32] for skin lesion classification and showed that the
ensemble of the three networks outperformed every single method. A wider
version of the ensemble was later proposed, comprehending also ResNet-50
[26], and the performance futher improved.

Mahbod et al. [105] used three different CNN architectures, two different
EfficientNets [106] and SeResNeXt-50 [107] trained on images cropped at
different sizes to create an ensemble. They reached the second place on the
ISIC 2018 competition (Task 3) [108] on skin lesion classification. (2020)

Ahmed et al. [109] also used an ensemble of different networks for the
ISIC 2019 skin classification challenge (Task 3). In their case, they used

26 CHAPTER 3. DEEP ENSEMBLES APPLICATIONS

very large networks like Xception [28], Inception-ResNet-V2 [38], and Nas-
NetLarge [110]. Their results are comparable to the best submissions on the
final leaderboard, although they did not partecipate to the competition.

Gessert et al. [111] also partecipated the ISIC 2019 challenge, however
for tasks 1 and 2 that also involved the metadata of the patients in the
classification. They used an ensemble of EfficientNets [106], since these
networks are well-suited for problems were the input images have different
resolutions. They also used a weighted loss to mitigate class imbalance.
They managed to win both the challenges with their ensemble.

3.4 Computer-aided Diagnosis from X-Ray andMRI

Computer-aided diagnosis is one of the most relevant topics in computer
vision applications. X-Ray and CT images are a powerful diagnosis tool for
many pathologies. The main difference between X-Ray and MRI images is
that X-Rays only have one channel, while MRI images have a large number
of channels corresponding to different depths.

Hashmi et al. [112] created an ensemble of multiple pretrained networks
for pneumonia detection using chest X-Ray scans. They used ResNet18
[26], Xception [28], InceptionV3 [27], DenseNet121 [2] and MobileNetV3
[24] pretrained on ImageNet and report an AUC score of 0.9976 on the
Guangzhou Women and Children’s Medical Center pneumonia dataset [113].

Rahman et al. [114] proposed a very similar approach but used a dif-
ferent set of networks for transfer learning. They used AlexNet, ResNet18,
DenseNet201 and SqueezeNet. They reach a 0.98 AUC score, but on a
different dataset [115] than before, so the comparison is not fair.

Chouhan et al. [116] also proposed a different ensemble using AlexNet,
DenseNet121, InceptionV3, ResNet18 and GoogleNet. They reached an
accuracy of 96.4% with a recall of 99.62% on [113].

Ferreira et al. [117] created a multi-view ensemble by training two differ-
ent networks on chest X-Ray images for pneumonia detection. They prepro-
cessed every image in two different ways and used the two images to train
two different VGG16. The first preprocessing consists in cropping the image
at the chest level, while the second one consists in enhancing the contrast of
the image and then use a segmentator to extract the lungs. The ensemble
of the two networks outperforms the stand-alone approaches.

Gooseen et al. [118] proposed an ensemble of convolutional neural net-
works, multiple instance learning, and fully convolutional networks for the
detection of pneumothorax. They reached an AUC score of 0.96 on the large
scale Chestx-ray8 dataset [119].

After the outbreak of Covid-19, a large number of papers tried to classify
Covid-19 pneumonia using convolutional networks.

Ahmad et al. [120] proposed an ensemble of MobileNet [24], and Incep-

3.4. COMPUTER-AIDED DIAGNOSIS FROM X-RAY AND MRI 27

tionV3 [27] for the classification of Covid-19. They reached an F-score of
96.49%.

Afifi et al. [121] proposed a novel attention mechanism that could
be added to any CNN and applied it to DenseNet161, InceptionV4 and
ResNet18. The models with the attention managed to outperform the base-
lines on Covid-19 classification. Besides, the ensemble of the the original
and modifed models outperform both.

Deb et al. [122] also used an ensemble of pretrained CNNs to classify
Covid-19. However, they trained NasNet, DenseNet121 and Mobilenet and
concatenated the activations of their last layer to train a SVM. They report
a classification accuracy of 91.99% on a dataset made of healthy images as
well as normal and Covid-19 pneumonia.

Vantaggiato et al. [123] also proposed an ensemble of ResNeXt-50,
Inception-v3, and DenseNet-161 to classify Covid-19 on two different datasets.
They obtain very high results on the dataset they propose, reaching 100%
accuracy in a three-label classification problem.

Speaking of CT images, Kang et al. [124] used 13 different networks
pretrained on ImageNet for brain tumor classification. Among these net-
works, they selected the best three and made an ensemble by concatenating
the activations of their last layers and feeding them into a classifier. They
tested multiple classifiers and the best one turned out to be a SVM.

Islam et al. [125] proposed an ensemble of CNN models for Alzheimer’s
disease diagnosis. Their method is based on a multiple CNN architectures
that they created for their paper. They report an improved level of classifi-
cation in particular for the early stage of the disease.

Pan et al. [126] also created an ensemble of CNNs for early detection
of Alzheimer’s disease. They created a custom CNN architecture and they
trained multiple networks using bagging. Besides, they used different slices
of the data to train different CNNs, hence each model learns specific features
of the data distribution. After that, the prediction of every model is averaged
to return a probability distribution of the output class.

Leming et al. [127] proposed an ensemble method to classify function
MRI connectivity matrices with the task of recognizing autism. Since the
classification is hard and the dataset quite unbalanced, they used multi-task
learning to also classify the gender of the subject and whehter he or she was
resting or not. In this way, they achieved a better generalization and an
AUC of 0.67 in autism recognition, which is a good result in this task.

Rasti et al. [128] used dynamic contrast-enhanced MRI to diagnose
breast cancer with an ensemble of CNNs. They use four networks, three of
which are trained on different regions of interest of an iage, while the fourth
is trained to decide the weights to assign to each one of the former three
CNNs. They report a performance improvement over a baseline ensemble
that only averages the results of multiple CNNs.

28 CHAPTER 3. DEEP ENSEMBLES APPLICATIONS

3.5 Optical Charachter Recognition

Optical charachter recognition (OCR) consists in reading handwritten char-
acters and words. This is a topic of great interest, since many documents,
especially old ones, are handwritten. MNIST [1] classification is an early
example of this problem, which is now particularly challenging for those
languages whose alphabet is very large, like Chinese.

Lee et al. [129] proposed an ensemble of CNNs for handwritten music
symbol recognition. They used a simple ensemble of three different CNNs
trained on the whole training set.

Awni et al. [130] trained an ensemble of three independent ResNet50
architectures to for Arabic handwritten charachter recogntion, and showed
that their method could outperform each of the single ResNets.

Roohi et al. [131] an ensemble of simple CNN architectures using bagging
for the classification of Persian handwritten charachters. They also show
that the ensemble method outperforms every single architecture.

Zhong et al. [132] created an ensemble of GoogleNet architectures trained
for handwritten Chinese characther recognition. They also extracted Gabor
filters from the images as a preprocessing before the training of CNNs and
showed that this method managed to outperform single networks and that
the feature extraction was an effective tool in this context.

Wu et al. [100] created and ensemble of CNNs for subtitle detection and
recognition from East-Asian videos. They concatenated the output of 10
CNNs and fed it into a SVM for classification. They report a classification
accuracy that was the state-of-the-art at the time they were writing.

3.6 Audio Classification

Audio files classification is an important application of CNNs. Despite audio
signals are sequences that should not be fed into CNNs, they are tipically
mapped into spectrograms before training the CNNs, hence they are mapped
into an image.

Palanisamy et al. [133] created an ensemble of ImageNet pretrained
DenseNets for audio classification on the ESC-50 dataset for enviromental
sound classification [134]. They reached a 92.89% accuracy and showed
that, although all the networks had the same weights at the beginning, the
stochasticity of the training led them to have indepependent outputs and
their ensemble outperformed the single networks.

Kahl et al. [135] created an ensemble of seven networks training dif-
ferent models with different architectures and different data augmentation
policies. They submitted their results to the BirdCLEF 2017 competition
[136] reaching a 0,605 mean average precision.

Nanni et al. [19] created an ensemble of multiple CNNs and multiple

3.6. AUDIO CLASSIFICATION 29

handcrafted features to classify audio signals on a variety of datasets. They
showed that their ”off-the-shelf” ensemble managed to outperform the state-
of-the-art on different datasets without the need of any hyperparameter
tuning.

Zimmerman et al. [137] created an ensemble of ten simple CNNs archi-
tectures for hate speech recogntion. They managed to reach an F-1 score of
0.7783 which was nearly 0.03 points higher than the state-of-the-art at the
time.

Deng et al. [138] created an ensemble of networks for phone speech
recognition by training multiple models and by learning posterior weights
to average the results of the trained models. They experimented a linear and
a log-linear model and showed that this last method was the most effective.

Lopez-Meyer et al. [139] proposed an ensemble of aclnet, aclresnet [140]
and VGG12 for their submission to the Detection and Classification of
Acoustic Scenes and Events (DCASE) Challenge 2020 [141]. Interestingly,
they report that ensembling the best stand-alone models does not return
the best possibile ensemble.

Yang et al. [142] trained six different CNNs on raw spectrograms and on
cropped spectrograms and used them for the 2019 DCASE challenge. They
reached a 0.84 mean average precision on the submission.

Huang et al. [143] also created an ensemble of networks for DCASE 2019
using four networks pretrained on Audioset [144]. They reached a 81.3%
classification accuracy and showed that the ensemble method outperformed
the single networks on the validation set.

Sakashita et al. [145] proposed an ensemble of networks trained on dif-
ferent spectrograms preprocessed with different algorithms to train the same
architectures multiple times. They report a mean average precision of 0.769
on the DCASE 2017 challenge.

Inoue et al. [146] created an ensemble of networks by using an approach
similar to bagging. They trained four networks using each time a different
train-validation split, and then they averaged the results of the networks for
inference. They reached a 89.95% of macro-averaged F1-score on the Task
5 of the DCASE 2018 challenge.

Speaking of a different application of sound classification, Noman et al.
[147] created an ensemble of 1D CNNs trained on raw audio signals and
2D CNNs trained on spectrograms to detect abnormal heart sounds. Their
ensemble outperformed every single method and reached 89.22% accuracy
and 89.94% sensitivity.

Humayun et al. [148] also created an ensemble for phonocardiogram
sounds using 1D CNNs and a SVM on top of handcrafted features. They
used pretrained CNNs for transfer learning and reached a 64% accuracy on
the benchmark dataset.

30 CHAPTER 3. DEEP ENSEMBLES APPLICATIONS

Chapter 4

Data Augmentation for
Building Ensembles

Data augmentation is one of the most popular technique to improve the
performance of deep neural networks. Very large networks require a very
large number of training samples to be able to generalize. Since the training
samples are often not enough for that, researches started to use various data
augmentation techniques to generate new training images starting from the
original ones. The secret of data augmentation is to generate new samples
exploiting properties of the inputs or invariances of the task, so that the new
sample is plausible and its label can be easily found given the label of the
original input. I shall now provide saome examples of data augmentation
in the field of computer vision and sound analysis, which are the two topics
investigated in this thesis.

In computer vision, the main transformations used for data augmenta-
tion exploit the geometrical property of the images: small image translations
and rotation, random flips and random stretches of the original image all
provide different samples that might be quite far in L2-norm, but seman-
tically very similar. Besides, color based transformations such as contrast
enhancement or random changes in luminosity can all lead to new samples.

For audio-related tasks, the transformations must reflect the main prop-
erties of audio signals. For example, pitch shift only changes its frequency.
Besides, one can use delays or cuts of the input. The speed of the audio
sample can also be reduced or increased by a small percentage. In general,
most tasks are independent from most of these transformations, that make
them suitable for data augmentation.

Standard data augmentation is done by training a network on the original
and all the transformed images until the network reaches convergence. How-
ever, this is not the only way. In [149*], I showed that data augmentation
can be exploited to train an ensemble instead of training a single network.
I trained different network using different data augmentation strategies and

31

32CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

Net Data Aug CH HE LY AVG

ResNet50 App1 98.15 94.42 87.73 93.43
App2 94.77 94.53 87.73 92.34
App3 94.77 95.70 88.00 92.82
App4 96.62 93.37 89.97 93.32
App4-sa 95.08 93.26 86.40 91.58
ENS 98.77 94.77 92.00 95.18

DenseNet App1 99.38 96.00 88.00 94.59
App2 98.77 95.20 91.47 95.14
App3 98.46 95.30 90.13 94.63
App4 98.46 95.93 89.07 94.48
App4-sa 98.15 95.81 86.93 93.63
ENS 99.38 96.40 93.60 96.46

Table 4.1: Performance of stand-alone CNN

showed that their ensemble managed to outperform the single networks.
In order to augment the total images in the datasets, I exploited different

transofmations, divided in four protocols. The first (App1) applies a random
reflection of the image in the left-right direction. The second (App2) also
reflects the image in the top-bottom direction and linearly scales the image
along both axes by two different numbers sampled between 1 and 2. The
third protocol, which is named App4, also rotates the images by r ∈ [−10, 10]
degrees and translates them by t ∈ [0, 5] pixels. The last protocol (App3)
extends the third one by applying vertical and horizontal shear of so, sv ∈
[0, 30].

I test the ensemble on three competitive bioimage datasets, which are
all publicly available:

• CH: the CHINESE HAMSTER OVARY CELLS [150] contains 327 flu-
orescent microscopy images of size, divided into 5 classes. Images are
available at: http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html.

• HE: the 2D HELA dataset [150] contains 862 images of HeLa cells ac-
quired by fluorescence microscope and divided into 10 classes. Images
are available at: http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html.

• LY: Lymphoma [151] dataset of malignant lymphoma of three sub-
types. Images are available at: https://ome.grc.nia.nih.gov/iicbu2008.

In Table 4, I compare the results of ResNet50 and DenseNet trained
using different augmentation strategies. I also report the performance of:

• App4-sa, which is the single best CNN, obtained using different batch
sizes and learning rates in a given dataset using App4 as the data
augmentation method. This testing protocol is obviously biased, since

4.1. ENSEMBLE OF SALIENCYMETHODS FOR IMAGE CLASSIFICATION33

I select the best network on the test set, which might lead to overfit,
however, I only use App4-sa as a baseline method to be compared with
the ensemble.

• ENS: this is the fusion by sum rule among App1, App2, App3, and
App4 and does not include App4-sa.

It is clear from Table 4 that the ensemble obtained using different data
augmentation strategies outperforms the ensemble of networks trained using
always the same policy. Besides, it also outperforms the biased protocol
App4-sa.

Based on this result, I explored many ways to ensemble networks trained
with different augmentation strategies. I shall now describe two applications
in the field of image classification and of audio classification.

4.1 Ensemble of Saliency Methods for Image Clas-
sification

Insect pests cause a major part of crop damages world-wide. These damages
could be prevented and lead to a higher efficiency of the agricolture. Pests
might also damage the machinery and the equipment used for agricolture.
Hence, solving this issue would lead to a more sustainable agricolture that
needs less resources to produce the same food. A key step in this direction
consists in being able to recognize dangerous pests before it is too late. How-
ever, this task requires a constant monitoring by someone able to distinguish
hundreds of species of insects, which is unfeasible. Hence, recent years saw
a growing interest in computer vision methods to recognize dangerous pests.
I show some examples in Figure 4.1

Figure 4.1: Examples of pest images

34CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

In [152*] I tested a new method to classify insect pests based on convo-
lutional neural networks (CNNs) and saliency methods. Saliency methods
are computer vision algorithms that give a score to each pixel depending on
how relevant it is in the image. These algorithms are based on the fact that
the human eye does not look at a whole image to understand its content, but
it focuses on the most relevant parts [153]. Saliency methods often try to
mimic this behaviour and can be used as a preprocessing step for computer
vision algorithms. Using a saliency method as a preprocessing step can be
seen as a data augmentation strategy, since it creates a new sample repre-
senting the same insect. However, training an architecture on the original
and on the saliency augmented images might not be the best solution, since
they clearly belong to different data manifolds. Hence, I used the saliency
methods as a preprocessing step for both the training and the test images of
a given network. Then, I created an ensemble using these networks. I used
three different saliency methods that I shall now describe.

4.1.1 Saliency Methods

The first method is called GBVS, which stands for Graph-Based Visual
Saliency. The idea to find the importance of the pixels is to define a tran-
sition probability p ((i, j); (k, l)) between every couple of pixels ((i, j); (k, l))
in the image. This probability is defined as

p ((i, j); (k, l)) = d ((i, j)||(k, l)) · F (i− k, j − k) (4.1)

where

d ((i, j)||(k, l)) =
⃓⃓⃓⃓
log

(︃
I(i, j)

I(k, l)

)︃⃓⃓⃓⃓
, (4.2)

where I(i, j) is the pixel intensity at (i, j). This function is minimized when
the intensity of a couple of pixels is the same, hence it increases the transition
probability among different pixels

F (a, b) = exp

(︃
−a2 + b2

2σ2

)︃
. (4.3)

This function exponentially decreases the transition probability of far couple
of pixels. The key step in GBVS is to use this transition probability to create
a Markov chain on the pixels space and find their stationary distribution,
which is unique under very easy assumptions on the input image. The
probability of a pixel in the stationary distribution is high in those pixels
where the transition probability from the other pixels is large. Hence, it is
high if a pixel is different enough from other important and close pixels. An
example of GBVS mask can be seen in Figure 4.2.

The second method described in the paper is Cluster-based Saliency
Detection (COS). This method is based on a two layer clustering that is

4.1. ENSEMBLE OF SALIENCYMETHODS FOR IMAGE CLASSIFICATION35

Figure 4.2: Examples of GBVS masks

done at image level at first, and at dataset level after that. The main idea
is to extract three different image features at pixel level. The first one is
based on the contrast of the image. The second one is based on the position
of the pixel, since pixels in the center are usually more important than the
ones on the sides. The third feature, which is also based on the first two,
operates on multiple images and is designed to find correspondences among
the features in different images. An example of COS mask can be seen in
Figure 4.3.

Figure 4.3: Examples of COS masks

The third saliency method is based on the outliers in the frequency
domain and is called Spectral Residual (SPE). The Fourier transforms of the
images are computed, then, based on the assumption that their spectrum
should share similar trends, one can look for statistical singularities in the

36CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

images and highlight those specific frequencies. Then, one can invert the
Fourier transform on those frequencies and obtain a saliency measure on
the pixels in the origial image space. An example of SPE mask can be seen
in Figure 4.4.

Figure 4.4: Examples of SPE masks

The output of each saliency method is called saliency map. For each
saliency method, I create three new images, hence I create nine new images
for each original one. Hence, I create nine different new image datasets,
in addition to the original one. From every saliency map I find three new
images: in the first case (FG), I turn to black all the pixels whose saliency
is below a threshold; in the second case (ROI), I crop the image to highlight
only the region where the saliency level are high enough; the third method
(FG-ROI) is a combination of the first two.

4.1.2 Results

For each one the ten datasets, I train five different neural networks. AlexNet
[104] and GoogleNet [32] are simple neural networks and very easy to train.
They are among the first networks proposed after the outbreak of deep
learning. MobileNetv2 [24] and ShuffleNet[154] are two very light neural
networks suitable for mobile applications. They have performances that are
similar to the ones of AlexNet, despite being of a much smaller size. The last
network is DenseNet201 [2], which is a very large network whose performance
is much better than the ones already mentioned. Its main feature is that
every layer is connected to each other. A general representation of the
method is in Figure 4.5

I perfomed experiments on two insect pest datasets. The first one is a
small dataset proposed by Deng et al. [155] , which is made by 563 images
divided in 10 classes, the most frequent having 72 samples and the less fre-

4.2. ENSEMBLES OF DIFFERENT DATA AUGMENTATIONS 37

Figure 4.5: Representation of the proposed ensemble.

quent 40 samples. The other dataset is much larger and it is the competitive
IP102 dataset [156], containing 5222 images divided in 102 different classes.
The dataset is split in 45095 images for training, 7508 for validation and
22169 for testing. The least represented class in the dataset has 71 samples,
while the most represented class contains 5740 images.

The results reported in Tables 4.2 and 4.3 show the accuracy of the single
networks and the ensembles. For stand-alone networks, the row represents
the preprocessing used, if any, and the column represents the architecture.
”Fusion Sum” is the performance of the ensemble created using the same
network trained on all the preprocessings. ”All” is the ensemble created
with all the networks. The term minus used in the name of the ensemble
indicates that the networks after the minus sign are not included.

The ensembles without DenseNet are evaluated because they are much
lighter than the others. In general, the performance show state-of-the-art
results obtained by the best performing ensembles in both datasets.

4.2 Ensembles of Different Data Augmentations

Some of the most relevant applications of sound classification include speech
recognition [158], music classification [159], biometric identification [160],
and environmental sound recognition [134].

38CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

SMALL Alex Google Mobile Shuffle Dense

COS
FG 78.67 79.78 76.19 77.68 85.03
ROI 77.35 79.12 74.97 76.80 83.92
FGROI 83.15 87.46 84.14 86.46 88.34

GBVS
FG 79.61 82.98 76.63 80.55 83.04
ROI 77.57 81.16 76.80 78.56 77.62
FGROI 81.16 84.14 81.44 83.59 86.74

SPE
FG 73.26 76.63 65.97 69.78 69.45
ROI 73.31 74.42 64.97 69.34 69.06
FGROI 86.69 87.73 83.31 84.81 88.51

Original Image 83.76 85.69 81.55 86.52 90.22
Fusion Sum 88.23 90.77 89.72 91.66 92.10
Fusion Sum minus FGROI 86.30 87.68 85.97 89.06 91.60

All minus Dense 91.88
All minus FGROI and Dense 90.83
All minus SPE and Dense 89.89
All 92.43
[155] 85.50

Table 4.2: Performance of stand-alone CNN on the small dataset

SMALL Alex Google Mobile Shuffle Dense

COS
FG 44.08 47.31 48.28 45.47 52.45
ROI 41.58 44.52 46.77 42.99 51.98
FGROI 47.01 49.08 51.51 49.50 56.14

GBVS
FG 42.86 48.13 49.92 46.35 54.56
ROI 45.77 49.54 50.79 48.08 55.65
FGROI 49.75 51.97 53.82 51.27 57.86

SPE
FG 35.90 41.68 43.68 39.22 47.77
ROI 37.73 41.00 43.17 39.77 47.26
FGROI 48.91 51.01 52.16 50.07 56.29

Original Image 51.79 53.80 55.35 52.45 58.76
Fusion Sum 54.60 56.13 58.92 56.43 61.93
Fusion Sum minus FGROI 53.63 55.49 57.94 55.63 61.21

All minus Dense 59.65
All minus SPE and Dense 59.73
All 61.44
[156] 49.50
[157] 55.24

Table 4.3: Performance of stand-alone CNN on IP102

4.2. ENSEMBLES OF DIFFERENT DATA AUGMENTATIONS 39

The latest advances in deep learning have been applied to all the fields
of sound recognition. For example, monitoring the biodiversity of animals
by recognizing the species from the sound they make has been improved by
developments in animal sound recognition.

In this thesis, I focus on animal sound recognition and environmental
sound recognition. These topics have already been explored in the literature,
In [161], they try to asses the biodiversity by classifying marine animals and
fishes by their sound. They use CNNs to classify short segments of sound
after extracting frequency spectrograms.

Environment sound classification is one of the most competitive tasks
in sound recognition. The Environmental Sound Classification (ESC-50)
dataset [162] contains 2000 sound segments divided into 50 classes. In [163],
a deep CNN obtained better results than humans on this data set. Other
work of interest in this topic includes [164, 165, 166, 167, 168]. For a more
comprehensive survey on sound classification up to the present day, I refer
to [169].

In this section, I shall introduce the work presented in [170*] and show
how to use data augmentation to train different CNN models for audio recog-
nition. Audio signals can be augmented directly, or after they have already
been transformed into spectrograms, and they can affect the time and the
frequency of the audio. In [171], for example, they applied many differ-
ent augmentation techniques for the BirdCLEF 2018 dataset classification.
They cut the signals, changed their speed and shift their pitch. Besides,
they added random noise to the sample. This augmentation led to a nearly
10% improvement in the accuracy. In [172], samples were also generated by
summing different samples belonging to the same class. The idea behind
this is that if two different segments contain multiple birds tweeting, their
sum will also contain multiple birds tweeting, and it will be a very different
sample from both the original ones. Here, I use Audiogmenter, which is a
MATLAB library that I created [173*] to generate a very large number of
new samples and to extract different kinds of spectrograms from the audio
signals.

4.2.1 Audio Image Representations

I shall now describe the methods to extract the spectrograms and to perform
data augmentation. I start from the spectrograms.

1. The Discrete Gabor Transform (DGT): it is a Short-Time Fourier
Transform (STFT) with a Gaussian kernel as the window function.
It can be defined for continuous time as an integral between the signal
and a Gaussian in the complex space:

G(τ, ω) =
1

σ2

∫︂ ∞

−∞
x(t)e−πσ2(t−τ)2eiωt (4.4)

40CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

where ω is a frequency, τ is a time, σ2 is the variance of the Gaussian
and x(·) is the signal. The discrete version of the DGT is a discrete
approximation of this integral. I refer to [174] for further details on
the implementation.

2. Mel spectrogram (MEL) [175]: it is evaluated by extracting the co-
efficients relative to the compositional frequencies with STFT. It is
done using a filter-bank that keeps the frequencies that are the most
relevant for the human ear and discards the others. All the filters
in the filter-bank are triangular-shaped. Then, a conversion of the
frequencies is done using the following formula:

m = 2595 log10(1 + 700f) (4.5)

3. Gammatone (GA) band-pass filter: this is a bank of Gammatone filters
whose bandwidth increases with the increasing central frequency. The
idea is again to mimic the human ear and the fact that the most
suitable metric for a distance between frequencies is logarithmic. The
response can be defined as

hi(t) =

{︄
atn−1e−nBit cos (2πωit+ ϕ) t ≥ 0

0 t < 0
(4.6)

where ωi, ϕi are the central frequency and the phase of the filter. The
constant a controls the gain, and n is the order of the filter. Bi controls
the decay of the responce over the time.

4. Cochleagram (CO): this algorithm aims to highlight the frequencies
heard by the human cochlea. At the beginning, one must filter the
original signal with a gammatone filter bank and then the signal must
be split into overlapping windows. For each window and every fre-
quency, the energy of the signal is calculated and normalized.

Every spectrogam is then mapped into a gray-scale image and normalized
so that its minimum and maximum are respectively 0 and 255.

Several data augmentation methods are exploited to obtain the best
performance. Different augmentation protocols have been used. I shall now
list them. Some of the samples are shown in Figures 4.6, 4.7

4.2.2 Standard Signal Data Augmentation (SGN)

In this augmentation protocol, each transformation happens with a 50%
probability

1. Modify the speed of the signal by a factor in [0.8, 1.2]

4.2. ENSEMBLES OF DIFFERENT DATA AUGMENTATIONS 41

2. Shift the pitch of the signal by a random number in [−2, 2].

3. Modify the volume of the signal by a factor in [−3, 3] dB.

4. Add random noise of volume sampled in [0, 10] dB.

5. Anticipate or delay the start of the segment by a time sampled in
[−5, 5] ms.

4.2.3 Short Signal Augmentation (SSA)

In this protocol, all the augmentations are applied to the original signal
indpendently. This means that I get 10 new images for each original image.

1. Apply wow resampling, which is a variant of pitch shift where the shift
is not constant.

2. Add random noise of volume sampled in [0, 10] dB.

3. Normalize the audio signal by leaving 10% of the samples out of [-1,
1], with the out-of-range samples clipped to the sign of x;

4. Modify the speed of the signal by at most 15%.

5. Apply quadratic distortion to the signal; The following distortion is
applied five times:

so = sin(2πsi) (4.7)

6. Increase the gain up to 10 dB.

7. Break the signal into two pieces and swap them.

8. Apply Dinamic Range Compression. It increases the lower intesities
and decreases the higher intensities of the signal. I refer to [59] for
further details.

9. Apply pitch shift by decrasing the frequencies of two semitones.

4.2.4 Super Signal Augmentation (SSiA)

In this protocol, twenty-nine images are created for each original one, while
iterating multiple times the following pipeline of transformations:

1. Apply wow resampling

2. Modify the speed on the signal by a percentage in [−5, 5].

3. Modify the gain by a number of dB between [−0.5, 0.5].

4. Break the signal into two pieces and swap them.

5. Apply pitch shift by [−0.5, 0.5]

42CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

4.2.5 Time Scale Modification (TSM)

In this protocol I apply the five algorithms contained in the TSM toolbox
[60].The objective of the methods in this tool box is to change the speed,
while preserving the pitch. I shall now describe the algorithms.

1. OverLap Add (OLA): it covers the input signals with overlapping win-
dows of size Ha and maps them into windows of size Hs. The number
Ha depends on the implementation of the algorithm, while the ratio
α = Hs

Ha
is the speed-up factor, that I set to either 0.8 and 1.5. I copied

the value from the original paper where the toolbox was presented;

2. Waveform Similarity OverLap Add (WSOLA): this is an upgrade of
OLA since the window overlap has some tolerance to better model
those signals where there is a difference of phase;

3. Phase Vocoder does the same thing, but it works on the frequency
domain after a Fourier transform. This time, frequency windows and
not time windows are used to change the tempo, the inverse of the
Fourier transform is done.

4. Phase Vocoder with identity phase locking: it is a modification of
Phase Vocoder, but the frequencies are not supposed to be independent
of each other, as it happens in Phase Vocoder. I refer to for further
details [62];

5. Harmonic-Percussive Source Separation (HPSS): it decomposes an au-
dio signal into its harmonic and percussive sound components. They
are then respectively processed by Phase Vocoder with identity lock-
ing and OLA, since they are the most suitable algorithms for harmonic
and percussive sounds. Then they are summed to obtain the original
sound with the new speed.

4.2.6 Short Spectrogram Augmentation (SSpA)

SSpA are augmentations applied directly to spectrograms. As in SSiA I
create one new image for every augmentation protocol.

1. Apply time and pitch shift

2. Apply Vocal Track Length Normalization (VTLN) that divides a spec-
trogram into non-overlapping windows and normalizes the frequency
in each window.

3. Cut the spectrograms into two windows ans swap them.

4.2. ENSEMBLES OF DIFFERENT DATA AUGMENTATIONS 43

Figure 4.6: Examples of spectrogram augmentations

4. Apply Thin-Spline Image Warping (TPS-Warp) to a spectrogram.
This algorithm consists in moving by a random number of pixels a
subset of the points of an image and then change the other pixels to
adjust the whole image to the random movement.

5. Apply pointwise random noise to the image, with probability equal
to 0.3 on every point, In those pixels, the value of the intensity is
multiplied by a random number extracted from a uniform distribution
with average one and variance one.

4.2.7 Super Spectro Augmentation (SuSA)

In this protocol, I create twenty-nine new images from each original one
by applying the following pipeline of augmentations, obtaining every time a
different sample.

1. Apply random shift in the range [−1, 1] semitones.

2. Apply VTLN.

3. Cut the window into two pieces and swap them as in the previous
protocol.

4. cover with black pixels two columns and one row of the image.

5. Apply point-wise random noise as in the previous protocol.

44CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

Figure 4.7: Examples of spectrogram augmentations

4.2.8 Results

Five different network architectures are trained on these datasets. These are
AlexNet, GoogleNet, VGG16, VGG19, ResNet50, ResNet101 and Inception.
All these network were pretrained on ImageNet, but I also used a GoogleNet
trained on Places365 [176]. I also trained a VGG16 architecture with a batch
size of 30. The rest of the networks were trained for 30 epochs, batch size
of 60 and with a learning rate of 0.0001, except in the last layer where it is
0.001.

The results are evaluated on three dataset:

1. BIRDZ [47]: it is an audio dataset, containing 2762 recordings from
the Xeno-canto Archive, 339 of which do not belong in any class.

2. CAT [41,46]: which is a dataset of 300 samples divided evenly in 10
classes dowloaded from Kaggle, YouTube and Flickr.

3. ESC-50 [4] is an environmental sound classification dataset containing
2000 samples evenly divided into 50 classes. They are roughly divided
into Animals, Natural soundscapes and water sounds, Human non-
speech, Interior and domestic sounds, exterior and urban noises.

In Tables 4.5, 4.4, 4.6, 4.7, I report the accuracy obtained using the
data augmentation protocols described above and I compare it with the no
augmentation baseline as well as with several state-of-the-art methods 4.8.
Every network was trained for 30 epochs and using a leraning 0.0001 on
every layer except the last fully connected layer that has a learning rate 10
times larger. The batch size is always equal to 30, except VGG16BS which
is trained with a batch size of 60.

Six different ensembles are also reported in Tables 4.5, 4.4, 4.6 and 4.7.

4.2. ENSEMBLES OF DIFFERENT DATA AUGMENTATIONS 45

CAT NoAUG SGN SSA SSpA SSiA SuSA TSM

AlexNet 83.73 85.76 86.10 83.39 87.12 86.78 87.12
GoogleNet 82.98 86.10 87.80 83.39 86.78 85.08 87.80
VGG16 84.07 87.12 88.47 85.76 87.80 87.80 88.47
VGG19 83.05 85.42 87.80 84.75 86.10 86.10 89.15
ResNet50 79.32 81.36 85.42 76.95 85.08 82.03 87.12
ResNet101 80.34 84.75 85.42 75.59 82.03 73.56 86.78
Inception 79.66 82.71 — 66.44 — 84.07 86.10
GoogleNetPls 85.15 86.44 85.76 83.73 86.10 86.10 88.47
VGG16BS — 86.10 88.14 86.78 89.49 86.10 89.15
FusionLocal 88.14 88.47 89.83 86.78 89.83 89.83 90.51

FusionShort 88.47
FusionShortSuper 89.83
FusionSuper 90.17
FusionALL 89.83
FusionSuperVGG16 89.83

Table 4.4: Performance of the networks on the CAT dataset

The combination is done using the sum rule. I shall now list the abbrevia-
tions that I used in the tables:

1. FusionLocal: sum rule of CNNs where each one is trained with a dif-
ferent data augmentation method;

2. FusionShort: sum rule of all CNNs trained with SGN, SSA, and SSpA;

3. FusionShortSuper: sum rule of all CNNs trained with SGN, SSA,
SSpA, SSiA, and SuSA;

4. FusionSuper: sum rule of all CNNs trained with SGN, SSiA, SuSA,
and TSM;

5. FusionSuperVGG16: sum rule of VGG16 trained with SGN, SSiA,
SuSA, and TSM;

6. FusionALL: sum rule of all CNNs trained with SGN, SSA, SSpA, SSiA,
SuSA, and TSM.

Sometimes,VGG16 fails to converge; if it happened, I tried a second
training. If it also failed, the results are not reported and are not used in
the sum rule of the ensembles. In Tables 4.5, 4.4 and 4.6 the algorithms to
map audio segments into images is a Discrete Gabor Transform.

In Table 4.8, the best ensembles are compared with the state-of-the-art.
FusionGlobal is the sum of the CNNs of Fusion Super and the ones in Table
5. FusionGlobal-CO is FusionGlobal without the CNNs trained using CO to

46CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

BIRDZ NoAUG SGN SSA SSpA SSiA SuSA TSM

AlexNet 94.48 94.96 95.40 94.02 95.05 95.76 88.51
GoogleNet 92.41 94.66 94.84 91.48 93.85 95.85 82.91
VGG16 95.30 95.59 95.60 94.69 95.44 96.18 94.63
VGG19 95.19 95.77 87.15 94.50 95.44 96.04 94.88
ResNet50 90.02 94.02 93.22 90.48 92.95 94.16 91.75
ResNet101 89.64 94.00 92.76 88.36 92.84 94.20 90.62
Inception 87.23 93.84 92.48 83.81 92.30 94.01 90.52
GoogleNetPls 92.94 94.81 95.10 92.43 94.76 95.80 86.91
VGG16BS — 95.84 —- 94.91 95.81 96.31 94.78
FusionLocal 95.81 96.32 96.24 95.76 96.39 96.89 95.27

FusionShort 96.47
FusionShortSuper 96.79
FusionSuper 96.90
FusionALL 96.89
FusionSuperVGG16 96.78

Table 4.5: Performance of the networks on the BIRD dataset

ESC-50 NoAUG SGN SSA SSpA SSiA SuSA TSM

AlexNet 60.80 72.75 73.85 65.75 73.30 64.65 70.95
GoogleNet 60.00 72.30 73.70 67.85 73.20 71.70 73.55
VGG16 71.60 79.40 80.90 75.95 79.35 77.85 79.05
VGG19 71.30 78.95 78.80 74.10 78.00 76.40 77.45
ResNet50 62.90 76.65 75.95 70.65 77.20 73.95 77.40
ResNet101 59.10 75.25 75.65 70.05 77.50 72.30 74.85
Inception 51.10 71.60 74.70 63.45 75.55 71.10 70.65
GoogleNetPls 63.60 75.15 76.10 71.35 74.00 71.60 73.55
VGG16BS — 79.40 80.50 73.45 79.35 77.85 80.00
FusionLocal 75.95 84.75 85.30 80.25 85.25 82.25 85.30

FusionShort 86.45
FusionShortSuper 87.15
FusionSuper 87.55
FusionALL 87.30
FusionSuperVGG16 85.75

Table 4.6: Performance of the networks on the ESC-50 dataset

4.2. ENSEMBLES OF DIFFERENT DATA AUGMENTATIONS 47

CAT BIRD ESC-50

GA MEL CO GA MEL CO GA MEL CO

AlexNet 82.03 83.73 79.32 91.85 91.43 87.54 73.95 73.50 65.50
GoogleNet 74.07 84.07 77.97 90.71 88.96 86.95 73.75 73.25 66.15
VGG16 83.39 86.10 80.00 92.65 93.17 88.82 77.60 79.20 66.75
VGG19 85.76 83.73 77.97 92.93 93.22 89.07 76.40 77.55 65.85
ResNet50 82.03 83.05 75.93 90.87 90.74 86.98 75.80 76.05 67.75
ResNet101 82.71 82.37 79.32 91.15 91.00 87.28 75.00 74.80 64.90
Inception 79.66 84.75 77.63 89.53 89.86 87.35 73.95 72.55 67.50
GoogleNetPls 83.05 82.71 77.63 90.88 88.31 86.75 73.60 75.50 68.70
VGG16BS 85.42 87.80 81.02 93.09 93.22 89.43 77.80 78.95 67.50
FusionLocal 87.46 88.47 82.37 93.76 93.97 90.57 81.90 83.80 73.25

Table 4.7: Performance of the ensembles with different preprocessings

Descriptor BIRDZ CAT ESC-50

[177*] 96.45 89.15 85.85
FusionGlobal 96.82 90.51 88.65
FusionGlobal-CO 97.00 90.51 88.55
[178] 96.3 — —
[159] 95.1 — —
[179] 93.6 — —
[180] — 87.7 —
[181] — 91.1 —
[181] - CNN — 90.8 —
[164] 96.7 — —
[182] — — 94.10
[183] — — 89.50
[168] — — 87.10
[167] — — 88.50
[184] — — 84.90
[163] — — 86.50
[166] — — 83.50
[185] — — 83.50
[165] — — 81.95
Human Accuracy [162] — — 81.30

Table 4.8: state-of-the-art comparisons

48CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

represent the signal. I can draw the following concolusions, based on these
results:

1. There does not seem to be a clear winner among the data augmentation
strategies. Methods that perform well on a dataset, do not necessarily
transfer to other datasets.

2. VGG16 and VGG19 seem to be the best architectures.

3. DGT seems to be the best signal representation algorithm.

4. The fusion of different CNNs is better than the stand-alone approaches.

5. Although DGT outperformed the other image representations, adding
the networks trained with the other images representations to the en-
semble allows to improve the performance of the classifier.

6. The approach in [182] outperforms our results, although using addi-
tional data for training, hence the comparison is not fair.

Experimental results show that ensembles of fine-tuned CNNs trained
with different data augmentation and signal representation methods allow
to obtain results comparable with the state-of-the-art on multiple bench-
marks, including on the ESC-50 dataset, without the need of any specific
hyperparamenter tuning and are well suited to be an off-the-shelf method
that can be applied to audio classification.

4.3 Discussion

In this chapter, I evaluated methods to create ensembles of neural networks
using different techniques of data augmentation. In both cases, I compared
ensembles of different sizes, which is not a totally fair comparison. However,
it turns out that the best ensemble is not necessarily the largest, although
it is usually among the best ensembles.

In the case of pest classification using saliency maps, the best ensemble
is the largest one when it comes to the smallest dataset, suggesting that a
small dataset might lead to overfitting of the single networks and that a large
ensemble might reduce the noise in the classification. In the larger IP102
dataset, however, the best ensemble only contains the DenseNets, which are
the largest architectures and best performing ones on IP102. This suggests,
as it could be expected, that deleting the worst networks in an ensemble
leads to an improvement in the overall performance and that a key for a
good ensemble is having models whose stand-alone perfomance is similar.

Besides, one can see that the ensemble of multiple MobileNets outper-
forms the one of the stand-alone DenseNet in both datasets. Although this

4.3. DISCUSSION 49

comparison might seem unfair, MobileNetv2 has a number of flops of ap-
proximately 0.3 billion, while Densenet201 has 8 billion flops. Hence, an
ensemble of 10 Mobilenets has fewer flops than a single DenseNet201.

Similar conclusions can be drawn from the audio classification. The en-
sembles have different sizes, but the best performing ensemble among the
ones that only use a single spectrogram does not contain all the networks,
but only the best performing ones, which are the ones where a Super aug-
mentation is applied. This is true for all the three datasets. However, the
absolute best ensembles are created using different image representations of
the audio signal. I hypothize that this is due to the fact that those represen-
tations highlight different features of the audio sample and let the networks
learn different features, while preserving a good performance.

In general, in both cases creating an ensemble using different data aug-
mentation techniques allowed me to reach the state-of-the-art in both pest
datasets and on the BIRD dataset. Besides, I reached the second best result
on the very competitive ESC-50 among the ones reported in the literature
at that time, and I reached the third best resultthe CAT dataset. However,
it worth noticing that the ensemble described here obtain very good results
across multiple and diverse datasets.

50CHAPTER 4. DATA AUGMENTATION FOR BUILDING ENSEMBLES

Chapter 5

Ensembles of Different
Activation Functions

Activation functions are one of the key features of modern neural networks.
The research branch investigating which properties an activation shoud have
to increase a network performance is a hot topic in deep learning and I shall
summarize some of its main findings in this chapter.

The main topic of the chapter, however consists in investigating how
different activation functions can be used to create an ensemble of neural
networks. Using the taxonomy of Chapter 2, this technique falls among the
ensembles created using different models. I shall start by introducing some
of the most popular activation functions in the literature.

5.1 Activation Functions for Neural Networks

At first, neural networks were trained the hyperbolic tangent as activation
function. However, it has the drawback that this function is bounded in both
directions and rapidly saturates, leading to a very slow training. Hence Glo-
rot et al. [186] showed that deep networks could be efficiently trained using
the well known ReLU activation [187], although it is not differentiable every-
where. Using this activation, Krizhevsky et al. [104] managed to train the
famous AlexNet architecture. At that point, ReLU was the most popular
activation function in computer vision and research focused on finding vari-
ants that could improve its performance. The task is not easy and I could
say that ReLU is still the most popular activation due to its fast computa-
tion. The most popular modification is leaky ReLU, which was proposed in
[188]. It consists of a simple modification of ReLU which introduces a small,
positive slope for negative numbers. Given a > 0 a small real number, leaky
ReLU is defined as

f(x) = amin(0, x) + max(0, x). (5.1)

51

52CHAPTER 5. ENSEMBLES OF DIFFERENT ACTIVATION FUNCTIONS

The advantage of leaky ReLU is that it is more difficult for the optimiza-
tion process to get stuck into flat regions of the loss landscape. In [189]
this problem is also addressed, but in this case the slope of the activation
decreases exponentially and saturates at a value −a with a > 0. This new
function is called Exponential Linear Unit (ELU) and the definition of the
function is

f(x) = amin (0, ex − 1) + max (0, x) . (5.2)

Klambauer et al. [190] proposed a very small modification of ELU consist-
ing of a multiplication term and named it Scaled Exponential Linear Unit
(SELU). It is defined as

f(x) = λ (amin (0, ex − 1) + max (0, x)) . (5.3)

where a, λ are positive numbers. Although this modification seems nearly
irrelevant, the idea behind it is that by scaling a, λ the output distribution
of SELU can have zero mean and unit variance.

These activations have no learnable parameters. However, they can be
easily introduced in the definition of an activation function, requiring more
training resources, while leaving the complexity of the inference unchanged.
He et al. [191] proposed parametric ReLU (PReLU), which is a modification
of leaky ReLU where the parameter a is learnable and is different in every
channel. This allows the network to have a larger representation power and
was one of the keys to reach super-human performance on ImageNet. Its
authos report that PReLU always outperforms non-learnable activations on
the training set, but sometimes fail to generalize on the test set.

Many other learnable activations have been proposed. S-shaped ReLU
(SReLU) was proposed in [192] and, as its name suggest, is a learnable
modification of ReLU whose shape recall the letter S. Its formal definition
depends on the four learnable variables al, ar, tl, tr, with tl < 0 < tr and
obeys the following formula

f(x) =

⎧⎪⎨⎪⎩
tl + al(x− tl) x ≤ tl

x tl ≤ x ≤ tr

tr + ar(x− tr) tr ≤ x.

(5.4)

Agostinelli et al. [193] proposed a Adaptive Piecewise Linear Unit (APLU),
which is a learnable function that contains as many learnable parameters as
one wants and, using the right amount of parameters, it can represent any
piecewise linear function. This function is a piecewise linear function whose
slopes and non-differentiability points are learnable. It is defined as follows:

f(x) = max(0, x) +

n∑︂
i=1

aimax(0,−x+ bi) (5.5)

5.1. ACTIVATION FUNCTIONS FOR NEURAL NETWORKS 53

where ai and bi are learnable parameters. Their creators suggest to train this
function with a small L2−penalty on the slopes in order to avoid divergence.

Ramachandran et al. [194] proposed the Swish activation function, which
is defined as

f(x) = x · σ(βx) (5.6)

where σ is the sigmoid function and β is a parameter that can or cannot
be learnable. This function was found by its creators using reinforcement
learning and looking for the best performing function made by different
combinations of different building blocks.

Parametric Deformable Exponential Linear Unit (PDELU) was intro-
duced by Cheng et al. [195] and is defined as:

f(x) =

{︄
x ifx ≥ 0

α ·
(︂
[1 + (1− t)x]

1
1−t − 1

)︂
ifx < 0

(5.7)

It is designed to have zero mean, and this should improve the training
speed.

Mish is an activation function introduced in [196]. It is defined as

f(x) = x tanh
(︁
log
(︁
1 + e−αx

)︁)︁
(5.8)

where α is a learnable parameter.

Soft Root Sign (SRS) was introduced in [197]. It is defined as:

f(x) =
x

x
α + e

−x
β

(5.9)

where α and β are learnable and non-negative parameters. As PDELU, this
function is also designed to have zero mean for fast training. A modification
of SRS is the so-called Soft Learnable which is defined as:{︄

x x ≥ 0

α log
(︂
1+eβx

2

)︂
x < 0

(5.10)

where α and β are positive parameters. The parameter β is designed to
be optionally learnable, and I shall use both versions in this thesis, the former
without (SoftLearnable) and the latter with β learnable (SoftLearnable2).

It was not feasible for us to search the best hyperparameters for every
activation function, also considering that I do not use validation sets, hence
I use the paramenters that are reported to be the best in every paper where
these activations are introduced.

54CHAPTER 5. ENSEMBLES OF DIFFERENT ACTIVATION FUNCTIONS

j 1 2 3 4 5 6 7

bj 512 256 768 128 384 640 896

λj 512 256 256 128 128 128 128

Table 5.1: Fixed parameters of MeLU with k = 8 and M = 256

5.1.1 Mexican and Gaussian Linear Units

Mexican ReLU (MeLU) [198*], is a variant of ReLU that comes from the
Mexican hat functions. Mexican hat functions are defined as:

hb,λ(x) = max (0, λ− |x− b|) (5.11)

where b, λ are real numbers. MeLU is defined as:

f(x) = max(0, x) + a0min(0, x) +

k−1∑︂
i=1

aihbi,λi
(5.12)

which is the weighted sum of PReLU and Mexican hat functions. The
parameters k, ai, λi are fixed. Besides, the parameters ai, λi are set according
to a bisection algorithm. All the parameters ai are learnable.

The name Mexican hat derives from its shape, since it is null when
|x− b| > a and has a triangular shape with the maximum in a. Its drawing
recalls a Mexican hat.

The first hyperparameter is M , which is used to find the parameters
bi, λi. The first Mexican hat function reaches the maximum in 2 · M and
becomes zero for x < 0 and x > 4 ·M . The next two functions becomes zero
on the intervals [0, 2·M] and [2·M, 4·M]. The idea is that the next functions
every times split in half by the previous ones, in order to get a better and
better approximation. The representation power of MeLU is very similar
to the one of APLU, and in this sense these functions can be considered
similar, although the non-differentiability points of MeLU are not learnable.
In Table 5.1 with the first parameters of MeLU are reported.

In the rest of the thesis MeLU will be used with two different values
of k, which are 4 and 8. If k = 8 I refer to this function are wider MeLU
(wMeLU).

The main propoerties of MeLU are the following

1. MeLU is continuous and piecewise differentiable.

2. If all the learnable parameters are zero, MeLU is equal to ReLU. This
is a useful property because MeLU can replace ReLU in a pretrained
network allowing an efficient transfer learning.

3. The gradient of MeLU is just the sum of the gradients of its component
functions.

5.2. CHANGING THE ACTIVATION FUNCTIONS 55

4. The gradient of MeLU with respect to the learnable parameters is
bounded and it is null outside a small region, except for the first pa-
rameter, which is the one relative to min(0, x).

Gaussian Linear Unit, also called GaLU [199*], is an activation based on
Gaussian-like functions and inspired by MeLU:

ϕb,λ
g = max(λ ·M − |x− b ·M |, 0)

+ min(x− a ·M − 2λ ·M − λ ·M, 0)
(5.13)

where λ, b,M are real numbers. GaLU is defined as:

f(x) = max(0, x) + a0min(0, x)
k−1∑︂
i=1

aiϕbi,λi
(5.14)

which is the equivalent of MeLU for Gaussian-type functions and their
parameters are the same as ReLU. In the experiments I call smaller GaLU
(sGaLU) the implementation with k = 2 and GaLU the one with k = 4.

5.2 Changing the Activation Functions

In this section I present a simple way to create ensembles of different and
well-performing networks. The method was introduced by Maguolo et al. in
[198*]. The idea consists in choosing a network architecture and selecting a
pool of different activation functions. Then, for every function in the pool,
I can build a new network whose activation function is the new one in every
activation layer. In this way, multiple different networks have been created
from just on original architecture. It is worth noticing that if the original
network is pretrained on a large dataset, all the new networks can exploit
transfer learning. In particular, this holds for those learnable activation that
have a possibile initialization that coincides with ReLU, i.e: for most of the
learnable activations introduced before. I call this approach Fusion.

A different approach that I introduced [199*] consists in a very similar
idea, that has the advantage to create a potentially much larger ensemble.
This technique consists in substituting all the activations in the pool with a
new one randomly selected from the pool in every layer. The big difference is
that this time the activation is different in every layer. Since this procedure
is random, it potentially yields nNl

p different networks, where Nl, np are
respectively the number of activation layers and the number of activations
in the pool. Since they both are easily larger than 10, there are billions of
different architectures that can be found. In general, I create ensembles of
size smaller than 100.

56CHAPTER 5. ENSEMBLES OF DIFFERENT ACTIVATION FUNCTIONS

Dataset Description Classes Samples

CH Chinese Hamster Ovary Cells [150] 5 327

HE 2D HELA dataset [150] 10 862

LO Locate Endogenous dataset [200]. 10 502

TR Locate Transfected dataset [200]. 11 553

RN Fly Cell dataset [151] 10 200

TB
Aging of Terminal bulb [151]: images of
C. elegans terminal bulb at 7 ages

7 970

LY Lymphoma dataset [151] 3 375

MA
Muscle aging [151]. C. elegans muscles at
4 ages

4 237

LG

Liver gender [151]. Liver tissue sections
from 6-month male and female mice on a
caloric restriction diet. The 2 classes are
male and female.

2 265

LA
Liver aging [151]. This dataset shows liver
tissue sections from female mice on ad-
libitum diet of 4 ages

4 529

CO
histological images of human colorectal
cancer [201].

8 5000

BGR breast grading carcinoma [202]. 3 300

LAR Laryngeal dataset [200] 3 1320

Table 5.2: Datasets used in the experiments

5.3 Results

In this section I report the experiments that I ran in [198*] and in [199*]. I
tested the stand-alone networks as well as various ensembles. Besides, MeLU
and GaLU are activation functions introduced in those papers for the first
time. In Table 5.3, I introduce the datasets used in the experiments.

In Table 5.3, I report the results of the stand alone activation functions.
It is clear that there is not a clear winner, although wMeLU is the best on
average when M is set to 255, which is the maximum value of the input
and the choice suggested by its authors. It performs worse when M is set to
1. The experiments were run using ResNet50. With terms StocSmall and
StocLarge I mean the networks coming from one iteration of the Stochas-
tic algorithm of Section 5.2. The difference between the Small and Large
depends on the pool of activations. The large pool contains all the activa-
tions described above, while small only contains ReLU, leaky ReLU, ELU,
PReLU, APLU, MeLU (both values of k), SReLU, GaLU (both values of
k).

In Table 5.3 I report the results of various ensembles. The nomenclature
used in the table an be summarized as follows.

5.4. DISCUSSION 57

Activation CH HE LO TR RN TB LY MA LG LA CO BG LAR Avg Rank

ReLU 93.5 89.9 95.6 90.0 55.0 58.5 77.9 90.0 93.0 85.1 94.9 88.7 87.1 84.55 6

leakyReLU 89.2 87.1 92.8 84.2 34.0 57.1 70.9 79.2 93.7 82.5 95.7 90.3 87.3 80.30 22

ELU 90.2 86.7 94.0 85.8 48.0 60.8 65.3 85.0 96.0 90.1 95.1 89.3 89.9 82.80 20

SReLU 91.4 85.6 92.6 83.3 30.0 55.9 69.3 75.0 88.0 82.1 95.7 89.0 89.5 79.02 24

APLU 92.3 87.1 93.2 80.9 25.0 54.1 67.2 76.7 93.0 82.7 95.5 90.3 88.9 78.99 25

GaLU 92.9 88.4 92.2 90.4 41.5 57.8 73.6 89.2 92.7 88.8 94.9 90.3 90.0 83.28 17

sGaLU 92.3 87.9 93.2 91.1 52.0 60.0 72.5 90.0 95.3 87.4 95.4 87.7 88.8 84.13 8

PReLU 92.0 85.4 91.4 81.6 33.5 57.1 68.8 76.3 88.3 82.1 95.7 88.7 89.6 79.26 23

MeLU 91.1 85.4 92.8 84.9 27.5 55.4 68.5 77.1 90.0 79.4 95.3 89.3 87.2 78.76 27

wMeLU 92.9 86.4 91.8 82.9 25.5 56.3 67.5 76.3 91.0 82.5 94.8 89.7 88.8 78.95 26

softLearnable2 93.9 87.3 93.6 92.5 46.0 60.3 69.0 89.5 94.6 86.1 95.0 89.6 87.0 83.41 15

softLearnable 94.1 87.4 93.4 90.3 47.0 59.1 67.7 88.3 95.0 85.5 95.5 89.3 88.2 83.13 19

pdeluLayer 94.1 87.2 92.0 91.6 51.5 56.7 70.9 89.5 96.3 86.6 95.0 89.6 88.1 83.77 12

learnableMishLayer 95.0 87.5 93.2 91.8 45.0 58.4 69.0 86.6 95.3 86.6 95.4 90.0 88.4 83.24 18

SRSLayer 93.2 88.8 93.4 91.0 51.5 60.1 69.8 88.7 95.0 86.4 95.7 88.3 89.4 83.94 10

swishLearnable 93.5 87.9 94.4 91.6 48.0 59.2 69.3 88.7 95.3 83.2 96.1 90.0 89.3 83.57 14

swishLayer 94.1 88.0 94.2 90.7 48.5 59.9 70.1 89.1 92.6 86.1 95.6 87.6 87.6 83.39 16

SReLU(255) 92.3 89.4 93.0 90.7 56.5 59.7 73.3 91.7 98.3 89.0 95.5 89.7 87.9 85.15 4

APLU(255) 95.1 89.2 93.6 90.7 47.5 56.9 75.2 89.2 97.3 87.1 95.7 89.7 89.5 84.35 7

GaLU(255) 92.9 87.2 92.0 91.3 47.5 60.1 74.1 87.9 96.0 86.9 95.6 89.3 87.7 83.73 13

sGaLU(255) 93.5 87.8 95.6 89.8 55.0 63.1 76.0 90.4 95.0 85.3 95.1 89.7 89.8 85.09 5

MeLU(255) 92.9 90.2 95.0 91.8 57.0 59.8 78.4 87.5 97.3 85.1 95.7 89.3 88.3 85.26 2

wMeLU(255) 94.5 89.3 94.2 92.2 54.0 61.9 75.7 89.2 97.0 88.6 95.6 87.7 88.7 85.27 1

StocSmall 90.2 90.0 94.2 91.6 54.5 62.0 77.3 90.8 95.7 90.5 95.1 89.0 87.1 85.23 3

StocSmall(255) 93.2 88.5 94.4 91.6 51.5 59.1 73.9 88.3 94.0 89.1 95.1 86.7 88.0 84.11 9

StocLarge(255) 94.1 87.2 93.0 87.3 54.5 60.1 72.3 89.2 94.7 83.6 94.6 89.0 89.9 83.80 11

Table 5.3: Performance of stand-alone methods

1. The terms that start with ”Fus” indicate an ensemble performed using
the Fusion method introduced in Section 5.2. The approaches start
with ”Sto” indicate that the fusion is done using the Stochastic method
introduced in the same section-

2. The approaches devide among those that use a small pool of activations
(Small) and a large pool of activations (Large). Besides, as a baseline,
I also use ensemble made by ReLU networks only.

3. The number between parenthesis indicates the value of M for the
networks in the ensemble, if it exists.

4. the plus operator indicates sum rule between the two methods.

5.4 Discussion

I now draw some conclusions based on the results repoted in Tables 5.3 and
5.4.

1. The ensemble models consistently outperform any stand-alone net-
work. This was actually expected, but it is worth noticing.

2. ReLU is one of the best functions among the ones tested, but not the
best. The one with the highest performance is wMeLU(255), that I
proposed in [198*]. Also MeLU(255) performs very well. No other
parameters other than k = 4 and k = 8 have been tested.

58CHAPTER 5. ENSEMBLES OF DIFFERENT ACTIVATION FUNCTIONS

Activation CH HE LO TR RN TB LY MA LG LA CO BG LAR Avg Rank

FusOldAS10 93.5 90.7 97.2 92.7 56.0 63.9 77.6 90.8 96.3 91.4 96.4 90.0 90.0 86.67 20

FusOldAS10(255) 95.1 91.3 96.2 94.2 63.0 64.9 78.7 92.5 97.7 87.6 96.5 89.7 89.8 87.46 13

FusFullAS16(255) 97.2 91.3 97.4 95.5 60.0 64.5 76.0 94.2 98.3 89.1 96.8 90.0 90.3 87.74 12

StoOldAS10 95.4 91.3 95.8 95.1 63.0 64.2 78.9 93.8 98.7 91.1 96.5 90.3 90.2 88.02 10

StoOldAS(255) 96.6 90.8 97.0 96.0 55.5 65.1 78.1 92.1 98.3 90.1 96.3 88.7 90.0 87.27 14

StoOldAS10(255) 96.9 91.2 96.8 96.2 58.5 66.6 79.7 92.5 98.3 91.6 96.6 89.7 91.1 88.13 9

StoOldAS15(255) 97.8 91.5 96.6 95.8 60.0 65.8 80.0 92.9 99.0 91.2 96.6 90.7 91.0 88.37 8

StoFullAS5(255) 98.1 92.3 96.6 95.5 64.0 64.6 83.2 93.8 99.0 92.6 96.6 91.3 92.1 89.20 6

StoFullAS10(255) 98.8 92.9 97.6 95.8 66.5 65.7 84.3 93.7 99.3 94.1 96.8 90.3 92.3 89.85 4

StoFullAS15(255) 98.8 93.4 97.8 96.4 65.5 66.9 85.6 92.9 99.7 94.3 96.6 91.3 92.3 90.11 2

StoBaseAS5(255) 99.4 91.0 97.6 95.6 61.5 64.1 80.0 88.3 94.7 91.8 96.5 90.3 90.4 87.78 11

StoBaseAS10(255) 99.4 93.5 97.8 95.6 65.5 65.8 81.3 89.6 96.3 94.9 96.7 91.0 90.8 89.09 7

StoBaseAS15(255) 99.4 93.9 98.0 96.0 64.5 66.4 83.2 90.0 96.0 93.9 96.7 92.0 91.3 89.33 5

StoBaseAS8(255)+
StoFullAS7(255)

99.4 93.8 98.0 96.0 67.5 66.3 83.5 92.1 98.0 95.1 96.7 91.7 91.7 89.98 3

StoBaseAS15(255)+
StoFullAS15(255)

99.4 93.8 98.0 96.5 67.5 67.0 85.9 91.2 98.7 94.9 96.9 92.0 92.3 90.31 1

FusOldAS3(255) 93.9 91.5 94.8 93.1 58.5 63.5 77.6 91.3 98.3 88.0 96.3 89.0 89.4 86.55 21

StoOldAS3(255) 96.3 90.9 95.6 95.1 54.0 62.9 78.7 92.5 98.7 90.9 96.2 90.0 90.5 87.10 16

FusRelu5 95.0 90.5 96.2 94.7 56.0 63.7 77.1 94.1 95.6 89.1 96.4 89.0 89.5 86.68 19

FusRelu10 94.5 91.6 95.8 94.5 56.5 64.5 76.0 93.3 97.7 89.1 96.6 89.6 90.2 86.91 17

FusRelu15 95.4 91.1 96.2 95.1 58.5 64.8 76.0 92.9 97.3 89.3 96.3 90.0 90.4 87.17 15

FusRelu30 95.4 91.5 96.2 94.7 59.0 63.9 75.7 92.5 97.3 88.2 96.4 89.0 90.1 86.91 18

Table 5.4: Performance of ensemble methods

3. The stochastic networks with multiple activations have a performance
which is comparable to the original network.

4. Nevertheless, the Stochastic ensembles outperform the Fusion ensem-
bles for ensembles of the same cardinality.

5. Both Fusion and Stochastic ensembles consistently outperform the
ReLU ensembles with the same cardinality. This result in particu-
lar is important, because the baseline is strong, and it proves that
introducing differences in the ensemble components allows to obtain
high performances when the base networks have similar performances.

6. The ensemble size turns out to be a relevant factor, as larger ensembles
tend to perform better. However, there seems to be a plateau around
15, as ensembles of that size perform as well as 30 networks ensembles.

This method to create ensembles is very general and can be applied to
every neural network to boost its performance. The result proposed in this
chapter does not rely on new theoretical analysis that I made, but I was able
to prove its efficiency by experimenting on a large number of small datasets.
This simple idea allows to have multiple versions of the same architecture to
work well on small datasets, in particular when combined in an ensemble.
This is particurarly useful with small datasets where neural networks often
tend to overfit the data.

This does not seem to happen with ensemble models, despite the fact that
I did not use any regularization methods and I did not have a validation set.
The networks were trained for a fixed number of epochs on the new dataset.

5.4. DISCUSSION 59

Besides, I experimented with a large number of ensembles and compared
them with other baseline ensembles, hence this is one of the few works in
the literature that scientifically test the performance gain from introducing
diversity in a class of deep neural networks ensembles.

60CHAPTER 5. ENSEMBLES OF DIFFERENT ACTIVATION FUNCTIONS

Chapter 6

Ensembles of Different
Trainings

Minimizing the training loss of CNNs is a task that is usually performed
using gradient descent methods. The main example of this is stochastic
gradient descent (SGD) [203]. However, SGD surely ends in global minima
only if the optimization landscape is convex. However, in general, it is not
and it has a large number of local minima where SGD might get stucked.
This is why many modifications of SGD have been proposed [204, 205, 206,
207, 208, 209]. The goals of these modifications are finding better minima
of the training loss and to converge to minima that generalize well in the
test set. The real goal would be the second one, but it is also the most
difficult. Hence, as it is common in deep learning, one can try to improve
the performance on the test set by reaching the lowest possibile training loss,
among those that can be reached with a given model. However, this does
not always happens, and minimization algorithms that find better minima
from the training loss point of view, might fail to generalize on the test set.

A straightforward modification of the usual SGD consists using its mo-
mentum to try to overcome local minima [204]. Including the momentum,
and in general the past values of the gradient, is the idea of most SGD mod-
ifications, and of all the ones that I shall use here. For example, AdaGrad
[206] and its modification Adadelta [207] also use the momentum of the gra-
dient. The main idea behind these algorithms is decreasing the learning rate
of variables with large partial derivatives.

Adam [208] is one of the most popular algorithms for training neural
networks. The idea behind it is to keep track of the moving average of the
gradient and of its square. If the gradient changes often, in particular if it
changes its sign often, the average of the square of the gradient will be large
even if the average of the gradient is low. Hence, dividing the gradient by
the square root of the average of its squares allows to normalize the gradient
and limits the training step to the learning rate. Adam reaches excellent

61

62 CHAPTER 6. ENSEMBLES OF DIFFERENT TRAININGS

results in minimizing the training loss, but it is reported to fail to generalize
well on the test set with respect to a standard SGD [210]. In [211], they
first train the networks on Adam to reach a good training loss, and then
they switch to SGD to obtain better generalization. The modifications of
Adam that have been proposed usually try to improve its generalization on
the test set [209, 212, 213]. With Nadam [212], they introduced Nesterov
momentum into Adam. AMSGrad [213] is designed to guarantee that the
step size of the optimization path never increases. Recently, diffGrad [209]
was introduced with the idea of making the step proportional to the gradient
of the loss; in the experiments that [209] reported showed, diffGrad managed
to reach state of the art results.

In this chapter, I show how the optimization process affects the networks
performance: Following my work [214*], I experiment which optimization
method performs better on three medical datasets on three image classifica-
tion tasks, and I see the affect of creating an ensemble using the networks
trained in different ways.

I take a given pretrained model, ResNet50, and I trained it several times
to obtain a large ensemble of networks. As a preliminary section, I introduce
the optimization algorithms that will be used.

6.1 Optimization Algorithms

6.1.1 Adam

Adam was introduced in [208]. The main idea behind it is to use the first
two moments of the gradient to keep track of its mean and variance, and
decrease the learning rate when the variance is large. Its update rule is a
function of the value of the exponential moving averages of the gradient and
its square. To be more precise, they define the moving averages mt (the first
moment) and ut (the second moment) as:

mt = ρ1mt−1 + (1− ρ1) gt (6.1)

ut = ρ2ut−1 + (1− ρ2) g
2
t (6.2)

where gt is the gradient at time t, the square on gt is meant to be
component-wise, ρ1 and ρ2 are hyperparameters that are usually set to 0.9
and 0.999 respectively, and control the forget rate of moving averages. The
moments are initialized to 0 in the first step. i.e: m0 = u0 = 0 . Since in
the first steps the value of moving averages will be very small due to their
initialization to zero, their value is then normalized:

m̂t =
mt

(1− ρt1)
(6.3)

6.1. OPTIMIZATION ALGORITHMS 63

ût =
ut

(1− ρt2)
(6.4)

The final update for each parameter of the network is:

θt = θt−1 − λ
m̂t√
ût + ϵ

(6.5)

where λ is the learning rate, ϵ is a very small positive number to avoid
potential divisions by zero (usually set to 10−8) and all the operations are
component-wise.

While gt might have positive or negative components, g2t is always posi-
tive. Hence, if the gradient changes sign often, m̂t will be much lower than√
ût, lowering the resulting training step.

6.1.2 AMSGrad

AMSGrad is a modification of Adam proposed by Reddi et al. [213]. Its for-
mulation remembers the maximum of the past squared gradients to update
the parameters rather than exponential average as in Adam. Starting from
Equations 6.1 and 6.2, AMSGrad is defined by the non decreasing parameter

u̇t = max (u̇t−1, ut) (6.6)

The parameter update of the network is:

θt = θt−1 − λ
m̂t√
u̇t + ϵ

(6.7)

6.1.3 diffGrad

The diffGrad algorithm was introduced by Dubey et al. [209]. It considers
the difference of the gradient to decide the learning rate. The key steps of
the algorithm are defined this way by the authors: they define the absolute
difference of two consecutive steps of the gradient as:

∆gt = |gt−1 − gt| (6.8)

The update of every parameter of the network θt the same as in Equation
6.5 where m̂t, ût are those in Equations 6.3 and 6.4, and the learning rate is
passed through the Sigmoid of ∆gt :

ξt = σ (∆gt) (6.9)

θt+1 = θt − λξt
m̂t√
ût + ϵ

(6.10)

where σ(·) is the sigmoid function.

64 CHAPTER 6. ENSEMBLES OF DIFFERENT TRAININGS

6.2 Methods

I shall compare several optimization methods for training ResNet50. Be-
sides, they introduce and evaluate the following variants of the Adam opti-
mization method:

• DGrad, which is a variant of diffGrad based on moving average of the
element-wise squares of the gradients;

• Cos#1 and Cos#2, which are variants of DGrad based on a cyclic
learning rate;

The proposed approaches have different methods for defining ∆gt, then
6.10 is applied as in diffGrad.

6.2.1 DGrad

DGrad uses the ideas of diffGrad defining the absolute difference between
two steps of the gradient. The idea is that if the gradient rapidly changes,
the training might be unstable and the step size should be reduced. It is
defined as:

∆agt = |gt − avgt| (6.11)

where avgt is the moving average of the squares of the gradients. Then,
they normalize ∆agt by its maximum as

∆agtˆ =
∆agt

max (∆gt)
(6.12)

and ξt is defined as:

ξt = σ (4∆agtˆ) (6.13)

The parameter update is as in Equation 6.5. The reason behind the 4x
is to enlarge the range of the sigmoid function.

6.2.2 Cos#1 and Cos#2

These two algorithms are variants of Dgrad that are based on cyclic learning
rates. The cycle of the learning rate is defined by the following equation:

lrt = 2−
⃓⃓⃓⃓
cos

(︃
πt

steps

)︃⃓⃓⃓⃓
e−0.01(mod(t,steps)+1) (6.14)

Where steps = 30 is the period. The cycle is shown in Figure, 6.2.2

6.2. METHODS 65

Figure 6.1: Cyclic learning rate

In Cos#1 lri is a multiplier of ∆aĝt in the definition of ξt, which now
reads as:

ξt = σ (4 · lrt ·∆agtˆ) (6.15)

In Cos#2 the definition of ξt also has an additive factor lrat used to
avoid a null learning rate:

lrat =

(︃⃓⃓⃓⃓
cos

πt

steps

⃓⃓⃓⃓
e−0.01(mod(t,steps)+1)

)︃
(6.16)

ξt = σ (2lrtagtˆ) + σ (4lrat)− 0.5 (6.17)

The update rule of each parameter θt of the network is performed as in
Equation 6.2.2.

These are the hyperparamenters used to train all the CNNs:

• Batch size = 30;

• Number of epochs = 20;

• global learning rate = 0.001;

• gradient decay factor = 0.9;

• squared gradient decay factor = 0.999;

• loss function = cross entropy.

A simple data augmentation consisting of random reflections and random
scales on both the axis are performed.

66 CHAPTER 6. ENSEMBLES OF DIFFERENT TRAININGS

6.3 Experiments and Discussion

Here I list the datasets that I used to validate our approaches:

• HeLa, the 2D HELA dataset [215] contains 832 images belonging 10
classes. As in the existing literure, I use a 5 fold cross validation
algorithm.

• BG, the Breast Grading Carcinoma [202] contains 300 color images
divided into 3 labels that represent grades 1-3 of invasive ductal car-
cinoma of the breast. Again, I use a 5 fold cross validation protocol
as in the existing literature.

• LAR, the Laryngeal data set [200] includes 1320 images of healthy
and early-stage cancerous laryngeal tissues, split into 4 labels: He
(healthy), Hbv (hypertrophic vessels), Le (leukoplakia) and IPCL (in-
trapapillary capillary loops). This dataset has already been divided
into 3 folds by its authors.

In Table 6.1 I show the performance of the average on 7 experiments of
the different approaches on the 3 datasets using a stand-alone ResNet50.

Table 6.1: Performance of stand-alone CNN
Accuracy HeLA BG LAR

avg std avg std avg std

SGD 92.09 0.66 88.33 1.19 93.03 1.11
Adam 55.90 29.66 86.57 5.66 92.15 5.39
diffGrad 79.00 19.83 89.00 4.77 93.01 3.05
DGrad 75.25 22.56 89.29 4.21 91.07 3.79
Cos#1 78.92 18.28 88.38 3.96 92.19 3.02
Cos#2 66.25 28.74 88.05 6.36 93.04 2.99

The performance reported in Table 6.1 show that Adam generalizes worse
than SGD. On average, the variants of Adam obtain better accuracy than
original Adam.

In Table 6.2 I report the performance of deep ensembles obtained by the
fusion with the sum rule of several CNNs. The number of classifiers included
in the ensembles is enclosed in parentheses.

From Table 6.2 I can see the following facts:

• The accuracy obtained by Adam-based approaches strongly improves
using ensemble of CNNs

• The accuracy of DGrad(14) is very close to the one of SGD(14);

• Adam variants are better than Adam;

6.3. EXPERIMENTS AND DISCUSSION 67

Table 6.2: Performance of ensemble of CNN
Accuracy HeLA BG LAR

Adam(7) 74.30 89.67 96.29
diffGrad(7) 94.88 91.67 95.91
DGrad(7) 95.35 92.67 94.85
Cos#1(7) 95.00 92.67 95.38
Cos#2(7) 91.05 92.00 95.98
DGrad(7) + Cos#1(7) 95.81 92.33 95.91
DGrad(7) + Cos#1(7) + Cos#2(7) 96.05 92.67 96.06
DGrad(7) + Cos#1(7) + diffGrad(7) 96.28 92.33 96.06
DGrad(14) 95.70 92.67 95.68
DGrad(14) + Cos#1(7) 95.58 92.67 96.29
SGD(14) 96.05 94.00 94.70
SGD (7) 95.70 94.00 94.32
SGD(7) + DGrad(7) 96.16 94.00 95.38
SGD(14) + DGrad(7) + Cos#1(7) 96.74 94.33 95.98
SGD(14) + DGrad(7) + Cos#1(7) + diffGrad(7) 96.98 94.33 96.14

• The fusion of CNNs trained using different optimization algorithms
(i.e. SGD with Adam) allows to improve the performance: SGD(7) +
DGrad(7) is better than SGD(14) despite they have the same size. I
believe that combining networks trained using different optimization
methods is an effective method to create ensembles.

• SGD(14) + DGrad(7) + Cos#1(7) obtains an F-measure of 95.99 in
LAR, while SGD(14) + DGrad(7) + Cos#1(7) + diffGrad(7) reaches
an F-measure of 96.15. These results outperform the previous state-
of-the-art that I reported in [37*] (95.20).

These results, however, are not as strong as the ones of the previous chap-
ters in proving the efficiency of deep ensembles. My experients involved a
smaller number of datasets and my aim was not to compare my work against
other ensemble methods. This work focused on creating high performing en-
sembles for medical imaging applications. This goal was reached since these
ensembles obtain results that were, in the worst case scenario, competitive
with the state-of-the-art on the datasets that we considered. Hence, these
methods have been proved to be very effective.

68 CHAPTER 6. ENSEMBLES OF DIFFERENT TRAININGS

Chapter 7

Ensembles of Siamese
Networks

Siamese Neural Networks are a class of neural networks used for classification
[216]. They are made by two identical backbone networks that share their
weights and whose input is a couple of input samples. In our case, they will
be two identical CNNs and the inputs will be two images. Each backbone
CNN processes one image, returning a vector of features for each input
image. These two feature vectors are then subtracted and the absolute value
is fed to a fully connected layer followed by a sigmoid function, returning
a value in (0, 1). The goal of the architecture is returning a value of 0 if
the two images belong to the same class, and a value of 1 if their class is
different. A scheme of a general Siamese network can be seen in Figure 7.1.

Figure 7.1: Siamese Network

In this chapter, I follow the work done in [217*] to create an ensemble
of Siamese networks to build a dissimilarity space for image classification.

7.1 The Dissimilarity Space

In this Section I introduce the details of the method of the classification in
all its steps. I first give a short overview of the method. A set of Siamese

69

70 CHAPTER 7. ENSEMBLES OF SIAMESE NETWORKS

Networks are trained on a given training set. I then iterate on the labels
of the classification problem and I apply a clustering algorithm to all the
training images. In this way, I find a subset of centroids, that I shall call
prototypes, that I use to represent the training set. Then, for each image in
the training set, I calculate the score of all our Siamese networks against all
the prototypes of all the classes. In this way, for each input image I get a
vector of dissimilarities that I use as a feature vector. I say that this vector
belongs to a dissimilarity space. Then, I train a SVM to classify the sample.
For inference, I perform the same dissimilarity evaluation and use the SVM.

The idea behind the prototype selection is that calculating the dissimi-
larity between every couple of images in the training set would require too
much computation time, hence I need to select a representative subset of
the training samples. This decision is unsupervised in the sense that it uses
clustering algorithms like k-means and k-medoids [218] on the raw input,
but among the inputs belonging to the same class, hence the training set
split is supervised. The resulting prototypes can be evaluated against a new
sample to test which ones are the most similar. Letting x1, ..., xk·n be the
prototypes, where n is the number of classes and k is the number of proto-
types selected for each class, the dissimilarity vector of an input image x is
given by

F (x) =

⎛⎝ S(x, x1)
· · ·

S(x, xkn)

⎞⎠ (7.1)

where S(·, ·) is the Siamese network. On top on that, I train a SVM for
classification. The scheme of method can be seen in Figure 7.2.

I apply this method to sound classification. In order to have input images
suitable for our Siamese Networks, I extract the spectrograms of the audio
samples. Besides, I also try to apply Heterogeneous Auto-Similarities of
Characteristics (HASC) to the spectrograms to highlight different features
of the input.

HASC [219] combines linear relations by covariances (COV) and nonlin-
ear relations by entropy with mutual information (EMI). The reasons to use
covariance matrices are the following: they have low dimension; they are ro-
bust to noise, except when it comes to outlier pixels; the covariance among
two features can capture the features of the joint probability distribution.
HASC tackles these issues by combining COV and EMI. I refer to [219] for
a more detailed introduction to HASC.

7.2 Siamese Architectures

In order to create an ensemble, I used several Siamese architectures that I
obtained by varying the backbone network. In this section I give the details
of the networks that I used.

7.2. SIAMESE ARCHITECTURES 71

Figure 7.2: Siamese Network

72 CHAPTER 7. ENSEMBLES OF SIAMESE NETWORKS

The first one, summarized in Table 7.1 is a simple convolutional network
that I created.

Layers Filter Size Number of Filters

2D Convolution 10 × 10 64

ReLU

Max Pooling 2 × 2

2D Convolution 7 × 7 128

ReLU

Max Pooling 2 × 2

2D Convolution 4 × 4 128

ReLU

Max Pooling 2 × 2

2D Convolution 5 × 5 64

ReLU

Fully Connected Returning a 4096-Dimensional Vector

Table 7.1: First backbone

The second backbone network, that is summarized in Table 7.2, is deeper
than the first one and is charachterized by the presence of leaky ReLU as
activation function.

In Table 7.3, I report the layer structure of the third network. This is
the shallowest architecture among the ones that I tested. The hidden layers
dimension rapidly decreases thanks to many max pooling layers.

In Table 7.4 I describe the last network. In this backbone network I
tried to artificially create a bottleneck in the number of channels. This is
usually not recommended when creating CNN architectures, but my aim is
to create four networks that are different enough from each other to be used
in an ensemble. Hence, I inserted this new feature in the fourth network.

7.3 Clustering Methods

I use clustering of the images to find a subset of data samples that is rep-
resetative of the data set. I suppose that centroids contain the relevant
features of patterns belonging to a cluster. The more centroids I use, the
more information I keep about the data set, but doing so I also increase the
computational requirements and the risk of overfitting.

I try both supervised and unsupervised approaches. We both use su-
pervised and unsupervised versions of the algorithms, in the sense that all
these algorithms are by their nature unsupervised, but I apply them to the
training set as a whole and also to the different subsets of samples that have
the same label. I shall now describe them.

7.3. CLUSTERING METHODS 73

Layers Filter Size Number of Filters

2D Convolution 5 × 5 64

leaky ReLU

2D Convolution 5 × 5 64

leaky ReLU

Max Pooling 2 × 2

2D Convolution 3 × 3 128

leaky ReLU

2D Convolution 3 × 3 128

laeky ReLU

Max Pooling 2 × 2

2D Convolution 4 × 4 128

leaky ReLU

Max Pooling 2 × 2

2D Convolution 5 × 5 64

leaky ReLU

Fully Connected Returning a 2048-Dimensional Vector

Table 7.2: Second backbone

Layers Filter Size Number of Filters

2D Convolution 7 × 7 128

ReLU

Max Pooling 2 × 2

2D Convolution 5 × 5 128

ReLU

Max Pooling 2 × 2

Max Pooling 2 × 2

Fully Connected Returning a 4096-Dimensional Vector

Table 7.3: Third backbone

74 CHAPTER 7. ENSEMBLES OF SIAMESE NETWORKS

Layers Filter Size Number of Filters

2D Convolution 7 × 7 128

ReLU

Max Pooling 2 × 2

Max Pooling 2 × 2

2D Convolution 5 × 5 256

ReLU

2D Convolution 3 × 3 64

Max Pooling 2 × 2

2D Convolution 3 × 3 128

ReLU

2D Convolution 5 × 5 64

ReLU

Fully Connected Returning a 4096-Dimensional Vector

Table 7.4: Fourth backbone

7.3.1 K-Means

K-means is probably the most popular clustering algorithm. It divides the
data points into k disjoint clusters based on which centroid is te closest to
the a data point. I use the Euclidean distance as a metric.

The algorithm can be summarized as follows.

1. Randomly select a subset of data points to initialize the centroids.

2. Compute the distances between every data point and the centroids,
then for each data point select the closest centroid and put it that
centroid cluster.

3. Find the new centroid of every cluster based on which point is, on
average the closest to other points of the cluster.

4. Repeat steps 2 and 3 until a maximum number of steps is reached or
the configuration is stable.

7.3.2 K-Medoids

K-medoids is an algorithm very similar to k-means but different in the sense
that it divides the data points into clusters by minimizing the sum of the
distances between a given data point and the center of the cluster that
contains that data. The main difference between k-means and k-mediods
is that in k-mediods the centroid of the cluster is a point belonging to the
cluster, while in k-means it can be a generic point of the Euclidean space. I
shall now summarize how k-medoids work.

7.3. CLUSTERING METHODS 75

1. Randomly select the medoids among the data points.

2. Test each point as potential medoid of its cluster and select the one
with the lowest average distance.

3. Assign every data point to the cluster represented by its closest medoid.

4. Repeat steps 2 and 3 until convergence or until a maximum number
of steps is reached.

7.3.3 Spectral Clustering

This method consists in dividing the data into clusters using the adjacency
matrix representing the undirected similarity graph of the data points. Each
data point is a node of the graph and a conncection between two points
means that the similarity among the two is above a threshold, which I set to
0. In order to describe the algorithm I first need to introduce some objects. I
call M the similarity matrix that contains the similarity among the couples
of data points. The degree matrix D, which is a diagonal matrix whose
terms on the diagonal is the sum of the corresponding row in M . Lastly, I
define the Laplacian matrix as D −M . I now summarize how the method
works.

1. I start with a similarity definition given by nearest-neighbour, i.e: a
point is similar to one of its nearest neighbours, if there is more than
one.

2. Calculate the Laplacian matrix.

3. Let V be the matrix of the eigenvectors of L.

4. Apply k-means to the columns of V .

5. Cluster the original pattern according to the assignments of their cor-
responding rows.

7.3.4 Hierarchical Clustering

Hierarchical clustering divides the data point using a tree of clusters. The
idea is to subsenquently divide the data points that are in a cluster into
small subclusters. The algorithm can be summarized as follows:

1. Use a Euclidean dstance to find the similarity between every pair of
data points in the dataset.

2. Divide the data points into two clusters using k-means.

3. Repeat steps 1 and 2 on the two clusters until a convergence criterion
is satisfied or a given depth of the tree is reached.

76 CHAPTER 7. ENSEMBLES OF SIAMESE NETWORKS

7.4 Results

For the experimental evaluation, I used the BIRD and CAT datasets of
Chapter 4. Here I report the experimental results obtained by several en-
sembles of Siamese networks trained with different preprocessings, with dif-
ferent clustering algorithms and with different network backbones.

In Table 7.5 I use K-means clustering for all the experiments. All the
ensembles are fused together using the sum rule between methods trained
with a different number of prototypes, but using only the first two net-
work backbones. The data preprocessing also changes, since both classical
spectrograms and HASC images are used in this context.

Name
Input im-
age

Network
topology

Clustering
method

Clustering
type

Prototypes Classifiers CAT BIRD

Sup-1 Sp NN1 K-means S 15, 30, 45, 60 4 78.64 92.46
Sup-2 Sp NN2 K-means S 15, 30, 45, 60 4 76.95 92.74
UnS-1 Sp NN1 K-means U 15, 30, 45, 60 4 81.69 92.73
UnS-2 Sp NN2 K-means U 15, 30, 45, 60 4 75.25 92.80
HSup-1 HASC NN1 K-means S 15, 30, 45, 60 4 78.64 94.52
HSup-2 HASC NN2 K-means S 15, 30, 45, 60 4 81.69 93.22
HUnS-1 HASC NN1 K-means U 15, 30, 45, 60 4 79.32 94.53
HUnS-2 HASC NN2 K-means U 15, 30, 45, 60 4 81.36 92.97
FSp-1 Sp NN1 K-means S,U 15, 30, 45, 60 8 81.02 92.79
FSp-2 Sp NN2 K-means S,U 15, 30, 45, 60 8 76.95 92.77
FA-1 Sp,HASC NN1 K-means S,U 15, 30, 45, 60 16 82.37 94.50
FA-2 Sp,HASC NN2 K-means S,U 15, 30, 45, 60 16 83.73 94.11
FA1-2 Sp,HASC NN1+NN2 K-means S,U 15, 30, 45, 60 32 84.41 94.37

Table 7.5: Prototypes Ensembles

In Table 7.4 I compare the clustering algorithms. In this case, I use the
second backbone network, which is the deepest one, to have the best results.

Name
Input im-
age

Network
topology

Clustering
method

Clustering
type

Prototypes Classifiers CAT BIRD

HASC NN2 K-means S 15, 30, 45, 60 4 81.69 93.22
HASC NN2 K-Med S 15, 30, 45, 60 4 81.02 92.85
HASC NN2 Hier S 15, 30, 45, 60 4 81.69 93.01
HASC NN2 Spect S 15, 30, 45, 60 4 80.00 93.13

F-Clu HASC NN2 All S 15, 30, 45, 60 16 82.03 93.37

Table 7.6: Comparing Clusters

In Table 7.4, I compare and fuse the network backbones using the su-
pervised version of k-means clustering and using HASC images.

If I combine all the score obtained by the SVMs that I tested so far, I
can obtain even better results: the accuracy on CAT becomes 85.76 and the
one on bird becomes 95.08.

I now want to test how varying some of the parameters used so far I can
create an effective ensemble. Since comparing ensembles and single SVMs
might be unfair, I use a a baseline the ensemble obtained by using different
network backbones.

7.4. RESULTS 77

Name
Input im-
age

Network
topology

Clustering
method

Clustering
type

Prototypes Classifiers CAT BIRD

HASC NN1 K-means S 15, 30, 45, 60 4 78.64 94.52
HASC NN2 K-means S 15, 30, 45, 60 4 81.69 93.22
HASC NN3 K-means S 15, 30, 45, 60 4 78.64 94.91
HASC NN4 K-means S 15, 30, 45, 60 4 82.37 93.33

F-NN HASC All K-means S 15, 30, 45, 60 16 84.07 94.99

Table 7.7: Comparing Backbones

Name
Input im-
age

Network
topology

Clustering
method

Clustering
type

Prototypes Classifiers CAT BIRD

HSup-1(1) HASC NN1 K-means S 15 1 75.93 93.92
HSup-1(4) HASC NN1 K-means S 15 1×4 81.69 94.50
HSup-1 HASC NN1 K-means S 15, 30, 45, 60 4×1 78.64 94.52
HSup-1(8) HASC NN1 K-means S 15, 30, 45, 60 4×2 80.68 94.56
HSup-1(16) HASC NN1 K-means S 15, 30, 45, 60 4×4 81.02 94.63
F-NN(4) HASC All K-means S 15 4 83.39 94.73
F-NN(8) HASC All K-means S 15, 30 8 84.07 94.90
F-NN HASC All K-means S 15, 30, 45, 60 16 84.07 94.99

Table 7.8: Comparing Ensembles

From Table 7.4 I see that varying the network topology was very useful
to improve the ensemble performance: the comparison among ensembles of
cardinality 4, 8 and 16, the one obtained from the topology NN1, and the
ensembles obtained varying the topology of the Siamese Network show a
clear boost in the accuracy of the latter (with the same cardinality). It is
worth noticing the similar results of rows 2 and 3: these ensembles have
a cardinality of four, but the first one is obtained by retraining the same
model over and over, while the second has different numbers of prototypes:
hence, that does not seem to be an important parameter to vary.

Method CAT BIRD

OLD [217*] 82.41 92.97
F-NN 84.07 94.99
GoogleNet 82.98 92.41
VGG16 84.07 95.30
VGG19 83.05 95.19
GoogleNetP365 85.15 92.94
eCNN 87.36 95.81
OLD+eCNN 87.76 95.95
F-NN+eCNN 88.47 96.03

Table 7.9: state-of-the-art results

I can now draw the following conclusions based on our experiments and
on Table 7.4. The entry named eCNN is an ensemble of CNNs introduced
in Chapter 4.

1. The best results is obtained using different network topologies.

78 CHAPTER 7. ENSEMBLES OF SIAMESE NETWORKS

2. The best ensembles of Siamese networks perform worse than eCNN,
which is an ensemble of standard CNNs

3. Ensembling CNNs and Siamese networks together improves the per-
formance of the ensemble of CNNs.

In Table 7.4, I report some more state-of-the-art results on the CAT and
BIRD datasets. The accuracy of the ensembles described in this paper is
competitive with those reported in the literature.

7.5 Discussion

The experiments presented in this paper show the robustness of the Siamese
ensemble approach since the same method obtained very competitive results
on two different datasets without the need of any specific hyperparameter
tuning. Hence, this ensemble can be a good off-the-shelf method to classify
animal sounds.

In this chapter, I tested and compared multiple methods to use Siamese
networks for classification. I varied backbone networks and clustering op-
tions to see which methods works best, and in particular how their ensem-
ble works. The ensemble of Siamese networks outperform the stand-alone
Siamese networks.

In general, the methods based on Siamese networks seem to work worse
than the ones based on CNNs. Siames ensembles do not outperform single
networks either, since a simple VGG16 has better performance. However,
in the literature, Siamese networks are usually opposed to classic CNNs and
they are tested against them. In this chapter I showed that such different
methods, that are likely to learn different features of the inputs, can be used
together to improve the performance of both approaches. In this chapter,
extensive tests have been performed on two medium size datasets. In order
to have a deeper understanding of this problem, further testing would be
required.

Chapter 8

Generalization of Covid-19
Classifiers

In this chapter I present other work related to image classification using
Convolutional Networks. In particular, I introduce my work [220*] regarding
the generalization of CNNs when it comes to Covid-19 classification from
X-Ray images.

8.1 Covid-19 Classification

The publication of small datasets containing X-Ray and CT images of pa-
tients affected by COVID-19 led many researchers to use deep learning meth-
ods on these data [221, 222, 223, 224, 225]. It has already been shown that
the chest X-Rays of people that suffered from Covid-19 related pneumonia
could be distinguished from normal pneumonia e healthy lungs [226]. A lot
of papers published on Covid-19 detection using X-Ray images reported a
very high accuracy and a great performance in terms of recall and area un-
der the ROC-curve (AUC) [222, 223, 224, 225]. However, Cohen et al. [227]
warned the research community about the limits of the generalization ability
of X-Ray images classificators, since a neural network might learn to classify
the images of a specific dataset but fail to reproduce the same performance
on other datasets. That paper was not the first one on the topic, but followed
other works already published in the literature [228, 229, 230, 231, 232]. I
tested if that was the case for many of the testing protocols used for Covid-19
classification.

I tested simple neural networks on four well-known datasets containing
chest X-Ray images annotated by expert radiologists. These datasets are
also among the most common ones used in the literature when it comes
to Covid-19 classification. The idea is to check if a simple network can
distinguish the source dataset of an image. This is relevant because most
published and highly cited papers dealing with Covid-19 detection merged

79

80 CHAPTER 8. GENERALIZATION OF COVID-19 CLASSIFIERS

different datasets to train a neural network to recognize the ones of patients
affected by Covid-19. Since, at that time, most Covid-19 images came from
the same dataset and all the other images came from other data sources, if
a network could only learn to tell the source dataset, it would also be able
to use this information to perform well on a test set, but only because it is
recognizing the source dataset. Hence, it would completely fail to generalize
on new data.

In order to check this, I ran the same kind of experiments proposed by
highly cited and published papers on the topic, but I covered all the centers
of the images of the dataset, both in training and testing, with a large black
square of fixed size that covered most of the lungs in the image and that
made it impossibile to classify Covid on that corrupted dataset. I wanted to
see if I were still able to classify the images. I plot some examples belonging
to different datasets in Figure 8.1. I find that it is possible to recognize
the dataset. Our trained AlexNet managed to obtain much better results
than the ones reported by [233] on a standard pneumonia detection dataset.
Hence, the testing protocols used in many papers in the literature are biased,
since the classifiers might learn to recognize the source dataset and fail to
generalize on other datasets.

8.2 Related Works

Chest X-Ray classification is a relevant topic in deep learning. There are
multiple datasets proposed for chest X-Ray classification [233, 119]. Many
neural networks have been trained on those datasets: Rajpurkar et al. [233]
report a 0.76 ROC-AUC for the pneumonia detection task on the dataset
proposed in [119]. Potential biases in chest X-Ray recognition has already
studied before [227, 228, 229, 230, 234, 235]. Besides, Cohen et al. [227]
questioned the real world applications of these classifiers, based on their
robustness and generalization. They trained Densenet on a group of chest
X-Ray datasets and tested it on a different one. All the datasets used in
their analysis shared the same set of labels. When the first Covid-19 dataset
[236] was shared by Cohen et al., deep learning researchers wanted to classify
that dataset and created different test protocols by merging this dataset with
older chest X-Ray image datasets proposed in the literature. I shall now list
some of their testing protocols. Narin et al. [223] proposed a small dataset
containing 50 COVID-19 cases, taken from the Cohen repository, and 50
healthy cases taken from Kaggle. They trained five ResNets, one for each
fold of their cross-fold validation protocol, and obtained an average accuracy
of 98%. Apostolopoulos et al. [225] also combined Cohen repository with
other datasets to create a repository containing 224 images of COVID-19,
700 images with pneumonia and 504 healthy patients. They trained VGG-
16 using a 10 fold cross validation and reahed 93.48% accuracy. Wang et

8.3. DATASETS 81

al. [237] proposed a custom network called Covid-Net, a new architecture
introduced in their paper. Their dataset is a little larger than the previous
ones, since it containes 183 cases of COVID-19, but 5,538 of Pneumonia and
8,066 of healthy lungs. Their test set contains 100 images of pneumonia and
of healthy lungs, but only 31 of COVID-19, since they are more rare. They
explicitely mention in their paper that images of the same patient cannot be
both in the training and in the test set, which is necessary for a good testing
protocol in this field, but is not mentioned in the papers of the protocols
that I described before. They obtained a 92% accuracy on this dataset.

Castiglioni et al. [238] proposed a completely different dataset collected
in Italy and completely independent on Cohen’s. Their training set con-
tained 250 COVID-19 and 250 healthy images, and their test set contained
74 positive and 36 negative samples. They used an ensemble of 10 ResNet50
and obtained a ROC-AUC of 0.80, which is much worse than the other re-
sults that I mentioned above, but on a completely different dataset that
does not suffer from the dataset merging problem that I wanted to study.
The bad classification results obtained with an apparently safer testing pro-
tocol suggests that other results might be too optimistic. Tartaglione et al.
[231] also used a private dataset, that they called CORDA. They manage
to test their networks with two different sources of Covid-19 images, hence
they managed to combine different datasets for training and for testing.
They show that the accuracies of their classifiers range from random to 0.97
ROC-AUC depending on which source datasets are on the training and test
dataset. Tabik et al. [232] collected a different dataset in Spain, named
COVIDGR. Their annotations also differentiate COVID-19 cases depending
on their severity. This dataset is divided into four different classes. Their
model relies on GANs in order to prevent it to learn specific features that
depend on the different source datasets. They reach accuracies of 97%, 88%
and 66% for severe, moderate and mild cases. Interestingly, they could not
detect asymptomatic cases from healthy patients.

8.3 Datasets

Here I shall introduce the four datasets used in the tests below, that are
some of the most used datasets in this field.

NIH Dataset The ChestX-Ray8 dataset [119] was released by the Na-
tional Institute of Health. This is why I call it NIH. This is a very large
public dataset, containing 108,948 images of 32,717 different patients, clas-
sified into 8 different labels.

CHE dataset Irvin et al. shared Chexpert [239], a large dataset con-
taining 224,316 chest radiographs of 65,240 patients labelled in 14 different

82 CHAPTER 8. GENERALIZATION OF COVID-19 CLASSIFIERS

Figure 8.1: Original and transformed samples from the 4 datasets, 300 sized
black square (Left to right: COV, NIH, CHE, KAG)

categories. I call this dataset CHE. Its test set is not publicly available,
hence I used the validation set fo this purpose, since I so not use any data
for validation in our tests.

KAG dataset This is a dataset shared by Dr. Paul Mooney [115], con-
taining images of viral and bacterial pneumonia. It it made by 5,863 pe-
diatric images, which means that the images it contains are very different
from the others. I call this dataset KAG.

COV dataset Our source of COVID-19 images is the repository made
available by Cohen et al. [236], which is the main source of many papers
dealing with COVID-19. In the moment I are writing, it contains 144 im-
ages of frontal X-Ray images of patients potentially positive to COVID-19.
Metadata are available for every sample, containing the patient ID and,
most of the times, the location and other notes that contain the reference
to the doctor that uploaded the images. I refer to this dataset as COV.

8.4 Methods

I ran two similar experiments with two different testing protocols. I com-
bined the four datasets that I introduced above in different ways in order
to understand which combinations allow classifiers to recognize the source
dataset. I preprocessed the images by resizing them as follows: at first, I
want their smallest dimension to be equal to 360, then I cover the center of
the images with a square of different sizes, depending on the experiment. Af-
ter that, I resized them to 227x227 in order to be used as inputs on AlexNet.

8.5. RESULTS AND DISCUSSION 83

In all our experiments I managed to cover at least most of the lungs with our
squares, but leaving information about the source dataset on the boudaries.

I divided the three datasets that do not contain Covid samples into
training and test sets as they were already divided. Then, the COV dataset
was split into folds in two different ways that I shall now explain. The former
(PAT-OUT) requires that all the samples relative to the same patients are
in the same folds. The latter (DOC-OUT) also requires that scans uploaded
by the same doctor are in the same folds. In this datasets, all the scans
of a given patient are uploaded by the same doctor, so the second protocol
is stricter than the first. The reason behind this is that those scans might
share common features due to the fact that they might have been taken
using the same X-Ray machine or share the same preprocessing.

The first experiment consists in merging the training sets of all the
datasets and tried to recognize the source dataset of the images, which means
that there are 4 different labels. In this experiment I used the DOC-OUT
protocol. I call this experiment dataset classification.

In the second experiment, I used a protocol that is inspired by the one
proposed by Cohen in [227]. I split this experiment into three parts. In the
first part, I leave the NIH dataset out to be used in the test set. Then I
use a cross fold validation protocol to train AlexNet on CHE, KAG and all
but one fold of COV, and test the network on NIH and the left out fold. I
then iterate this procedure on folds and I do this for the three non-Covid
dataset. In this case, I used both the DOC-OUT and PAT-OUT protocol.
I call this COV recognition experiment.

8.5 Results and Discussion

Classification performance I test our AlexNet on class vs. class envi-
ronment, using AUC as our metric. This is because the dataset is heavily
unbalanced. In Table 8.5 I show the results for the dataset recognition
problem. The reader can easily see that the problem can be easily solved by
AlexNet even if the images were corrupted by our preprocessing.

Datasets

Square size COV-NIH COV-CHE COV-KAG NIH-CHE NIH-KAG CHE-KAG

270 0.921 0.965 0.990 0.996 0.999 0.999
300 0.928 0.987 0.993 0.999 0.999 0.999

Table 8.1: ROC-AUC of the dataset classification task.

In Table 8.5 I calculate the confusion matrix of this method. It seems
that COV images are the only ones that are often misclassified, and this
suggested us that maybe those images do not share any particular feature,
but the other datasets do. The COV dataset was collected by a large number

84 CHAPTER 8. GENERALIZATION OF COVID-19 CLASSIFIERS

Figure 8.2: t-SNE for dataset classification. Blue is COV, green is CHE, red
is NIH and yellow is KAG.

of different doctors worldwide, so the images do not necessarily have to share
any feature.
In Table 8.3 I report the AUC of the other experiment, which the COV

Dataset

Dataset Test size NIH CHE KAG COV

NIH 114576 106911 (93.3%) 4197 (3.7%) 34 (0.0%) 3434 (3%)
CHE 363 9 (2.5%) 342 (94.2%) 1 (0.3%) 11 (3.0%)
KAG 6864 53 (0.8%) 131 (1.9%) 6474 (94.3%) 206 (3.0%)
COV 144 33 (23%) 13 (7.7%) 10 (7.0%) 88 (62.0%)

Table 8.2: Confusion matrix for dataset classification.

recognition task. In this case, I cannot recognize the left-out dataset with our
netowrk. Our interpretation is that there are not many inter-dataset features
shared among the three non Covid datasets, besides that there are not many
intra-dataset features shared by the samples in the the COV dataset. I use
t-distributed stochastic neighbor embbeddings [240] to visualize this more
specifically in Figure 8.5.

COV points have overlaps with the other datasets, that in general form

8.5. RESULTS AND DISCUSSION 85

very recognizable cluster. The four clusters there help to understand how the
classifier works if one of the non Covid datasets is left out. If, for example,
the yellow dataset is left out and a classifier is trained on those data, every
point above the blue cluster will be classified as COV point with very high
confidence, even higher that blue points themselves, since it would be very
far from green and red points. This is what leads AlexNet to perform even
worse than random when the non Covid point in the test set are the yellow
points.

Table 8.3: ROC-AUC of the COV recognition task.

Dataset

Test protocol Leave-out NIH Leave-out CHE Leave-out KAG

DOC-OUT 0.68 0.62 0.36
PAT-OUT 0.68 0.62 0.42

Conclusions The results of our experiments are very clear. If a classi-
fier is trained on a dataset obtained by merging different X-Ray datasets,
there is a very high chance that this classifier learns to recognize the source
dataset rather than any evidence of illness. I showed it by eliminating all
the features of the images that could reasonably suggest the presence of
Covid-19 pneumonia in the inputs.

However, if the training protocol takes into account this bias and differen-
tiate the training and test datasets, this problem does not happen anymore.
However, the desired situation would be that data points of the different
datasets form two clusters in a feature space that are indistinguishible, but
this does not happen and lower AUCs are due to the fact that test points
are very different from every other sample seen in the training set.

This shows a potential bias that explains the results of most of the papers
cited in the Related Works section without requiring the classifiers trained
in those papers actually recognize Covid and would actually be useful on a
different dataset. Hence, I stress the importance of collecting diverse data
from multiple sources to train classifiers in this field. Besides, an evaluation
protocol should always use different datasets for testing and for training to
prove the robustness and the generalization power of the model.

86 CHAPTER 8. GENERALIZATION OF COVID-19 CLASSIFIERS

Chapter 9

Discussion

In this thesis, I extensively studied and tested methods to create ensembles
of neural networks. I investigated a field which has been relevant in artificial
intelligence and in deep learning for a long time, but that lacks the large
amount of experiments that most classical artificial intellingence methods
have.

The most relevant contribution of this thesis consists in the testing pro-
tocols to evaluate the effectiveness of the ensemble methods. I compared
the methods proposed here with other ensemble methods of similar cardi-
nality, with other classifiers with similar computational requirements or with
state-of-the-art methods published in the literature. Most of the literature
published in this field did not primarily focus on which ensemble method
really was effective. There is a fair chance that most ensembles proposed
in the literature would not have outperformed naive ensembles made by the
same network trained multiple times. At least, in those papers there is no
evidence of that. Those papers often focused on creating a strong classifier
on a given dataset, so the authors trained multiple models and only reported
that the ensemble was the the classifier that obtained the best results.

In this thesis I tested ensemble models on a variety of datasets that differ
in size and fields. I showed that ensemble models proposed here outperform
the baseline models on a variety of tasks. In Chapter 4 I used them to
classify naural images of insect pests for crop damage prevention. In the
same chapter, the same methods were applied to spectrograms extracted
from audio recordings. In the next chapters, I focused on medium sized
biomedical datasets, which contain images extracted with different methods
(e.g: X-rays, endoscopies, microscopes...). Hence, I showed that ensemble
methods work over a large variety of fields.

The effectiveness of ensemble models was already proved in the literature
and has been known for a long time. Many papers that report state-of-the-
art results use ensembles of multiple networks to boost the performance of
their methods as much as they can. Besides, theoretical analysis of why en-

87

88 CHAPTER 9. DISCUSSION

semble models outperform single ones had already been published, although
there is not much work on how much an ensemble model can improve the
accuracy of a single network and in which situations ensembles work best.
In this thesis we saw that the improvement of ensemble models over single
networks can be seen on varoius datasets and on various methods. We did
not find strong evidence that suggests which frameworks are the ones that
mostly benifit from ensembles. This work suggests that ensembles are more
effective on small datasets. This is suggested in particular by the analysis
of the results of Section 4.1, where two different pest datasets are used. The
performance improvement given by the ensemble is more relevant in the
small dataset.

The relevance of testing protocols is the glue that keeps this thesis to-
gether and it is also the topic of Chapter 8, that deals with misleading
excellent results in classifying Covid-19 using x-ray images. In Chapter 8 I
show how most papers among the early published ones after the outbreak of
Covid-19 obtained amazing results just by recognizing features of the input
data that did not depend on Covid-19.

As far as it concerns the topic of deep ensembles, the most relevant find-
ing of this thesis are the importance of diversity among the deep classifiers
to create a strong ensemble method and multiple ways to obtain that di-
versity. I applied different techniques in different fields and using different
datasets, ranging from natural images to spectrograms obtained from audio
signals. Hence, a direct comparisons among the methods that I propose here
cannot be done, but that was not the aim of this work. There is no way
to directly compare the results of two ensemble methods that are tested on
different datasets. In general, all the ensemble methods that I propose share
the following properties:

1. They all outperform naive ensembles of the same network trained mul-
tiple times;

2. They are very general methods that can be applied to any neural
network;

3. They are easy to implement and can be used as off-the-shelf methods
to improve the performance of a general neural network.

A relevant feature that seems to hold for all the experiments is the need
of not deteriorating the performance of the single models in the ensemble
to obtain a good final results. Although this might seem obvious, it is also
not as true as one could think. From the experiments of Section 4.2, there
is evidence that in all the three datasets the ensemble of all the networks
performs worse than the ensemble of the networks trained with the Super
augmentation protocols. Those networks performance is better than the
one of the other networks in the ensemble, hence they reach a better per-
formance when they are the only ones in the ensemble. However, the best

89

ensemble that we created in that section contains all the networks trained
with different methods to extract a spectrogram, whose performance was
generally lower than the original one that I used. Hence, it is very hard
to predict when the ensemble of networks with different performance can
improve the overall performance or not.

In Chapter 5, changing the activation functions of the networks does not
lower their performance. In that case, the large the ensemble, the better
the network performs. This principle is never violated throught this thesis,
although it was quite expected.

In general, ensemble models seem to have a larger improvement in small
and medium sized dataset with respect to the single networks. This observa-
tion leads me to suppose that this is due to the overfitting of a single model
on a small dataset. Ensemble models are made by different networks that
converge in different local minima. These minima are known to be more
different in case of small datasets. Hence, averaging the results of networks
trained on small datasets might lead to average out the component of the
prediction that is due to the overfitting, while mantaining the meaningful
component of the score. Besides, this hypothesis is consistent with the fact
that diversity is relevant in ensemble models. Training a model fixed size
on a small dataset can lead to overfitting. However, overfitting often leads
to different results on unseen data in independent training rounds. Hence,
the networks predictions are probably very diverse on unseen data when the
training set is small.

90 CHAPTER 9. DISCUSSION

Chapter 10

Bibliography

[1] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[2] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 4700–4708,
2017.

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, pp. 2481–2495, 2017.

[4] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 1137–
1149, 2015.

[5] J. W. Tukey et al., Exploratory data analysis, vol. 2. Reading, Mass.,
1977.

[6] B. V. Dasarathy and B. V. Sheela, “A composite classifier system
design: Concepts and methodology,” Proceedings of the IEEE, vol. 67,
no. 5, pp. 708–713, 1979.

[7] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
transactions on pattern analysis and machine intelligence, vol. 12,
no. 10, pp. 993–1001, 1990.

[8] R. E. Schapire, “The strength of weak learnability,” Machine learning,
vol. 5, no. 2, pp. 197–227, 1990.

91

92 CHAPTER 10. BIBLIOGRAPHY

[9] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in clas-
sifier ensembles and their relationship with the ensemble accuracy,”
Machine learning, vol. 51, no. 2, pp. 181–207, 2003.

[10] P. S. A. Krogh et al., “Learning with ensembles: How over-fitting can
be useful,” in Proceedings of the 1995 Conference, vol. 8, p. 190, 1996.

[11] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation meth-
ods: a survey and categorisation,” Information fusion, vol. 6, no. 1,
pp. 5–20, 2005.

[12] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8,
no. 4, p. e1249, 2018.

[13] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici, “Improving mal-
ware detection by applying multi-inducer ensemble,” Computational
Statistics & Data Analysis, vol. 53, no. 4, pp. 1483–1494, 2009.

[14] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical
study,” Journal of artificial intelligence research, vol. 11, pp. 169–198,
1999.

[15] V. Bolón-Canedo and A. Alonso-Betanzos, “Ensembles for feature se-
lection: A review and future trends,” Information Fusion, vol. 52,
pp. 1–12, 2019.

[16] J. J. G. Adeva, U. Beresi, and R. Calvo, “Accuracy and diversity in
ensembles of text categorisers,” CLEI Electronic Journal, vol. 9, no. 1,
pp. 1–12, 2005.

[17] M. Gashler, C. Giraud-Carrier, and T. Martinez, “Decision tree en-
semble: Small heterogeneous is better than large homogeneous,” in
2008 Seventh International Conference on Machine Learning and Ap-
plications, pp. 900–905, IEEE, 2008.

[18] I. Sutskever and V. Nair, “Mimicking go experts with convolutional
neural networks,” in International Conference on Artificial Neural
Networks, pp. 101–110, Springer, 2008.

[19] L. Nanni, A. Lumini, and S. Ghidoni, “Ensemble of deep learned fea-
tures for melanoma classification,” arXiv preprint arXiv:1807.08008,
2018.

[20] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Wein-
berger, “Snapshot ensembles: Train 1, get m for free,” arXiv preprint
arXiv:1704.00109, 2017.

93

[21] R. Paul, L. Hall, D. Goldgof, M. Schabath, and R. Gillies, “Predicting
nodule malignancy using a cnn ensemble approach,” in 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE,
2018.

[22] S. H. Kassani, P. H. Kassani, M. J. Wesolowski, K. A. Schneider, and
R. Deters, “Classification of histopathological biopsy images using en-
semble of deep learning networks,” arXiv preprint arXiv:1909.11870,
2019.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

[24] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4510–4520, 2018.

[25] S. Qummar, F. G. Khan, S. Shah, A. Khan, S. Shamshirband, Z. U.
Rehman, I. A. Khan, and W. Jadoon, “A deep learning ensemble
approach for diabetic retinopathy detection,” IEEE Access, vol. 7,
pp. 150530–150539, 2019.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778, 2016.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 2818–2826, 2016.

[28] F. Chollet, “Xception: Deep learning with depthwise separable con-
volutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1251–1258, 2017.

[29] K. Liu, M. Zhang, and Z. Pan, “Facial expression recognition with
cnn ensemble,” in 2016 international conference on cyberworlds (CW),
pp. 163–166, IEEE, 2016.

[30] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza,
B. Hamner, W. Cukierski, Y. Tang, D. Thaler, D.-H. Lee, et al.,
“Challenges in representation learning: A report on three machine
learning contests,” in International conference on neural information
processing, pp. 117–124, Springer, 2013.

94 CHAPTER 10. BIBLIOGRAPHY

[31] A. Kumar, J. Kim, D. Lyndon, M. Fulham, and D. Feng, “An ensemble
of fine-tuned convolutional neural networks for medical image classi-
fication,” IEEE journal of biomedical and health informatics, vol. 21,
no. 1, pp. 31–40, 2016.

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1–9, 2015.

[33] A. Gilbert, L. Piras, J. Wang, F. Yan, A. Ramisa, E. Dellandrea,
R. J. Gaizauskas, M. Villegas, and K. Mikolajczyk, “Overview of the
imageclef 2016 scalable concept image annotation task.,” in CLEF
(Working Notes), pp. 254–278, 2016.

[34] P. Pandey, A. Deepthi, B. Mandal, and N. B. Puhan, “Foodnet: Rec-
ognizing foods using ensemble of deep networks,” IEEE Signal Pro-
cessing Letters, vol. 24, no. 12, pp. 1758–1762, 2017.

[35] H.-K. Huang, C.-F. Chiu, C.-H. Kuo, Y.-C. Wu, N. N. Chu, and P.-
C. Chang, “Mixture of deep cnn-based ensemble model for image re-
trieval,” in 2016 IEEE 5th Global Conference on Consumer Electron-
ics, pp. 1–2, IEEE, 2016.

[36] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[37] L. Nanni, S. Ghidoni, and S. Brahnam, “Ensemble of convolutional
neural networks for bioimage classification,” Applied Computing and
Informatics, 2020.

[38] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, 2017.

[39] B. Zhang, S. Qi, P. Monkam, C. Li, F. Yang, Y.-D. Yao, and W. Qian,
“Ensemble learners of multiple deep cnns for pulmonary nodules clas-
sification using ct images,” IEEE Access, vol. 7, pp. 110358–110371,
2019.

[40] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[41] D. H. Wolpert and W. G. Macready, “An efficient method to esti-
mate bagging’s generalization error,” Machine Learning, vol. 35, no. 1,
pp. 41–55, 1999.

95

[42] E. Bauer and R. Kohavi, “An empirical comparison of voting classifica-
tion algorithms: Bagging, boosting, and variants,” Machine learning,
vol. 36, no. 1, pp. 105–139, 1999.

[43] P.-K. Kim and K.-T. Lim, “Vehicle type classification using bagging
and convolutional neural network on multi view surveillance image,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pp. 41–46, 2017.

[44] X. Dong, L. Qian, and L. Huang, “A cnn based bagging learn-
ing approach to short-term load forecasting in smart grid,” in 2017
IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
Trusted Computed, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1–6,
IEEE, 2017.

[45] J. Guo and S. Gould, “Deep cnn ensemble with data augmentation for
object detection,” arXiv preprint arXiv:1506.07224, 2015.

[46] B. Savelli, A. Bria, M. Molinara, C. Marrocco, and F. Tortorella,
“A multi-context cnn ensemble for small lesion detection,” Artificial
intelligence in medicine, vol. 103, p. 101749, 2020.

[47] Y. Chen, Y. Wang, Y. Gu, X. He, P. Ghamisi, and X. Jia, “Deep learn-
ing ensemble for hyperspectral image classification,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 12, no. 6, pp. 1882–1897, 2019.

[48] Y. Fan, J. C. Lam, and V. O. Li, “Multi-region ensemble convolu-
tional neural network for facial expression recognition,” in Interna-
tional Conference on Artificial Neural Networks, pp. 84–94, Springer,
2018.

[49] Y. Gan, J. Chen, and L. Xu, “Facial expression recognition boosted
by soft label with a diverse ensemble,” Pattern Recognition Letters,
vol. 125, pp. 105–112, 2019.

[50] G. Antipov, S.-A. Berrani, and J.-L. Dugelay, “Minimalistic cnn-based
ensemble model for gender prediction from face images,” Pattern recog-
nition letters, vol. 70, pp. 59–65, 2016.

[51] C. Ju, A. Bibaut, and M. van der Laan, “The relative performance of
ensemble methods with deep convolutional neural networks for image
classification,” Journal of Applied Statistics, vol. 45, no. 15, pp. 2800–
2818, 2018.

96 CHAPTER 10. BIBLIOGRAPHY

[52] B. Harangi, “Skin lesion classification with ensembles of deep convo-
lutional neural networks,” Journal of biomedical informatics, vol. 86,
pp. 25–32, 2018.

[53] M. Lyksborg, O. Puonti, M. Agn, and R. Larsen, “An ensemble of 2d
convolutional neural networks for tumor segmentation,” in Scandina-
vian Conference on Image Analysis, pp. 201–211, Springer, 2015.

[54] R. Minetto, M. P. Segundo, and S. Sarkar, “Hydra: An ensemble
of convolutional neural networks for geospatial land classification,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9,
pp. 6530–6541, 2019.

[55] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258,
2020.

[56] A. Lumini, L. Nanni, and G. Maguolo, “Deep learning for plankton
and coral classification,” Applied Computing and Informatics, 2020.

[57] R. E. Schapire and Y. Singer, “Improved boosting algorithms us-
ing confidence-rated predictions,” Machine learning, vol. 37, no. 3,
pp. 297–336, 1999.

[58] A. Taherkhani, G. Cosma, and T. M. McGinnity, “Adaboost-cnn: An
adaptive boosting algorithm for convolutional neural networks to clas-
sify multi-class imbalanced datasets using transfer learning,” Neuro-
computing, vol. 404, pp. 351–366, 2020.

[59] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, “Ensemble of
feature-based and deep learning-based classifiers for detection of ab-
normal heart sounds,” in 2016 computing in cardiology conference
(CinC), pp. 621–624, IEEE, 2016.

[60] C. Gao, P. Li, Y. Zhang, J. Liu, and L. Wang, “People counting based
on head detection combining adaboost and cnn in crowded surveillance
environment,” Neurocomputing, vol. 208, pp. 108–116, 2016.

[61] W. Chen, Q. Sun, J. Wang, J.-J. Dong, and C. Xu, “A novel model
based on adaboost and deep cnn for vehicle classification,” Ieee Access,
vol. 6, pp. 60445–60455, 2018.

[62] X. Zhou, L. Xie, P. Zhang, and Y. Zhang, “An ensemble of deep neural
networks for object tracking,” in 2014 IEEE International Conference
on Image Processing (ICIP), pp. 843–847, IEEE, 2014.

[63] G. Brown, J. L. Wyatt, P. Tino, and Y. Bengio, “Managing diversity
in regression ensembles.,” Journal of machine learning research, vol. 6,
no. 9, 2005.

97

[64] X. Yao and Y. Liu, “Making use of population information in evo-
lutionary artificial neural networks,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 3, pp. 417–
425, 1998.

[65] D. W. Opitz, J. W. Shavlik, et al., “Generating accurate and diverse
members of a neural-network ensemble,” Advances in neural informa-
tion processing systems, pp. 535–541, 1996.

[66] D. Wang and M. Alhamdoosh, “Evolutionary extreme learning ma-
chine ensembles with size control,” Neurocomputing, vol. 102, pp. 98–
110, 2013.

[67] Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with negative
correlation learning,” IEEE Transactions on Evolutionary Computa-
tion, vol. 4, no. 4, pp. 380–387, 2000.

[68] B. E. Rosen, “Ensemble learning using decorrelated neural networks,”
Connection science, vol. 8, no. 3-4, pp. 373–384, 1996.

[69] Y. Liu and X. Yao, “Ensemble learning via negative correlation,” Neu-
ral networks, vol. 12, no. 10, pp. 1399–1404, 1999.

[70] G. Giacinto and F. Roli, “Design of effective neural network ensem-
bles for image classification purposes,” Image and Vision Computing,
vol. 19, no. 9-10, pp. 699–707, 2001.

[71] M. Alhamdoosh and D. Wang, “Fast decorrelated neural network
ensembles with random weights,” Information Sciences, vol. 264,
pp. 104–117, 2014.

[72] H. Chen and X. Yao, “Regularized negative correlation learning for
neural network ensembles,” IEEE Transactions on Neural Networks,
vol. 20, no. 12, pp. 1962–1979, 2009.

[73] S. Kariyappa and M. K. Qureshi, “Improving adversarial robustness of
ensembles with diversity training,” arXiv preprint arXiv:1901.09981,
2019.

[74] N. Dvornik, C. Schmid, and J. Mairal, “Diversity with cooperation:
Ensemble methods for few-shot classification,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 3723–
3731, 2019.

[75] G. U. Yule, “Vii. on the association of attributes in statistics: with il-
lustrations from the material of the childhood society, &c,” Philosoph-
ical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, vol. 194, no. 252-261,
pp. 257–319, 1900.

98 CHAPTER 10. BIBLIOGRAPHY

[76] P. H. Sneath, R. R. Sokal, et al., Numerical taxonomy. The principles
and practice of numerical classification. 1973.

[77] D. B. Skalak et al., “The sources of increased accuracy for two pro-
posed boosting algorithms,” in Proc. American Association for Artifi-
cial Intelligence, AAAI-96, Integrating Multiple Learned Models Work-
shop, vol. 1129, p. 1133, Citeseer, 1996.

[78] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 20, no. 8, pp. 832–844, 1998.

[79] G. Giacinto and F. Roli, “An approach to the automatic design of
multiple classifier systems,” Pattern recognition letters, vol. 22, no. 1,
pp. 25–33, 2001.

[80] N. Li, Y. Yu, and Z.-H. Zhou, “Diversity regularized ensemble prun-
ing,” in Joint European conference on machine learning and knowledge
discovery in databases, pp. 330–345, Springer, 2012.

[81] G. D. Cavalcanti, L. S. Oliveira, T. J. Moura, and G. V. Carvalho,
“Combining diversity measures for ensemble pruning,” Pattern Recog-
nition Letters, vol. 74, pp. 38–45, 2016.

[82] L. Wen, L. Gao, and X. Li, “A new snapshot ensemble convolutional
neural network for fault diagnosis,” Ieee Access, vol. 7, pp. 32037–
32047, 2019.

[83] W. Zhang, J. Jiang, Y. Shao, and B. Cui, “Snapshot boosting: a
fast ensemble framework for deep neural networks,” Science China
Information Sciences, vol. 63, no. 1, pp. 1–12, 2020.

[84] W. Chen, X. Li, L. Gao, and W. Shen, “Improving computer-aided
cervical cells classification using transfer learning based snapshot en-
semble,” Applied Sciences, vol. 10, no. 20, p. 7292, 2020.

[85] A. Mehrtash, P. Abolmaesumi, P. Golland, T. Kapur, D. Wassermann,
and W. M. Wells III, “Pep: Parameter ensembling by perturbation,”
arXiv preprint arXiv:2010.12721, 2020.

[86] S. Masoudnia, O. Mersa, B. N. Araabi, A.-H. Vahabie, M. A. Sadeghi,
and M. N. Ahmadabadi, “Multi-representational learning for offline
signature verification using multi-loss snapshot ensemble of cnns,” Ex-
pert Systems with Applications, vol. 133, pp. 317–330, 2019.

[87] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

99

[88] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th annual meeting of the association for computational linguistics:
Human language technologies, pp. 142–150, 2011.

[89] Z. Chen, J. Duan, L. Kang, and G. Qiu, “Class-imbalanced deep learn-
ing via a class-balanced ensemble,” IEEE Transactions on Neural Net-
works and Learning Systems, 2021.

[90] B. Fielding, T. Lawrence, and L. Zhang, “Evolving and ensembling
deep cnn architectures for image classification,” in 2019 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2019.

[91] S. Lee, S. Purushwalkam, M. Cogswell, V. Ranjan, D. Crandall, and
D. Batra, “Stochastic multiple choice learning for training diverse deep
ensembles,” arXiv preprint arXiv:1606.07839, 2016.

[92] A. Dutt, D. Pellerin, and G. Quénot, “Coupled ensembles of neural
networks,” Neurocomputing, vol. 396, pp. 346–357, 2020.

[93] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database forstudying face recognition in uncon-
strained environments,” inWorkshop on faces in’Real-Life’Images: de-
tection, alignment, and recognition, 2008.

[94] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from
scratch,” arXiv preprint arXiv:1411.7923, 2014.

[95] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition,” in European confer-
ence on computer vision, pp. 87–102, Springer, 2016.

[96] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face represen-
tation by joint identification-verification,” in Proceedings of the 27th
International Conference on Neural Information Processing Systems-
Volume 2, pp. 1988–1996, 2014.

[97] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face revis-
ited: A joint formulation,” in European conference on computer vision,
pp. 566–579, Springer, 2012.

[98] C. Ding and D. Tao, “Robust face recognition via multimodal deep face
representation,” IEEE Transactions on Multimedia, vol. 17, no. 11,
pp. 2049–2058, 2015.

[99] I. Masi, S. Rawls, G. Medioni, and P. Natarajan, “Pose-aware face
recognition in the wild,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4838–4846, 2016.

100 CHAPTER 10. BIBLIOGRAPHY

[100] Y. Wu, H. Liu, and Y. Fu, “Low-shot face recognition with hybrid
classifiers,” in Proceedings of the IEEE International Conference on
Computer Vision Workshops, pp. 1933–1939, 2017.

[101] J. Y. Choi and B. Lee, “Ensemble of deep convolutional neural net-
works with gabor face representations for face recognition,” IEEE
Transactions on Image Processing, vol. 29, pp. 3270–3281, 2019.

[102] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

[103] B. Harangi, A. Baran, and A. Hajdu, “Classification of skin lesions
using an ensemble of deep neural networks,” in 2018 40th annual in-
ternational conference of the IEEE engineering in medicine and biology
society (EMBC), pp. 2575–2578, IEEE, 2018.

[104] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, pp. 1097–1105, 2012.

[105] A. Mahbod, G. Schaefer, C. Wang, G. Dorffner, R. Ecker, and
I. Ellinger, “Transfer learning using a multi-scale and multi-network
ensemble for skin lesion classification,” Computer methods and pro-
grams in biomedicine, vol. 193, p. 105475, 2020.

[106] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning, pp. 6105–6114, PMLR, 2019.

[107] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7132–7141, 2018.

[108] N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza,
D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, et al.,
“Skin lesion analysis toward melanoma detection 2018: A challenge
hosted by the international skin imaging collaboration (isic),” arXiv
preprint arXiv:1902.03368, 2019.

[109] S. A. A. Ahmed, B. Yanikoğlu, Ö. Göksu, and E. Aptoula, “Skin lesion
classification with deep cnn ensembles,” in 2020 28th Signal Processing
and Communications Applications Conference (SIU), pp. 1–4, IEEE,
2020.

[110] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” in Proceedings

101

of the IEEE conference on computer vision and pattern recognition,
pp. 8697–8710, 2018.

[111] N. Gessert, M. Nielsen, M. Shaikh, R. Werner, and A. Schlaefer, “Skin
lesion classification using ensembles of multi-resolution efficientnets
with meta data,” MethodsX, vol. 7, p. 100864, 2020.

[112] M. F. Hashmi, S. Katiyar, A. G. Keskar, N. D. Bokde, and Z. W.
Geem, “Efficient pneumonia detection in chest xray images using deep
transfer learning,” Diagnostics, vol. 10, no. 6, p. 417, 2020.

[113] D. Kermany, K. Zhang, and M. Goldbaum, “Large dataset of labeled
optical coherence tomography (oct) and chest x-ray images,” Mendeley
Data, v3 http://dx. doi. org/10.17632/rscbjbr9sj, vol. 3, 2018.

[114] T. Rahman, M. E. Chowdhury, A. Khandakar, K. R. Islam, K. F.
Islam, Z. B. Mahbub, M. A. Kadir, and S. Kashem, “Transfer learning
with deep convolutional neural network (cnn) for pneumonia detection
using chest x-ray,” Applied Sciences, vol. 10, no. 9, p. 3233, 2020.

[115] M. Paul, “chest x-ray images (pneumonia).”
https://www.kaggle.com/paultimothymooney/chest-xray-
pneumonia/version/2, 2017.

[116] V. Chouhan, S. K. Singh, A. Khamparia, D. Gupta, P. Tiwari, C. Mor-
eira, R. Damaševičius, and V. H. C. De Albuquerque, “A novel trans-
fer learning based approach for pneumonia detection in chest x-ray
images,” Applied Sciences, vol. 10, no. 2, p. 559, 2020.

[117] J. R. Ferreira, D. A. C. Cardenas, R. A. Moreno, M. d. F. de Sá Re-
belo, J. E. Krieger, and M. A. Gutierrez, “Multi-view ensemble con-
volutional neural network to improve classification of pneumonia in
low contrast chest x-ray images,” in 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), pp. 1238–1241, IEEE, 2020.

[118] A. Gooßen, H. Deshpande, T. Harder, E. Schwab, I. Baltruschat,
T. Mabotuwana, N. Cross, and A. Saalbach, “Deep learning for
pneumothorax detection and localization in chest radiographs,” arXiv
preprint arXiv:1907.07324, 2019.

[119] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“Chestx-ray8: Hospital-scale chest x-ray database and benchmarks
on weakly-supervised classification and localization of common thorax
diseases,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2097–2106, 2017.

102 CHAPTER 10. BIBLIOGRAPHY

[120] F. Ahmad, A. Farooq, and M. U. Ghani, “Deep ensemble model for
classification of novel coronavirus in chest x-ray images,” Computa-
tional Intelligence and Neuroscience, vol. 2021, 2021.

[121] A. Afifi, N. E. Hafsa, M. A. Ali, A. Alhumam, and S. Alsalman, “An
ensemble of global and local-attention based convolutional neural net-
works for covid-19 diagnosis on chest x-ray images,” Symmetry, vol. 13,
no. 1, p. 113, 2021.

[122] S. D. Deb and R. K. Jha, “Covid-19 detection from chest x-ray images
using ensemble of cnn models,” in 2020 International Conference on
Power, Instrumentation, Control and Computing (PICC), pp. 1–5,
IEEE, 2020.

[123] E. Vantaggiato, E. Paladini, F. Bougourzi, C. Distante, A. Hadid, and
A. Taleb-Ahmed, “Covid-19 recognition using ensemble-cnns in two
new chest x-ray databases,” Sensors, vol. 21, no. 5, p. 1742, 2021.

[124] J. Kang, Z. Ullah, and J. Gwak, “Mri-based brain tumor classifica-
tion using ensemble of deep features and machine learning classifiers,”
Sensors, vol. 21, no. 6, p. 2222, 2021.

[125] J. Islam and Y. Zhang, “Brain mri analysis for alzheimer’s disease
diagnosis using an ensemble system of deep convolutional neural net-
works,” Brain informatics, vol. 5, no. 2, pp. 1–14, 2018.

[126] D. Pan, A. Zeng, L. Jia, Y. Huang, T. Frizzell, and X. Song, “Early
detection of alzheimer’s disease using magnetic resonance imaging: A
novel approach combining convolutional neural networks and ensemble
learning,” Frontiers in neuroscience, vol. 14, 2020.

[127] M. Leming, J. M. Górriz, and J. Suckling, “Ensemble deep learning
on large, mixed-site fmri datasets in autism and other tasks,” arXiv
preprint arXiv:2002.07874, 2020.

[128] R. Rasti, M. Teshnehlab, and S. L. Phung, “Breast cancer diagnosis
in dce-mri using mixture ensemble of convolutional neural networks,”
Pattern Recognition, vol. 72, pp. 381–390, 2017.

[129] S. Lee, S. J. Son, J. Oh, and N. Kwak, “Handwritten music symbol
classification using deep convolutional neural networks,” in 2016 In-
ternational Conference on Information Science and Security (ICISS),
pp. 1–5, IEEE, 2016.

[130] M. Awni, M. I. Khalil, and H. M. Abbas, “Deep-learning ensemble
for offline arabic handwritten words recognition,” in 2019 14th Inter-
national Conference on Computer Engineering and Systems (ICCES),
pp. 40–45, IEEE, 2019.

103

[131] B. Alizadehashraf and S. Roohi, “Persian handwritten character recog-
nition using convolutional neural network,” in 2017 10th Iranian Con-
ference on Machine Vision and Image Processing (MVIP), pp. 247–
251, IEEE, 2017.

[132] Z. Zhong, L. Jin, and Z. Xie, “High performance offline handwritten
chinese character recognition using googlenet and directional feature
maps,” in 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pp. 846–850, IEEE, 2015.

[133] K. Palanisamy, D. Singhania, and A. Yao, “Rethinking cnn models for
audio classification,” arXiv preprint arXiv:2007.11154, 2020.

[134] K. J. Piczak, “Environmental sound classification with convolutional
neural networks,” in 2015 IEEE 25th International Workshop on Ma-
chine Learning for Signal Processing (MLSP), pp. 1–6, IEEE, 2015.

[135] S. Kahl, T. Wilhelm-Stein, H. Hussein, H. Klinck, D. Kowerko, M. Rit-
ter, and M. Eibl, “Large-scale bird sound classification using convolu-
tional neural networks.,” in CLEF (working notes), vol. 1866, 2017.

[136] A. Joly, H. Goëau, H. Glotin, C. Spampinato, P. Bonnet, W.-P. Vel-
linga, J.-C. Lombardo, R. Planqué, S. Palazzo, and H. Müller, “Life-
clef 2017 lab overview: multimedia species identification challenges,”
in International Conference of the Cross-Language Evaluation Forum
for European Languages, pp. 255–274, Springer, 2017.

[137] S. Zimmerman, U. Kruschwitz, and C. Fox, “Improving hate speech
detection with deep learning ensembles,” in Proceedings of the
Eleventh International Conference on Language Resources and Evalu-
ation (LREC 2018), 2018.

[138] L. Deng and J. C. Platt, “Ensemble deep learning for speech recogni-
tion,” in Fifteenth annual conference of the international speech com-
munication association, 2014.

[139] P. Lopez-Meyer, J. A. del Hoyo Ontiveros, G. Stemmer, L. Nachman,
and J. Huang, “Ensemble of convolutional neural networks for the
dcase 2020 acoustic scene classification challenge,” in DCASE Work-
shop, 2020.

[140] J. J. Huang and J. J. A. Leanos, “Aclnet: efficient end-to-end audio
classification cnn,” arXiv preprint arXiv:1811.06669, 2018.

[141] T. Heittola, A. Mesaros, and T. Virtanen, “Acoustic scene classifica-
tion in dcase 2020 challenge: generalization across devices and low
complexity solutions,” arXiv preprint arXiv:2005.14623, 2020.

104 CHAPTER 10. BIBLIOGRAPHY

[142] H. Yang, C. Shi, and H. Li, “Acoustic scene classification using cnn
ensembles and primary ambient extraction,” the 2019 Challenge on
Detection and Classification of Acoustic Scenes and Events, 2019.

[143] J. Huang, H. Lu, P. Lopez Meyer, H. Cordourier, and J. Del Hoyo On-
tiveros, “Acoustic scene classification using deep learning-based en-
semble averaging,” 2019.

[144] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and
human-labeled dataset for audio events,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 776–780, IEEE, 2017.

[145] Y. Sakashita and M. Aono, “Acoustic scene classification by ensem-
ble of spectrograms based on adaptive temporal divisions,” Detection
and Classification of Acoustic Scenes and Events (DCASE) Challenge,
2018.

[146] T. Inoue, P. Vinayavekhin, S. Wang, D. Wood, N. Greco, and
R. Tachibana, “Domestic activities classification based on cnn using
shuffling and mixing data augmentation,” DCASE 2018 Challenge,
2018.

[147] F. Noman, C.-M. Ting, S.-H. Salleh, and H. Ombao, “Short-segment
heart sound classification using an ensemble of deep convolutional neu-
ral networks,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1318–1322,
IEEE, 2019.

[148] A. I. Humayun, M. Khan, S. Ghaffarzadegan, Z. Feng, T. Hasan, et al.,
“An ensemble of transfer, semi-supervised and supervised learning
methods for pathological heart sound classification,” arXiv preprint
arXiv:1806.06506, 2018.

[149] L. Nanni, S. Brahnam, and G. Maguolo, “Data augmentation for
building an ensemble of convolutional neural networks,” in Innova-
tion in Medicine and Healthcare Systems, and Multimedia, pp. 61–69,
Springer, 2019.

[150] M. V. Boland and R. F. Murphy, “A neural network classifier capa-
ble of recognizing the patterns of all major subcellular structures in
fluorescence microscope images of hela cells,” Bioinformatics, vol. 17,
no. 12, pp. 1213–1223, 2001.

[151] L. Shamir, N. Orlov, D. M. Eckley, T. J. Macura, and I. G. Goldberg,
“Iicbu 2008: a proposed benchmark suite for biological image anal-

105

ysis,” Medical & biological engineering & computing, vol. 46, no. 9,
pp. 943–947, 2008.

[152] L. Nanni, G. Maguolo, and F. Pancino, “Insect pest image detection
and recognition based on bio-inspired methods,” Ecological Informat-
ics, vol. 57, p. 101089, 2020.

[153] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, no. 11, pp. 1254–1259, 1998.

[154] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6848–6856, 2018.

[155] L. Deng, Y. Wang, Z. Han, and R. Yu, “Research on insect pest image
detection and recognition based on bio-inspired methods,” Biosystems
Engineering, vol. 169, pp. 139–148, 2018.

[156] X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang, “Ip102: A
large-scale benchmark dataset for insect pest recognition,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8787–8796, 2019.

[157] F. Ren, W. Liu, and G. Wu, “Feature reuse residual networks for insect
pest recognition,” IEEE Access, vol. 7, pp. 122758–122768, 2019.

[158] J. Padmanabhan and M. J. Johnson Premkumar, “Machine learning
in automatic speech recognition: A survey,” IETE Technical Review,
vol. 32, no. 4, pp. 240–251, 2015.

[159] L. Nanni, Y. M. Costa, D. R. Lucio, C. N. Silla Jr, and S. Brahnam,
“Combining visual and acoustic features for audio classification tasks,”
Pattern Recognition Letters, vol. 88, pp. 49–56, 2017.

[160] S. K. Sahoo, T. Choubisa, and S. M. Prasanna, “Multimodal biometric
person authentication: A review,” IETE Technical Review, vol. 29,
no. 1, pp. 54–75, 2012.

[161] Z. Cao, J. C. Principe, B. Ouyang, F. Dalgleish, and A. Vuorenkoski,
“Marine animal classification using combined cnn and hand-designed
image features,” in OCEANS 2015-MTS/IEEE Washington, pp. 1–6,
IEEE, 2015.

[162] K. J. Piczak, “Esc: Dataset for environmental sound classification,” in
Proceedings of the 23rd ACM international conference on Multimedia,
pp. 1015–1018, 2015.

106 CHAPTER 10. BIBLIOGRAPHY

[163] H. B. Sailor, D. M. Agrawal, and H. A. Patil, “Unsupervised filter-
bank learning using convolutional restricted boltzmann machine for
environmental sound classification.,” in INTERSPEECH, pp. 3107–
3111, 2017.

[164] S.-h. Zhang, Z. Zhao, Z.-y. Xu, K. Bellisario, and B. C. Pijanowski,
“Automatic bird vocalization identification based on fusion of spectral
pattern and texture features,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 271–275,
IEEE, 2018.

[165] D. M. Agrawal, H. B. Sailor, M. H. Soni, and H. A. Patil, “Novel
teo-based gammatone features for environmental sound classification,”
in 2017 25th European Signal Processing Conference (EUSIPCO),
pp. 1809–1813, IEEE, 2017.

[166] X. Li, V. Chebiyyam, and K. Kirchhoff, “Multi-stream network with
temporal attention for environmental sound classification,” arXiv
preprint arXiv:1901.08608, 2019.

[167] J. Sharma, O.-C. Granmo, and M. Goodwin, “Environment sound
classification using multiple feature channels and deep convolutional
neural networks,” arXiv preprint arXiv:1908.11219, 2019.

[168] M. Mohaimenuzzaman, C. Bergmeir, I. T. West, and B. Meyer, “En-
vironmental sound classification on the edge: Deep acoustic networks
for extremely resource-constrained devices,” arXiv e-prints, pp. arXiv–
2103, 2021.

[169] J. Chaki, “Pattern analysis based acoustic signal processing: a survey
of the state-of-art,” International Journal of Speech Technology, pp. 1–
43, 2020.

[170] L. Nanni, G. Maguolo, S. Brahnam, and M. Paci, “An ensemble of con-
volutional neural networks for audio classification,” Applied Sciences,
vol. 11, no. 13, p. 5796, 2021.

[171] M. Lasseck, “Audio-based bird species identification with deep convo-
lutional neural networks.,” in CLEF (Working Notes), 2018.

[172] E. Sprengel, M. Jaggi, Y. Kilcher, and T. Hofmann, “Audio based bird
species identification using deep learning techniques,” tech. rep., 2016.

[173] G. Maguolo, M. Paci, and L. Nanni, “Audiogmenter: a matlab toolbox
for audio data augmentation,” arXiv preprint arXiv:1912.05472, 2019.

[174] Z. Prusa et al., “The large time frequency analysis toolbox: Wavelets,”
2013.

107

[175] L. Rabiner and R. Schafer, Theory and applications of digital speech
processing. Prentice Hall Press, 2010.

[176] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places:
A 10 million image database for scene recognition,” IEEE transactions
on pattern analysis and machine intelligence, vol. 40, no. 6, pp. 1452–
1464, 2017.

[177] L. Nanni, G. Maguolo, and M. Paci, “Data augmentation approaches
for improving animal audio classification,” Ecological Informatics,
p. 101084, 2020.

[178] L. Nanni, Y. M. Costa, A. Lumini, M. Y. Kim, and S. R. Baek, “Com-
bining visual and acoustic features for music genre classification,” Ex-
pert Systems with Applications, vol. 45, pp. 108–117, 2016.

[179] Z. Zhao, S.-h. Zhang, Z.-y. Xu, K. Bellisario, N.-h. Dai, H. Omrani,
and B. C. Pijanowski, “Automated bird acoustic event detection and
robust species classification,” Ecological Informatics, vol. 39, pp. 99–
108, 2017.

[180] Y. Pandeya, D. Kim, and J. Lee, “Domestic cat sound classification
using learned features from deep neural nets,” Applied Sciences, vol. 8,
no. 10, p. 1949, 2018.

[181] Y. R. Pandeya and J. Lee, “Domestic cat sound classification using
transfer learning,” International Journal of Fuzzy Logic and Intelligent
Systems, vol. 18, no. 2, pp. 154–160, 2018.

[182] A. Kumar and V. Ithapu, “A sequential self teaching approach for
improving generalization in sound event recognition,” in International
Conference on Machine Learning, pp. 5447–5457, PMLR, 2020.

[183] J. Kim, “Urban sound tagging using multi-channel audio feature with
convolutional neural networks,” Proceedings of the Detection and Clas-
sification of Acoustic Scenes and Events, 2020.

[184] Y. Tokozume, Y. Ushiku, and T. Harada, “Learning from
between-class examples for deep sound recognition,” arXiv preprint
arXiv:1711.10282, 2017.

[185] A. Kumar, M. Khadkevich, and C. Fügen, “Knowledge transfer from
weakly labeled audio using convolutional neural network for sound
events and scenes,” in 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 326–330, IEEE,
2018.

108 CHAPTER 10. BIBLIOGRAPHY

[186] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in AISTATS, 2011.

[187] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010.

[188] A. L. Maas, “Rectifier nonlinearities improve neural network acoustic
models,” 2013.

[189] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accu-
rate deep network learning by exponential linear units (elus),” CoRR,
vol. abs/1511.07289, 2015.

[190] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in NIPS, 2017.

[191] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[192] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep learning
with s-shaped rectified linear activation units,” in AAAI, 2016.

[193] F. Agostinelli, M. D. Hoffman, P. J. Sadowski, and P. Baldi, “Learn-
ing activation functions to improve deep neural networks,” CoRR,
vol. abs/1412.6830, 2014.

[194] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” CoRR, vol. abs/1710.05941, 2017.

[195] Q. Cheng, H. Li, Q. Wu, L. Ma, and N. N. King, “Parametric de-
formable exponential linear units for deep neural networks,” Neural
Networks, 2020.

[196] D. Misra, “Mish: A self regularized non-monotonic neural activation
function,” arXiv preprint arXiv:1908.08681, 2019.

[197] Y. Zhou, D. Li, S. Huo, and S.-Y. Kung, “Soft-root-sign activation
function,” arXiv preprint arXiv:2003.00547, 2020.

[198] G. Maguolo, L. Nanni, and S. Ghidoni, “Ensemble of convolutional
neural networks trained with different activation functions,” Expert
Systems with Applications, vol. 166, p. 114048, 2021.

[199] L. Nanni, A. Lumini, S. Ghidoni, and G. Maguolo, “Com-
parisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare,” arXiv preprint
arXiv:2011.11834, 2020.

109

[200] S. Moccia, E. D. Momi, M. Guarnaschelli, M. Savazzi, A. Laborai,
L. Guastini, G. Peretti, and L. S. Mattos, “Confident texture-based
laryngeal tissue classification for early stage diagnosis support.,” Jour-
nal of medical imaging, vol. 4 3, p. 034502, 2017.

[201] J. N. Kather, C. A. Weis, F. Bianconi, S. M. Melchers, L. R. Schad,
T. Gaiser, A. Marx, and F. G. Zöllner, “Multi-class texture analysis
in colorectal cancer histology,” in Scientific reports, 2016.

[202] K. Dimitropoulos, P. Barmpoutis, C. Zioga, A. I. Kamas, K. Pat-
siaoura, and N. Grammalidis, “Grading of invasive breast carcinoma
through grassmannian vlad encoding,” in PloS one, 2017.

[203] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[204] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
conference on machine learning, pp. 1139–1147, PMLR, 2013.

[205] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for ma-
chine learning lecture 6a overview of mini-batch gradient descent,”
Cited on, vol. 14, no. 8, p. 2, 2012.

[206] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.,” Journal of machine
learning research, vol. 12, no. 7, 2011.

[207] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[208] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[209] S. R. Dubey, S. Chakraborty, S. K. Roy, S. Mukherjee, S. K. Singh, and
B. B. Chaudhuri, “diffgrad: An optimization method for convolutional
neural networks,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 11, pp. 4500–4511, 2019.

[210] P. Zhou, J. Feng, C. Ma, C. Xiong, S. Hoi, et al., “Towards theoret-
ically understanding why sgd generalizes better than adam in deep
learning,” arXiv preprint arXiv:2010.05627, 2020.

[211] N. S. Keskar and R. Socher, “Improving generalization performance
by switching from adam to sgd,” arXiv preprint arXiv:1712.07628,
2017.

[212] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

110 CHAPTER 10. BIBLIOGRAPHY

[213] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” arXiv preprint arXiv:1904.09237, 2019.

[214] L. Nanni, G. Maguolo, and A. Lumini, “Exploiting adam-like opti-
mization algorithms to improve the performance of convolutional neu-
ral networks,” arXiv preprint arXiv:2103.14689, 2021.

[215] M. V. Boland and R. F. Murphy, “A neural network classifier capable
of recognizing the patterns of all major subcellular structures in fluo-
rescence microscope images of hela cells,” Bioinformatics, vol. 17 12,
pp. 1213–23, 2001.

[216] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H.
Torr, “Fully-convolutional siamese networks for object tracking,” in
European conference on computer vision, pp. 850–865, Springer, 2016.

[217] L. Nanni, S. Brahnam, A. Lumini, and G. Maguolo, “Animal sound
classification using dissimilarity spaces,” Applied Sciences, vol. 10,
no. 23, p. 8578, 2020.

[218] P. Arora, S. Varshney, et al., “Analysis of k-means and k-medoids
algorithm for big data,” Procedia Computer Science, vol. 78, pp. 507–
512, 2016.

[219] M. S. Biagio, M. Crocco, M. Cristani, S. Martelli, and V. Murino,
“Heterogeneous auto-similarities of characteristics (hasc): Exploiting
relational information for classification,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 809–816, 2013.

[220] G. Maguolo and L. Nanni, “A critic evaluation of methods for covid-19
automatic detection from x-ray images,” Information Fusion, vol. 76,
pp. 1–7, 2021.

[221] O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang,
W. Ji, A. Bernheim, and E. Siegel, “Rapid ai development cycle for
the coronavirus (covid-19) pandemic: Initial results for automated
detection & patient monitoring using deep learning ct image analysis,”
arXiv preprint arXiv:2003.05037, 2020.

[222] R. M. Pereira, D. Bertolini, L. O. Teixeira, C. N. Silla Jr, and Y. M.
Costa, “Covid-19 identification in chest x-ray images on flat and hi-
erarchical classification scenarios,” arXiv preprint arXiv:2004.05835,
2020.

[223] A. Narin, C. Kaya, and Z. Pamuk, “Automatic detection of coron-
avirus disease (covid-19) using x-ray images and deep convolutional
neural networks,” arXiv preprint arXiv:2003.10849, 2020.

111

[224] J. Zhang, Y. Xie, Y. Li, C. Shen, and Y. Xia, “Covid-19 screening
on chest x-ray images using deep learning based anomaly detection,”
arXiv preprint arXiv:2003.12338, 2020.

[225] I. D. Apostolopoulos and T. A. Mpesiana, “Covid-19: automatic de-
tection from x-ray images utilizing transfer learning with convolutional
neural networks,” Physical and Engineering Sciences in Medicine, p. 1,
2020.

[226] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun,
and L. Xia, “Correlation of chest ct and rt-pcr testing in coronavirus
disease 2019 (covid-19) in china: a report of 1014 cases,” Radiology,
p. 200642, 2020.

[227] J. P. Cohen, M. Hashir, R. Brooks, and H. Bertrand, “On the limits
of cross-domain generalization in automated x-ray prediction,” arXiv
preprint arXiv:2002.02497, 2020.

[228] E. H. Pooch, P. L. Ballester, and R. C. Barros, “Can we trust deep
learning models diagnosis? the impact of domain shift in chest radio-
graph classification,” arXiv preprint arXiv:1909.01940, 2019.

[229] J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and
E. K. Oermann, “Variable generalization performance of a deep learn-
ing model to detect pneumonia in chest radiographs: a cross-sectional
study,” PLoS medicine, vol. 15, no. 11, p. e1002683, 2018.

[230] J. Jo and Y. Bengio, “Measuring the tendency of cnns to learn surface
statistical regularities,” arXiv preprint arXiv:1711.11561, 2017.

[231] E. Tartaglione, C. A. Barbano, C. Berzovini, M. Calandri, and
M. Grangetto, “Unveiling covid-19 from chest x-ray with deep learn-
ing: a hurdles race with small data,” arXiv preprint arXiv:2004.05405,
2020.

[232] S. Tabik, A. Gómez-Ŕıos, J. Mart́ın-Rodŕıguez, I. Sevillano-Garćıa,
M. Rey-Area, D. Charte, E. Guirado, J. Suárez, J. Luengo, M. Valero-
González, et al., “Covidgr dataset and covid-sdnet methodology for
predicting covid-19 based on chest x-ray images,” arXiv preprint
arXiv:2006.01409, 2020.

[233] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya, et al., “Chexnet: Radiologist-
level pneumonia detection on chest x-rays with deep learning,” arXiv
preprint arXiv:1711.05225, 2017.

112 CHAPTER 10. BIBLIOGRAPHY

[234] I. M. Baltruschat, H. Nickisch, M. Grass, T. Knopp, and A. Saalbach,
“Comparison of deep learning approaches for multi-label chest x-ray
classification,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[235] L. Yao, J. Prosky, B. Covington, and K. Lyman, “A strong baseline
for domain adaptation and generalization in medical imaging,” arXiv
preprint arXiv:1904.01638, 2019.

[236] J. P. Cohen, P. Morrison, and L. Dao, “Covid-19 image data collec-
tion,” arXiv preprint arXiv:2003.11597, 2020.

[237] L. Wang and A. Wong, “Covid-net: A tailored deep convolutional
neural network design for detection of covid-19 cases from chest radio-
graphy images,” arXiv preprint arXiv:2003.09871, 2020.

[238] I. Castiglioni, D. Ippolito, M. Interlenghi, C. B. Monti, C. Salvatore,
S. Schiaffino, A. Polidori, D. Gandola, C. Messa, and F. Sardanelli,
“Artificial intelligence applied on chest x-ray can aid in the diagnosis
of covid-19 infection: a first experience from lombardy, italy,” medRxiv
year=2020, publisher=Cold Spring Harbor Laboratory Press.

[239] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute,
H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, et al., “Chex-
pert: A large chest radiograph dataset with uncertainty labels and
expert comparison,” in Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 33, pp. 590–597, 2019.

[240] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

	Introduction
	Related Work
	Ensembles of Different Models
	Ensembles Using Different Training Sets
	Ensembles Using Different Training Algorithms
	Decision Rules in Neural Ensembles
	Diversity-Based Ensembles
	Fast Ensembles

	Deep Ensembles Applications
	CIFAR classification
	Face recognition
	Skin lesion recognition
	Computer-aided Diagnosis from X-Ray and MRI
	Optical Charachter Recognition
	Audio Classification

	Data Augmentation for Building Ensembles
	Ensemble of Saliency Methods for Image Classification
	Saliency Methods
	Results

	Ensembles of Different Data Augmentations
	Audio Image Representations
	Standard Signal Data Augmentation (SGN)
	Short Signal Augmentation (SSA)
	Super Signal Augmentation (SSiA)
	Time Scale Modification (TSM)
	Short Spectrogram Augmentation (SSpA)
	Super Spectro Augmentation (SuSA)
	Results

	Discussion

	Ensembles of Different Activation Functions
	Activation Functions for Neural Networks
	Mexican and Gaussian Linear Units

	Changing the Activation Functions
	Results
	Discussion

	Ensembles of Different Trainings
	Optimization Algorithms
	Adam
	AMSGrad
	diffGrad

	Methods
	DGrad
	Cos#1 and Cos#2

	Experiments and Discussion

	Ensembles of Siamese Networks
	The Dissimilarity Space
	Siamese Architectures
	Clustering Methods
	K-Means
	K-Medoids
	Spectral Clustering
	Hierarchical Clustering

	Results
	Discussion

	Generalization of Covid-19 Classifiers
	Covid-19 Classification
	Related Works
	Datasets
	Methods
	Results and Discussion

	Discussion
	References

	Bibliography

