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lustering methods are increasingly used in social science research. Generally, researchers use them to infer the

existence of qualitatively different types of individuals within a larger population, thus unveiling previously “hidden”
heterogeneity. Depending on the clustering technique, however, valid inference requires some conditions and assumptions.
Common risks include not only failing to detect existing clusters due to a lack of power but also revealing clusters that
do not exist in the population. Simple data simulations suggest that under conditions of sample size, number, correlation
and skewness of indicators that are frequently encountered in applied psychological research, commonly used clustering
methods are at a high risk of detecting clusters that are not there. Generally, this is due to some violations of assumptions
that are not usually considered critical in psychology. The present article illustrates a simple R tutorial and a Shiny app (for
those who are not familiar with R) that allow researchers to quantify a priori inferential risks when performing clustering
methods on their own data. Doing so is suggested as a much-needed preliminary sanity check, because conditions that
inflate the number of detected clusters are very common in applied psychological research scenarios.
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Clustering, or cluster analysis, is a family of unsupervised
machine learning methods (Kassambara, 2017) that allow
researchers to group sets of observations into smaller
subsets (clusters) based on measures of similarity. In
social science research, clustering is increasingly being
used to “unveil” previously undetected subpopulations of

individuals within larger samples. In psychology, espe-
cially in the social and personality fields, cluster analysis
has long been a prominent method in person-centred
approaches, aiming to group similar profiles based on
multiple dimensions (Asendorpf, 2015). Ideally, clusters
represent qualitatively different types of individuals
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whose discovery reveals hidden heterogeneity in the pop-
ulation. This discovery implies some inference, however,
and in psychology this may be more problematic than
generally believed, as we will show in the present paper.

Clustering is becoming increasingly popular in psy-
chological and social science research. A search in Sco-
pus (December 2023) using the following query on title,
abstract and keywords: (“latent profile analysis” OR “Ipa”
OR “latent class analysis” OR “Ica” OR “cluster analysis”
OR “clustering” OR “k-means”), with results limited to
“psychology” and “social sciences” subject areas, showed
that the volume of records published per year is now about
14-fold that of 2000. By comparison, the volume of all
records published per year in the same subject areas is
only just over fivefold that of 2000 (the number of all
records was approximated using the query “*e*” [“e” is
the most frequent letter in English]). Results are shown in
Figure 1.

While clustering falls within the category of
exploratory data analysis, we suggest that inferential
risks should be considered whenever inference is made.
In the case of clustering, inference can be made about
the existence and the number of multiple subtypes within
a larger population. In analogy with the traditional
Neyman-Pearson approach to inference (Gigerenzer
et al., 2004), we may formalise type I error (false-positive
results) as detecting multiple clusters where they do not
exist (or inflating the number of detected clusters) and
type II error (false-negative results) as failing to detect
multiple clusters where they truly exist.

Concerning type II error, lack of statistical power
is a widely recognised issue in psychological research
(Szucs & loannidis, 2017). In cluster analysis, power
may be mostly limited by small effect sizes and avail-
ability of enough informative indicators. For example,
Dalmaijer (2023) suggests that adequate power could
be reached even with small samples, but this requires
measures on over 30 independent dimensions sharing
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Figure 1. Publications per year (Scopus); see text for search queries
and details.

informative contributions on cluster membership (i.e.,
all differing between clusters), with an average separa-
tion of .68 standard deviations (SDs); this value reflects
the average effect size in psychological research, uncor-
rected for publication bias, across 3801 papers as com-
puted by Szucs and Ioannidis (2017). Under more realistic
research scenarios (i.e., availability of at most 6—12 inde-
pendent and informative indicators), Tein et al. (2013) and
Toffalini et al. (2022) found that minimum effect sizes
(between-cluster separation) should be at least d =.80,
but preferably above d = 1.00, which are considered large
effects in psychology.

Type I error has been widely investigated in rela-
tion to the replicability crisis (Lakens, 2023). Illicit
research practices such as p-hacking and uncorrected
multiple testing in the context of confirmatory research
are well-known. Inflation of type I error due to viola-
tions of assumptions in statistical methods is relatively
less famous, but potentially more dangerous because it
may lead to consistently replicable and yet false results.
Minor violations of assumptions (and sometimes even
major ones) do not necessarily impact type I error to a
relevant extent, but this must be assessed case by case. A
powerful tool to assess inferential risks is data simulation.
Unlike real data, whose data-generating process is most
frequently unknown in psychology, ground truth is always
known when simulating data. This allows for establishing
with certainty whether and how much a model misspec-
ification or the violation of some assumptions leads to
incorrect inference.

In this paper, we present, via examples, a simple use
of data simulation to perform sanity checks and estab-
lish a priori inferential risks when doing cluster analysis.
We focused on two clustering methods: Gaussian mix-
ture models (GMM) and k-means. We chose these two
methods for their popularity and because they reflect dif-
ferent approaches and underlying assumptions. For sim-
plicity, our analysis did not encompass procedures that
involve combining multiple statistical criteria, although
such approaches may enhance the robustness of results in
practical applications (Herzberg & Roth, 2006).

GMM is a model-based approach that fits data as mix-
tures of normal probability distributions. Among other
advantages, it offers parameter estimates and it mod-
els covariances within clusters. Furthermore, clusters can
present different sizes, densities and shapes. It works,
however, under the assumption of normally distributed
residuals (Gaussian distributions). In addition, GMM is
based on an expectation—maximisation (EM) algorithm
which can fail to converge for high data dimensions,
while the final clustering can depend on the initial val-
ues set in the EM algorithm for the parameters. On the
contrary, k-means is a non-model-based, non-parametric
procedure that does not require distributional assump-
tions. This method determines cluster membership based
on a measure of distance between observations (typically
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the Euclidean distance) and an aggregation rule. It starts
selecting a number of starting observations at random
equal to the number of desired clusters, and builds the
cluster around them. Like other non-model-based meth-
ods that group objects based on euclidean distances (but
also like latent profile and latent class analysis, which
are model-based), valid inference using k-means requires
local (or “conditional”) independence, implying no cor-
relation can be assumed across variables within clusters.
Also, valid use of k-means requires clusters of similar size
and density.

In the examples below, we will focus on local inde-
pendence and distributional assumption violations, just
discussed in the previous paragraph. A deep discus-
sion of these issues is beyond the scope of this paper,
but we briefly note that both assumptions are espe-
cially problematic in psychological research. Consider
research involving cognitive variables. A well-known
phenomenon named positive manifold implies that any
pair of variables involving any type of cognitive perfor-
mance are always expected to correlate positively (Spear-
man, 1904; Van Der Maas et al., 2006). Positive manifolds
have also been reported in very different fields of inves-
tigation, such as psychopathology (Caspi et al., 2014). In
brief, assuming true orthogonality (local independence)
may be challenging. Dimensionality reduction via prin-
cipal components may be a good alternative to using
observed variables when performing clustering (Dalmai-
jer, 2023), although this might limit the interpretability
of results. Concerning distributions, hardly any variable
in psychology actually presents a truly Gaussian/Normal
distribution (Micceri, 1989). Sum scores of binomial
(e.g., true/false, correct/incorrect) or ordinal (e.g., Likert
scales) responses in tests or questionnaires are more the
rule than the exception. Some degree of non-normality
should always be expected in these cases. For example,
Mean and SD are non-independent in a binomial distri-
bution (e.g., a sum score of binomial responses), leading
to some heteroscedasticity. In many applications of lin-
ear models, skewness below 1.00 is generally tolerated.
Here, we emphasise that the violation of distributional
assumptions may not always be a problem, but this must
be assessed a priori.

SIMULATION

Data analysis methods

All data analysis was performed with R (R Core
Team, 2023) Statistical software, version 4.3.2. We
assume the reader being already familiar with base R.
As explained in the Introduction, in our examples we
employed model-based GMM and non-model-based
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k-means. GMM was fitted using the “mclust” package
(Scrucca et al., 2016), while k-means was performed
using base functions. Plots were made using the “ggplot2”
(Wickham, 2016) and “corrplot” (Wei & Simko, 2021)
packages. Multivariate normally distributed correlated
data with skewness and kurtosis were simulated using
the “semTools” (Jorgensen et al., 2022) package (this
package fails to adequately simulate large skewnesses,
but it works well for coefficients below 1.00, which
was more than enough for our purposes). We chose to
focus on the following parameters of the data-generating
process: sample size (N/number of observations), number
of clustering indicators (p), correlations across indica-
tors (Pearson’s r), skewness, kurtosis and standardised
effect size (d, between-cluster separation in SDs). The
latter is meaningful only when assessing power, as it
implies the existence of true clusters with non-zero
separation.

What do we mean by statistical inference here?

GMM and k-means are clustering methods, but they do
not perform statistical inference per se. The “true” num-
ber of clusters must be inferred via the identification of
the optimal solution among alternatives. For GMM, we
used the popular Bayesian Information Criterion (BIC)
index. That is, GMM fits alternative models with vary-
ing number of clusters, and the one with the best BIC is
retained as optimal (note that, unlike the typical use of
BIC, the mclust package of R multiplies the BIC by
—1, so higher BIC is better). For k-means, we adopted a
two-step procedure: first, we tested the one-cluster solu-
tion with the Duda-Hart test (Duda & Hart, 1973; a for-
mal statistical test to determine whether a dataset should
be split into two clusters, Hennig, 2023), using a sig-
nificance level of @ =.05. Then, only if the one-cluster
solution was rejected, the optimal solution was selected
using the average silhouette method (mainly based on the
calculation of the intra-vs.-inter-cluster distance; higher
values are better, as providing insights on a good aggre-
gation). In all examples below, we tested solutions in
the range of one-to-five clusters. Using other thresholds
or indices (e.g., AIC index or entropy measures instead
of BIC) may lead to different results, but the conditions
under which inferential errors are inflated are generally
the same.

Basic tutorial on data simulation for clustering

Before starting, let us load some R packages that will be
needed. Users should make sure that they have already
installed them, or in case use the “install . packages
("package-name")” command.
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library(mclust)
library(cluster)
library(semTools)
library(ggplot2)

library(fpc)

Clustering algorithms may be pretty complex. Luckily,
just generating multivariate distributions with desired

generate_obs = function(N=NA, NA,

# define variance-covariance matrix

characteristics is pretty easy. In this tutorial, whenever
random number generation occurs we ensure compu-
tational reproducibility by setting the seed using the
set .seed () function.

In the following chunk of R code, we create a custom
data-simulating function named generate obs ().
Inside it, we use the function mvrnonnorm () from
the semTools package to generate N observations
on p variables/indicators, with a between-variable cor-
relation equal to corr, with mean values equal to mu,
and desired SD (sd), skewness (skew) and Kkurtosis
(kurt).

NA, NA, NA, NA, NA){

Sigma = matrix(corr*sd~2, p, p) + diag(sd”*2-corr*sd”2, p)

# generate and return random sample of data

df = mvrnonnorm(n=N, rep(mu,p),

kurt)

return(data.frame(df))

Now that this convenient function is created, we use it
to generate 300 observations on four non-correlated vari-
ables/indicators distributed as standard Gaussians. The

set.seed(9)

# simulate sample and see first few rows

df = generate_obs (=300, 4, 0, 9,

head( round(df,3) )

#> X1 X2 X3 X4
#> 1 -0.592 -1.688 -0.124 1.263
#> 2 -0.371 0.648 1.467 -0.326
#> 3 0.088 0.449 0.674 1.330
#> 4 -0.035 1.026 1.956 1.272
#> 5 1.806 1.075 -0.269 0.415

#> 6 -0.340 0.458 -1.245 -1.540

Sigma, skew,

code ends showing the first few rows of the simulated
sample.
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Now, we perform GMM on this simulated sample
using the Mclust () function. We test one- to
five-cluster solutions. From the resulting object, we only
extract “G”, the number of clusters corresponding to the

# fit Gaussian mixture model (GMM) on data

fitGMM = Mclust(df, G=1:5)

Now that GMM is fitted, the optimal number of
detected clusters can be accessed typing “f 1 tGMMSG” in
the R console, resulting in 1 cluster.

Second, we perform k-means and identify the best
solution using the Duda-Hart test and the maximum
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optimal solution. As expected, favoured G = 1, suggesting
that GMM has correctly identified the one-cluster solu-
tion as optimal (i.e., the mixture model with the optimal
BIC features only one cluster).

average silhouette value. This is slightly more complex,
as it is not wrapped in an existing function, so we have to
define a custom one. Luckily, also k-means identifies the
one-cluster solution as optimal.

# define function for detecting optimal clustering solution

# using k-means in a given range ("krange")

kmeans_opt = function(data=NA, krange=1:5, alpha=0.05){

# first perform duda-hart test on two-cluster solution

km2 = kmeans(data, centers=2)

dh = dudahart2(data, clustering=km2$cluster, alpha=alpha)

if(dh$clusterl & 1%in%krange == TRUE){

return(l)

}else{ # test more clusters only if duda-hart test is significant

sil = rep(-1,max(krange))
for(i in krange[krange!=17){

km = kmeans(data, centers=i)

# compute silhouette value for i-cluster solution

silvalue = silhouette(km$cluster,

dist=dist(data,

method="euclidean"))[,"sil_width"]

sil[i] = round(mean(silvalue), 8)

}

# best solution has maximum silhouette value

return(which(sil==max(sil)))

}
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Now that the function is written, the optimal
number of detected clusters can be accessed typing
“kmeans_opt (data=df)”, which yields “1” as
output.

Lastly, if one seeks a faster solution using a parti-
tioning, distance-based algorithm like k-means, but with

the selection of the optimal solution wrapped in a sin-
gle existing function, the “Partitioning Around Medoids”
(PAM) clustering method may be a preferred alterna-
tive. The pamk () function is implemented in the fpc
package.

fitPamk = pamk(data=df, krange=1:5, alpha=0.05)

The number of detected clusters (optimal solution) can
be simply accessed by typing “fitPamksSnc”, which
yields “1” as output.

To test whether the above methods adequately
detect multiple clusters when they exist, we simulate

set.seed(9)

# simulate three-cluster sample

a three-cluster sample. Pairs of clusters are separated by
d=5.00 on each variable, except the first and third clus-
ter, that are separated by d = 10.00. (Note that such effect
sizes should not be routinely expected in psychological
research.)

d = 5.00 # set effect size (cluster separation)

clustl = generate_obs(N=100, p=4, corr=0, mu=0,
clust2 = generate_obs(N=100, p=4, corr=0, mu=d,
clust3 =

sd=1, skew=0, kurt=0)

sd=1, skew=0, kurt=e0)

generate_obs(N=100, p=4, corr=0, mu=d+d, sd=1, skew=0, kurt=0)

df = rbind(clustl, clust2, clust3) # combine data of the 3 clusters

Now that the data for the three clusters are gen-
erated, let us visualise the bivariate scatter plot on
the first two indicators (“X1” and “X2”) using the
“plot (df [,c("X1","X2")])” command. Figure 2
below displays the result, clearly showing three distinct
clusters.

Unsurprisingly, in this case both GMM and k-means
lead to identifying the three-cluster solution as
optimal. Typing “Mclust (data=df, G=1:5)S$G”
for GMM yields 3 as output, and so does typing
kmeans_opt (data=df) for k-means: 3.

Analysis of type I error and power

The above simplified examples were run under ideal
conditions for illustrative purposes. In the rest of the
paper, we will focus mostly on inferential issues,

Figure 2. Example of scatter plot showing three clusters with very large
separations.

and especially type I error. Special attention will be
given to conditions that are typical in psychological
research.
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In the following example, we assess how even mod-
est skewness may inflate the number of detected clusters
when using GMM or k-means. We simulate a one-cluster
population with sample N =700, measured with 4 indi-
cators that are uncorrelated but show some skewness
(skew =0.50). To systematically assess inferential risks,
many iterations must be run: here we run 100 (“niter”
variable in R code below; note that many more iterations

set.seed(9)

niter = 100

CLUSTERS THAT ARE NOT THERE 7

are generally required to get stable results: at least 1000
is recommended; here, for purely illustrative purposes, we
run few iterations to speed up computational times in case
the user wants to try the code). If a clustering method

is robust to skewness, it should consistently select the
one-cluster solution as optimal, leading to a type I error

rate close to zero.

# pre-allocate vectors of results for efficiency

detectedClusters GMM = rep(NA, niter)

detectedClusters kmeans = rep(NA, niter)

# run type I error simulation: perform GMM and k-means on 100 simulated

datasets
for(i in 1l:niter){

# generate data with skewness

df = generate_obs(N=700, p=4, corr=0, mu=0, sd=1, skew=0.50, kurt=0)

# store results

detectedClusters_GMM[i] = Mclust(df, G=1:5)%G

detectedClusters_kmeans[i] = kmeans_opt(df, alpha=0.05)

Once the above chunk is run, we estimate the
type I error risk—that is, percentage of times GMM
and k-means did NOT favour the correct one-cluster
solution—by typing the following commands. For
GMM: “100*mean (detectedClusters GMM!=1,
na.rm=T)”, which results in 48% type I error rate.
For k-means: “l100*mean (detectedClusters
kmeans!=1, na.rm=T)”, which results in 1% type

I error rate. Therefore, results show that using GMM on
moderately skewed data grossly inflates the number of
clusters detected as optimal solution (48% of iterations
end up in the detection of multiple clusters that do not
exist in the data-generating process), while virtually
no risk emerges when using k-means (in all but one
iteration, the one-cluster solution is correctly detected as
optimal).
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In the following example, we do the same as above,

but now instead of manipulating skewness, which we

set.seed(9)
niter = 100

# initialize vectors of results

detectedClusters_GMM = rep(NA, niter)

detectedClusters_kmeans = rep(NA, niter)

bring back to zero, we set moderate correlations across
indicators (r =.35). The rest is the same.

# run type I error simulation: perform GMM and k-means on 100 simulated

datasets
for(i in 1:niter){

# generate correlated data

df = generate_obs(N=700, p=4, corr=0.35, mu=0, sd=1, skew=0, kurt=0)

# store results

detectedClusters_GMM[i] = Mclust(df, G=1:5)%G

detectedClusters _kmeans[i] = kmeans_opt(df, alpha=0.05)

Once again, we get the estimated type I
error rates as follows: for GMM we type
“l00*mean (detectedClusters GMM!=1, na.
rm=T)”, which results in 5%. For k-means we type
“l00*mean (detectedClusters kmeans!=1,
na.rm=T)"”, which results in 100%. Therefore, now
GMM leads to a very small risk of false-positive
results, whereas the risk is extremely high when
using k-means (in all 100 iterations, the two-cluster
solution is incorrectly favoured), and this is due to
violating the local independence assumption (note that
corr =.35).

Finally, we show an example of power analysis. We
simulate a sample of N =700 presenting two real clus-
ters (of n=250 and n=450) with a separation (effect
size) of d=0.50 in all 4 orthogonal and normally dis-
tributed indicators. In this case, there are no violations
of assumptions. The effect size is perfectly plausible in
applied psychology, although expecting to find it simul-
taneously in all four non-correlated variables of inter-
est may look bordering on credibility in psychological
research, especially in the context of exploratory data
analysis.
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set.seed(9)
niter = 100

d = 0.50 # set effect size

detectedClusters_GMM = rep(NA, niter)

CLUSTERS THAT ARE NOT THERE 9

detectedClusters kmeans = rep(NA, niter)

# run power simulation: perform GMM and kR-means on 100 simulated datasets

for(i in 1:niter){
# generate data in 2 clusters

clustil

clust2

df = rbind(clustl, clust2)

# store results

generate_obs(N=250, p=4, corr=0, mu=0, sd=1, skew=0, kurt=0)

generate_obs(N=450, p=4, corr=0, mu=d, sd=1, skew=0, kurt=0)

detectedClusters _GMM[i] = Mclust(df, G=1:5)%G

detectedClusters kmeans[i] = kmeans_opt(df, alpha=0.05)

To get the Power estimate (1—type II error
rate), we calculate the percentage of times the two-
cluster solution was correctly favoured. For GMM, we
type “l100*mean (detectedClusters GMM==2,
na.rm=T)", which results in an estimated 1%
power. For k-means, we type “100*mean (detected
Clusters kmeans==2, na.rm=T)”, which
results in an estimated 16% power. Therefore, under
the above somehow ideal conditions, statistical power
is absolutely insufficient using either clustering method,
with N =700.

When performing a power analysis, a useful comple-
mentary piece of information is the correct classification

performance. The Rand Index (Rand, 1971) can be used
for this purpose. This is important because under some
scenarios the clustering method might apparently iden-
tify the number of clusters correctly, but this is accidental
or due to violation of assumptions, which leads to incor-
rect classification. Below we show an example: k-means
is used, two real clusters exist with the same separation
as above (d =.50), but the locality assumption is violated
(data are correlated, r=.35). We used an adjusted ver-
sion of the Rand Index as implemented in the “mclust”
package of R (unlike Toffalini et al., 2022, who used the
unadjusted index): its interpretive advantage is that it goes
around O when classification is at chance level.
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set.seed(9)
niter = 100
d = 0.50 # set effect size

# initialize vectors of results

detectedClusters_kmeans = rep(NA, niter)

randIndex_kmeans = rep(NA, niter)

# power analysis: perform kR-means, run 100 times

for(i in 1:niter){

# generate real clusters but with correlated data

clustl

clust2

df = rbind(clustl, clust2)

# "real" classification vector

generate_obs(N=250, p=4, corr=0.35, mu=0, sd=1, skew=0, kurt=0)

generate_obs(N=450, p=4, corr=0.35, mu=d, sd=1, skew=0, kurt=0)

realCluster = c(rep("clustl”,nrow(clustl)),rep("clust2”,nrow(clust2)))

# store results

kopt = kmeans_opt(df, 2lpha=0.05)

detectedClusters_kmeans[i] = kopt

# k-means-predicted classification vector

predictedCluster = kmeans(df, centers=kopt)$cluster

# rand index compares real vs predicted classification vectors

randIndex_kmeans[i] = adjustedRandIndex(realCluster, predictedCluster)

Now we type “round(mean(randIndex
kmeans, na.rm=T), 2)” to get the mean
adjusted Rand Index (rounded to the 2nd deci-
mal value), which yields 0.06. Such an extremely
poor classification accuracy seems at odds with
the high power achieved, which we estimate typing

“l00*mean (detectedClusters kmeans==2,

na.rm=TRUE) ” and yields 100% power. Therefore, the
above simulating conditions present a very high chance
of detecting two clusters, but not of correctly classify-
ing them. Indeed, as shown above, the algorithm would
detect two clusters even if they were not there (high type I
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error rate) due to the violation of the local independence
assumption (r =.35). Thus, just estimating power without
simultaneously considering type I error rate and classifi-
cation accuracy is risky and inappropriate. In the above
case, better classification accuracy is achieved with larger
effect sizes: with d =2.00 (which is implausible in most
psychological research, however) we get mean adjusted
Rand Index = .68.

EXAMPLES ON MORE COMPLEX SCENARIOS

In this section, we present a few additional examples on
more complex scenarios. They represent extensions of
the procedures explained above, although they are not
accompanied by detailed in-text R code. Full R code
can be found on GitHub: https://github.com/psicostat
/clustersimulation.

(a)
Correlation matrix
Ground truth: 1 population (no clusters)

=

Frequency (1000 iterations)

Frequency (1000 iterations)

1000-

750-

500-

250-

-

1000-

750-

500-

250-
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Specific patterns of correlations lead to specific
cluster solutions being favoured when using
k-means

As shown above, if local independence is violated optimal
solutions may present an inflated number of clusters when
using k-means. If the index used for decision is the Silhou-
ette value, the two-cluster solution will most frequently be
preferred. This means that the Duda-Hart test incurs type [
error due to the violation of local independence, but luck-
ily the Silhouette value is parsimonious enough to limit
further inflation.

Nevertheless, specific patterns of correlations may lead
to particular cluster solutions being detected as optimal.
Figure 3 shows two examples: in panel (a) correlations are
distributed homogeneously across all pairs of variables (a
typical positive manifold with modest correlations), and

Detected clusters (k-means)
Duda-Hart test (p < .05) + max average silhouette value

Number of
detected
clusters

[ ]

=N WwH

(CORRECT)

100 200 400 800 1600

Number of
detected
clusters

s

=N W

(CORRECT)

100 200 400 800 1600
N

Figure 3. Example of patterns of correlations leading to multiple clusters being detected using k-means (no real clusters are there). (a) Similar
correlations across all pairs of variables. (b) Three pairs of variables strongly correlated.
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(a) (b)

4 — 1000-

750-

500-

Density
N
Frequency (1000 iterations)

250-

Number of
detected
clusters

5
M4

3
M2
B 1 (correcT)

100 200 400 800 1600
N

Figure 4. Example of modest skewness leading to multiple clusters being detected using Gaussian mixture models when samples are large (with four
orthogonal variables), no real clusters are there. (a) Skewed distribution (skew. =.5). (b) Detected clusters (GMM) (with four orthogonal variables).

the two-cluster solution is predominantly favoured; con-
trarily, in panel (b) there are three strong pairs of corre-
lation, possibly indicative of three factors each affecting
a couple of variables: in this latter case, three-, four- and
even five-cluster solutions are more frequently favoured,
with the four-cluster solution becoming predominant as
sample size (V) increases.

Modest skewness may become critical
with large samples when using Gaussian
mixture models

Researchers are aware that normal distributions are
unlikely to occur in psychology (Micceri, 1989). Nev-
ertheless, violation of distributional assumption is not
necessarily a major evil when fitting statistical models.
For example, in linear regression violation of the normal-
ity assumption has been shown to impact false-positive
results to a limited degree, and much less than the vio-
lation of other assumptions such as independence of
residuals (e.g., Knief & Forstmeier, 2021). This is not
the case, however, for GMM. While in other contexts
skewnesses of up to 1.00 are tolerated as a rule of thumb,
even much smaller skewnesses become critical when
performing GMM (Van Horn et al., 2012). In the Figure 4
below, we show how a modest degree of non-normality
(skewness =.5) consistently leads to multiple-cluster
solutions being incorrectly favoured when using GMM.
As for other violations of assumptions, the problem
becomes especially evident with large samples: with
N around or above 1000 it is virtually guaranteed that
GMM will (largely) inflate the number of detected
clusters. The simulation was performed with p=4
variables/indicators.

ASSUMPTIONS SHOULD REALLY BE MADE A
PRIORI

In this paper, we have been focusing on two assump-
tions: local independence and distributional assumptions.
Generally, researchers are aware that assumptions must
not be checked directly on observed data (marginal dis-
tributions). Consider local independence when perform-
ing k-means. If this assumption is met but one cluster
presents higher mean values than another in two vari-
ables simultaneously, these two variables will appear
positively correlated. Similarly, consider the normality
assumption in GMM. If two clusters have perfectly Gaus-
sian distributions on a variable but they have different
mean values, the combined distribution will not be Gaus-
sian (if the separation between mean values is larger
than 2 SDs, the mixture distribution may even appear
bimodal).

A common misunderstanding is that the above
assumptions can be checked with ease after clustering is
done. When doing clustering, however, an exploratory
approach is adopted. Generally, this means that several
alternative clustering solutions are tested and the best one
is retained (cf. Toffalini et al., 2022, for a review of recent
papers performing clustering in psychological research).
Critically, the best solution will fit the data in the best
possible way, and it may tend to minimise violations.
Below we offer two examples.

Consider a case in which two variables are measured
in a sample of 700 cases. The variables correlate r =.50
on a continuum, with no clusters at all. As shown above,
this violates the local independence assumption and
may lead to incorrect conclusions when using k-means.
Indeed, in the simulated case shown below in Figure 5,
a two-cluster solution is incorrectly identified as the best
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Cluster

1
2

Figure 5. K-means: example of correlated data (no real clusters are
there) that are no longer correlated after centering on detected clusters.

Cluster

ABWN =

Figure 6. Gaussian mixture model: example of skewed data (no real
clusters are there) that are less skewed within detected clusters.

one. If one looks at the correlation within each cluster,

however, that is virtually zero (r=.00 and r=-.02,
respectively), but this is clearly no evidence of local
independence.

When using GMM, checking the distributional
assumption after clustering is done maybe somehow less
problematic than the case above. Consider the example
shown below in Figure 6. Two uncorrelated variables
are measured. No real clusters are there. X2 is normally
distributed, but X1 presents skewness=1.00 (which
is large). Due to skewness, GMM incorrectly favours a
five-cluster solution (in a one-to-five range). X1 skewness
is very modest in three of the emerging clusters: .04, .17
and .21, but it is still large in other two, skewness=.76
and .81. Running more iterations like this suggests that
clusters identified via GMM often present less skewness
than the original distribution, but normality of residuals
is hardly ever achieved.

To conclude, assumptions should really be made a
priori. Local independence implies that we must have
good reasons to consider the variables as truly orthog-
onal (r~0) within a cluster/in a homogeneous popu-
lation before deciding to perform clustering. Normality
assumption implies that we can truly consider distribu-
tions as Gaussian for all variables (non-normality is thus
necessarily assumed to reflect a mixture of underlying
clusters).

CLUSTERS THAT ARE NOT THERE 13
SHINY APP

To help readers perform their own computations, we
created a graphical interface via the “shiny” package of R
(Changetal., 2023). The code is fully available on GitHub
(https://github.com/psicostat/clustersimulation),  while
the web app is deployed at https://psicostat.shinyapps
.1o/clustersimulation-demo/ (in case of problems with
the link, see the “README” document on GitHub for
alternatives).

The shiny app allows the user to compute fype [
error and power analysis under research scenarios char-
acterised by desired sample size (), number of vari-
ables/indicators, their correlations, skewness, and kurto-
sis and cluster separations (Cohen’s d on each variable,
only if power is computed). For simplicity, only the “H1”
hypothesis that there are two real clusters is currently
implemented for Power analysis in the shiny app.

The app comes with two main possibilities: to spec-
ify the data-generating parameters based on your knowl-
edge/expectations (“Data Specification™), or using an
already existing dataset that you can upload (“Data
Upload”). The only exception is Cohen’s d, which must
always be specified based on prior expectations (like any
effect size in a power analysis). When choosing “Data
Specification” the user is required to specify the num-
ber of indicators/variables and their correlations, skew-
ness and kurtosis. The latter three parameters are ran-
domly sampled from uniform ranges (unless the bounds
of the ranges are constrained to equality) based on the
user’s specifications. Ranges allow the user to introduce
some variability in the parameters. An example is shown
in Figure 7. Subsequently, the users can run “Generate
Data” to sample a particular set of parameters. Alterna-
tively, when choosing “Data Upload,” the parameters will
be directly determined based on an uploaded dataset (only
quantitative variables are permitted).

The app is based on a sets of functions that can be used
also within R scripts (outside the graphical interface) to
implement more complex and extensive simulation.

After the previous phase is completed the user must
go to simulation, where they will effectively run a Monte
Carlo simulation for computing Type I error and/or Power
analysis. Consistently with what is shown in the paper,
only GMM (Mclust) and k-means are now implemented
in the shiny app (version 1.0). Two additional parame-
ters that must be set here are: sample size (N) and clus-
ter separation/Cohen’s d (meaningful only when comput-
ing Power). Before running “Start simulation,” maximum
computation time must be set (default is 10 seconds). We
preferred to set a computation time limit rather than a
predetermined number of iterations because time is obvi-
ously the main constraint in the user experience of a web
app. After the simulation is done, a short text summaris-
ing the simulation parameters and the results is offered as
output, along with a plot showing the distribution of the
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Instructions for the parameter specification

To simulate your data we need different information that include your desired sample size, the hypothesized correlations between your study variables, the hypothesized skewness and kurtosis of your variables, and the number of indicators
you want to simulate. For correlations, skewness, and kurtosis, we ask you to provide a range of plausible parameters. We will randomly sample parameters within the specified ranges. The output you will see is just one of the infinite
combinations of parameters that will be sampled.

The app will sample 1 random value within the range limits. If you This is how data sampled from these parameters may look like (N = 10,000)
don't want to sample from a range and prefer a single parameter,

overlap the minimum and maximum values. During the simulation all parameters will be sampled, hence at each iteration they will differ from those that will appear here.
Indicators/number of variables If you prefer (almost) exact parameters, specify single values and not ranges (not suggested).

1 3 2

X1 X2 X3 Skewness Kurtosi

1 3 5 7 9 " 12 X1 1.00 0.17 .08 .02 -.04

Pearson r: ® X2 .17 1.00 .20 19 A7
0 02 09 X3 .08 .20 1.00 .07 .03
0 01 02 03 04 05 06 07 08 09
Skewness: [©] o L H N 8
09 0 02 09 L
09 07 05 03 01 o1 03 05 07 09 .08 [
Kurtosis: ® 1
-09 0 01 09 "

e L]
1-Generate Data ®
2-Go to simulation @ v X3 [

Figure 7. Example of the “Data specification” tab with some random parameters in the shiny app (version 1.0).

It's time to simulate!

Based on the parameters you entered or the parameters we obtained from your data, we will now simulate similar data under HO (i.e., there is only one population/cluster) to detect Type-1 risk, or the risk to find clusters when they do not
exist, and under H1 (i.e., there are two cluster in the population) if you also want to know what is your power to detect two clusters when your data have the specified parameters and the clusters really exist.

If you select 'Type1', we will only simulate data under HO and Cohen's ds will be set to 0.

If you select 'Power’, we will also simulate data under H1 and Cohen's ds will be sampled from the preferred range. In this case we will count how many times the cluster analys exactly detects 2 clusters

Select an Option: o Results of the simulation

Mlust - ATTENTION: if you have many indicators and a large sample size, the simulation might be slow and the system crash for computation limits. Please download the R code and run
your own simulation

Select type of analysis: Method i i i C i Kurtosi power  T1lerror
Power v mclust 197/180 3 200  [0.08;0.2] [0.02;0.19]  [-0.04;0.17] 0.69 0.26

Results with fewer than 1,000 iterations may not be stable.
N = your sample size
20 200 2,000

POWER ANALYSIS — During the desired time we managed to simulate 197 random datasets with 3 indicators and 200 observations. Correlations
between variables ranged between 0.08 and 0.20. Skewness ranged between 0.02 and 0.19. Kurtosis ranged between -0.04 and 0.17. We applied the
Cohen's d i only when ing Power): ® cluster analysis with the mclust method to each dataset and calculated the probability of incurring in an error. Effect size/cluster separation (Cohen's d)
range between 1.00 and 1.50 across indicators. Your estimated power to detect two clusters is 0.69 with an Adjusted Rand index of 0.35

20 220 420 620 820 1020 1220 1420 1620 1820 2000

0 0150304806 078 09 105 12 135 18 TYPE | ERROR — During the desired time we managed to simulate 180 random datasets with 3 indicators and 200 observations. Correlations between

variables ranged between 0.08 and 0.20. Skewness ranged between 0.02 and 0.19. Kurtosis ranged between -0.04 and 0.17. We applied the cluster

analysis with the mclust method to each dataset and calculated the probability of incurring in an error. Your estimated probability of type-1 errors is 0.26
time (in ®

10 60 300 Frequency of clusters individuated

10 a0 0 10 130 160 190 220 250 280 300
We will simulate data unti time expires —

Start simulation

Frequency

N E:N:

Figure 8. Example of the “Simulation” tab with results in the shiny app (version 1.0).
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number of clusters favoured as best solutions. An example
is shown in Figure 8.

CONCLUSIONS

Although clustering involves an exploratory approach to
data analysis, we insist that inferential risks must be eval-
uated a priori if the goal is statistical inference. This is fre-
quently the case in both applied and basic research, where
researchers aim to detect and describe allegedly distinct
types of individuals based on psychological dimensions
(see the literature review by Toffalini et al., 2022). In the
present article, we have offered an R tutorial and a shiny
app to help researchers assess type I error rates and run
power analysis when performing clustering on their quan-
titative data. The shiny app was created for illustrative
purposes to implement a few representative cases, while
the R tutorial is aimed to provide the reader with the con-
ceptual and practical tools for building up and exploring
arbitrarily complex scenarios. Via examples, we showed
that violations of assumptions to a degree that is often
neglected in psychological research (e.g., correlations of
r=.10 when performing k-means in panel A of Figure 3,
or skewness =.50 when performing GMM in Figure 4)
may powerfully lead to identify clusters that are not there.
We conclude with a few additional considerations.
First, it is possible that, under some scenarios, multi-
ple clusters are incorrectly detected even if no assump-
tions are violated. For example, GMM should ideally
model covariances across indicators. However, Toffalini
et al. (2022) showed that this method may incorrectly
favour multiple-cluster solutions when there is a weak
positive manifold across variables and the sample size
is not sufficiently large to model it. Second, here we
showed the consequence of non-normality of data dis-
tribution by manipulating skewness, but large kurtosis is
equally problematic for GMM (the reader can try that
using the shiny app). Third, we focused only on local
independence and distributional assumptions, but viola-
tions of other assumptions might be equally problematic.
For example, non-independence of observations due to
known groupings that are not the goal of a cluster anal-
ysis (e.g., children in schools), or differences in size,
density or sphericity of clusters in k-means. Also, we
chose to omit considering other clustering methods such
as density-based ones (e.g., DBSCAN). This is because
they imply between-cluster separations so large such as
they leave near-zero density areas in the middle, which
requires separations that are implausible in psychologi-
cal research. Other methods are based on testing the uni-
modality of the (multivariate) distribution without making
distributional assumptions (e.g., Fischer et al., 1994).
Finally, in real settings, it may be advisable to combine
multiple indices and methods for ensuring robustness of
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results. Asendorpf et al. (2001) suggests a two-step clus-
tering procedure that employs the Ward method followed
by k-means, with bootstrapping used for checking stabil-
ity. Kerber et al. (2021) propose the application of both
model-based and non-model-based methods on the same
dataset. Herzberg and Roth (2006) emphasises the impor-
tance of simultaneously considering multiple statistical
criteria when deciding how many clusters to retain. In the
present paper, we opted to focus on the simplest approach
rather than exploring all available methods. Nonetheless,
after understanding the logic of this R tutorial, readers
will be able to scale up their own simulations on any cus-
tomised ad hoc scenario.

Code availability

The Rmarkdown of the present paper and all code for
reproducibility of results is available on GitHub at
https://github.com/psicostat/clustersimulation.
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