Received 22 December 2020; revised 15 April 2021; accepted 15 April 2021. Date of publication 21 April 2021;
date of current version 28 May 2021. The review of this article was arranged by Associate Editor H. Vicky Zhao.

Digital Object Identifier 10.1109/0JSP.2021.3074298

FOCAL: A Forgery Localization Framework
Based on Video Coding Self-Consistency

SEBASTIANO VERDE
PAOLO BESTAGINI

1 (Student Member, IEEE), EDOARDO DANIELE CANNAS ©2 (Student Member, IEEE),
2 (Member, IEEE), SIMONE MILANI
GIANCARLO CALVAGNO' (Member, IEEE), AND STEFANO TUBARO

1 (Member, IEEE),
2 (Senior Member, IEEE)

! Department of Information Engineering, University of Padua, 35131 Padova, Veneto, Italy
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy

CORRESPONDING AUTHOR: SEBASTIANO VERDE (e-mail: sebastiano.verde@dei.unipd.it)

This work was supported in part by the University of Padova project Phylo4n6 prot. BIRD165882/16 and in part by DARPA and Air Force Research Laboratory
(AFRL) under Agreement FA8750-16-2-0173.

ABSTRACT Forgery operations on video contents are nowadays within the reach of anyone, thanks to the
availability of powerful and user-friendly editing software. Integrity verification and authentication of videos
represent a major interest in both journalism (e.g., fake news debunking) and legal environments dealing
with digital evidence (e.g., courts of law). While several strategies and different forensics traces have been
proposed in recent years, latest solutions aim at increasing the accuracy by combining multiple detectors
and features. This paper presents a video forgery localization framework that verifies the self-consistency of
coding traces between and within video frames by fusing the information derived from a set of independent
feature descriptors. The feature extraction step is carried out by means of an explainable convolutional neural
network architecture, specifically designed to look for and classify coding artifacts. The overall framework
was validated in two typical forgery scenarios: temporal and spatial splicing. Experimental results show an
improvement to the state of the art on temporal splicing localization as well as promising performance in the
newly tackled case of spatial splicing, on both synthetic and real-world videos.

INDEX TERMS Forgery detection, multimedia forensics, video codecs, video forensics.

I. INTRODUCTION
The assessment of authenticity for video sequences is nowa-
days a paramount task in a variety of contexts, such as citizen
journalism and fake news debunking, as well as evidence
validation in legal procedures and fraud detection. This con-
cern has gained importance during the last years because of
the wide availability of powerful and easily-operable video
editing programs (e.g., Adobe Premiere, Apple Final Cut, etc.)
and the wide-spread use of video data in communication and
documenting activities. Moreover, the development of deep
learning solutions for the automatic creation and editing of im-
age and video contents have posed new challenges to forensic
analysts, since a malicious user has the opportunity to create
fake contents that overcome most of the existing detectors.
As a matter of fact, forensic analysts have been constantly
investigating innovative and accurate solutions for forgery
detection and localization. Among the first strategies being

proposed, we can find detectors that identify the acquisition
device [1], [2], physical inconsistencies [3], video recaptur-
ing [4], frame deletion and insertion [5], [6], or codec-related
operations [7]-[9]. Most of these detectors verify the self-
consistency [10], [11] of video processing footprints, i.e., the
uniformity of traces left on the signal across different frames
and regions of the video sequence. Whenever an external
element is included within an original image or video, the
forensic footprints in the altered region change with respect
to untouched ones. Revealing such a discrepancy allows de-
tecting the possible presence of a forgery.

Extending the preliminary work in [12], the current pa-
per proposes a FOrgery loCALizer (FOCAL) that checks the
self-consistency of multiple and independent forensic traces
related to video coding (Fig. 1). Differently from the previ-
ous work where forgeries consisted in concatenating video
sequences from different sources (temporal splicing), this new

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021

217

https://orcid.org/0000-0002-6211-7955
https://orcid.org/0000-0002-2011-7295
https://orcid.org/0000-0003-0406-0222
https://orcid.org/0000-0001-8266-5839
https://orcid.org/0000-0002-1990-9869
mailto:sebastiano.verde@dei.unipd.it

VERDE ET AL.: FOCAL: A FORGERY LOCALIZATION FRAMEWORK BASED ON VIDEO CODING SELF-CONSISTENCY

Model 1 —)
e A -
ity ——em
| Model 2 g .
| & g
: 3 o % 4.__' g
>———|——-‘ = 3 —
i g =¥
1 (=W 1]
1 @ o
o 1 =2 =} :
Original frame Forged frame < E Model M] o Detection
e [N N : |
K / -/ S—

64x64 patches

Set of detectors

Feature-maps

FIGURE 1. FOrgery loCALizer (FOCAL) framework. A forged video-frame is split into 64 x64 patches and fed to a set of pre-trained detectors (e.g.,
classifiers of the video coding standard and quality). Extracted features are rearranged into feature-maps and a fusion function merges them into a single
detection heat-map. Dashed and solid lines are used to denote patch-wise and frame-wise operations, respectively.

approach is also able to precisely localize an altered region
within a single frame (spatial splicing) as well as along time
dimension.

Given an input video, each frame is split into smaller
patches, and a feature vector is extracted from each one of
them. The set of features corresponds to the output values of
the final softmax layers from multiple convolutional neural
networks (CNNs) dedicated to the classification of different
coding parameters, such as coding standard and quality level.
These CNNs share an explainable architecture, which was
specifically designed to look for coding artifacts by aligning
the receptive fields of the network filters to the quantization
block boundaries, where the most significant traces are typi-
cally visible.

An unsupervised fusion technique was designed to merge
the outputs of these heterogeneous feature descriptors into
a human-readable heatmap, which characterizes each frame-
patch from the analyzed video with a likelihood measure that
models the probability of being forged. This approach also
makes the framework scalable and extendible at will, allowing
the introduction of additional detectors and feature descriptors
to contribute to the overall heatmap.

Experimental validation takes into account different forgery
setups, such as temporal and spatial splicing in controlled and
uncontrolled environments. Results show that the proposed
solution is able to improve the performance of [12], thanks
to the newly adopted network architecture, and to obtain
convincing results in the detection of local forgeries as well,
with an area under the curve (AUC) of the receiver operating
characteristic (ROC) curve of 0.94.

The rest of the paper is organized as follows. Section II
briefly overviews the literature on video forgery detection
and localization, distinguishing between temporal and spatial
forgeries. Section III formally defines the problem addressed
by the paper and the notation used. Section IV presents the
proposed CNN for extracting coding-related features, with
special emphasis on the architectural choices. Section V il-
lustrates our forgery localization framework, from the feature
extraction step to the final feature fusion and heatmap gener-
ation, in both temporal and spatial forgery cases. Section VI

218

reports all the details about the experimental setup, the train-
ing phase, the generation of the synthetic dataset and the
obtained results. Finally, Section VII concludes the paper and
outlines possible future work.

Il. RELATED WORK

In recent years, video authentication has emerged as a novel
and challenging research field [13], [14] leading to the devel-
opment of algorithms and tools capable of estimating whether
a video sequence is original or not. Most of the proposed
approaches identifies two different types of forgeries: tem-
poral and spatial splicing. The first case refers to videos that
have been modified through the inclusion or deletion of some
frames into or from the original sequence. In the second one,
the content of individual frames is modified, e.g., with a cut-
and-paste of a region (inclusion/removal of an object from
the scene) or performing an upscale-crop editing (where an
object located in an outermost part of the video is removed
by cropping the frames). Furthermore, it is worth mention-
ing double/multiple compression. Since video sequences are
usually available in compressed format and any modification
must be performed in the pixel domain, videos need to be
re-encoded every time a forgery is operated. For this reason,
forged sequences typically exhibit the presence of multiple
compression artifacts.

Among the strategies for detecting the insertion/deletion of
frames, some algorithms exploit the correlation and similarity
between frame characteristics [15], [16]; if some temporal
patterns do not follow the expected trend, the algorithm raises
an alarm. Similarly, other solutions identify regular patterns in
the camera noise signals; whenever there are repetitions [17]
or oddities [18], [19] due to the fact that forged frames were
taken by a different camera, the algorithm reports an anomaly.
Deletions can be highlighted by spotting irregularities in the
video motion statistics, obtainable through the analysis of the
optical flow [20], [21], interpolation [22], or standard block
matching [23]. The correlation in prediction residual informa-
tion [24], [25], in texture patterns [26] and in brightness [27]
can be exploited as well.

VOLUME 2, 2021

IEEE (72 IEEE Open Journal of

Signal " .
Pocessing Signal Processing

Spatial forgeries can be detected by checking the consis-
tency of forensic traces left on the video sequence by the
acquisition device or by different encoding algorithms. The
strategy proposed in [28] exploits the scaling invariance of
the minimum average correlation energy Mellin radial har-
monic (MACE-MRH) correlation filter to unveil traces of
upscale-crop forgeries. Similarly, the impact of a spatial splic-
ing on the encoding of motion vectors in interlaced videos can
be analyzed to reveal traces of possible alterations [29]. Object
removal can be exposed by detecting discrepancies in the mo-
tion vectors too [30] and also through a combination of differ-
ent steganalysis features [31]. Copy-move object removal can
be revealed by exploiting local descriptors, such as histogram
of oriented gradients (HoG) [32] or scale-invariant feature
transform (SIFT) descriptors [33]. The same type of forgery
can also be detected by analyzing the spatial and temporal
correlation among frames [34], Zernike moments [35], and
optical flow similarities [36]. Together with intra-frame sim-
ilarities and discrepancies, by comparing a plausible model
with what is estimated directly from the pixels it is possible
to expose physical inconsistencies in scene illumination and
object motion [3].

Revealing traces of multiple compression on the analyzed
video sequence allows an effective detection of editing opera-
tions. A first insight was provided in [37], followed by several
researches extending to videos the coding footprints identified
for images [9], [38]. In the context of double MPEG detection,
the misalignment of the group-of-pictures (GOP) structures
related to the first and second encoding can be informative
as well; whenever the coding parameters change between
two consecutive encoding steps, a superposition of heteroge-
neous artifacts appears on the video and can be detected [39].
Similarly, the simultaneous presence of traces related to in-
compatible coding parameters or formats is investigated in
several papers [8], [40], [41]. Furthermore, whenever a video
sequence is compressed twice, it is possible to observe some
peculiar noise patterns. In [42] the authors propose a first-
order Markov statistics for the differences between quantized
discrete cosine transform (DCT) coefficients along different
directions, while the solution in [43] employs a modified
Huber Markov random field (HMRF) model; these methods
permit assessing whether a whole sequence of frames is au-
thentic or tampered (e.g., compressed twice) but, differently
from the proposed one, do not allow to precisely localize a
forgery operation.

Recent approaches are setting up a new trend in video
forgery detection by using deep neural networks. In [44] the
authors propose a recursive autoencoder (implemented with
the LSTM architecture, to exploit temporal dependencies) to
learn a feature representation of pristine videos and detect
forgeries as outliers of the learned model. In [12] two CNNs
are independently trained to extract codec and quality related
features with the purpose of detecting temporal inconsisten-
cies, showing that the combination of heterogeneous detec-
tors enhances the overall performance. Some studies have
also been addressed to expose the newly appeared threat of

VOLUME 2, 2021

Al-generated highly-realistic forgeries, also known as Deep-
Fakes. The detection is carried out by means of eye-blinking
analysis [45] and combinations of deep learning models such
as CNNs and recurrent neural networks (RNNs) [46]. How-
ever, these methods are specifically tailored to the problem of
detecting fake faces, thus they fail in spotting general video
forgeries.

Following the trend of fusing multiple features to increase
the overall accuracy, the proposed strategy combines a set of
coding-related features obtained from different CNNs. The
architecture of these networks was designed in awareness of
where and how compression artifacts appear, as described in
Section I'V.

I1Il. PROBLEM DEFINITION
The purpose of the FOCAL framework is detecting and lo-
calizing temporal and spatial splicing operations on video
sequences. Here we provide a formal definition of the tackled
problem and the notation used throughout the paper.

Let us define a video sequence X as an array of N frames
denoted by X,,,

X =[X;,Xz,...,XpN], (1
where each frame is a matrix of pixels X,,,,
Xn = [Xuv]n . (2)

Pixel coordinates are (u,v) € U x V, where U = |U| and
V =1|V| are the amount of pixel per column and row,
respectively.

Definition 1: Let X and Y be two sequences of frames
with size Uy, Vx, Nx and Uy, Vy, Ny, respectively. The two
sequences are spliceable if Uy = Uy and Vy = Vy.

Without loss of generality, we will define the two types
of forgeries addressed by this work for spliceable sequences
only.

Definition 2: Let X and Y be two spliceable sequences. A
temporal splicing is a function T that concatenates X and Y
into a single sequence:

TEY)=[Xi,.... X, Yoo, Yy] (3)

The resulting sequence is called temporally-spliced and the
frame-index Nx + 1 is the splicing point.

Definition 3: Let X, and Y}, be two frames from spliceable
sequences X and Y, respectively. Let R C U x V be a subset
of pixel coordinates. A spatial splicing is a function S that
substitutes pixels in R of one frame with pixels in R of the
other frame:

Yiw, W,v)eR

S Xy, Yun, R) =] . 4
Kuw: Yiw, R) X,v, otherwise @

The resulting sequence is called spatially-spliced and R is
the spliced region.

Given a video sequence under analysis, with no additional
information available except for the pixel values, we aim to
localize possible splicing points or spliced regions.

219

VERDE ET AL.: FOCAL: A FORGERY LOCALIZATION FRAMEWORK BASED ON VIDEO CODING SELF-CONSISTENCY

10 20 30 40 50 60 10 20 30 40 50 60

(a) High quality. (b) Low quality.

FIGURE 2. Block-artifacts at different encoding qualities in a 64 x 64
patch. The grid of 8 x 8 blocks is particularly evident in 2(b).

IV. CODING FEATURES

The core of our forgery localizer consists in a convolutional
neural network specifically designed to detect and classify
traces left by video-coding algorithms. Understanding which
coding scheme and parameters were used to encode a video
clip, by only looking at the pixel domain, represents a chal-
lenging task even for a human observer. However, almost any-
one is able to perform a rough classification on the perceptive
quality of a video, usually by looking for the presence of
block-artifacts (typically more evident in lower quality videos,
as Fig. 2 shows).

Block-artifacts are introduced by any coding algorithm
adopting the block-based transform principle. This coding
paradigm first splits the set of frames into groups-of-pictures
(GOPs) that are encoded independently of one another. Each
frame within a GOP is encoded according to a pattern of
predefined type:

e Intra or I type: the frame is coded independently from
all the others; the first frame of each GOP must be intra-
coded.

® Predictive or P type: the frame is encoded with motion
compensation, using the previous I or P frames as refer-
ences.

® Bidirectionally predictive or B type: the frame is encoded
with motion compensation, using the previous and the
following I or P frames as references.

The customary encoding procedure involves a domain
transform (most likely DCT) applied to a block of pixels, typ-
ically 8 x 8 in size. The obtained coefficients are then quan-
tized and fed to an entropy encoder. The lower the bitrate, the
coarser is the coefficients representation, resulting in blurry
blocks and evident discontinuities at the block boundaries.

Since block-artifacts appear to be quite distinctive for the
human vision, we attempted to design a network whose atten-
tion is focused on these particular features. Specifically, we
wanted our network to analyze the regions nearby the corners
of the block-grid, as each one of them allows to observe
four blocks and boundaries at the same time. To accomplish
that, the network architecture was designed to align with the
block-grid and to extract a descriptor for each corner and its
associated neighborhood. To better understand this, we need
to introduce the concept of receptive field.

220

TABLE 1. Network Architecture

Layer Kernels w s z Activation
Conv-1 64 4x4 1 0 BN + ReLU
Conv-2 64 3 x3 2 0 BN + ReLU
Conv-3 64 4x4 1 0 BN + ReLU
Conv-4 64 3x3 2 0 BN + ReLU
Conv-5 64 3 x3 2 1 BN + ReLU
FC-1 64

FC-2 K Softmax

Network’s layers hyperparameters: w = kernel size; s = stride; z = padding.

The receptive field denotes the region of the input that a
particular network neuron is looking at. It is described by its
center position and its size. Pixels contribution to the calcu-
lation of the output feature grows exponentially towards the
center of the receptive field. Given the input size, the layers of
a CNN can be designed in order to produce features with the
desired receptive field.

The CNN architecture we propose consists of: five convo-
lutional layers, each one followed by a batch normalization
(BN) and a rectified linear unit (ReLU) activation; two fully-
connected layers; a softmax activation layer. Table 1 reports
the complete list of layers, specifying for each convolutional
one the number of kernels, the kernel size w, the stride s and
the padding size z.

The input to the CNN is a luminance patch of 64 x 64
pixels. Chrominance components are neglected since they do
not add relevant information to block-artifacts and are of-
ten subsampled. Assuming a block-grid of 8 x 8 transform
blocks, each patch contains exactly 7 x 7 = 49 corners.

Fig. 3 provides a visualization of the spatial layout of the
filters for each one of the five convolutional layers. In addi-
tion, the values of the following geometrical parameters are
provided:

¢ the size m of the output feature map, based on the size of

the input feature map and the layer’s properties,

mip, + 2z —w
Moy = \\%J +1; @)

e the jump factor j in the output feature map, representing
the spatial displacement in the receptive field between
consecutive layers,

Jour = Jin S (6)
¢ the receptive field size r of the output feature map,
Four = Fin + (W — 1)+ Jin; @)
e the center position ¢ of the receptive field of the first
output feature,

w—1

Cout = Cin + (T - Z> < Jin- (®)

All parameters are computed with respect to those of the
previous layer and, since we are dealing with square filters and
symmetrical stride and padding, the dimensions are equal in

VOLUME 2, 2021

8 16 8 16 7 15
1518 4 1,1
(1,1) block (1,2) block 12,2 L
| O 12,2
3,3
,,,,,,, 7,7 7
8 8 | IR
(2,1) block epbock || LT \ . BEEREN
,,,,,, C g
15 C]
16 3 o]
Input patch Conv-1 Conv-2
(@) mp =64; jo=1;r0 =1, ¢c0 =0.5 b)ym;y =611 =1r=4c=2 () ma2 =30; jo =2, 72 =6; coa =3
3 7 11 15 2 6 10 14
L. 4 1,1 1,1 7 13
2.2 2 - P N
‘ N I
31| -1-{o8 . 1122 22
: H 3,3 ||
' 6,6 g . >
7 IS DT b | : : Pt !
1 5 RN 7 W
: 10,10 10 ! ! » ;
11 . || TR | ; 4]
i ! 14 ;]
15 .- m o
| 13
Conv-3 Conv-4 Conv-5

(d) m3 =27, j3=2;r3=12;¢c4 =6

() ma = 13; ja =4;r4 =16, ¢4 =8

O ms=7,j5=8;15 =24;¢c5 =8

FIGURE 3. Architecture of the convolutional layers, with feature map size (m;), jump factor (j;), receptive field size (r;) and center position (c;). Green
areas denote feature activations related to block boundaries. The output of Conv-5 is a 7-by-7-by-64 tensor, consisting of one 64-length feature vector for

each corner of the block grid.

both directions. In the input layer, we have mgy x mg = 64 x
64 features (the input size), jump factor and receptive field
size equal to one pixel (jo = rp = 1) and the center position
is the center of the first pixel (cop = 0.5). Green areas in Fig. 3
represent those parts of the feature map carrying information
related to block boundaries. Yellow areas are associated with
pixels within the blocks.

With this particular design, the network progressively con-
denses the block-grid, without blending together the descrip-
tors associated to different corner points. The output of the last
convolutional layer is a 7-by-7-by-64 tensor, forming a map
of 64-elements descriptors, one for each corner of the input
patch. This tensor is fed to a fully connected network that
returns the final K-length patch descriptor, where K depends
on the chosen number of classification outputs.

The feature descriptors calculated by this CNN can be ex-
ploited in a variety of forensic applications. In the following
section, we discuss the design of our forgery localization
framework, which checks the self-consistency of these coding
features to detect temporal and spatial splicing operations.

VOLUME 2, 2021

V. FORGERY LOCALIZATION
FOCAL employs the CNN described in Section IV to extract
from an input frame-patch a descriptor associated to its cod-
ing standard and quality. The idea is that patches or frames
coming from different video sequences will exhibit different
coding traces. Detecting descriptor inconsistencies may there-
fore lead to localizing forgeries.

The proposed CNN was trained to solved a 4-class codec
classification task, within the following closed set of coding
standards,

{MPEG-2, MPEG-4, H.264, H.265},

and a 4-class quality classification task, where the encoding
quality is determined by the following values of the quantiza-
tion step,

A = {5, 10, 20, 40}.

We will refer to the four quality levels throughout the paper
as high, medium-high, medium-low and low, respectively.

221

VERDE ET AL.: FOCAL: A FORGERY LOCALIZATION FRAMEWORK BASED ON VIDEO CODING SELF-CONSISTENCY

The two trained models were kept separate and used as
independent feature extractors. Details on the training phase
are provided in Sections VI-A,VI-B. Note also that this frame-
work is scalable to an arbitrary number of trained models,
given that they output a vector-shaped feature descriptor.

In the following paragraphs, we discuss the feature extrac-
tion phase and the algorithms designed to detect inconsisten-
cies in the descriptors, with the purpose of solving two typical
video forensics scenarios: temporal and spatial splicing local-
1zation.

A. FEATURE EXTRACTION
Let X be a video sequence of N frames, as defined in Sec-
tion III. Each frame X,, is split into 64 x 64 patches X7,
p=1,..., P, where the number of patches P depends on the
video resolution and on the stride used for patch extraction.
Note that, in the case of overlapping patches, the stride must
be a multiple of the dimension of the coding blocks (8 pixels),
in order to maintain the alignment described in Section IV.
The extracted patches are then converted to YCbCr color
space and their luma components are fed into the two trained
CNNeE.

For each patch X7, the output of each network is a four-
element feature vector,

fg(”) = [fgzm(”)’ fﬁ%s(”% fD,;[PEGZ(n)’ fl\l/)IPEGzl(n)]’

fs(”) = [flf)w(n)’ [ﬁ—low(n)’ frfl—high(n)’

Sian @],

where each element f{p) (n) represents the likelihood of the
p-th patch from the n-th frame being encoded with one of
the four considered codecs/qualities. Due to the final softmax
activation, feature vectors are non-negative and sum to one. As
well as considering these vectors as probability distributions
over codec/quality classes, one can interpret them as general
descriptors capturing local coding traces. As a matter of fact,
for forgery detection we are not required to exactly detect the
adopted codec and the related coding parameters, but rather
observe some sort of feature inconsistency between and within
frames.

Given our patch-level descriptors, obtained from heteroge-
neous feature extractors, we can design different algorithms
that leverage such information to detect anomalies, which in
turn raise an alarm on the possible presence of forgeries.

B. TEMPORAL SPLICING LOCALIZATION

The proposed temporal splicing localization algorithm relies
on the presented features to calculate a descriptor for each
frame of the video and localizes inconsistencies between ad-
jacent descriptors. Without loss of generality, we considered
temporally-spliced videos composed by only two shots, since
this can be easily extended by iterating the same procedure.
Additionally, we considered the case of spliced videos ob-
tained with sequences encoded with different codecs and/or
different quality parameters. This simulates the case of com-
pilations of shots coming from different devices, broadcasting

222

sources and social media, as well as shots compressed multi-
ple times or re-encoded as a whole after being spliced.

Given the patch-level features obtained with the procedure
described in Section V-A, the desired frame-level feature vec-
tors, fc(n), fg(n), are obtained through a standard average,

1 P
fe(n) = 5 310, ©)

p=1

P
1
fo(m) = 5 > thm), (10)
p=1
where all operations are performed element-wise.
Finally, the two vectors are concatenated into a general
eight-element frame descriptor,

f(n) = [fc(n), fo(n)]. Y

To automatically detect inconsistencies over time, we com-
pute the squared Euclidean distance between adjacent feature
vectors,

Af(n) = |If(n) — f(n + D7, 12)

and we feed Af(n) to a threshold-detector.

Fig. 4 reports two examples of temporal splicing local-
ization, applied to 200-frame videos with a splicing point
at frame n = 100. Fig. 4(a) shows a 100-frame MPEG-2
medium-low-quality video, spliced with a 100-frame MPEG-
4 low-quality video. We can observe an evident feature incon-
sistency at the splicing point, which is correctly detected in the
Euclidean distance domain. Note that the Af axis is displayed
in logarithmic scale and the splicing peak is actually two or-
ders of magnitude higher than the background. Fig. 4(b) high-
lights the sensitivity of the algorithm to intra-coded frames. In
the second half of the compilation, the system detects a strong
inconsistency once every 30 frames (the GOP size), producing
a series of false positives (even though the actual splicing
point still yields a significantly higher peak). However, the
pattern is regular by its very nature, and thus easy to neglect
automatically. Interestingly, note how such inconsistencies are
detected only by quality features (lower four), while codec
ones remain, correctly, idle: the codec itself is not changing in
presence of an I frame, but I frames are coded independently
from the others, so coding parameters are indeed different.

C. SPATIAL SPLICING LOCALIZATION

Differently from temporal forgeries, the problem of identify-
ing and localizing a spatial splicing has to be solved within
a single frame. The proposed spatial splicing localization
algorithm relies on the presented features to calculate local
descriptors within the frame, and then look for possible cod-
ing inconsistencies. The presence of altered regions comes
in the form of activation maps, containing the likelihood of
being altered for each patch in the frame. Note how this
scenario is significantly more challenging than temporal forg-
eries: having not the chance of averaging feature vectors, as in
the case of frame-level descriptors, translates into reasonably

VOLUME 2, 2021

IEEE
Signal
Proce

@ZV IEEE Open Journal of
Signal Processing

) Detection
10 T T

102

Mot i,

(20 80 100 120 140 160 180 200
Frame index n

Af(n)

Descriptors

f“?hl
H265
_ fupEG2
= fuprat
faz
Q3
fau 5 L L L
20 40 60 80 100 120 140 160 180 200

Frame index n

(a) Medium-low-quality MPEG-2 spliced with low-quality MPEG-4.

10° T T T T T T

M w.W\ A

0 20 40 60 80 100 120 140 160 180 200
Frame index n

Descriptors

20 40 60 80 100 120 140 160 180 200
Frame index n

(b) High-quality H.264 spliced with medium-high-quality MPEG-2.

FIGURE 4. Two examples of temporal splicing localization. Feature descriptors (below) are analyzed by means of the Euclidean distance (above) between
adjacent vectors. Fig. 4(b) also shows the presence of false positives due to intra-coded frames, with periodicity given by the GOP size.

less accurate features, and thus requires a more sophisticated
processing.

1) PATCH-LEVEL FEATURES

Given a frame X, patch-level descriptors fZ(n) and fé(n)
are extracted as described in Section V-A. We recommend an
8-pixel stride to have a dense description of the frame, while
remaining aligned with the quantization grid. The two vectors
are concatenated into a general eight-element patch descriptor,

fr = [fg(n), fé(n)]. (13)

Let Py and Py be the number of patches extracted along
dimensions U and V, respectively. The patch-level descriptors
are then arranged ina Py x Py x 8 frame-level feature tensor,

fl-1(n))

F(n) = (14)

tru-1(n) tP-P (n)

We call a feature map, ¥y(n), k =1,...,8, each Py x
Py x 1 matrix in the tensor.

Fig. 5(a) shows an example of feature tensor, with the eight
feature maps plotted separately. In this example, the splicing
is located at the bottom-left corner of the frame.

The second step consists in transforming the feature tensor
into an activation tensor, i.e., a set of eight activation maps.
Each map Fy(n) of the feature tensor is fed separately into a
suitable activation function 4(-) to produce an activation map
H;.(n). With the purpose of highlighting regions that differ
from the general trend, we chose as activation function the
pixel-wise squared distance from the average value,

H (n) = h(Fy(n)) = |[Fi(n) — E (i (n) ||, 5)
where E(-) denotes the expectation operator.

VOLUME 2, 2021

Fig. 5(b) shows the activation tensor obtained from the fea-
ture tensor in Fig. 5(a). Note the significance of the activation
function for feature map k = 4, in particular.

2) FEATURE FUSION

The last and most delicate step consists in fusing the activation
tensor into the final activation map. The main issue is that
not all feature maps are equally informative, in general. Since
each map activates in presence of a specific coding trace, it
follows that maps carrying the highest information content
will be those related to the coding parameters closest to what
is actually present in the analyzed frame. In 5(b) for instance,
we observe that: (i) feature maps 1, 2, 4, 5 and 8 correctly
agree on an activation at the bottom-left corner; (ii) map 3
does not activate at all; (iii) maps 6 and 7 show a noisy and
wide activation, probably due to a background-foreground
coding difference in the original video.

In order to automatically select the most informative fea-
tures, we devised a twofold criterion accounting for the possi-
ble presence of idle and/or widely-activated maps.

® High variance: a useful map should contain diversity in

its values, if an activation is present. This condition helps
filtering out idle maps.

® Low entropy: a useful activation should be localized to

the tampered region. This condition helps filtering out
noisy or widely-activated maps.

With these two conditions in mind, we defined a metric
called variance-to-entropy ratio (VER),

_ var(x)
O H)'

which merges the high-variance (var) and low-entropy (H)
conditions into a single scoring value.

Fig. 5(c) reports the VERSs obtained for the activation maps
in the current example. Note that the highest VER values are

A(x) (16)

223

VERDE ET AL.: FOCAL: A FORGERY LOCALIZATION FRAMEWORK BASED ON VIDEO CODING SELF-CONSISTENCY

v pi

(a) Feature tensor F' (classifier output).

0.035 T T T T

0.025 - ¢ f

0.015 - -

Variance-to-Entropy Ratio (VER)

0.005 | il

o |

1 2 3 4 5 6 7 8
Feature index

(c) Variance-to-entropy ratios (VERS).

k=2 k=3
k=6 k=17

(b) Activation tensor H.

(d) Activation map fusion H.

FIGURE 5. Example of spatial splicing localization. The output maps of the CNN classifiers in 5(a) are processed by the activation function in (15),
obtaining the activation maps in 5(b). The latter are then averaged using the VERs defined in (16) as weights, providing the final activation map in 5(d).

related to the maps resulting the most informative according
to the criteria outlined above, i.e., k = 2,4, 5, 8.
The final fused activation map H(n) is then obtained as

et A Hy(n) - He(n)

et A (Hi(n)
which denotes an element-wise weighted average of the eight
activation maps, with weights equal to the VERs.

Fig. 5(d) shows the fusion result for the activation maps of
the current example. As desired, all noisy and flat activation
maps are discarded, while meaningful ones are retained and
merged together into a human-readable output.

Hn) =

, A7)

VI. EXPERIMENTS AND RESULTS

A distinctive trait of FOCAL framework consists in training

the same CNN described in Section IV to solve different

classification tasks. As described previously in Section V, in

this work we trained two independent coding-related models:
® a4-class codec classifier;

® a4-class quality classifier.

This section describes the training of the proposed CNN
and the testing campaign carried out to evaluate the system
in realistic scenarios, along with the obtained experimental
results. Subsection VI-A and VI-B report the training details
for the two employed models; VI-C describes the generation

224

of the testing dataset; VI-D, VI-E and VI-F outline the per-
formed experiments in controlled scenarios, a state-of-the-art
comparison and the tests with uncontrolled videos.

A. CODEC-CNN TRAINING

To develop the codec-detector network, we considered
four coding standards, namely H.264, H.265, MPEG-2 and
MPEG-4, and resorted to a classic training-validation-test ap-
proach.

A training dataset of 300 high-resolution videos was
built, starting from five uncompressed video sequences [47]:
duckstakeoff (720p), stockholm (720p), ice (4CIF), harbour
(4CIF), parkrun (720p). Each video was encoded with FFm-
peg software to obtain 60 different versions, combining the
four codecs with different coding configurations: fixed quality
parameter ¢, ranging from 1 to 10; constant bitrate (CBR) set
to 2 Mb/s, 4 Mb/s and 6 Mb/s; variable bitrate (VBR) set to
2 Mb/s, 4 Mb/s and 6 Mb/s; GOP of 30 frames.

For validation, we built a similar dataset of 300 high-
resolution videos following the same procedure of the train-
ing phase, but starting from a different set of original video
sequences: parkjoy (720p), shields (720p), soccer (4CIF).

For testing the codec classification network on an unre-
lated dataset, we built a collection of 1672 low-resolution
videos, starting from 19 sequences at CIF resolution: akiyo,

VOLUME 2, 2021

ISEEE (% IEEE Open Journal of
Bicesing Signal Processing

crew, mother, soccer, bridgeclose, flower, news, table, city,
foreman, paris, tempete, coastguard, hall, salesman, water-
fall, container, mobile, signirene. Each video was encoded
with FFmpeg mixing again codecs and qualities: fixed quality
parameter g, ranging from 1 to 31 with step 2; CBR set to
500 Kb/s, 1 Mb/s and 2 Mb/s; VBR set to 500 Kb/s, 1 Mb/s
and 2 Mb/s; GOP of 10 frames.

The network was trained using a categorical cross-entropy
loss function and Adam optimizer [48], with standard hy-
perparameters and learning rate. We selected the model by
minimizing the validation loss over 50 epochs.

B. QUALITY-CNN TRAINING

For the quality-detector network, the model was trained fol-
lowing again a training-validation-test pipeline considering
four quality levels identified by the quantization step A. Such
value is not directly accessible in the majority of codecs,
which present differences in the implementation of the quanti-
zation procedure, and it is usually controlled by a higher-level
quality parameter g. As a matter of fact, the relation between
A and g is exponential in H.264 (18), and piece-wise linear in
MPEG-2 and MPEG-4 (19):

5
Amoes = 3 - 2410, (18)
8, l<qg=<4
2q, 5<g=<8
A = 19
MPEG =148 9<g<24 (19)
2g — 16, 25 <¢g <3l

To generate the training, validation and test sets, we con-
sidered three different codecs, namely MPEG-2, MPEG-4 and
H.264, and tuned the respective quality parameters according
to (18) and (19) in order to have the same quantization step.

Seven raw videos in YUV format and 4CIF quality were
used: crew, crowdrun, duckstakeoff, harbour, ice, parkjoy,
soccer. Bach video was encoded with FFmpeg, using three
codecs (MPEG-2, MPEG-4, H.264), four quantization steps
(A = {5, 10, 20, 40}), the same VBR parameters of the first
experiment and GOP of 30 frames, yielding a total of 84
video sequences. From each video, we extracted 30 frames
and 99 non-overlapping 64 x 64 patches per frame, obtaining
a total of 249 480 patches. We observed a clear performance
improvement — both in training and testing — using only high-
variance patches, since “flat” ones tend to look alike in every
codec-quality configuration. We set a variance threshold of
103, ending up retaining 122 473 patches (about 50% of the
total). The set of patches was partitioned as follows: 70% for
training, 20% for validation and 10% for testing.

The network was trained using a categorical cross-entropy
loss function and SGDM optimizer, with an initial learning
rate of 5- 1073, a 0.5 drop factor every 5 epochs and batch
size of 256 patches. We selected the model by minimizing the
validation loss over 50 epochs.

VOLUME 2, 2021

C. TEST DATASET
The generation process of the final testing dataset was split
into two steps. First, we created a set D of encoded videos,
using different codecs and qualities. Then, we used the videos
in D to produce two datasets: one set Diemp of temporally-
spliced videos and one set Dypye Of spatially-spliced videos.

Dataset D was generated from five uncompressed videos
that were not included in the previous sets used for training,
validation and testing: four people, in to tree, johnny, kristen
and sara, old town cross. Each video is 210 frames long and
720p resolution. Using FFmpeg, each sequence was encoded
with MPEG-2, MPEG-4 and H.264 codecs, with GOP set to
30 frames and four fixed values for the quality parameter, g =
{3, 8, 13, 18}, producing 12 different versions of each video.
Opverall, the dataset consisted of 60 encoded videos, or 12600
frames. The choice of using g for the final system evaluation is
motivated by two reasons: first, it allows to test the algorithm
in a scenario closer to a real-world case, since in everyday
applications the encoding quality is tuned by means of the
quality parameter and not the quantization step; secondly, it
produces a testing set that is even more uncorrelated with that
used in the CNN training and testing phases.

Denoting with v;, i = 1, ..., 5, a video from the five origi-
nals, dataset D consists of

where each D, is the subset containing the different versions
of v;, hence |D,,| = 12 and |D| = 60.

Dataset Dieyyp for temporal splicing localization was ob-
tained by splicing the first 100 frames of each video in D,
with the second 100 frames of any other video in D,,, for
each i. Given that the number of possible pairs in a set
of 12 elements is (122) = 66, dataset Diemp consists of 5 x
66 = 330 temporally-spliced videos, corresponding to 330 x
200 = 66000 frames.

Dataset Dypye for spatial splicing localization was obtained
by substituting a CIF window (288 x 352) of each video in
D,,; with the same window of any other video in D,,, for each
i. The window was placed at the center of the frame, with
the top-left corner aligned with the patch extraction grid, and
kept fixed throughout the length of the video. Similarly to
Diemp, dataset Dypye consists of 330 spatially-spliced videos,
corresponding to 66000 frames, or 1 452000 patches.

To simulate a more realistic scenario, videos in Diemp
and Dqp,, were re-encoded with high-quality H.264 after the
forgery. Note that there are no scene changes or content incon-
sistencies in the forged sequences: temporally-spliced videos
have the first 100 frames encoded differently from the subse-
quent ones; spatially-spliced videos have a CIF window in the
middle of the frame encoded differently from the rest. This is
necessary to assess the capability of our algorithm to properly
localize changes in coding rather than content.

225

VERDE ET AL.: FOCAL: A FORGERY LOCALIZATION FRAMEWORK BASED ON VIDEO CODING SELF-CONSISTENCY

o 08
B
qé 0.6
0.4
PR [Afe: AUC = 0.936 e Afo(pmetine: AUC = 0.930
S Afg: AUC = 0.981 wuseee Afgaseiing: AUC = 0.860
i - ——Af AUC = 0984 —— Afjuaing AUC = 0.960
0= I | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

FIGURE 6. ROC curves for frame-wise temporal splicing localization.
Comparison of codec-related, quality-related and combined features, for
the proposed method and the baseline [12].

Precision
=] j=]
(=] o0
T T
v
P e o
- - J
=T
5 =
[=2 oo
L L

0.4 % B
---------- fo: AUC = 0.794 H “:54
02l fq: AUC = 0.892 i \ J
——f: AUC = 0.926 i =0
O 1 1 1 1 1 1 1 1 ."»"
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

FIGURE 7. PR curves for frame-wise temporal splicing localization.
Comparison of codec-related, quality-related and combined features.

D. EXPERIMENTS IN CONTROLLED ENVIRONMENT

For each forensic scenario, namely temporal and spatial splic-
ing, we run three separate tests: one using codec-related fea-
tures alone; one using quality-related features alone; one using
both features concatenated.

Dataset Demp was analyzed with the algorithm outlined in
Section V-B. The detection of splicing points was evaluated
frame-wise: a true-positive consisted of a splicing point cor-
rectly identified in the transition between two adjacent frames.
For this experiment, false positives related to the GOPs were
discarded, as discussed in Section V-B.

Fig. 6 shows the ROC curves obtained for temporal splicing
localization with the three different set of features. For each
case, a direct comparison with the baseline work in [12] is
provided. All three descriptors outperform the baseline ones,
with an AUC peaking at 0.984 for the concatenated features.
For better appreciating the small differences between using
the proposed descriptors separately or concatenated, we report
the same results displayed as PR curves in Fig. 7. We can
observe how quality-related features fg provide better results
than codec-related ones fc in this scenario. However, the con-
catenated features f still lead to an improvement with respect
to fg alone. Tests run on the concatenated descriptor f show
a 100% precision up to a recall of roughly 80%, denoting a
good robustness of the algorithm to false positives, and an
AUC of 0.926. The optimal operating point of the green curve
corresponds to an F1-measure of 0.902.

Dataset Dspe was analyzed with the algorithm outlined
in Section V-C. The detection was evaluated patch-wise; a
true-positive consisted in a 64 x 64 patch correctly classified

226

ir el
5 08 s
E
E 0.6 PR
204 =
g LT [fo: AUC = 0.825
Sy - fo: AUC = 0.800
- ——f: AUC = 0.889
0 1 1 1 1 1 1 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

FIGURE 8. ROC curves for patch-wise spatial splicing localization, using
descriptors from a single frame. Comparison of codec-related,
quality-related and combined features.

[}
E -
£ T
2,04 -
E T [for AUC = 0.882
ook |- f: AUC = 0.870
p ——f: AUC = 0.939
0 - 1 1 1 1 1 1 1 1 1]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

FIGURE 9. ROC curves for patch-wise spatial splicing localization, using
descriptors averaged over multiple frames. Comparison of codec-related,
quality-related and combined features.

as forged. We run two separate tests: one with patch-level
descriptors obtained frame-by-frame; one with descriptors ob-
tained by averaging throughout the video frames.

Fig. 8 shows the ROC curves obtained for spatial splicing
localization on a single frame, with the three different set of
features. Again, the benefits of using concatenated descriptors
are clearly visible. Note also how in this case fc performs bet-
ter than fg, when taken individually. We can assume this is due
to the fact that quality is trickier to assess at patch-level than
at frame-level; low-variance patches, for instance, typically
look very similar at different encoding qualities. However, fg
features still provide useful information in combination with
fc, as shown by the results improvement associated with f.

Since in Dyp, the forged region is fixed in time, we were
able to average descriptors throughout all the 200 frames of
the video sequences. Fig. 9 shows the ROC curves obtained
for spatial splicing localization averaged over multiple frames
with the three different descriptors. As expected, we observe
a clear improvement in all of them with respect to the single-
frame case. In a real-case scenario however, the assumption
of a non-moving forged region does not hold in general.
Nevertheless, it is still possible to resort to this performance-
enhancing strategy by averaging descriptors over short-time
windows, assuming that the motion of the altered region is
slow enough compared to the frame-rate.

All three experiments show that concatenating feature de-
scriptors associated to different classification tasks lead to a
clear performance improvement. As long as we are able to
identify additional classes of forensics traces, and to obtain a

VOLUME 2, 2021

IEEE Q; IEEE Open Journal of

ignal”’ . -
#sing Signal Processing

Processing
gsin

—
1

e
®

TABLE 2. Comparison of Detection Maps

RGB frame FOCAL Splicebuster [49]

[-
2 _
206 R
Z
204
)
B oo ——TFOCAL: AUC = 0.889
B ——— Splicebuster: AUC = 0.770
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
01 02 03 04 05 06 07 08 09 1

False positive rate

FIGURE 10. ROC curves comparison of FOCAL and Splicebuster [49] for
spatial splicing detection, in single-frame setup (Fig. 8).

specific feature descriptor for them, we can assume that the
proposed framework would keep taking advantage from the
combination of a greater number of feature extractors.

E. COMPARISON WITH THE STATE OF THE ART

In this experiment, the spatial splicing detection capabilities
of FOCAL were tested against an image forgery localization
state-of-the-art technique, i.e., Splicebuster [49]. We adopted
the single-frame approach (the same of Fig. 8) and compared
the detection heatmaps produced by the two approaches frame
by frame.

As for FOCAL, we employed the combined codec- and
quality-related descriptors, with the same setup of the ex-
periment described in Section VI-D. As for Splicebuster, the
official available implementation for still image analysis was
used. Both methods were tested on dataset Dypye of spatially-
spliced videos (Section VI-C).

Fig. 10 shows a comparison of the two ROC curves ob-
tained for FOCAL and Splicebuster on dataset Dypy. De-
tection accuracy is computed pixel-wise with respect to the
ground-truth, independently for each frame, and it is possible
to observe an improvement of about 0.12 in terms of AUC.

Table 2 reports some qualitative examples of detection
heatmaps for the two methods under analysis. The displayed
heatmaps are related to five videos from dataset Dyp, (de-
scribed in Section VI-C), with one realization for each original
sequence. The first column reports the RGB frames, with a
dashed box highlighting the altered region (remember that
only coding parameters are different, i.e., there is no content
change); the second and third columns report FOCAL and
Splicebuster’s heatmaps, respectively.

The first three videos (obtained from old_town_cross,
Jjohnny and into_tree) present a splicing whose coding pa-
rameters are highly different from the rest of the frame (both
codec and quality change); in fact, we can observe that, at
least for the first two cases, both methods correctly activates
in correspondence of the altered region at the center of the
frame. The third one however is not detected by Splicebuster:
by looking at the activation at the top of the frame, which quite
resemble the trees-sky transition, we may infer that the detec-
tor is spotting a background-foreground coding difference or
a change in the overall pixels statistics.

VOLUME 2, 2021

Comparison of detection heatmaps obtained with FOCAL and Splicebuster [49] from
five videos of dataset Dy, (Section VI-C), one realization for each original sequence.
The altered region (dashed box) only differs in terms of coding parameters, i.e., no
content change.

The last two videos (obtained from kristen_and_sara and
four_people) are trickier for both methods, as the altered re-
gion is closer to the rest of the frame in terms of coding pa-
rameters. One can observe that FOCAL is still able to identify
the splicing, at the cost of a slightly noisier heatmap. As for
Splicebuster, we notice again the behavior of the third case, in
that heatmaps appear to be affected by the content of the scene
(see the contours of the two rightmost people in the fifth case).

F. EXPERIMENTS ON UNCONTROLLED VIDEOS

As a last experiment, we run FOCAL on videos from the
online dataset of the REVerse engineering of audio-VIsual
coNtent Data (REWIND) project [24]. These sequences con-
tain photo-realistic forgeries, similar to those encountered in
a practical forensic scenario. Original videos were recorded
using low-end devices, with a resolution of 320 x 240 pixels
and a framerate of 30 fps. Each forged sequence is available in
four encoding configurations: lossless H.264 and lossy H.264
with g = 10, 20, 30.

Given the availability of multiple coding qualities for the
same forged video, we used this dataset to assess how the
robustness of the algorithm is impaired as the encoding quality
decreases. Table 3 shows the activation maps calculated by
FOCAL on three frames of sequence 0/ of the REWIND
dataset. Each map was obtained from a single frame, with no
temporal averaging. In this example, the forgery consists in
a spatial splicing at the bottom-left corner of the frame: the

227

VERDE ET AL.: FOCAL: A FORGERY LOCALIZATION FRAMEWORK BASED ON VIDEO CODING SELF-CONSISTENCY

TABLE 3. Forgery Localization At Different Re-Encoding Qualities

Original frame Forged frame Lossless

Decaying localization performance at lower re-encoding qualities of the same forged video. From top to bottom, frames 52, 78 and 144 of sequence 0/ of the REWIND
dataset [24]. From left to right, the original frame, the forged frame, the localization heatmaps for lossless and lossy H.264 encoding, with quality parameter ¢ = 10, 20, 30.

bigger duck is spliced-out by copy-moving an empty portion
of the water surface and a second duck is spliced-in. The
resulting content still appears photo-realistic and spotting the
forgery turns out being a challenging task even for a human
observer. As we can see, the localization capabilities of the
algorithm remain satisfying up to a quality parameter ¢ =
10. Lower encoding qualities progressively erase any useful
forensic trace, impairing the detection reliability. However,
since the content itself of the video become progressively less
discernible, it is arguable whether a forger should ever adopt
such low encoding qualities with the purpose of creating a
convincing fake.

VII. CONCLUSION

In this paper we presented FOCAL, a framework for video
forgery localization based on the self-consistency of coding
traces. The main contributions that come along with this
strategy consist in the design of an ad-hoc CNN architecture
for learning codec-related features and a fusion technique
that merges different descriptors into a general likelihood
map, using the newly designed variance-to-entropy ratio met-
ric. The resulting framework is scalable and generalizable
at will. A first implementation, featuring two independently-
trained coding-related descriptors, was here proposed and
tested over two different forgeries situations. Experimental
results showed a clear performance improvement with respect
to the previous work on temporal splicing localization, and
promising results in the newly tackled scenario of spatial
splicing localization.

Being able to capture local coding traces over small patches
of a video-frame, paves the way to several possibilities in the
context of forgery detection. Future research will be devoted
to assessing the scalability of the proposed framework through

228

the addition of further models and by upgrading the exist-
ing ones with a higher number of coding parameters. New
strategies to fuse and leverage feature information could be
explored as well, with the purpose of enabling the detection
of increasingly complex types of forgeries.

ACKNOWLEDGMENT

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA and Air
Force Research Laboratory (AFRL) or the U.S. Government.

REFERENCES

[1] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Source digital cam-
corder identification using sensor photo-response nonuniformity,” in
Proc. SPIE Electron. Imag., 2007, Art. no. 65051G.

[2] S. Bayram, H. T. Sencar, and N. Memon, “Video copy detection based
on source device characteristics: A complementary approach to content-
based methods,” in Proc. ACM Int. Conf. Multimedia Inf. Retrieval,
2008, pp. 435-442.

[3] V. Conotter, J. O’Brien, and H. Farid, “Exposing digital forgeries in
ballistic motion,” IEEE Trans. Inf. Forensics Secur., vol. 7, no. 1,
pp- 283-296, Feb. 2012.

[4] M. Visentini-Scarzanella and P. L. Dragotti, “Video jitter analysis for
automatic bootleg detection,” in Proc. IEEE Int. Workshop Multimedia
Signal Process., 2012, pp. 101-106.

[S] M. Stamm, W. Lin, and K. Liu, “Temporal forensics and anti-forensics
for motion compensated video,” IEEE Trans. Inf. Forensics Secur.
(TIFS), vol. 7, no. 4, pp. 1315-1329, Aug. 2012.

[6] P. Bestagini, S. Battaglia, S. Milani, M. Tagliasacchi, and S. Tubaro,
“Detection of temporal interpolation in video sequences,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2013, pp. 3033-3037.

[71 S. Bian, W. Luo, and J. Huang, “Exposing fake bit rate videos and
estimating original bit rates,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 24, no. 12, pp. 2144-2154, Dec. 2014.

VOLUME 2, 2021

IEEE (7= IEEE Open Journal of
Signal’¥ . .
Pocessing Signal Processing

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro, “Codec and
GOP identification in double compressed videos,” IEEE Trans. Image
Process. (TIP), vol. 25, no. 5, pp. 2298-2310, May 2016.

S. Milani, P. Bestagini, M. Tagliasacchi, and S. Tubaro, “Multiple com-
pression detection for video sequences,” in Proc. IEEE Int. Workshop
Multimedia Signal Process., 2012, pp. 112-117.

M. Huh, A. Liu, A. Owens, and A. A. Efros, “Fighting fake news:
Image splice detection via learned self-consistency,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 101-117.

M. Mathai, D. Rajan, and S. Emmanuel, “Video forgery detection and
localization using normalized cross-correlation of moment features,” in
Proc. IEEE Southwest Symp. Image Anal. Interpretation, Mar. 2016,
pp. 149-152.

S. Verde, L. Bondi, P. Bestagini, S. Milani, G. Calvagno, and S. Tubaro,
“Video codec forensics based on convolutional neural networks,” in
Proc. 25th IEEE Int. Conf. Image Process., Oct. 2018, pp. 530-534.

S. Milani et al., “An overview on video forensics,” APSIPA Trans.
Signal Inf. Process., vol. 1, no. e2, pp. 1-18, 2012.

K. Sitara and B. Mehtre, “Digital video tampering detection: An
overview of passive techniques,” Digit. Investigation, vol. 18, pp. 8-22,
2016.

J. Yang, T. Huang, and L. Su, “Using similarity analysis to detect frame
duplication forgery in videos,” Multimedia Tools Appl., vol. 75, no. 4,
pp. 1793-1811, Feb. 2016.

G. Lin, J. Chang, and C. Chuang, “Detecting frame duplication based
on spatial and temporal analyses,” in Proc. 6th Int. Conf. Comput. Sci.
Educ., Aug. 2011, pp. 1396-1399.

A. De, H. Chadha, and S. Gupta, “Detection of forgery in digital video,”
in Proc. 10th World Multi Conf. Systemics Cybern. Informat., 2009,
pp. 229-233.

N. Mondaini, R. Caldelli, A. Piva, M. Barni, and V. Cappellini, “De-
tection of malevolent changes in digital video for forensic applica-
tions,” in Proc. SPIE 6505, Secur., Steganogr., Watermarking Multi-
media Contents IX, Feb. 2007, Art. no. 65050T. [Online]. Available:
https://doi.org/10.1117/12.704924

M. Kobayashi, T. Okabe, and Y. Sato, “Detecting forgery from static-
scene video based on inconsistency in noise level functions,” IEEE
Trans. Inf. Forensics Secur., vol. 5, no. 4, pp. 883-892, Dec. 2010.

W. Wang, X. Jiang, S. Wang, M. Wan, and T. Sun, “Identifying
video forgery process using optical flow,” in Proc. Digit.-Forensics
Watermarking, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 244-257.

S. Kingra, N. Aggarwal, and R. D. Singh, “Inter-frame forgery detection
in h.264 videos using motion and brightness gradients,” Multimedia
Tools Appl., vol. 76, no. 24, pp. 25 767-25 786, Dec. 2017.

P. Bestagini, S. Battaglia, S. Milani, M. Tagliasacchi, and S. Tubaro,
“Detection of temporal interpolation in video sequences,” in Proc. Int.
Conf. Acoust., Speech, Signal Process., 2013, pp. 3033-3037.

Y. Su, J. Zhang, and J. Liu, “Exposing digital video forgery by detecting
motion-compensated edge artifact,” in Proc. Int. Conf. Comput. Intell.
Softw. Eng., Dec. 2009, pp. 1-4.

P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro, “Local tamper-
ing detection in video sequences,” in Proc. IEEE 15th Int. Workshop
Multimedia Signal Process., Sep. 2013, pp. 488-493.

H. Liu, S. Li, and S. Bian, “Detecting frame deletion in H. 264 video,”
in Information Security Practice and Experience: 10th International
Conference, ISPEC 2014, Fuzhou, China, May 5-8, 2014, Proceedings,
Springer, vol. 8434, 2014.

Z. Zhang, J. Hou, Q. Ma, and Z. Li, “Efficient video frame insertion
and deletion detection based on inconsistency of correlations between
local binary pattern coded frames,” Secur. Commun. Netw., vol. 8,
pp. 311-320, Jan. 2015.

L. Zheng, T. Sun, and Y.-Q. Shi, “Inter-frame video forgery detec-
tion based on block-wise brightness variance descriptor,” in Digital-
Forensics and Watermarking: 13th International Workshop, IWDW
2014, Taipei, Taiwan, Oct, 1-4, 2014. Revised Selected Papers,
Springer, vol. 9023, 2015.

VOLUME 2, 2021

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

D.-K. Hyun, S.-J. Ryu, H.-Y. Lee, and H.-K. Lee, “Detection of
upscale-crop and partial manipulation in surveillance video based on
sensor pattern noise,” Sensors, vol. 13, no. 9, pp. 12 605-12 631,
Jul. 2013.

W. Wang and H. Farid, “Exposing digital forgeries in interlaced and
deinterlaced video,” IEEE Trans. Inf. Forensics Security, vol. 2, no. 3,
pp. 438-449, Sep. 2007.

L. Li, X. Wang, W. Zhang, G. Yang, and G. Hu, “Detecting removed
object from video with stationary background,” in Digital-Forensics
and Watermarking: 11th International Workshop, IWDW 2012, Shang-
hai, China, October 31-November 3, 2012, Revised Selected Papers,
Springer, vol. 7809, 2013.

S. Chen, S. Tan, B. Li, and J. Huang, “Automatic detection of object-
based forgery in advanced video,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 11, pp. 2138-2151, Nov. 2016.

A. V. Subramanyam and S. Emmanuel, “Video forgery detection us-
ing hog features and compression properties,” in Proc. IEEE 14th Int.
Workshop Multimedia Signal Process., Sep. 2012, pp. 89-94.

I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, “A
SIFT-based forensic method for copy-move attack detection and trans-
formation recovery,” IEEE Trans. Inf. Forensics Secur., vol. 6, no. 3,
pp. 1099-1110, Sep. 2011.

R. C. Pandey, S. K. Singh, and K. K. Shukla, “Passive copy-move
forgery detection in videos,” in Proc. Int. Conf. Comput. Commun.
Technol., Sep. 2014, pp. 301-306.

L. D’ Amiano, D. Cozzolino, G. Poggi, and L. Verdoliva, “Video forgery
detection and localization based on 3-D patchmatch,” in Proc. IEEE Int.
Conf. Multimedia Expo. Workshops, Jun. 2015, pp. 1-6.

A. Bidokhti and S. Ghaemmaghami, “Detection of regional copy/move
forgery in mpeg videos using optical flow,” in Proc. Int. Symp. Artif.
Intell. Signal Process., Mar. 2015, pp. 13-17.

'W. Wang and H. Farid, “Exposing digital forgeries in video by detecting
double mpeg compression,” in Proc. 8th Workshop Multimedia Secur.,
2006, pp. 37-47.

X. Junyu, Y. Su, and Q. Liu, “Detection of double mpeg-2 compression
based on distributions of DCT coefficients,” Int. J. Pattern Recognit.
Artif. Intell., vol. 27, no. 2, 2013, Art. no. 1354001.

D. Vazquez-Padin, M. Fontani, T. Bianchi, P. Comesana, A. Piva, and
M. Barni, “Detection of video double encoding with gop size estima-
tion,” in Proc. IEEE Int. Workshop Inf. Forensics Secur., Dec. 2012,
pp. 151-156.

P. Bestagini, A. Allam, S. Milani, M. Tagliasacchi, and S. Tubaro,
“Video codec identification,” in IEEE Int. Conf. Acoust., Speech Signal
Process., 2012, pp. 2257-2260.

Z. Huang, F. Huang, and J. Huang, “Detection of double compression
with the same bit rate in mpeg-2 videos,” in Proc. IEEE China Summit
Int. Conf. Signal Inf. Process., Jul. 2014, pp. 306-309.

X. Jiang, W. Wang, T. Sun, Y. Q. Shi, and S. Wang, “Detection of double
compression in mpeg-4 videos based on markov statistics,” IEEE Signal
Process. Lett., vol. 20, no. 5, pp. 447-450, May 2013.

H. Ravi, A. V. Subramanyam, G. Gupta, and B. A. Kumar, “Compres-
sion noise based video forgery detection,” in Proc. IEEE Int. Conf.
Image Process., Oct. 2014, pp. 5352-5356.

D. D’Avino, D. Cozzolino, G. Poggi, and L. Verdoliva, “Autoencoder
with recurrent neural networks for video forgery detection,” Electron.
Imag., vol. 2017, no. 7, pp. 92-99, 2017.

Y. Li, M.-C. Chang, and S. Lyu, “In ictu oculi: Exposing ai created
fake videos by detecting eye blinking,” in Proc. IEEE Int. Workshop
Inf. Forensics Secur., 2018, pp. 1-7.

D. Giiera and E. J. Delp, “Deepfake video detection using recurrent
neural networks,” in Proc. 15th IEEE Int. Conf. Adv. Video Signal Based
Surveill., 2018, pp. 1-6.

C. Montgomery and H. Lars, “Xiph.org Video Test Media (Derf’s Col-
lection),” 2017. [Online]. Available: https://media.xiph.org/video/derf
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

D. Cozzolino, G. Poggi, and L. Verdoliva, “Splicebuster: A new blind
image splicing detector,” in Proc. IEEE Int. Workshop Inf. Forensics
Secur., 2015, pp. 1-6.

229

https://doi.org/10.1117/12.704924
https://media.xiph.org/video/derf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

