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Induced Start Dynamic Sampling for Wafer
Metrology Optimization

Gian Antonio Susto, Marco Maggipinto, Federico Zocco, Seán McLoone

Abstract—Metrology, which plays an important role in en-
suring production quality in modern manufacturing industries,
incurs substantial costs, both in terms of the infrastructure
required, and the time needed to perform measurements. In
particular, in the semiconductor manufacturing industry, mea-
suring fundamental quantities on different sites of a wafer
surface is associated with increased production time. To increase
metrology efficiency, a typical strategy is to limit the number
of sites measured and to exploit statistical models (soft sensing)
to reconstruct the wafer profile. Moreover, for quality reasons,
spatial dynamic sampling strategies may be employed to ensure
that all regions of a wafer surface are checked periodically
during production. In this work, we propose a new sampling
strategy, called Induced Start Dynamic Sampling (ISDS), that
adapts greedy feature selection algorithms to the spatial dynamic
sampling problem such that the number of measured sites at
each process run is minimized while achieving good wafer profile
reconstruction accuracy and process visibility. The superiority
of the proposed strategy with respect to the state-of-the-art
is demonstrated using both simulated data and an industrial
chemical vapour deposition case study.

Note To Practitioners–In this work we tackle a practical
metrology problem encountered in semiconductor manufactur-
ing, namely, the design of a dynamic wafer measurement plan
to monitor the accuracy of a process across the whole wafer
surface. The measurement plan is called ’dynamic’, since, the
measurement locations, which are drawn from a candidate set
that provides coverage of the whole wafer, change at each process
iteration. Our methodology addresses the challenge of finding
an optimized trade-off between the number of measurements
performed on each wafer and the reconstruction accuracy that
can be achieved for the unmeasured areas on the wafer, while at
the same time, for quality assurance purposes, ensuring that all
locations on a wafer are visited in a finite number of process runs.
The major benefit of the methodology is that it can significantly
reduce the number of sites that need to be measured on each
wafer enabling greater throughput on metrology tools without
sacrificing process monitoring and anomaly detection capability.

Index Terms—Chemical Vapor Deposition, Dynamic Sampling,
Feature Selection, Industry 4.0, Semiconductor Manufacturing,
Virtual Metrology, Wafer Profile Reconstruction

I. INTRODUCTION AND LITERATURE REVIEW

THE Industry 4.0 revolution is based on data availabil-
ity regarding every aspect of business, industrial and

manufacturing processes [1], [2]. In this context, metrology
has become more relevant than ever in manufacturing [3].
Unfortunately, metrology is generally expensive due to the
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need for capital expenditure on measurement, data logging
and archiving infrastructure, and the cost of operating and
maintaining such infrastructure. It also represents a non-
added value cycle-time overhead and often becomes a limiting
factor in production line throughput. From this perspective,
several machine learning-based approaches that seek to reduce
metrology steps/costs without sacrificing quality and process
monitoring performance (e.g. Virtual Metrology/Soft Sensing
[4]–[6] and Dynamic Sampling [7]), have proliferated in recent
years.

In particular, in the semiconductor manufacturing indus-
try, one of the most data-intensive manufacturing indus-
tries, metrology efficiency is becoming extremely relevant
[8], [9]. In semiconductor fabrication, electronic circuits are
created through multi-step sequences of chemical and photo-
lithographic processes applied to wafers, disks made of semi-
conducting material. In some of the aforementioned production
steps, such as Chemical Vapor Deposition (CVD), the step
quality is assessed by measuring a set of, so-called, critical di-
mensions at several sites on the wafer surface, with consequent
time-consuming procedures needed to allow the metrology tool
to visit all the required sites. In fact, in the example case of
CVD, a process widely employed for altering the chemical
composition of wafers, the quality is assessed by measuring
the height of the ’deposited’ layer [10]. The challenge for
CVD and similar spatial processes is measuring a sufficient
number of sites to allow the complete wafer profile to be
reconstructed. This is increasingly becoming an issue with
the move to larger wafer diameters in modern semiconductor
fabrication facilities. As stated above, metrology operations
are usually extremely resource intensive both in terms of time
and money, hence it is usually not practical to obtain high
density measurements; instead, sampling locations/instants are
reduced to a meaningful set of points that are chosen by
exploiting prior knowledge of the process behavior or by
means of automatic space filling procedures [11].

Often, as process knowledge increases over time and pre-
viously unseen behaviors are detected, new sampling points
are added in order to capture important information that was
undetectable with the original set of measurements. During
this process, the new measurements points are selected without
taking into account the information redundancy that they
may provide. In such a scenario, it is extremely valuable to
perform a data-driven analysis of the problem in order to
optimize the measurement plan, limiting the redundancy in the
performed metrology operations. Usually, such optimization
requires the identification of a subset of the measured locations
that provides minimum reconstruction error at the unmeasured
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sites. This problem is closely related to the problem of
feature selection, that has been extensively studied in the
field of machine learning, where the goal is to select the
most meaningful variables to employ in a prediction problem.
In such problems reducing the number of features has the
advantage of preventing overfitting and multicollinearity [12]
allowing better prediction capabilities.

A widely employed method for dimensionality reduction
is Principal Component Analysis (PCA) [13] but it does not
provide information on which features are the most relevant
since each principal component is a linear combination of
all the available variables. Sparse PCA tries to solve this
problem by introducing a sparsity constraint on the projection
matrix but it does not provide an appropriate feature selection
method. Consequently, other methods, both supervised and
unsupervised, have been developed that are able to deter-
mine a subset of meaningful features. A common supervised
feature selection method is the so-called LASSO [14] re-
gression which introduces an L1-norm penalization term into
the regression cost function. This has been shown to have
the desirable property of providing a sparse solution for the
regression coefficients and hence can be tuned to only select
the most relevant features. LASSO have been extensively
employed in the machine learning community and also in
data-driven semiconductor manufacturing technologies [14]–
[17]. Other supervised methods have been employed in the
semiconductor industry such as Least Angle Regression [18]
and Forward Selection Regression [19] where features are
added sequentially until the performance improvement does
not justify the complexity increment.

In general, metrology plan optimization is unsupervised in
nature, in that the requirement is to select the most repre-
sentative locations based only on the measurements available,
without having a specified prediction task as a final goal.
In [20] a two step selection method based on k-Nearest-
Neighbours is proposed. In the first step, the k nearest features
are computed for each feature. Then the features having the
most compact subset (determined by the distance from its
farthest neighbour) are selected as the most representative
ones. In [21] the authors proposed a method called Orthogonal
Principal Feature Selection (OPFS) that exploits the effective-
ness of PCA in a greedy fashion, sequentially selecting the
feature most correlated with the first principal component of
the residual matrix. At each iteration, the residual matrix is
updated by projecting it on the space orthogonal to the selected
feature thus removing its contribution to the correlation at
subsequent steps of the algorithm. In [22] a data-driven Sensor
Placement methods was proposed based on Frame Potential
(FP), an orthogonality measure of the columns of a matrix. FP
has subsequently been employed in [23] as a greedy feature
selection algorithm for machine learning problems.

In [24] a novel wafer site selection method has been
proposed based on Forward Selection Component Analysis
(FSCA) [25], an unsupervised extension of Forward Selection
Regression that determines the contribution that individual
sites make to the variability observed in a process across a
set of candidate wafer sites. In this way, it greedily selects
the variables that provide the major contribution to the re-

construction of the unmeasured sites via regression models.
A different approach have been proposed in [26] for the
purpose of Sensor Placement, where the authors assume the
measurements at the sensed locations to be jointly Gaussian.
Then, a greedy algorithm is proposed to maximize the mutual
information between the selected and unselected locations.
Hereafter this approach is referred to as Information Theoretic
Feature Selection (ITFS).

The aforementioned approaches enable the implementation
of a, so-called, static sampling strategy, where a subset of sites
(with a given cardinality) is selected, given its optimality in re-
constructing the unmeasured sites, and remains unchanged for
every process iteration. In wafer metrology, where additional
measurement sites are often added to detect specific process
peculiarities, a static selection such as the one provided by
the aforementioned greedy algorithms is not desirable; there
is in fact the risk of missing important process information
by having sites that are never measured. For this reason,
dynamic sampling strategies are preferable in an industrial
environment. With such strategies the set of measured sites
(with a fixed cardinality) is changed at each process iteration in
a way that, over a limited number of process iterations, all the
available sites are visited. The challenge in designing dynamic
sampling strategies is to achieve full coverage of the sites,
while minimising the trade-off in reconstruction capabilities.

A dynamic extension of FSCA was proposed in [27],
referred to as Sequential Dynamic Sampling (SDS), where
after the static selection, each unselected feature is associated
with a cluster induced by the selected ones. Then at each
process run, one feature is selected sequentially from each
cluster guaranteeing a complete span of the available sites
after a limited number of process runs. This approach presents
some substantial limitations: on the one hand, at each iteration
the group of measured sites is selected based on a similarity
measure (e.g. correlation [27]) that generated the clusters, but
the resulting reconstruction error is not considered. On the
other hand, the number of possible combinations of measured
sites is typically very large (proportional to the product of
the cluster sizes) and there are no guarantees that the se-
lected combination at each iteration is optimal in terms of
reconstruction capabilities. As a result of the aforementioned
problems, SDS provided poor reconstruction perform overall
when compared to its static counterpart. It should be noted
that the static sampling solution represents an upper bound on
the performance that can be achieved by dynamic sampling
approaches.

In this paper, we propose a novel approach to dynamic
sampling, called Induced Start Dynamic Sampling (ISDS),
that provides a natural extension of greedy selection methods
to dynamic sampling, and is able to achievable comparable
reconstruction accuracy to the static sampling gold stan-
dard. In so doing, it consistently outperform SDS [27], the
current state-of-the-art approach for wafer spatial dynamic
sampling. To demonstrate the efficacy of the ISDS strategy,
it is implemented with the four greedy selection algorithms
described above, namely, FSCA, OPFS, ITFS and FP, and the
resulting dynamic sampling algorithms benchmarked against
other dynamic methods proposed in the literature using both
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simulated and real industrial case studies.
The remainder of the paper is organized as follows: Section

II is dedicated to introducing the aforementioned greedy
selection algorithms. Section III describes the proposed ISDS
methodology. Section IV introduces the case study datasets,
while section V describes the validation experiments con-
ducted and the results obtained. Finally, conclusions and final
remarks are presented in Section VI.

II. METHODOLOGIES

Data-driven feature selection methods leverage historical
data of the process under study in order to select the most
relevant variables involved. Usually, the collected data are
organized in a so-called design-matrix X ∈ Rn×p where
n is the number of observations and p is the number of
measured variables (features). In the spatial sampling problem
at hand, n represents the number of measured wafers and p
the number of sites on the wafer surface where the metrology
operations take place. The goal is thus to determine an optimal
subset of locations S that guarantees the reconstruction of the
unmeasured sites with minimum error, which means selecting
the most relevant columns of the matrix X in the sense of
providing the most information on the remaining columns. For
a thorough explanation of the feature selection methods we
introduce the following notation: we denote with V the set
of available locations, S the subset of locations selected by a
given algorithm and U = V \ S the set of unselected sites.
Associated with the location sets, we introduce the index sets
IS , IV and IU that contain the indexes of the corresponding
columns of X.

In the following, the four different greedy feature selec-
tion algorithms considered in our work are outlined. Each
algorithm provides a set of k selected features. However, in
many applications, k is not predefined, but is instead chosen
as a trade-off between solution complexity and reconstruction
performance. We remark that the solution complexity is, in
this context, the number of measured sites as this dictates the
time required to perform the measurement of each wafer. This
has to be kept to a minimum level to maximize throughput.
In these circumstances, a common practice is to initially set
k = p to obtain an ordered list of the the available sites:
the reconstruction accuracy is then computed for all values of
k from 1 to p with cross-validation procedures employed to
identify the optimal value.

A. Forward Selection Component Analysis

FSCA, as presented in [24], is a greedy algorithm that
sequentially selects the sites on a wafer that explain the highest
amount of variance in the data, guaranteeing a good recon-
struction of the sites that remain unmeasured. The pseudocode
for the algorithm is given in Algorithm 1.

The algorithm takes as input the design matrix X and the
number of components to be selected k. We can identify two
main steps in the algorithm:

(i) the minimization step (line 5): Here the site that mini-
mizes the reconstruction error over the dataset by regression
on the site measurements is selected. X̂(x̃i∗) is thus the

Algorithm 1 FSCA
Input: X, k

1: IS = ∅
2: IU = IV
3: X̃ = X
4: for j = 1 . . . k do
5: i∗ = argmin

i∈IU
||X̃− X̂(x̃i)||2F

6: IS = IS ∪ {i∗}
7: IU = IV \ IS
8: X̃ = X̃− X̂(x̃i∗)
9: end for

10: return IS

reconstruction of X̃ induced by the column x̃i∗ of X̃. If the
reconstruction is performed by the Ordinary Least Squares
algorithm, the estimation of the unmeasured site values is
obtained as:

X̂(xi∗) =
x̃i∗ x̃Ti∗

x̃Ti∗ x̃i∗
X̃. (1)

The reconstruction error is expressed in terms of the Frobenius
norm of the difference between the two matrices. The Frobe-
nius norm for a matrix A is defined as ||A||2F =

∑
i

∑
j a

2
ij .

(ii) the deflation step (line 8): This removes the contribution
of the selected column xi∗ to the estimation of X̃. This can
be seen as a projection of the data on the subspace orthogonal
to the selected feature.

B. Information Theoretic Feature Selection

The ITFS approach has been presented in [26] to solve
sensor placement problems in a data-driven fashion where a
collection of historical measurements is available. The assump-
tion upon which ITFS is based is that the measurements are
distributed as a multivariate-Gaussian distribution; with this
hypothesis a formal mathematical expression can be defined
for the problem of maximizing the Mutual Information (MI)
between the measured and unmeasured locations. By maximiz-
ing MI it is possible to identify a subset of measured locations
that provides the maximum amount of information about the
unmeasured ones, thus providing a good reconstruction of the
sensed field.

We recall that for a multivariate-Gaussian random variable
X with mean µ and covariance matrix Σ the entropy depends
exclusively on the determinant of the covariance matrix:

H(X) =
1

2
ln[(2πe)ndet(Σ)]. (2)

Under the Gaussian assumption, we can develop a Gaussian
Process Regression (GPR) model [28]. Given a set of locations
S with the associated vector of output values s, the probability
distribution of the measurements at new locations U is normal
with mean µ∗ and covariance matrix Σ∗ that can be computed
as follows:

µ∗ = K(U, S)(K(S, S) + σ2I)−1s (3)

Σ∗ = K(U,U)−K(U, S)(K(S, S)+σ2I)−1K(S,U)+σ2I,
(4)



SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

where σ is an hyperparameter and K(·, ·) is a correlation
function that often depends only on the distance (spatial)
between two locations. In our case, since multiple measures
at the same location are available, the correlation function can
be determined in a data-driven way; given a design matrix X
of size n×p where the columns are centered around zero, the
estimate of the correlation function at the p locations is:

Σ =
1

N − 1
XTX. (5)

Given a set of k selected locations S and a set of unselected
locations U , the MI maximization problem can be expressed
as:

S∗ = argmax
S⊂U : |S|=k

MI(S,U)

= argmax
S⊂U : |S|=k

H(S)−H(S|U).
(6)

For the Gaussian assumption the measurements at S and
U are distributed as a multivariate-Gaussian with zero-mean
and covariance matrix ΣS and ΣU that can be estimated as
stated in Eq. (5). Since the maximization problem expressed
in Eq. (6) is NP-complete [26], a greedy algorithm is proposed
whereby sensors are added sequentially such that at a given
iteration, the next sensor v∗ which provides the maximum
increase in MI [26] is chosen:

∆MI = I(S ∪ v;U)− I(S;U ∪ v)

= H(v|S)−H(v|U).
(7)

For the GPR model, the measurement at v is Gaussian
with conditional distribution v|S ≈ N (µ∗S ,Σ

∗
S) and v|U ≈

N (µ∗U ,Σ
∗
U ), where Σ∗S and Σ∗U can be computed using Eq.

(4). In particular:

Σ∗S = σv −ΣT
SvΣ

−1
S ΣSv, (8)

where σv = 1
N−1X̄T

Iv
X̄Iv , ΣSv = 1

N−1X̄T
IS

X̄Iv , σ = 0 and
the vector X̄Iv is equal to the column of X corresponding to
the location v normalized to have zero mean. Σ∗U is obtained
in a similar fashion. It is worth remarking that, in this case,
the covariance matrix reduces to a scalar since a single new
location is considered. Under the Gaussian assumption the
entropy difference expressed in Eq. 7 is a monotonically
increasing function of Σ∗

S

Σ∗
U

[26], hence the maximum increase

in MI is provided by the location that maximizes Σ∗
S

Σ∗
U

. The
selection algorithm can be expressed as follows:

Algorithm 2 ITFS
Input: X, k

1: S = ∅
2: U = V
3: for j = 1 . . . k do
4: v∗ = argmax

v∈U

σv−ΣT
SvΣ

−1
S ΣSv

σv−ΣT
UvΣ

−1
U ΣUv

5: S = S ∪ {v∗}
6: U = V \ S
7: end for
8: return IS = indexes(S)

C. Orthogonal Principal Feature Selection

OPFS [21], as summarized in Algorithm 3, is a simple
method of performing greedy feature selection based on ex-
ploiting the effectiveness of PCA at finding the directions that
explain the highest variance in the dataset. OPFS operates by
sequentially selecting the feature that is most correlated with
the first Principal Component (p1) of the deflated matrix at
each iteration. The algorithm can be divided into three main
steps:

1) First PC computation - here the PC associated with
the largest eigenvalue of the correlation matrix X̃T X̃ is
computed.

2) Feature selection - the feature most correlated with the
first PC is selected.

3) Deflation step - the contribution of the selected feature is
removed from the residual matrix, in a similar fashion to
FSCA.

Algorithm 3 OPFS
Input: X, k

1: IS = ∅
2: IU = IV
3: X̃ = X
4: for j = 1 . . . k do
5: p1 = First principal component of X̃
6: i∗ = argmax

i∈IU
ρ(x̃i,p1)

7: IS = IS ∪ {i∗}
8: IU = IV \ IS
9: X̃ = X̃− X̂(x̃i∗)

10: end for
11: return IS

The correlation at step 2 is expressed in terms of the
Pearson correlation coefficient. Given two vectors xi and xj
the Pearson correlation coefficient ρ is defined as

ρ(xi,xj) =
xTi xj√

(xTi xi)(xTj xj)
, (9)

where the vectors xi and xj are assumed to have zero mean.

D. Frame Potential

In [22] a data-driven sensor placement method was pre-
sented that maximizes an objective function defined by the
Frame Potential (FP) of a matrix formed by the measures at
the selected locations. The Frame Potential of a matrix X is
defined as:

FP (X) =
∑
i,j∈IV

| 〈xi,xj〉 |2. (10)

The authors proved that thanks to the sub-modularity property
of FP, optimization of the FP based cost function guarantees
a near-optimal mean squared error (MSE) solution for linear
inverse problems. In [23] the same metric has been employed
as the basis for a greedy feature selection algorithm for
machine learning problems, but it is noted that in this more
general setting MSE performance guarantees are not available.
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The FP provides a measure of the orthogonality of the
columns of matrix X. The goal of FP based feature selection
is thus to find a sub-matrix XIS of the design-matrix X with
minimum FP or, equivalently, with maximum orthogonality
of the columns. The combinatorial nature of the minimization
problem necessitates the use of a greedy heuristic approach in
order to obtain a solution in polynomial time. Ranieri et. al.
[22] also show that normalizing the columns of X so that they
have unit norm is a useful pre-processing step. For this reason,
in the following we will assume that the columns of X have
unit norm. The FP-based procedure is given in Algorithm 4.

Algorithm 4 FP
Input: X, k

1: IS = ∅
2: IU = IV
3: for j = 1 . . . k do
4: i∗ = argmin

i∈IU
FP (XIS∪{i})

5: IS = IS ∪ {i∗}
6: IU = IV \ IS
7: end for
8: return IS

III. DYNAMIC SAMPLING

The methodologies detailed in Section II represent ap-
proaches to tackling the site selection problem that are derived
from different, but mathematically rigorous points of view.
However, all the methodologies provide a static selection
of measured sites which limits their applicability if faced
with previously unseen process behavior. A dynamic approach
would provide considerable advantages in such a scenario,
even at the expense of an increase in the overall reconstruction
error. Here, we propose a dynamic framework based on greedy
spatial sampling algorithms that guarantees that all sites are
visited in a limited amount of time while minimizing the
impact on wafer profile reconstruction accuracy.

A. Induced Start Dynamic Sampling (ISDS)

Greedy selection algorithms compute an approximate solu-
tion to a combinatorial optimization problem by sequentially
selecting the sites that provide the greatest improvement in
the cost function. This characteristic is well suited to being
exploited in a dynamic framework that, while providing a sub-
optimal solution with respect to the original algorithm in terms
of reconstruction error, is able to vary the sites selected at
each iteration, guaranteeing full coverage of all sites after a
finite number of iterations. We remark that this characteristic
is particularly appealing for quality reasons in an industrial
environment. The rationale is to force the algorithm to start
from an initial (not visited at previous iterations) set of q
sites indexed by Istart, provided as input, and then proceeding
with the classical behavior. In the case of FSCA, the pseudo-
code for the modified version of the algorithm is reported in
Algorithm 5. The extension to the other greedy algorithms is
straightforward and based on the same principle.

Algorithm 5 Induced Start FSCA
Input: X, k, Istart

1: IS = Istart
2: IU = IV \ IS
3: X̃← X− X̂(XIS )
4: for j = 1 . . . k − q do
5: i∗ = argmin

i=1...p
||X̃− X̂(x̃i)||2F

6: IS = IS ∪ {i∗}
7: IU = IV \ IS
8: X̃ = X̃− X̂(x̃i∗)
9: end for

10: return IS

With the induced start version of the algorithms it is possible
to perform ISDS as follows (Algorithm 6):

1) Take as the starting point a set of q < k sites that have not
been previously measured and apply the modified version
of the chosen greedy algorithm (i.e. Algorithm 5) to select
the remaining k − q sites. Save the resulting k sites as
the current measurement plan.

2) If all the sites have been measured at least once, then stop,
otherwise repeat step one to generate a new measurement
plan.

The outcome of this process is a sequence of k-site mea-
surement plans I(t)

S , t = 1 . . .m, where m ≤ dp−kq e + 1.
The measurement plan for the ith production wafer is then
defined as I(i mod m)

S . Hence, by design, at least q previously
unmeasured locations are guaranteed to be included in each
measurement plan. This enables direct control of the trade-off
between reconstruction accuracy and the maximum number of
production runs m needed to visit all sites. The least impact
on reconstruction accuracy occurs when only one new site is
added at each iteration (i.e. when q = 1), in which case the
upper bound on m is p− k + 1.

Algorithm 6 Induced Start Dynamic Sampling
Input: X, k, q

1: IS = ∅
2: IU = IV \ IS
3: t = 1
4: while IV \ IS ! = ∅ do
5: Istart = select a subset of min(q, |IU |) sites from IU
6: I

(t)
S = Algorithm_5(X, k, Istart)

7: IS = IS ∪ I(t)
S

8: IU = IV \ IS
9: t = t+ 1

10: end while
11: return I

(1)
S . . . I

(m)
S

Rather than cycling through the same measurement plans
every m production wafers, it is also possible to generate
a new set of measurement plans for each new cycle by re-
running Algorithm 6 with a different initial Istart set for each
cycle. However, this would add substantially to the complexity
of ISDS and its implementation, hence cycling through a finite
set of plans is preferable in practice. We remark that, given
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Algorithm 7 Minimum Correlation Induced Start
Input: X, k, q, IU , IS

1: Istart = ∅
2: for k = 1 · · · q do
3: i∗ = index of the site in IU that is least correlated
4: with the sites in IS
5: Istart = Istart ∪ i∗
6: IS = IS ∪ i∗
7: IU = IU \ i∗
8: end for
9: return Istart

Algorithm 8 Optimum MSE Induced Start
Input: X, k, q, IU

1: if |IU | ≤ q then
2: return IU
3: end if
4: minError = inf
5: C = combinations(IU , q)
6: for c in C do
7: IS = Algorithm_5(X, k, c)
8: if ||X̃− X̂(XIS )||2F < minError then
9: Istart = c

10: minError = ||X̃− X̂(XIS )||2F
11: end if
12: end for
13: return Istart

an initial set of sites Istart all the greedy algorithms are
deterministic, hence, the final set of selected locations does
not vary with different executions.

ISDS provides designers with the freedom to decide how
to select the set of starting sites Istart, and this can be
exploited to meet production needs. The simplest approach
is to randomly select a set of q unmeasured sites at each
iteration. The option also exists of choosing the optimal greedy
search selected sites for the first measurement plan (t = 1) and
then introducing the random selection from t = 2 onwards.
In this way, the best reconstruction capabilities are retained
for the first wafer thanks to the optimal subset of sites being
measured, while the following iterations span the entire wafer
surface as required by dynamic selection.

A more systematic approach is to employ a temporal or
spatial similarity metric to select, as the starting point for the
new measurement plan, the site that is most different from the
ones selected in previous measurement plans. For example, the
least correlated site could be selected or the site that is located
furthest from the previously selected sites. The pseudo code
for the minimum correlation site selection approach is given
in Algorithm 7.

A priori process knowledge or monitoring requirements can
also be used to guide the selection of Istart. For example, it
may be desirable to include a site located at the centre of the
wafer and/or at the edge, at every iteration.

Alternatively, for a given q, we can determine the optimum
Istart with respect to the reconstruction error and/or cycle

length m by systematically evaluating all possible Istart
sets as explained in Algorithm 8. If an exhaustive search is
computationally intractable an approximate solution can be
obtained using stochastic optimisation techniques.

B. Linear Regression for Profile Reconstruction

Having measured the k selected sites on each wafer it is
necessary to estimate the values at the p− k unselected sites
in order to reconstruct the wafer profile. This can be achieved
by using the measured sites as regressors and estimating
prediction models for each of the unmeasured sites using
the historical data. While linear and nonlinear regression
approaches can be employed, linear models have proven to be
sufficient in practice [27], and with much lower complexity are
the preferred option. Given a set of input values vi ∈ Rp×1,
and a target output variable yi, i = 1 . . . n, organized in an
n × p design matrix X = [vT1 . . .v

T
n ]T and an n × 1 output

vector y, linear regression estimates a model of the form
f(v) = aTv + b parametrized by a ∈ Rp×1 and b ∈ R, to
predict y such that the prediction error expressed in terms of
the Mean Squared Error (MSE) over the dataset is minimised.
The optimal model parameters are given by

θ∗ = argmin
a,b

1

2

n∑
i=1

||aTvi + b− yi||22, (11)

where θ = [aT b]T , or equivalently in matrix form as

θ∗ = argmin
θ

1

2
(Xθ − y)T (Xθ − y). (12)

Here, matrix X is assumed to be augmented with a unitary
column in order to account for the offset term in the vector
θ ∈ Rp+1. The solution to Eq. 12, referred to as the least
squares solution, is given by

θ∗ = (XTX)−1XTy. (13)

Given a linear model with parameters θ∗j j ∈ IU for each
unmeasured site, then, at a new process run, the unmeasured
sites vj j ∈ IU can be estimated from the new measures at
the selected sites organized in a vector vS ∈ Rk×1 using the
equation

v̂j = θ∗Tj vS . (14)

We note that a natural extension of linear regression is the
use of ridge regression or other regularization methods [12]
which help to address overfitting and ill-conditioning prob-
lems. However, the greedy site selection algorithms inherently
generate well conditioned regressor matrices with regard to
wafer profile reconstruction model estimation, hence the use
of such extensions is not justified in this instance [29].

IV. DATASET DESCRIPTION

In this Section we present the different case study datasets
used to test the effectiveness of the proposed ISDS approach.
In particular, we have considered a real industrial case study
provided by an industrial partner and a simulated case study
where the data have been artificially created by means of a
mathematical model of the wafer surface.
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(i) Industrial case study [Industrial] [27] - This is based on
historical metrology data acquired from a CVD process where
wafer thickness has been measured at a set of 50 locations
(sites) across the wafer surface for a set of n = 316 process
runs acquired over a time interval of several weeks. Fig. 1
shows example wafer profiles from this dataset. Consider-
able wafer-to-wafer variability is noticeable. The measurement
locations used are reported in Fig. 3(a). For confidentiality
reasons, all the reported values have been normalized.

(ii) Simulated case study [RBF] [27] - In this case study the
wafer profiles have been artificially generated as a linear com-
bination of Gaussian Radial Basis Functions (RBF) defined
on the unit radius disk centered at the origin with additive
Gaussian measurement noise. The model for the wafer height
at coordinates x, y is given by

z(x, y) =

Ng∑
i=1

hie

(
(x−cxi

)2+(y−cyi
)2

S2
f

)
+ ε, (15)

where hi ∼ N (0, 1), cxi
, cyi ∼ U(−1, 1) and ε ∼ N (0, 0.02).

The number of RBF functions Ng and spreading factor Sf
are used to control the smoothness of the resulting wafer
profiles and essentially define the spatial variability of the
simulated process. Fig. 2 shows some examples of synthetic
wafer profiles generated by this model when Sf = 0.6 and
Ng = 100.

The selection of the simulated dataset is motivated by its
use in [27] and facilities a fair comparison with the state-of-the
art method, SDS. Moreover, in the interest of reproducibility
of results, the instance of the dataset used in the paper
has been made available online1. Fig. 3(b) shows the 50
randomly selected locations where the simulated metrology
operations are performed. The locations of the sites on the
disk are selected at random while imposing a constraint on
the minimum distance between sites on the wafer.

V. RESULTS

In this Section we provide a performance comparison of
the proposed ISDS based methods. In order to obtain a
statistically robust performance evaluation, a Monte Carlo
Cross-Validation procedure has been employed [12] where the
datasets are split into training and test sets with a predefined
size ratio; then, the model is trained on the training data and its
performance evaluated on the previously unseen test data. This
process is repeated 1000 times and the results are averaged.
Specifically, given the number of available observations N , we
create the test set randomly sampling Ntest = rN observations
with r = 0.35. In this way, 65% of the data are employed for
training and 35% for testing.

The reconstruction performance is reported in terms of the
average Mean Squared Error (MSE) over the p−k unmeasured
sites. For a single measurement y, the MSE is computed as

MSE =
1

Ntest

Ntest∑
i=1

(ŷ
(test)
i − y(test)

i )2, (16)

1Available at https://gitlab.dei.unipd.it/dl_dei/ISDS-Data

where ŷ is the target value predicted by the model and y is
the real value. As the purpose of ISDS is to guarantee cyclic
measurement of all sites on a wafer surface, it is also necessary
to compare the cycle time achieved with each method, i.e.
the number of wafers processed before all sites are visited.
In order to provide a comprehensive performance comparison
the following methods, as proposed in [27], will be included
in the comparison:
• Random Static - a single set of k sites is randomly

selected and employed for all wafers.
• Random Dynamic - sites are randomly ordered and then

visited sequentially, k sites at a time.
• Conservative Dynamic Sampling (CDS) - k − 1 sites

are selected according to FSCA with the remaining site
selected randomly from the unselected sites.

• Sequential Dynamic Sampling (SDS) - a cluster based
method, where a set of initial sites is selected according
to FSCA and then the remaining sites are assigned to
a cluster generated by each one of the selected sites
according to a correlation based similarity metric. For
a more detailed description of SDS we invite the reader
to refer to [27].

As a baseline for method evaluation, we adopt the simplest
implementation of ISDS, with q = 1 and Istart selected
randomly. For a given algorithm the ISDS implementation
will be denoted by ’<algorithm name>-IS’. For comparision
purposes we also include the results for static sampling with
each of the greedy methods. While these have a cycle time of
infinity they provide a useful reference as the lower bound for
the achievable MSE with dynamic sampling.

A. Reconstruction performance

The reconstruction error achieved with the linear regression
models is a direct measure of the quality of the sites selected
by the algorithms. Figure 4 shows the reconstruction error as a
function of the number of selected sites k for the various static
and dynamic sampling methods considered in the paper when
applied to both the industrial and simulated case studies. The
MSE for selected values of k is also reported in Table I for
the industrial dataset. It is immediately apparent that FSCA
provides the best performance among the static methods.
Similarly, FSCA-IS provides the best performance among the
dynamic methods. OPFS-IS provides similar performance to
FSCA-IS with both methods consistently outperforming SDS.
FP based methods tend to be significantly outperformed by the
other methods, suggesting that the FP metric does not identify
appropriate sites in terms of reconstruction performance [23].
ITFS-IS achieves similar performance to FSCA-IS for the in-
dustrial case study but is considerably poorer on the simulated
dataset, showing limited general applicability of the method.
The performance of CDS falls between FSCA-IS and SDS.

Figure 4 (e) and (f) provide a comparison between the best
performing static method, FSCA, the state-of-the-art dynamic
sampling method, SDS, and the best performing ISDS method,
FSCA-IS. As expected, when k is small FSCA performs better
than FSCA-IS, but as k increases, the difference in reconstruc-
tion accuracy quickly becomes negligible. A similar pattern
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Figure 1. [Industrial] Wafer profiles from an industrial CVD process
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Figure 2. [RBF] Wafer profiles from the simulated dataset for Sf = 0.6 Ng = 100
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Figure 3. Measurement sites locations on the wafer surface for both the
industrial and simulated case studies

occurs for SDS, but with much larger MSEs, and a much
larger k before performance differences become negligible.

Figure 5 shows the distribution of the MSE over 1000
MCCV cycles for each sampling method when applied on
the industrial case study with k = 7 sites selected. Here it is
evident how the random methods and FP are outperformed by
the others approaches. Among the dynamic methods, FSCA-IS
and OPFS-IS present similar performance as previously noted.

B. Cycle time performance

By employing dynamic methods it is possible to cover
sequentially the entire set of available sites by including, at
each process run, previously unvisited measurement locations
(Figure 6). This of course causes a decrease in wafer profile re-
construction performance due to the sub-optimal measurement
set used at each iteration. With the objective of entire wafer
coverage, an important factor that determines the quality of the
dynamic sampling methods is the cycle length, i.e. the number
of iterations that it takes to visit the complete set of available

locations. Figure 7 is a plot of the median cycle duration over
1000 MCCV iterations as a function of the number of selected
sites k for each of the dynamic sampling methods considered.

Among dynamic sampling methods, CDS represents the
worst case scenario in terms of cycle time with only a single
new site visited at each iteration, while RDS represents the best
case scenario with k new sites visited. Hence, these methods
provide upper and lower bounds on achievable cycle time with
the other dynamic methods.

FP-IS has the longest cycle duration among the ISDS meth-
ods. Observing the number of times that a particular location is
measured during a single production cycle of m wafers (Figure
8), it is clear that this arises because FP-IS tends to visit a small
subset of sites frequently, and consequently, it takes longer
for the unselected locations to be included in the metrology
process. The remaining ISDS methods have similar behaviour,
providing a good compromise between performance and cycle
duration. In particular, FSCA-IS provides the best prediction
capabilities combined with a cycle duration that is similar to
the other induced methods.

Overall, the cluster based SDS method yields the best cycle
duration, but, as previously noted it has much poorer MSE
performance than FSCA-IS and OPFS-IS. Significantly, unlike
SDS, the ISDS methods provide the freedom to choose the
number of initial sites q at each iteration. This parameter
can be used to trade-off MSE performance for reduced cycle
duration making ISDS a versatile choice for the problem at
hand, as will be illustrated in the next section.
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(d) Simulated dataset
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Figure 4. MSE as a function of the number of measured sites for (a)(b) static methods, (c)(d) dynamic methods and (e)(f) the best static method compared
with best dynamic method.
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Table I
MSE AS A FUNCTION OF THE NUMBER OF SELECTED SITES

MSE
k = 3 k = 5 k = 7 k = 9

Static

Random 3.60 ± 1.04 0.81 ± 0.54 0.34 ± 0.18 0.19 ± 0.09
FSCA 2.03 ± 0.20 0.34 ± 0.03 0.13 ± 0.03 0.07 ± 0.01
ITFS 3.52 ± 0.73 0.28 ± 0.03 0.15 ± 0.02 0.08 ± 0.01
OPFS 2.14 ± 0.30 0.36 ± 0.03 0.14 ± 0.02 0.08 ± 0.00

FP 2.51 ± 0.27 0.78 ± 0.11 0.29 ± 0.02 0.20 ± 0.04

Dynamic

FSCA-IS 2.25 ± 0.20 0.31 ± 0.02 0.13 ± 0.01 0.08 ± 0.01
ITFS-IS 3.26 ± 0.33 0.32 ± 0.03 0.14 ± 0.01 0.09 ± 0.01
OPFS-IS 2.27 ± 0.21 0.32 ± 0.03 0.14 ± 0.01 0.08 ± 0.01

FP-IS 2.91 ± 0.30 0.58 ± 0.07 0.32 ± 0.03 0.21 ± 0.02
RDS 3.62 ± 0.37 0.80 ± 0.18 0.34 ± 0.06 0.18 ± 0.04
CDS 2.65 ± 0.26 0.40 ± 0.03 0.17 ± 0.02 0.08 ± 0.01
SDS 3.22 ± 0.33 0.55 ± 0.08 0.20 ± 0.03 0.11 ± 0.01
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Figure 7. Median over 1000 MCCV of the cycle length as a function of the number of measures sites k.

C. Impact of the initial site selection Istart
We investigate here the effect that the choice of the starting

site, Istart (q = 1), has on the performance of ISDS by
comparing three possible approaches discussed in section
III-A, that is:
(i) Random - Choosing the initial site at random.
(ii) OptMSE - Choosing the initial site that leads to the best
set of measurements in terms of minimizing the wafer profile
reconstruction error.
(iii) Correlation - Choosing the initial site as the one that is
least correlated with the sites that have already been selected
in previous iterations.

Fig 9 shows the distribution of reconstruction errors ob-
tained over 1000 MCCV simulations for the two case studies
for each of the three initialisation methods. While, ’OptMSE’
yields marginally superior results to the other two methods, the
differences between the methods are not statistically signifi-
cant; hence ’Random’ selection is a good choice as it has the
lowest computation requirements. From a cycle length point of
view, Fig. 10 reveals that for this metric "OptMSE" is the worst
performing approach while ’Correlation’ is the best, and this
time the differences are statistically significant. Overall, the
minimum correlation based method presents the best trade-off

between reconstruction accuracy and cycle time at the expense
of a small increase in computational complexity compared to
the "Random" method.

D. Dealing with new process behaviour

The introduction of a dynamic sampling approach allows the
measuring process to spot previously unseen process behaviour
that would go undetected with a static approach. In this section
we provide a comparison between FSCA, FSCA-IS and SDS
on the industrial dataset where we manually add a new
localised process behaviour at a randomly selected location.
The perturbation is in the form of a randomly generated RBF
surface deviation centered at the selected location. In order
to provide a thorough statistical description the comparison is
based on a 1000 run Monte Carlo cross-validation study. For
each run, a training and a test dataset are created by randomly
splitting the dataset into a 222 wafer training set and a 94
wafers test set. The training set is used to train the predictive
models, and the test set, modified to include the new process
behaviour, is used to evaluate their performance. In order to
assess the capacity of each dynamic sampling algorithm to
detect the new behaviour, we employ two different approaches
based on control limits defined on the training dataset, which
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Figure 9. Effect of different choices of the ISDS starting site on the reconstruction error.
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Figure 10. Effect of different choices of the ISDS starting site on the cycle length.
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will be referred to as fault detection and anomaly detection
[30]:
• Fault detection: a new process behaviour is detected if

the measurement at any site (actual or predicted) exceeds
the maximum value observed over all sites in the training
dataset.

• Anomaly detection: a new process behaviour is detected
if the measurement at any site (actual or predicted) falls
outside the normal range for that site, defined as the
mean value +/- three standard deviations of the site
measurements in the training dataset.

The difference between the two approaches is that the first
employs global control limits while the second employs local
control limits, with each site having its own range of normal
values. Table II and III present the results obtained with
the two different approaches when varying the number of
selected sites k and the number of induced start sites q.
Two versions of the induced start are considered, namely,
the default random site selection approach, FSCA-IS, and
the minimum correlation site selection approach, FSCA-ISc.
The reported metrics are the detection rate over 1000 MCCV
cycles (rD), the mean number of wafers processed before the
anomaly is detected (µD), the median of the same quantity
(mD), the reconstruction error without the anomaly included
(MSE-) and the reconstruction error with the anomaly included
(MSE+). Standard deviation information is also included for
µD, MSE- and MSE+.

As expected FSCA, the static sampling method, has a
detection rate that is much lower than the dynamic methods
since it is only able to detect the anomaly when it is occurs
at a location that is selected in the measurement plan. The
theoretical detection rate for FSCA under these conditions is
given by

E[rD] = 100
k

p
% (17)

Here, p = 50, hence E[rD] = 2k%. The detection rates of
each dynamic sampling method approaches 100 % as the
number of measured sites per wafer increases, and hence
the number of times measurements are taken at the anomaly
location over the 94 test wafer validation cycle increases. The
theoretical detection rate for the dynamical sampling methods
is 100%, but falls short of this here because of the limitations
of the experimental setup. Specifically, the stochastic nature
of the anomaly generation mechanism employed, combined
with the normal wafer variation at each site, means that the
magnitude of the resulting anomaly on a given wafer does not
always exceed the global or local thresholds limits. This also
explains the marginal differences in performance between the
global and local detection methods as the local method has
inherently greater sensitivity to abnormal variation, and hence
is able to detect an anomaly that is greater than the local
threshold, but lower than the global threshold.

Taking these factors into account it is clear that the results
are consistent for both detection methods. FSCA-IS (q = 1)
has a smaller reconstruction error compared to SDS but with
a longer detection time. However, FSCA-IS provides the
freedom to choose the number of starting sites q at each

iteration and hence allows a trade-off between reconstruction
error and detection time, as demonstrated by the results for
FSCA-IS with q = 2 and q = 3. The superiority of ISDS
compared to SDS is evident from the fact that it is possible to
reduce the detection time to values that are comparable to SDS
while maintaining superior MSE performance. Moreover, SDS
achieves the lowest cycle time (and consequently detection
time) when the features are evenly distributed among the
k clusters. Under these conditions the number of possible
combinations of measured sites is at its maximum, with a
value greater than or equal to b pk c

k, making SDS challenging
to implement. This problem does not occur in FSCA-IS where
the number of unique site combinations is equal to the cycle
length m, which has an upper bound of dp−kq e+ 1.

Overall, there is little to choose between the two versions
of ISDS considered (FSCA-IS and FSCA-ISc), although, par-
ticularly with q = 1, 2, FSCA-ISc does achieve slightly better
detection times, which is consistent with the results reported
in Fig. 10. FSCA-ISc has significantly higher computational
complexity than FSCA-IS due to the calculation of the cor-
relation matrix (only needs to be done once at the beginning
of the algorithm) and the max/min operations that need to be
performed at every step. However, determining the dynamic
sampling measurement plan is an off-line process, hence the
increase in complexity does not have an impact on the on-line
performance of the method.

VI. CONCLUSION

This paper has proposed a novel spatial dynamic sampling
methodology for metrology optimization in manufacturing,
a problem that is of particular interest where measurement
operations are extremely expensive (in terms of time and/or
money) and have a significant impact on production costs
and yield. The proposed methodology, ISDS, combined with
greedy data-driven feature selection techniques, provides an
effective framework for minimizing the number of measure-
ments per wafer while enabling reconstruction accuracy to
be traded-off against cycle time. The efficacy of the ap-
proach has been demonstrated with the aid of both simu-
lated and industrial datasets. A comparison of four greedy-
selection algorithms (FSCA, ITFS, OPFS and FP) highlights
that ISDS implemented using FSCA (FSCA-IS) yields the
best performance, followed closely by the implementation
using OPFS (OPFS-IS). Benchmarking of FSCA-IS against
other dynamic sampling algorithms, including the state-of-the-
art FSCA cluster based SDS algorithm, shows that it yields
the best overall performance among the dynamic sampling
methods considered in terms of balancing MSE reconstruction
performance with cycle time, and hence anomaly detection
time. Remarkably, the ISDS approach is optimal in the sense
that it achieves similar reconstruction accuracy to the ’static’
approaches, which define the lower bound on achievable MSE
performance. In addition, the ability to choose the set of
starting sites Istart at each iteration in ISDS is attractive, as it
provides process engineers with the flexibility to incorporate
a priori process knowledge or monitoring requirements. In the
absence of such requirements selection of Istart at random or
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Table II
CAPABILITIES OF THE METHODS AT DETECTING A NEW PROCESS BEHAVIOUR USING THE FAULT DETECTION APPROACH (GLOBAL LIMITS)

Number of
measured sites

Method name rD µD mD MSE- MSE+

k = 3

FSCA 7.30% 12.40 ± 24.32 1 1.91 ± 0.19 12.03 ± 22.73
FSCA-IS (q=1) 94.30% 22.97 ± 20.01 18 2.13 ± 0.21 12.17 ± 6.06
FSCA-IS (q=2) 99.30% 15.60 ± 14.62 12 2.53 ± 0.26 15.08 ± 11.44
FSCA-ISc (q=1) 95.30% 20.85 ± 19.45 15 2.17 ± 0.21 12.38 ± 6.49
FSCA-ISc (q=2) 99.50% 14.69 ± 13.17 12 2.58 ± 0.27 18.61 ± 16.92
SDS 99.80% 14.70 ± 13.66 11 3.04 ± 0.31 16.65 ± 6.92

k = 5

FSCA 11.90% 4.04 ± 12.37 1 0.31 ± 0.03 12.15 ± 22.13
FSCA-IS (q=1) 98.60% 14.41 ± 16.23 10 0.28 ± 0.023 12.22 ± 7.20
FSCA-IS (q=2) 99.70% 11.35 ± 16.23 8 0.29 ± 0.03 13.55 ± 9.85
FSCA-IS (q=3) 99.90% 9.49 ± 16.23 7 0.31 ± 0.03 15.43 ± 16.19
FSCA-ISc (q=1) 97.80% 14.28 ± 16.13 9 0.28 ± 0.02 12.21 ± 7.05
FSCA-ISc (q=2) 99.70% 10.88 ± 11.27 8 0.29 ± 0.03 13.73 ± 10.21
FSCA-ISc (q=3) 99.80% 9.59 ± 9.60 7 0.30 ± 0.03 13.60 ± 8.95
SDS 100.00% 8.35 ± 7.97 7 0.50 ± 0.08 17.95 ± 16.82

k = 7

FSCA 13.70% 3.82 ± 11.42 1 0.11 ± 0.02 9.19 ± 13.96
FSCA-IS (q=1) 99.00% 11.46 ± 13.20 7 0.12 ± 0.01 11.31 ± 5.97
FSCA-IS (q=2) 99.80% 9.48 ± 11.01 7 0.12 ± 0.01 11.63 ± 6.07
FSCA-IS (q=3) 99.80% 8.24 ± 9.75 6 0.12 ± 0.01 12.70 ± 8.65
FSCA-ISc (q=1) 99.20% 10.92 ± 12.80 7 0.12 ± 0.01 11.06 ± 5.48
FSCA-ISc (q=2) 99.80% 9.48 ± 10.92 6 0.12 ± 0.01 11.67 ± 6.04
FSCA-ISc (q=3) 99.90% 9.04 ± 10.16 6 0.12 ± 0.01 11.77 ± 6.91
SDS 99.80% 7.86 ± 8.45 6 0.17 ± 0.02 13.79 ± 7.71

k = 9

FSCA 19.40% 6.57 ± 18.45 1 0.06 ± 0.01 10.25 ± 15.03
FSCA-IS (q=1) 99.80% 9.02 ± 11.10 6 0.06 ± 0.01 11.19 ± 5.70
FSCA-IS (q=2) 99.90% 7.89 ± 9.80 5 0.06 ± 0.01 11.90 ± 7.66
FSCA-IS (q=3) 99.90% 7.79 ± 9.43 5 0.06 ± 0.01 11.69 ± 7.41
FSCA-ISc (q=1) 99.60% 9.03 ± 10.89 6 0.06 ± 0.01 11.25 ± 6.39
FSCA-ISc (q=2) 99.80% 7.68 ± 8.70 5 0.06 ± 0.01 11.69 ± 7.15
FSCA-ISc (q=3) 100.00% 7.04 ± 7.74 5 0.06 ± 0.01 11.69 ± 7.72
SDS 100.00% 5.90 ± 6.27 4 0.09 ± 0.01 14.11 ± 7.82

based on minimum correlation with the already selected sites
is recommended.

As future work, we plan to investigate the applicability of
ISDS to the optimal design of experiments, a topic that is
closely connected to the measurement plan optimization prob-
lem described here, and which is relevant in many domains,
for example, in medical testing and in chemical manufacturing
[31]–[34]. In particular, we note potential parallels that may
exist between ISDS and optimal design of experiments with
regard to incorporating prior knowledge via initial designs and
employing a non-sequential exchange algorithm for targeted
design point selection [35]. Finally, we remark that in the
dynamic sampling scenario, there is an unavoidable trade-off
between reconstruction accuracy and cycle length. In this work
we provided a dynamic sampling strategy that achieves MSE
performance comparable to static approaches for only a small
trade-off in cycle length, and a means to control that trade-
off. As future work, we will explore dynamic strategies that
can optimize the trade-off while directly accommodating user
requirements on maximum allowable cycle length.
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