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Abstract

The following PhD Thesis consists of three chapters. In these chapters I describe the projects we

developed during my PhD. The first chapter, starting from the preliminary results of my Master’s

Thesis, presents the study of the problems of consistency and existence of finite-dimensional realiz-

ations for Heath-Jarrow-Morton multi-curve interest-rate models. We generalize to the multi-curve

setting the geometric approach at the basis of the results obtained by T. Björk and coauthors in

the single-curve framework. Hence, we propose a calibration algorithm based on the theoretical

results we proved, applying it to Euribor market data.

The second chapter deals with the analysis of a financial market populated by agents who access

different amount of information. We study the problem of equilibrium price formation, obtained

balancing the demand and supply of a single asset. To do so, we adopt a mean-field approach.

We prove the existence of a mean-field equilibrium price, showing that it fills the information gap

between a more informed major agent and a group of less informed standard agents. Moreover,

we prove that, in the context of a market populated by finitely many standard agents and a major

agent, the mean-field equilibrium price satisfies a weak version of the balance between demand and

supply.

In the third chapter, we provide several results towards a foundamental theorem of asset pricing

for statistical arbitrage opportunities. We study a result present in the literature, that establishes

a characterization of the absence of statistical arbitrage opportunities for markets defined on finite

probability spaces. For this result a counterexample is provided in a recent paper. Actually, since

this counterexample does not disprove the original statement, we confirm the latest in a rigorous

mathematical setting. Therefore, we focus on market models defined on more general probability

spaces and we show that the characterization proved for the finite markets is still guaranteed, under

some additional and tailor-made assumptions.





Sommario

Questa tesi di dottorato è formata da tre capitoli. In questi capitoli descrivo i progetti sviluppati

durante il mio percorso di dottorato. Il primo capitolo, a partire dai risultati preliminari ottenuti

nella mia tesi magistrale, presenta lo studio dei problemi di consistenza ed esistenza delle realizza-

zioni finito-dimensionali per modelli Heath-Jarrow-Morton in un contesto multi curva, applicati al

mercato dei tassi di interesse. In particolare, generalizziamo al contesto multi curva l’approccio

geometrico alla base dei risultati di T. Björk e coautori nel contesto di modelli a curva singola.

Proponiamo quindi un algoritmo di calibrazione per un modello Hull-White a tre curve basato sui

risultati teorici che abbiamo dimostrato, applicandolo al mercato Euribor.

Nel secondo capitolo analizziamo il meccanismo di formazione del prezzo in un mercato popolato

da agenti che hanno accesso a quantità di informazione differenti. In particolare, ci concentriamo

sul prezzo che bilancia la domanda e l’offerta di un’azione. Per fare ciò, adottiamo un approccio a

campo medio, derivando l’esistenza di un processo di prezzo all’equilibrio. Inoltre, mostriamo che

un prezzo cos̀ı costruito annulla la differenza informativa tra un agente maggiore e maggiormente

informato e un gruppo di agenti standard e meno informati. Infine, mostriamo che, nel contesto

di un mercato popolato da un agente maggiore e un numero finito di agenti standard, il prezzo di

equilibrio ottenuto nel limite a campo medio soddisfa una versione debole dell’incontro tra domanda

e offerta.

Nel terzo capitolo, proponiamo alcuni risultati nella direzione di un teorema fondamentale per

l’assenza di arbitraggi statistici. Analizziamo un risultato presente in letteratura, che stabilisce

una caratterizzazione dell’assenza di arbitraggi statistici nel caso di un mercato definito su uno

spazio di probabilità finito. Per questo risultato, un contro esempio è proposto in un articolo più

recente. Proviamo però che il contro esempio non confuta il risultato originale, che confermiamo

adottando un approccio matematicamente rigoroso. Ci focalizziamo quindi sulla generalizzazione

di questa caratterizzazione dell’assenza di arbitraggi statistici, nel contesto di mercati definiti su

spazi di probabilità più generali. Mostriamo quindi alcuni risultati preliminari, verificando che la

caratterizzazione provata nel caso finito può essere estesa anche a contesti più generali, sotto alcune

ipotesi piuttosto restrittive.
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Introduction

As stated in the title, this PhD Thesis deals with three essays concerning some issues in financial

mathematics.

In Chapter 1, which is based on [FLM24], we present the problem of consistency and existence

of finite-dimensional realizations for a class of multi-curve interest-rate models. The multi-curve

framework has been adopted to capture the richer market structure that have emerged in the

interest-rate market since fifteen years ago. Motivated by the parameters recalibration problem, we

study the problem of consistency between an interest-rate model M and a parameterized family

G. We generalize the geometric approach introduced by Björk and co-authors ([Bjö04; BC99] and

[BS01]) in the single curve framework, highlighting the differences that appear in the multi-curve

setting, such as the presence of spreads and the interdependence between the different curves of

the model. We focus on a class of multi-curve interest-rate models determined by m + 1 differ-

ent tenor lengths. We adopt the Heath-Jarrow-Morton approach to describe m + 1 forward-rate

curves. On the other hand, m spread components are represented by Itô processes. We assume

that each forward-rate component of the model lives on a suitable Hilbert space. Therefore, we

provide a characterization of the consistency condition between M and G, generalizing [Bjö04, The-

orem 4.2.]. Consequently, we focus on the problem of existence of finite-dimensional realizations

for a given multi-curve model. The finite-dimensional realizations are defined by an opportune

finite-dimensional stochastic process, from which the realization of the multi-curve model can be

determined. We present conditions that guarantee the existence of finite-dimensional realizations

for specific classes of interest-rate models. For these results we adopt the approach proposed in

[Sli10]. Hence, we study the conditions under which some properties of the finite-dimensional realiz-

ations, provided in the single-curve setting, are respected in the multi-curve framework. Moreover,

we introduce a new definition of consistency, based on the multi-curve structure of the interest

rates. Finally, applying the theoretical results that we provided, we construct an algorithm to

calibrate the parameters of a three-curve Hull-White model. We apply this algorithm to a time

series of daily Euribor market data, associated with three different tenor lengths (one day, three

months, six months). We obtain stable results.

Chapter 2 deals with the mechanism of equilibrium price formation in presence of asymmetry in

the information accessible to the agents of the market. We aim at studying the impact of heterogen-

eous information on the price of an asset traded in a financial market, adopting a mean-field game
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approach. Mean-field games theory analyses dynamic systems determined by the interaction of in-

finitely many rational players. The application of mean-field games theory to financial mathematics

has been widely developed in the last years. However, financial application involving heterogen-

eous information frameworks have been studied only in recent works (see for example [CJ20; CJ19;

BS24] and [BCR23]). We adopt the setting described in [FT22b; FT22c], and [FT22a], on which

the problem of price formation is studied through a mean-field games approach in the context of

symmetric information. We focus on a market model populated by N standard agents and a more

informed major agent. The asymmetry of information impacts on the strategies and, therefore, in

the functional cost of the major agent. Every agent has to solve an optimal control problem, which

depends on an a priori exogenously given stochastic process ϖ describing the price. We want to

determine the equilibrium price process obtained by imposing the balance between the demand and

supply of the asset. This condition is called market clearing. Assuming that the agents solve their

optimal control problems, the market clearing condition leads to an equation for ϖ. To overcome

the highly recursive structure of the equation for the equilibrium price, we study its mean-field

limit. We derive a mean-field equation for the limit ϖmf of the equilibrium price ϖ. The equation

for ϖmf involves the dependence on its own filtration, which has to be determined endogenously.

To overcome this issue, we hinge on an analogy between the structure of the mean-field equation

for ϖmf and the consistency condition of a weak mean-field game equilibrium in the presence of

common noise, described in [CDL16; Lac16; CD18b]. We adapt to our purposes the analogous

results developed in [CD18b], that refer to the framework of FBSDE theory. Hence, we prove the

existence on the canonical space of a stochastic process ϖmf. Finally, assuming additional condi-

tions on the market structure, we prove that ϖmf satisfies a weak version of the market clearing

condition.

In Chapter 3, we focus on a class of portfolio strategies called statistical arbitrage opportunit-

ies. In finance literature, the term statistical arbitrage is used to denote different kinds of trading

strategies, which yield a net profit with an assessable amount of risk. As a consequence, statistical

arbitrage opportunities have been widely applied in the financial industry. However, a formal defin-

ition of statistical arbitrage has not been proposed yet and the term is used to denote ambiguously

various different trading strategies. In [LBŠ+18], the authors proposed a first attempt to clarify

and compare all the different definitions associated with the term statistical arbitrage. We focus

on the definition proposed in [Bon03]. In [Bon03], in the context of financial markets defined on a

finite probability space, the author defined a statistical arbitrage as a trading strategy for which the

expected payoff is positive and the conditional expected payoff in each final state of the economy is

nonnegative. Although the simple framework of [Bon03], it is possible to recognize a link between

the results proved by Bondarenko and the role of the conditional expectation, interpreted as a linear

operator between Lp spaces. More recently, the notion of statistical arbitrage introduced in [Bon03]

has been generalized to the context of more general trading strategies yielding a net conditional

expected payoff with respect to an augmented information set, defined by a sigma-algebra G. In

[RRS21], some preliminary results have been provided. In this chapter, we study a counterexample
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proposed in [RRS21] to the result provided in [Bon03]. We show that this counterexample does not

disprove the original statement and we present, in a rigorous mathematical setting, the characteriz-

ation of absence of statistical arbitrage opportunities, provided in [Bon03] for finite market models.

Hence, we present several results in the direction of a fundamental theorem of asset pricing for this

class of trading strategies. In particular, we focus on the conditions that guarantee the absence of

statistical arbitrage opportunities in more general cases, such as a discrete-time market model and

a semimartingale model. We prove that the characterizations of the absence of statistical arbitrage

opportunities in the framework of finite market models can be extended to market models defined

on more general probability spaces under restrictive and tailor-made assumptions.
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CHAPTER 1

The geometry of multi-curve interest-rate models

1.1 Introduction

In this chapter we study some geometric properties of the interest-rate market, in a multi-curve

setting. This chapter is based on a joint project developed together with my supervisor, Claudio

Fontana and Agatha Murgoci. The results of this chapter are described in the work [FLM24],

available on ArXiv.

We study how the problems of consistency and existence of finite dimensional realizations can be

generalized from the single-curve framework, analysed through the geometric approach developed

by T. Björk and coauthors, to a setting that is more coherent with the specificities emerged in

the interest-rate market after the 2008 crisis and still effective nowadays. The consistency problem

is of interest from an applied and a theoretic point of view. In particular, it is linked to the

parameter recalibration problem. Indeed, when an interest-rate model has to be recalibrated, the

usual strategy is based on the following two steps:

• Fit the term-structure ΓM = {ˆ︁rM (x); x ≥ 0} to market data. Usually, families G of para-

meterized functions, such as the one introduced by Nelson Siegel in [NS87], are employed for

this purpose.

• The interest rate model M is calibrated to the term-structure ΓM in order to obtain future

realizations of the interest-curve in accordance with M.

This procedure is motivated by the notion of invariance between a model M and the term

structure determined by a manifold G := Im[G], image of a given parameterized family G. We say

that a model M and a manifold G are invariant, if the realizations of M (that are the solution to

the dynamics determining the model) belong to G for a positive time interval. Under this definition,

the consistency problem is given by conditions that guarantee a model to be invariant with respect

to the image of the parameterized family G used to calibrate the initial term structure ΓM . We

5



1.1. INTRODUCTION

are going to prove that the consistency condition is equivalent to ask that the drift and volatility

terms of the dynamics of the realizations of M are tangent vector fields to G.

A second problem, strictly related to the notion of consistency, concerns the existence of finite-

dimensional realizations (FDRs) of an interest-rate model M. An n-dimensional realization for

M is a stochastic process Z taking values on Rn, whose image through a parameterized family

G describes the realization of M for a positive time interval. We show that the existence of an

n-dimensional realization for a model M is equivalent to the existence of a manifold G such that

the couple (M,G) is invariant. We study conditions that guarantee this property for specific classes

of interest-rate models.

The problem of consistency was introduced at first for the single-curve framework in [Bjö04]

and [BC99]. At the same time, the existence of FDRs was studied under analogous hypotheses on

[BG99], [BL02] and [BS01]. The results included in these papers are based on the interpretation

of the realization of a forward-rate model as a curve living on suitable Hilbert space. Some of

these results have been extended to a more general setting. In [FT03] and [FT04] analogous

geometric properties are presented in the context of generic forward rate models living on Fréchét

spaces. Moreover, the study of the geometric properties related to the problem of consistency and

existence of FDRs in the case of Lévy models is provided in [FT08; FTT10a; FTT10b; Tap10] and

[Tap12].

As mentioned, we consider the problem of consistency and existence of FDRs in the setting of

multi-curve. The multi-curve framework has been introduced to describe the new features emerged

as a consequence of the profound changes that have affected the interest-rate market in the last

fifteen years. Indeed, since the 2008 financial crisis, in order to capture the no longer negligible

credit and liquidity risk, spreads have emerged between interbank rates (IBOR rates) with different

tenor lengths and overnight rate. As a consequence, the interbank rates associated tenors greater

than one day have been considered risk sensitive, while the overnight rate have been assumed risk

free. In this setting, to capture the dynamics of both the risk free rate and these risk sensitive rates,

the adoption of a multi-curve framework has been a convenient solution. Since 2023, LIBOR is no

longer the benchmark inter-bank exchange rate and it has been replaced by risk free rates (RFRs in

the following), like SOFR (Secured Overnight Financing Rate) for the American market and €STR

(Euro Short Term Rate) for the Eurozone market. However, private and commercial banks in the

US and the UK have expressed the desire of an interest-rate that captures the credit and liquidity

risk present in the market. Therefore, several American financial institutions, like Bloomberg and

AFX, have proposed a set of risk-sensitive rates (RSRs in the following), respectively called BSBY

and Ameribor. These rates are designed through a multi-curve setting.

Therefore, we consider the problems of consistency and existence of finite-dimensional real-

izations for the interest-rate market described by a multi-curve structure determined by m + 1

different curves. We introduce a RFR and a set of RSRs, each of them that depends on a tenor

δj , j = 1, . . . ,m. We adopt a Heath-Jarrow-Morton approach to represent the dynamics of the

instantaneous forward-rate. Then, we introduce multiplicative spot spreads Sj
t between the RSR
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CHAPTER 1. THE GEOMETRY OF MULTI-CURVE INTEREST-RATE MODELS

associated with every tenor δj and the RFR, in line with [FGGS20]. Thus, we obtain an infinite-

dimensional system of stochastic differential equations whose solution, ˆ︁rt(x) that is determined by

a drift and volatility term, respectively denoted by the parameterized vectors ˆ︁µ and ˆ︁σ.
In this setting, we exploit an analogy between the multi-curve interest-rate market and a multi-

currency market in order to adapt some results of [Sli10] to the interest-rate market. In particular,

we interpret the spread processes between different forward-curves as the exchange rate between two

currencies. Following an analogous procedure, we provide conditions that guarantee the existence

of FDRs for a model M, driven by a d-dimensional Brownian motion and whose volatility depends

on the solution ˆ︁r through a scalar factor.

This chapter is organised as follows. In Section 1.3, we describe the modelling framework. We

give the details of the system of stochastic differential equations we deal with and we introduce

the functional space at the base of the geometric interpretation of the forward-rate curves. In

Section 1.4, we present the main result of the paper for what regards the problem of consistency.

In particular, we give a characterization of the notion of consistency. Moreover, we present an

application to this result to well known market models. In Section 1.5, we describe conditions

the guarantee the existence of FDRs in general and we described some specific cases in which the

computations can be provided explictly. Then, in Section 1.6, we present an alternative notion of

invariance, that exploits the richer structure given by the multi-curve framework. In particular, a

definition of consistency in which the spreads of M are included in the state process that determines

the realizations of M is proposed. Finally, in Section 1.7, we propose an algorithm based on these

results to calibrate the parameters of a three-curve Hull-White model M(θ), determined by a set

of parameters θ. The goal of a calibration algorithm is to provide an estimation of θ, through the

observation of an historical time series of market data. The calibration algorithm that we develop is

determined by a parameterized family G(θ) that is consistent with the model M(θ). Therefore, we

estimate the parameter θ∗ that minimizes the l2 distance between G(θ) and the multi-curve term

structure extracted by the market data. We test this algorithm on a time series of daily market

data represented by Euribor rates associated with three different tenors (one day, three months,

six months).

1.2 Notation

We introduce the main notation that we are going to adopt in the paper.

• Calligraphic letters H and G are used to denote manifolds defined on the Hilbert space on

which the forward-rate curves live.

• We introduce the functionals, applied to differentiable functions f : R+ × R+ → Rn:

Ff(t, x) :=
∂

∂x
f(t, x), Hf(t, x) :=

(︄∫︂ x

0
f i(t, t+ u)du

)︄
i=1,...,n

, Bf(t, x) := f(t, 0).
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• We denote by A⊤ the transpose of a matrix A and by v ·w the usual scalar product between

two vectors, v, w ∈ Rn.

• Given a Fréchét differentiable function f : H1 → H2, its Fréchét derivative at ˆ︁r ∈ H1 will be

denoted by ∂ˆ︁rf(ˆ︁r). If the Fréchét derivative of a function f is null, we denote it by ∂ˆ︁rf(ˆ︁r) = O.
• We denote the identity map defined on a vector space H by 1. Moreover, if H = Rk, the

identity map on H is defined by 1k for each k ∈ N∖ {0}.

• We denote by ||v|| the Euclidean norm of a vector v ∈ Rd.

1.3 The modelling framework

1.3.1 Market set up

In this section, we introduce the dynamics of the multi-curve class of models we are going to study.

As discussed, the multi-curve setting is necessary to describe the no longer negligible the credit and

liquidity risk present the interest-rate market. Indeed, spreads between RSRs and the RFR can be

observed and then interest rates associated with different time lengths (tenors) do no more evolve

equivalently. In this framework, we adopt as discount curve, the curve associated the RFR (in

analogy with [GR15, Section 1.4.4.]). We model separately the RFR and every RSR, each of them

associated with a tenor δ in ∆ := {δ1 < δ2 < · · · < δm}. We adopt a Heath-Jarrow-Morton (HJM)

approach to describe all interest rate curves, in line with [CFG16]. In particular, we consider an

interest-rate market composed by m + 1 curves, one curve associated with the RFR and one for

every RSR for each given tenor δj ∈ ∆.

As discussed, RSRs must take into account the risk that is not captured by the RFR. As a

consequence, denoting by Lδ(t;T, T + δ) the RSR associated with tenor δ and with L0(t;T, T + δ)

the RFR, at time t for the interval [T, T +δ], Lδ(t;T, T +δ) > L0(t;T, T +δ) typically holds. Hence,

we introduce a family of multiplicative spread processes. These spreads are linked to the credit and

liquidity risk associated with the forward-rate Lδ:

Definition 1.1. The multiplicative spot spread between the risk-sensitive rate associated with

every tenor δ and the risk-free is:

Sδ
t :=

1 + δLδ(t; t, t+ δ)

1 + δL0(t; t, t+ δ)
. (1.1)

It is convenient to introduced also a set of fictitious bonds Bδ
t (T ), defined as follows:

Bδ
t (T ) :=

Bt(T )

Sδ
t

1 + δLδ(t;T, T + δ)

1 + δL0(t;T, T + δ)
, t ≤ T. (1.2)

We refer to them as fictitious bonds, because the terminal bond equivalence holds: Bδ
t (t) = 1.

8



CHAPTER 1. THE GEOMETRY OF MULTI-CURVE INTEREST-RATE MODELS

We introduce a filtered probability space (Ω,F , (Ft)t≥0,Q), where Q is a risk-neutral measure.

On Ω, a Rd-valued Q-Brownian motion W = (Wt)t≥0 is defined. Then, we consider the following

processes:

Risk-free Curve We describe the risk free instantaneous forward-rates, through Musiela para-

meterization, as the solution to

dr0t (x) := α0
t (t+ x)dt+ σ0t (t+ x)dWt, 0 ≤ t ≤ T, (1.3)

where x ≥ 0 is the time-to-maturity. We denote the price of a zero-coupon bond on r0 by

Bt(T ) := exp

(︄
−
∫︂ T−t

0
r0t (x)dx

)︄
, t ∈ [0, T ].

The savings account numéraire associated with the RFR is given by S0 := exp(
∫︁ ·
0 r

0
t (0)dt).

Risk-sensitive Curve The risk-sensitive curve, associated with the tenor δj for j = 1, . . . ,m, is

characterized by the dynamics of instantaneous rates associated with the fictitious Bonds (1.2) as

the solution to

drjt (x) := αj
t (t+ x)dt+ σjt (t+ x)dWt, j = 1, . . . ,m, (1.4)

for suitable coefficients αj
t (t+ x) and σjt (t+ x). As a consequence,

Bj
t (T ) := exp

(︂
−
∫︂ T−t

0
rjt (x)dx

)︂
, t ∈ [0, T ].

Even if these bonds are not actually traded in the market, it is possible to reconstruct their market

value substituting in (1.2) the values of Lδ(t;T, T + δ), L0(t;T, T + δ) (that can be obtained via

bootstrapping techniques from market quotations, see Section 1.7.4 below).

The spreads The spread processes are defined as the solution to an exponential of an Itô process,

determined by suitable coefficients γj and βj . In particular, Sj
t := eY

j
t , for t ≥ 0 where

dY j
t = γjt dt+ βjt dWt, j = 1, . . . ,m. (1.5)

In the classical single-curve setting, the HJM drift condition implies that the drift term α0 in

(1.3) is determined by the volatility σ0 ([Bjö04, Proposition 1.1]). In the present multi-curve setup,

risk-neutrality of Q implies that, for each j = 1, ...,m, the drift term αj in (1.4) is determined by

the volatility σj as well as by the covariation between rj and the log-spread process Y j . Moreover,

the drift term γj in (1.5) turns out to be endogenously determined. This is the content of the

following proposition, which follows as a special case of [FGGS20, Theorem 3.7].

Proposition 1.2. Under a risk-neutral probability measure Q, the RFR, the RSR and the logarithm
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of the spread process associated with every tenor δj with j = 1, . . . ,m are respectively determined

by the following system of SDEs:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dr0t (x) =

(︂
Fr0t (x) + σ0t (t+ x) ·Hσ0t (x)

)︂
dt+ σ0t (t+ x)dWt;

drjt (x) =
(︂
Frjt (x) + σjt (t+ x) ·Hσjt (x)− βjt · σ

j
t (t+ x)

)︂
dt+ σjt (t+ x)dWt;

dY j
t =

(︂
Br0t −Brjt − 1

2 ||β
j
t ||2
)︂
dt+ βjt dWt.

(1.6)

Remark 1.3. The drift condition on the dynamics of (1.6) stated in Proposition 1.2 is equivalent

to the local martingale property under Q of the processes B0(T )
S0 and SjBj(T )

S0 for all T > 0 and

j = 1, ...,m. This property is taken as the defining property of a risk-neutral probability. As

clarified in [FGGS20], this suffices to ensure absence of arbitrage in the financial market composed

by all risk-free ZCBs and single-period swaps referencing the risk-sensitive rates Lj(T ;T, T + δj),

for all T > 0 and j = 1, ...,m.

System (1.6) is made by 2m+ 1 stochastic differential equations, two for each tenor δ and one

for the risk-free curve. Moreover, the first m + 1 components, associated with the forward-rates,

depend on a positive real parameter x (time-to-maturity). Let us notice that the solution to (1.6)

is fully determined by σ0, σj , and βj , for every j = 1, . . . ,m, by non-arbitrage constraints.

1.3.2 The modelling framework

Our purpose is to find conditions that guarantee the couple (M,G) to be consistent, where M and

G denote respectively a forward-rate model, whose dynamics is determined by system (1.6), and a

parameterized family of forward-rates. The concept of consistency can be introduced as follows:

Definition 1.4. An interest rate model M and a parameterized family of forward-rate curves G
are consistent if M produces forward-rate curves which belong to G for a positive time interval.

As discussed in Section 1.3.1, a multi-curve model M is the solution of a system of SDEs

respecting the structure of (1.6). Denoting a single-curve forward-rate by r := (rt)t≥0, then, r can

be interpreted as a curve evolving on a Hilbert space H ⊆ C∞(R+,R). We suppose that:

Definition 1.5. The solution of each forward-rate component of the system (1.6), denoted at time

t ≥ 0 by rjt for j = 0, . . . ,m, belongs to the infinite-dimensional space

H :=

{︃
r ∈ C∞(R+,R) s.t. ||r||2γ :=

+∞∑︂
n=0

2−n

∫︂ +∞

0

(︂ ∂n
∂xn

r(x)
)︂2
e−γxdx < +∞

}︃
. (1.7)

for γ > 0.

(H, || · ||γ) is an Hilbert space for each γ > 0 ([BS01, Proposition 4.2]). The solution to

system (1.6), denoted by ˆ︁r := (r0, . . . , rm, Y 1, . . . , Y m), is a stochastic process defined on the spaceˆ︁H := Hm+1 ×Rm, where Hm+1 is the cartesian product of m+ 1 copies of H. In the following, we

may adopt the notation ˆ︁r = (r, Y ) ∈ ˆ︁H, where r ∈ Hm+1 and Y ∈ Rm, when convenient.
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We make some technical assumptions regarding the regularity of the components of the system.

Assumption 1.6. We suppose that:

• The volatility of each component of system (1.6) is defined by σjt (t + ·) := σj(ˆ︁rt) and βht :=

βh(ˆ︁rt), for each j = 0, . . . ,m, h = 1, . . . ,m, where σj , βh are deterministic functions defined

on ˆ︁H and taking values on Hd and Rd respectively, for every j = 0, . . . ,m and h = 1, . . . ,m.

• We assume that σi and βj are smooth functions in Fréchét sense, i.e. they admit continuous

nth order Fréchét derivatives for each n ∈ N∖ {0}. Moreover,

A(ˆ︁r) := σ0(ˆ︁r) ·Hσ0(ˆ︁r)− 1

2
∂ˆ︁rσ0(ˆ︁r)ˆ︁σ(ˆ︁r),

B(ˆ︁r) := σj(ˆ︁r) ·Hσj(ˆ︁r)− 1

2
∂ˆ︁rσj(ˆ︁r)ˆ︁σ(ˆ︁r)− σj(ˆ︁r) · βj(ˆ︁r), j = 1, . . . ,m

are smooth (in the Fréchét sense) too.

We compactly denote (1.6) by

dˆ︁rt = µ(ˆ︁rt)dt+ ˆ︁σ(ˆ︁rt)dWt,

where µ and ˆ︁σ are fully determined by

ˆ︁σ(ˆ︁r) = (σ0(ˆ︁r), . . . , σm(ˆ︁r), β1(ˆ︁r), . . . , βm(ˆ︁r))⊤ ∈ ˆ︁Hd.

To apply the chain rule, we pass from the formulation of the dynamics of ˆ︁r under the Itô integral

to the one given by Stratonovich integral. In analogy with [KS12, Definition 3.3.13], we denote the

Stratonovich integral of a process X with respect a process Y , with the symbol
∫︁
Xs ◦ dYs. Then,

the solution of the forward-rate system is rewritten as:

dˆ︁rt = ˆ︁µ(ˆ︁rt)dt+ ˆ︁σ(ˆ︁rt) ◦ dWt, ˆ︁µ(ˆ︁rt) := µ(ˆ︁rt)− 1

2
∂ˆ︁rˆ︁σ(ˆ︁rt)ˆ︁σ(ˆ︁rt), (1.8)

where

ˆ︁µ(ˆ︁rt) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fr0 + σ0(ˆ︁rt) ·Hσ0(ˆ︁r)
Fr1 + σ1(ˆ︁r) ·Hσ1(ˆ︁r)− σ1(ˆ︁r) · β1(ˆ︁r)

...

Frm + σm(ˆ︁r) ·Hσm(ˆ︁r)− σm(ˆ︁r) · βm(ˆ︁r)
Br0 −Br1 − 1

2 ||β
1(ˆ︁r)||2

...

Br0 −Brm − 1
2 ||β

m(ˆ︁r)||2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1

2
∂ˆ︁rˆ︁σ(ˆ︁r)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ0(ˆ︁r)
σ1(ˆ︁r)

...

σm(ˆ︁r)
β1(ˆ︁r)

...

βm(ˆ︁r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.9)
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∂ˆ︁rˆ︁σ(ˆ︁r) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂r0σ
0(ˆ︁r) · · · ∂rmσ

0(ˆ︁r) ∂Y 1σ0(ˆ︁r) · · · ∂Y mσ0(ˆ︁r)
...

...
...

...

∂r0σ
m(ˆ︁r) · · · ∂rmσ

m(ˆ︁r) ∂Y 1σm(ˆ︁r) · · · ∂Y mσm(ˆ︁r)
∂r0β

1 · · · ∂rmβ
1 ∂Y 1β1(ˆ︁r) · · · ∂Y mβ1(ˆ︁r)

...
...

...
...

∂r0β
m · · · ∂rmβ

m ∂Y 1βm(ˆ︁r) · · · ∂Y mβm(ˆ︁r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

1.4 Consistency problem

In this section we solve the problem of consistency through the geometric approach developed in

[Bjö04], [BC99] and [BS01] and generalized to the multi-curve framework introduced in the previous

section.

1.4.1 Characterization of consistency condition

We consider a mapping G defined on an open subset of Rn, denoted by Z, that determines a

manifold G ⊂ ˆ︁H. We assume that:

Assumption 1.7. G : Z ⊂ Rn → ˆ︁H is an injective function such that its Fréchét differential,

∂zG : Rn → ˆ︁H, is injective for each z ∈ Z. As a consequence, G := Im[G] is a submanifold of ˆ︁H.

In the following, we refer to a manifold G as the image of a parametrized family satisfying

Assumption 1.7.

The consistency between M and a sub-manifold G, is defined by the notion of invariance:

Definition 1.8. Let us consider a forward-rate dynamics as (1.8), whose solution ˆ︁r describes a

model M and a function G satisfying Assumption 1.7. Then, if G denotes the image of G, we say

that the couple (M,G) is locally invariant under the action of ˆ︁r if for each (ˆ︁rs, s) ∈ G × R+ there

exists a stopping time τ , depending on s and ˆ︁rs, such that:

τ(ˆ︁rs, s) > s, Q− a.s.;ˆ︁rt ∈ G, for each t ∈ [s, τ(s, rs)).

Our aim is to find a characterization of the previous definition in terms of conditions on the

coefficients of ˆ︁r. To this purpose, we exploit the equivalence between the notion of invariance and

the one of ˆ︁r-invariance:
Definition 1.9. We say that a parameterized family G is locally ˆ︁r-invariant under the action of

the forward-rate process ˆ︁r if for each ˆ︁r0 ∈ G:=Im[G] there exist a Q-a.s. strictly positive stopping

time τ(ˆ︁r0) and a stochastic process (Zt)t taking values in Rn, whose Stratonovich dynamics is

dZt = a(Zt)dt+b(Zt)◦dWt such that for each t ∈ [0, τ(ˆ︁r0)), rt(x) = G(x, Zt) for each x ≥ 0, Q-a.s..
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The equivalence between Definition 1.8 and Definition 1.9 leads to the following characterization

of the consistency conditions in terms of ˆ︁µ and ˆ︁σ, introduced in equation (1.9):

Theorem 1.10 (Invariance condition). We consider a forward-curve manifold G = Im[G] and a

model M given by the solution to equation (1.6). The couple (M,G) is invariant if and only if the

following conditions hold for each z ∈ Z:

ˆ︁µ(G(z)) ∈ Im[∂zG(z)] := TG(z)G,ˆ︁σi(G(z)) ∈ Im[∂zG(z)] := TG(z)G, ∀i = 1, . . . , d,
(1.10)

where TG(z)G denotes the tangent space of the manifold G at the point G(z), for each z ∈ Z.

Proof. Direct generalization of the proof of [BC99, Theorem 4.1]).

Condition ˆ︁µ(G(z)), ˆ︁σ(G(z)) ∈ TG(z)G is equivalent to assume that the distribution generated

by ˆ︁µ and ˆ︁σ (the subspace of the tangent bundle of ˆ︁H generated by ˆ︁µ and ˆ︁σi for each i = 1, . . . , d)

is a subset of TG, where TG is the tangent bundle of G.
Differently from the analogous result proved for the single-curve setting, we must handle the

richer structure of the multi-curve framework. Indeed ˆ︁µ(ˆ︁r) and ˆ︁σ(ˆ︁r), introduced in (1.9), are vector

fields defined on ˆ︁H, that is a finite product of Hilbert spaces. As a consequence, relations between

the components of function G can be found in order to guarantee the couple (M,G) to be invariant.

1.4.2 An example: Hull-White model and Nelson-Siegel family

In this section we apply Theorem 1.10 to determine when classical models and well-known para-

meterized forward-curves are consistent. We focus on the multi-curve Hull-White model and the

Nelson-Siegel family (more specifically a suitable modification of this family) to determine condi-

tions that guarantee this couple to be consistent.

Nelson-Siegel family In analogy with [BC99], we consider a forward parameterized family,

frequently used in literature, the Nelson-Siegel (NS) family. Introduced in [NS87], NS family is

parameterized by z = (z1, z2, z3, z4) ∈ Z := R4 as:

GNS(z;x) := z1 + z2e
−z4x + z3xe

−z4x = z1 + e−z4x[z2 + z3x]. (1.11)

For a detailed description of this family we refer to [Fil99]. We denote the manifold Im[GNS ] ⊂ H
by GNS .

Hull-White model We consider the Hull-White (HW ) model. We focus on the case of a 1-dim

Brownian motion W , but the results of this section can be generalized to the case of Hull-White

model driven by a general d-dimensional Brownian motion. The volatility of HW model is σe−ax

13
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where σ, a ∈ R+. Then, the forward-rate equation in Musiela parameterization is:

drt(x) =
[︂
Frt(x) +

σ2

a
e−ax

(︂
1− e−ax

)︂]︂
dt+ σe−axdWt. (1.12)

The multi-curve model We consider a multi-curve version of HW model M, whose dynamics

is of the form of (1.8). The forward-rate volatilities of M are σje−ajx, where aj , σj > 0. Since HW

model is a constant volatility model (σe−ax does not depend on t), it is natural to suppose that

the volatility of the log-spot spread is a constant βj > 0 for each j = 1, . . . ,m. As a consequence,

the volatility of M is ˆ︁σ := (σ0e−a0x, · · · , σme−amx, β1, · · · , βm).

Our purpose is to find a manifold G in ˆ︁H such the drift and the volatility of M belong to the

tangent bundle of G. In particular, the conditions of Theorem 1.10 on ˆ︁µ and ˆ︁σ must hold on every

component. Since HW is inconsistent with GNS already in the single-curve ([BC99, Section 5]), we

propose the following modification the NS family

G0(z
0;x) := z01 + z02e

−a0x + z03xe
−a0x + z04e

−2a0x, (1.13)

to construct a consistent parameterized family, in analogy with [BC99].

Proceeding component-wise, we notice that µ0(G0(z
0;x)) = ∂z0G0(z

0;x)η0(z0), where

η0(z0) :=
(︂
0, −a0z02 + z03 +

(σ0)2

a0
, −a0z03 , −

(︂
2a0z04 +

(σ0)2

a0

)︂)︂
∈ R4. (1.14)

The image of η with respect to the Fréchét derivative of G0 is µ0, thus the first component ˆ︁µ
belongs to Im[∂z0G0]. For what regards the first component of the volatility term, we notice

that σ0e−a0x = ∂z0G0(z
0;x)ξ0(z0), where ξ0(z0) := (0, σ0, 0, 0). Therefore, we constructed two

vector fields on R4 for which the characterization of the consistency condition (1.10) holds in the

component associated with the RFR.

For the risk-sensitive forward-rates the structure of coefficients is similar to µ0 and σ0, thus it

is possible to find vector fields ηj and ξj such that condition (1.10) is satisfied for µj and σj for

every j = 1, . . . ,m. In particular, we introduce the functions:

Gj(z
j ;x) = zj1 + zj2e

−ajx + zj3xe
−ajx + zj4e

−2ajx, j = 1, . . . ,m, (1.15)

where zj = (zj1, . . . , z
j
4) ∈ R4. Then, defining

ηj(zj) :=
(︂
0, −ajzj2 + zj3 +

(σj)2

aj
− βjσj , −ajzj3, −

(︂
2ajzj4 +

(σj)2

aj

)︂)︂
. (1.16)

and ξj = (0, σj , 0, 0), conditions ∂zjGz(z
j ;x)ηj(zj) = µj(x) and ∂zjGz(z

j ;x)ξj(zj) = σje−ajx,

hold. Thus, we introduce the function

G := (G0, . . . , Gm, Gm+1, . . . , G2m), (1.17)

14



CHAPTER 1. THE GEOMETRY OF MULTI-CURVE INTEREST-RATE MODELS

where Gm+j are suitable R-valued functions for j = 1, . . . ,m. As a consequence, the vector fields:

η :=
(︂
η0, . . . , ηm

)︂
: R4(m+1) → R4(m+1),

ξ :=
(︂
ξ0, . . . , ξm

)︂
: R4(m+1) → R4(m+1),

(1.18)

satisfy the consistency on every forward-rate component. In conclusion, we characterized the

forward-rate components of HW model via a consistent parameterized family G that is defined

on the state space Rn with n := 4(m+ 1).

The presence of the spreads in the multi-curve framework has to be handled in a different

way. Indeed, there is not a standard way to parameterize the spread components of a consistent

family G. Thus, we present two strategies to construct the spread components of the function G

in order to guarantee condition (1.10). In the first case, we enlarge the state space to introduce

additional parameters that determine the spread components of the model, with no relation between

this new parameters and the vectors η and ξ of equation (1.18). On the other hand, we try to

determine conditions on the components of the volatility, βj , σj for j = 1, . . . ,m and σ0, such that

Gm+1 . . . , G2m are implicitly determined by the vector fields η and ξ introduced in equation (1.18).

In particular:

• We can enlarge the domain of definition of the state space Rn. Since the components as-

sociated with the spreads are finite-dimensional, we introduce the consistent parameterized

family as Gm+j(u
j) := uj , uj ∈ R, j = 1, . . . ,m. To guarantee the consistency condition, we

suppose that ξm+j(z) = βj and we introduce vector fields ηm+j on R as follows:

ηm+j(z) := ˆ︁µm+j(G(z)) = BG0(z
0)−BGj(z

j)− 1

2
(βj)2 = z01+z

0
2+z

0
4−(zj1+z

j
2+z

j
4)−

1

2
(βj)2.

Proceeding analogously for the volatility term, we conclude that the parameterized family

G(z) := (G0(z
0), . . . , Gm(zm), u1, . . . , um), (1.19)

defined for any z := (z0, . . . , zm, u1, . . . , um) ∈ R5m+4, forms a consistent couple with the

HW model.

• Alternatively, one can find relations between the coefficients of the volatility term such (1.10)

is satisfied by the vector fields defined in (1.18). In particular, Proposition 1.11 below can be

proved.

Proposition 1.11. We consider the model M given by the HW model for each forward-rate

equation. We suppose that the following constraint is satisfied:

βj =
σj

aj
− σ0

a0
(1.20)

We consider a manifold G image of a function G : R4(m+1) → ˆ︁H, of the form introduced in

15
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equation (1.17). In particular, if G is defined by the function Gj introduced in equation (1.15) for

j = 0, . . . ,m and

Gm+j(z) =
1

a0

[︃
− z02 +

(︂
−z01 −

(σ0)2

2(a0)2
+

1

2
(βj)2

)︂
log z03 −

z03
a0

− 1

2
z04

]︃
+

1

aj

[︃
zj2 +

(︂
zj1 +

(σj)2

2(aj)2
− βjσj

aj

)︂
log zj3 +

zj3
aj

+
1

2
zj4

]︃
,

(1.21)

for j = 1, . . . ,m, then the couple (M,G) is consistent.

Proof. We construct a set of functions Gm+j , such that the characterization of the consistency

condition expressed in Theorem 1.10, for any j = 1, . . . ,m is given by:

ˆ︁µm+j(G(z)) := BG0(z
0)−BGj(z

j)− 1

2
(βj)2 = ∂zGm+j(z)η(z), (1.22)

ˆ︁σm+j(G(z)) := βj = ∂zGm+j(z)ξ(z), (1.23)

where η and ξ are determined in (1.18). By (1.13) and (1.15), the following equality holds:

BG0(z
0)−BGj(z

j)− 1

2
(βj)2 = z01 + z02 + z04 − zj1 − zj2 − zj4 −

1

2
(βj)2. (1.24)

As a consequence, by (1.22), for any j = 1, . . . ,m, it seems natural to suppose that Gm+j(z)

depends only on the variables (z01 , z
0
2 , z

0
3 , z

0
4 , z

j
1, z

j
2, z

j
3, z

j
4). Moreover, it is convenient, in order to

develop the computations, to assume the following structure for the function Gm+j :

Gm+j(z) := ϕ01(z
0
1 , z

0
3) + ϕ02(z

0
2) + ϕ04(z

0
4) + ϕj1(z

j
1, z

j
3) + ϕj2(z

j
2) + ϕj4(z

j
4), (1.25)

for suitable functions ϕ01, ϕ
0
2, ϕ

0
3, ϕ

0
4, ϕ

j
1, ϕ

j
2, ϕ

j
3 and ϕj4. Substituting (1.24) and (1.25) in (1.22), we

conclude that:

∂zGm+j(z)η(z) = ∂z02ϕ
0
2(z

0
2)
(︂
−a0z02 + z03 +

(σ0)2

a0

)︂
+ ∂z03ϕ

0
1(z

0
1 , z

0
3)
(︂
−a0z03

)︂
− ∂z04ϕ

0
4(z

0
4)
(︂
−2a0z04 −

(σ0)2

a0

)︂
+ ∂

zj2
ϕj2(z

j
2)
(︂
−ajzj2 + zj3 +

(σj)2

aj

− βjσj
)︂
+ ∂

zj3
ϕj3(z

j
3)
(︂
−ajzj3

)︂
− ∂

zj4
ϕj4(z

j
4)
(︂
−2ajzj4 −

(σj)2

aj

)︂
= z01 + z02 + z04 − zj1 − zj2 − zj4 −

1

2
(βj)2.

(1.26)

We aim at determining the functions ϕjk that determineGm+j . The first step is to separate the terms

dependent on the variables (z01 , z
0
2 , z

0
3 , z

0
4) with the ones dependent on (zj1, z

j
2, z

j
3, z

j
4). Therefore, as-

suming ∂z04ϕ
0
4(z

0
4) = − 1

2a0
we simplify the term dependent on z04 . We compute the second order

derivative with respect to z02 and z03 to conclude that it is admissible to assume ∂z02ϕ
0
2(z

0
2) = − 1

a0
.

Doing so, we simplify the term on z02 . Finally, we differentiate with respect to z01 , to obtain

16
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∂2
z03 ,z

0
1
ϕ01(z

0
1 , z

0
3) = − 1

a0z03
. Hence, we must require z03 > 0 to integrate this equation and to obtain

∂z03ϕ
0
1(z

0
1 , z

0
3) = − 1

a0z03
(z01 + c) + ψ(z03), for a constant c ∈ R and a function ψ. Finally, to determ-

ine c and ψ we substitute those terms in (1.26). We adopt a similar strategy for the variables

(zj1, z
j
2, z

j
3, z

j
4) and we conclude that Gm+j introduced in equation (1.21) can be adopted as a con-

sistent function for the drift term of the HW spread process. To verify the consistency condition

for the volatility term of the spread process, we notice that, recalling that ξ is the vector field

introduced in (1.18), condition (1.23) becomes:

βj = ∂zGm+j(z)ξ = ∂z02Gm+j
(z)σ0 + ∂

zj2
Gm+jξ

j
2 = −σ

0

a0
+
σj

aj
.

This condition is already satisfied by the constraint (1.20) on the volatility term.

Remark 1.12. The first strategy extends the domain of the function G, introduced in equation

(1.17), for which the consistency condition is guaranteed only on the forward-rate components of

the HW model. This procedure leads to a consistent parameterized family whose domain is Rn1 ,

where n1 := 4(m + 1) +m. Adopting the second strategy, the domain of the consistent function

is Rn2 , with n2 := 4(m + 1). Then, we obtain a more parsimonious consistent family through the

second approach, at the cost of a condition on the coefficients of the volatility term of HW model.

It is possible to show that condition βj = σj

aj
− σ0

a0
implies that the spread process Y j is a obtained

as a deterministic affine transformation of the spot processes (Br0t ,Br
j
t ). As a consequence, a para-

meterized family that is consistent with the (Br0t ,Br
j
t ) determines automatically a parameterized

family for the spread process Y j . This justifies why, assuming βj = σj

aj
− σ0

a0
, it is possible not to

extend the domain of G.

1.5 Existence of finite-dimensional realizations

In this section, we focus on the following problem: “Can the solution of the system (1.6) be described

as the image of a finite-dimensional stochastic process?”.

This problem concerns the existence of the finite-dimensional realizations (FDRs) for a given

model M. We present conditions that guarantee a given model, described by equation (1.6), to

possess a finite-dimensional representation. Moreover, if it is the case, we provide a strategy to

construct the FDRs. To this effect, we exploit some results of infinite-dimensional geometric theory,

applying them to the setting developed in Section 1.4. Then, we present two examples. First, we

analyse the case of a constant volatility model, driven by a scalar Brownian motion. Finally, we

study a model driven by a d-dimensional Brownian motion whose volatility depends on the solution

the system (1.6) via scalar factors.

1.5.1 The strategy

We say that the solution to (1.6) has FDRs if it has an n-dimensional realization, for some n ∈ N,
defined as follows:

17
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Definition 1.13. We say that the solution to (1.8) has a n-dimensional realization if, for eachˆ︁rM0 ∈ ˆ︁H, there exist a stopping time τ > 0 a.s., z0 ∈ Rn, d + 1 smooth vector fields a, b1 . . . , bd,

defined on a neighborhood of z0, denoted with Z and a function G : Z → ˆ︁H, satisfying Assumption

1.7, such that ˆ︁r satisfies ˆ︁rt = G(Zt) for each t ∈ [0, τ), where⎧⎨⎩dZt = a(Zt)dt+ b(Zt) ◦ dWt,

Z0 = z0.

Definition 1.13 is strictly related to the concept of ˆ︁r-invariance (Definition 1.9). Indeed, the

existence of a FDR for a model described by the solution ˆ︁r of system (1.8) is equivalent to the

existence of a ˆ︁r-invariant parameterized family G for ˆ︁r. By Theorem 1.10, given a forward-rate

model M, we are looking for a sub-manifold Im[G] := G ⊂ ˆ︁H such that ˆ︁µ(G(z)), ˆ︁σ(G(z)) ∈ TG(z)G,
for each G(z) ∈ U , where U is a neighborhood of ˆ︁rM and ˆ︁rM ∈ G. In other words, we are looking

for the tangential sub-manifold G of the distribution F := Span{ˆ︁µ, ˆ︁σ1, . . . , ˆ︁σd}, where we recall

that:

Definition 1.14. Let F be a smooth distribution and let x0 be a fixed point in X , an H-manifold.

A submanifold G ⊂ X , with x0 ∈ G, is called tangential manifold through x0 for F , if F (x) ≤ TxG,
∀x ∈ U , where U is an open neighborhood of x0 ∈ G.

It can be proved that a tangential sub-manifold for a smooth distribution F exists if and only

if F is involutive, i.e. if and only if the Lie-brackets between two vector fields contained in F is

still in F . The Lie-Bracket of two vector fields v1 and v2 on ˆ︁H is defined by:

[v1, v2](ˆ︁r) := ∂ˆ︁rv1(ˆ︁r)v2(ˆ︁r)− ∂ˆ︁rv2(ˆ︁r)v1(ˆ︁r).
This result, that is an infinite-dimensional version of the Frobenius Theorem ([Lan12]), can be used

to construct a tangential sub-manifold when the distribution F generated by ˆ︁µ and ˆ︁σ is involutive.

We state this result in the version proved in [BS01, Theorem 2.1]

Theorem 1.15 (Frobenius). Let F be a smooth distribution on the open set V on a Banach space

K. Let x be an arbitrary point in V . Then, there exists a diffeomorphism ϕ : U → K on some

neighborhood U ⊆ V of x such that the push-forward of F with respect to ϕ, denoted by ϕ∗F , is

constant on ϕ(U) if and only if F is involutive.

We recall that if ϕ : A → B and ξ a vector field on F , then ϕ∗ξ is a vector field on B, defined

as ϕ∗ξ(ϕ(x)) = ∂xϕ(x)ξ(x).

However, in general F is not involutive, therefore we must consider the smallest involutive

distribution which contains F . Such distribution is called Lie algebra of F . We recall the following

result, proved in [BS01, Theorem 2.2]

Proposition 1.16. We denote the Lie algebra generated by ˆ︁µ and ˆ︁σ by L := {ˆ︁µ, ˆ︁σ1, . . . ˆ︁σd}LA.
Then, the existence of FDRs is equivalent to the existence of a finite-dimensional tangential sub-
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manifold. This is equivalent to:

dim[L] = dim{ˆ︁µ, ˆ︁σ1, . . . , ˆ︁σd}LA < +∞. (1.27)

Under condition (1.27), a FDR can be constructed. To this end, we provide a strategy based

on [Bjö04, Section 5]. We proceed as follows:

S.1 Choose a finite number of vector fields ξ1, . . . ξn, which span {ˆ︁µ, ˆ︁σ1, . . . ˆ︁σd}LA;
S.2 Compute the invariant manifold

G(z1, . . . , zn) = eξnzn · · · eξ1z1ˆ︁rM , (1.28)

where eξnzn denotes the integral curve of ξn at time zn;

S.3 Define the state space process Z ⊆ Rn, such that ˆ︁r = G(Z). Z is defined by:

dZt = a(Zt)dt+ b(Zt) ◦ dWt, (1.29)

where
∂zG(z)a(z) = ˆ︁µ(G(z)),
∂zG(z)bi(z) = ˆ︁σi(G(z)), i = 1, . . . , d.

(1.30)

The uniqueness of a and b is guaranteed since G respects Assumption 1.7, then it is a local

diffeomorphism. Therefore, there exists a unique vector field defined on Z a for ˆ︁µ and bi forˆ︁σi for every i = 1, . . . , d such that (1.30) is satisfied.

1.5.2 Example: constant volatility

We now examine the case in which the volatility vector field ˆ︁σ(ˆ︁r) is constant in ˆ︁r. Equivalently,

this assumption means that σ0, σ1, . . . , σm are constants in Hd and β1, . . . , βm are constant on Rd

(d is the dimension of the Brownian motion W driving the process ˆ︁r). First, in analogy with (1.9),

the following holds:

ˆ︁µ(ˆ︁r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fr0 + σ0 ·Hσ0

Fr1 + σ1 ·Hσ1 − β1 · σ1
...

Frm + σm ·Hσm − βm · σm

Br0 −Br1 − 1
2 ||β

1||2
...

Br0 −Brm − 1
2 ||β

m||2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ˆ︁σ(ˆ︁r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ0

...

σm

β1

...

βm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.31)
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To determine the Lie algebra of Span{ˆ︁µ, ˆ︁σi, i = 1, . . . , d} we compute the successive Lie brackets

between ˆ︁µ and ˆ︁σ, ˆ︁µ, ˆ︁σ](ˆ︁r) = ∂ˆ︁rˆ︁µ(ˆ︁r)(ˆ︁σ(ˆ︁r))− ∂ˆ︁rˆ︁σ(ˆ︁r)(ˆ︁µ(ˆ︁r)).
Then, while ∂ˆ︁rˆ︁σ(ˆ︁r) = O, the Fréchet derivative of ˆ︁µ is:

∂

∂ˆ︁r ˆ︁µ(ˆ︁r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 0 0 · · · 0 0 · · · 0

0 F 0 · · · 0 0 · · · 0

0 0 F · · · 0 0 · · · 0
...

...
...

...
...

...

0 0 0 · · · F 0 · · · 0

B −B 0 · · · 0 0 · · · 0

B 0 −B · · · 0 0 · · · 0
...

...
...

...
...

...

B 0 0 · · · −B 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.32)

The Lie bracket of ˆ︁µ and ˆ︁σi, for i ∈ {1, . . . , d} is:

[ˆ︁µ, ˆ︁σi](ˆ︁r) = ∂ˆ︁rˆ︁µ(ˆ︁r)ˆ︁σi(ˆ︁r)− =O⏟ ⏞⏞ ⏟
∂ˆ︁rˆ︁σi(ˆ︁r) ˆ︁µ(ˆ︁r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fσ0i
Fσ1i
...

Fσmi
Bσ0i −Bσ1i

...

Bσ0i −Bσmi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

that is constant on ˆ︁H. As a consequence, in {ˆ︁µ, ˆ︁σ}LA, the only vector field which is not constant isˆ︁µ. Therefore, it is sufficient to compute the Lie bracket between ˆ︁µ and the successive Lie bracket

between ˆ︁µ and ˆ︁σ. These computations lead to ([Lan19, Section 3.2.]:

L := {ˆ︁µ, ˆ︁σ}LA := Span(N ), N :=
{︂ˆ︁µ, ˆ︁σ1, . . . , ˆ︁σd, νki | k ∈ N∖ {0}, i = 1, . . . , d

}︂
, (1.33)

where

νki =
(︂
Fkσ0i , Fkσ1i , · · · , Fkσmi , BFk−1σ0i −BFk−1σ1i , · · · , BFk−1σ0i −BFk−1σmi

)︂⊤
.

To find equivalent conditions for dim[L] < +∞, we introduce the following concept:

Definition 1.17. A quasi-exponential function (QE) f is any function of the form:

f(x) :=
∑︂
i

eγix +
∑︂
j

eαjx[pj(x) cosωjx+ qj(x) sinωjx],
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where γi, αj and ωj are real numbers and pi, qj are real polynomials.

As in [BS01, Lemma 5.1.], QE functions can be charaterised as follows:

Lemma 1.18. A function f is QE if and only if it is a component of the solution of a vector

valued linear ODE with constant coefficients f (n) =
∑︁n−1

i=0 γif
(i), where f (i) denotes the i-th order

derivative of f .

1.5.2.1 Existence of FDRs

We state the following result:

Proposition 1.19. System (1.8) with constant volatility possesses FDRs if and only if σji (x) are

QE functions for each i = 1, . . . , d and j = 0, . . . ,m.

Proof. Straightforward generalization of [Sli10, Proposition 3.2].

Remark 1.20. Under the condition of Theorem 1.19, the dimension of L := {ˆ︁µ, ˆ︁σ1, . . . , ˆ︁σd}LA is

bounded from above by:

n := dim[L] ≤ 1 +
d∑︂

i=1

(1 + ni). (1.34)

where ni is the dimension of Ni := Span{νki , k ∈ N ∖ {0}}, for each i = 1, . . . , d. Indeed, every

component of νki is given by combinations of iterated derivatives in x-variable of the functions σji ,

for j = 0, . . . ,m. Then, if ni := dim(Ni), by Lemma 1.18, there exists an annihilator polynomial

Mi(γ) :=

ni∑︂
h=0

αh
i γ

h (1.35)

of degree ni, such that Mi(F)σ
j
i = 0 for each j = 0, . . . ,m. In conclusion, the tangential manifold

of dimension n is obtained by the composition of the integral curves of ˆ︁µ, ˆ︁σi, νki , for k = 0, . . . , ni,

i = 1, . . . , d.

Notation 1.21. It is convenient to introduce the notation:

z := (z0, z01 , . . . , z
n1
1 , z02 , . . . , z

n2
2 , . . . , z0d, . . . , z

nd
d ) ∈ Rn.

In order to construct explicitly the FDRs, we apply the strategy outlined at the end of Subsection

1.5.1. By Theorem 1.19, it is sufficient to compute the integral curve of every vector field ξ that

generates N , defined in condition (1.33). Then, we compose the integral curves, as in S.2 and

we obtain the tangential manifold. Inverting the consistency condition as in S.3, the following

proposition can be proved. The proof of this result is based on the direct generalization to the

multi-curve setting of [BS01, Proposition 5.2].

Proposition 1.22. A model M, determined by ˆ︁σ introduced in (1.31), admits FDRs if and only if
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σji (x) are QE functions for each i = 1, . . . , d and j = 0, . . . ,m. In this case, we introduce the term

Sj(x) :=

(︄∫︂ x

0
σji (s)ds

)︄
i=1,...,d

, j = 0, . . . ,m (1.36)

to describe the consistent parameterized family, that is:

Gj(x; z) =rMj (x+ z0) +
d∑︂

i=1

ni∑︂
k=0

Fkσji (x)z
k
i +

1

2
(||Sj(x+ z0)||2 − ||Sj(x)||2)+

− (1− δj0)
d∑︂

i=1

∫︂ x+z0

x
βji σ

j
i (s)ds, j = 0, . . . ,m;

(1.37)

Gm+j(z) =

d∑︂
i=1

ni∑︂
k=1

(BFk−1σ0i −BFk−1σji )z
k
i +

d∑︂
i=1

βji z
0
i + yMj +

∫︂ z0

0

(︂
rM0 (s)+

− rMj (s)
)︂
ds+

1

2

∫︂ z0

0

[︂
||S0(s)||2 − ||Sj(s)||2

]︂
ds+

+
d∑︂

i=1

∫︂ z0

0
βji S

j
i (s)ds−

1

2
||βj ||2z0, j = 1, . . . ,m.

Moreover, the coefficients of the Rn-valued process introduced in (1.29) are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = 1,

a0i = 0, i = 1, . . . , d,

aki = zk−1
i + zni

i α
k
i , k = 1, . . . , ni; i = 1, . . . , d,

b0i = 0;

b0i,i = 1;

bkh,i = 0, h = 1, . . . , d, h ̸= i; k = 1, . . . , ni.

(1.38)

where we adopted the notation introduced in Notation 1.21. αk
i is the k − th coefficients of the

annihilator polynomial Mi introduced in equation (1.35), for every i = 1, . . . , d.

1.5.3 Example: constant direction volatility

In this section we generalize what we proved in Section 1.5.2, through an analogy with the results

of [Sli10, Section 4]. In particular, we establish conditions that guarantee the existence of FDRs

for a model M determined by a volatility term, defined for any i = 1, . . . , d, by:

ˆ︁σi(ˆ︁r, x) = (︂φ0
i (ˆ︁r)λ0i (x), φ1

i (ˆ︁r)λ1i (x), · · · , φm
i (ˆ︁r)λmi (x), β1i (ˆ︁r), · · · , βmi (ˆ︁r))︂ , (1.39)
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where λji (x) ∈ H, while φj
i and βji are smooth (in Fréchét sense) scalar vector fields defined on ˆ︁H

for each i = 1, . . . , d and j = 0, . . . ,m. We suppose that:

Assumption 1.23. For each i = 1, . . . , d and j = 0, . . . ,m, φj
i (ˆ︁r) ̸= 0 and βji (ˆ︁r) ̸= 0 for eachˆ︁r ∈ ˆ︁H.

In what follows we characterize the HJM drift condition (1.9) for ˆ︁µ when ˆ︁σ is like (1.39). First

of all, we introduce the following notation for the volatility:

ˆ︁σ(ˆ︁r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0
1(ˆ︁r)λ01(x) · · · φ0

d(ˆ︁r)λ0d(x)
φ1
1(ˆ︁r)λ11(x) · · · φ1

d(ˆ︁r)λ1d(x)
...

...

φm
1 (ˆ︁r)λm1 (x) · · · φm

d (ˆ︁r)λmd (x)

β11(ˆ︁rt) · · · β1d(ˆ︁rt)
...

...

βm1 (ˆ︁rt) · · · βmd (ˆ︁rt)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ0

...

σm

β1

...

βm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.40)

To simplify the notation, in the following we omit the x-variable. To reproduce the Stratonovich

dynamics of ˆ︁r, we notice that, for each j = 0, . . . ,m:

∂ˆ︁rˆ︁σ(ˆ︁rt)ˆ︁σ(ˆ︁rt) = d∑︂
i=1

(︄
m∑︂

h=0

λji∂rhφ
j
i (ˆ︁rt)φh

i (ˆ︁rt)λhi + m∑︂
h=1

λji∂Y hφ
j
i (ˆ︁rt)βhi (ˆ︁rt)

)︄
,

σj(ˆ︁rt) ·Hσj(ˆ︁rt) = (φj(ˆ︁rt)λj) · ∫︂ ·

0
(φj(ˆ︁rt)λj(s))ds = d∑︂

i=1

(φj
i (ˆ︁rt))2λji ∫︂ ·

0
λji (s)ds.

We denote the Fréchet derivative of φj
i on the variable rh computed on ˆ︁r acting on the vector λhi

by ∂rhφ
j
i (ˆ︁r)[λhi ], for each h, j = 0, . . . ,m and i = 1, . . . , d. We also define:

Dj
i (x) := λji (x)

∫︂ x

0
λji (s)ds, j = 0, . . . ,m, i = 1, . . . , d. (1.41)

Therefore, in the Stratonovich form, the dynamics of each equation of system (1.6) is given by:

drjt =

[︄
Frj +

d∑︂
i=1

(φj
i (ˆ︁rt))2Dj

i −
1

2

d∑︂
i=1

λji

(︄
m∑︂

h=0

φh
i (ˆ︁rt)∂rhφj

i (ˆ︁rt)[λhi ] + m∑︂
h=1

∂Y hφ
j
i (ˆ︁rt)βhi (ˆ︁rt)+

+ 2(1− δ0j )φ
j
i (ˆ︁rt)βji (ˆ︁rt)

)︄]︄
dt+

d∑︂
i=1

φj
i (ˆ︁rt)λji (x) ◦ dWt, j = 0, . . . ,m,

dY j
t =

{︄
Br0 −Brj − 1

2

d∑︂
i=1

(βji (ˆ︁rt))2 − 1

2

[︄
d∑︂

i=1

m∑︂
h=0

∂rhβ
j
i (ˆ︁rt)[λhi ]φh

i (ˆ︁rt) + m∑︂
h=1

∂Y hβ
j
i (ˆ︁rt)βhi (ˆ︁rt)

]︄}︄
dt+

+
d∑︂

i=1

βjh(ˆ︁rt) ◦ dWt, j = 1, . . . ,m,
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where δ0j denotes the Kronecker delta between the indexes 0 and j. We aim at conditions that

guarantee dim[{ˆ︁µ, ˆ︁σ1, . . . , ˆ︁σd}LA] <∞, where:

ˆ︁µ(ˆ︁r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fr0 +
∑︁d

i=1(φ
0
i (ˆ︁r))2D0

i − 1
2

∑︁d
i=1 λ

0
i

(︂∑︁m
h=0 φ

h
i (ˆ︁r)∂rhφ0

i (ˆ︁r)[λhi ]+
+
∑︁m

h=1 ∂Y hφ0
i (ˆ︁r)βh

i (ˆ︁r))︂
Fr1 +

∑︁d
i=1(φ

1
i (ˆ︁r))2D1

i − 1
2

∑︁d
i=1 λ

1
i

(︂∑︁m
h=0 φ

h
i (ˆ︁r)∂rhφ1

i (ˆ︁r)[λhi ]+
+
∑︁m

j=1 ∂Y hφ1
i (ˆ︁r)βh

i (ˆ︁r) + 2φ1
i (ˆ︁r)β1

i (ˆ︁r))︂
...

Frm +
∑︁d

i=1(φ
m
i (ˆ︁r))2Dm

i − 1
2

∑︁d
i=1 λ

m
i

(︂∑︁m
h=0 φ

h
i (ˆ︁r)∂rhφm

i (ˆ︁r)[λhi ]+
+
∑︁m

h=1 ∂Y hφm
i (ˆ︁r)βh

i (ˆ︁r) + 2φm
i (ˆ︁r)βm

i (ˆ︁r))︂
Br0 −Br1 − 1

2

∑︁d
i=1(β

1
i (ˆ︁r))2 − 1

2

[︂∑︁d
i=1

(︂∑︁m
h=0 ∂rhβ

1
i (ˆ︁r)[λhi ]φh

i (ˆ︁r) +∑︁m
h=1 ∂Y hβ1

i (ˆ︁r)βh
i (ˆ︁r))︂]︂

...

Br0 −Brm − 1
2

∑︁d
i=1(β

m
i (ˆ︁r))2 − 1

2

[︂∑︁d
i=1

(︂∑︁m
h=0 ∂rhβ

m
i (ˆ︁r)[λhi ]φh

i (ˆ︁r) +∑︁m
h=1 ∂Y hβm

i (ˆ︁r)βh
i (ˆ︁r))︂]︂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(1.42)

and ˆ︁σ as in equation (1.39).

1.5.3.1 Existence of FDRs

Differently from Section 1.5.2, it is more difficult to compute the integral curve of ˆ︁µ cause the more

complex structure of the drift term. In order to overcome this problem, we provide conditions

such that a larger distribution than {ˆ︁µ, ˆ︁σ1, . . . , ˆ︁σd}LA is finite-dimensional. As a consequence, we

determine a sufficient condition for the existence of FDRs.

Denoting by Ej is the jth element of the canonical basis in ˆ︁H for j = 0, . . . , 2m, we introduce

the following set of vector fields:

N := {ξ0, ξhi , ηhi , γk| h = 0, . . . ,m, i = 1, . . . , d, k = 1, . . . ,m}, (1.43)

where

ξ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fr0

Fr1

...

Frm

Br0 −Br1

...

Br0 −Brm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ξji = λjiEj , ηji = Dj

iEj , γk = Em+k.

Then:

ˆ︁µ(ˆ︁r) = ξ0 +

m∑︂
h=0

d∑︂
i=1

(︂
(φh

i (ˆ︁r))2ηhi − κhi ξ
h
i

)︂
−

m∑︂
h=1

ζhγh, (1.44)
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ˆ︁σi(ˆ︁r) = m∑︂
h=0

φh
i (ˆ︁r)ξhi +

m∑︂
h=1

βhi (ˆ︁r)γh, i = . . . , d, (1.45)

where

κji =
1

2

{︄
m∑︂

h=0

φh
i (ˆ︁r)∂rhφj

i (ˆ︁r)[λhi ] + m∑︂
h=1

[︄
∂Y hφ

j
i (ˆ︁r)βhi (ˆ︁r)

]︄
+ 2(1− δ0j )φ

j
i (ˆ︁r)βji (ˆ︁r)

}︄
,

ζj =
1

2

{︄
d∑︂

i=1

(βji (ˆ︁r))2 + d∑︂
i=1

(︄
m∑︂

h=0

∂rhβ
j
i (ˆ︁r)[λhi ]φh

i (ˆ︁r) + m∑︂
h=1

∂Y hβ
j
i (ˆ︁r)βhi (ˆ︁r)

)︄]︄
.

Conditions (1.44) and (1.45) imply that L ⊆ L1, where:

L := {ˆ︁µ, ˆ︁σi, i = 1, . . . , d}LA,

L1 := {ξ0, ξji , η
j
i , γk| j = 0, . . . ,m, i = 1, . . . , d, k = 1, . . . ,m}LA.

(1.46)

Therefore, if L1 is finite-dimensional, also L is finite-dimensional. Hence, the following result holds:

Proposition 1.24. If λji (x) is a QE function for each j = 0, . . . ,m and i = 1, . . . , d, then the Lie

algebra L1 is finite-dimensional.

Proof. Straightforward generalization to [Sli10, Proposition 4.2].

Then, our purpose is the description of FDRs when the volatility is given by (1.39). To guarantee

the existence of FDRs we assume that:

Assumption 1.25. Every function λji (x) is QE for each i = 1, . . . , d and j = 0, . . . ,m.

Under this assumption, it is straightforward to verify that also the functions Dj
i (x), introduced

in equation (1.41) are QE. Then, by Lemma 1.18, there exists natural numbers nji and pji for each

i = 1, . . . , d and j = 0, . . . ,m such that

Fnj
iλji =

nj
i−1∑︂
k=0

cjk,iF
kλji ,

FpjiDj
i =

pji−1∑︂
k=0

djk,iF
kDj

i

(1.47)

are satisfied for suitable real constants cjk,i and djk,i. In this case, by the definition of L1, the

dimension of the Lie-algebra L1 is bounded from above by

n := m+ 1 +

d∑︂
i=1

m∑︂
j=0

(nji + pji ). (1.48)

In order to build an invariant manifold we introduce the following notation for a vector of the

state space z ∈ Rn:
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Notation 1.26. A vector z ∈ Rn is denoted by the concatenation of the vectors (xj)j ∈ Rm+1,

(zjk,i)i,j,k ∈ R
∑︁d

i=1

∑︁m
j=0 n

j
i and (xjk,i) ∈ R

∑︁d
i=1

∑︁m
j=0 p

j
i , i.e

z = (x0, . . . , xm, z00,1, z
0
1,1, . . . , z

0
n1
0−1,1, z

1
0,1, . . . , z

m
nm
1 −1,d, x

0
0,1, . . . , x

0
p10−1,1, . . . , x

m
0,1, . . . , x

m
pm1 −1,d).

As in Subsection 1.5.2.1, we construct the tangential manifold of L1:

G(z) :=
∏︂

i,j,k,h,l

eF
kλj

iEjz
j
k,ieF

hDj
iEjx

j
h,ieγlx

l
eξ

0x0ˆ︁rM , (1.49)

for an arbitrary point ˆ︁rM ∈ ˆ︁H. Every component of such function G are given by:

Gj(z, x) = rMj (x0 + x) +

d∑︂
i=1

{︄nj
i−1∑︂
k=0

zjk,iF
kλji (x) +

pji−1∑︂
k=0

xjk,iF
k

(︄
λji (x)

∫︂ x

0
λji (s)ds

)︄}︄
, j = 0, . . . ,m,

Gj(z, xj) = yMj +

∫︂ x0

0
(rM0 (s)− rMj (s))ds+ xj , j = m+ 1, . . . , 2m.

(1.50)

Hence, we determine the coefficients a and b of a finite dimensional process as in equation (1.29)

such that ∂zGa = ˆ︁µ and ∂zGbi = ˆ︁σi for each i = 1, . . . , d. We omit the z variable on the functions

a and b and we use for those functions a notation analogous with the one introduced in (1.26):

a =(a0, . . . , am, a00,1, a
0
1,1, . . . , a

m
nm
d −1,d,˜︁a00,1, . . . ,˜︁a0p10−1,1, . . . ,˜︁am0,1, . . . ,˜︁ampm1 −1,1),

b =(b1, . . . , bd)
⊤,

where for any h = 1, . . . , d, bh is given by:

b = (b0h, . . . , b
m
h , b

0
0,1,h, . . . , b

0
n1
0−1,1,h, b

1
0,1,h, . . . , b

1
n1
1−1,1,h,

˜︁b00,1,h, . . . ,˜︁b0p1
0−1,1,h, . . . ,

˜︁bm0,1,h, . . . ,˜︁bmpm
1 −1,1,h).

To determine the coefficients a and b, we must invert the consistency condition between the
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coefficients of the model and tangential manifold, as described in S.3. Then, we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = 1,

aj0,i = zj
nj
i−1,i

cj0,i −
1
2

(︂∑︁m
h=0 φ

h
i (G(z))∂rhφ

j
i (G(z))[λ

j
i ]+

+
∑︁m

h=1 β
h
i (G(z))∂Y hφ

j
i (G(z)) + (1− δj0)2φ

j
i (G(z))β

j
i (G(z))

)︂
, j = 0, . . . ,m,

ajk,i = zjk−1,i + zj
nj
i−1,i

cjk,i, k = 1, . . . , nji − 1, j = 0, . . . ,m

˜︁aj0,i = (φj
i (G(z)))

2 + xj
pji−1,i

dj0i, j = 0, . . . ,m,

˜︁ajk,i = xjk−1,i + xj
pji−1,i

djk,i k = 1, . . . , pji − 1, j = 0, . . . ,m,

aj =
∑︁d

i=1

[︂∑︁n0
i−1

k=0 z0k,iF
kλ0i (0)−

∑︁nj
i−1

k=0 zjk,iF
kλji (0)−

1
2(β

j
i (G(z)))

2+

−1
2

(︂∑︁m
h=0 ∂rhβ

j
iG(z))[λ

h
i ]φ

h
i (G(z)) +

∑︁m
h=1 ∂Y hβ

j
i (G(z))β

h
i (G(z))

)︂]︂
, j = 1, . . . ,m.

(1.51)

We follow the same procedure in order to compute the value of b. We get, for any h = 1, . . . , d:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0h = 0,

bj0,h,h = φj
h(G(z)),

bj0,i,h = 0, i ̸= h, i = 1, . . . , d,

bjk,i,h = 0, k = 1, . . . , nji − 1,˜︁bjk,i,h = 0, k = 0, . . . , pji − 1,

b0 = 0,

bjh = βjh(G(z)), j = 1, . . . ,m.

(1.52)

In conclusion, under Assumption 1.25, the FDRs of the model M, defined by ˆ︁σ in (1.39), are

determined by the immersion G, defined in (1.50) and the finite-dimensional process (1.29) whose

drift and volatility terms are expressed by (1.51) and (1.52) respectively.

Remark 1.27. Assumption 1.25 is a sufficient condition, that guarantee the existence of FDRs for

the multi-curve M determined by the volatility term introduced in (1.39). However, if for each

j = 0, . . . ,m, φj
i = φi for any i = 1, . . . ,m, equivalent conditions for the existence of FDRs can be

provided.

1.5.3.1.1 Example: Hull White model with non constant volatility for the spread

processes We consider a model M in which the volatility has constant direction as a vector field

in ˆ︁H:

ˆ︁σ(ˆ︁r) =
⎛⎜⎜⎜⎜⎜⎜⎝
σ0e−a0x 0 0

0 σ1e−a1x 0

0 0 σ2e−a2x

β11 β12Y
1
t 0

β21 0 β23Y
2
t

⎞⎟⎟⎟⎟⎟⎟⎠ , (1.53)
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where βji , σ
j , aj are positive constants for j = 0, 1, 2 and i = 1, 2, 3. M is then driven by a 3-

dimensional Brownian motion W := (W 1,W 2,W 3). The choice of this structure for the volatility

term is motivated by the following reasoning: higher values of the spread processes are linked with

instability of the market, because the spreads describe the risk captured by RSRs. Therefore, we

can suppose that the volatility of Y j is proportional to its value.

Let us notice that, by ˆ︁σ as in (1.53) we establish a correlation between the forward-curves and

the spread components.

We aim at computing the FDRs for M. We assume that the model M starts at an initial

point (rM0 , r
M
1 , r

M
2 , y

M
1 , y

M
2 ) ∈ ˆ︁H such that yM1 , y

M
2 ̸= 0. Then, by the continuity of Y j

t , we can

assume that Y j
t ̸= 0 for each t ∈ [0, τ), with τ > 0 a.s.. Under this supposition, the Lie algebra

generated by the coefficients of the model M is finite-dimensional (because Assumption 1.23 holds).

As in (1.43), we introduce N := {ξ0, ξji , η
j
i , γk| j = 0, . . . , 2, i = 1, . . . , 3, k = 1, . . . , 2}. Now, we

can apply Proposition 1.24, because the forward-rate components of the volatility term are QE

functions. As a consequence,

L1 = Span
{︂
ξ0, (Fnλji )Ej , (F

nDj
i )Ej , γk | j = 0, . . . , 2, i = 1, . . . , 3 k = 1, . . . , 2, n ∈ N

}︂
is finite-dimensional and contains {ˆ︁µ, ˆ︁σ1, ˆ︁σ2, ˆ︁σ3}LA, with ˆ︁σ as (1.53). To construct the FDRs, we

first need to compute the dimension of Span{(Fnλji )Ej , (FnDj
i )Ej | n ∈ N}. Due to (1.24), for

each i = 1, 2, 3 the polynomial annihilator M j
i of σji is:

j ̸= i− 1 : σji (x) = 0 ⇒M j
i (γ) = γ,

j = i− 1 : σji (x) = σje−ajx ⇒M j
i (γ) = γ + aj ,

(1.54)

Analogously, we introduce the term Dj
i analogous with (1.41). It is different from zero if and only

if j = i− 1. In this case, it is given by

Dj
i (x) = λji (x)

∫︂ x

0
λji (s)ds = e−ajx

(︂1− e−ajx

aj

)︂
, j = 0, . . . ,m.

Then:
j ̸= i− 1 : Dj

i (x) = 0

j = i− 1 : Dj
i (x) =

(σj)2

aj

(︂
e−ajx − e−2ajx

)︂ (1.55)

Therefore, the minimal annihilator of the function λi−1
i (x) is M i−1

i (λ) := λ + ai−1. In the other

cases M j
i (λ) = 0. For what regards the minimal annihilator of Di−1

i , we notice that the function

f(x) =
e−αx − e−2αx

α
,

with the same structure of Di−1
i , satisfies f ′(x) = −e−αx+2e−2αx and f ′′(x) = −4αe−2αx+αe−αx.

Hence, the minimal annihilator of Di−1
i (x) has degree 2 for each j. Indeed, if there was a non-zero
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solution of

af(x) + bf ′(x) = 0 ⇔
(︂ a
α
− b
)︂
e−αx +

(︂
− a

α
+ 2b

)︂
e−2αx = 0,

the coefficients a, b and α would satisfy ⎧⎨⎩ a
α − b = 0,

− a
α + 2b = 0.

However, this system cannot be solved. Therefore, we consider the equation af(x) + bf ′(x) +

cf ′′(x) = 0, ∀x ∈ R+, that is(︂ a
α
− b+ αc

)︂
e−αx +

(︂
− a

α
+ 2b− 4αc

)︂
e−2αx = 0.

The solution of this equation is a = 2α2c and b = 3αc.

In conclusion, the minimal annihilator of Di−1
i (x) is

P i−1
i (λ) := λ2 + 3ai−1λ+ 2(ai−1)2, ∀j = 0, . . . ,m.

Then, for j ̸= i− 1, the polynomial annihilator of Dj
i is P j

i (λ) = λ, while for each i = 1, 2, 3 it

is P i−1
i (λ) = λ2 + 3ai−1λ+ 2(ai−1)2. In conclusion:

nji := deg(M j
i ) = 1, j = 0, 1, 2, i = 1, 2, 3;

pji := deg(P j
i ) =

⎧⎨⎩2, j = i− 1, i = 1, 2, 3;

1, otherwise

We denote a vector of the state-space z ∈ Rn with n := 2 + 1 +
∑︁3

i=1(n
i−1
i + pi−1

i ) = 12 by

z = (x0, x1, x2, z0, z1, z2, x00, x
0
1, x

1
0, x

1
1, x

2
0, x

2
1),

in analogy with Notation 1.26. In general, the tangential manifold is the image of the function

introduced in equation (1.49), that in this case is:

G(z) =
∏︂
i,h,l

eσ
i−1
i Ei−1z

i−1
eF

hDi−1
i Ei−1x

i−1
h eγlx

l
eξ

0w0ˆ︁rM ,
Developing the computations, we obtain that the FDRs are explicitly given by:

Gj(z, x) = rMj (x0 + x) + zjσje−ajx +
(σj)2

aj
e−ajx

[︂
xj0

(︂
1− e−ajx

)︂
+ xj1a

j
(︂
−1 + 2e−ajx

)︂]︂
, j = 0, 1, 2,

G2+j(z) = yMj +

∫︂ x0

0
(rM0 (s)− rMj (s))ds+ xj , j = 1, 2.
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The state process Zt = (X0
t , X

1
t , X

2
t , Z

0
t , Z

1
t , Z

2
t , X

0
0,t, X

0
1,t, X

1
0,t, X

1
1,t, X

2
0,t, X

2
1,t) satisfies (1.29), where:

a(Zt) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

Z0
t σ

0 + (σ0)2X0
1,t − Z1

t σ
1 − (σ1)2X1

1,t − 1
2 (β

1
2)

2
(︂
yM1 +

∫︁X0
t

0
(rM0 (s)− rM1 (s))ds+

+X1
t

)︂(︂
yM1 +

∫︁X0
t

0
(rM0 (s)− rM1 (s))ds+X1

t + 1
)︂
− 1

2 (β
1
1)

2

Z0
t σ

0 + (σ0)2X0
1,t − Z2

0tσ
2 − (σ2)2X2

1t − 1
2 (β

2
3)

2
(︂
yM2 +

∫︁X0
t

0
(rM0 (s)− rM2 (s))ds+

+X2
t

)︂(︂
yM2 +

∫︁X0
t

0
(rM0 (s)− rM2 (s))ds+X2

t + 1
)︂
− 1

2 (β
2
2)

2

−a0Z0
t

−Z1
t a

1 − β1
2

(︂
yM1 +

∫︁X0
t

0
(rM0 (s)− rM1 (s))ds+X1

t

)︂
−Z2

t a
2 − β2

3

(︂
yM2 +

∫︁X0
t

0
(rM0 (s)− rM2 (s))ds+X2

t

)︂
−2(a0)2X0

1t + 1

X0
0,t − 3a0X0

1,t

−2(a1)2X1
1,t + 1

X1
0,t − 3a1X1

1,t

−2(a2)2X2
1,t + 1

X2
0,t − 3a2X2

1,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.56)

and

b(Zt) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

β1
1 β1

2

(︂
yM1 +

∫︁X0
t

0
(rM0 (s)− rM1 (s))ds+X1

t

)︂
0

β2
1 0 β2

3

(︂
yM2 +

∫︁X0
t

0
(rM0 (s)− rM2 (s))ds+X2

t

)︂
σ0 0 0

0 σ1 0

0 0 σ2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(1.57)

1.5.4 Realizations through a benchmark of maturities

Let us consider a model M driven by equation (1.8) that admits FDRs of dimension n. This implies

that a n-dimensional tangential manifold G := Im[G] exists. In this setting, we answer the following

question:

“Is it possible to construct another FDRs of the same dimension n, determined by the spread

processes Y j and the forward-rate components applied to a fixed set of benchmark maturities?”. In

other, words, if we consider a point ˆ︁r ∈ G ⊆ ˆ︁H is it possible to construct the FDRs of M through
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a fixed benchmark of maturities x = (x1, . . . , xn) and the linear function:

Zh(r, y) :=
m∑︂
j=0

ahj r
j(xh) +

m∑︂
j=1

bhj y
j , h = 1, . . . , n, (1.58)

defined for a suitable set of real constants ahj , b
h
j . This is equivalent to show that Z : ˆ︁H → Rn is a

local system of coordinates for G for an opportune choice of the constants ahj , b
h
j .

To answer this question, we present the following result:

Theorem 1.28. Let us consider a model M, determined by the dynamics introduced in system

(1.8), that admits FDRs of dimension n. Then, for any vector x := (x1, . . . , xn) ∈ Rn, where xi is

chosen freely except for a discrete set of R+, the FDRs of M can be described by the inverse of the

function introduced in equation (1.58), for suitable constants ahj , b
h
j .

Proof. We must prove that function (1.58) is a diffeomorphism between G and its image. To prove

such result we denote the Fréchet derivative of Z (introduced in equation (1.58)) by

∂ˆ︁rZ : Tˆ︁rG → Rn,

where Tˆ︁rG is the tangent space at ˆ︁r of G (as in Theorem 1.10). Since G ⊆ ˆ︁H has dimension n,

Tˆ︁rG is a n-dimensional subspace of ˆ︁H. We introduce a basis ˆ︁e1, . . . , ˆ︁en of Tˆ︁rG, where we adopt the

notation ˆ︁eh := (e0h, . . . , e
2m
h ) ∈ ˆ︁H, h = 1, . . . , n.

Then, for each v ∈ Tˆ︁rG there exists a suitable set of constants γ := (γ1, . . . , γn)
⊤ such that

v =
∑︁n

h=1 γhˆ︁eh. By linearity, the Fréchet derivative of Z is

∂ˆ︁rZ · v =

⎛⎜⎜⎝
∑︁m

j=0 a
1
jv

j(x1) +
∑︁m

j=1 b
1
jv

m+j

...∑︁m
j=0 a

n
j v

j(xn) +
∑︁m

j=1 b
n
j v

m+j

⎞⎟⎟⎠

=
n∑︂

h=1

γh

⎛⎜⎜⎝
∑︁m

j=0 a
1
je

j
h(x1) +

∑︁m
j=1 b

1
je

m+j
h

...∑︁m
j=0 a

n
j e

j
h(xn) +

∑︁m
j=1 b

n
j e

m+j
h

⎞⎟⎟⎠
=

n∑︂
h=1

γh(Tˆ︁rZ · ˆ︁eh) =: Kn(x)γ

where

Kn(x) :=

⎛⎜⎜⎝
α1 · ˆ︁e1(x1) · · · α1 · ˆ︁en(x1)

...
. . .

...

αn · ˆ︁e1(xn) · · · αn · ˆ︁en(xn)
⎞⎟⎟⎠ , (1.59)
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and

αh = (ah0 , . . . , a
h
m, b

h
1 , . . . , b

h
m) ∈ R2m+1, h = 1, . . . , n, (1.60)ˆ︁eh(xk) = (e0h(xk), . . . , e

m
h (xk), e

m+1
h , . . . , e2mh ), h = 1, . . . , n, k = 1, . . . , n. (1.61)

with a · b that denotes the scalar product on R2m+1. Therefore, the function Z introduced in

equation (1.58) is a local system of coordinates if Kn(x) is invertible. We prove it by induction on

k ≤ n.

We consider the case k = 1:

K1(x) = α1 · ˆ︁e1(x1) = m∑︂
j=0

a1je
rj
1 (x1) +

m∑︂
j=1

b1je
yj
1 . (1.62)

We can find a vector α1 and a maturity x1 such that K1(x) ̸= 0. Indeed if not this means that:

K1(x) = 0 for every choices of α1 and x1. But if we choose α1 = eh, for h = 1, . . . , 2m + 1 where

eh is the h− th element of the canonical basis of R2m+1, we will have:⎧⎨⎩eh1(x1) = 0, h = 0, . . . ,m,

em+h
1 = 0, h = 1, . . . ,m.

for each x1 ∈ R+. But this implies that ˆ︁e1 is zero and this is a contradiction.

We now consider the inductive step: we suppose that Kk(x) is invertible. Then we consider the

matrix:

Kk+1(x, xk+1) =

⎛⎜⎜⎜⎜⎝
α1 · ˆ︁e1(x1) · · · α1 · ˆ︁ek(x1) α1 · ˆ︁ek+1(x1)

...
. . .

...
...

αk · ˆ︁e1(xk) · · · αk · ˆ︁ek(xk) αk · ˆ︁ek+1(xk)

αk+1 · ˆ︁e1(xk+1) · · · αk+1 · ˆ︁ek(xk+1) αk+1 · ˆ︁ek+1(xk+1)

⎞⎟⎟⎟⎟⎠ .

Let us suppose by contradiction that Kk+1(x, xk+1) is not invertible for any choice of xk+1, i.e.

det[Kk+1(x, xk+1)] = 0, ∀xk+1 ∈ R+. Since the first k columns (C1, . . . , Ck) form a space of rank

k, this implies that the last column Ck+1 has to satisfy:

Ck+1 =
k∑︂

i=1

κiCi, (1.63)

for a suitable set of constants κi such that κ := (κ1, . . . , κk) ̸= 0. Let us notice that, since

det[Kk(x)] ̸= 0, if we denote by Kk
k+1(x) the first k rows of Kk+1(x, xk+1), the last column of

Kk
k+1(x) is determined by the first k columns by relation (1.63). Hence, κ depends only x. As a
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CHAPTER 1. THE GEOMETRY OF MULTI-CURVE INTEREST-RATE MODELS

consequence:

αk+1 · ˆ︁ek+1(xk+1) =
k∑︂

i=1

κi(x)α
k+1 · ˆ︁ei(xk+1),

which is equivalent to require that:

αk+1 ·
(︂ :=vk+1(x,xk+1)⏟ ⏞⏞ ⏟
ˆ︁ek+1(xk+1)−

k∑︂
i=1

κi(x)ˆ︁ei(xk+1)
)︂
= 0,

which implies that αk+1 ∈< vk+1 >
⊥. Finally, in order to have a contradiction we choose αk+1

such that

αk+1 /∈< vk+1(x, xk+1) >
⊥ . (1.64)

Let us notice now that, fixed x we can always choose xk+1 such that vk+1(x, xk+1) is not the null

vector (because (ˆ︁e)k+1
h=1 is a basis). Therefore, we can conclude that, there exists αk+1 ̸= 0 such that

(1.64) is satisfied, because < vk+1 >
⊥ is a subspace of dimension n− 1 in Rn, for each k.

1.6 An alternative notion of invariance

1.6.1 A definition of consistency that manages the spreads

Theorem 1.10 provides an equivalent characterization of the consistency and it is at the basis

of the procedure described at the beginning of Section 1.5.1 for the construction of FDRs. In

the multi-curve framework, the presence of the spreads should not be problematic in terms of

recalibration procedure, since they are finite-dimensional. Hence, in this section we study conditions

that guarantee the finite-dimensional components of (1.6) to be included in the space variable Z,

introduced in Definition 1.9. In other words, adopting the notation ˆ︁rt = (rt, Yt) ∈ ˆ︁H, we investigate

under which conditions the existence of a stopping time τ , a process Zt, taking values on a subset

of Rn and a function G : Rm+n → Hm+1 such that:

rt(x) = G(x;Yt, Zt), x ≥ 0, t ∈ [0, τ ]. (1.65)

is guaranteed. (1.65) is equivalent to the definition of ˆ︁r-invariance (introduced in Definition 1.9),

where the immersion G is defined as:

G(y, z) := (G(y, z), y). (1.66)

To develop the computations, we write the dynamics of a multi-curve model M as follows:

dˆ︁rt := (︄drt
dYt

)︄
=

(︄
µ(rt, Yt)dt+ σ(rt, Yt) ◦ dWt

γ(rt, Yt)dt+ β(rt, Yt) ◦ dWt

)︄
∈

(︄
Hm+1

Rm

)︄
. (1.67)
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We recall that µ and γ are fully determined by σ and β by non-arbitrage constraints. In this

setting, the consistency can be described by the following notion of invariance:

Definition 1.29. A parameterized family G is (r, y)-invariant under the action of a process ˆ︁r
defined by the dynamics (1.67), if there exists a stopping time τ(r0(x), Y0) and a process Z taking

values on Z ⊆ Rn, such that condition (1.65) holds.

Analogously with the equivalence between Definition 1.8 and Definition 1.9, it is possible to

prove that Definition 1.29 is equivalent to Definition 1.8, with G := (G,1m). As a consequence,

the following result can be proved as in Theorem 1.10:

Proposition 1.30. A parameterized family G : Rm+n → Hm+1 such that G := (G,1m) satisfies

Assumption 1.7 defines a manifold G := Im[(G,1m)]. Then, (M,G) is invariant, if and only if, for

each (z, y) ∈ Z × Rm:⎧⎨⎩µ((G(y, z), y))− ∂yG(y, z)γ(G(y, z), y) ∈ Im[∂zG(y, z)],

σi((G(y, z), y))− ∂yG(y, z)βi(G(y, z), y) ∈ Im[∂zG(y, z)], i = 1, . . . , d,
(1.68)

where µ, γ, σi and βi are introduced in equation (1.67). ∂zG and ∂yG stand for the Fréchét differ-

ential of G with respect the z and y variable respectively.

Proof. First of all, we introduce the notation: ˜︁β(y, z) := β(G(y, z), y) and ˜︁γ(y, z) := γ(G(y, z), y),

for any (y, z) ∈ Rm+n. By Assumption 1.7, ˜︁β and ˜︁γ are smooth vector fields from Rm+n to Rn.

(⇒) We exploit the equivalence between invariance and ˆ︁r-invariance. We suppose that the couple

(M,G) is invariant, that is:

dˆ︁rt = (︄rt
Yt

)︄
= G(Yt, Zt) =

(︄
G(Yt, Zt)

Yt

)︄
.

Thus, we consider the forward-rate components:

drt =∂yG(Yt, Zt) ◦ dYt + ∂zGz(Yt, Zt) ◦ dZt

=∂yG(Yt, Zt)(γ(rt, Yt)dt+ β(rt, Yt) ◦ dWt) + ∂zGz(Yt, Zt)(a(rt, Yt)dt+ b(rt, Yt) ◦ dWt)

=∂yG(Yt, Zt)(γ(G(Yt, Zt), Yt)dt+ β(G(Yt, Zt), Yt) ◦ dWt) + ∂zGz(Yt, Zt)(a(G(Yt, Zt), Yt)dt

+ b(G(Yt, Zt), Yt) ◦ dWt)

=
[︂
∂zG(Yt, Zt)˜︁γ(Yt, Zt)) + ∂zG(Yt, Zt)a(Yt, Zt)

]︂
dt+

[︂
∂zG(Yt, Zt)˜︁β(Yt, Zt)

+ ∂zG(Yt, Zt)b(G(Yt, Zt), Yt)
]︂
◦ dWt,

(1.69)
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Since the starting point (y0, z0) can be chosen arbitrarily, (1.69) implies that:⎧⎨⎩µ((G(y, z), y)) = Im[∂zG(y, z)] + ∂yG(y, z)˜︁γ(y, z)
σi((G(y, z), y)) = Im[∂zG(y, z)] + ∂yG(y, z)˜︁βi(y, z), i = 1, . . . , d,

where d is the dimension of the Brownian motion which drives the model M. In particular,

(1.68) holds.

(⇐) Let us suppose that (1.68) holds. This implies that there exists d + 1 vector fields a, bi :

Rm+n → Rn such that:⎧⎨⎩µ((G(y, z), y)) = ∂yG(y, z)γ(G(y, z), y) + ∂zG(y, z)a(y, z)

σi((G(y, z), y)) = ∂yG(y, z)βi(G(y, z), y) + ∂zG(y, z)(bi(y, z), i = 1, . . . , d,
(1.70)

Let us focus on the drift components (the computations for the volatility term is the same).

(1.70) implies that:

ˆ︁µ(G(y, z), y) := (︄µ(G(y, z), y)˜︁γ(y, z)
)︄

=

(︄
∂yG(y, z)γ(G(y, z), y) + ∂zG(y, z)a(y, z)˜︁γ(y, z)

)︄

=

(︄
∂yG(y, z) ∂zG(y, z)

1m Om×n

)︄(︄˜︁γ(y, z)
a(y, z)

)︄

=: K(y, z)

(︄˜︁γ(y, z)
a(y, z)

)︄
(1.71)

We notice that K(y, z) is the Fréchét differential of the function G, hence, by Assumption 1.7, it

admits left inverse, that we denote by H(G(y, z), y). By smoothness of G, the function ˜︁H(y, z) :=

H(G(y, z), y) is smooth too (in the Fréchét sense). Moreover, we notice that:(︄˜︁γ(y, z)
a(y, z)

)︄
= ˜︁H(y, z)ˆ︁µ(G(y, z), y)

This implies that:

(˜︁γ, a) :Rm+n→Rm+n

(y, z) ↦→(˜︁γ(y, z), a(y, z))
is a smooth function, therefore it is locally Lipschitz continuous. Proceding analogously with the
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volatility components (˜︁β(y, z), b(y, z)), we obtain that:

ˆ︁σi(G(y, z), y) := (︄σi( ˆ︁G(y, z), y)˜︁βi(y, z)
)︄

= K(y, z)

(︄˜︁βi(y, z)
bi(y, z)

)︄
. (1.72)

Then, there exists a unique local solution of the stochastic differential equation:(︄
dYt

dZt

)︄
:=

(︄˜︁γ(Yt, Zt)

a(Yt, Zt)

)︄
dt+

(︄˜︁β(Yt, Zt)

b(Yt, Zt)

)︄
◦ dWt.

Now, we introduce ˆ︁qt = (qt, Yt) := (G(Yt, Zt), Yt). By the chain rule, the Stratonovic dynamics ofˆ︁q is:

dˆ︁qt = (︄∂yG(Yt, Zt) ◦ dYt + ∂zG(Yt, Zt) ◦ dZt

dYt

)︄

=

(︄
∂yG(Yt, Zt)(˜︁γ(Yt, Zt)dt+ ˜︁β(Yt, Zt) ◦ dWt) + ∂zG(Yt, Zt)(a(Yt, Zt)dt+ b(Yt, Zt) ◦ dWt)˜︁γ(Yt, Zt)dt+ ˜︁β(Yt, Zt) ◦ dWt

)︄

=

(︄
(∂yG(Yt, Zt)˜︁γ(Yt, Zt) + ∂zG(Yt, Zt)a(Yt, Zt))dt+ (∂yG(Yt, Zt)˜︁β(Yt, Zt) + ∂zG(Yt, Zt)b(Yt, Zt)) ◦ dWt˜︁γ(Yt, Zt)dt+ ˜︁β(Yt, Zt) ◦ dWt

)︄

=

(︄
∂yG(Yt, Zt) ∂zG(Yt, Zt)

1m Om×n

)︄(︄˜︁γ(Yt, Zt)

a(Yt, Zt)

)︄
dt+

(︄
∂yG(Yt, Zt) ∂zG(Yt, Zt)

1m Om×n

)︄(︄˜︁β(Yt, Zt)

b(Yt, Zt)

)︄
◦ dWt.

Hence, by (1.71) and (1.72) together with the definition of ˜︁γ and ˜︁β, the dynamics of ˆ︁q is:

dˆ︁qt := ˆ︁µ(G(Yt, Zt), Yt)dt+ ˆ︁σ(G(Yt, Zt), Yt) ◦ dWt.

Recalling that, by definition, qt = G(Yt, Zt), we obtain that:

dˆ︁qt := ˆ︁µ(ˆ︁qt)dt+ ˆ︁σ(ˆ︁qt) ◦ dWt.

In conclusion, ˆ︁r, solution of equation (1.67) and ˆ︁q solve the same stochastic differential equation.

By local uniqueness, there exists τ > 0 such that ˆ︁rt = ˆ︁qt, ∀t ∈ [0, τ). As a consequence, rt = qt

∀t ∈ [0, τ). Therefore, rt = G(Yt, Zt) and ˆ︁r satisfies Definition 1.29.

1.6.2 Conditions for the existence of FDRs under Definition 1.29

In this subsection, we investigate conditions on the coefficients of an interest-rate model M that

guarantee the existence of FDRs according with Definition 1.29, under the assumption that M
admits a FDRs in accordance with Definition 1.13. We notice that, when a model M possesses

FDRs, it is always possible to construct another FDRs in the form of Definition 1.29. Indeed, we

consider a FDR of a multi-curve process ˆ︁r given by a function G = (G, ˜︁G) and a finite-dimensional

process Z, such that (rt, Yt) = (G(Zt), ˜︁G(Zt)). Then, we can introduce another FDR for the same
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model of the form introduced in Definition 1.29, given by (rt, Yt) = (G(Zt), Yt), where the state

process is given by:

d

(︄
Yt

Zt

)︄
:=

(︄
γ(G(Zt), Yt)dt+ β(G(Zt), Yt) ◦ dWt

a(Zt)dt+ b(Zt) ◦ dWt

)︄
,

and γ and β are introduced in system (1.65).

As discussed in Remark 1.12, we can find conditions to pass from an invariant parameterized

family G : Rn → ˆ︁H, such that G(Zt) = ˆ︁rt, to another consistent parameterized function in the sense

of Definition 1.29 that is more parsimonious. To find these conditions we notice that, as shown in

Section 1.5, the FDRs are obtained by a set of generators for the Lie algebra {ˆ︁µ, ˆ︁σ1, . . . , ˆ︁σd}LA. We

denote them by ξ1, . . . , ξn. Hence, the embedding G introduced in equation (1.28) is:

G(z) := (G(z), ˜︁G(z)), (1.73)

where z := (z1, . . . , zn), G takes values on Hm+1 and ˜︁G takes values on Rm. Then, we consider the

following condition:

Condition 1.31. There exists a subspace Rp of Rm (where the spreads live), whose elements are

denoted by ˜︁y ∈ Rp with p ≤ m, that is diffeomorphic to a subspace of the state space through func-

tion ˜︁G. The elements of this diffeormophic sub-space are denoted by w. Therefore, we decompose

the state-space vector using the notation z = (z, w) ∈ Rn−p × Rp.

Without loss of generality, we assume that the vector ˜︁y is formed by the first p components of

y, then we denote by y the last m − p (y := (˜︁y, y)). Then, if ˜︁G := ( ˜︁Gp, ˜︁Gm−p) ∈ Rp × Rm−p, the

invariance between M and G implies that ˜︁y = ˜︁Gp(z, w) = ˜︁Gp[z](w) is invertible in w-variable for

each choice of z ∈ Rn−p. As a consequence, there exists ˜︁Gp[z]
−1 such that w = ˜︁Gp[z]

−1(˜︁y).
Let us notice that Condition 1.31 is not restrictive, because if there is no such subspace, we can

assume p = 0. This is the less parsimonious case, introduced at the beginning of this section.

To reconstruct the FDRs including y ∈ Rm in the state-space, it is sufficient the last m − p

elements of the canonical basis of ˆ︁H to the set of generators ξi. Using the notation introduced in

(1.43), we refer to these elements as γk, for k = p + 1, . . . ,m. Hence, to handle the vector fields

(γk)k=p+1,...,m, that we added to the Lie algebra generated by the coefficients ˆ︁µ and ˆ︁σ, we must

assume that:

Assumption 1.32. The Lie algebra generated by ξ1, . . . , ξn, γp+1, . . . , γm is finite-dimensional.

A priori, Assumption 1.32 is not guaranteed even if {ξ1, . . . , ξn}LA is finite-dimensional. To find

conditions for it, we introduce the notion of multi-index ∂αy (as in [Bjö04, Definition 7.4]):

Definition 1.33. A multi-index α ∈ Zk
+ is any k-vector with nonnegative integer elements. For a

multi index α = (α1, . . . , αk) the differential operator ∂αy is defined as:

∂αy =
∂α1

∂yα1
p+1

∂α2

∂yα2
p+2

. . .
∂αk

∂yαk
k

.
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Then, the following result holds:

Proposition 1.34. The following are respectively a necessary and sufficient condition for Assump-

tion 1.32:

• If the Lie algebra

N := {ξ1, . . . , ξn, γp+1, . . . , γm}LA (1.74)

is finite dimensional, then:⎧⎨⎩dim[Span{∂αy ˆ︁µ(r, y); α ∈ Zm−p
+ }] <∞;

dim[Span{∂αy ˆ︁σi(r, y); α ∈ Zm−p
+ }] <∞, i = 1, . . . , d.

(1.75)

• A sufficient condition for Assumption 1.32 is that γk commutes with ˆ︁µ and ˆ︁σi for each k =

p+ 1, . . . ,m.

Proof. The Lie-algebra N introduced in (1.74) must contain all the Lie-brackets of the form:

[ξi, γk] := ∂ˆ︁rξiγk − ∂ˆ︁rγkξi = ∂ykξi, k = p+ 1, . . . ,m.

Hence, all the differentials ∂αy ξi have to be contained in {ξ1, . . . , ξn, γp+1, . . . , γm}LA. However, we
notice that N is equal to {ˆ︁µ, ˆ︁σ1, . . . , ˆ︁σd, γp+1, . . . , γm}LA. Then, we first observe that the vectors

γk commute each other, thus their Lie bracket is null. Therefore, in order to guarantee that

dim[N ] < ∞ it is necessary to guarantee that ∂αy µ, and ∂αy σi, i = 1, . . . , d for any α ∈ Zm−p
+ do

not generate an infinite dimensional distribution. In particular this implies that (1.75) must be

satisfied.

On the other hand, assuming that γk commutes with ˆ︁µ and ˆ︁σ is equivalent to require that:

[ˆ︁µ, γk] = 0,

[ˆ︁σi, γk] = 0, i = 1, . . . , d;
(1.76)

for each k = p+ 1, . . . ,m. Then, if we consider the successive Lie Brackets, by the Jacobi identity

also they commute with γk: [[ˆ︁µ, ˆ︁σi], γk] = −
(︂
[[ˆ︁σi, γk], ˆ︁µ] + [[γk, ˆ︁µ], ˆ︁σi])︂ = 0.

In conclusion, we provided sufficient (equation (1.76)) and necessary (system (1.75)) conditions

on the coefficients of the model M, for Assumption 1.32.

Let us notice that, to prove the existence of FDRs in the case of constant direction volatility

model, determined by ˆ︁σ of the form (1.39), we studied the Lie algebra L1, defined in (1.46), that

is larger than the Lie algebra generated by the coefficients of the model. We provided conditions

that guarantee dim[L1] < ∞. Under these conditions, described in the statement of Proposition

1.24, we can construct FDRs in which the spread process is included in the state variable. Indeed,

Assumption 1.32 is guaranteed, because L1 already contains all the vector fields γk, k = 1, . . . ,m.
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We apply this property in Example 1.35 below. In particular, we introduce a volatility term

which determines a HJM multi-curve model that admits FDRs. Moreover, we establish a diffeo-

morphism between the spread components of the model and a subset of the components of the

state process Z, exploiting the fact that the sigma algebra L1 already contains the vector fields γk.

Example 1.35. We consider a model M, driven by a volatility term:

ˆ︁σ(y)(x) =
⎛⎜⎜⎜⎜⎜⎜⎝
σ0e−a0x

y1e−a1x

y2e−a2x

β1y1

β2y2

⎞⎟⎟⎟⎟⎟⎟⎠ (1.77)

By simplicity, we consider a model driven by a scalar Brownian motion. However, the extension to

a model driven by a multi-dimensional Brownian motion is straightforward.

The study of this class of models is interesting from a financial point of view, because it is

natural to suppose that the size of volatility of the forward-rate components and the spread process

are proportional (as discussed in Example (1.5.3.1.1)). We notice that, the structure of the volatility

is a particular case of the one introduced in (1.39), where i = 1 and:

φ0(r, y) = σ0,

φj(r, y) = yj , j = 1, 2,

λj(x) = e−ajx, j = 0, 1, 2,

βj(r, y) = βjyj , j = 1, 2.

The functions λj are quasi-exponential for every j = 0, . . . ,m, Thus by Proposition 1.24, the FDRs

exist. To build them, In particular, for each j = 0, 1, 2, there exists natural numbers nj and pj and

real constants cj and djk, k = 0, 1, such that the conditions introduced in (1.47) are satisfied (we

omitted the index i, present in (1.47), because d = 1). Repeating the same computations described

in Example (1.5.3.1.1), we obtain that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nj = 1, ∀j = 0, 1, 2;

cj = −aj , ∀j = 0, 1, 2;

pj = 2, ∀j = 0, 1, 2;

dj0 = −2(aj)2, ∀j = 0, 1, 2;

dj1 = −3aj , ∀j = 0, 1, 2.
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By (1.48), the dimension of the Lie-algebra is:

n = 2 + 1 +
2∑︂

j=0

(nj + pj) = 2 + 1 + (2 + 1)(1 + 2) = 12.

We adopt the following notation, which is a simplification of the one introduced in Notation 1.26:

z = (x0, x1, x2, z0, z1, z2, x00, x
0
1, x

1
0, x

1
1, x

2
0, x

2
1).

By (1.50), the FDRs are:

Gj(z, x) = rMj (x0 + x) + zj0e
−ajx + xj0

1

aj

(︂
e−ajx − e−2ajx

)︂
+ xj1

(︂
−e−ajx + 2e−2ajx

)︂
, j = 0, 1, 2;

G2+j(z) = yMj +

∫︂ x0

0
(rM0 (s)− rMj (s))ds+ xj , j = 1, 2.

(1.78)

The state process Z is given by the solution of (1.29),where a and b are two vector fields on Rn

respectively, defined by (1.51) and (1.52). Z is a stochastic process taking values on R12, therefore,

we adopt the notation:

Zt =
(︂
X0

t X1
t X2

t Z0
t Z1

t Z2
t X0

0,t X0
1,t X1

0,t X1
1,t X2

0,t X2
1,t

)︂
.

First of all, let us notice that X0
t = t for every t. Moreover, as described in (1.78), we can establish a

diffeomorphism between the variable yj and the variable xj for every choice of the other components

of z. Indeed, by ˆ︁r-invariance, the following equivalence holds:

Y j
t = G2+j(Zt) := yMj +

∫︂ t

0
(rM0 (s)− rMj (s))ds+Xj

t , j = 1, 2.

To simplify the notation, we introduce the term ψj(ˆ︁rM ;x0) = yMj +
∫︁ x0

0 (rM0 (s) − rMj (s)ds. In

particular, the processes Xj
t are determined by the spread processes Y j together with the time-

variable X0
t = t, one we fixed the initial value ˆ︁rM . Let us notice that, function Gj for j = 0, 1, 2,

introduced in (1.78) does not depend on xj . As a consequence, there exists a ˆ︁r-invariant immersion

G := (G,1), defined for each z ∈ R12, where

z = (x0, y1, y2, z0, z1, z2, x00, x
0
1, x

1
0, x

1
1, x

2
0, x

2
1).

defined as follows:

Gj(z, x) = rMj (x0 + x) + zj0e
−ajx + xj0

1

aj

(︂
e−ajx − e−2ajx

)︂
+ xj1

(︂
−e−ajx + 2e−2ajx

)︂
, j = 0, 1, 2;

G2+j(z) = yj , j = 1, 2.
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The dynamics of the state process Z is dZt = a(Zt) + b(Zt) ◦ dWt, where

a(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

γ1(G(z), y)

γ2(G(z), y)

−a0z0

−z1a1 − β1y1

−z2a2 − β2y2

−2(a0)2x01 + 1

x00 − 3a0x01
−2(a1)2x11 + 1

x10 − 3a1x11
−2(a2)2x21 + 1

x20 − 3a2x21.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

β1y1

β2y2

σ0

y1

y2

0

0

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark 1.36. As discussed, the presence of the spreads impacts on the conditions that guarantee

the existence of FDRs. However, the spreads are described by a finite-dimensional stochastic

process. As a consequence, it should be natural just to focus on the study of existence of FDRs for

the forward-rate components, that are infinite-dimensional and then add the spreads to the state

space process. This procedure works when the volatility term ˆ︁σ of the multi-curve model does not

depend on the spread components. Indeed, if ˆ︁σ(ˆ︁r) = ˆ︁σ(r), the forward-rate components of M do

not depend on the spread process. Thus, we can study the conditions that guarantee the existence

of FDRs for a forward-rate model on Hm+1 driven by the following dynamics:

drt = µ(rt)dt+ σ(rt) ◦ dWt.

If we find a finite set of generators to {µ, σ1, . . . , σd}LA on Hm+1, denoted by ξ1(r), . . . , ξn(r), a

FDR for the forward-rate components can be built, adopting the strategy described in Section 1.5.1.

In conclusion, a function G : Rn → Hm+1 and a finite-dimensional process Z such that rt = G(Zt)

for t ∈ [0, τ) exist. On this reasoning, we based the strategy described in Section 1.4.2, under

which the enlargement of the domain of the consistent family for the forward-rate components of

the Hull-White model is provided.

However, assuming that ˆ︁σ does not depend on Y is quite restrictive. Therefore, in general, the

forward-rate coefficients µ and σ have to be interpreted as smooth (in the Fréchét sense) functions

from ˆ︁H to Hm+1. As a consequence, in general, solving the problem of existence of FDRs for

the forward-rate components should be expressed in terms of finite set of generators in Hm+1 for

Ly := {µ(·, y), σ1(·, y), . . . , σd(·, y)}LA for any y ∈ Rm. Actually, even if this holds, the dependence

on y ∈ Rm could lead to an infinite-dimensional distribution. In an attempt to solve this problem,

we recognized an analogy between the structure of the dynamics of (1.6) and the class of single-

curve HJM models driven by a stochastic volatility term. The consistency problem for this class of
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model is studied in [Bjö04, Chapter 7], in which HJM models r whose volatility is determined by

a stochastic process Y are presented. To develop the computations the author supposed that the

volatility term Y is independent of r. Since the spread processes of a multi-curve model depend

explicitly on the forward-rate components of the model, we cannot make the same assumption.

1.7 Application to market data - a calibration algorithm

In this section, we present a calibration algorithm for the interest-rate market on the basis of the

results shown in Section 1.5. We consider a multi-curve forward-rate model, described by system

(1.6), that is determined by a set of parameters θ. We consider a model M that admits FDRs, also

depending on θ . Thus, we propose an algorithm that estimates the parameter θ∗ such that the

l2 distance between the FDRs of M and a time series of market data is minimized. Through this

procedure, the FDRs determined by θ∗ provide the manifold on ˆ︁H that gives the best representation

(in terms of l2 distance) of the time series of market data taken in analysis. As a consequence, θ∗

can be used to produce a realization of M at the end of the time series of market data.

We consider a three-curve Hull-White model M driven by a scalar Brownian motion. M is

determined by the volatility term:

ˆ︁σ(ˆ︁r) = (︂σ0e−a0x, σ1e−a1x, σ2e−a2x, β1, β2
)︂
. (1.79)

where βj , aj , σj are positive constant for j = 0, 1, 2. Let us notice that Theorem 1.19 holds for this

specification of the model. Indeed, the volatility components are QE functions, since (F+aj)σj = 0,

∀j = 0, 1, 2. Indeed, the volatility term introduced in (1.79) is a particular case of the volatility

structure studied in Section 1.5.2.

1.7.1 Construction of the FDRs

As a first step, we study the vector fields generating L := {ˆ︁µ, ˆ︁σ}LA. In view of Remark 1.20, the

annihilator of the forward-rate component of volatility (1.79) is:

M(λ) := (λ+ a0)(λ+ a1)(λ+ a2) = λ3 + α3λ
2 + α2λ

1 + α1.

By equation (1.34), dim(L) := n = 1+ 1 + deg(M) = 5 is dimension of the FDRs of M. Then, we

consider a state space vector in R5 denoted by

z = (z0, z01 , z
1
1 , z

2
1 , z

3
1),

in accordance with Notation 1.21. We can construct the tangential manifold, determined by the

composition of the integral curves of the generators of {ˆ︁µ, ˆ︁σ}LA. Using the notation of Section
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1.5.2, these vector fields are ˆ︁µ, ˆ︁σ and

ν1 =

⎛⎜⎜⎜⎜⎜⎜⎝
−a0σ0e−a0x

−a1σ1e−a1x

−a2σ2e−a2x

σ0 − σ1

σ0 − σ2

⎞⎟⎟⎟⎟⎟⎟⎠ , ν2 =

⎛⎜⎜⎜⎜⎜⎜⎝
(a0)2σ0e−a0x

(a1)2σ1e−a1x

(a2)2σ2e−a2x

−a0σ0 + a1σ1

−a0σ0 + a2σ2

⎞⎟⎟⎟⎟⎟⎟⎠ , ν3 =

⎛⎜⎜⎜⎜⎜⎜⎝
−(a0)3σ0e−a0x

−(a1)3σ1e−a1x

−(a2)3σ2e−a2x

(a0)2σ0 − (a1)2σ1

(a0)2σ0 − (a2)2σ2

⎞⎟⎟⎟⎟⎟⎟⎠ .

The composition of the integral curves of these vector fields, leads to the tangential manifold

G := (G0, G1, G2, G3, G4). Applying (1.37), G is defined component by component as follows.

First of all, we notice that, term Sj , defined in (1.36), has the following form:

Sj(x) =

∫︂ x

0
σje−ajsds =

σj

aj
(1− e−ajx), j = 0, 1, 2. (1.80)

Then, G satisfies the following equations:

Gj(x; z) = rMj (x+ z0) +

3∑︂
k=0

Fkσj(x)zk1 +
1

2

(︂
Sj(x+ z0)2 − Sj(x)2

)︂
− δj0

(︂
Sj(x+ z0)− Sj(x)

)︂
βj

= rMj (x+ z0) + σje−ajx(z01 − ajz11 + (aj)2z21 − (aj)3z31)

+
1

2

(︂σj
aj

)︂2
e−2ajx

(︂
e−2ajz0 − 1

)︂
− σj

aj

(︂σj
aj

− δj0β
j
)︂
e−ajx

(︂
e−ajz0 − 1

)︂
, j = 0, 1, 2,

G2+j(z) =

3∑︂
k=1

(︂
BFk−1σ0(x)−BFk−1σj(x)

)︂
zk1 + βjz01 + yMj +

∫︂ z0

0
(rM0 (s)− rMj (s))ds

+
1

2

∫︂ z0

0

(︂
S0(s)2 − Sj(s)2

)︂
ds+ βj

∫︂ z0

0
Sj(s)ds− 1

2
(βj)2z0

= (σ0 − σj)z11 + (−a0σ0 + ajσj)z21 + ((aj)2σ0 − (aj)2σj)z31 + βjz01 + yMj

+

∫︂ z0

0
(rM0 (s)− rMj (s))ds+

1

2

(︂σ0
a0

)︂2[︂
z0 − 2

a0

(︂
1− e−a0z0

)︂
+

1

2a0

(︂
1− e−2a0z0

)︂]︂
− 1

2

(︂σj
aj

)︂2[︂
z0 − 2

aj

(︂
1− e−ajz0

)︂
+

1

2aj

(︂
1− e−2ajz0

)︂]︂
+
σj

aj
βj
[︂
z0 − 1

aj

(︂
1− e−ajz0

)︂]︂
− 1

2
(βj)2z0, j = 1, 2.

(1.81)

The state process Zt is determined by dZt = A(Zt)dt + B(Zt) ◦ dWt, where A,B are vector fields

on R5, respectively defined by the coefficients a and b introduced in (1.38). We adopt the notation

Zt = (Z0
t , Z

0
1t, Z

1
1t, Z

2
1t, Z

3
1t) = (Z0

t , Z1t). Still by (1.38), Z0
t = t. Thus, Zt = (t, Z1t).
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1.7.2 Description of the algorithm

The parameters of the Hull-White model will be denoted by the vector

θ :=
(︂
a0, σ0, a1, σ1, a2, σ2, β1, β2

)︂
. (1.82)

The algorithm we propose is based on [AH02], [AH05] and [Sli10, Section 6] and its goal is to

provide best (in terms of l2 distance) manifold in ˆ︁H for the time series of market data in analysis

that is consistent with the three-curve HW model.

1.7.2.1 Initial families

The FDRs for the HW model depend on the value of the market data at the beginning of the

observed time series, by the terms rM0 , rM1 , rM2 , yM1 and yM2 of equation (1.81). Following the

approach developed in [Sli10, Section 6] in the setting of the multi-currency exchange-rate market,

we introduce initial families to describe rMj with Nelson Siegel’s families (equation (1.11) with para-

meters y0, . . . , y3 instead of z1, . . . , z4) where the term y3 is the exponential term of the associated

component of the Hull-White model (y3 = aj if we are considering the jth forward-rate component,

j = 0, 1, 2). Then:

rMj (x; y) := y0 + y1e
−ajx + y2xe

−ajx =M0
j (x; a

j) · y, j = 0, 1, 2, (1.83)

where y := (y0, y1, y2) andM
0
j (x; a

j) := (1, e−ajx, xe−aj ) is parametric matrix that depends on the

terms aj , x. As a consequence, the initial family of each component of the model depends linearly

on the same vector y and the only difference is given by the presence of the exponent aj in the

forward-rate components. Moreover, we observe that even if we have assumed that y6 = aj for the

jth forward-rate curve, the initial family is inconsistent with the model.

1.7.3 The calibration procedure

The market data are defined on the time interval {t0, . . . , tN}. For each day t ∈ {t0, . . . , tN} the

value of fictitious bonds associated with every tenor δj for a set of maturities x := {x1, . . . , xn} and

the logarithm of the (spot) spreads are extracted from market data:

MK datat :=
(︂
B0

t (x1), . . . , B0
t (xn), B1

t (x1), . . . , B2
t (xn), Y 1

t , Y 2
t

)︂⊤
∈ R3n+2, (1.84)

At any t ∈ {t0, . . . , tN}, the yields associated with the FDRs, defined in (1.81) must be compared

with the yields generated by of the market data for any tenor and any maturity xi. We denote the

FDRs by Gj(x; t, z1, y; θ) to emphasize the dependence on the parameters that has to be estimated.

The coefficient z1 represents the realization of the components Z1, of the state variable. Then, it has

to be estimated at each th. In conclusion, the residual to be minimized, denoted by Rest(x; y, z1; θ) ∈
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R3n+2, is given by the difference between yields generated by the FDRs and market data:

Rest(x; y, z1; θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1

(︂
−
∫︁ x1

0 G0(u; t, z1, y; θ)du−
(︂
logB0

t (x1)
)︂)︂

...
1
xn

(︂
−
∫︁ xn

0 G0(u; t, z1, y; θ)du−
(︂
logB0

t (xn)
)︂)︂

1
x1

(︂
−
∫︁ x1

0 G1(u; t, z1, y; θ)du−
(︂
logB1

t (x1)
)︂)︂

...
1
xn

(︂
−
∫︁ xn

0 G2(u; t, z1, y; θ)du−
(︂
logB2

t (xn)
)︂)︂

G3(t, z1, y; θ)− Y 1
t

G4(t, z1, y; θ)− Y 2
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.85)

By the assumptions made on the initial families (described in Subsection 1.7.2.1) and by the prop-

erties of the finite-dimensional realizations, the yields obtained by the parameterized functions Gj

are linear functions of (z1, y). Then, the two-step calibration algorithm is defined as follows:

P.1 For each th ∈ {t0, . . . , tN} the residual is minimized as function of the time dependent para-

meters (y, z1). By linearity, SVD algorithm can be adopted to obtain y(th, θ) and z1(th, θ),

that depend the time-independent parameters θ:

(y(th, θ), z1(th, θ)) := arg min
(y,z1)

||Resth(x; y, z1; θ)||.

where Resth(x; y, z1; θ) is defined on equation (1.85) and || · || is the Euclidean norm in R3n+2.

P.2 (y(th, θ), z1(th, θ)), estimated at P.1, is substituted in Resth(x; y, z1; θ) as the selected (y, z1).

As a consequence, Resth(x; y(th, θ), z1(th, θ); θ) depends only on θ. θ is estimated minimizing

the sum of the squared-norm of the residuals along the entire time interval:

θ∗ := argmin
θ>0

(︄
N∑︂

h=0

|Resth(x, y(th, θ), z1(th, θ); θ)|
2

)︄ 1
2

.

To compute θ∗, we adopt the function ”optimize.least squares” of Python (version 3.8.5)

library ”scipy”. This function is based on a reflective trust-region algorithm. Moreover,

constraints can be imposed to the domain of the function to be minimized.

1.7.4 Bootstrap of market data

The time series of market data for EURIBOR market is provided by Refinitiv for the time period

from 10/08/2016 to 19/11/2021 with business daily basis. Table 1.1 summarizes the data.

We consider the discount curve associated with OIS rate and we consider the risky curves

associated with tenor 3M (3-months) and 6M (6-months). For the bootstrapping technique used

to build the data, we based on [GL20, Section 2]. We determined values of the term structures for
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discount/risky curve Market instrument Quoted maturities

Discount curve OIS 1W - 2W - 3W - 1M - 2M - 3M - 4M - 5M - 6M - 7M -
8M - 9M - 10M - 11M - 1Y - 15M - 18M - 21M - 2Y -
3Y - 4Y - 5Y - 6Y - 7Y - 8Y - 9Y - 10Y

Three months FRA 1Mx4M - 2Mx5M - 3Mx6M - 4Mx7M - 5Mx8M - 6Mx9M -
7Mx10M - 8Mx11M - 9Mx12M

IRS 18M - 2Y - 3Y - 4Y - 5Y - 6Y - 7Y - 8Y - 9Y - 10Y
Six months FRA 1M+7M - 2Mx8M - 3Mx9M - 4Mx10M - 5Mx11M - 6Mx12M -

9Mx15M - 12Mx18M
IRS 2Y - 3Y - 4Y - 5Y - 6Y - 7Y - 8Y - 9Y - 10Y

Table 1.1: Summary of market data.

each tenor at maturities x := {1M, 2M, 3M, 4M, 5M, 6M, 9M, 1Y, 2Y, . . . , 10Y} from one month

to ten years.

1.7.4.1 Bootstrap of discount curve

In order to construct the term structure T → BOIS
t (T ) associated with the discount curve, we

consider the formula of an OIS rate with schedule T = {T0, . . . , Tn}:

SON
0 (T ) :=

BOIS
0 (T0)−BOIS

0 (Tn)∑︁n
k=1 δB

OIS
0 (Tk)

.

By market convention, if the contract is signed at t = t0 the spot date is T0 = t0 + 2. As assumed

in [AB13], we impose t0 = T0. This means that BOIS
0 (T0) = 1. Then, for the construction of the

term structure, we use the following convention (as described at the beginning of [GL20, Section

2.1]):

• For the maturities up to 21 months we assume that the payment is made only at the maturity.

This means that the schedule is T = {T0, Tn}:

SON
0 (T ) =

1−BOIS
0 (Tn)

δBOIS
0 (Tn)

⇒ BOIS
0 (Tn) =

1

1 + δSON
0 (T )

=
1

1 + τ(Tn − T0)SON
0 (T )

,

where τ(Tn − T0) is equal to the number of days between T0 and Tn over 360.

• For the maturities beyond 21 months we assume yearly payments: we use the the prices

computed with maturities k = 1, . . . , n− 1 years:

SON
0 (T ) =

1−BOIS
0 (Tn)

δ
∑︁n

k=1B
OIS
0 (Tk)

⇒ BOIS
0 (Tn) =

1− δSON
0 (T )

∑︁n−1
k=1 B

OIS
0 (Tk)

1 + δSON
0 (T )

,

and δ is equal to 1 (year).
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1.7.4.2 Bootstrap of risky-curves

The risky curve associated with the generic tenor δ ∈ {3M, 6M} is denoted by {T → Bδ
t (T )}. It is

defined by the values of the fictitious tenor bonds, determined by equation (1.2):

Bδ
t (T ) =

1 + δLδ(t;T, T + δ)

1 + δLδ(t; t, t+ δ)

BOIS
t (T + δ)

BOIS
t (t+ δ)

. (1.86)

We cannot use the same strategy proposed in [GL20, Section 2] in order to provide this term

structure, since we need the entire risk-free term structure. Thus, as done in [GL20, Appendix A]

we interpolate the values of the OIS curve via cubic splines of zero-rates. Moreover, we use the

Euribor spot rate time series associated with the tenor δ, denoted by {t→ Lδ(t; t, t+ δ)}.

The bootstrapping technique exploits forward-rate agreement quotations to determine the values

of fictitious bond for small maturities. For long maturities interest rate swap quotations are used:

• For short maturities, we consider forward-rate agreements, which at a given time t play the

role of Lδ(t;T, T + δ). Moreover, from the spot rate at time t and the discount curve already

provided at time t and with maturity T and T + δ, we get the value Bδ
t (T ).

• For large maturities, we consider the interest rate swap quotations, as done in [GL20, Ap-

pendix A]. We recall that an IRS exchange a flow of payments with a fixed rate (whose

schedule will be denoted by T x) with a flow of payments based on a floating rate (in this case

we use the Euribor associated with a specific δ and with schedule denoted by T δ). The IRS

quotation is given by:

Rδ(t; T x, T δ) :=

nδ∑︂
j=1

(︂ δBOIS
t (T δ

j )∑︁nx
i=1 δ

x
i B

OIS
t (T x

i )
Lδ(t;T δ

j−1, T
δ
j )
)︂
, (1.87)

where Lδ(t;T δ
i−1, T

δ
i ) = Lδ(t;T δ

i−1, T
δ
i−1 + δ). As described in [GR15, Remark 1.5], usually

the fixed leg schedule has yearly frequency (δxi = 1, ∀x, i) while the floating leg schedule

has frequency equal to the tenor δ. Adopting this convention, we use the quotations of

the IRS contracts which play the role of Rδ(t; T x, T δ) in equation (1.87) (the values of these

instruments which are not quoted in the market are interpolated by cubic splines, as described

in [GL20, Section 2]). Doing this, together with the values BOIS
t (T x

i ) we bootstrap the

successive values of Lδ(t;T δ
j−1, T

δ
j ). Then, we use these bootstrapped values of equation

(1.86) to obtain Bδ
t (T

δ
j−1). Finally, the inverting formula to get the value of the rate with the

highest maturity by IRS quotations is the following:

Lδ(t;T δ
nδ−1, T

δ
nδ
) =

Rδ(t; T d, T x)
(︂∑︁nx

j=1 δ
xBOIS

t (T x
j )
)︂
−
∑︁nδ−1

i=1 δBOIS
t (T δ

i )L
δ(t;T δ

i−1, T
δ
i )

δBOIS
t (T δ

nδ
)

.

47



1.7. APPLICATION TO MARKET DATA - A CALIBRATION ALGORITHM

1.7.4.3 Construction of spreads

Finally, we recall the formula to compute the spreads components:

Sδ
t =

1 + δLδ(t; t, t+ δ)

1 + δLOIS(t; t, t+ δ)
,

where the rate associated with the OIS term respects:

LOIS(t; t, t+ δ) =
1

δ

(︂ 1

BOIS
t (t+ δ)

− 1
)︂
.

1.7.5 Calibration results

To verify the performance of the calibration algorithm, we compare the market data at the end of

the time (at t = tN+1) with the parameterized family estimated in the time interval {t0, . . . , tN}.
The time-dependent parameters (y, z) at t = tN+1 are estimated using the market data at tN+1 and

the estimation of the time independent parameter θ∗ is obtained through the calibration procedure

described in Section 1.7.3.

Through a stability analysis (described in Subsection (1.7.5.2) below) we concluded that a time

series four months length returns the most stable results. Thus, we analyse a time series of market

data with length 4M and which starts at 01/04/2021. The initial value for the time-independent

parameter θ0 ∈ R8 is given by Table 1.2.

σ a β

OIS σ0 = 0.00285941 a0 = 0.53041117 /

Libor - 6M σ1 = 0.09546952 a1 = 0.66253001 β1 = 0.41734616

Libor - 6M σ2 = 0.09083773 a2 = 0.65812121 β2 = 0.82477578

Table 1.2: Initial values of the model parameters.

Each parameter aj , βh in Table 1.2 is chosen randomly in the interval [0, 1], while parameters

σj are randomly chosen in the interval [0, 0.1]. The calibration procedure described in the steps

P.1, P.2 provided the estimation, described in Table 1.3.

σ a β

OIS σ0 = 0.1643 a0 = 0.3719 /

Libor - 6M σ1 = 0.1590 a1 = 0.3721 β1 = 0.4814

Libor - 6M σ2 = 0.1598 a2 = 0.3727 β2 = 0.8825

Table 1.3: Calibrated values of the model parameters.

As discussed at the beginning of this subsection, in terms of the fit of the yields given by

Gj(x; tN+1, y(tN+1, θ
∗), z1(tN+1; θ

∗); θ∗)
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to the term-structure at tN+1, the results are described in Figure 1.1. Let us notice that, due to

Figure 1.1: Comparison between market data yield and the estimated yield at the end of time
series. Top panel: risk-free curve; central panel: 3M curve; bottom panel: 6M curve.

the monetary policies of 2021, the yields are negative for every tenor in all the maturities.
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Since the spreads are parameterized as spot processes, we can compare the estimated spread

curve with the spread curve obtained by market data over the whole time interval {t0, . . . , tN}, as
shown in Figure 1.2.

Figure 1.2: Comparison between market data and the estimated spread curve for the whole time
series. Top panel: 3M spread curve; bottom panel: 6M spread curve.

In Table 1.4, the relative error between the estimated curves and the market data in each curve

is presented. The error value is computed as follows:

1. If Gj(x) is the estimated jth yield curve at the end of time interval and M j(x) is the jth yield

curve at the end of time interval obtained by market data, the relative error is obtained by:

erryield curve =
||Gj(x)−M j(x)||n

||M j(x)||n
, (1.88)

2. If (Sj
t )t∈[0,T ] is the estimated value for the jth spread in the entire time interval {t0, . . . , tN}

used to provide the calibration and (M j
t )t∈{t0,...,tN} is the value for the jth spread given by
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the market data in the considered time interval, the relative error is:

errspread curve =
||Sj −M j ||

||M j ||
:=

√︂∑︁N
i=0(S

j
ti
−M j

ti
)2√︂∑︁N

i=0(M
j
ti
)2

. (1.89)

OIS 3M 6M

yields 0.01917 0.01705 0.02385
spread - 6.92929e-07 8.491172e-07

Table 1.4: Relative errors.

1.7.5.1 Stability with respect to the length of the time series

The length of the time-series to use to provide the estimation is an interesting factor to analyse.

Indeed, choosing a time series too short should not give a have sufficient information to get a good

estimation. On the other hand, choosing a time series too long should not give a good estimation

because the consistency condition is a local property.

We present the error obtained comparing the market data with the manifold estimated at the

end of the considered time interval, using different time series of market data. We provide these

comparisons separately for each yield-curve and for each spread component. For the error in each

kth estimated yield curve, we consider the error function introduced in equation (1.88). To compute

the error in the spread, it is convenient to consider the relative error between the estimated spread

at tN+1, denoted by Sk and the same value obtained by the market data, Mk for each k = 1, 2 (i.e.

errspreadk := |Sk−Mk|
|Mk| ).

The estimation procedure is initialized in θ0 introduced in Table 1.2. We consider a time series

of market data ending in 30/07/2021 with length 1M, 2M, 3M, 4M, 5M, 6M (we fix the ending

date because we want to compare the market data and the estimated manifold at the end of the

considered time interval, i.e. 01/08/2021 for each choice of the length).

The length of the time series that gives the best results in terms of relative error is 4M for an

analysis ending at 30/07/2021, as shown in Table 1.5.

length of {t0, . . . , tN} Yield curve Spread curve
n months RFRs Euribor 3M Euribor 6M Spread 3M Spread 6M

1 0.0520 0.0524 0.0368 2.5736e-07 2.4474e-07
2 0.0557 0.0489 0.0371 5.6650e-08 1.6761e-10
3 0.0213 0.0218 0.0387 4.4926e-07 3.8488e-07
4 0.0191 0.0171 0.0239 1.1579e-06 9.6982e-07
5 0.0159 0.0163 0.0334 3.1638e-08 3.4686e-08
6 0.0213 0.0214 0.0393 1.2390e-07 6.3183e-08

Table 1.5: Relative error as a function of the length (in month) of the time window.
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1.7.5.2 Stability of time-independent parameters

In Subsection 1.7.5.1 we shown that with a time series of length 4M the calibration procedure for

the date 30/07/2021 provides the best result. Another interesting analysis to be conducted is the

stability of the estimated parameters in time, using a time series of length 4M. We develop this

analysis as follows, starting at d0 = 01/04/2021, with θ0 given in Table 1.2;

A.1 Apply the calibration algorithm with the time interval of length 4M starting at d0.

A.2 Compute the calibration procedure with the time interval of length four months starting at

data d0 + 1 day, using as initial datum the value θ∗ estimated at A.1.

A.3 Repeat the previous step, shifting the time series of market data with frequency one day for

N = 50 iterations.

In Table 1.6, we present the mean and the standard deviation of the vector made by the

estimation of each parameter θ∗ at step A.2, along the considered time interval:

a0 σ0 a1 σ1 a2 σ2 β1 β2

avg 0.371948 0.164252 0.372120 0.159068 0.372732 0.159813 0.481433 0.882557
std 0.000004 0.000006 0.000003 0.000006 0.000004 0.000004 0.000002 0.000003

Table 1.6: Average and standard deviation of the parameters estimated along the time interval
[d0, d0 + 50 days].

In conclusion, the parameters are stable in time. This stability can be partially motivated by the

procedure we used to provide the analysis. Indeed, in line with the commonly adopted recalibration

procedure, the initial value θ0 of the calibration procedure at the iteration i is chosen as the value

θ∗ estimated at the iteration i− 1. Under this assumption the stability of the parameters is good,

because there is not a significant difference between curves estimated using time series of length

four months that differ by a shift of one day.

1.8 Conclusions and further developments

Since the Libor reform there is no agreement on the choice of the benchmark rate to be adopted

in the interest-rate market. Adopting RFRs the interest rates can be modelled by a single-curve

approach. However, in the Eurozone market, the Euribor rate, that is the benchmark rate, is still

computed for a set of different tenors. On the other hand, in the American market, the adoption

of the RFR called SOFR is opposed to the desire of the analysts to describe the market via credit

sensitive rates (CSRs). As mentioned, financial institutions, such as AFX, have proposed a set of

CSRs that are described by a multi-curve setting. However, at the moment, there is not sufficiently

high liquidity on the interest-rate derivatives used to construct these rates. Therefore, further

analysis on these new rates cannot be provided yet.

An interesting issue to address is the generalization of the results presented in this chapter to
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general Heath-Jarrow-Morton models defined on suitable Fréchét spaces. Indeed, in analogy with

[FT03] and [FT04], the boundedness of the functional F, which is a necessary condition to define the

Hilbert space H introduced in (1.7), does not allow for the geometric analysis of more sophisticated

forward-rate models, like CIR. To overcome this issue, we could investigate the solution proposed

in [FT03] and [FT04] in the context of single-curve modelling.

A second fascinating application of these results could be the extension of the calibration al-

gorithm, described in Section 1.7, to forward-looking purposes. In particular, it would be interesting

to understand if it is possible to apply the parameters determined by the calibration algorithm to

estimate future realizations of the forward-rate curve through the finite dimensional process Z that

determines the FDRs.
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CHAPTER 2

Price formation under asymmetry of information: a

mean-field approach

2.1 Introduction

In financial markets, quantifying the information available to an agent is a crucial task, especially

when the amount of information accessible to every player is not homogeneous. Our purpose is to

understand what is the impact of the equilibrium price ϖ, in a market populated by a large number

of agents who can access different sources of randomness.

This chapter is based on a project jointly developed with Alekos Cecchin, Markus Fischer and

my PhD supervisor, Claudio Fontana,

We are interested in a market model in which one asset is traded by N small agents, called

standard agents and one major agent. We suppose that there is a gap between the information that

is accessible to the major player and the standard agents. In particular, we assume that the major

agent can observe a stochastic factor that is inaccessible to the standard players. We suppose that

this stochastic factor impacts on the revenues of the major agent and therefore on her strategies. In

this setting, we aim at studying the mechanism of price formation, that is the procedure at the basis

of the determination of the price of an asset through the interaction between the rational agents

who trade that asset. In particular, we derive an equation for the price under which the demand

and supply of the asset are balanced at every time. We call this condition market clearing. The

price determined in such a way, called equilibrium price, depends on the choices of every agent. As a

consequence, the structure of the market becomes complex, due to the interdependence between the

strategies of the agents. To overcome this problem, we follow the approach described in [FT22a],

formulating the problem through a mean-field approach.

Mean-field games (MFGs) are stochastic differential games with infinitely many players and

symmetric interactions. The seminal papers [LL07] and [HMC06] present a characterization of the

Nash equilibrium for this class of games, through a coupled system of a Hamilton-Jacobi-Bellman
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(HJB) and a Fokker-Planck (FP) equation. In [CD18a] and [CD18b] an alternative probabilistic

approach, based on the Pontryagin maximum principle is proposed. In particular, the mean-

field game solution is proved to be related to the solution to a McKean-Vlasov Forward Backward

Stochastic Differential Equation (FBSDE). As we are going to show, we consider an analogy between

the equation for the equilibrium price we are going to derive and the consistency condition of a

weak mean-field game equilibrium. Hence, related results to the existence of solutions to these

kinds of equilibria can be found in [CDL16] and [Lac16].

As discussed in [GNP15] and [Car20], there are many economic and financial applications of

mean-field games theory. However, most of these results in mean-field game theory are applied to

construct approximate Nash equilibria among the agents, given a response function of the price

process exogenously. See, for example, applications to optimal trading ([LM19]) as well as liquid-

ation of portfolio ([FGHP21]), exploitation of exhaustible resources and related problems among

many agents’ responses to an exogenously given price process ([Fu23; FH20]) and systemic risk

[CDL17]. In [ABM20], an application to the optimal management of energy storage and distribu-

tion in a smart grid system is presented, while in [ABBC23] a mean-field model for the development

of renewable capacities is proposed. In all these works the price is supposed to be defined as an

exogenous stochastic process with a prescribed dynamics.

In this chapter, we aim at deriving an equation for the equilibrium price process, determined

endogenously by the balance between demand and supply. In this direction a first application

in the context of mean-field games is [GLL10], where the balance between demand and supply is

analyzed explicitly, but the demand is supposed to be exogenously defined as a function of the

asset price. In [GS21], through an analytic approach, the market clearing condition, is imposed.

This condition leads to an equation for the price process, that turned out to be deterministic due

to the absence of common noise. More general results, involving the presence of a common noise,

are obtained in [FT22a; FT22c; Fuj23] through a probabilistic approach. In particular, the authors

proved the existence of a solution to a mean-field equation for the equilibrium price process in

a homogeneous information setting. Analogous results applied to the electricity market can be

found in [FTT20; FTT21; ACP22; SFJ22] and [GGR23]. In [FTT20; FTT21], the intraday market

electricity price is determined by a combination between the fundamental electricity price, that is

supposed not to be affected by the agents strategies and the average position of the agents trading in

the market. In [GGR23], in a commodity market model, the balance between the average quantity

of the commodity demanded by the agents and the random supply of the commodity determines

the equilibrium price.

We are interested in an asymmetric scenario, where a major agent is counterposed to a family

of small symmetric agents. In the theory of mean-field games, models on which major and minor

agents interact among each other are studied in [BCY16; CZ16; BLL20] and [CCP20]. An applica-

tion to finance and economics is given in [Nuñ17]. In the direction of equilibrium price formation,

interesting results are described in [FT22b] and [FTT20], with an application to the electricity

market in presence of a major agent. Moreover, results related the issue of heterogeneity of in-
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formation in mean-field game models are discussed in [SC16; FH20; MSZ18; Ber22; BY21; CJ19]

and [CJ20]. In particular, in [CJ20] a market model in which the agents have different beliefs

about the evolution of the exogenously given price process is presented. More recently, in [BCR23]

and [BS24], the authors studied a market model described by a Stackelberg game in which a more

informed major agent exploits the additional information to manipulate the market.

In this chapter, we aim at relating the issues linked with an asymmetric information structure to

the features of an equilibrium price approach. We adopt the setting [FT22a; FT22b] and [FT22c].

We suppose that the N standard agents observe a common shock, given by a Brownian motion

B, an idiosyncratic noise, independent of any other source of randomness and the price process

ϖ. On the other hand, we suppose that the major player can observe the common noise B, the

price process ϖ, but also an additional stochastic factor c that a priori is inaccessible to the other

players.

As a first step, we assume that the price is an exogenous factor for every player. Therefore,

the agents have to solve an optimal control problem depending on the random noises they can

observe. Assuming that the agents are rational and minimize a cost functional, we obtain a family

of optimal control problems depending on the common and idiosyncratic stochastic factors. We aim

at determining the equilibrium price determined by the market clearing. By this condition, we are

going to derive an equation for the equilibrium price process, depending on the optimal control of

all agents. As a consequence, through the observation of the equilibrium price process, the standard

agents can deduce the strategy of the major player, that depends on the additional factor c. In

particular, the market clearing condition establishes a link between the optimal strategies of all

players, leading to a complex structure of the market. Indeed, the equilibrium price ϖ is defined

by a combination of the strategies of all agents, that depend on the price ϖ in a recursive way.

Therefore, the equation for the equilibrium price ϖ seems intractable from an analytical point of

view when N is finite.

To overcome this problem, we follow the strategy described in [FT22b] and study the case with

infinitely many standard players. To do so, we assume that the information commonly shared by

every standard agent is given by the one generated by the common noise B and the equilibrium

price process ϖ. This procedure allows to ignore the effects of the idiosyncratic noises of each

individual standard player. However, due to the market structure, the same does not happen to

the private information accessible to the major player. As a consequence, we obtain a mean-field

equation for the equilibrium price process. We prove the existence of a mean-field solution ϖmf of

this equation. We can follow this approach due to the symmetry of the optimal control problems of

every standard agent. However, to construct the solution to this mean-field equation, we cannot use

standard tools like fixed point arguments. This is due to the structure of the mean-field equation,

that depends on the filtration generated by the solution itself. To circumvent this problem, we

recognize an analogy between the structure of the mean-field equation for the price process and

the notion of weak equilibrium in the context of mean-field game theory. Therefore, we construct

the solution adopting a strategy analogous to the one described in [CDL16] to determine a weak
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mean-field game equilibrium. We justify the construction of the price process in the mean-field

limit, showing that ϖmf satisfies a weak form of the market clearing condition in the case of finitely

many agents.

This chapter is structured as follows. In Section 2.2, we describe the market model and we

introduce the concept of equilibrium price process in both the finite-dimensional case and in the

mean-field limit. In Section 2.3, we describe our approach to construct the solution to the mean-field

equation for the equilibrium price process. It is based on the discretization of the domain in which

the solution is defined. Hence, we solve a fixed point problem in a space in which the characterization

of compact sets is easier to obtain. We construct a sequence of stochastic processes, defined on

the discretized domain, that approximates the equilibrium price. Applying suitable convergence

arguments, we prove that the limit in distribution of the sequence of approximate solutions solves

the mean-field equation. Finally, in Section 2.4, we prove that, under additional conditions on the

structure of the market, we can justify the approximation of the equilibrium price process with its

mean-field limit in a market populated by finitely many players.

2.1.1 Notation

We denote a given filtered probability space with the standard notation (Ω,F ,P,F). When we

refer to the canonical space, we use the notation (Ω,F ,P,F), denoting with G ⊗ H the product

sigma-algebra generated by two sigma-algebras G and H.

We denote by L or C a positive real constant. We refer to the time horizon with the constant

T > 0. Moreover, for every probability space (Ω,G,P) endowed with a filtration G := (Gt)t∈[0,T ] we

refer to:

• L2(G;R) as the set of real valued G-measurable square integrable random variables;

• S2(G;R) as the set of real valued G-adapted càdlàg processes X satisfying:

||X||S2(G;R) := E

[︄
sup

t∈[0,T ]
|Xt|2

]︄ 1
2

<∞;

• H2(G;R) is the set of real valued G-progressively measurable processes Z satisfying:

||Z||H2(G;R) := E

[︄(︄∫︂ T

0
|Zt|2dt

)︄]︄ 1
2

<∞.

We adopt the standard notation C([0, T ],R) for the space of real valued continuous functions on

[0, T ] and D([0, T ],R), for the space of real valued càdlàg functions on [0, T ]. Finally, we denote by

M([0, T ],R) the set of real valued Lebesgue measurable functions on [0, T ].

We adopt the notation FΘ := (FΘ
t )t∈[0,T ] to denote the natural filtration generated by the

process Θ. The complete and right continuous augmentation of FΘ is denoted by FΘ
.
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2.2 The market setup

2.2.1 The probabilistic framework

As mentioned in the introduction, [FT22a; FT22b; FT22c] are at the starting point of this project.

As in [FT22a, Section 3.1], we consider a market model populated by N standard agents and one

major agent, who plays the role of a large company or investor. The players acting on this market

trade a single asset. The goal of every agent is to solve an optimal control problem, that depends on

the price of the traded asset, denoted in the following by ϖ. We suppose that every agent is a price

taker, thus all agents make their decision considering the price as an exogenous stochastic process.

In this setting, we consider the problem of the price formation: we aim at studying the dynamics

of the price process ϖ that satisfies the market clearing condition. We consider a market model

in which there exists a gap in terms of amount of information that is accessible to the standard

agents and the major agent. We suppose that the major agent’s revenues depend on an additional

stochastic process c, that can be observed by her, but is inaccessible to the standard agents.

We aim at understanding if the less informed agents can deduce some information regarding

the strategy of the major agent, through the observation of the price process. Indeed, since the

strategy of the major agent depends on the extra factor c, it is a priori inaccessible to the standard

agents.

The probabilistic setup is represented by a family of stochastic control problems defined as

follows. First, we introduce the following probability spaces:

(Ω0,F0,P0), (Ωj ,F j ,Pj)j=1,...,N .

Each probability space is endowed with a filtration defined as follows:

• For every j = 1, . . . , N , on (Ωj ,F j ,Pj) we introduce Fj := (F j
t )t≥0 as the usual augmentation

of the filtration generated by a random variable ξj and a Brownian motion (W j
t )t≥0 inde-

pendent of ξj . ξj is the initial value of the state variable of the jth-standard agent, while the

Brownian motions represent the idiosyncratic noises associated with each standard agent;

• On (Ω0,F0,P0), we introduce a one dimensional Brownian motion (Bt)t≥0 and another real

valued stochastic process c, independent of B, which represents the private information of

the major player, as discussed in Section 2.2.2.2 below. Hence, we denote by F0 := (F0
t )t≥0

as the usual augmentation of the filtration generated by (c,B).

As a consequence, the Brownian motions (W j)j=1,...,N are pairwise independent and are independent

of (c,B). We define the filtered probability space (Ω,F ,P,F), F := (Ft)t∈[0,T ] by:

Ω := Ω0 × Ω1 × · · · × ΩN ,

(F ,P) := (F0 ⊗F1 ⊗ · · · FN ,P0 ⊗ · · · ⊗ PN );

Ft := F0
t ⊗ · · · ⊗ FN

t , t ∈ [0, T ].

(2.1)

59



2.2. THE MARKET SETUP

The price process is defined as follows:

Definition 2.1. The price process ϖ is a generic càdlàg process ϖ := (ϖt)t≥0, defined on Ω.

2.2.2 The market

In this section we describe the optimal control problems that must be solved by the agents acting in

the market. As discussed, every agent is a priori supposed to be a price taker. An individual agent

in the market is called price taker if he cannot manipulate the price of the asset. He must accept

the prevailing price in the market because he does not have enough market power to influence the

price. A price taker chooses his strategies observing the price ϖ as an exogenous stochastic process.

2.2.2.1 The problem of the standard agents

In analogy to the setting proposed in [FT22a], we suppose that every standard agent has a group

of customers who trade the securities with the agent and have no direct access to the market. We

introduce the number of shares Xj
t possessed by the jth agent at time t. The state process Xj is

controlled by the agent through the trading speed, denoted αj , that belongs to a set of admissible

strategies Aj . In particular, αj
t is the number of shares, traded by the jth agent in the infinitesimal

time interval [t, t + dt]. Moreover, the position Xj is dependent also on the trades between the

jth agent and its individual clients. In particular, the random demand of the private customers of

agent i is described by the Brownian motion W i, multiplied by a factor σ that can also depend on

the price process. Moreover, we also allow for the existence of a random demand that affects all the

standard agents in the market in the same way. It is described by a factor σ0, possibly dependent

on ϖ, multiplied by the Brownian motion B.

As a consequence, we suppose that each standard agent’s state dynamics is described by the

following SDE: ⎧⎨⎩dX
j
t = (αj

t + l(t,ϖt))dt+ σ0(t,ϖt)dBt + σ(t,ϖt)dW
j
t ,

Xj
0 = ξj ,

(2.2)

for every j = 1, . . . , N . We recall that, the sequence of starting points (ξj)j=1,...,N is i.i.d.

Assumption 2.2. E[|ξj |4] <∞, for every j = 1, . . . , N .

The cost functional to be minimized by the jth agent is:

J j(αj) := E

[︄∫︂ T

0
f(t,Xj

t , α
j
t , ϖt)dt+ g(Xj

T , ϖT )

]︄
, j = 1, . . . , N, (2.3)

where

f(t, x, a,ϖ) :=ϖa+
1

2
Λa2 + f(t, x,ϖ),

g(x,ϖ) :=g1(ϖ)x+ g2(x).
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for measurable functions f and g and a positive constant Λ. For every j = 1, . . . , N , the family

of admissible controls is given by the set of square-integrable stochastic processes adapted to the

filtration generated by the price process ϖ, the Brownian motion B and the idiosyncratic noise

W j , denoted by FS,j := Fϖ,B,W j

:

αj ∈ Aj := H2(FS,j ;R). (2.4)

In particular, every standard player observes the price process and the Brownian motions B, W j ,

but he has no clue about the presence of other sources of information that are affecting the market.

2.2.2.2 The problem of the major agent

The major agent is a large company trading in market. We assume that she does not have a private

set of customers for which she provides trading services. In other words, the dynamics of the state

variable X0, describing the number of shares in the portfolio at every time is:

dX0
t = βtdt+ σM0 (t,ϖt)dBt, X0

0 = x0, (2.5)

where β represents, in analogy to αj for the jth standard agent, the strategy determining the trading

speed of the major agent. For technical reasons, that are motivated by Remark 2.33 below, we

assume that x0 is a constant. As discussed in the introduction, the gap in the information structure

between the major player and the standard agents is described by the presence of an additional

stochastic factor c, independent of B that affects the revenues paid to the major player.

We consider a cost functional of the form:

J0
(N)(β) := E

[︄∫︂ T

0
f0(N)(t,X

0
t , βt, ϖt, ct)dt+ g0(X0

T , ϖT , cT )

]︄
, j = 1, . . . , N, (2.6)

that has to be minimized, where

f0(N)(t, x, b,ϖ, c) :=ϖb+
1

2

Λ0

N
b2 + f

0
(t, x,ϖ, c),

g0(x,ϖ, c) :=g01(ϖ, c)x.

for some measurable functions g01, g
0
2, f

0
, associated with the revenues obtained by trading activities.

We assume that:

f
0
(t, x,ϖ, c) := cM0 (t,ϖ, c)x,

where cM0 and cM1 are measurable functions defined on [0, T ]×R×R. As done for the less informed

agent, we consider the set of admissible controls, that is given by, the space of square-integrable

stochastic processes adapted to FM := Fϖ,B,c

β ∈ A0 := H2(FM ;R), (2.7)
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This implies that the major agent can choose the trading speed by relying on the extra factor c.

Remark 2.3. Both the family of standard agents and the major agent have to solve optimal control

problem that is dependent on the stochastic factor ϖ, representing the price process. In both cases

the objective functional is determined by a running cost and a final cost. The running cost is

expressed by the sum of a linear quadratic term in the control variable and a term dependent on

the state variable. The linear quadratic term is given by two coefficients. The first component,

ϖtαt, is the product between the price process and the control. It represents the amount of money

exchanged to buy or sell the asset at time t. On the other hand, the quadratic term represents a

penalization term due to the fees associated with large trades. The remaining component of the

running cost, independent of the control variable, could be interpreted as a combination between

costs associated with financial risk and revenues obtained by an appropriate management of the

position, described by the state variable. In particular, in the case of the major player, the factor

cM0 represents a coupon stream proportional to the number of shares owned by the major player.

cM0 and g01 depend on the stochastic process c that determines the private information of the major

agent. This process c can be interpreted as a stochastic factor that impact on the stream of coupon

cM0 allowing higher (or lower) revenues. On the other hand, the terminal cost of the major player

is determined by the coefficient g01 that can be interpreted by the liquidity price of the terminal

position. In this case, the factor c could represent a stochastic threshold for the liquidity price of

the major player. For instance, if g01(ϖ, c) = max{ϖ, c}, the major player can close its position at

a higher price than the equilibrium price.

As described in Section 2.2.5, the presence of the factor N at the denominator of quadratic

coefficient of the running cost function f0(N) guarantees that, when passing to the limit in the

number of standard agents, the impact of the major player in the market clearing condition does

not disappear.

2.2.3 Technical assumptions

2.2.3.1 Assumptions on the coefficients

We introduce the hypotheses on the coefficients of the model. These hypotheses are an adaptation

of [CD18b, Assumption Coefficients MFG with a Common Noise] and [CD18b, Assumption FBSDE

MFG with a Common Noise]:

Assumption 2.4 (FBSDE MFG with a Common Noise). There exists a constant L > 0 such that:

A1 The coefficients l, σ, σM0 and σ0 introduced in (2.2) and (2.5) are Borel-measurable functions

from [0, T ]×R into R. For every t ∈ [0, T ] the functions l(t, ·), σ(t, ·), σ0(t, ·) and σM0 (t, ·) are
continuous on R and for every ϖ ∈ R:

|l(t,ϖ)|+ |σ0(t,ϖ)|+ |σ(t,ϖ)|+ |σM0 (t,ϖ)| ≤ L[1 + |ϖ|].
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A2 For every t ∈ [0, T ] the coefficients f(t, ·, ·), g1(·) and g2(·), introduced in (2.3), are continuous

functions from R×R to R and from R and R respectively. For every t ∈ [0, T ] and ϖ ∈ R, the
functions f(t, ·, ϖ), g1(·) and g2(·) are continuously differentiable. Analogously, the functions

cM0 , cM1 , are continuous from [0, T ]×R×R to R, while g01 and g02 are continuous from R×R
to R. Moreover:

|f(t, x,ϖ)|+ |g(x,ϖ)| ≤ L(1 + |x|2 + |ϖ|2),

A3 We assume that the functions f and g are convex functions in the x variable.

A4 We require that the volatility functions σ0, σ
M
0 and σ are jointly continuously differentiable

in both variables, t and ϖ, they are convex in ϖ variable and their partial derivatives are

bounded:

|∂tσ0(t,ϖ)|+ |∂ϖσ0(t,ϖ)|+ |∂tσ(t,ϖ)|+ |∂ϖσ(t,ϖ)|+ |∂tσM0 (t,ϖ)|+ |∂ϖσM0 (t,ϖ)| ≤ L.

Remark 2.5. Let us notice that the L-convexity condition (defined in [CD18a, Assumption (Control

of MKV Dynamics]) is already satisfied by L := max{(Λ0)−1, (Λ)−1}, due to the linear quadratic

structure of the cost functional:

A5

f(t, x, α′, ϖ)− f(t, x, α,ϖ)− (α′ − α)∂αf(t, x, α,ϖ) ≥ 1

2
L−1|α− α′|2,

f0(N)(t, x, β
′, ϖ)− f0(N)(t, x, β,ϖ)− (β′ − β)∂βf

0
(N)(t, x, β,ϖ) ≥ 1

2
L−1|β − β′|2.

Let us notice that L is independent of N .

In line with [CD18b, Section 1.4. - Voll II], we aim at applying the stochastic maximum

principle to solve the optimal control problems of every agent. Therefore, we need some additional

conditions, that are stated in Assumption 2.6 below. We adopt a forward-backward formulation

of the solution to the optimal control problem, because, as we are going to show in Section 2.2.4,

the equilibrium price process is going to be determined by a combination of the solutions of the

backward components of the FBSDE system associated with the optimal control of every player.

Assumption 2.6 (FBSDE MFG with a common noise).

B1 For a constant Λ > 0, we denote by Λ = −Λ−1. The functions

B(t, y,ϖ) := −Λ(y +ϖ) + l(t,ϖ),

F (t, x,ϖ) := −∂xf(t, x,ϖ),

G(x,ϖ) := ∂xg(x)

are continuous in (y,ϖ), (x,ϖ) and x variable respectively for every t ∈ [0, T ].
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B2 There exists a constant L > 0, such that, such that B(t, y,ϖ) introduced in B1, ∂xf(t, x,ϖ),

∂xg(x,ϖ), cM0 (t,ϖ, c), g01(ϖ, c) satisfy:

|B(t,ϖ, y)| ≤ L[1 + |ϖ|+ |y|],

|∂xf(t, x,ϖ)|+ |∂xg(x,ϖ)|+ |cM0 (t,ϖ, c)|+ |g01(ϖ, c)| ≤ L.
(2.8)

B3 There exists a constant L > 0, such that, such that, for every x, x′ ∈ R, for every t ∈ [0, T ],

for every ϖ ∈ R:
|∂xf(t, x′, ϖ)− ∂xf(t, x,ϖ)| ≤ L|x− x′|;

|∂xg2(x)− ∂xg2(x
′)| ≤ L|x− x′|.

(2.9)

2.2.3.2 The compatibility condition

In Subsection 2.2.2.1 and Subsection 2.2.2.2, we defined two optimal control problems, one for the

standard agents and one for the major agent. The optimal control problems depend on a stochastic

process, respectively ϖ and (ϖ, c), that a priori may not be adapted to the Brownian motions

driving the state variable. As discussed in [CD18b, Section 1.1], in this setting, we must handle

carefully the interdependence between the stochastic processes determining the randomness of the

model. In particular, if we do not specify properly the relations between the filtrations generated

by ϖ, c and the Brownian motions B and W j , j = 1, . . . , N , we may encounter several problems

when studying the optimal control problems introduced in Subsections 2.2.2.1 and 2.2.2.2. For

instance, if we consider the case of the jth-standard agent, without additional conditions on ϖ, the

value of ϖ at a fixed time t may reveal future realizations of the Brownian motion (B,W j). As a

consequence, (B,W j) would not be anymore a Brownian motion with respect the filtration FS,j .

To overcome this problem, we are going to introduce an assumption, that is based on the following

definition:

Definition 2.7. In a probability space (Ω,F ,P), let us consider two filtrations (Gt)t∈[0,T ] and

(Ft)t∈[0,T ] We say that (Gt)t∈[0,T ] is immersed in (Ft)t∈[0,T ] if

• Gt ⊆ Ft for all t ∈ [0, T ].

• martingales with respect to (Gt)t∈[0,T ] remain martingales with respect to (Ft)t∈[0,T ].

The immersion of (Gt)t∈[0,T ] in (Ft)t∈[0,T ] is equivalent to require that:

GT is conditionally independent of Ft given Gt. (2.10)

The immersion condition, introduced in [BY78] with the termH-hypothesis, has been widely studied

in the literature and has been analysed in many financial applications, notably in credit risk model-

ling ([EJY00; JR00; CJN12]). For a detailed description of the properties and the characterizations

of the immersion condition, we refer to [AJ17, Chapter 3].
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We state the compatibility condition, that is defined as follows:

Definition 2.8 (compatibility). A stochastic process θ, defined on a probability space (Ω,F ,P), is
compatible with a filtration F := (Ft)t∈[0,T ], if the natural filtration Fθ generated by θ is immersed

in F.

In analogy to [CD18b, Definition 1.13], we introduce the concept of admissible probabilistic

setup:

Definition 2.9. A complete probability space (Ω,F ,P), endowed with a complete and right-

continuous filtration F and on which a process θ := (ξ,W,ϖ) is defined, is an admissible prob-

abilistic setup if:

1. W is a F-Brownian motion;

2. θ and F are compatible.

We may refer to the term admissible probabilistic setup by ((Ω,F ,P),F, (ξ,W,ϖ)).

We notice that, the process ϖ may be not independent of the Brownian motion W . Finally, we

introduce the following assumption:

Assumption 2.10.

• For every j = 1, . . . , N , ((Ω,F ,P),FS,j , (ξj , (B,W j), ϖ)) is admissible;

• ((Ω,F ,P),FM , (x0, B, (ϖ, c))) is admissible.

Assumption 2.10 guarantees that the relation between the Brownian motions B,W 1, . . . ,WN

and the filtration to which the controls are adapted is not affected by the processes ϖ and c. In

particular, B and W j are respectively an FM -Brownian motion and an FS,j-Brownian motion, for

every j. In general, the admissibility property, introduced in Definition 2.9, is fundamental to

guarantee that anticipative controls are excluded. We are going to discuss about this condition in

Remark 2.16 below.

2.2.4 The market clearing condition

2.2.4.1 A forward-backward system for the solution to the optimal control problems

In order to apply the stochastic maximum principle, we introduce the reduced Hamiltonians of the

stochastic optimal control problem for both the standard agents (denoted by H) and the major

agent (denoted by H0). By the symmetry of the problem of standard agent, the Hamiltonian H is

the same for every standard player. For the major player the Hamiltonian H0 depends also on c:

H(t, x, y, α,ϖ) = y(α+ l(t,ϖ)) + f(t, x, α,ϖ),

H0
(N)(t, x

0, y0, β,ϖ, c) = y0β + f0(N)(t, x, β,ϖ, c).
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Under Assumption 2.4, in both cases, the reduced Hamiltonian is convex in the control variable.

Hence, there exists a unique minimizer, that have the following structure:

ˆ︁α(ϖ, y) := −Λ(y +ϖ),ˆ︁β(N)(ϖ, y0) := −NΛ
0
(y0 +ϖ).

(2.11)

where Λ := −Λ−1 and analogously for Λ0. Hence, to apply the stochastic maximum principle, in

line with [CD18b, Section 1.4], we introduce the following FBSDE systems:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dXj
t = (−Λ(Y j

t +ϖt) + l(t,ϖt))dt+ σ0(t,ϖt)dBt + σ(t,ϖt)dW
j
t ,

Xj
0 = ξj ,

dY j
t = −∂xf(t,Xj

t , ϖt)dt+ Z0,j
t dBt + Zj

t dW
j
t + dM j

t ,

Y j
T := ∂xg(X

j
T , ϖT ),

(2.12)

for each j = 1, . . . , N . ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX0
t = −NΛ

0
(Y 0

t +ϖt)dt+ σ0(t,ϖt)dBt,

X0
0 = x0,

dY 0
t = −cM0 (t,ϖt, ct)dt+ Z0

t dBt + d˜︂M0
t ,

Y 0
T = g01(ϖT , cT ).

(2.13)

Let us remark that the martingale M j appears because the process ϖ may be not adapted to

FB,W j
.

By the compatibility condition, ensured by Assumption 2.10, the convexity of the Hamiltonian,

guaranteed by condition A5, Assumption 2.4 and Assumption 2.6, we can apply the stochastic

maximum principle in the version of [CD18b, Theorem 1.60]. We deduce that:

• Systems (2.12) and (2.13), defined on the filtered space (Ω,F ,P,F) introduced in (2.1), admit

a unique strong solution respectively denoted by (Xj , Y j , Z0,j , Zj ,M j) and (X0, Y 0, Z0,M0).

• The unique optimal controls of the optimal control problems introduced in Subsection 2.2.2.1

and Subsection 2.2.2.2 are respectively defined by:

ˆ︁αj
t := −Λ(Y j

t +ϖt),ˆ︁β(N)
t := −NΛ

0
(Y 0

t +ϖt),

Adopting the terminology introduced in [CD18a, Definition 2.14], we call adjoint process associated

with the optimal control prbolem, the solution to the backward stochastic differential equation

(BSDE) in a FBSDE system associated with the stochastic maximum principle. In particular Y j

and Y 0 in (2.12) and (2.13) are respectively the adjoint processes associated with the optimal

controls ˆ︁α and ˆ︁β(N).
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We briefly recall how the adjoint processes are constructed. As described in [EPQ97, Section

5.1], the adjoint processes are defined by the conditional expectations:

Y j
t = E

[︄
∂xg(X

j
T , ϖT ) +

∫︂ T

t
∂xf(s,X

j
s , ϖt)ds

⃓⃓⃓⃓
⃓FS,j

t

]︄
, t ∈ [0, T ],

Y 0
t = E

[︄
g01(ϖT , cT ) +

∫︂ T

t
cM0 (s,ϖs, cs)ds

⃓⃓⃓⃓
⃓FM

t

]︄
, t ∈ [0, T ].

Indeed, considering the case of Y j (for Y 0 the computations are analogous), we introduce the

martingale:

N j
t = E

[︄
∂xg(X

j
T , ϖT ) +

∫︂ T

0
∂xf(s,X

j
s , ϖs)ds

⃓⃓⃓⃓
⃓FS,j

t

]︄
, t ∈ [0, T ]. (2.14)

By the Kunita-Watanabe decomposition theorem ([KW67, Proposition 4.1]), Nt can be decomposed

as:

N j
t = N0 +

∫︂ t

0

˜︁Z0,j
s dBs +

∫︂ t

0

˜︁Zj
sdW

j
s + ˜︂M j

t , t ∈ [0, T ],

for suitable predictable process ˜︁Z0,j , ˜︁Zj and a càdlàg local martingale ˜︂M j , ortogonal to B and W j .

We define the random process by ˜︁Y j
t := N j

t −
∫︁ t
0 ∂xf(s,X

j
s , ϖs)ds. We notice that:

˜︁Y j
t = E

[︄
∂xg(X

j
T , ϖT ) +

∫︂ T

t
∂xf(s,X

j
s , ϖs)ds

⃓⃓⃓⃓
⃓FS,j

t

]︄
, t ∈ [0, T ].

Moreover:

˜︁Y j
t = N j

t −
∫︂ t

0
∂xf(s,X

j
s , ϖs)ds

= N j
0 +

∫︂ t

0

˜︁Z0,j
s dBs +

∫︂ t

0

˜︁Zj
sdW

j
s + ˜︂M j

t −
∫︂ t

0
∂xf(s,X

j
s , ϖs)ds

= ˜︁Y j
0 −

∫︂ t

0
∂xf(s,X

j
s , ϖs)ds+

∫︂ t

0

˜︁Z0,j
s dBs +

∫︂ t

0

˜︁Zj
sdW

j
s + ˜︂M j

t .

This implies that:

˜︁Y j
t = ˜︁Y j

T +

∫︂ T

t
∂xf(s,X

j
s , ϖs)ds−

∫︂ T

t

˜︁Z0,j
s dBs −

∫︂ T

t

˜︁Zj
sdW

j
s − ˜︂M j

T + ˜︂M j
t .

Finally, by uniqueness of solutions (see [EPQ97, Theorem 5.1]), it is possible to conclude that

(˜︁Y j , ˜︁Z0,j , ˜︁Zj ,˜︂M j) = (Y j , Z0,j , Zj ,M j).

Remark 2.11. Under Assumption 2.4 and Assumption 2.6, [CD18b, Theorem 1.60] guarantees

also that the stochastic integrals
∫︁ T
· Z0,j

s dBs,
∫︁ T
· Zj

sdW
j
s and M j are true martingales, because

Z0,j , Zj ∈ H2([0, T ],R) while M j ∈ S2([0, T ],R). The same holds for the solution to the FBSDE

associated with the optimal control of the major player.
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2.2.4.2 The equilibrium price process

Until now, we have assumed that the price process ϖ is exogenously given, i.e., every standard

agent considers ϖ as an external stochastic process that affects the dynamics of the state variable

and the objective functional. Under this assumption, the setting consists of a family of stochastic

optimal control problems that can be solved separately by each player. As in [FT22a], we want to

determine the price process by the equilibrium between demand and supply. This condition, called

market clearing, is expressed by

βt +
N∑︂
j=1

αj
t = 0, dt⊗ dP-a.e. (2.15)

We recall that αj ∈ H2(FS,j ;R), while β ∈ H2(FM ;R). Assuming that agents are rational, the

market clearing condition (2.15) implies that ˆ︁β(N) must a posteriori be adapted to the filtration

generated by the controls ˆ︁α1
t , . . . , ˆ︁αN

t , where ˆ︁αj and ˆ︁β(N) denote the optimal controls introduced

in (2.11), respectively for the jth standard player and the major player. As a consequence, ˆ︁β(N) is

adapted to (Fϖ,B,W
t ∧ Fϖ,B,c

t )t∈[0,T ], where W := (W 1, . . . ,WN ) is a Brownian motion defined on∏︁N
i=1Ω

i. Hence, it is convenient to show the following result:

Lemma 2.12. Under the conditions introduced above, the following holds:

Fϖ,B,W
t ∧ Fϖ,B,c

t = Fϖ,B
t , t ∈ [0, T ].

Proof. Let us notice that elements of Fϖ,B,W
t and Fϖ,B,c

t are generated respectively by sets defined

as follows:

A :=

{︄
(ω0, ω) ∈ Ω0 ×

N∏︂
i=1

Ωi : ϖ·∧t(ω
0, ω) ∈ A1, B·∧t(ω

0) ∈ A2, W·∧t(ω) ∈ A3

}︄
,

D :=

{︄
(ω0, ω) ∈ Ω0 ×

N∏︂
i=1

Ωi : ϖ·∧t(ω
0, ω) ∈ D1, B·∧t(ω

0) ∈ D2, c·∧t(ω
0) ∈ D3

}︄
,

for A1, D1, D3 ∈ B(D([0, T ],R)) and A2, A3, B2 ∈ B(C([0, T ],R)). Thus, an element of Fϖ,B,W
t ∧

Fϖ,B,c
t must be generated by sets that are of the form of both A and D. This implies that A1 = D1

and A2 = D2. We now observe that:

A = A ∩

{︄
(ω0, ω) ∈ Ω0 ×

N∏︂
i=1

Ωi : c·∧t(ω
0) ∈ D([0, T ],R)

}︄
,

D = D ∩

{︄
(ω0, ω) ∈ Ω0 ×

N∏︂
i=1

Ωi : W·∧t(ω) ∈ C([0, T ],R)

}︄
.

Therefore:

A = A ∪D = {(ω0, ω) ∈ Ω : ϖ·∧t(ω
0, ω) ∈ A1, B·∧t(ω

0) ∈ A2},
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from which we conclude that elements of Fϖ,B,W
t ∧ Fϖ,B,c

t are generated by intersection between

pre-images of ϖ·∧t and of B·∧t. As a consequence, we conclude that Fϖ,B,W
t ∧Fϖ,B,c

t = Fϖ,B
t .

Remark 2.13. In this setting, at the equilibrium, the optimal strategy of the major player is actually

revealed by the price process. As a consequence, by the market clearing condition the optimal

control of the problem defined by the class of admissible controls H2(Fϖ,B,c;R) is adapted to Fϖ,B.

Hence, we can restrict family of admissible controls of the major player to H2(Fϖ,B;R).

Moreover, the strategy ˆ︁β(N) cannot be independent of ϖ. In other words, the market clearing

condition imposes a posteriori the major player to be a market maker. This implies that the major

player is supposed to be the one who balances the demand and supply of the asset in the market.

As a consequence, ˆ︁β(N) must be a measurable function of the equilibrium price process ϖ and the

Brownian motion B.

By equation (2.11) together with Lemma 2.12 we conclude that the adjoint process Y 0 of the

major player is adapted to Fϖ,B. As a consequence, the independence between c and B1 implies that

the coefficients g01 and cM0 explicitly depend only on ϖ. For instance, since Y 0
T is Fϖ,B

T -measurable,

the coefficient g01(ϖT , cT ) = Y 0
T = g01(ϖ), where g01 is a measurable function of the whole trajectory

of ϖ. To develop the computations we assume that g01 depends only on ϖT . Reasoning analogously

for cM0 , we can formulate the following assumption:

Assumption 2.14. We assume that cM0 (t,ϖ, c) = cM0 (t,ϖ) and g01(ϖ, c) = g01(ϖ). Moreover, in

accordance with Assumption B2, we suppose that:

B4 cM0 and g01 are bounded (by the same constant L introduced in Assumption B2) and continuous

functions of (t,ϖ) and ϖ respectively.

As a consequence, the dynamics of the adjoint process Y 0 is:⎧⎨⎩dY 0
t = −cM0 (t,ϖt)dt+ Z0

t dBt + dM0
t ,

Y 0
T = g01(ϖT ).

(2.16)

where cM0 and g01 are measurable functions of (t,ϖ) and ϖ respectively. M0 is a martingale adapted

to Fϖ. Moreover, we suppose additionally that: The market clearing condition (2.15), applied to

the optimal controls introduced in (2.11), defines an equation for the price process. Indeed, the

following holds:

0 = ˆ︁β(N)
t +

N∑︂
j=1

ˆ︁αj
t = −N

(︂ Λ
N

N∑︂
j=1

(Y j
t +ϖt) + Λ

0
(Y 0

t +ϖt)
)︂
.

As a consequence, the market clearing price process is:

ϖt = −(Λ + Λ
0
)−1
(︂ 1

N
Λ

N∑︂
j=1

Y j
t + Λ

0
Y 0
t

)︂
. (2.17)
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As in [FT22b], the presence of the normalization factor N in the denominator of the constant Λ0

guarantees that the strategy of ˆ︁β(N) does not become negligible when N >> 0.

We are now in a position to give the formal definition of equilibrium price process for the market

model populated by N + 1 agents:

Definition 2.15. We say that ϖ is a equilibrium price process if it is a fixed-point of the functional

Φ(N) : H2(F,R) → H2(F,R), defined as follows:

Φ
(N)
t (ϖ) := −(Λ + Λ

0
)−1
(︂ 1

N
Λ

N∑︂
j=1

Y ϖ,j
t + Λ

0
Y ϖ,0
t

)︂
, t ∈ [0, T ].

where Y ϖ,j and Y ϖ,0 denote respectively the adjoint process of the jth standard player and the

major player, when the exogenous random environment is given by ϖ.

2.2.5 The mean-field limit

2.2.5.1 The formulation of the fixed-point problem

The problem of price formation can be formulated by the existence of a solution to (2.17). However,

by market clearing condition, an equilibrium price defined as solution to (2.17) makes the optimal

control problems introduced in Section 2.2.2.1 and in Section 2.2.2.2 highly recursive. Indeed, if

the stochastic process ϖ, that appears in (2.3) and (2.6), is the solution to (2.17), it is not even

clear how to guarantee that the cost functionals, that depend on ϖ, are well-defined and convex

with respect to the control variables.

The complexity of the problem is due to the presence of the idiosyncratic noises. To overcome

this problem, we recall that the agents are price taker. This implies that the effect of the trading

activities of each single agent is negligible, when the number N of standard agents becomes large.

To have some insights on a possible strategy to face the problem of price formation and to simplify

the structure of the model, it is convenient to study the mean-field limit. To pass to the limit in the

number of standard agents, we exploit the fact that the optimal control problem of the standard

agents is symmetric and the only difference is given by the idiosyncratic noises that are pairwise

independent. By the symmetry of the optimal control problems of the standard players, we can

apply the Yamada-Watanabe theorem in the version of [CD18b, Theorem 1.33]. As a consequence,

there exists a progressively measurable function ΦY : R×C([0, T ],R)×D([0, T ],R)×C([0, T ],R) →
D([0, T ],R) such that, the adjoint process Y j of the jth player, defined by an exogenously given

price process ϖ, satisfies

Y j = ΦY (ξj , B,ϖ,W j). (2.18)

If (ξj)j∈N is a sequence of i.i.d. random variables, distributed like initial conditions introduced in

Section 2.2.2.1 and (W j)j∈N is a sequence of pairwise independent Brownian motions, independent

also of (ξj)j∈N, the sequence of (ξj , B,ϖ,W j)j∈N is exchangeable in the sense of [Kle13, Definition

12.1]. Therefore, the sequence (Y j
t )

N
j=1 defined by (2.18) is exchangeable too. Hence, applying De
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Finetti representation theorem ([CD18b, Theorem 2.1], [Kle13, Theorem 12.26]), the limit for N

going to infinity of 1
N

∑︁N
i=1 Y

i
t satisfies:

lim
N→∞

1

N

N∑︂
i=1

Y i
t = E

[︄
Y 1
t

⃓⃓⃓⃓
⃓ ⋂︂
j≥1

σ{Y k
t , k ≥ j}

]︄
, a.s. (2.19)

We guess that the sigma-algebra
⋂︁

j≥1 σ{Y k
t , k ≥ j} is given by the common stochastic factors of

all the random variables Y k
t , that are ϖ·∧t and b·∧t. It would be natural to substitute the empirical

mean in equation (2.17) with the conditional expectation E[Y 1
t |F

ϖ,B
t ]. Through this substitution,

we can consider a market populated by a single typical standard agent and a major agent. Indeed,

the mean-field equilibrium price process ϖmf, defined as the solution to the mean-field limit of

(2.17), should be defined in a suitable probabilistic setup (Ω,F ,P,F) by the following equation:

ϖmf
t = −(Λ + Λ

0
)−1
(︂
ΛE[Yt|Fϖmf,B

t ] + Λ
0
Y 0
t

)︂
, ∀t ∈ [0, T ], P− a.s. (2.20)

In (2.20), Y is the adjoint process associated with the optimal control problem of a typical standard

agent in the mean-field limit. Analogously, Y 0 is the adjoint process associated with the optimal

control problem of the major agent in the mean-field limit. In particular, on (Ω,F ,P,F) we in-

troduce the optimal control problem for the typical standard agent using the same coefficients

introduced in Section 2.2.2.1. For the major agent, we proceed analogously, introducing a normal-

ized optimal control problem as the one introduced in Section 2.2.2.2, where the quadratic term

of the running cost f0(N) is not divided by the factor N . Hence, the cost functional for the major

player in the mean-field limit is

J0(β) := E

[︄∫︂ T

0
f0(t,X0

t , βt, ϖ
mf
t )dt+ g0(X0

T , ϖ
mf
T )

]︄
, j = 1, . . . , N, (2.21)

where

f0(t, x, b,ϖ) :=ϖb+
1

2
Λ0b2 + cM0 (ϖ)x+ cM1 (ϖ),

g0(x,ϖ) :=g01(ϖ)x+ g02(ϖ).

When we pass to the mean-field limit, it is natural to suppose that the equilibrium price processϖmf

is independent of the idiosyncratic Brownian motion affecting the typical standard agent. Indeed,

passing to the limit the effects of the idiosyncratic noises of every standard agent cancel out.

We want to provide conditions that guarantee the existence of a stochastic process ϖmf that

satisfies the following

P-I On an admissible probabilistic setup (Ω,F ,P,F), we consider:

• the stochastic optimal control problem of the typical standard agent determined by the
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coefficients introduced in (2.3)

inf
α∈H2(Fϖ,B,Wj

;R)
J(α)⎧⎨⎩dXt = (αt + l(t,ϖt))dt+ σ0(t,ϖt)dBt + σ(t,ϖt)dWt,

X0 = ξ.

• By Remark 2.13, the stochastic optimal control problem determined by the coefficients

introduced in (2.21) for the major agent is

inf
β∈H2(Fϖ,B ;R)

J0(β)⎧⎨⎩dX0
t = βtdt+ σ0(t,ϖt)dBt,

X0
0 = x0.

Under Assumption 2.4 and Assumption 2.6, we introduce the FBSDE systems, associated

with the stochastic maximum principle for the standard typical player:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dXt = (−Λ(Yt +ϖt) + l(t,ϖt))dt+ σ0(t,ϖt)dBt + σ(t,ϖt)dW
1
t ,

X0 = ξ,

dYt = −∂xf(t,Xt, ϖt)dt+ Z0,1
t dBt + ZtdWt + dMt,

YT := ∂xg(XT , ϖT ),

(2.22)

and the major player: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX0
t = −Λ

0
(Y 0

t +ϖt)dt+ σM0 (t,ϖt)dBt,

X0
0 = x0,

dY 0
t = −cM0 (t,ϖt)dt+ Z0

t dBt + dM0
t ,

Y 0
T := g01(ϖT ),

(2.23)

P-II We consider the stochastic process

Φt(ϖ) := −(Λ + Λ
0
)−1
(︂
E[ΛYt + Λ

0
Y 0
t |F

ϖ,B
t ], t ∈ [0, T ].

We aim at proving the existence of a stochastic process ϖmf such that: Φt(ϖ
mf) = ϖmf

t a.s.,

for all t ∈ [0, T ].

The structure of the solution to (2.20) is complicated due to the presence of the unknown

stochastic process, ϖmf, in both the left and the right hand-side. In the right hand-side it appears

both in Y and Y 0 as well as in the filtration on which we are conditioning.

We can remark an analogy between the structure of equation (2.20) and the consistency con-

72



CHAPTER 2. PRICE FORMATION UNDER ASYMMETRY OF INFORMATION

dition for a weak mean-field game equilibrium in the presence of common noise. This notion,

introduced in [CDL16, Definition 3.1] (see also [CD18b, Definition 2.24] and [Lac16, Definition

2.1]), describes a probability distribution µ on the canonical space, that is a version of the condi-

tion law of (W,X) (where W is the idiosyncratic noise and X is the optimal state variable) given

the realization of the common noise B and the solution itself µ. In other words:

µ = L(W,X|B,µ). (2.24)

We propose an adaptation of the results described in [CD18b, Chapter III], that are stronger

than the one proposed in [CDL16], but allow for the forward-backward formulation of the optimal

control problems of each player. In [CD18b, Chapter III], the construction of the solution to (2.24)

is performed by discretizing the space H on which the solution takes values, in order to obtain

a sequence of approximated solutions. Adapting this approach to our problem, we consider a

random process ϖ taking values on a suitable functional space H. We observe that by the Yamada-

Watanabe theorem (see [CD18b, Theorem 1.33]), if ϖ is supposed to be exogenously given, there

exists two progressively measurable functionals ΨS and ΨM such that the processes (X,Y ) and

(X0, Y 0), respectively defined in (2.22) and (2.23), satisfy the following functional form

(X,Y ) = ΨS(ξ, (B,W ), ϖ),

(X0, Y 0) = ΨM (B,ϖ).

Since the presence of the càdlàg martingales terms in the decomposition of Y and Y 0, we cannot

conclude that H is the space of continuous functions C([0, T ],R), because ν may takes values on

D([0, T ];R). As a consequence, we suppose that H = D([0, T ];R).
Our purpose is to construct a random variable ϖmf, taking values on a suitable functional space

H, as a fixed point of the functional Φ, defined by

Φ : D([0, T ];R)Ω
0 → D([0, T ];R)Ω

0

ϖ ↦→ (−(Λ + Λ
0
)−1E[ΛYt + Λ

0
Y 0
t |F

ϖ,B
t ])t∈[0,T ]

2.2.5.2 The definition of mean-field equilibrium price process

As discussed in [CD18b, Chapter II], when Ω0 is not countable and H is D([0, T ],R), the charac-

terization of the compact sets of HΩ0
is complicated. As a consequence, we cannot use standard

fixed-point arguments, like Schauder’s theorem, to provide the existence of a solution for equation

(2.20). To overcome this problem, we adapt the strategies described in [CD18b, Chapter III] and

in [CDL16, Section 3] and proceed as follows:

1. We consider an admissible probabilistic setup in the sense of Definition 2.9. In particular,

a random process (ξ,B,W,ϖ) satisfying the assumptions of Definition 2.9 is defined. We

discretize with n steps in space and l in time the trajectories of B and ϖ. We construct a
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fixed point on D([0, T ];R)˜︁J, where ˜︁J is the (finite) discretization of the image of the processes

B and ϖ. Since D([0, T ];R)˜︁J is a finite-product of copies of the functional space D([0, T ];R),
we can apply Schauder’s fixed point theorem to construct a solution to the fixed point problem.

2. We apply the previous step for each n and l to obtain a sequence of approximated solutions.

Proving that this sequence has a weak limit, we can find the conditions that guarantee the

weak limit to be a solution to equation (2.20).

Remark 2.16. The procedure described above to construct the solution to equation (2.20) as the

weak limit of a sequence of discretized game involves the issue of compatibility. Indeed, as de-

scribed in [CD18b, Section 2.2.2], it is not sufficient to require the compatibility condition for the

optimal control problems defined for the agents in the discretized setting, because the compatibility

condition is in general not preserved when passing to a weak limit. As we show in Section 2.3.3.3,

we have to lift the sequence of the fixed point obtained in the discretized space. This guarantees

that the optimality of the sequence of optimal trajectories computed in the discretized setting is

preserved in the weak limit. As a consequence, the stability of the weak equilibria, as solutions

to the optimal control problem in the probabilistic setup in which the weak limit is defined, is

maintained. Therefore, to ensure that the compatibility condition is conserved in the weak limit,

we are going to add to the approximated price process, defined by the fixed point obtained in the

discretized space, the adjoint process associated with the optimal control problem of the standard

player in the discretized setting. As we are going to prove, this is sufficient to guarantee that the

weak limit of the sequence of optimal state variables for the standard player in the discretized

setting will result adapted to the filtration generated by the weak limit of the random processes

driving the dynamics of the game. For what regards the major player, the affine structure of the

cost functional in the x variable allows to avoid these issues, as we are going to show in Section

2.3.3.5.

By Remark 2.16, we need to slightly change the structure of the optimal control problems defined

in P-I. We consider a filtered probability space (Ω,F ,P,F) on which a process (ξ, (B,W 1),W) is

defined. In particular, W := (ϖ,Y ) is a random variable taking values on D([0, T ],R2). For the mo-

ment, Y is another stochastic process defined on (Ω,F ,P,F). We assume that F is a right continuous

and complete filtration, a priori bigger than Fξ,B,W 1,W , such that ((Ω,F ,P),F, (ξ, (B,W 1),W)) is

admissible in the sense of Definition 2.9. We notice that for ((Ω,F ,P),Fϖ,B, (x0, B,ϖ)) admiss-

ibility has already guaranteed, since Fϖ,B is the generated by (ϖ,B). Let us introduce a relaxed

optimal control problem for the typical standard agent as follows

Jϖ(γ) = inf
γ∈H2(F;R)

E

[︄∫︂ T

0
f(s,Xs, ϖs, γs)ds+ g(XT , ϖT )

]︄
⎧⎨⎩dXt = (γt + l(t,ϖt))dt+ σ0(t,ϖt)dBt + σ(t,ϖt)dW

1
t ,

X0 = ξ.

(2.25)
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The major agent must solve the following optimal control problem

J0,ϖ(β) = inf
β∈H2(Fϖ,B ;R)

E

[︄∫︂ T

0
f0(s,Xs, ϖt, βs)ds+ g0(XT , ϖ)

]︄
⎧⎨⎩dXt = βtdt+ σM (t,ϖt)dBt,

X0 = x0.

(2.26)

The FBSDE systems associated with the stochastic maximum principle are denoted by (X,Y, Z0, Z,M)

for (2.25) and (X0, Y 0, Z0,0,M0) for (2.26). The optimal control for the typical standard agent is

different from the analogous problem introduced in P-I. Indeed, the functional costs are the same,

but the filtration F on which the controls γ are adapted to is supposed not to be a priori the one

generated by (ξ, (B,W 1),W), but only compatible with the lifted process (ξ, (B,W 1),W).

In conclusion, a mean-field equilibrium price process as defined as follows:

Definition 2.17 (Mean-field equilibrium price process). We say that (Ω,F ,P,F, ξ, (b, w), (ϖ,Y ))

is a mean-field equilibrium price process if:

• ((Ω,F ,P),F, (ξ, (B,W 1),W)) and ((Ω,F ,P),Fϖ,B, (x0, B,ϖ)) are admissible in the sense of

Definition 2.9;

• ϖ solves equation (2.20), where Y 0 and Y are the adjoint processes associated with the

optimal controls of respectively (2.26) and (2.25). We may refer to this property as consistency

condition for the equilibrium price process.

• Y = Y .

In Section 2.3, we are going to prove that:

Theorem 2.18. Under Assumption 2.4 and Assumption 2.6, there exists a mean-field equilibrium

price process in the sense of Definition 2.17, with ξ satisfying Assumption 2.2.

Finally, let us remark that, assuming additionally that the cost functions of the standard agents

are affine functions in the x variable, we obtain also stronger results. In this setting, we can

introduce a stronger version of Definition 2.17, for which it is not necessary to lift the price process

adding Y . We refer to Section 2.4 below for the analysis of this specific case and in particular, the

result concerning the existence of this stronger version of the equilibrium price process (Theorem

2.37).

2.3 Existence of solutions to the mean-field equilibrium price pro-

cess

Our goal is to prove Theorem 2.18, constructing a sequence of discretized solutions defined on

the canonical space that is tight. In this section, we present the conditions and the strategy that

guarantee a weak limit of this sequence to be solution to equation (2.20). We proceed as follows:
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1. As already mentioned, the main problem is the complexity in the characterization of the

compact sets of D([0, T ],R)Ω0
, when Ω0 is not countable. In Subsection 2.3.1, we present the

discretization procedure that enables us to restrict the case D([0, T ],R)Ω0
to D([0, T ],R)J,

where J is a finite set, depending on two natural numbers n and l. These natural numbers

represent the discretization step in space and time respectively. In other words, we are

considering càdlàg random processes on finite probability spaces. In this setting, we define

an input-output map to reproduce the structure of the equilibrium.

2. In Subsection 2.3.2 we provide, under suitable conditions, the existence of a fixed point for

the input-output functional. This fixed point plays the role of a discretized price process.

To prove this result, we can apply Schauder’s theorem, since the restricted space on which is

defined the input-output map is a Polish space.

3. In Subsection 2.3.3 we state the main results: we consider the fixed points (ϖn,l)n,l of the

input-output functional as well as the solutions, introduced in the discretized setting, of the

state variables (Xn,l, X0,n,l)n,l associated with the optimal controls. We show that (ϖn,l)n,l

and ((Xn,l, X0,n,l))n,l form tight sequences. Therefore, we show the discretized equilibria

are stable, in the sense that there exists a weak limit of (ϖn,l)n,l, that is an equilibrium

price process for a the optimal control problems, optimally solved by the weak limits of

((Xn,l, X0,n,l))n,l. Finally, we prove that the weak limit we obtain as equilibrium price process

satisfies equation (2.20).

2.3.1 The discretization procedure

We aim at constructing a sequence that is tight, in order to extract a weak limit. Thus, similarly to

[CD18b, Section 3.3], we must move to the space of trajectories of the stochastic processes involved

in the (N + 1)-player game. To do so, we introduce the canonical spaces:

Ω
0
:= C([0, T ];R); (2.27)

Ω
1
:= [0, 1)× C([0, T ];R). (2.28)

On these spaces we define the canonical processes b for Ω
0
and (η, w) for Ω

1
. We denote by

(Ω
0
,F0

,W1), the probability space on which F0
is the Borel sigma-algebra and W1 is the Wiener

measure on C([0, T ];R). Similarly, on Ω
1
, we consider the Borel σ-algebra F1

and the product

measure Leb1⊗W1. The complete and right-continuous augmentation of the canonical filtration is

denoted by F0
and F1

for Ω
0
and Ω

1
respectively. Finally, the augmentation of the product space

is denoted by (Ω,F ,P,F). In the following, we denote the expected value on (Ω,F ,P,F) by E.
In the next subsections, we are constructing a discretize price process on the filtered probability

space introduced above.
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2.3.1.1 Discretization of the common noise

We first present the discretization procedure, that is defined on a general finite-dimensional vector

space Rd. We consider two integers l, n ≥ 1:

• l is the step size in the grid space;

• n is the step size in the grid time.

Denoting with ⌊x⌋ the floor function applied to x, we introduce the following function:

Π1
l : R → R

x ↦→

⎧⎨⎩2−l⌊x2l⌋, if |x| ≤ 2l;

2l sign (x), if |x| < 2l;

and its multi-dimensional generalization:

Πd
l : Rd → Rd

x ↦→ Πd
l (x) :=

(︂
Π1

l (x1) · · · Π1
l (xd)

)︂
.

Moreover, we consider Πd
l,j : (Rd)j → (Rd)j , defined in the following iterated way:

Πd
l,1 := Πd

l

Πd
l,j+1(x

1, . . . , xj+1) :=
(︂ :=(y1,...,yj)⏟ ⏞⏞ ⏟
Πd

l,j(x
1, . . . , xj),Πd

l

(︂ =:yj⏟ ⏞⏞ ⏟
(Πd

l,j(x
1, . . . , xj))j +x

j+1 − xj)
)︂)︂
.

We now state the following result, analogous to [CD18b, Lemma 3.17]:

Lemma 2.19. With the notation introduced above, given l ∈ N, for every (x1, . . . , xj) ∈ (Rd)j such

that for all i ∈ {1, . . . , j} and |xi|∞ := maxk=1,...,d |(xi)k| ≤ 2l − 1, let:

(y1, . . . , yj) := Πd
l,j(x

1, . . . , xj).

Then, the following holds:

∀j ≤ 2l : |xi − yi|∞ ≤ i

2l
, ∀ i ∈ {1, . . . , j}.

Proof. By induction on i (we are fixing j and we do the induction on i ≤ j):

(a) i = 1. |x1|∞ ≤ 2l − 1 holds, by hypothesis. Therefore, we consider the following

|x1 − y1|∞ := |x1 −Πd
l (x

1)|∞ = max
k=1,...,d

|x1k −Π1
l (x

1
k)|

= max
k=1,...,d

|x1k − 2−l⌊2lx1k⌋ =
(︂

max
k=1,...,d

|2lx1k − ⌊2lx1k⌋|
)︂
2−l ≤ 2−l.
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(b) i ∈ {2, . . . , j} with j ≤ 2l and |xi−1 − yi−1|∞ ≤ i−1
2l

. In this case, we have that:

|yj−1 + xi − xi−1|∞ ≤ |xi|∞ + |yi−1 − xi−1|∞ ≤ 2l − 1 +
i− 1

2l
< 2l − 2l − j

2l
≤ 2l.

Therefore, applying the case i = 1, we obtain:

|(yi−1 + xi − xi−1)−Πd
l (y

i−1 + xi − xi−1)|∞ ≤ 1

2l
.

Finally:

|xi − yi|∞ ≤ |xi − (yi−1 + xi − xi−1)|∞ + |(yi−1 + xi − xi−1)−Πd
l (y

i−1 + xi − xi−1)|∞

≤ |yi−1 − xi−1|∞ +
1

2l
≤ i− 1

2l
+

1

2l
=

i

2l
.

Given an integer n, let N = 2n and consider the diadic time mesh:

ti =
iT

N
, i ∈ {0, . . . , N}.

We define the discrete random variable, (V1, . . . , VN−1) = Πd
l,N−1(bt1 , . . . , btN−1) and we adopt the

notation

V j := (V1, . . . , Vj), j = 1, . . . , N. (2.29)

where (bt)t∈[0,T ] is the canonical process on Ω
0
. In this way, we have obtained a discrete random

variable on (Ω
0
,F0

,P0
). In particular, we introduce also We recall now [CD18b, Lemma 3.18]:

Lemma 2.20. Given i = 1, . . . , N − 1 the random vector (V1, . . . , Vi) has support equal to Ji, with:

J :=

{︄
− Λ,−Λ +

1

Λ
,−Λ +

2

Λ
, . . . ,Λ− 1

Λ
,Λ

}︄
, Λ :=

1

2l
.

2.3.1.2 Discretization of input-output map

In this section we want to define a price process ϖ on Ω
0
that is adapted to the discretization of

the Brownian motion b and that satisfies a discrete version of the equilibrium condition introduced

in equation (2.20). To do so, we introduce an input-output map, whose fixed point will be ϖ.

We introduce a discretized input that is a family θ := (θ0, . . . , θN−1) such that, for each ∀i =
0, . . . , N − 1:

θi : Ji → C([ti, ti+1];R),

where J0 = ∅. Therefore, θ0 is supposed to be constant in C([t0, t1];R). In particular, θ can be

thought as an element of
∏︁N−1

i=0 C([ti, ti+1];R)J
i
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Alternatively, we can introduce a function (θt)t∈[0,T ] ∈ D([t0, tN ],R)JN−1
, defined as:⎧⎨⎩θt(v1, . . . , vN−1) := (θi(v1, . . . , vi))t, t ∈ [ti, ti+1), i ∈ {1, . . . , N − 1},

θT (v1, . . . , vN−1) := (θN−1(v1, . . . , vN−1))T ,
(2.30)

while θt is assumed to be not dependent on (v1, . . . , vN1) for t ∈ [t0, t1].

Remark 2.21. Notice that θ and (θt)t∈[0,T ] are two different objects for which there exists a one-

to-one correspondence, given by the relation introduced in equation (2.30). However, it is con-

venient to introduce both these objets, because we are going to apply a fixed point argument

on
∏︁N−1

i=0 C([ti, ti+1];R)J
i
, to deduce the existence of an element in D([t0, tN ],R)JN−1

that satisfies

suitable properties.

Through the input map, we can introduce a càdlàg stochastic process ϖ defined on (Ω
0
,F0

,P0
)

as follows:

ϖθ
t := θt(V1, . . . , VN−1), t ∈ [0, T ]. (2.31)

We introduce a function ψ defined as

ψ : [0, 1)× P2(R) → R,

(η, µ) ↦→ ψ(η, µ),

to transport the initial distribution of the standard player’s state variable ξ on the canonical space.

Indeed, as proved in [CD18a, Lemma 5.29], for every square integrable probability measure µ there

exists a measurable mapping ψ such that the image of the Lebesgue measure on [0, 1) by ψ(·, µ)
is µ itself. Therefore, if the law of the random variable ξ is denoted by by L(ξ), then ψ(·,L(ξ)) is
a real valued random variable defined on the component [0, 1) of Ω

1
, distributed like ξ. With an

abuse of notation, we denote by ξ the random variable ψ(·,L(ξ)).
Let us notice that (ξ, b, w,ϖθ) is compatible with the canonical filtration on (Ω,F ,P,F), because

ϖθ is adapted to the filtration generated by the Brownian motion b. Thus, we can introduce the

optimal control problem for the typical standard player on (Ω,F ,P,F). The coefficients of this

optimal control problem have been already introduced in Section 2.2.2.1 and the class of controls

is given by H2(F;R). Hence, we introduce the FBSDE associated with the stochastic maximum

principle, applied to the optimal control problem of the typical standard player:⎧⎨⎩d ˜︁Xt = (−Λ(˜︁Yt +ϖθ
t ) + l(t,ϖθ

t ))dt+ σ0(t,ϖθ
t )dbt + σ(t,ϖθ

t )dwt, ˜︁X0 = ξ,

d˜︁Yt = −∂xf(t,Xt, ϖ
θ
t )dt+

˜︁Z0
t dbt +

˜︁Ztdwt, ˜︁YT = ∂xg( ˜︁XT , ϖ
θ
T ).

(2.32)

Note that, since the random environment ϖθ is adapted to b, there is no càdlàg orthogonal mar-

tingale term M in the dynamics of ˜︁Y . The optimal control is defined by the following function:

ˆ︁α := −Λ(y +ϖ). (2.33)
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As a second step, we consider the optimal control problem for the major player, when the random

environment is the input process ϖθ. In analogy to Section 2.2.2.2, we define the optimal control

problem on (Ω,F ,P,F), using the normalized coefficient f0 introduced for the running cost in (2.21).

In this case, the controls are adapted to the filtration Fϖθ,b. Therefore, the optimal dynamics of

the major player is defined by:⎧⎨⎩d ˜︁X0
t = −Λ

0
(˜︁Y 0

t +ϖθ
t )dt+ σM0 (t,ϖθ

t )dbt, ˜︁X0
0 = x0,

d˜︁Y 0
t = −cM0 (t,ϖθ

t )dt+ ˜︁Z0,0
t dbt, ˜︁Y 0

T = g01(ϖ
θ
T ).

(2.34)

The optimal control of the major player is given by:

ˆ︁β := −Λ
0
(y0 +ϖ). (2.35)

We introduce the discretized output process Φ(θ) := (φ0(θ), . . . , φN−1(θ)), defined as follows:

(φi(θ))t := (−(Λ
0
+ Λ)−1E[Λ˜︁Yt + Λ

0 ˜︁Y 0
t |V1 = v1, . . . , Vi = vi])(v1,...,vi)∈Ji , t ∈ [ti, ti+1]. (2.36)

In particular, φi(θ) ∈ C([ti, ti+1];Rn), for each i = 0, . . . , N − 1. Analogously to the definition of θ

and (θt)t∈[0,T ], we can introduce Φ(θ) as an element of D([0, T ];Rn)J
N−1

:

Φ(θ) : JN−1 → D([0, T ];Rn)

(v1, . . . , vN−1) ↦→ (Φt(v1, . . . , vN−1))t∈[0,T ]

where

Φt(v1, . . . , vN−1) :=

⎧⎨⎩φi(θ)t, t ∈ [ti, ti+1), i = 0, . . . , N − 1

φN−1(θ)t, t = T,

Φ is well-defined because the random variable (V1, . . . , Vi) takes values in Ji.
As done for the input process, we can define the input-output map also as a functional:

Φ :

N−1∏︂
i=0

C([ti, ti+1];Rn)J
i →

N−1∏︂
i=0

C([ti, ti+1];Rn)J
i

θ ↦→ Φ(θ) := (φ0(θ), . . . , φN−1(θ)).

(2.37)

Let us introduce a more compact notation: we denote (θt)t∈[0,T ] by θ and the vector (v1, . . . , vi) ∈ Ji,
by vi, for every i = 1, . . . , N . Making use of this notation, the input-output map can be rewritten

as a function defined on D([0, T ];Rn)J
N−1

:

Φ : D([0, T ];Rn)J
N−1 → D([0, T ];Rn)J

N−1

(θ(vN−1))vN−1∈JN−1 ↦→ Φ(θ) := (Φt(vN−1)t∈[0,T ])(vN−1)∈JN−1

(2.38)

We aim at proving the existence of a fixed point of the function Φ, in one of the two equivalent
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formulations (2.37), (2.38). In order to apply standard fixed point results, we introduce a metric

in the two spaces:

d(θ
1
,θ

2
) := max

i=0,...,N−1

{︂
max
vi∈Ji

sup
t∈[ti,ti+1]

{|θ1,i(vi)t − θ2,i(vi)t|}
}︂
, θ

1
,θ

2 ∈
N−1∏︂
i=0

C([ti, ti+1];R)J
i

(2.39)

˜︁d(θ1, θ2) := max
vN−1∈JN−1

dMZ(θ
1

t (vN−1), θ
2

t (vN−1)), θ
1
, θ

2 ∈ D([0, T ];R)J
N−1

, (2.40)

where dMZ is the distance defined in [Kur91, Section 4], which characterizes the Meyer-Zheng

space introduced in [MZ84]. The Meyer-Zheng space is defined as the space of equivalence classes

of Lebesgue measurable functions f : [0, T ] → R, where two functions are equivalent if they are equal

for almost every t ∈ [0, T ]. The Meyer-Zheng space is endowed with the topology of convergence

in measure (for the properties of the Meyer-Zheng topology, we refer to [CD18b, Section 3.2.2]).

In both cases the discretized space is a Polish space. Thus, we can apply Schauder’s fixed point

theorem.

2.3.2 Solution to the discretized game

In this section, we show that the hypotheses of Schauder’s fixed point theorem are satisfied. We

first recall the statement of Schauder’s fixed point theorem (see [Rud91, Theorem 5.28]):

Theorem 2.22. (Schauder’s fixed point) If K is a nonempty compact convex set in a locally convex

space X, and f : K → K is continuous, then there exists p ∈ K, such that f(p) = p,

In order to apply Theorem 2.22 , we have to prove that:

• Φ is continuous;

• there exists a compact and convex subset K ⊆
∏︁N−1

i=0 C([ti, ti+1];R)J
i
such that Φ : K → K.

As a first step, we prove the continuity in the whole space
∏︁N−1

i=0 C([ti, ti+1];R)J
i
. First, we state

the following assumption, analogous to

Assumption 2.23 (Iteration in a Random Environment). There exists a constant Γ0 ≥ 0 such

that, if t ∈ [0, T ] and (Ω,F , (Fs)s∈[t,T ],P) is an admissible probabilistic setup equipped with some

process (bs, ϖs, ws)s∈[t,T ] with x, x
′ ∈ R, in the sense of Definition 2.9, then for every two solutions

(Xs, Ys, Zs, Z
0
s )s∈[t,T ] and (X ′

s, Y
′
s , Z

′
s, Z

0′
s )s∈[t,T ] of FBSDE (2.32) with x and x′ as respective initial

condition at time t, it holds that:

P(|Yt − Y ′
t | ≤ Γ0|x− x′|) = 1. (2.41)

We are going to verify that Assumption 2.23 is verified for a couple of adjoint processes Y θ and

Y θ′ , respectively associated with two input processes θ and θ
′
. This condition is crucial to verify

the continuity of Φ.
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Proposition 2.24. For any couple of elements θ,θ
′ ∈
∏︁N−1

i=0 C([ti, ti+1];R)J
i
such that d(θ,θ

′
) → 0,

also

d(Φ(θ),Φ(θ
′
)) → 0, (2.42)

where d is defined in equation (2.39).

Proof. Since Φ is defined by (2.38), to prove that the functional is continuous it is sufficient to show

that:

sup
t∈[ti,ti+1]

|φi
t(θ)(vi)− φi

t(θ
′
)(vi)|

θ
d→θ

′

−→ 0, ∀vi ∈ Ji, ∀i = 0, . . . , N − 1. (2.43)

We consider θ and θ′ in
∏︁N−1

i=0 C([ti, ti+1];R)J
i
. We define two input processes ϖθ and ϖθ′ determ-

ined by θ and θ′ respectively. We denote by Y θ and Y θ′ the solutions to the backward components

in system (2.32) and we adopt the same notation for Y 0,θ and Y 0,θ′ for the backward components

of (2.34), where the input processes are ϖθ and ϖθ′ respectively. Therefore, equation (2.43) is

equivalent to

sup
t∈[ti,ti+1]

|φi
t(θ)(vi)− φi

t(θ
′
)(vi)| = sup

t∈[ti,ti+1]
| − (Λ + Λ

0
)−1E[ΛY θ

t + Λ
0
Y 0,θ
t |V1 = v1, . . . , Vi = vi]

+ (Λ + Λ
0
)−1E[ΛY θ′

t + Λ
0
Y 0,θ′

t |V1 = v1, . . . , Vi = vi]|

= (Λ + Λ
0
)−1

{︄
sup

t∈[ti,ti+1]
| − (ΛE[Y θ

t − Y θ′
t |V1 = v1, . . . , Vi = vi]

− Λ
0E[Y 0,θ

t − Y 0,θ′

t |V1 = v1, . . . , Vi = vi])|

}︄
d(θ,θ

′
)→0

−−−−→ 0

We consider now the two terms separately. The difference Y 0,θ
t − Y 0,θ′

t converges to zero, by the

continuity of the functions cM0 and g01, that is ensured by Assumption B4. Indeed:

(A) := sup
t∈[ti,ti+1]

|E[Y 0,θ
t − Y 0,θ′

t |V1 = v1, . . . , Vi = vi]|

≤ sup
t∈[ti,ti+1]

E
[︂⃓⃓⃓
g01(ϖ

θ
T )− g01(ϖ

θ′
T ) +

∫︂ T

t
(cM0 (t,ϖθ

s)− cM0 (t,ϖθ′
s ))ds

⃓⃓⃓⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︂
,

≤ E
[︂
|g01(ϖθ

T )− g01(ϖ
θ′
T )||V1 = v1, . . . , Vi = vi

]︂
+ sup

t∈[ti,ti+1]
E
[︂∫︂ T

t
|cM0 (t,ϖθ

s)− cM0 (t,ϖθ′
s )|ds|V1 = v1, . . . , Vi = vi

]︂
,

that converges to zero as d(θ,θ
′
) → 0 by the continuity of g01 and cM0 (we passed to the limit thanks

to the boundedness of cM0 , which is a sufficient condition to apply the dominated convergence
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theorem). We consider now the difference Y θ
t − Y θ′

t :

(B) := sup
t∈[ti,ti+1]

|E[Y θ
t |V1 = v1, . . . , Vi = vi]− E[Y θ′

t |V1 = v1, . . . , Vi = vi]|

= sup
t∈[ti,ti+1]

|E[Y θ
t − Y θ′

t |V1 = v1, . . . , Vi = vi]|.

The solution to the backward equation determined by θ is:

Y θ
t = Y θ

T +

∫︂ T

t
∂xf(s,X

θ
s , ϖ

θ
s)ds−

∫︂ T

t
Z0,θ
s dbs −

∫︂ T

t
Zθ
sdws, t ∈ [0, T ]. (2.44)

Then:

(B) = sup
t∈[ti,ti+1]

⃓⃓⃓⃓
⃓E
[︄
(∂xg(X

θ
T , ϖ

θ
T )− ∂xg(X

θ′
T , ϖ

θ′
T )) +

∫︂ T

t
(∂xf(s,X

θ
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s ))ds

−
∫︂ T

t
(Z0,θ

s − Z0,θ′
s )dbs −

∫︂ T

t
(Zθ

s − Zθ′
s )dws

⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︄⃓⃓⃓⃓
⃓

= sup
t∈[ti,ti+1]

⃓⃓⃓⃓
⃓E
[︄
(g1(ϖ

θ
T )− g1(ϖ

θ′
T ) + ∂xg2(X

θ
T )− ∂xg2(X

θ′
T ))

+

∫︂ T

t
(∂xf(s,X

θ
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s ))ds

⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︄⃓⃓⃓⃓
⃓

≤ sup
t∈[ti,ti+1]

E

[︄
|∂xg2(Xθ

T )− ∂xg2(X
θ′
T )|+ |g1(ϖθ

T )− g1(ϖ
θ′
T )|

+

∫︂ T

t

⃓⃓⃓
∂xf(s,X

θ
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s )
⃓⃓⃓
ds
⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︄
≤ sup

t∈[ti,ti+1]
E
[︂
|∂xg2(Xθ

T )− ∂xg2(X
θ′
T )|+ Ig1(ϖ

θ
T )− g1(ϖ

θ′
T )|

+

∫︂ T

t

⃓⃓⃓
∂xf(s,X

θ
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s )
⃓⃓⃓
ds

⃓⃓⃓⃓
⃓V1 = v1, . . . , Vi = vi

]︄

≤ sup
t∈[ti,ti+1]

E

[︄
L(|Xθ

T −Xθ′
T |+ |ϖθ

T −ϖθ′
T |)

+

∫︂ T

t

⃓⃓⃓⃓
⃓∂xf(s,Xθ

s , ϖ
θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s )
⃓⃓⃓
ds

⃓⃓⃓⃓
⃓V1 = v1, . . . , Vi = vi

]︄
.

The martingale terms vanish because the random variable on which we are conditioning is obtained

as a function of the trajectory of the canonical process b in [0, ti]. Therefore, the integral terms

starting from ti are both zero. Moreover, the term |ϖθ
T − ϖθ′

T | converges to zero in the limit

83



2.3. EXISTENCE OF SOLUTIONS TO THE MEAN-FIELD EQUILIBRIUM PRICE PROCESS

d(θ θ
′
) → 0. Thus, we can consider:

(C) := sup
t∈[ti,ti+1]

E

[︄∫︂ T

t

⃓⃓⃓
∂xf(s,X

θ
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s )
⃓⃓⃓
ds

⃓⃓⃓⃓
⃓V1 = v1, . . . , Vi = vi

]︄

≤ sup
t∈[ti,ti+1]

E

[︄∫︂ T

t

⃓⃓⃓
∂xf(s,X

θ
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ
s)
⃓⃓⃓
ds

+

∫︂ T

t

⃓⃓⃓
∂xf(s,X

θ′
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s )
⃓⃓⃓
ds
⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︄

≤ E

[︄∫︂ T

ti

⃓⃓⃓
∂xf(s,X

θ
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ
s)
⃓⃓⃓
ds

+

∫︂ T

ti

⃓⃓⃓
∂xf(s,X

θ′
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s )
⃓⃓⃓
ds

⃓⃓⃓⃓
⃓V1 = v1, . . . , Vi = vi

]︄

≤ E

[︄
LT sup

t∈[ti,T ]
|Xθ

t −Xθ′
t |

+

∫︂ T

ti

⃓⃓⃓
∂xf(s,X

θ′
s , ϖ

θ
s)− ∂xf(s,X

θ′
s , ϖ

θ′
s )
⃓⃓⃓
ds

⃓⃓⃓⃓
⃓V1 = v1, . . . , Vi = vi

]︄
.

By Assumption B1, the second term of the equation converges to zero (the function ∂xf is continu-

ous in the ϖ variable), when θ → θ′. It is sufficient to prove that

lim
θ→θ′

E

[︄
sup

t∈[ti,ti+1]
|Xθ

t −Xθ′
t |
⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︄
= 0, ∀vi ∈ Ji, i = 0, . . . , N − 1. (2.45)

To prove this result, we apply [CD18b, Theorem 1.53]. The assumptions of this result are completely

recovered by Assumption B2, except for Assumption 2.23. In Appendix 2.A, we verify that condition
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(2.41) is satisfied by Y θ and Y θ′ . Hence, we can prove that the following stability condition holds:

E

[︄
sup

t∈[ti,T ]
|Xθ

t −Xθ′
t |2|F ti

]︄
≤ ΓE

[︄
|Xθ

ti −Xθ′
ti |

2 + |∂xg(Xθ
T , ϖ

θ
T )− ∂xg(X

θ
T , ϖ

θ′
T )|2+

+

∫︂ T

ti

[︂
|∂xf(t,Xθ

t , ϖ
θ
t )− ∂xf(t,X

θ
t , ϖ

θ′
t )|2+

+ | − Λ(Y θ
t − Y θ

t ) + l(t,ϖθ
t )− l(t,ϖθ′

t )|2+

+ |σ0(t,ϖθ
t )− σ0(t,ϖθ′

t )|2 + |σ(t,ϖθ
t )− σ(t,ϖθ′

t )|2
]︄
dt
⃓⃓⃓
F ti

]︄

= ΓE

[︄
|Xθ

ti −Xθ′
ti |

2 + L2|ϖθ
T −ϖθ′

T |2 +
∫︂ T

ti

[︂
|∂xf(t,Xθ

t , ϖ
θ
t )+

− ∂xf(t,X
θ
t , ϖ

θ′
t )|2 + l(t,ϖθ

t )− l(t,ϖθ′
t )|2 + |σ0(t,ϖθ

t )− σ0(t,ϖθ′
t )|2+

+ |σ(t,ϖθ
t )− σ(t,ϖθ′

t )|2
]︂
dt|F ti

]︄
,

(2.46)

where the constant Γ depends only on Γ0, L with L in Assumption 2.4. We notice that, under

continuity in the ϖ variable (Assumption B1), the terms in equation (2.46) containing the functions

∂xf, l, σ
0 and σ converge to zero as d(θ,θ

′
) → 0. Therefore, the only term we have to deal with is

|Xθ
ti −Xθ′

ti |
2. We notice that, by the tower property:

E
[︂

sup
t∈[ti,T ]

|Xθ
t −Xθ′

t |2
⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︂
= E

[︂
E
[︂

sup
t∈[ti,T ]

IXθ
t −Xθ′

t |2
⃓⃓⃓
Fti

]︂⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︂
,

because {V1 = v1, . . . , Vi = vi} ∈ Fti . Hence, we can control E[supt∈[ti,T ] |Xθ
t − Xθ′

t |2|Fti ] under

condition (2.46) as follows

E

[︄
E[ sup

t∈[ti,T ]
|Xθ

t −Xθ′
t |2|Fti ]

⃓⃓⃓⃓
⃓V1 = v1, . . . , Vi = vi

]︄

≤ Γ(ti)E

[︄
E

[︄
|Xθ

ti −Xθ′
ti |

2 +

∫︂ T

ti

[︂
|∂xf(t,Xθ

t , ϖ
θ
t )− ∂xf(t,X

θ
t , ϖ

θ′
t )|2 + l(t,ϖθ

t )− l(t,ϖθ′
t )|2

+ |σ0(t,ϖθ
t )− σ0(t,ϖθ′

t )|2 + |σ(t,ϖθ
t )− σ(t,ϖθ′

t )|2
]︂
dt
⃓⃓⃓
Fti

]︄⃓⃓⃓⃓
⃓V1 = v1, . . . , Vi = vi

]︄
= Γ(ti)E

[︂
|Xθ

ti −Xθ′
ti |

2
⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︂
+ (D)
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where

(D) := Γ(ti)E

[︄∫︂ T

ti

[︂
|∂xf(t,Xθ

t , ϖ
θ
t )− ∂xf(t,X

θ
t , ϖ

θ′
t )|2 + l(t,ϖθ

t )− l(t,ϖθ′
t )|2+

+ |σ0(t,ϖθ
t )− σ0(t,ϖθ′

t )|2 + |σ(t,ϖθ
t )− σ(t,ϖθ′

t )|2
]︂
dt

⃓⃓⃓⃓
⃓V1 = v1, . . . , Vi = vi

]︄
d(θ θ

′
)→0

−−−−→ 0

Let us notice that in E[|Xθ
ti − Xθ′

ti |
2|V1 = v1, . . . , Vi = vi] the price processes ϖθ and ϖθ′ are

computed in the dynamics of Xθ and Xθ′ respectively until ti. Thus, they are constant in the event

{V1 = v1, . . . , Vi = vi}. However, if we consider condition (2.46) for ti = t0 = 0, we can notice that:

E

[︄
sup

t∈[0,T ]
|Xθ

t −Xθ′
t |2|F0

]︄
≤ Γ0E

[︄ =0⏟ ⏞⏞ ⏟
|Xθ

0 −Xθ′
0 |2+

∫︂ T

0

[︂
|∂xf(t,Xθ

t , ϖ
θ
t )− ∂xf(t,X

θ
t , ϖ

θ′
t )|2+

+ l(t,ϖθ
t )− l(t,ϖθ′

t )|2 + |σ0(t,ϖθ
t )− σ0(t,ϖθ′

t )|2+

+ |σ(t,ϖθ
t )− σ(t,ϖθ′

t )|2
]︂
dt

⃓⃓⃓⃓
⃓F0

]︄
θ→θ′−→ 0.

By the tower property, E
[︂
supt∈[0,T ] |Xθ

t −Xθ′
t |2|

]︂
θ→θ′−→ 0 too. We recall also that V i = (V1, . . . , Vi)

is a discrete random variable, whose support is given by the finite set Ji. Hence, by definition of

conditional expectation with respect to an even, the following holds

E[|Xθ
ti −Xθ′

ti |
2] =

∑︂
v≤i∈Ji

E[|Xθ
ti −Xθ′

ti |
2|V1 = v1, . . . , Vi = vi]P(V1 = v1, . . . , Vi = vi),

and P(V1 = v1, . . . , Vi = vi) > 0 for each vi ∈ Ji. As a consequence, since

E[|Xθ
ti −Xθ′

ti |
2|V1 = v1, . . . , Vi = vi] ≥ 0, a.s.,

we conclude that:

lim
θ→θ′

E[|Xθ
ti −Xθ′

ti |
2|V1 = v1, . . . , Vi = vi] ≤ lim

θ→θ′

1

P(V1 = v1, . . . , Vi = vi)
E[|Xθ

ti −Xθ′
ti |

2]

≤ 1

P(V1 = v1, . . . , Vi = vi)
lim
θ→θ′

E

[︄
sup

t∈[0,T ]
|Xθ

t −Xθ′
t |2
]︄
= 0.

2.3.2.1 Compact closure of Im(Φ)

Our goal now is to show that the image of the functional Φ, introduced in equation (2.37) is

contained in a compact set of
∏︁N−1

i=0 C([ti, ti+1];R)J
i
. To this effect, we are going to apply Ascoli’s
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theorem [Rud91, Theorem A.5] to the set of functions:

Ci
vi :=

{︄
φi
t(θ)(vi) : [ti, ti+1] −→ R, θ ∈

N−1∏︂
j=0

C([tj , tj+1];R)J
j

}︄
, ∀vi ∈ Ji, (2.47)

defined for every i = 0, . . . , N − 1, where φ is introduced in equation (2.36). Indeed, if Ci
vi

has

compact closure for each i, also the finite product
∏︁N

i=1

∏︁
vi
Ci
vi

has compact closure.

To carry out this program, we must prove the following conditions:

1. pointwise-boundedness: there exists a constant C, independent of the input process θ such

that:

sup

{︄
|φi

t(θ)(vi)| : θ ∈
N−1∏︂
j=0

C([tj , tj+1];R)J
j

}︄
≤ C, ∀t ∈ [ti, ti+1], ∀vi ∈ Ji.

2. equi-continuity: there exists a constant L, independent of the input process θ such that:

|φi
t(θ)(vi)− φi

s(θ)(vi)| ≤ L|t− s|, ∀t, s ∈ [ti, ti+1]. (2.48)

Concerning the pointwise boundedness, let us first notice that, by Assumption B2:

|Y θ
t |2 =

⃓⃓⃓⃓
⃓E
[︄
∂xg(X

θ
T , ϖ

θ
T ) +

∫︂ T

t
∂xf(s,X

θ
s , ϖ

θ
s)ds

⃓⃓⃓⃓
⃓F t

]︄⃓⃓⃓⃓
⃓
2

≤ 2E

[︄
|∂xg(Xθ

T , ϖ
θ
T )|2 + (T − t)

∫︂ T

t
|∂xf(s,Xθ

s , ϖ
θ
s)|2ds

⃓⃓⃓⃓
⃓F t

]︄
≤ 2L2((T − t)2 + 1) ≤ 2L2(T 2 + 1) =: C, a.s.

(2.49)

Applying Assumption B4, we conclude that |Y 0,θ
t |2 ≤ C a.s. Let us highlight that the con-

stant C does not depend neither on t nor on θ. Therefore, if we consider an arbitrary θ ∈∏︁N−1
j=0 C([tj , tj+1];R)J

j
:

|φi
t(θ)(vi)| = (|E[−(Λ + Λ

0
)−1(ΛY θ

t + Λ
0
Y 0,θ
t )|V1 = v1, . . . , Vi = vi]|2)

1
2

≤
√
2(Λ + Λ

0
)−1
(︂
Λ
(︂
E[|Y θ

t |2|V1 = v1, . . . , Vi = vi]
)︂ 1

2
+ Λ

0
(︂
E[|Y 0,θ

t |2|V1 = v1, . . . , Vi = vi]
)︂ 1

2
)︂

≤ 2
√
2C,

that yields the pointwise boundedness. The second property to prove is equi-continuity. To prove

it, it is sufficient to restrict our attention to the case in which s ≤ t in [ti, ti+1], hence the following
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holds

|φi
t(θ)(vi)− φi

s(θ)(vi)| =
⃓⃓⃓
− (Λ + Λ

0
)−1E

[︂
ΛY θ

t + Λ
0
Y 0,θ
t |V1 = v1, . . . , Vi = vi

]︂
+ (Λ + Λ

0
)−1E

[︂
ΛY θ

s + Λ
0
Y 0,θ
s

⃓⃓⃓
V1 = v1, . . . , Vi = vi

]︂⃓⃓⃓
≤ (Λ + Λ

0
)−1|(Λ|E[Y θ

t − Y θ
s |V1 = v1, . . . , Vi = vi]|

+ Λ
0|E[Y 0,θ

t − Y 0,θ
s |V1 = v1, . . . , Vi = vi])|

=

⃓⃓⃓⃓
⃓E
[︄
−
∫︂ t

s
∂xf(u,X

θ
u, ϖ

θ
u)du+

∫︂ t

s
Z0,θ
u dbu +

∫︂ t

s
Zθ
udwu|V1 = v1, . . . , Vi = vi

]︄⃓⃓⃓⃓
⃓

+

⃓⃓⃓⃓
⃓E
[︄
−
∫︂ t

s
cM0 (t,ϖθ

u)ds+

∫︂ t

s
Z0,0,θ
u dbu|V1 = v1, . . . , Vi = vi

]︄⃓⃓⃓⃓
⃓.

Since both s and t are greater than ti, the stochastic integrals are independent of {V1 = v1, . . . , Vi =

vi}, thus, recalling that those terms are true martingales (see Remark 2.11), their conditional

expectation is zero. As a consequence:

|φi
t(θ)(vi)− φi

s(θ)(vi)| ≤ E
[︂∫︂ t

s
(|∂xf(u,Xθ

u, ϖ
θ
u)|+ |cM0 (t,ϖθ

u)|)du|V1 = v1, . . . , Vi = vi

]︂
By Assumptions B2 and B4, we conclude that

|φi
t(θ)(vi)− φi

s(θ)(vi)| ≤ 2L(t− s).

The same holds if t ≤ s. Therefore, equi-continuity is proved and, by Ascoli’s theorem, the image

of

φi(vi) :
N−1∏︂
j=0

C([tj , tj+1];R)J
j → C([ti, ti+1];R),

has compact closure for the sup norm, for each choice of the vector vi ∈ Ji. Since Ji is finite, also
the function:

φi :
N−1∏︂
j=0

C([tj , tj+1];R)J
j → C([ti, ti+1];R)J

i

has compact closure of its image. We can conclude that the image of Φ = (φ0, . . . φN−1) has

compact closure. Therefore, we can restrict the continuous function Φ to the compact closure of

its image to apply Schauder’s fixed point theorem.

2.3.3 Stability of the discretized equilibria

2.3.3.1 Outline of the strategy

In order to adopt the approach of [CD18b, Chapter 3] we take into account the solution to the

discretized game contained in Subsection 2.3.1 for each step ∆ = 2−l for l ∈ N in the space grid
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and N = 2n for n ∈ N in the time grid. For each n and l we denote by (Xn,l, Y n,l, Z0,n,l, Zn,l) the

solution to equation (2.32) defined on the canonical space introduced at the beginning of Section

2.3.1. Analogously, we denote by (X0,n,l, Y 0,n,l, Z0,0,n,l) the solution to equation (2.34) defined on

the canonical space. The price process ϖn,l is defined as an input process of the form of (2.31) and

is defined by the fixed point of the functional Φ introduced in equation (2.37). In particular, the

process ϖn,l is a càdlàg process defined as follows:

ϖn,l
t = −(Λ + Λ

0
)−1E[ΛY n,l

t + Λ
0
Y 0,n,l
t |V n,l

i ], t ∈ [ti, ti+1), i = 0, . . . , N − 1, (2.50)

where V
n,l
i = (V n,l

1 , . . . V n,l
i ) is the discretization of the common noise until time ti = i TN .

The constants n and l determine respectively the number of factors of the product space on

which Φ is defined and the number of components of each of these factors (i.e. the cardinality of

Ji). As shown in the previous section, for each n and l we consider two FBSDE systems linked by

the price process ϖn,l. The one for the typical standard player is:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dXn,l
t = (−Λ(Y n,l

t +ϖn,l
t ) + l(t,ϖn,l

t ))dt+ σ0(t,ϖ
n,l
t )dbt + σ(t,ϖn,l

t )dwt,

Xn,l
0 = ξ,

dY n,l
t = −∂xf(t,Xn,l

t , ϖn,l
t )dt+ Z0,n,l

t dbt + Zn,l
t dwt,

Y n,l
T = ∂xg(X

n,l
T , ϖn,l

T ).

(2.51)

The one for the major player is:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX0,n,l
t = −Λ

0
(Y 0,n,l

t +ϖn,l
t )dt+ σM0 (t,ϖn,l

t )dbt,

X0,n,l
0 = x0,

dY 0,n,l
t = −cM0 (t,ϖn,l

t )dt+ Z0,0,n,l
t dbt,

Y 0,n,l
T = g01(ϖ

n,l
T ).

(2.52)

We are going to present the steps S-I,. . . ,S-VI, that describe the procedure we follow in the next

subsections to prove Theorem 2.18.

S-I In Subsection 2.3.3.2, we prove the tightness of the sequences (Xn,l)n,l and (X0,n,l)n,l in

C([0, T ];R). Moreover, we show that the sequences (ϖn,l)n,l, (Y
n,l)n,l and (Y 0,n,l)n,l are tight

inM([0, T ];R), whereM([0, T ];R) is the Meyer-Zheng space. As a consequence, the sequence

(ξ, b,ϖn,l, w,Xn,l, X0,n,l), defined on Ω, is tight in the space Ωinput×C([0, T ];R)×C([0, T ];R)
where

Ωinput := R× C([0, T ];R)×D([0, T ];R)× C([0, T ];R).

As discussed in Section 2.3.1.2, the compatibility condition between the canonical filtration

F and the process (ξ, b,ϖn,l, w) is guaranteed since (ξ, b,ϖn,l, w) is adapted to F. (as stated

in [CD18b, Remark 1.12]).
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S-II Once we have proved tightness of the solutions of the two optimal control problems in the

discretized setting, we need a stability result related to the optimality of any weak limit. To

obtain this result, we consider a weak limit of (ξ, b,ϖn,l, w,Xn,l, X0,n,l) defined on a suitable

complete probability space (Ω∞,F∞,P∞) and denoted by (ξ∞, b∞, ϖ∞, w∞, X∞, X0,∞). As

we will see in Section 2.3.3.3 we need to lift the environment (ϖn,l)n,l∈N, adding the sequence

of adjoint processes of the discretized game (Y n,l, Y 0,n,l)n,l∈N. In particular, we shall prove

that the sequence (Y n,l, Y 0,n,l)n,l∈N is tight in M([0, T ],R2), so we are allowed to consider a

weak limit, that will be denoted by (Y∞, Y 0,∞). This step will be performed in Section 2.3.3.2.

The lift of the random environment is determined by the process W∞
t := (ϖ∞

t , Y
∞
t , Y 0,∞

t ),

for every t ∈ [0, T ]. Hence, we introduce the process:

Θ∞ := (ξ∞, b∞,W∞
, w∞, X∞, X0,∞). (2.53)

The filtration generated by this process is denoted by

F∞ := Fξ∞,b∞,W∞
,w∞,X∞,X0,∞

. (2.54)

On (Ω∞,F∞,P∞), we introduce also the following two sub-filtrations:

FM,∞ := Fb∞,WM,∞,X0,∞
, , (2.55)

FS,∞ := Fξ∞,b∞,WS,∞,w∞,X∞
, , (2.56)

where WM,∞ = (ϖ∞, Y 0,∞) and W∞ = (ϖ∞, Y∞).

S-III In Subsection 2.3.3.3, we show that

• The stochastic process ˜︁ΘM,∞ := (b∞,WM,∞) (2.57)

taking values on

ΩM
input := C([0, T ];R)×D([0, T ];R2)

is compatible with the filtration FM,∞.

• The stochastic process ˜︁ΘS,∞ := (ξ∞, b∞,W∞, w∞) (2.58)

taking values on

ΩS
input := R× C([0, T ];R)×D([0, T ];R2)× C([0, T ];R)

is compatible with the filtration FS,∞.

S-IV Once compatibility is verified, we prove that the optimal control problem for the standard
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player:

inf
α∈H2(FS,∞;R)

Jϖ∞
(α), Jϖ∞

(α) = E∞

[︄∫︂ T

0
f(s,Xs, ϖ

∞
s , αs)ds+ g(XT , ϖ

∞
T )

]︄
,

⎧⎨⎩dXt = (αt + l(t,ϖ∞
t ))dt+ σ0(t,ϖ

∞
t )db∞t + σ(t,ϖ∞

t )dw∞
t ,

X0 = ξ∞,

is solved by the weak limit X∞ of the sequence of discretized state variables (Xn,l)n,l∈N. We

prove this result in Subsection 2.3.3.4.

S-V Analogously for the major player, in Subsection 2.3.3.4, we prove that the optimal control

problem for the major player:

inf
β∈H2(FM,∞;R)

J0,ϖ∞
(β), J0,ϖ∞

(β) = E∞

[︄∫︂ T

0
f0(s,Xs, ϖ

∞
s , βs)ds+ g0(XT , ϖ

∞
T )

]︄
,

⎧⎨⎩dXt = βtdt+ σM (t,ϖ∞
t )db∞t ,

X0 = x0,

is solved by the weak limit X0,∞ of the sequence of discretized state variables (X0,n,l)n,l∈N.

We denote by (X0,∞, Y 0,∞, Z0,0,∞,M0,∞) the solution to the FBSDE associated with the

maximum principle applied to this optimal control problem. In order to guarantee that the

consistency condition (2.20) is satisfied, we should prove that the backward equation of the

FBSDE associated with the maximum principle applied to the optimal control problem of the

major player is adapted to Fb∞,ϖ∞
. However, we cannot guarantee that this holds, because

the controls are adapted to FM,∞ that is larger than

FM,p,∞ := Fb∞,ϖ∞
. (2.59)

To circumvent this problem, in Subsection 2.3.3.5, we introduce the optimal control problem

with the same coefficients of J0,ϖ∞
and the same state variable, but for which the controls

can be chosen in the space H2(FM,p,∞;R). We exploit the affine structure in the x0 variable

of the cost functionals f0 and g0 to project the solution to the FBSDE system associated the

stochastic maximum principle applied to the optimal control problem defined by controls in

H2(FM,∞;R) to the solution to the FBSDE system (denoted by ( ˜︁X0,∞, ˜︁Y 0,∞, ˜︁Z0,0,∞,˜︂M0,∞))

obtained solving the same optimal control problem using the controls chosen in H2(FM,p,∞;R).
In particular, we prove that ˜︁Y 0,∞

t = E∞[Y 0,∞
t |Fϖ∞,b

t ].

S-VI Finally, by S-IV and S-V, we can introduce another FBSDE, associated with the stochastic
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maximum principle applied to the optimal control problem defined in S-IV for the typ-

ical standard agent. We denote its solution by (X∞, Y∞, Z0,∞, Z∞,M∞). On the other

hand, for the major player, instead of considering (X0,∞, Y 0,∞, Z0,0,∞,M0,∞), we can con-

sider ( ˜︁X0,∞, ˜︁Y 0,∞, ˜︁Z0,0,∞,˜︂M0,∞) obtained by restricting the class of controls adapted to

H2(FM,p,∞;R). In Subsection 2.3.3.6, we prove that

ϖ∞
t = −(Λ + Λ

0
)−1
(︂
E∞
[︂
ΛY∞

t |Fϖ∞,b∞

t

]︂
+ Λ

0 ˜︁Y 0,∞
t

)︂
, t ∈ [0, T ] (2.60)

is verified.

2.3.3.2 Tightness of (Xn,l)n,l∈N, (Y
n,l)n,l∈N, (X

0,n,l)n,l∈N, (Y
0,n,l)n,l∈N and (ϖn,l)n,l∈N

Tightness of (Xn,l)n,l∈N and (X0,n,l)n,l∈N In order to prove the tightness of the sequences

(Xn,l)n,l∈N and (X0,n,l)n,l∈N in the canonical space we apply Aldous’ criterion. We focus on the

proof of the tightness of (Xn,l)n,l∈N. The proof of the tightness of (X0,n,l)n,l∈N is analogous, due

to the analogy between Assumption B2 and Assumption B4. We first state the following Lemma,

whose proof is given in Appendix 2.C:

Lemma 2.25. The two following conditions hold:

1. There exists a constant ˜︁C > 0 independent of n and l such that:

sup
n,l

E

[︄
sup

t∈[0,T ]
|Xn,l

t |2
]︄
≤ ˜︁C; (2.61)

2. for every FXn,l
-stopping time τ and positive constant δ > 0, there exists a constant C, inde-

pendent of n and l such that:

E
[︂
|Xn,l

(τ+δ)∧T −Xn,l
τ |
]︂
≤ C(δ +

√
δ). (2.62)

In order to prove the tightness of the sequence (Xn,l)n,l we apply Aldous criterion [Bil99,

Theorem 16.10] that ensures tightness under the following two conditions:

1. lima→∞ lim supn,l P(supt∈[0,m] |X
n,l
t | ≥ a) = 0, ∀m ≤ T ;

2. ∀ϵ > 0, η > 0,m ≥ 0, ∃δ0 > 0, n0 ∈ N, such that:

P(|Xn,l
(τ+δ)∧T −Xn,l

τ | ≥ ϵ) ≤ η, ∀δ ≤ δ0, ∀n ≥ n0, ∀τ FXn,l − stopping time.
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We first apply Markov inequality to (2.61), thus obtaining

lim
a→∞

lim sup
n,l

P

(︄
sup

t∈[0,m]
|Xn,l

t | ≥ a

)︄
≤ lim

a→∞
lim sup

n,l

1

a
E

[︄
sup

t∈[0,m]
|Xn,l

t |

]︄

≤ lim
a→∞

lim sup
n,l

1

a

(︂
E

[︄
sup

t∈[0,m]
|Xn,l

t |2
]︄)︂ 1

2
= 0.

Therefore, condition 1. of Aldous’ criterion is satisfied.

We consider now an FXn,l
-stopping time τ and δ ∈ (0, 1). We observe that, by Markov inequality,

∀ϵ > 0 and η > 0:

P
(︂
|Xn,l

(τ+δ)∧T −Xn,l
τ | ≥ ϵ

)︂
≤ 1

ϵ
E

[︄
||Xn,l

(τ+δ)∧T −Xn,l
τ |

]︄
≤ 1

ϵ
C
√
δ.

Hence, if δ0 := (ηϵC)2, condition 2. of Aldous’ criterion is satisfied.

In conclusion, the sequence (Xn,l)n,l∈N is tight in D([0, T ];R). Moreover, since (Xn,l)n,l∈N has

continuous paths, the sequence is tight also in C[0, T ];R).

Tightness of (Yn,l)n,l, (Y
0,n,l)n,l and (ϖn,l)n,l We prove tightness of the sequence (ϖn,l)n,l∈N

in the space of Meyer-Zheng. The key point is to notice that the process ϖn,l is a càdlàg process

defined on the probability space (Ω,F ,P) endowed with the filtration (Fn,l
t )t∈[0,T ] defined by the

vector V j , introduced in (2.29),

Fn,l
t = σ{V j}, ∀t ∈ [tj , tj+1), ∀j = 0, . . . , 2n.

It is therefore sufficient to show that the sequence (ϖn,l)n,l∈N satisfies the hypotheses of [CD18b,

Theorem 3.9]. In particular, we need to verify the following condition:

sup
n,l

{︂
E
[︂
|ϖn,l

T |
]︂
+ V n,l

T (ϖn,l)
]︂}︂

<∞, (2.63)

where for each process (An,l
t )t∈[0,T ] adapted to a filtration (Gn,l

t )t∈[0,T ], the conditional variance

V n,l
t (An,l) is defined by:

V n,l
t (An,l) := sup

∆⊂[0,t]
E

[︄
N∑︂
i=1

⃓⃓⃓
E[An,l

ti+1
−An,l

ti
|Gn,l

ti
]
⃓⃓⃓]︄
, (2.64)

where the supremum is taken over all partitions ∆ of the time interval [0, t].

The process ϖn,l is adapted to (Fn,l
t )t∈[0,T ] and the conditional variance satisfies:

V n,l
T (ϖn,l) = sup

N≥1
sup

0≤˜︁t0≤···≤˜︁tN E

[︄
N−1∑︂
j=0

|E[ϖn,l˜︁tj+1
−ϖn,l˜︁tj |Fn,l˜︁tj ]|

]︄
.
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We notice that the canonical filtration F = (F t)t∈[0,T ] contains (F
n,l
t )t∈[0,T ]. This implies that:⃓⃓⃓

E
[︂
ϖn,l˜︁tj+1

−ϖn,l˜︁tj |Fn,l˜︁tj
]︂⃓⃓⃓

≤
⃓⃓⃓
E
[︂
−(Λ + Λ

0
)−1(Λ E[Y n,l˜︁tj+1

|Fn,l˜︁tj+1
] + Λ

0E[Y 0,n,l˜︁tj+1
|Fn,l˜︁tj+1

])

+ (Λ + Λ
0
)−1(Λ E[Y n,l˜︁tj |Fn,l˜︁tj ] + Λ

0E[Y 0,n,l˜︁tj |Fn,l˜︁tj ])
⃓⃓⃓
Fn,l˜︁tj

]︂⃓⃓⃓
≤ (Λ + Λ

0
)−1
⃓⃓⃓
− (Λ E[Y n,l˜︁tj+1

|Fn,l˜︁tj ] + Λ
0E[Y 0,n,l˜︁tj+1

|Fn,l˜︁tj ])

+ Λ E[Y n,l˜︁tj |Fn,l˜︁tj ] + Λ
0E[Y 0,n,l˜︁tj |Fn,l˜︁tj ]

⃓⃓⃓
= (Λ + Λ

0
)−1
⃓⃓⃓
− Λ E[Y n,l˜︁tj+1

− Y n,l˜︁tj |Fn,l˜︁tj ]− Λ
0E[Y 0,n,l˜︁tj+1

− Y 0,n,l˜︁tj |Fn,l˜︁tj ]
⃓⃓⃓

= (Λ + Λ
0
)−1

⃓⃓⃓⃓
⃓− Λ E

[︄∫︂ ˜︁tj+1

˜︁tj ∂xf(s,X
n,l
s , ϖn,l

s )ds
⃓⃓⃓
Fn,l˜︁tj

]︄

− Λ
0E

[︄∫︂ ˜︁tj+1

˜︁tj cM0 (t,ϖn,l
s )ds

⃓⃓⃓
Fn,l˜︁tj

]︄⃓⃓⃓⃓
⃓

≤ (Λ + Λ
0
)−1E

[︄∫︂ ˜︁tj+1

˜︁tj (Λ|∂xf(s,Xn,l
s , ϖn,l

s )|+ Λ
0|cM0 (t,ϖn,l

s )|)ds
⃓⃓⃓
Fn,l˜︁tj

]︄
≤ L(˜︁tj+1 − ˜︁tj).

Therefore, it holds that V n,l
T (ϖn,l) ≤ LT . Finally, we prove in the same way that the sequence

(Y n,l)n,l∈N and (Y 0,n,l)n,l∈N are tight in the space of Meyer-Zheng M([0, T ];R). To do so, we need

to check the hypotheses of [CD18b, Theorem 3.9]. Let us prove the following result for (Y n,l)n,l∈N,

the analogous result for (Y 0,n,l)n,l∈N can be proved in the same way.

Lemma 2.26. If Y n,l is the solution to the backward equation of the FBSDE system (2.32), where

the price process is given by (2.50), then

sup
n,l

[E[|Y n,l
T |] + V n,l

T (Y n,l)] <∞.

where V n,l
T (Y n,l) is defined in equation (2.64).

Proof. By assumption E[|Y n,l
T |] = E[|∂xg(Xn,l

T ϖn,l
T )|] ≤ L for every n and l. We can consider:

V n,l
T (Y n,l) = sup˜︁N≥1

sup˜︁t0≤···≤˜︁tN=T

E

[︄ ˜︁N−1∑︂
j=0

|E[Y n,l˜︁tj+1
− Y n,l˜︁tj |F˜︁tj ]|

]︄
.

We compute

E

[︄ ˜︁N−1∑︂
j=0

|E[Y n,l˜︁tj+1
− Y n,l˜︁tj |F˜︁tj ]|

]︄
= E

[︄ ˜︁N−1∑︂
j=0

⃓⃓⃓⃓
⃓E
[︄∫︂ ˜︁tj+1

˜︁tj ∂xf(s,X
n,l
s , ϖn,l

s )ds|F˜︁tj
]︄⃓⃓⃓⃓
⃓
]︄

≤ E

[︄ ˜︁N−1∑︂
j=0

(˜︁tj+1 − ˜︁tj)L]︄ = TL,
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for all n and l. Since the estimate does not depend on n or l, we can take the supremum and obtain

the result.

2.3.3.3 Compatibility for the limit optimal control problem for the standard player

In order to prove stability of the equilibria when passing to the limit we need to guarantee the

compatibility condition between the process (ξ∞, b∞, ϖ∞, w∞), and the filtration generated by the

weak limit (ξ∞, b∞, ϖ∞, w∞, X∞). Since this property does not hold in general, we replace the

ϖn,l with

Wn,l := (ϖn,l, Y n,l), n, l ∈ N.

In analogy to [CD18b, Chapter 3], we call Wn,l lifted environment. As we are going to show in this

section, this procedure allows us to guarantee the compatibility condition. By the results proved

in Section 2.3.3.2, the sequence Wn,2n is tight, as a consequence, we can consider a weak limit in

M([0, T ];R2). The weak limit W∞ = (ϖ∞, Y∞) possesses a càdlàg version ([Kur91, Theorem 5.8]).

For the moment, we cannot conclude that Y∞ is the adjoint process of the solution (X∞, ϖ∞) of

the optimal control problem of the typical standard agent defined on (Ω∞,F∞,P∞), because the

compatibility between the process driving the SDE of the state variable and the filtration, which

the controls are adapted to, is not guaranteed. Therefore, we need to prove the following result:

Lemma 2.27. The process ˜︁ΘS,∞ introduced in (2.58) is compatible with the filtration FS,∞ defined

in (2.56).

Proof. Following the proof of [CD18b, Proposition 3.12], we rewrite the filtration generated by Θ∞

as the filtration generated by a process that does not explicitly depends on X∞. To do so, we

exploit the lifted environment W∞.

Step 1 First of all, mimicking the reasoning of Step 1 of the proof of Proposition 2.28 below, we can

prove that the sequence of optimal controls of the optimal control problem for the standard

player in the discretized setting forms a tight sequence, thus we are allowed to extract a weak

limit, that we denote by ˆ︁α∞.

We introduce the process Ψ∞ := (ξ∞, b∞,W∞, w∞, ˆ︁α∞) taking values on Ωinput×M([0, T ];R).
The process Ψ∞ generates a filtration denoted by G∞. Moreover, following the same strategy

described in Step 2 of the proof of Proposition 2.28 below, we can show that ˆ︁α∞ is adapted

to FS,∞, where FS,∞ is the filtration introduced in (2.56). As a consequence, we have that

G∞ ⊆ FS,∞. Moreover, applying the same reasoning we can prove that X∞ is adapted to

G∞. Therefore, we conclude that G∞ = FS,∞. Hence, it is sufficient to show compatibility

between G∞ and the process ˜︁ΘS,∞ introduced in (2.58). In order to guarantee compatibility

between ˜︁ΘS,∞ and G∞ it is sufficient to show that ˆ︁α∞ is compatible with ˜︁ΘS,∞, in the sense

of [BL20, Theorem 1.2. (i)], that is

F ˆ︁α∞
t is conditionally independent of F ˜︁ΘS,∞

T given F ˜︁ΘS,∞
t .
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This is equivalent to say that, for any arbitrary sets ˜︁At ∈ F ˜︁ΘS,∞
t , ˜︁AT ∈ F ˜︁ΘS∞

T , ˜︁Ct ∈ G∞
t ,

P( ˜︁Ct ∩ ˜︁At|F
˜︁ΘS,∞
t ) = P( ˜︁Ct|F

˜︁ΘS,∞
t )P( ˜︁AT |F

˜︁ΘS,∞
t ).

Step 2 We notice that the sets ˜︁Ct, ˜︁At and ˜︁AT can be rewritten as

˜︁Ct = {Ψ∞
·∧t ∈ Ct}, Ct ∈ B(ΩS

input ×M([0, T ];R)),˜︁At = {˜︁ΘS,∞
·∧t ∈ At}, At ∈ B(ΩS

input)˜︁AT = {˜︁ΘS,∞ ∈ AT }, AT ∈ B(ΩS
input).

Approximating each Borel set for the product sigma-algebra with rectangles in ΩS
input ×

D([0, T ];R), we obtain that 1 ˜︁Ct
(ω) = 1

Cinput
t

(˜︁ΘS,∞
·∧t (ω)) · 1Cα

t
(ˆ︁α∞· ∧ t(ω)), where C input

t is

the projection on Ωinput of Ct and Cα
t is the projection on D([0, T ],R) of Ct. Thus, the

compatibility condition is equivalent to

0 = E[1 ˜︁Ct
1 ˜︁At

1 ˜︁AT
]E[1 ˜︁At

]− E[1 ˜︁Ct
1 ˜︁At

]E[1 ˜︁AT
1 ˜︁At

]

= E∞[1
Cinput

t
(˜︁ΘS,∞

·∧t )1Cα
t
(ˆ︁α∞

·∧t)1AT
(˜︁ΘS,∞)1At(˜︁ΘS,∞

·∧t )]+

− E∞[1
Cinput

t
(˜︁ΘS,∞

·∧t )1Cα
t
(ˆ︁α∞

·∧t)1At(˜︁ΘS,∞
·∧t )]E∞[1AT

(˜︁ΘS,∞)1At(˜︁ΘS,∞
·∧t )]

= E∞[1
Cinput

t ∩At
(˜︁ΘS,∞

·∧t )1Cα
t
(ˆ︁α∞

·∧t)1AT
(˜︁ΘS,∞)]+

− E∞[1
Cinput

t ∩At
(˜︁ΘS,∞

·∧t )1Cα
t
(ˆ︁α∞

·∧t)]E∞[1AT
(˜︁ΘS,∞)1At(˜︁ΘS,∞

·∧t )].

By the last line of this equation, the compatibility condition between ˆ︁α∞ and ˜︁ΘS,∞ is equi-

valent to require that the sigma-algebra generated by the process ˆ︁α∞ until time t ∈ [0, T ]

is conditionally independent of the sigma-algebra generated by the process ˜︁ΘS,∞ given the

sigma-algebra generated by ˜︁ΘS,∞ until time t. This condition is guaranteed when:

E∞
[︂
f(ˆ︁α∞

·∧t)h(˜︁ΘS,∞
·∧t )

(︂
g(˜︁ΘS,∞)− E∞[g(˜︁ΘS,∞)|F ˜︁ΘS,∞

t ]
)︂]︂

= 0, (2.65)

for f, g, h bounded and measurable. We recall that, the sequence (ˆ︁αn, ϖn, Y n) is converging

in M([0, T ];R3) to (ˆ︁α∞, ϖ∞, Y∞). For every n ∈ N, condition (2.33) is satisfied. This implies

that:

αn
t + Λ(Y n

t +ϖn
t ) = 0, n ∈ N.

In particular, since p(a, y,ϖ) := a+ Λ(y +ϖ) is continuous, the triplet

(ˆ︁αn, ϖn, Y n, (p(ˆ︁αn
t , ϖ

n
t , Y

n
t ))t∈[0,T ])

converges in distribution to (ˆ︁α∞, ϖ∞, Y∞, (p(ˆ︁α∞
t , ϖ

∞
t , Y

∞
t ))t∈[0,T ]), onM([0, T ];R4) by [CD18b,

Lemma 3.5] and continuous mapping theorem.
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Step 3 Moreover, since p(ˆ︁αn
t , ϖ

n
t , Y

n
t ) = 0 for each n ∈ N, also p(ˆ︁α∞

t , ϖ
∞
t , Y

∞
t ) = 0. This implies thatˆ︁α∞

t = −Λ(Y∞
t +ϖ∞

t ) for almost every t ∈ [0, T ]. Since there exists a unique càdlàg function

in an equivalent class defining an element of the Meyer-Zheng space ([DM78, Section IV.44]),

the equality holds for every t ∈ [0, T ]. As a consequence, ˆ︁α∞ is adapted to the filtration

generated by ˜︁ΘS,∞ and condition (2.65) is satisfied. We can conclude that FS,∞ = F
˜︁ΘS,∞

.

Applying the same reasoning, we can prove that ˜︁ΘM,∞, introduced in (2.57), is compatible with

the filtration FM,∞ introduced in (2.55).

2.3.3.4 Optimality of the weak limit

In this section, we prove stability of the discretized equilibria when the number of players goes to

infinity. In Lemma 2.27, we proved that the process ˜︁ΘS,∞ := (ξ∞, b∞,W∞, w∞) is compatible with

the filtration FS,∞ introduced in (2.56), we can study the optimal control problem on (Ω∞,F∞,P∞)

defined in S-IV. We show that the optimal solution to this optimal control problem is the weak

limit X∞ of the sequence (Xn,l)n,l∈N. To do so, we must apply the following result, whose proof is

contained in Appendix 2.D. The following proposition is inspired by [CD18b, Proposition 3.11].

Proposition 2.28. On the canonical space (Ω,F ,P,F), introduced at the beginning of Section 2.3.1,

we consider a sequence of càdlàg stochastic processes (ϖn)n∈N adapted to the filtration generated

by canonical process b. We introduce a sequence of stochastic control problems defined as follows:

inf
α∈H2(F

n
)
Jϖn

(α), Jϖn
(α) := E

[︄∫︂ T

0
f(s,Xs, ϖ

n
s , αs)ds+ g(XT , ϖ

n
T )

]︄
, (2.66)

subject to

dXn
t = (αt + l(t,ϖn

t ))dt+ σ0(t,ϖn
t )dbt + σ(t,ϖn

t )dwt, Xn
0 = X0. (2.67)

The controls are supposed to be chosen in the set of Fn := Fb,w
-progressively measurable processes.

Under the assumptions of Assumption 2.4 and Assumption 2.6, there exists a minimizer to the

functional (2.66). Thus, let us consider the process Xn := (Xn
t )t∈[0,T ], solution to equation (2.67),

driven by the optimal control ˆ︁αn. Let us introduce moreover the FBSDE (2.51) associated with the

stochastic maximum principle:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dXn
t = (−Λ(Y n

t +ϖn
t ) + l(t,ϖn

t ))dt+ σ0(t,ϖn
t )dbt + σ(t,ϖn

t )dwt,

Xn
0 = X0,

dY n
t = −∂xf(t,Xn

t , ϖ
n
t )dt+ Z0,n

t dbt + Zn
t dwt,

Y n
T = g(Xn

T , ϖ
n
T ).

Assume that:
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D1 The sequences (Xn)n∈N and (Y n)n∈N are tight respectively on C([0, T ];R) and M([0, T ];R).

D2 The sequences (Xn)n∈N, (Y n)n∈N and (ϖn)n∈N are uniformly square-integrable. Moreover,

the fourth-moment of Y n is uniformly bounded in n ∈ N.

D3 The sequence (ϖn)n∈N is tight in M([0, T ],R).

Then, the sequence (P ◦ (X0, b,Wn, w,Xn)−1)n is tight on the space ˜︁Ωinput × C([0, T ];R), where

˜︁Ωinput := R× C([0, T ],R)×M([0, T ],R2)× C([0, T ],R) (2.68)

and Wn
t := (ϖn

t , Y
n
t ), for t ∈ [0, T ].

Moreover, if (X0,∞, b∞,W∞, w∞, X∞) is a ˜︁Ωinput × C([0, T ],R)-valued process on a complete

filtered space (Ω∞,F∞,P∞) such that the probability measure P∞ ◦ (X0,∞, b∞,W∞, w∞, X∞)−1 is

a weak limit of the sequence (P ◦ (X0, b,Wn, w,Xn)−1)n with W∞ = (ϖ∞, Y∞), we can associate

with the complete and right continuous filtration F∞ generated by (X0,∞, b∞,W∞, w∞, X∞) the

stochastic control problem given by the functional:

inf
α∈H2(F∞;R)

Jϖ∞
(α), Jϖ∞

(α) := E∞

[︄∫︂ T

0
f(s,Xs, ϖ

∞
s , αs)ds+ g(XT , ϖ

∞
T )

]︄
, (2.69)

with state variable defined by:⎧⎨⎩dXt = (αt + l(t,ϖ∞
t ))dt+ σ0(t,ϖ∞

t )db∞t + σ(t,ϖ∞
t )dw∞

t ,

X0 = X0,∞.
(2.70)

Moreover, if the filtration F∞ is compatible with the process (X0,∞, b∞,W∞, w∞), then X∞ is

optimal for the stochastic control problem (2.69) and (2.70), when it is considered in the admissible

probabilistic setup (Ω∞,F∞,P∞,F∞) on which (X0,∞, (b∞, w∞),W∞) is defined.

To apply Proposition 2.28 we must check that the hypotheses are respected. In Subsection

2.3.3.2, we proved that D1 and D3 are satisfied. To check D2, we observe that if a sequence

(An)n∈N has uniformly bounded fourth moments, then the uniform square integrability is guaran-

teed. Indeed, applying Fubini’s Theorem, together with Cauchy-Schwartz, Markov and Jensen’s

inequalities, we can observe that:

lim
a→∞

sup
n∈N

E

[︄∫︂ T

0
|An

t |21{|An
t |≥a}dt

]︄
= lim

a→∞
sup
n∈N

∫︂ T

0
E
[︂
|An

t |21{|An
t |≥a}

]︂
dt,

≤ lim
a→∞

sup
n∈N

∫︂ T

0

(︄
E
[︂
|An

t |4
]︂
E
[︂
1{|An

t |≥a}

]︂)︄ 1
2

dt,
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≤ lim
a→∞

sup
n∈N

T

(︄
E

[︄
sup

t∈[0,T ]
|An

t |4
]︄
E

[︄
1{supt∈[0,T ] |An

t |≥a}

)︄ 1
2
]︄

≤ lim
a→∞

sup
n∈N

T
1√
a

(︄
E

[︄
sup

t∈[0,T ]
|An

t |4
]︄
E

[︄
sup

t∈[0,T ]
|An

t |

]︄)︄ 1
2

≤ T lim
a→∞

1√
a
sup
n∈N

(︄
E

[︄
sup

t∈[0,T ]
|An

t |4
]︄)︄ 5

8

= 0.

To check D2, it is sufficient to prove the following proposition

Proposition 2.29. (Xn,l)n,l∈N, (Y
n,l)n,l∈N and (ϖn,l)n,l∈N have uniformly bounded for moments.

Proof. As done in (2.49), we focus on Y n,l, Y 0,n,l and ϖn,l first. We notice that, by Jensen’s

inequality:

|Y n,l
t |2p =

⃓⃓⃓⃓
⃓E
[︄
∂xg(X

n,l
T , ϖn,l

T ) +

∫︂ T

t
∂xf(s,X

n,l
s , ϖn,l

s )ds
⃓⃓⃓
F t

]︄⃓⃓⃓⃓
⃓

≤ L2p +
1

T − t
E

[︄
(T − t)2p

∫︂ T

t
|∂xf(s,Xn,l

s , ϖn,l
s )ds|2p

⃓⃓⃓
F t

]︄
≤ L2p + (T − t)2p−1(T − t)L2p = L2p(T 2p + 1) =: Cp

1

(2.71)

Hence, ∀p ∈ N, |Y n,l
t |2p ≤ L2p(T 2p + 1), P-a.s.. The same computations applied to Y 0,n,l lead to

|Y 0,n,l
t |2p ≤ Cp

1 , P-a.s., for all p ∈ N. As a consequence, also the fourth moments of Y n,l and Y 0,n,l

are uniformly bounded on n, l by Cp
1 .

We notice that:

|ϖn,l
t |2p = |E[−(Λ + Λ

0
)−1(ΛY n,l

t + Λ
0
Y 0,n,l
t )|V1 = v1, . . . , Vi = vi]|2p

≤ (Λ + Λ)−2p((Λ)2pE[|Y n,l
t |2p|V i] + (Λ

0
)2pE[|Y 0,n,l

t |2p|V i])

≤ (Λ + Λ)−2p((Λ)2p + (Λ
0
)2p)L2p(T 2p + 1) =: Cp

2 .

(2.72)

Therefore, the fourth moment of ϖn,l is uniformly bounded in n, l by Cp
2 . Finally we consider the

forward process Xn,l. Its dynamics is given by:

Xn,l
t = ξ +

∫︂ t

0
(−Λ(Y n,l

s +ϖn,l
s ) + l(s,ϖn,l

s ))ds+

∫︂ t

0
σ0(s,ϖn,l

s )dbs +

∫︂ t

0
σ(s,ϖn,l

s )dws.

Therefore:

|Xn,l
t |2p ≤ 42p−1

{︄
|ξ|2p +

⃓⃓⃓ ∫︂ t

0

−Λ(Y n,l
s +ϖn,l

s ) + l(s,ϖn,l
s )ds

⃓⃓⃓2p
+
⃓⃓⃓ ∫︂ t

0

σ0(s,ϖn,l
s )dbs

⃓⃓⃓2p
+
⃓⃓⃓ ∫︂ t

0

σ(s,ϖn,l
s )dws

⃓⃓⃓2p}︄
.

We take the supremum over t ∈ [0, T ], and we apply Burkholder-David-Gundy and Jensen in-
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equaliies, together with (2.71) and (2.72), to conclude that:

E

[︄
sup

t∈[0,T ]
|Xn,l

t |2p
]︄
≤ 42p−1

{︄
E[|ξ|2p] + T 2p−1E

[︄∫︂ T

0
|Λ(Y n,l

s +ϖn,l
s ) + l(s,ϖn,l

s )|2pds

]︄

+ E

[︄
sup

t∈[0,T ]

(︄∫︂ t

0
σ0(s,ϖn,l

s )dbs

⃓⃓⃓2p]︄
+ E

[︄
sup

t∈[0,T ]

⃓⃓⃓⃓
⃓
∫︂ t

0
σ(s,ϖn,l

s )dws

⃓⃓⃓⃓
⃓
2p]︄}︄

≤ 42p−1

{︄
E[|ξ|2p] + T 2p−1E

[︄∫︂ T

0
32p−1

(︄
Λ|Y n,l

s |2p + Λ|ϖn,l
s |2p

+ L2p(1 + |ϖn,l
s |)2p

)︄
ds

]︄
+ Cp

{︄
E

[︄(︄∫︂ T

0
|σ0(s,ϖn,l

s )|2ds

)︄p]︄

+ E

[︄(︄∫︂ T

0
|σ(s,ϖn,l

s )|2ds

)︄p]︄}︄}︄

≤ 42p−1

{︄
E[|ξ|2p] + T 2p−1E

[︄∫︂ T

0
32p−1

(︄
Λ|Y n,l

s |2p + Λ|ϖn,l
s |2p

+ L2p(1 + |ϖn,l
s |)2p

)︄
ds

]︄
+ 2Cp

(︄
E

[︄∫︂ T

0
L2(1 + |ϖn,l

t |)2dt

]︄)︄p}︄

≤ 42p−1

{︄
E[|ξ|2p] + T 2p32p−1(Λ(Cp

1 + Cp
2 ) + L2p22p−1(1 + Cp

2 )) + 2CpL
2C2

2T

}︄

Therefore, considering the case p = 2 and applying Assumption 2.2, we conclude that:

E

[︄
sup

t∈[0,T ]
|Xn,l

t |4
]︄
≤ 43

{︄
E[|ξ|4] + T 433(Λ(C4

1 + C4
2 ) + L423(1 + C4

2 )) + 2C2L
2C2

2T

}︄
=: C2

3

Letting C4 := max{C2
1 , C

2
2 , C

2
3}, we can conclude that

E

[︄
sup

t∈[0,T ]
|ϖn,l

t |4 + sup
t∈[0,T ]

|Y n,l
t |4 + sup

t∈[0,T ]
|Xn,l

t |4
]︄
≤ C4.

In conclusion, we have shown that D2 is satisfied by (Xn,l)n,l∈N, (Y
n,l)n,l∈N and (ϖn,l)n,l∈N.

Thus, we can apply Proposition 2.28 and concluding that X∞ is optimal for the stochastic control

problem (2.69) and (2.70), when it is considered in the admissible probabilistic setup (Ω∞,F∞,P∞,FS,∞)

on which the process (ξ∞, (b∞, w∞),W∞) is defined.

Remark 2.30. By the same reasoning, it is possible to prove that conditions D1, D2 and D3 of

Proposition 2.28 are satisfied by (X0,n,l)n,l∈N, (Y
0,n,l)n,l∈N and (ϖn,l)n,l∈N. In particular, the uni-

form square integrability of (X0,n,l)n,l∈N and (Y 0,n,l)n,l∈N is guaranteed by Assumption B4. Hence,

the optimal control problem introduced in S-V is solved by the weak limit X0,∞ of the sequence

(X0,n,l)n,l∈N.
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2.3.3.5 Measurability of the solution to the optimal control problem S-V

As discussed at the beginning of this Section, we want to project the solution to the optimal

control problem introduced in S-V to the space of stochastic processes adapted to the filtration

FM,p,∞, introduced in (2.59). This step is crucial to guarantee the consistency condition for the

equilibrium price process introduced in (2.60). In particular, we aim at considering the projection

to (Ω∞,F∞,P∞, F
ϖ∞,b∞

) of the solution (X0,∞, Y 0,∞, Z0,0,∞,M0,∞) to the FBSDE associated

with the optimal control problem S-V. To do so, we consider the optimal control problem with the

same coefficients to the one introduced in S-V, but where the class of admissible controls is given

by H2(FM,p,∞;R), where FM,p,∞ is introduced in (2.59). We then introduce the following optimal

control problem

S-IV(2)

inf
β∈H2(FM,p,∞;R)

J0,ϖ∞
(β), J0,ϖ∞

(β) := E∞

[︄∫︂ T

0
f0(s,Xs, ϖ

∞
s , βs)ds+ g0(XT , ϖ

∞
T )

]︄
,

where the state variable is defined as the solution to⎧⎨⎩dX0
t = βtdt+ σM (t,ϖ∞

t )db∞t ,

X0
0 = x0,

In analogy to (2.35), the optimal control of the major player is defined by

ˆ︁β∞t := −Λ
0
(˜︁Y 0,∞

t +ϖ∞
t ),

where ˜︁Y 0,∞ is the solution to the backward component of the FBSDE:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d ˜︁X0,∞
t = −Λ

0
(˜︁Y 0,∞

t +ϖ∞
t )dt+ σM (t,ϖ∞

t )db∞t ,

d˜︁Y 0,∞
t = −cM0 (t,ϖ∞

t )dt+ ˜︁Z0,0,∞
t db∞t + d˜︂M0,∞

t ,˜︁X0,∞
0 = x0,˜︁Y 0,∞
T = g01(ϖ

∞
T ).

(2.73)

We recall that ˜︁Z0,0,∞ and ˜︂M0,∞ are the martingales obtained by the Kunita-Watanabe decomposi-

tion theorem, computing the conditional expectation of the random variable g01(ϖ
∞
T )+

∫︁ T
t cM0 (s,ϖ∞

s )ds

with respect to Fb∞,ϖ∞

t . In other words:

˜︁Y 0,∞
t = E∞

[︄
g01(ϖ

∞
T ) +

∫︂ T

t
cM0 (s,ϖ∞

s )ds

⃓⃓⃓⃓
⃓FM,p,∞

t

]︄
.

As discussed in [CD18b, Remark 1.8], the compatibility condition does not depend on the com-
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pleteness of filtrations. This allows us to conclude that:

˜︁Y 0,∞
t = E∞

[︄
g01(ϖ

∞
T ) +

∫︂ T

t
cM0 (s,ϖ∞

s )ds

⃓⃓⃓⃓
⃓Fb∞,ϖ∞

t

]︄
.

Due to the affine structure in the x variable of the cost functional of the major player, we notice

that: ˜︁Y 0,∞
t = E∞

[︄
g01(ϖ

∞
T ) +

∫︂ T

t
cM0 (s,ϖ∞

s )ds

⃓⃓⃓⃓
⃓Fb∞,ϖ∞

t

]︄
= E∞[Y 0,∞

t |Fb∞,ϖ∞

t ]. (2.74)

We are going to see in the next section that this property is fundamental for the consistency

condition (2.60).

2.3.3.6 Consistency condition for the limit game

The main consequence of Proposition 2.28 is that the optimal solution to the stochastic control

problem described in S-IV is given by the weak limit X∞ of the state variable, with the controls

given by the weak limit ˆ︁α∞ of the optimal controls for the discretized game, determined by the

solution to the FBSDE (2.51). The limit optimal control problem is defined on a suitable probability

space (Ω∞,F∞,P∞), endowed with the filtration FS,∞ = Fξ∞,b∞,W∞,w∞
. As a consequence, we

can introduce the FBSDE associated with the optimal state:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX∞
t = (ˆ︁α∞

t + l(t,ϖ∞
t ))dt+ σ0(t,ϖ

∞
t )db∞t + σ(t,ϖ∞

t )dw∞
t ,

X∞
0 = ξ∞,

dY∞
t = −∂xf(t,X∞

t , ϖ
∞
t )dt+ Z0,∞

t db1,∞t + Z∞
t dw

∞
t + dM∞

t ,

Y∞
T = ∂xg(X

∞
T , ϖ

∞
T ).

(2.75)

Since the optimal control is unique, it satisfies ˆ︁α∞
t = −Λ(Y∞

t +ϖ∞
t ). In (2.75), ϖ∞ = πϖ(W∞),

where πϖ denotes the projection on the first component. As a consequence Y∞
t = −(Λ

−1ˆ︁α∞
t +ϖ∞

t ),

therefore, Y∞ is a continuous function of ˆ︁α∞ and ϖ∞. We recall that (ˆ︁α∞, ϖ∞) are the weak limit

of (ˆ︁αn, ϖn), hence by the continuous mapping theorem Y∞
t is distributed as the weak limit of the

sequence −(Λ
−1ˆ︁αn

t + ϖn
t ) = Y n

t . In conclusion, the adjoint equation Y∞ is distributed like the

second component of the lifted process W∞.

The same reasoning can be applied to the optimal control problem introduced in S-V. On

(Ω∞,F∞,P∞), endowed with FM,∞, the solution to the optimal control problem is characterized

by the following FBSDE:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX0,∞
t = −Λ

0
(Y 0,∞

t +ϖ∞
t )dt+ σM0 (t,ϖn,l

t )db∞t ,

X0,∞
0 = x0,

dY 0,∞
t = −cM0 (t,ϖ∞

t )dt+ Z0,0,∞
t db∞t ,

Y 0,∞
T = g01(ϖ

∞
T ).
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In the following paragraph, we shall explain how the stability of weak equilibria for the two

optimal control problems leads to the solution to the mean-field equation for the price process

introduced in (2.20).

Limit in the consistency condition We recall that

ϖn,l
t = −(Λ + Λ

0
)−1E[ΛY n,l

t + Λ
0
Y 0,n,l
t |V n,l

i ], t ∈ [ti, ti+1),

for each n, l, where V
n,l
i := (V n,l

0 , . . . , V n,l
i ). We introduce the function:

Vn,l
t := V

n,l
i , t ∈ [ti, ti+1), ∀i = 0, 1 . . . , 2n − 1,

Vn,l
T := V

n,l
2n−1.

(2.76)

As a consequence, ϖn,l
t = −(Λ + Λ

0
)−1E[ΛY n,l

t + Λ
0
Y 0,n,l
t |Fn,l

t ] for all t ∈ [0, T ], where Fn,l
t :=

σ{Vn,l
s : s ≤ t}. In particular, ϖn,l

t is Fn,l
t -measurable for each t ∈ [0, T ]. Thus, we can define

Gn,l
t := σ{ϖn,l

s ,Vn,l
s : s ≤ t} ≡ Fn,l

t , for each t ∈ [0, T ]. We notice that

E[[ϖn,l
t + (Λ + Λ

0
)−1(ΛY n,l

t + Λ
0
Y 0,n,l
t )]|Gn,l

t ] = 0,∀t ∈ [0, T ], n, l ∈ N.

This is equivalent to:

E
[︂
h(ϖn,l

·∧t,V
n,l
·∧t)[ϖ

n,l
t + (Λ + Λ

0
)−1(ΛY n,l

t + Λ
0
Y 0,n,l
t )]

]︂
= 0, ∀t ∈ [0, T ], n, l ∈ N, (2.77)

for every h ∈ Cb(D([0, T ];R)×D([0, T ];R)).

Lemma 2.31. In the setting developed above, the process (Vn,2n)n, defined in (2.76), converges in

probability to b.

Proof. Similarly to [CD18b, Lemma 3.17], we introduce the event

An :=

{︄
sup

t∈[0,T ]
|bt| ≤ 22n − 1

}︄
.

On An, for every i ∈ {1, . . . , N − 1}, it holds that |V n,l
i − b i

2n
T | ≤

i
22n

≤ 1
2n . Therefore, let us define

Bn :=

{︄
sup

t∈[0,T ]
|Vn,2n

t − bt| ≤
1

2n−1
+ sup

s,t∈[0,T ]: |t−s|≤ 1
2n

|bs − bt|

}︄

We observe that, on An:

sup
t∈[0,T ]

|Vn,2n − bt| = max
i=0,...,2n−1

(︂
|Vn,2n

i
2n

T
− b i

2n
T |+ sup

t∈(ti,ti+1)
|Vn,2n

t − bt|
)︂
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≤ 1

2n
+ max

i=0,...,2n−1

(︂
sup

t∈(ti,ti+1)
|Vn,2n

t − bt + bti − bti |
)︂

≤ 1

2n
+ max

i=0,...,2n−1

(︂
|V n,2n

i − bti |+ sup
t∈(ti,ti+1)

|bti − bt|
)︂

≤ 1

2n−1
+ sup

s,t∈[0,T ],|s−t|< 1
2n

|bs − bt|.

This implies that An ⊆ Bn, for each n ∈ N: P(Bn) = P(Bn ∩An) + P(Bn ∩Anc). By the reflection

principle:

P(Anc) = 2P(bT ≥ 2n − 1) = 2
(︂
1− Φ

(︂2n − 1√
T

)︂)︂
n→∞−→ 0.

Thus:

lim
n→∞

P(Bn) = lim
n→∞

(P(An ∩Bn) + P(Anc ∩Bn)) = lim
n→∞

P(An) +

≤limn→∞ P(Anc)=0⏟ ⏞⏞ ⏟
lim
n→∞

P(Anc ∩Bn) = 1. (2.78)

For any ϵ > 0, we introduce the events:

Cn,ϵ :=

{︄
sup

t∈[0,T ]
|Vn,2n

t − bt| ≥ ϵ

}︄

Dn,ϵ :=

{︄
sup

s,t∈[0,T ]: |t−s|≤ 1
2n

|bs − bt|+
1

2n−1
≥ ϵ

}︄
.

In particular:

Cn,ϵ =

{︄
sup

t∈[0,T ]
|Vn,2n

t − bt| ≥ ϵ+ φn − φn

}︄
,

where φn := sups,t∈[0,T ]: |t−s|≤ 1
2n

|bs−bt|+ 1
2n−1 . Therefore, we can rewrite the events Dn,ϵ, Cn,ϵ, Bn

as follows:

Dn,ϵ = {φn − ϵ ≥ 0}

Cn,ϵ =

{︄
sup

t∈[0,T ]
|Vn,2n − bt| ≥ ϵ

}︄

Bn =

{︄
sup

t∈[0,T ]
|Vn,2n − bt| ≤ φn

}︄

Therefore:

Cn,ϵ = (Cn,ϵ ∩Dn,ϵ) ∪ (Cn,ϵ ∩Dn,ϵc) ⊆ Dn,ϵ ∪Bnc. (2.79)

By Lévy theorem ([KS98, Theorem 2.9.25]),

˜︁Ω :=

{︄
lim
n→∞

1

g(2−n)
sup

s,t∈[0,T ]: |t−s|≤2−n

|bs − bt| = 1

}︄
,
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then P(˜︁Ω) = 1, with g(x) :=
√︂
2x log 1

x . Hence, for each ω ∈ ˜︁Ω:
lim
n→∞

sup
s,t∈[0,T ]: |t−s|≤2−n

|bs(ω)− bt(ω)| = 0,

meaning that

∀ε > 0 ∃ n ∈ N : ∀n ≥ n : sup
s,t∈[0,T ]: |t−s|≤2−n

|bs(ω)− bt(ω)| < ε.

As a consequence, there exists nϵ ∈ N such that ∀n > nϵ:

sup
s,t∈[0,T ]: |t−s|≤2−n

|bs(ω)− bt(ω)|+
1

2n−1
< ε, ∀ω ∈ ˜︁Ω.

In conclusion, it holds that Dn,ϵ ∩ ˜︁Ω = ∅, for all n ≥ nϵ. Thus, by (2.78) and (2.79), the following

holds

lim
n→∞

P(Cn,ϵ) ≤ lim
n→∞

(P(Dn,ϵ) + P(Bnc)) = 0.

This is equivalent to say that {Vn,2n} converges in probability on C([0, T ];R) to b and therefore

also in distribution.

We apply Lemma 2.31, to prove the following result.

Theorem 2.32. In the framework introduced at the beginning of this section, equation (2.60) is

satisfied.

Proof. Let us notice that (2.60) is equivalent to:

E∞[h(ϖ∞
·∧t, b

∞
·∧t)(ϖ

∞
t + (Λ + Λ

0
)−1(ΛY∞

t + Λ
0
Y 0,∞
t ))] = 0, t ∈ [0, T ].

If we pass to the limit in equation (2.77), we get:

0 = lim
n→∞

E
[︂
h(ϖn,2n

·∧t ,V
n,2n
·∧t )(ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))

]︂
.

To bring the limit inside the expectation, we need to approximate ϖn,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t +

Λ
0
Y 0,n,2n
t ) with the bounded function hk(ϖ

n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )), where

hk(x) :=

⎧⎨⎩x if |x| ≤ k,

k sgn(x) otherwise.
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We proceed as follows:

0 = lim
n→∞

E
[︂
h(ϖn,2n

·∧t ,V
n,2n
·∧t )(ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))

= lim
n→∞

{︂
E[h(ϖn,2n

·∧t ,V
n,2n
·∧t )hk(ϖ

n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))]+

+ E
[︂
h(ϖn,2n

·∧t ,V
n,2n
·∧t )(ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )+

− hk(ϖ
n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )))

]︂}︂
= lim

n→∞

{︂
E[h(ϖn,2n

·∧t ,V
n,2n
·∧t )hk(ϖ

n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))] +Ak

n(t)
}︂
,

where

Ak
n(t) := E

[︂
h(ϖn,2n

·∧t ,V
n,2n
·∧t )(ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )+

− hk(ϖ
n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )))

]︂}︂
By the convergence in distribution, the first term converges to:

lim
n→∞

E[h(ϖn,2n
·∧t ,V

n,2n
·∧t )hk(ϖ

n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))] =

= E∞[h(ϖ∞
·∧t, b

∞
·∧t)hk(ϖ

∞
t + (Λ + Λ

0
)−1(ΛY∞

t + Λ
0
Y 0,∞
t ))],

(2.80)

for almost every t ∈ [0, T ]. For the second term we introduce the events

Ak
n(t) := {|ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )| ≥ k},˜︁Ak

n := { sup
t∈[0,T ]

|ϖn,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )| ≥ k}.

Clearly Ak
n(t) ⊆ ˜︁Ak

n for every ∈ [0, T ]. Denoting by Lh a bound for h, we notice that

Ak
n(t) ≤ |E[h(ϖn,2n

·∧t ,V
n,2n
·∧t )((ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))+

− hk(ϖ
n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )))]|

≤ E[|h(ϖn,2n
·∧t ,V

n,2n
·∧t )((ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))+

− hk(ϖ
n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )))|1Ak

n(t)
]

≤ LhE[

≤|(ϖn,2n
t +(Λ+Λ

0
)−1(ΛY n,2n

t +Λ
0
Y 0,n,2n
t ))|⏟ ⏞⏞ ⏟

(|(ϖn,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))| − k)1Ak

n(t)
]

≤ Lh

[︂
E[|ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )|2]P(Ak

n(t))
]︂ 1

2
.

Applying (2.49), it is straightforward to show that

P(Ak
n) ≤

1

k
E

[︄
sup

t∈[0,T ]
|ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )|

]︄
≤ 1

k
C
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Analogously E[|ϖn,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t )|2] ≤ CT . Let us notice that ˜︁C and C do

not depend on n. Hence, Ak
n(t) ≤ 1√

k
C, where C does not depend on n. Moreover, let us observe

that

0 = lim
n→∞

E[h(ϖn,2n
·∧t ,V

n,2n
·∧t )(ϖn,2n

t + (Λ + Λ
0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))]

= lim
n→∞

{︂
E[h(ϖn,2n

·∧t ,V
n,2n
·∧t )hk(ϖ

n,2n
t + (Λ + Λ

0
)−1(ΛY n,2n

t + Λ
0
Y 0,n,2n
t ))] +Ak

n(t)
}︂

(2.80) = E∞[h(ϖ∞
·∧t, b

∞
·∧t)hk(ϖ

∞
t + (Λ + Λ

0
)−1(ΛY∞

t + Λ
0
Y 0,∞
t )] + lim

n→∞
Ak

n(t).

This holds for every k ∈ N. As a consequence, we can take the limit for k → ∞:

0 = E∞[h(ϖ∞
·∧t, b

∞
·∧t)hk(ϖ

∞
t + (Λ + Λ

0
)−1(ΛY∞

t + Λ
0
Y 0,∞
t )] + lim

k→∞
lim
n→∞

Ak
n(t)

= E∞[h(ϖ∞
·∧t, b

∞
·∧t)(ϖ

∞
t + (Λ + Λ

0
)−1(ΛY∞

t + Λ
0
Y 0,∞
t ))]

Indeed:

0 ≤ lim
k→∞

lim
n→∞

Ak
n(t) ≤ lim

k→∞
lim
n→∞

C√
k
= 0.

This implies that ϖ∞
t = −(Λ + Λ

0
)−1E∞[ΛY∞

t + Λ
0
Y 0,∞
t |Fϖ∞,b∞

t ], a.e. t ∈ [0, T ], where ˜︁Y 0,∞

adjoint process introduced in (2.73). By (2.74), we conclude that:

ϖ∞
t = −(Λ + Λ

0
)−1(E∞[ΛY∞

t |Fϖ∞,b∞

t ] + Λ
0 ˜︁Y 0,∞

t ). (2.81)

Remark 2.33. To guarantee that ϖ∞ solves (2.81), we replaced E∞[Y 0,∞
t |Fb∞,ϖ∞

t ] with ˜︁Y 0,∞
t . To

apply this substitution, the hypothesis of a deterministic initial value x0 for the state variable of the

major player is crucial. Indeed, if x0 were defined as a random variable ξ0 independent of b∞ and

ϖ∞ and observable only by the major player, then we would have to add ξ0 to the filtration FM,∞,

introduced in (2.55), to which the controls of the major player are adapted. As a consequence,

its projection FM,∞,p, introduced in (2.59), would be defined as Fξ0,ϖ∞,b∞ . As a consequence, the

random process ˜︁Y 0,∞ would not be adapted to Fϖ∞,b∞ and ϖ∞ would not satisfy (2.81).

Since ˜︁Y 0,∞ is adapted to Fϖ∞,b∞ , we can define on (Ω∞,F∞,P∞,FS,∞) the two optimal control

problems S-IV and S-IV(2) and conclude that ϖ∞ is determined as the solution to (2.81).

We have now all the ingredients to prove Theorem 2.18

Proof of Theorem 2.18. In Subsection 2.3.3.2, we prove that the sequence (ξ, b,ϖn,l, w,Xn,l, X0,n,l)

is tight on Ωinput × C([0, T ];R) × C([0, T ];R). Therefore, we introduce a weak limit, defined on a

suitable probability space (Ω∞,F∞,P∞) and denoted by (ξ∞, b∞, ϖ∞, w∞, X∞, X0,∞). Hence,

by Lemma 2.27, we show that ˜︁ΘM,∞, introduced in (2.57) and ˜︁ΘS,∞, introduced in (2.58), are

respectively compatible with FM,∞, introduced in (2.55) and FS,∞, introduced in (2.56). This
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result, together with Proposition 2.28, guarantees that:

(Ω∞,F∞,P∞,FS,∞, (ξ∞, (b∞, w∞),W∞)),

(Ω∞,F∞,P∞,FM,∞, (x0, b
∞,WM,∞))

are admissible in the sense of Definition 2.9. Hence, we introduce the optimal control problems

defined in S-IV and S-V. We exploit the linearity of the cost functional of the major player in the

x variable to introduce, in S-IV(2), another control problem, where the class of admissible controls

is H2(Fϖ∞,b∞ ;R). Finally, in Theorem 2.32, we derive the consistency condition (2.60) for the equi-

librium price process ϖ∞. In conclusion, we prove that (Ω∞,F∞,P∞,FS,∞, (ξ∞, (b∞, w∞),W∞))

satisfies Definition 2.17.

Remark 2.34 (On the strategy of the major player). The main consequence of Theorem 2.18 is that

the major player cannot hide his strategy from the standard player. In analogy to Remark 2.13,

we notice that as soon as the major agent adopts a strategy depending on her private information,

the typical standard player can deduce it through the observation of the mean-field price process

ϖ introduced in Definition 2.17:

ˆ︁βt := −Λ
0
(Y 0

t +ϖt) = (Λ + Λ
0
)ϖt + E[ΛYt|Fb,ϖ

t ]− Λ
0
ϖt = Λ(ϖt + E[Yt|Fb,ϖ

t ]), t ∈ [0, T ].

2.4 A weak version of the market clearing condition

2.4.1 Existence of stronger solutions under suitable conditions

In Section 2.2, we proposed a methodology to construct a stochastic process ϖmf that solves equa-

tion (2.20). As discussed in Section 2.3, we adapted the approach proposed in [CD18b, Chapter 3],

based on the discretization of the common source of randomness. The natural question one may ask

at this point is: “given the existence of the solution to (2.20), how is it related to the price process

under which the market clearing condition is satisfied in the case of finitely many players?” In other

words, we want to understand how the substitution made passing to the mean-field limit impacts

on the market clearing condition. In particular, we shall prove that a weak version of the market

clearing condition (2.15) is satisfied, when the N players solve their stochastic optimal control

problem taking the process ϖmf as an exogenous price process, under the additional assumption

that the cost functional of the standard player is affine in the x variable.

To prove this result, the first issue we have to face is related to the weak form of Definition

2.17, obtained as the weak limit of a sequence of discretized solutions. In particular, we cannot

fix a priori how rich the information structure given by the filtration F is, because the solution we

are going to construct is defined only in distribution. Hence, we have to construct the (N + 1)-

player market (i.e. the objective functional and the dynamics introduced in Sections 2.2.2.1 and

2.2.2.2) in the probabilistic setup in which the weak equilibrium is defined. It is necessary to do
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so, because otherwise we cannot suppose that the (N + 1)-player game is defined on a probability

space sufficiently rich to guarantee the existence of ϖmf. We recall that the consistency condition in

Definition 2.17 refers to an optimal control problem for the typical standard player that is adapted

to a larger filtration (generated also by the Y -component of the lifted environment). The main

consequence of the dependence on this larger filtration is that we cannot construct the solution on a

canonical space of the form Ω0×Ω1, where Ω0 should be the domain of (b,ϖmf) and Ω1 the domain

of definition of the idiosyncratic noises (ξ, w). This is due to the fact that we cannot guarantee

independence between Y and the idiosyncratic noise w. To overcome this difficulty, we require more

structure to the optimal control problem of the standard player. In analogy to Subsection 2.3.3.5,

we suppose additionally that the cost functional of the optimal control problem of the standard

player is affine in the x variable:

Assumption 2.35. A6 The functions f and g introduced in Section 2.2.2.1 satisfy:

f(t, x,ϖ) = xcS(t,ϖ),

g(x,ϖ) = xg1(ϖ).

for suitable continuous and bounded functions cS and g1.

In other words, the revenues of the standard player are cashflows dependent on the price process

ϖ. Under Assumption A6, we can exploit the linear structure of the cost functional to define an

optimal control problem for the typical standard player, where the admissible controls are adapted

to the filtration Fϖ∞,b∞,w∞
(in analogy to the procedure followed in Subsection 2.3.3.5). Therefore,

we introduce the following optimal control problem for the typical standard player, defined using

the same coefficients introduced in S-IV

S-III(2)

inf
α∈H2(Fξ∞,b∞,ϖ∞,w∞ ;R)

Jϖ∞
(α), Jϖ∞

(α) = E∞

[︄∫︂ T

0
f(s,Xs, ϖ

∞
s , αs)ds+ g(XT , ϖ

∞
T )

]︄

and the state process solves the following SDE⎧⎨⎩dXt = (αt + l(t,ϖ∞
t ))dt+ σ0(t,ϖ

∞
t )db∞t + σ(t,ϖ∞

t )dw∞
t ,

X0 = ξ∞.

The candidate optimal control for this problem is given by the function ˆ︁α(y,ϖ) := −Λ(y + ϖ)

introduced in (2.33). Hence, applying the stochastic maximum principle, the solution to the optimal
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control problem S-III(2) is defined by the following FBSDE:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d ˜︁X∞
t = (−Λ(˜︁Y∞

t +ϖ∞
t ) + l(t,ϖ∞

t ))dt+ σ(t,ϖ∞
t )db∞t + σ(t,ϖ∞

t )dw∞
t ,

d˜︁Y∞
t = −cS(t,ϖ∞

t )dt+ ˜︁Z0,∞
t db∞t + d˜︂M∞

t ,˜︁X∞
0 = ξ∞,˜︁Y∞
T = g1(ϖ

∞
T ).

(2.82)

In analogy to Subsection 2.3.3.5, it is straightforward to show that:

E∞[˜︁Y∞
t |Fb∞,ϖ∞

t ] = E∞[Y∞
t |Fb∞,ϖ∞

t ],

where Y∞ is the adjoint process associated with the optimal control problem introduced in S-IV.

We recall that the class of admissible controls, in S-IV, was H2(FS,∞;R), with FS,∞ introduced in

(2.56). As a consequence, the price process ϖ∞, defined in (2.81) is equivalent to:

ϖ∞
t = −(Λ + Λ

0
)−1(E∞[Λ˜︁Y∞

t |Fϖ∞,b∞

t ] + Λ
0 ˜︁Y 0,∞

t ), t ∈ [0, T ]. (2.83)

Inspired by this reasoning, we introduce the following definition

Definition 2.36 (Unlifted mean-field equilibrium price process). We say that (Ω,F ,P,F, ξ, (b, w), ϖ)

is an unlifted mean-field equilibrium price process if:

• F = Fξ,b,w,ϖ;

• ((Ω,F ,P),F, (ξ, (b, w), ϖ)) and ((Ω,F ,P),Fϖ,b, (x0, (b, w), ϖ)), for a constant x0 ∈ R, are

admissible probabilistic setups in the sense of Definition 2.9.

• ϖ solves equation (2.83), where ˜︁Y∞ and ˜︁Y 0,∞ are respectively the backward components of

the FBSDE (2.82) and (2.73), associated with the stochastic maximum principle.

In the remaining part this section, when the framework is clear from the context, we will refer

to an unlifted mean-field equilibrium price process simply by mean-field equilibrium price process.

We can prove now the following result:

Theorem 2.37. In the setting of Theorem 2.18, under the additional Assumption A6, an unlifted

mean-field equilibrium price process in the sense of Definition 2.36 exists.

Proof. By Theorem 2.18, a mean-field equilibrium price process

(Ω∞,F∞,P∞,F∞, ξ∞, (b∞, w∞), (ϖ∞, Y∞)),

satisfying Definition 2.17 exists. Under Assumption A6, we can introduce the optimal control

problems S-III(2) and S-IV(2). Therefore, by the Yamada-Watanabe theorem, in the version

introduced in [CD18b, Theorem 1.33], the solutions of the FBSDE (2.82) and (2.73) are respectively
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adapted to Fξ,b,w,ϖ and Fb,ϖ. This fact, together with (2.83), yields the existence of an unlifted

mean-field equilibrium price process in the sense of Definition 2.36.

We consider an unlifted mean-field equilibrium price process:

(Ω∞,F∞,P∞,Fξ,b∞,ϖ∞,w∞
, ξ∞, (b∞, w∞), ϖ∞). (2.84)

Following the approach described in the proof of [CD18b, Theorem 3.13], it is convenient to transfer

(2.84) on the extended canonical space⎧⎨⎩Ω
0
:= C([0, T ];R)×D([0, T ];R),

Ω
1
:= [0, 1)× C([0, T ];R).

As we are going to see in the next subsection, this procedure enables us to define the market with

finitely many standard agents on the same probability space on which the mean-field equilibrium

price process is defined. This is crucial to prove the asymptotic version of the market clearing

condition satisfied by the mean-field equilibrium price process.

We equip Ω
0
with the law of the process (ξ∞, b∞, w∞, ϖ∞) under P∞. Moreover, introducing

the Borel sigma-algebra F0
, we denote the canonical space by (Ω

0
,F0

,P0
). On Ω, we define the

canonical process by (b,ϖmf), while the canonical filtration is F0
. Similarly, we equip Ω

1
with

the law Leb⊗W, where W is the Wiener measure. Introducing, the Borel sigma-algebra F1
, we

denote the canonical space by (Ω
1
,F1

,P1
). Moreover, we define the canonical process by Ω

1
by

(ξ1,W 1) and the canonical filtration by F
1
. Hence, we denote by (Ω,F ,F,P) the completion of the

product of the spaces (Ω
0
,F0

,P0
) and (Ω

1
,F1

,P1
), on which the canonical process (ξ1, b,ϖmf,W 1)

is defined. The filtration F is defined as the complete and right continuous augmentation of the

canonical filtration. We recall, by [CD18b, Theorem 1.33], there exist two measurable functions ΦS

and ΦM such that:

( ˜︁X∞, ˜︁Y∞, ˜︁Z0,∞, ˜︁Z∞,˜︂M∞) = ΦS(ξ∞, b∞, ϖ∞, w∞),

( ˜︁X0,∞, ˜︁Y 0,∞, ˜︁Z0,0,∞,˜︂M0,∞) = ΦM (b∞, ϖ∞).

We notice that the two distributions P◦ (ξ1, b,ϖmf,W 1)−1 and P∞ ◦ (ξ∞, b∞, ϖ∞, w∞)−1 are equal.

Thus, we can introduce the optimal control problems with the same coefficients of S-III(2) and

S-IV(2) on Ω, where the filtration to which the controls are adapted is respectively given by F
and Fϖmf,b. Again by [CD18b, Theorem 1.33], since

P ◦ (ξ1, (b,W 1), ϖmf)−1 = P∞ ◦ (ξ∞, (b∞, w∞), ϖ∞)−1,

the solutions to the FBSDE systems associated with the stochastic maximum principle applied to

the optimal control problems for the standard and the major agent defined on the canonical space
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are respectively defined by

(X1, Y 1, Z0,1, Z1,M1) = ΦS(ξ1, b,ϖmf,W 1),

(X0, Y 0, Z0,0,M0) = ΦM (b,ϖmf).

As a consequence, the law of the solutions of the optimal control problems introduced in Ω coincides

with the ones defined on Ω∞. Therefore, we can conclude that:

ϖmf
t = −(Λ + Λ

0
)−1(Λ E[Y 1

t |F
b,ϖmf

t ] + Λ
0
Y 0
t ), ∀t ∈ [0, T ]. (2.85)

Indeed for t ∈ [0, T ], we have that

0 = E∞[h(b∞·∧t, ϖ
∞
·∧t)[ϖ

∞
t + (Λ + Λ

0
)−1(Λ˜︁Y∞

t + Λ
0
Y 0,∞
t )]]

= E[h(b·∧t, ϖmf
·∧t)[ϖ

mf
t + (Λ + Λ

0
)−1(ΛY 1

t + Λ
0
Y 0
t )]].

(2.86)

2.4.2 Asymptotic market clearing condition

We consider N−1 copies of the space (Ω1,F1,P1,F1
) (the second component of the canonical space

introduced in Section 2.4.1), denoted by (Ωj ,F j ,Pj , F
j
)Nj=2. By construction, for each j = 2, . . . , N ,

(Ωj ,F j ,Pj , F
j
) is rich enough to carry a Brownian motionW j = (W j

t )t∈[0,T ] and a random variable

ξj distributed as ξ and independent of W j . Thus, we can define the product space:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω := Ω0 × Ω1 × Ω2 × · · · × ΩN ;

(F ,P) := (F0 ⊗F1 ⊗ · · · ⊗ FN ,P0 ⊗ . . .PN );

F := (F0
t ⊗ · · · ⊗ FN

t )t∈[0,T ].

(2.87)

As a consequence, on Ω, N independent Brownian motions (W j)j=1,...,N are defined. The jth

player, whose state variable is given by the process Xj defined on (Ω,F ,P,F), must solve its

control problem applying controls belonging to the set Aj := H2(Fϖmf,b,W j
;R). Analogously, the

class of admissible controls for the major player is A0 := H2(Fϖmf,b;R). By Assumptions B3 and

B4, the optimal controls for the jth-standard player and the major player are given by:

ˆ︁αj,mf
t := −Λ(Y j

t +ϖmf
t ), (2.88)ˆ︁βmf

t := −Λ
0
(Y 0

t +ϖmf
t ), (2.89)

whatever the price process ϖmf is. Analogously to equation (2.22), we can introduce the following

system of FBSDE in Ω for each j = 1, . . . , N⎧⎨⎩dX
j
t = (−Λ(Y j

t +ϖmf
t ) + l(t,ϖmf

t ))dt+ σ0(t,ϖmf
t )dbt + σ(t,ϖmf

t )dW j
t , Xj

0 = ξj

dY j
t = −cS(t,ϖmf

t )dt+ Z0,j
t dbt + Zj

t dWt + dM j
t , Y j

T = g1(ϖ
mf
T ).

(2.90)
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Moreover, on Ω, the FBSDE analogous to (2.23) is defined by⎧⎨⎩dX0
t = −Λ

0
(Y 0

t +ϖmf
t )dt+ σ0(t,ϖmf

t )dbt, X0
0 = x0,

dY 0
t = −cM0 (t,ϖmf

t )dt+ Z0,0
t dbt + Z0

t dWt + dM0
t , Y 0

T = g01(ϖ
mf
T ).

(2.91)

By construction (ξj)Nj=1 is a sequence of i.i.d. random variables on Ω, distributed like the random

variable ξ introduced in Subsection 2.2.2.1. Moreover, also ϖmf, introduced in (2.85), can be

interpreted as a stochastic process defined on Ω.

We have now all the ingredients to prove the main result of this section

Theorem 2.38. Assume that there exists a weak equilibrium ϖmf solution to (2.85), a unique

solution (X,Y, Z0, Z,M) of system (2.22) and a unique solution (X0, Y 0, Z0,0,M0) of (2.23) in

the probabilistic setup (Ω,F ,P,F) introduced in (2.87). We consider the family of optimal controls

for the (N + 1)-player game in the form of equations (2.88), (2.89) i.e. the optimal control in

which the price is the equilibrium price for the limit game introduced in equation (2.85). Then, the

following weak version of the market clearing condition, given by the existence of a constant C,

holds:

E

[︄∫︂ T

0

⃓⃓⃓ 1
N

N∑︂
j=1

ˆ︁αmf,j
t + ˆ︁βmf

t

⃓⃓⃓2
dt

]︄
≤ C

N
. (2.92)

Proof. First of all, we notice that, by (2.85)

1

N

N∑︂
j=1

ˆ︁αmf,j
t + ˆ︁βmf

t =
1

N

N∑︂
j=1

−Λ(Y j
t +ϖmf

t )− Λ
0
(Y 0

t +ϖmf
t )

= −Λ

(︄
1

N

N∑︂
j=1

Y j
t

)︄
− Λϖmf

t − Λ
0
Y 0
t − Λ

0
ϖmf

t

= −Λ

(︄
1

N

N∑︂
j=1

Y j
t

)︄
+ (Λ + Λ

0
)(Λ + Λ

0
)−1(ΛE[Yt|Fϖmf,b

t ] + Λ
0
Y 0
t )− Λ

0
Y 0
t

= −Λ

(︄
1

N

N∑︂
j=1

Y j
t − ΛE[Yt|Fϖmf,b

t ]

)︄
.

(2.93)

Applying the Yamada-Watanabe theorem ([CD18b, Theorem 1.33]) to the FBSDEs defined on

(Ω,F ,P,F), it is possible to show that there exists a progressively measurable function Ψ such

that:

(Xj
t , Y

j
t )t∈[0,T ] := Ψ(ξj , b, (−E[Yt|Fϖmf,b

t ])t∈[0,T ] + Λ0Y 0,W j), j = 1, . . . , N, (2.94)

where we separated the two stochastic terms defining the process ϖmf. As a consequence, (Y j)j

are i.i.d. conditionally to Fϖmf,b, because the only stochastic factor that is different in j is the
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idiosyncratic noise and the initial conditions, that form an i.i.d. random sequence in j = 1, . . . , N

(the function Ψ is the same for each j). As we supposed, the idiosyncratic noises are a sequence of

pairwise independent Brownian motions, thus the i.i.d. property holds. This implies that:

E[Y j
t |F

ϖmf,b
t ] = E[Y 1

t |F
ϖmf,b
t ], ∀t ∈ [0, T ], ∀j = 1, . . . , N.

Hence, we can substitute E[Y j
t |F

ϖmf,b
t ] in the last term of (2.93), thus obtaining

1

N

N∑︂
j=1

ˆ︁αj
mf,t = −Λ

(︄
1

N

N∑︂
j=1

Y j
t − E[Y 1

t |F
ϖmf,b
t ]

)︄
.

We notice that the function F : Ω0 × Ωn → R defined by:

F (t, (ω0, . . . , ωN )) :=
⃓⃓⃓ 1
N

N∑︂
j=1

Y j
t (ω

0, ωj)− E[Y 1
t |F

ϖmf,b
t ](ω0)

⃓⃓⃓2
,

is nonnegative and measurable (because Y j is progressive measurable, see [CD18b, Remark 1.34]).

This implies that we can apply Fubini’s theorem

E

[︄∫︂ T

0

⃓⃓⃓⃓
⃓ 1N

N∑︂
j=1

Y j
t − E[Y 1

t |F
ϖmf,b
t ]

⃓⃓⃓⃓
⃓
2

dt

]︄
=

∫︂ T

0
E

[︄⃓⃓⃓⃓
⃓ 1N

N∑︂
j=1

Y j
t − E[Y 1

t |F
ϖmf,b
t ]

⃓⃓⃓⃓
⃓
2]︄
dt.

We notice that:

(A) := E

[︄⃓⃓⃓ 1
N

N∑︂
j=1

Y j
t − E[Y 1

t |F
ϖmf,b
t ]

⃓⃓⃓2]︄
=

1

N2
E

[︄⃓⃓⃓ N∑︂
j=1

(︂
Y j
t − E[Y 1

t |F
ϖmf,b
t ]

)︂⃓⃓⃓2]︄

=
1

N2
E

[︄
N∑︂
j=1

⃓⃓⃓
Y j
t − E[Y j

t |F
ϖmf,b
t ]

⃓⃓⃓2]︄
+ 2E

[︄
N∑︂

h,k=1, h ̸=k

(︂
Y h
t − E[Y h

t |F
ϖmf,b
t ]

)︂(︂
Y k
t − E[Y k

t |F
ϖmf,b
t ]

)︂]︄
.

Moreover

(Bh,k) := E
[︂(︂
Y h
t − E[Y h

t |F
ϖmf,b
t ]

)︂(︂
Y k
t − E[Y k

t |F
ϖ,b
t ]

)︂]︂
= E

[︂
Y h
t Y

k
t

]︂
− E

[︂
Y h
t E
[︂
Y k
t |F

ϖmf,b
t

]︂]︂
− E

[︂
Y k
t E
[︂
Y h
t |F

ϖmf,b
t

]︂]︂
+ E

[︂
E
[︂
Y k
t |F

ϖmf,b
t

]︂
E
[︂
Y h
t |F

ϖmf,b
t

]︂]︂
= E

[︂
Y h
t Y

k
t

]︂
− E

[︂
E
[︂
Y k
t |F

ϖmf,b
t

]︂
E
[︂
Y h
t |F

ϖmf,b
t

]︂]︂
= 0,

where the third equality holds by the tower property and the fourth is due to the fact that Y j =

Φy(ξ
j , b,ϖmf,W j) (Ψy is the projection on the Y component of the function Ψ introduced in
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equation (2.94)). Again by the tower property:

E
[︂
Y h
t Y

k
t

]︂
= E

[︂
E
[︂
Y h
t Y

k
t

⃓⃓⃓
Fϖmf,b
t

]︂]︂
= E

[︂
E
[︂
Y k
t |F

ϖmf,b
t

]︂
E
[︂
Y h
t |F

ϖmf,b
t

]︂]︂
.

Hence, we observe that

E
[︂⃓⃓⃓
Y j
t − E[Y j

t |F
ϖmf,b
t ]

]︂
= E

[︂⃓⃓⃓
Y j
t

⃓⃓⃓2]︂
− 2E

[︂
Y j
t E
[︂
Y j
t

⃓⃓⃓
Fϖmf,b
t

]︂]︂
+ E

[︂
E2
[︂
Y j
t

⃓⃓⃓
Fϖmf,b
t

]︂]︂
= E

[︂⃓⃓⃓
Y j
t

⃓⃓⃓2]︂
− E

[︂
E2
[︂
Y j
t

⃓⃓⃓
Fϖmf,b
t

]︂]︂
Since by the Yamada Watanabe theorem (Y j

t )
Nn
j=1 is a sequence of F

ϖmf,b
t -conditionally i.i.d. random

variables, also E
[︂
Y j
t

⃓⃓⃓
Fϖmf,b
t

]︂]︂
is i.i.d. and

E
[︂
|Y j

t |2
]︂
= E

[︂
E
[︂
|Y j

t |2
⃓⃓⃓
Fϖmf,b
t

]︂]︂
= E

[︂
E
[︂
|Y 1

t |2
⃓⃓⃓
Fϖmf,b
t

]︂]︂
= E

[︂
|Y 1

t |2
]︂
.

Finally, we conclude that

E

[︄⃓⃓⃓⃓
⃓ 1N

N∑︂
j=1

Y j
t − E[Y 1

t |F
ϖmf,b
t ]

⃓⃓⃓⃓
⃓
2]︄

=
1

N2
E

[︄
N∑︂
j=1

⃓⃓⃓
Y j
t − E[Y j

t |F
ϖmf,b
t ]

⃓⃓⃓2]︄

=
1

N2

N∑︂
j=1

(︂
E
[︂⃓⃓⃓
Y j
t

⃓⃓⃓2]︂
− E

[︂
E2
[︂
Y j
t

⃓⃓⃓
Fϖmf,b
t

]︂]︂)︂

=
1

N2

N∑︂
j=1

(︂
E
[︂⃓⃓⃓
Y 1
t

⃓⃓⃓2]︂
− E

[︂
E2
[︂
Y 1
t

⃓⃓⃓
Fϖmf,b
t

]︂]︂)︂
=

1

N

(︂
E
[︂⃓⃓⃓
Y 1
t

⃓⃓⃓2]︂
− E

[︂(︂
E
[︂
Y 1
t

⃓⃓⃓
Fϖmf,b
t

]︂)︂2]︂)︂ N→∞−→ 0,

because the two terms in the numerator are finite. Indeed, by Jensen’s inequality:

E
[︂(︂

E
[︂
Y 1
t

⃓⃓⃓
Fϖmf,b
t

]︂)︂2]︂
≤ E

[︂
E
[︂
|Y 1

t |2
⃓⃓⃓
Fϖmf,b
t

]︂]︂
= E

[︂⃓⃓⃓
Y 1
t

⃓⃓⃓2]︂
≤ E

[︂
sup

t∈[0,T ]

⃓⃓⃓
Y 1
t

⃓⃓⃓2]︂
<∞.

In conclusion, since by construction Y 1 ∈ S2(F;R), we have that

∫︂ T

0
E

[︄⃓⃓⃓⃓
⃓ 1N

N∑︂
j=1

Y j
t − E[Y 1

t |F
ϖmf,b
t ]

⃓⃓⃓⃓
⃓
2]︄
dt =

∫︂ T

0

1

N

(︂
E
[︂⃓⃓⃓
Y 1
t

⃓⃓⃓2]︂
− E

[︂(︂
E
[︂
Y 1
t

⃓⃓⃓
Fϖmf,b
t

]︂)︂2]︂)︂
dt

≤
∫︂ T

0

2

N
E
[︂
sup

s∈[0,T ]

⃓⃓⃓
Y 1
s

⃓⃓⃓2]︂
ds

≤
2TE

[︂
sups∈[0,T ]

⃓⃓⃓
Y 1
s

⃓⃓⃓2]︂
N

=:
C

N
.
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2.5 Conclusions and further developments

In this chapter we proved the existence of the mean-field limit of a stochastic process representing

the market clearing price ϖ in a market populated by a family of agents accessing different amounts

of information. Due to the complexity of the market clearing condition (2.15), we considered the

mean-field limit N → ∞ in the number of standard agents. We derived the mean-field equation

for the price process (see (2.20)). We proved the existence of a solution to (2.20) in the canonical

space. The approximation of the price process ϖ satisfying the market clearing condition for the

(N +1)-player market determined by the mean-field equation (2.20) can be motivated as in Section

2.4. In particular, we considered a market with finitely many agents (N standard agents and one

major agent), for which the cost functional is affine in the x variable and we assumed that every

agent takes as given price process the solution to (2.20). Hence, the asymptotic formulation of the

market clearing condition expressed by (2.92) is satisfied.

We observed that the market clearing condition (2.15) establishes a relation between the

strategies of the major player and the standard agents. The strategy of the major player is not

a priori measurable with respect the filtration generated by the stochastic processes that can be

observed by the standard players. However, the market clearing condition imposes an intrinsic link

between the strategy of the major player, the price process ϖ and the common noise b. Indeed,

as discussed in Section 2.2.4.2, ˆ︁β(N), defined in (2.11), is adapted to the filtration generated by

the processes ϖ and b. This implies that, the way in which the additional source of information is

exploited by the major player can be measured by the standard agents through the observation of

the market clearing price process. Indeed, when the major player exploits this additional informa-

tion in the choice of the strategy ˆ︁β(N), (i.e. she applies a strategy ˆ︁β(N) that does not depend only

on b), immediately ˆ︁β(N) (and consequently the application of the additional information) can be

deduced by the standard players, through the observation of the equilibrium price ϖ. Under this

measurability constraint, the target function of the major player is supposed to be adapted to the

filtration generated by the common noise b and the market clearing price process ϖ.

To construct the solution to (2.20), we adapted the strategy the developed in [CD18b, Chapter

3] to the setting of continuous flows of probability measure to the context of càdlàg processes. We

constructed the solution to (2.20) on the canonical space as the weak limit of approximated solution

defined on a discretized space.

Further developments Focusing on the technical challenges of our approach, an aspect worth

of further investigation is the issue of compatibility. In particular, in Section 2.3.3.3, we guaranteed

the compatibility between the process (ξ∞, b∞, ϖ∞, w∞) and the filtration F∞ of typical standard

player, substituting ϖ∞ with the lifted process (ϖ∞, Y∞). The main problem of this approach

is that Y∞ is not independent of w∞. As a consequence, we cannot transfer the solution on the

extended canonical space endowed with a probability measure of the form P0 ⊗ P1, where P0 is

associated with the law of the triplet (b∞, ϖ∞, Y∞) and P1 the law of (ξ∞, w∞). This is crucial
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to define the (N + 1)-player game in the mean-field setting. It would be interesting to understand

if it is possible to either give a financial interpretation to the lifted process (ϖ∞, Y∞) or lift the

price process ϖ∞, adding a stochastic process that captures the extra randomness given by Y∞

but that is independent of w∞.

Another issue to address is related to the proof of the existence of a solution ϖN to equation

(2.17) for the equilibrium price process for the (N + 1)-player market. This should be a first step

to show that, at least in the case of affine costs in the x variable, the convergence of (ϖN )N∈N to

the mean-field price ϖmf solution to (2.20) is guaranteed. In [FT22c], strong convergence of the

(N + 1)-player market to the mean-field one is proved. However, the approach of [FT22c] cannot

be directly applied to our setting.

A possible generalization of the market model can take into account the case in which the major

informed player is no longer a price taker, but she can manipulate the price through her strategy,

in analogy to [FT22b]. It could be interesting to establish a link between this model and the results

of [BCR23].

Generalizing the setting we developed, we could also study the case of a market model populated

by two families of agents that access different amount of information. In particular, we could

consider the case of a family of less informed agents and a family of more informed agents who

share the knowledge of an additional stochastic factor inaccessible to the others.

Finally, it would be interesting to understand if it is possible to interpret the results we provided

adopting an approach related to the theory of mean-field games of controls (see [Dje23a; Dje23b]).

The equilibrium price process is determined by the market clearing, that is a condition on the

optimal controls of every agents. Hence, we could investigate if the mechanism of price formation

can be analysed introducing a family of mean-field optimal control problems, whose coefficients

depend on a condition on the controls.

Appendix

2.A Stability of the solution to the discretized game

In this section we prove that, under Assumption 2.4 and Assumption 2.6, condition (2.41) is satis-

fied. First, we prove a preliminary stability result for the solution to system (2.32).

Lemma 2.39. Let us consider two solutions of system (2.32), denoted by (X1, Y 1, Z0,1, Z1) and

(X2, Y 2, Z0,2, Z2), for two different compatible processes (X0,1, b, w,ϖ1), (X0,2, b, w,ϖ2). Then,

there exists a constant C ≥ 0 (depending on constant L introduced in Assumption B3 and on T )
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such that:

E

[︄∫︂ T

0
|Y 1

t − Y 2
t |2dt+

∫︂ T

0
(|Z0,1

t − Z0,2
t |2 + |Z1

t − Z2
t |2)dt+ sup

t∈[0,T ]
|Y 1

t − Y 2
t |2
⃓⃓⃓⃓
⃓F0

]︄

≤ C(T, L)E

[︄
sup

t∈[0,T ]
|X1

t −X2
t |2 + |∂xg(X1

T , ϖ
1
T )− ∂xg(X

1
T , ϖ

2
T )|2

+

∫︂ T

0
|∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )|2dt

⃓⃓⃓⃓
⃓F0

]︄
.

(2.95)

Proof. We recall that:

Y j
t = ∂xg(X

j
T , ϖ

j
T ) +

∫︂ T

t
∂xf(s,X

j
s , ϖ

j
s)ds−

∫︂ T

t
Z0,1
s dbs −

∫︂ T

t
Zj
sdws.

Moreover, by Itô’s formula we have that

|Y 1
t − Y 2

t |2 = |Y 1
0 − Y 2

0 |2 +
∫︂ t

0
(Y 1

s − Y 2
s )d(Y

1
s − Y 2

s ) +

∫︂ t

0
d⟨Y1 − Y2⟩s

= |Y 1
0 − Y 2

0 |2 + 2

∫︂ t

0
(Y 1

s − Y 2
s )(−∂xf(s,X1

s , ϖ
1
s) + ∂xf(s,X

2
s , ϖ

2
s))ds

+ 2

∫︂ t

0
(Y 1

s − Y 2
s )(Z

0,1
s − Z0,2

s )dbs + 2

∫︂ t

0
(Y 1

s − Y 2
s )(Z

1
s − Z2

s )dws

+

∫︂ t

0
[|Z0,1

s − Z0,2
s |2 + |Z1

s − Z2
s |2]ds.

On the other hand:

|Y 1
t − Y 2

t |2 = |Y 1
T − Y 2

T |2 − (|Y 1
T − Y 2

T |2 − |Y 1
t − Y 2

t |2)

= |∂xg(X1
T , ϖ

1
T )− ∂xg(X

2
T , ϖ

2
T )|2 −

{︂
2

∫︂ T

t
(Y 1

s − Y 2
s )(−∂xf(s,X1

s , ϖ
1
s)

+ ∂xf(s,X
2
s , ϖ

2
s))ds+ 2

∫︂ T

t
(Y 1

s − Y 2
s )(Z

0,1
s − Z0,2

s )dbs

+ 2

∫︂ T

t
(Y 1

s − Y 2
s )(Z

1
s − Z2

s )dws +

∫︂ T

t
[|Z0,1

s − Z0,2
s |2 + |Z1

s − Z2
s |2]ds

}︂
.
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We apply the conditional expectation with respect F0 and by B3, obtain

(A1) := E

[︄
|Y 1

t − Y 2
t |2 +

∫︂ T

t
[|Z0,1

s − Z0,2
s |2 + |Z1

s − Z2
s |2]ds

⃓⃓⃓⃓
⃓F0

]︄
=

= E

[︄
|∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
T )|2 + 2

[︂∫︂ T

t
(Y 1

s − Y 2
s )(∂xf(s,X

1
s , ϖ

1
s)

− ∂xf(s,X
2
s , ϖ

2
s))ds

]︂⃓⃓⃓⃓⃓F0

]︄

≤ E

[︄
|∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
T )|2 +

[︂∫︂ T

t

(︂
|Y 1

s − Y 2
s |2 + |∂xf(s,X1

s , ϖ
1
s)

− ∂xf(s,X
2
s , ϖ

2
s)|2
)︂
ds
]︂⃓⃓⃓⃓⃓F0

]︄

≤ E

[︄
|∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
T )|2 +

∫︂ T

t
|Y 1

s − Y 2
s |2ds+ 2

∫︂ T

t
[|∂xf(s,X1

s , ϖ
1
s)

− ∂xf(s,X
1
s , ϖ

2
s)|2 + |∂xf(s,X1

s , ϖ
2
s)− ∂xf(s,X

2
s , ϖ

2
s)|2]ds

⃓⃓⃓⃓
⃓F0

]︄

(2.96)

≤ E

[︄
|∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
T )|2 +

∫︂ T

t
|Y 1

s − Y 2
s |2ds+ 2

∫︂ T

t
[|∂xf(s,X1

s , ϖ
1
s)

− ∂xf(s,X
1
s , ϖ

2
s)|2 + L2|X1

s −X2
s |2]ds

⃓⃓⃓⃓
⃓F0

]︄
=: (B1)

To have a more compact notation we define:

γt := [|Z0,1
t − Z0,2

t |2 + |Z1
t − Z2

t |2], t ∈ [0, T ]. (2.97)

We now multiply E
[︂
|Y 1

t −Y 2
t |2 +

∫︁ T
t [|Z0,1

s −Z0,2
s |2 + |Z1

s −Z2
s |2]ds

⃓⃓⃓
F0

]︂
with exp (αt) and integrate
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in [0, T ]. Hence, the left member of equation (2.96) is:

(A1) :=

∫︂ T

0
eαtE

[︄
|Y 1

t − Y 2
t |2 +

∫︂ T

t
γsds

⃓⃓⃓
F0

]︄
dt

= E

[︄∫︂ T

0
eαt
(︂
|Y 1

t − Y 2
t |2 +

∫︂ T

t
γsds

)︂
dt
⃓⃓⃓
F0

]︄

= E

[︄∫︂ T

0
eαt|Y 1

t − Y 2
t |2dt|F0

]︂
+ E

[︂eαt
α

∫︂ T

t
γsds

⃓⃓⃓T
0
+

∫︂ T

0

eαt

α
γtdt

⃓⃓⃓
F0

]︂
= E

[︄∫︂ T

0
eαt|Y 1

t − Y 2
t |2dt|F0

]︂
+ E

[︂−1

α

∫︂ T

0
γtdt+

∫︂ T

0

eαt

α
γtdt

⃓⃓⃓⃓
⃓F0

]︂
= E

[︄∫︂ T

0
eαt|Y 1

t − Y 2
t |2dt+

∫︂ T

0

(︂eαt − 1

α

)︂
γtdt

⃓⃓⃓⃓
⃓F0

]︄
.

(2.98)

The right member can be computed as

(B1) :=

∫︂ T

0
eαtE

[︄
|∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
T )|2 +

∫︂ T

t
|Y 1

s − Y 2
s |2ds

+ 2

∫︂ T

t
[|∂xf(s,X1

s , ϖ
1
s)− ∂xf(s,X

1
s , ϖ

2
s)|2 + L2|X1

s −X2
s |2]ds

⃓⃓⃓
F0

]︄
dt =

= E

[︄(︂eαT − 1

α

)︂
|∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
T )|2 +

∫︂ T

0

(︂eαt − 1

α

)︂
|Y 1

t − Y 2
t |2dt

+ 2

∫︂ T

0

(︂eαt − 1

α

)︂
[|∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )|2 + L2|X1

t −X2
t |2]dt

⃓⃓⃓
F0

]︄
(2.99)

Putting together inequalities (2.98) and equation (2.99), we conclude that

(A1) = E

[︄∫︂ T

0

[︂
eαt −

(︂eαt − 1

α

)︂]︂
|Y 1

t − Y 2
t |2dt+

∫︂ T

0

(︂eαt − 1

α

)︂
γtdt

⃓⃓⃓
F0

]︄
≤ (B1)

= E

[︄(︂eαT − 1

α

)︂
|∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
T )|2 + 2

∫︂ T

0

(︂eαt − 1

α

)︂
[|∂xf(t,X1

t , ϖ
1
t )

− ∂xf(t,X
1
t , ϖ

2
t )|2 + L2|X1

t −X2
t |2]dt

⃓⃓⃓
F0

]︄

If α = 1 the coefficient of |Y 1
t −Y 2

t |2 is equal to one, thus, applying condition (2.99) and Assumption
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B3, we have hat

E

[︄∫︂ T

0
|Y 1

t − Y 2
t |2dt

⃓⃓⃓
F0

]︄
≤ E

[︄∫︂ T

0
|Y 1

t − Y 2
t |2dt+

∫︂ T

0
(et − 1)γtdt

⃓⃓⃓
F0

]︄

≤ E

[︄
2
(︂
eT − 1

)︂
L2|X1

T −X2
T |2 + 2

(︂
eT − 1

)︂
|∂xg(X1

T , ϖ
1
T )

− ∂xg(X
1
T , ϖ

2
T )|2 +

∫︂ T

0

(︂
et − 1

)︂
2L2|X1

t −X2
t |2dt

+ 2

∫︂ T

0

(︂
et − 1

)︂
|∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )|2dt

⃓⃓⃓
F0

]︄

≤ E

[︄ :=C1(T,L)⏟ ⏞⏞ ⏟
2L2

(︂
eT − 1

)︂
(1 + T ) sup

t∈[0,T ]
|X1

t −X2
t |2

+ 2
(︂
eT − 1

)︂[︄∫︂ T

0
|∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )|2dt

+ |∂xg(X1
T , ϖ

1
T )− ∂xg(X

1
T , ϖ

2
T )|2

]︄⃓⃓⃓⃓
⃓F0

]︄

≤ CA(T, L)E

[︄
sup

t∈[0,T ]
|X1

t −X2
t |2 +

∫︂ T

0
|∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )|2dt

+ |∂xg(X1
T , ϖ

1
T )− ∂xg(X

1
T , ϖ

2
T )|2

⃓⃓⃓
F0

]︄
.

(2.100)
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Applying inequality (2.96), together with (B3) and (2.100) at t = 0, we find

E

[︄∫︂ T

0
γtdt

⃓⃓⃓
F0

]︄
= E

[︄
|Y 1

0 − Y 2
0 |2 +

∫︂ T

0
γtdt

⃓⃓⃓
F0

]︄

≤ E

[︄
|∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
T )|2 +

∫︂ T

0
|Y 1

t − Y 2
t |2dt

+ 2

∫︂ T

0
[|∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )|2 + L2|X1

t −X2
t |2]dt

⃓⃓⃓
F0

]︄

≤ E

[︄
2|∂xg(X1

T , ϖ
1
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1
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2
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t |2dt
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1
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1
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2
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t −X2
t |2]dt

⃓⃓⃓
F0
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≤ E
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T , ϖ
1
T )− ∂xg(X

1
T , ϖ

2
T )|2 + 2L2|X1

T −X2
T |2

+ C1(T, L) sup
t∈[0,T ]

|X1
t −X2

t |2 + 2
(︂
eT − 1

)︂[︄∫︂ T

0
|∂xf(t,X1

t , ϖ
1
t )
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1
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2
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1
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1
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2
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]︂
+ 2
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[|∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )|2 + L2|X1

t −X2
t |2]dt

⃓⃓⃓
F0

]︄

= E

[︄(︄
2L2 + C1(T, L) + 2L2T

)︄
sup
t∈[0,T

|X1
t −X2

t |2

+ 2eT

(︄∫︂ T

0
|∂xf(t,X1

t , ϖ
1
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1
t , ϖ

2
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1
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1
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2
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⃓F0

]︄

= CB(T, L)E

[︄
sup
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|X1
t −X2
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∫︂ T
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|∂xf(t,X1

t , ϖ
1
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1
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2
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1
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2
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⃓⃓⃓⃓
⃓F0
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(2.101)
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On the other hand, we apply the inequality
(︂∑︁n

i=1 ai

)︂2
≤ n

∑︁n
i=1 a

2
i as follows

|Y 1
t − Y 2

t |2 =

⃓⃓⃓⃓
⃓(∂xg(X1

T , ϖ
1
T )− ∂xg(X

2
T , ϖ

2
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1
s , ϖ

1
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2
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2
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t
(Z0,1

s − Z0,2
s )dbs −

∫︂ T

t
(Z1

s − Z2
s )dws

⃓⃓⃓⃓
⃓
2

≤ 4
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T , ϖ
1
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2
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2
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⃓⃓⃓⃓
⃓
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1
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1
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2
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2
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+

⃓⃓⃓⃓
⃓
∫︂ T
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⃓⃓⃓⃓
⃓
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t
(Z1
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⃓⃓⃓⃓
⃓
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≤ 4
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1
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2
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⃓
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1
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2
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2
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(2.102)

By Jensen’s inequality and Assumption B3, we have that⃓⃓⃓⃓
⃓
∫︂ T
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1
s , ϖ

1
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2
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⃓
2

+

⃓⃓⃓⃓
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⃓⃓⃓2
ds

}︄

≤ 2(T − t)

{︄∫︂ T
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s)− ∂xf(s,X

1
s , ϖ

2
s)
⃓⃓⃓2
ds+

∫︂ T

t
L2
⃓⃓⃓
X1

s −X2
s

⃓⃓⃓2
ds

}︄
.

(2.103)
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Let us consider the supremum in [0, T ] in equation (2.102). By (2.103) the following holds

sup
t∈[0,T ]

|Y 1
t − Y 2

t |2 ≤ 4

{︄
2|∂xg(X1

T , ϖ
1
T )− ∂xg(X

1
T , ϖ

2
T )|2 + 2L2|X1

T −X2
T |2

+ 2 sup
t∈[0,T ]

{︄
(T − t)

[︂∫︂ T

t

⃓⃓⃓
∂xf(s,X

1
s , ϖ

1
s)− ∂xf(s,X

1
s , ϖ

2
s)
⃓⃓⃓2
ds

+

∫︂ T

t
L2

⃓⃓⃓⃓
⃓X1

s −X2
s

⃓⃓⃓⃓
⃓
2

ds
]︂}︄

+ 2

⃓⃓⃓⃓
⃓
∫︂ T

0
(Z0,1

t − Z0,2
t )dbs

⃓⃓⃓⃓
⃓
2

+ 2

⃓⃓⃓⃓
⃓
∫︂ T

0
(Z1

t − Z2
t )dwt

⃓⃓⃓⃓
⃓
2

+ 2 sup
t∈[0,T ]

{︄⃓⃓⃓⃓
⃓
∫︂ t

0
(Z0,1

s − Z0,2
s )dbs

⃓⃓⃓⃓
⃓
2

+

⃓⃓⃓⃓
⃓
∫︂ t

0
(Z1

s − Z2
s )dws

⃓⃓⃓⃓
⃓
2}︄}︄

.

We take now the conditional expectation with respect to F0. By Itô’s isometry and Doob’s in-

equality, the following holds:

E

[︄
sup

t∈[0,T ]
|Y 1

t − Y 2
t |2|F0

]︄

≤ E

[︄
8|∂xg(X1

T , ϖ
1
T )− ∂xg(X

1
T , ϖ

2
T )|2 + 8L2(1 + T 2) sup

t∈[0,T ]
|X1

t −X2
t |2

+ T

∫︂ T

0

⃓⃓⃓
∂xf(t,X

1
t , ϖ

1
t )− ∂xf(t,X

1
t , ϖ

2
t )
⃓⃓⃓2
dt

⃓⃓⃓⃓
⃓F0

]︄
+ 8E

[︄∫︂ T

0
γtdt

⃓⃓⃓
F0

]︄

+ 8E

[︄
sup

t∈[0,T ]

⃓⃓⃓⃓
⃓
∫︂ t

0
Z0,1
s − Z0,2

s )dbs

⃓⃓⃓⃓
⃓
2 ⃓⃓⃓⃓
⃓F0

]︄
+ 8E

[︄
sup

t∈[0,T ]

⃓⃓⃓⃓
⃓
∫︂ t

0
(Z1

s − Z2
s )dws

⃓⃓⃓⃓
⃓
2 ⃓⃓⃓⃓
⃓F0

]︄

≤ E

[︄
8|∂xg(X1

T , ϖ
1
T )− ∂xg(X

1
T , ϖ

2
T )|2 + 8L2(1 + T 2) sup

t∈[0,T ]
|X1

t −X2
t |2

+ T

∫︂ T

0

⃓⃓⃓⃓
⃓∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )

⃓⃓⃓⃓
⃓
2

dt

⃓⃓⃓⃓
⃓F0

]︄
+ 8E

[︄∫︂ T

0
γtdt

⃓⃓⃓⃓
⃓F0

]︄
+ 32E

[︄∫︂ T

0
γtdt

⃓⃓⃓⃓
⃓F0

]︄
.
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By inequality (2.101), we conclude

E

[︄
sup

t∈[0,T ]
|Y 1

t − Y 2
t |2
⃓⃓⃓⃓
⃓F0

]︄
≤ E

[︄
8L2(1 + T 2) sup

t∈[0,T ]
|X1

t −X2
t |2 + 8|∂xg(X1

T , ϖ
1
T )− ∂xg(X

1
T , ϖ

2
T )|2

+ T

∫︂ T

0

⃓⃓⃓
∂xf(t,X

1
t , ϖ

1
t )− ∂xf(t,X

1
t , ϖ

2
t )
⃓⃓⃓2
dt
⃓⃓⃓
F0

]︄

+ 40

{︄
E
[︂(︂

2L2 + C1(T, L) + 2L2T
)︂

sup
t∈[0,T

|X1
t −X2

t |2

+ 2eT
(︂∫︂ T

0
|∂xf(t,X1

t , ϖ
1
t )− ∂xf(t,X

1
t , ϖ

2
t )|2dt

+ |∂xg(X1
T , ϖ

1
T )− ∂xg(X

1
T , ϖ

2
T )|2

)︂⃓⃓⃓
F0

]︂}︄

≤ CC(T, L)E

[︄
sup

t∈[0,T ]
|X1

t −X2
t |2 + |∂xg(X1

T , ϖ
1
T )− ∂xg(X

1
T , ϖ

2
T )|2

+

∫︂ T

0

⃓⃓⃓
∂xf(t,X

1
t , ϖ

1
t )− ∂xf(t,X

1
t , ϖ

2
t )
⃓⃓⃓2
dt
⃓⃓⃓
F0

]︄
.

(2.104)

In conclusion, considering C(T, L) := 3max{CA(T, L);CB(T, L);CC(T, L)}, we have the result.

We now apply the previous result to check for (2.41).

Proposition 2.40. We consider the t-inizialized filtered probability space (Ω,F ,P,F) on which the

input process (bs, ϖs, ws)t∈[s,T ] is defined. On this setup, Assumption 2.23 is satisfied.

Proof. We consider the two solutions introduced in Assumption 2.23, that differ only for the initial

value of the state process. By Assumption A3:

g(x,ϖ)− g(x′, ϖ) = (g1(ϖ)x+ g2(x))− (g1(ϖ)x′ + g2(x
′))

= (g1(ϖ)(x− x′) + (g2(x)− g2(x
′))) ≤ (g1(ϖ)(x− x′) + ∂xg2(x)(x− x′))

= (x− x′)(g1(ϖ) + ∂xg2(x)) = (x− x′)∂xg(x,ϖ).

Therefore:

g(Xt,x
T , ϖT )− g(Xt,x′

T , ϖT ) ≤ ∂xg(X
t,x
T , ϖT )(X

t,x
T −Xt,x′

T ) = Y t,x
T (Xt,x

T −Xt,x′

T ).

Hence, applying integration by parts:

Y t,x
T (Xt,x

T −Xt,x′

T ) = Y t,x
t (Xt,x

t −Xt,x′

t ) +

∫︂ T

t
Y t,x
s d(Xt,x

s −Xt,x′
s )

+

∫︂ T

t
(Xt,x

s −Xt,x′
s )dY t,x

s + ⟨Xt,x −Xt,x′
, Y t,x⟩Tt
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= Y t,x
t (x− x′) +

∫︂ T

t
Y t,x
s (ˆ︁αt,x

s + l(s,ϖs)− ˆ︁αt,x′
s − l(s,ϖs))ds

+

∫︂ T

t
Y t,x
s (σ0(s,ϖs)− σ0(s,ϖs))dbs +

∫︂ T

t
Y t,x
s (σ(s,ϖs)− σ(s,ϖs))dws

+

∫︂ T

t
(Xt,x

s −Xt,x′
s )(−∂xf(s,Xt,x

s , ϖs))ds+

∫︂ T

t
(Xt,x

s −Xt,x′
s )Z0,t,x

s dbs

+

∫︂ T

t
(Xt,x

s −Xt,x′
s )Zt,x

s dws +

∫︂ T

t
(σ0(s,ϖs)− σ0(s,ϖs))Z

0,t,x
s ds

+

∫︂ T

t
(σ(s,ϖs)− σ(s,ϖs))Z

t,xds

= Y t,x
t (x− x′) +

∫︂ T

t
Y t,x
s (ˆ︁αt,x

s − ˆ︁αt,x′
s )ds−

∫︂ T

t
(Xt,x

s −Xt,x′
s )∂xf(s,X

t,x
s , ϖs)ds∫︂ T

t
(Xt,x

s −Xt,x′
s )Z0,t,x

s dbs +

∫︂ T

t
(Xt,x

s −Xt,x′
s )Zt,x

s dws,

where ˆ︁αt,x is the optimal control for the control problem (2.2), (2.3) defined on the t-inizialized

probabilistic setup. We consider now the conditional expectation with respect to F t of Y
t,x
T (Xt,x

T −
Xt,x′

T ). We recall that by Remark 2.11, the stochastic integrals are true martingales. By Assumption

A3, the following inequality holds

E[Y t,x
T (Xt,x

T −Xt,x′

T )|F t] = Y t,x
t (x− x′) + E

[︂∫︂ T

t

Y t,x
s (ˆ︁αt,x

s − ˆ︁αt,x′

s )ds−
∫︂ T

t

(Xt,x
s −Xt,x′

s )∂xf(s,X
t,x
s , ϖs)ds|F t

]︂
≤ Y t,x

t (x− x′) + E
[︂∫︂ T

t

Y t,x
s (ˆ︁αt,x

s − ˆ︁αt,x′

s )ds+

∫︂ T

t

(f(s,Xt,x′

s , ϖs)− f(s,Xt,x
s , ϖs))ds|F t

]︂
.

Hence, we have

g(Xt,x
T , ϖT )− g(Xt,x′

T , ϖT ) ≤ Y t,x
t (x− x′) + E

[︂∫︂ T

t
Y t,x
s (ˆ︁αt,x

s − ˆ︁αt,x′
s )ds

+

∫︂ T

t
(f(s,Xt,x′

s , ϖs)− f(s,Xt,x
s , ϖs))ds|F t

]︂
,

(2.105)

We focus now on the integral part of the cost functional. Let us observe that ∂af(t, x,ϖ, a) =

ϖ + Λa. We recall that, by the optimality condition introduced in Assumption B3:

ˆ︁αt,x
t = −(Λ)−1(Y t,x

t +ϖt) ⇒ Y t,x
t = −Λˆ︁αt,x

t −ϖt ⇒ ∂af(t, ˆ︁Xt,x
t , ϖt, ˆ︁αt,x

t ) = −Y t,x
t ,

thanks to the linear-quadratic structure of the cost functional f . Therefore:

g(Xt,x
T , ϖT )− g(Xt,x′

T , ϖT ) ≤ Y t,x
t (x− x′) + E

[︂∫︂ T

t
(−∂af(t, ˆ︁Xt,x

t , ϖt, ˆ︁αt,x
t ))(ˆ︁αt,x

s − ˆ︁αt,x′
s )ds

+

∫︂ T

t
(f(s,Xt,x′

s , ϖs)− f(s,Xt,x
s , ϖs))ds

⃓⃓⃓
F t

]︂
.

(2.106)
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We rewrite condition (2.106) as follows:

Y t,x
t (x′ − x) ≤ E

[︄
g(Xt,x′

T , ϖT ) +

∫︂ T

t
f(s,Xt,x′

s , ϖs)ds
⃓⃓⃓
F t

]︂
− E

[︄
g(Xt,x

T , ϖT )

+

∫︂ T

t
f(s,Xt,x

s , ϖs)ds
⃓⃓⃓
F t

]︄
+ E

[︄∫︂ T

t
(∂af(s,X

t,x
s , ϖs))(ˆ︁αt,x′

s − ˆ︁αt,x
s )ds

⃓⃓⃓⃓
⃓F t

]︄
.

(2.107)

By the convexity assumption A3, we observe that:

(ˆ︁αt,x′
s − ˆ︁αt,x

s )(∂af(s,X
t,x
s , ϖs)) ≤ f(s,Xt,x

s , ϖs, ˆ︁αt,x′
s )− f(s,Xt,x

s , ϖs, ˆ︁αt,x
s )− 1

2
L−1|ˆ︁αt,x′

s − ˆ︁αt,x
s |2

≤ (ϖsˆ︁αt,x′
s ) +

1

2
Λ(ˆ︁αt,x′

s )2 + f(s,Xt,x
s , ϖs)− (ϖsˆ︁αt,x

s ) +
1

2
Λ(ˆ︁αt,x′

s )2

+ f(s,Xt,x
s , ϖs)−

1

2
L−1|ˆ︁αt,x′

s − ˆ︁αt,x
s |2

= ϖs(ˆ︁αt,x′
s − ˆ︁αt,x

s ) + f(s,Xt,x′
s , ϖs, ˆ︁αt,x′

s )− f(s,Xt,x′
s , ϖs)

− (f(s,Xt,x
s , ϖs, ˆ︁αt,x

s )− f(s,Xt,x
s , ϖs))−

1

2
L−1|ˆ︁αt,x′

s − ˆ︁αt,x
s |2.

(2.108)

We apply condition (2.108) to inequality (2.107):

Y t,x
t (x′ − x) ≤ E

[︄
g(Xt,x′

T , ϖT ) +

∫︂ T

t
f(s,Xt,x′

s , ϖs, ˆ︁αt,x′
s )ds

⃓⃓⃓
F t

]︄
− E

[︄
g(Xt,x

T , ϖT )

+

∫︂ T

t
f(s,Xt,x

s , ϖs, ˆ︁αt,x
s )ds

⃓⃓⃓⃓
⃓F t

]︄
− 1

2
L−1E

[︄∫︂ T

t
|ˆ︁αt,x′

s − ˆ︁αt,x
s |2ds

⃓⃓⃓⃓
⃓F t

]︄ (2.109)

Exchanging the rule of x and x′, we obtain that

−(Y t,x′

t − Y t,x
t )(x′ − x) ≤ −L−1E

[︄∫︂ T

t
|ˆ︁αt,x

s − ˆ︁αt,x′
s |2ds

⃓⃓⃓
F t

]︄
. (2.110)

We now observe that, by Jensen’s inequality and Doob’s inequalities, the following holds

E

[︄
sup
s

|Xt,x
s −Xt,x′

s |2F t

]︄
= E

[︄
sup

s∈[t,T ]

⃓⃓⃓
x+

∫︂ s

t
(αt,x

u + l(u,ϖu))du+

∫︂ s

t
σ0(u,ϖu)dbu

+

∫︂ s

t
σ(u,ϖu)dwu −

[︂
x′ +

∫︂ s

t
(αt,x′

u + l(u,ϖu))du

+

∫︂ s

t
σ0(u,ϖu)dbu +

∫︂ s

t
σ(u,ϖu)dwu

⃓⃓⃓2]︄

≤ 2E

[︄
|x− x′|2 + sup

s∈[t,T ]

⃓⃓⃓⃓
⃓
∫︂ s

t
(ˆ︁αt,x

u − ˆ︁αt,x′
u )du

⃓⃓⃓⃓
⃓
2 ⃓⃓⃓⃓
⃓F t

]︄
(2.111)
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≤ 2E

[︄
|x− x′|2 + T sup

s∈[t,T ]

∫︂ s

t
|ˆ︁αt,x

u − ˆ︁αt,x′
u |2du

⃓⃓⃓⃓
⃓F t

]︄

≤ C(T )

[︄
|x− x′|2 + E

[︄∫︂ T

t
|ˆ︁αt,x

s − ˆ︁αt,x′
s |2ds

⃓⃓⃓⃓
⃓F t

]︄]︄
We apply now condition (2.104), that can be proved for the couple of input processes

(x, (bs)s∈[t,T ], (ws)s∈[t,T ], (ϖs)s∈[t,T ]) and (x, (bs)s∈[t,T ], (ws)s∈[t,T ], (ϖs)s∈[t,T ]), to (2.111). Hence, we

have that

E

[︄
sup

s∈[t,T ]
|Y t,x

s − Y t,x′
s |2

⃓⃓⃓
F t

]︄
≤ CC(T, L)E

[︂
sup
s

|Xt,x
s −Xt,x′

s |2
⃓⃓⃓
F t

]︂

≤

=:CD(T,L)⏟ ⏞⏞ ⏟
C(T )CC(T, L)

[︄
|x− x′|2 + E

[︄∫︂ T

t
|ˆ︁αt,x

s − ˆ︁αt,x′
s |2ds

⃓⃓⃓⃓
⃓F t

]︄]︄
.

Therefore, P-a.s., by (2.110), the following holds

|Y t,x
t − Y t,x′

t |2 ≤ E
[︂
sup

s∈[t,T ]
|Y t,x

s − Y t,x′
s |2|F t

]︂
≤ CD(T, L)[|x− x′|2 + L(Y t,x′

t − Y t,x
t )(x′ − x)]

= max
{︂
CD(T, L);

1

2
L
}︂[︂

|x− x′|2 + 2(Y t,x′

t − Y t,x
t )(x′ − x)

]︂
.

(2.112)

Using the following notation: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a := |Y t,x

t − Y t,x′

t |,

b := |x− x′|,

c := max
{︂
CD(T, L);

1
2L
}︂
> 0,

equation (2.112) reduces to |a|2 ≤ c(|b|2 + 2|a||b|). From this we conclude that |a|2(1 + c) ≤
c(|a|+ |b|)2. Passing to the square root:

|a|
√
1 + c ≤

√
c(|a|+ |b|) ⇒ |a| ≤

√
c√

1 + c−
√
c
|b|, P-a.s.

that is the statement of Assumption 2.41, with Γ0 :=
√
c√

1+c−
√
c
.

2.B Convergence analysis

Lemma 2.41. Let us consider a process Θn := (Ψn, b, w), defined on a probability space (Ω,F ,P).
Assume that Ψn takes values on a Polish space X for each n ∈ N and b, w are Brownian motions

with respect to the filtration generated by Θn for each n ∈ N. If the sequence (Θn)n is convergent in

distribution on X × C([0, T ];R2) to a process Θ∞ := (Ψ∞, b∞, w∞), defined on a probability space
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(Ω∞,F∞,P∞), then, (b∞, w∞) is a two-dimensional Brownian motion with respect to the filtration

generated by Θ∞.

Proof. Applying [KS98, Theorem 3.3.16], it is sufficient to prove that b∞ and w∞ are continuous

local martingales with respect to F∞ := FΘ∞
and the covariations are given by

⟨b∞t , b∞t ⟩ = t = ⟨w∞
t , w

∞
t ⟩, ⟨b∞t , w∞

t ⟩ = 0, ∀t ∈ [0, T ].

Step 1 show that b∞ and w∞ are local martingales. We focus only on b∞ (the proof for w∞ is the

fully analogous). It is equivalent to show that:

E∞[g(Θ∞
·∧s)(b

∞
t − b∞s )] = 0, ∀s ≤ t, ∀g ∈ C0

b (X × C([0, T ];R2);R). (2.113)

To prove (2.113), we approximate the function g and the difference between the (b, w) at t and s

with a bounded and continuous function of Θ∞. The main issues we need to address are:

• possible discontinuity of the function x→ x·∧s in X ;

• unboundedness of f(x) = xt − xs defined for x ∈ C([0, T ],R).

First, let us notice that the stopping map x → x·∧s could be not continuous in X , thus a

priori we could not have a continuous function of Θ∞. Thus, denoting Θ∞,b := (Ψ∞, w∞) and

Θn,b := (Ψn, w), condition (2.113) is equivalent to say that:

E∞[g(Θ∞,b
·∧s , b

∞
·∧s)(b

∞
t − b∞s )] = 0, ∀s ≤ t,

∀g : (X × C([0, T ];R))× C([0, T ];R) → R such that:

C1 g(·, b) : X × C([0, T ],R) → R is measurable and bounded for each b ∈ C([0, T ];R);

C2 g(Θb, ·) : C([0, T ],R) → R is continuous and bounded for almost every Θb ∈ X × C([0, T ];R).

By [Bil99, Theorem 2.8], since X × C([0, T ],R) is separable, the weak convergence of law(Θn,b, b)

to law(Θ∞,b, b∞) is equivalent to the convergence of:⎧⎨⎩law(Θn,b) ⇒ law(Θ∞,b),

law(b) ⇒ law(b∞).

In particular, this implies that

law(b∞)(B) = lim
n→∞

law(b)(B) = law(b)(B), ∀B ∈ B(C([0, T ],R)).

And thus, the marginal in C([0, T ],R) is the same. As a consequence:

law(Θn,b, b), law(Θ∞,b, b∞) ∈ {P ∈ P(X × C([0, T ],R)) : P (· × C([0, T ],R)) = law(b)}.
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We can apply [BL20, Lemma 2.1], to conclude that limn→∞ E[h(Θn,b, b)] = E∞[h(Θ∞,b, b∞)],

for each function h satisfying conditions C1 and C2. To prove condition (2.113), we introduce the

function, for each k ∈ N:
hk : R → R

x ↦→

⎧⎨⎩x if |x| ≤ k

k · sgn(x) if |x| ≥ k.

(2.114)

We consider now⃓⃓⃓
E∞[g(Θ∞

·∧s)(b
∞
t − b∞s )]

⃓⃓⃓
≤
⃓⃓⃓
E∞[g(Θ∞

·∧s)hk(b
∞
t − b∞s )]

⃓⃓⃓
+
⃓⃓⃓
E∞
[︂
g(Θ∞

·∧s)[hk(b
∞
t − b∞s )− (b∞t − b∞s )]

]︂⃓⃓⃓
Since g(Θ∞

·∧s)hk(b
∞
t − b∞s ) is a bounded function of X × C([0, T ],R) satisfying conditions C1 and

C2 for each k ∈ N, we can apply [BL20, Lemma 2.1] to conclude that

E∞[g(Θ∞
·∧s)hk(b

∞
t − b∞s )] = lim

n→∞
E[g(Θn

·∧s)hk(bt − bs)] = 0,

because b a Brownian motion with respect to the filtration generated by Θn. We can focus on

E∞
[︂
g(Θ∞

·∧s)[hk(b
∞
t − b∞s )− (b∞t − b∞s )]

]︂
. We introduce the event:

Ak
t,s := {|b∞t − b∞s | ≥ k}, k ∈ N.

If g(Θ) ≤ Lg for each Θ, apply the Cauchy-Schwartz inequality and the Markov inequality to⃓⃓⃓
E∞
[︂
g(Θ∞

·∧s)[hk(b
∞
t − b∞s )− (b∞t − b∞s )]

]︂⃓⃓⃓
≤ E∞

[︂⃓⃓⃓
g(Θ∞

·∧s)[hk(b
∞
t − b∞s )− (b∞t − b∞s )]

⃓⃓⃓]︂
≤ E∞

[︂
Lg(|b∞t − b∞s | − k)1Ak

t,s

]︂
≤ E∞

[︂
Lg|b∞t − b∞s |1Ak

t,s

]︂
≤ LgE∞[|b∞t − b∞s |]P∞(Ak

t,s) ≤ Lg
1

k
E∞[|b∞t − b∞s |]2

(2.115)

It suffices to prove that E∞[|b∞t − b∞s |] < ∞. To do so, we notice that, (|bt − bs|)n converges

in distribution on R to |b∞t − b∞s |, for each t and s. Hence, in order to have the convergence of

expectation we must check uniform integrability of (|bt − bs|)n, i.e.:

lim
a→∞

sup
n∈N

E
[︂
|bt − bs|1Aa

s,t

]︂
= 0.

We notice that:

sup
n∈N

E
[︂
|bt − bs|1Aa

s,t

]︂
≤ 1

a
(E[|bt − bs|])2 =

1

a

(︂ 1√
2π|t− s|

∫︂ ∞

−∞
|x|e−

x2

2(t−s)2 dx
)︂2

=
2

πa
(t− s)2.

Then, lima→∞ supn∈N E[|bt − bs|1Aa
s,t
] = 0. Once we proved the convergence of expectations, we

conclude that the process b∞ is a FΘ∞
-martingale, because E∞[|b∞t − b∞s |] = limn→∞ E[|bt − bs|] =
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√︂
2
π |t− s| <∞.

Step 2: In order to prove that ⟨b∞, b∞⟩t = t, we consider the following result (see [KS98, Exercise

3.38]). LetX be a continuous local martingale and A a continuous, increasing process suchX0 = A0,

a.s.. If Z := exp (X − 1
2A) is a local martingale, then ⟨X⟩ = A.

Indeed, applying Itô-formula to Z:

dZt = Zt(dXt −
1

2
dAt) +

1

2
Zt(d⟨X⟩t − 0) = Zt

(︂
dXt −

1

2
dAt +

1

2
d⟨X⟩t

)︂
.

As a consequence, the finite variation of Z is given by 1
2Zt(−dAt + d⟨X⟩t), because X is a local

martingale. By assumption Z is a local martingale, the finite-variation is zero. Thus, since X0 =

A0 = 0, we conclude that −dAt + d⟨X⟩t = 0 implies that ⟨X⟩t = At, t ∈ [0, T ]. Since we have

already proved that b∞ and w∞ are martingales on (Ω∞,F∞,P∞,F∞), we need to prove that

Z∞
t := exp (b∞t − 1

2 t) is a local martingale on (Ω∞,F∞,P∞,F∞). To do so, it is sufficient to show

that

E∞[g(Θ∞,b
·∧s , b

∞
·∧s)(Z

∞
t − Z∞

s )] = 0, ∀s ≤ t,

∀g : (X × C([0, T ];R))× C([0, T ];R) → R satisfying E1 and E2. We notice that:

E∞[g(Θ∞,b
·∧s , b

∞
·∧s)(Z

∞
t − Z∞

s )] = E∞
[︂
g(Θ∞,b

·∧s , b
∞
·∧s)
(︂
exp

(︂
b∞t − 1

2
t
)︂
− exp

(︂
b∞s − 1

2
s
)︂)︂]︂

.

As in Step 1, we consider a continuous, but unbounded function of b∞t and b∞s . Thus, we apply the

function hk introduced in equation (2.114):⃓⃓⃓
E∞[g(Θ∞

·∧s)(Z
∞
t − Z∞

s )]
⃓⃓⃓
≤
⃓⃓⃓
E∞[g(Θ∞

·∧s)hk(Z
∞
t − Z∞

s )]
⃓⃓⃓

+
⃓⃓⃓
E∞
[︂
g(Θ∞

·∧s)[hk(Z
∞
t − Z∞

s )− (Z∞
t − Z∞

s )]
]︂⃓⃓⃓

For the first term, we can pass to the limit:⃓⃓⃓
E∞[g(Θ∞

·∧s)hk(Z
∞
t − Z∞

s )]
⃓⃓⃓
= lim

n→∞

⃓⃓⃓
E∞[g(Θn

·∧s)hk(Z
1
t − Z1

s )]
⃓⃓⃓
= 0,

where Z1
t = exp

(︂
bt − 1

2 t
)︂
, and the second equivalence holds because b is a FΘn

-Brownian motion.

To handle the second term, it is sufficient to prove that E∞[|Z1
t − Z1

s |] < ∞ as in (2.115) for

E∞[|b1,∞t −b1,∞s |] <∞. We notice that E[|Z1
t −Z1

s |] ≤ E[Z1
t ]+E[Z1

s ] = 2, then, uniform integrability

holds and we can conclude that

lim
k→∞

⃓⃓⃓
E∞
[︂
g(Θ∞

·∧s)[hk(Z
∞
t − Z∞

s )− (Z∞
t − Z∞

s )]
]︂⃓⃓⃓

= 0.

We have proved that
(︂
exp

(︂
b∞t − 1

2 t
)︂)︂

t
is a FΘ∞

-martingale. In the same way, we can prove that(︂
exp

(︂
w∞
t − 1

2 t
)︂)︂

t
is a FΘ∞

-martingale.

Step 3: Finally, we need to prove that ⟨b∞, w∞⟩t = 0 for every t ∈ [0, T ]. By [KS98, Theorem
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1.5.13], this is equivalent to show that (b∞t w
∞
t )t∈[0,T ] is a martingale with respect to σ{Θ∞}. The

proof can be done similarly to the previous steps. Thus, to conclude it is sufficient to prove that

E[|wtbt − wsbs|] <∞:

E[|wtbt − wsbs|] ≤ E[|wt|]E[|bt|] + E[|ws|]E[|bs|] =
4

π
|t− s| <∞.

2.C Proof of Lemma 2.25

Step 1 We recall that Xn,l is defined on the canonical space (Ω,F ,P,F) as follows:

Xn,l = X0 +

∫︂ t

0
(−Λ(Y n,l

s +ϖn,l
s ) + l(s,ϖn,l

s ))ds+

∫︂ t

0
σ0(s,ϖn,l

s )dbs +

∫︂ t

0
σ(s,ϖn,l

s )dws.

By Assumption B2, we have that

|Xn,l
t |2 ≤ 4

[︂
|X0|2 + t

∫︂ t

0
|Λ(Y n,l

s +ϖn,l
s ) + l(s,ϖn,l

s )|2ds+
⃓⃓⃓ ∫︂ t

0
σ0(s,ϖn,l

s )dbs

⃓⃓⃓2
+
⃓⃓⃓ ∫︂ t

0
σ(s,ϖn,l

s )dws

⃓⃓⃓2]︂
≤ 4
[︂
|X0|2 + 3tL2

∫︂ t

0
(1 + |Y n,l

s |2 + |ϖn,l
s |2)ds+

⃓⃓⃓ ∫︂ t

0
σ0(s,ϖn,l

s )dbs

⃓⃓⃓2
+
⃓⃓⃓ ∫︂ t

0
σ(s,ϖn,l

s )dws

⃓⃓⃓2]︂
.

Passing to the supremum:

sup
t∈[0,T ]

|Xn,l
t |2 ≤ 4

[︂
|X0|2 + 3TL2

∫︂ T

0
(1 + |Y n,l

s |2 + |ϖn,l
s |2)ds+ sup

t∈[0,T ]

⃓⃓⃓ ∫︂ t

0
σ0(s,ϖn,l

s )dbs

⃓⃓⃓2
+ sup

t∈[0,T ]

⃓⃓⃓ ∫︂ t

0
σ(s,ϖn,l

s )dws

⃓⃓⃓2]︂
.

We take the expectation and apply Fubini’s Theorem and Doob’s inequality. Hence, by Assumption

A1, the following holds

E

[︄
sup

t∈[0,T ]
|Xn,l

t |2
]︄
≤ 4

[︄
E[|X0|2] + 3TL2

∫︂ T

0
(1 + E[|Y n,l

s |2] + E[|ϖn,l
s |2])ds

+ E

[︄
sup

t∈[0,T ]

⃓⃓⃓⃓
⃓
∫︂ t

0
σ0(s,ϖn,l

s )dbs

⃓⃓⃓⃓
⃓
2]︄

+ E

[︄
sup

t∈[0,T ]

⃓⃓⃓⃓
⃓
∫︂ t

0
σ(s,ϖn,l

s )dws

⃓⃓⃓⃓
⃓
2]︄]︄

≤ 4

[︄
E[|X0|2] + 3TL2

∫︂ T

0
(1 + E[|Y n,l

s |2] + E[|ϖn,l
s |2])ds
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+ 4E

[︄∫︂ T

0
|σ0(s,ϖn,l

s )|2ds

]︄
+ 4E

[︄∫︂ T

0
|σ(s,ϖn,l

s )|2ds

]︄]︄

≤ 4

[︄
E[|X0|2] + 3TL2

∫︂ T

0
(1 + E[|Y n,l

s |2] + E[|ϖn,l
s |2])ds

+ 8L2E

[︄∫︂ t

0
(1 + |ϖn,l

s |2)ds

]︄
+ 8L2E

[︄∫︂ T

0
(1 + |ϖn,l

s |2)ds

]︄]︄

≤ 4

[︄
E[|X0|2] + TL2(3T + 16) + 3TL2

∫︂ T

0
E[|Y n,l

s |2]ds

+ L2(3T + 16)

[︄∫︂ T

0
E[|ϖn,l

s |2]ds

]︄]︄

≤ 4

[︄
E[|X0|2] + TL2(3T + 16) + 3TL2

∫︂ T

0
E[|Y n,l

s |2]ds

+ L2(3T + 16)

[︄
N−1∑︂
i=0

∫︂ ti+1

ti

E[|ϖn,l
s |2]ds

]︄]︄

= 4

[︄
E[|X0|2] + TL2(3T + 16) + 3TL2

∫︂ T

0
E[|Y n,l

s |2]ds

+ L2(3T + 16)

[︄
N−1∑︂
i=0

∫︂ ti+1

ti

E[| − (Λ + Λ
0
)−1E[ΛY n,l

s + Λ
0
Y 0,n,l
s |V i]|2]ds

]︄]︄
We notice that:

E[| − (Λ + Λ
0
)−1E[ΛY n,l

s + Λ
0
Y 0,n,l
s |V i]|2] ≤ 2((Λ + Λ

0
)−1)2[(Λ)2E[|Y n,l

s |2] + (Λ
0
)2E[|Y 0,n,l

s |2]].

As a consequence, denoting C1 := (Λ + Λ
0
)−1Λ, we apply the same reasoning described in (2.49),

to conclude that

E

[︄
sup

t∈[0,T ]
|Xn,l

t |2
]︄
≤ 4

[︄
E[|X0|2] + TL2(3T + 16) + 3TL2

∫︂ T

0
E[|Y n,l

s |2]ds

+ L2(3T + 16)
[︂N−1∑︂
i=0

∫︂ ti+1

ti

(C2
1E[|Y n,l

s |2] + (1− C1)
2E[|Y 0,n,l

s |2])ds

]︄]︄

≤ 4

[︄
E[|X0|2] + TL2(3T + 16) + [3TL2 + C2

1 (3TL
2 + 16L2)

∫︂ T

0
E[|Y n,l

s |2]ds

+ (3T + 16)L2(C1 − 1)2
∫︂ T

0
E[|Y 0,n,l

s |2]ds

]︄
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≤ 4

[︄
E[|X0|2] + TL2(3T + 16) + 2L2(T 2 + 1)T [3TL2 + C2

1 (3TL
2 + 16L2)]

+ 2L2(T 2 + 1)T (3T + 16)L2(1− C1)
2

]︄
=: ˜︁C.

Step 2: We consider a FXn,l
-stopping time τ and a constant δ > 0.

E[|Xn,l
(τ+δ)∧T −Xn,l

τ |] ≤ E

[︄⃓⃓⃓⃓
⃓
∫︂ (τ+δ)∧T

τ
(−Λ(Y n,l

s +ϖn,l
s ) + l(s,ϖn,l

s ))ds

⃓⃓⃓⃓
⃓

+

⃓⃓⃓⃓
⃓
∫︂ (τ+δ)∧T

τ
σ0(s,ϖn,l

s )dbs

⃓⃓⃓
+

∫︂ (τ+δ)∧T

τ
σ(s,ϖn,l

s )dws

⃓⃓⃓⃓
⃓
]︄
.

We focus on the three terms separately:

(A) := E

[︄⃓⃓⃓⃓
⃓
∫︂ (τ+δ)∧T

τ
(−Λ(Y n,l

s +ϖn,l
s ) + l(s,ϖn,l

s ))ds

⃓⃓⃓⃓
⃓
]︄

= E

[︄⃓⃓⃓⃓
⃓
∫︂ T

0
1[τ,τ+δ)∧T ](s)(−Λ(Y n,l

s +ϖn,l
s ) + l(s,ϖn,l

s ))ds

⃓⃓⃓⃓
⃓
]︄

≤ E

[︄⃓⃓⃓⃓
⃓
∫︂ T

0
1[τ,τ+δ)∧T ](s)L(1 + |Y n,l

s |+ |ϖn,l
s |)ds

⃓⃓⃓⃓
⃓
]︄

≤ LE

[︄∫︂ T

0
1[τ,τ+δ)∧T ](s)ds+ sup

s∈[0,T ]
(|Y n,l

s |+ |ϖn,l
s |)

[︄∫︂ T

0
1[τ,τ+δ)∧T ](s)ds

]︄
= LδE[ sup

s∈[0,T ]
(|Y n,l

s |+ |ϖn,l
s |)].

Applying the same reasoning of (2.49), we observe that

E

[︄
sup

s∈[0,T ]
|Y n,l

s |

]︄
≤

(︄
E

[︄
sup

s∈[0,T ]
|Y n,l

s |2
]︄
≤
√︁
2L2(T 2 + 1)

)︄ 1
2

.

For what regards ϖn,l, let us notice that:

E

[︄
sup

s∈[0,T ]
|ϖn,l

s |

]︄
= E

[︄
max

i=0,...,N−1
sup

s∈[ti,ti+1)
|E[C1Y

n,l
s + (1− C1)Y

0,n,l
s |V i]|

]︄

≤ max
i=0,...,N−1

(︄
E

[︄
sup

s∈[ti,ti+1)
C1|E[Y n,l

s |V i]|+ (1− C1) sup
s∈[ti,ti+1)

|E[Y 0,n,l
s |V i]|

]︄)︄
.
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By Assumption B2, for each s ∈ [ti, ti+1), the following holds

|E[Y n,l
s |V i]| =

⃓⃓⃓⃓
⃓E
[︄
∂xg(X

n,l
T , ϖn,l

T ) +

∫︂ T

s
∂xf(u,X

n,l
u , ϖn,l

u )du

+

∫︂ T

s
Z0,n,l
u dbu +

∫︂ T

s
Zn,l
u dwu|V i

]︄⃓⃓⃓⃓
⃓

= E

[︄
|∂xg(Xn,l

T , ϖn,l
T )|+

∫︂ T

s
|∂xf(u,Xn,l

u , ϖn,l
u )|du|V i

]︄
≤ L(T + 1).

Analogously, by Assumption B4:

|E[Y 0,n,l
s |V i]| :=

⃓⃓⃓⃓
⃓E
[︄
g01(ϖ

n,l
s ) +

∫︂ T

t
cM0 (t,ϖn,l

s )ds−
∫︂ T

t
Z0,0,n,l
s dbs|V i

]︄⃓⃓⃓⃓
⃓

≤ E

[︄
|g01(ϖn,l

s )|+ (T − t)

∫︂ T

t
|cM0 (t,ϖn,l

s )|ds|V i

]︄
≤ L(T + 1).

Therefore,

E

[︄
sup

s∈[0,T ]
|ϖn,l

s |]

]︄
≤ C1L(T + 1) + (1− C1)L(T + 1) = L(T + 1) (2.116)

In conclusion:

E
[︂⃓⃓⃓ ∫︂ (τ+δ)∧T

τ
(−Λ(Y n,l

s +ϖn,l
s ) + l(s,ϖn,l

s ))ds
⃓⃓⃓]︂

≤ L2δ(
√︁

2(T + 1) + (T + 1)).

For the volatility terms, applying Jensen’s inequality together with Itô’s isometry, by Assumption

A1, the following holds

E

[︄⃓⃓⃓⃓
⃓
∫︂ (τ+δ)∧T

τ

σ0(s,ϖn,l
s )dbs

⃓⃓⃓⃓
⃓
]︄
= E

[︄⃓⃓⃓⃓
⃓
∫︂ T

0

1[τ,(τ+δ)∧T ](s)σ
0(s,ϖn,l

s )dbs

⃓⃓⃓⃓
⃓
]︄

≤

(︄
E

[︄⃓⃓⃓⃓
⃓
∫︂ T

0

1[τ,(τ+δ)∧T ](s)σ
0(s,ϖn,l

s )dbs

⃓⃓⃓⃓
⃓
2]︄)︄ 1

2

=

(︄
E

[︄∫︂ T

0

1[τ,(τ+δ)∧T ](s)|σ0(s,ϖn,l
s )|2ds

]︄)︄ 1
2

≤

(︄
E

[︄∫︂ T

0

1[τ,(τ+δ)∧T ](s)2L
2(1 + |ϖn,l

s |2)ds

]︄)︄ 1
2

≤
√
2L

(︄
E
[︂∫︂ T

0

1[τ,(τ+δ)∧T ](s)ds+

∫︂ T

0

1[τ,(τ+δ)∧T ](s) sup
t∈[0,T ]

|ϖn,l
t |2ds

]︄)︄ 1
2

=
√
2L

(︄
δ + E

[︄
sup

t∈[0,T ]

|ϖn,l
t |2

]︄
δ

)︄ 1
2

≤
√
2L
√︁

1 + 2L2(T + 1)
√
δ.
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Hence, again by Jensen’s inequality together with (2.49), we conclude that

E

[︄
sup

t∈[0,T ]
|ϖn,l

t |2
]︄
≤ E

[︄
max

i=0,...,N−1
sup

s∈[ti,ti+1)
|(Λ + Λ

0
)−1E[ΛY n,l

s + Λ
0
Y 0,n,l
s |V i]|2

]︄

≤ E

[︄
max

i=0,...,N−1
sup

s∈[ti,ti+1)
(C2

1E[|Y n,l
s |2|V i] + (1− C2

1 )E[|Y 0,n,l
s |2|V i])

]︄
≤ (2L2(T 2 + 1)).

The computation for E[|
∫︁ (τ+δ)∧T
τ σ(s,ϖn,l

s )dws|] is exactly the same. In conclusion:

E[|Xn,l
(τ+δ)∧T −Xn,l

τ |] ≤ L2δ(
√︁

2(T + 1) + (T + 1)) + 2
√
2L
√︁
1 + 2L2(T + 1)

√
δ ≤ C

√
δ,

where C := L2(
√︁

2(T + 1) + (T + 1)) + 2
√
2L
√︁
1 + 2L2(T + 1) and δ < 1.

2.D Proof of Proposition 2.28

Proposition 2.28 guarantees the stability of weak equilibria of a sequence of solutions to a family

of optimal control problems. In particular, the weak limit of a sequence of solutions to optimal

control problems defined in an approximate setting is still solution to an optimal control problem.

To prove this result we based on [CD18b, Proposition 3.11]. Before proving Proposition 2.28, we

rely on some preliminary results that we are going to apply in the proof.

Theorem 2.42. ([KP91, Theorem 4.7]) For each n ∈ N, let (ξn, ηn) be a Fn-adapted process with

sample paths in D([0,∞),R2). Suppose that:

E1 (ηn)n∈N are continuous martingales for every n ∈ N such that there exists a sequence of

stopping process {ταn }α>0 such that Pn(ταn ≤ α) ≤ 1
α and

sup
n

En[[ηn](t ∧ ταn )] <∞. (2.117)

E2 (ξn)n∈N are càdlàg -processes such that for each α > 0 there exists stopping times {ταn } with

Pn(ταn ≤ α) ≤ 1
α and such that, for each t ≥ 0, supn(En[|ξn(t ∧ ταn )|] + Vt(ξ

n(· ∧ ταn ))) < ∞,

where Vt is defined in equation (2.64).

If (ξn, ηn) converges to (ξ∞, η∞) in distribution on M([0, T ];R)×D([0, T ];R) and η∞ is continuous,

then ξ∞ admits a version with sample paths in D([0,∞),R), η∞ is a semi-martingale with respect

to a filtration to which ξ∞ and η∞ are adapted and (ξn, ηn,
∫︁
ξnηn) converges in distribution to

(ξ∞, η∞,
∫︁
ξ∞dη∞) on M([0, T ];R)×D([0, T ];R)×D([0, T ];R).

We prove moreover the following result:

Lemma 2.43. Let us a consider a real valued random variable γ, defined on a probability space
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(Ω,F ,P) and measurable with respect to the completion of a sigma-algebra G. Then, there another

random variable ˜︁γ, such that P(˜︁γ = γ) = 1 and ˜︁γ is G-measurable.

Proof. Since γ is measurable with respect to the completion of G, the following holds

∀a ∈ Q, γ−1((−∞, a)) = Ga ∪Na,

where Ga ∈ G and Na ⊂ Ω such that ∃N0
a ∈ G, P(N0

a ) = 0 and Na ⊂ N0
a . We now define

N :=
⋃︁

a∈QN
0
a . In particular, P(N) = 0. and we define:

˜︁γ(ϖ) =

⎧⎨⎩γ(ω) if ω /∈ N,

0 if ω ∈ N.

Therefore P(γ ̸= ˜︁γ) = P(N) = 0. Moreover:

˜︁γ−1((−∞, a)) =

⎧⎨⎩Ga ∪N, a > 0,

Ga ∩ (Ω−N), a ≤ 0

Therefore, ˜︁γ is a G-measurable version of γ.

Proof of Proposition 2.28.

Step 1 First, we prove that the family (ˆ︁αn)n, is tight in the Meyer-Zheng spaceM([0, T ];R) equipped
with its topology. Moreover, any weak limit can be seen as the law of a R-valued pro-

cess. By condition D1, (Xn, Y n) forms a tight sequence in the product space C([0, T ];R) ×
M([0, T ];Rn), where Y n is the adjoint process of Xn. Moreover, by condition D3, the se-

quence (Y n, ϖn) is tight. Hence, for each n ∈ N the optimal control is defined by:

ˆ︁αn
t := ˆ︁α(Y n

t , ϖ
n
t ) = −Λ(Y n

t +ϖn
t ),

where ˆ︁α(y,ϖ) := −Λ(y+ϖ), is a continuous function on R2. Let us notice that, by [CD18b,

Lemma 3.5], if a function θ : [0, T ]× Rh → Rk is continuous also the function:

Θ : (M([0, T ];Rh), δM) → (M([0, T ];Rh), δM)

x ↦→ (θ(t, xt))t∈[0,T ].

is continuous. As a consequence, applying the continuous mapping theorem, we conclude that

if (Y n, ϖn) converges weakly to a process (Y∞, ϖ∞), then also ˆ︁α(Y n
t , ϖ

n
t ) converges weakly toˆ︁α(Y∞

t , ϖ∞
t ). In particular, defining ˆ︁α∞

t := ˆ︁α(Y∞
t , ϖ∞

t ) the sequence (ˆ︁αn)n converges weakly

to ˆ︁α∞ and the weak limit can be seen as an R-valued process. Therefore, up to subsequences,

the sequence (Θn)n∈N defined by:

Θn := (X0, b,Wn, w,Xn, ˆ︁αn) ∈ ˜︁Ωinput × C([0, T ];R)×M([0, T ];R) (2.118)
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admits a weak limit Θ∞ := (X∞, b∞,W∞, w∞, X∞, ˆ︁α∞). We denote by G∞ the complete

and right continuous augmentation of FΘ∞
. Let us notice that, a priori, G∞ can be strictly

larger than F∞.

Step 2 We need to prove that the weak limit X∞ satisfies system (2.70) with γt ≡ ˆ︁α∞
t for each

t ∈ [0, T ]. Any weak limit of the initial condition X0 is distributed like X0,∞. Moreover,

applying Lemma 2.41, we show that (b∞, w∞) is a two-dimensional Brownian motion with

respect to the filtration G∞.

Since E[supt∈[0,T ] |Xn
t |2] and E[

∫︁ T
0 |ˆ︁αn

t |2dt] are uniformly bounded in n ∈ N, also:

E∞

[︄
sup

t∈[0,T ]
|X∞

t |2 +
∫︂ T

0
|ˆ︁α∞

t |2dt

]︄
<∞.

Indeed, to prove the square integrability of the optimal control process ˆ︁α∞ we can apply

[CD18b, Lemma 3.6]. To do so, we need to show that:

∀ϵ > 0 lim sup
a→∞

sup
n≥0

P

(︄∫︂ T

0
|ˆ︁α(Y n

t , ϖ
n
t )|21{|ˆ︁α(Y n

t ,ϖn
t )|2≥a}dt ≥ ϵ

)︄
= 0. (2.119)

Applying Markov’s and the Cauchy-Schwartz inequalities, together with Fubini-Tonelli the-

orem, by condition D2, we observe that

P

(︄∫︂ T

0
|ˆ︁α(Y n

t , ϖ
n
t )|21{|ˆ︁α(Y n

t ,ϖn
t )|2≥a}dt ≥ ϵ

)︄

≤ 1

ϵ
E

[︄∫︂ T

0
|ˆ︁α(Y n

t , ϖ
n
t )|21{|ˆ︁α(Y n

t ,ϖn
t )|2≥a}dt

]︄

≤ 1

ϵ
E

[︄
2

∫︂ T

0
|Λ|2(|Y n

t |2 + |ϖn
t |2)1{|ˆ︁α(Y n

t ,ϖn
t )|≥

√
a}dt

]︄

≤ 4|Λ|2T
ϵ

∫︂ T

0
E

[︄
sup

t∈[0,T ]
(|Y n

t |4 + |ϖn
t |4)

]︄
dt

∫︂ T

0
P(|ˆ︁α(Y n

t , ϖ
n
t )| ≥

√
a)dt

≤ 4|Λ|2T
ϵ

CT
1√
a

∫︂ T

0
E[|ˆ︁α(Y n

t , ϖ
n
t )|]dt ≤

4|Λ|2T
ϵ

(CT )2
1√
a

Therefore, condition (2.119) is satisfied and the sequence
∫︁ T
0 |ˆ︁αn

t |2dt converges weakly to∫︁ T
0 |ˆ︁α∞

t |2dt. We introduce now the following processes:

Bn
t :=

∫︂ t

0
(ˆ︁αn

s + l(s,ϖn
s ))ds, Σ

0,n
t :=

∫︂ t

0
σ0(s,ϖn

s )dbs, Σ
n
t :=

∫︂ t

0
σ(s,ϖn

s )dws.

Applying again [CD18b, Lemma 3.6], we prove that Bn converges weakly to B∞ :=
∫︁ .
0(ˆ︁α∞

s +

l(s,ϖ∞
s ))ds on C([0, T ];R). For Σ0,n and Σn, we proceed differently. Let us consider Σ0,n.

Since ϖn converges weakly to ϖ∞ in M([0, T ];R) and σ(t,ϖ) is a continuous map in ϖ
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variable, by [CD18b, Lemma 3.5], (σ(t,ϖn
t ))t∈[0,T ] converges weakly to (σ(t,ϖ∞

t ))t∈[0,T ] in

M([0, T ];R).

We want to exploit the continuity of the Brownian motion in order to obtain the convergence

in distribution on C([0, T ],R) of the stochastic integrals. In order to do so, we apply a

particular case of Theorem 2.42, to the sequence (ξn, ηn) := ((σ0(t,ϖn
t ))t∈[0,T ], b). In order to

do so, we need to check that conditions E1 and E2 hold for ((σ0(t,ϖn
t ))t∈[0,T ], b). We observe

that:

E1 Let us consider τ cn := inft∈[0,T ]{bt ≥ c}. Hence, given a constant cα > 0, we introduce

ταn := τ cαn :

P(ταn ≤ α) = P

(︄
inf

t∈[0,T ]
{bt ≥ cα} ≤ α}

)︂
= P

(︄
sup

t∈[0,α]

bt ≥ cα

)︄
= 2P(bα ≥ cα) = 2

(︄
1− Φ

(︂ cα√
α

)︂)︄
≤ 1

α
,

for a sufficiently large cα. Moreover, since [bt] = t, (2.117) is satisfied.

E2 We introduce τ cn := inft∈[0,T ]{|σ0(t,ϖn
t )| > c}. By condition D2, given a constant cα > 0,

we define ταn := τ cαn . Hence, by (2.116), the following holds

P(ταn ≤ α) = P

(︄
sup

t∈[0,α]
|σ0(t,ϖn

t )| ≥ cα

)︄
≤ 1

cα
E

[︄
sup

t∈[0,T ]
|σ0(t,ϖn

t )|

]︄

≤ 1

cα
E

[︄
sup

t∈[0,T ]
|ϖn

t |

]︄
≤ 1

cα
[(3L+ ΛLh0T ) + Λ

√
Cβ] ≤ 1

α
,

for a sufficiently large cα. To adopt a lighter notation we denote σ0(t,ϖn
t ) by σ

0,n
t . We

apply [Kur91, Lemma 5.2], which guarantees that

E[|σ0,nταn∧T |] ≤ VT (σ
0,n) + E[|σ0,nT |] ≤ sup

n∈N

{︂
VT (σ

0,n) + E[|wn
T |]
}︂
.

In order to use this result, we need to check that supn∈N Vt(σ
0,n) <∞, for every t ∈ [0, T ].

To prove this condition, we need Assumption B4. Indeed, let us notice that, if ϕ is a

convex function whose gradient is bounded and G is a sigma-algebra, the following holds

|E[ϕ(X)− ϕ(Y )|G]| = E[ϕ(X)− ϕ(Y )|G]− 21{E[ϕ(X)−ϕ(Y )|G]<0}E[ϕ(X)− ϕ(Y )|G],

≤ E[ϕ(X)− ϕ(Y )|G]− 21{E[ϕ(X)−ϕ(Y )|G]<0}(E[ϕ(X)− ϕ(Y )

− ϕ′(Y )(X − Y )|G]− E[ϕ′(Y )(X − Y )|G])

≤ E[ϕ(X)− ϕ(Y )|G]− 21{E[ϕ(X)−ϕ(Y )|G]<0}E[ϕ′(Y )(X − Y )|G]

≤ E[ϕ(X)− ϕ(Y )|G] + 2 sup
x

|ϕ′(x)|E[X − Y |G].

(2.120)
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If ϕ(X) = σ0(t,X) and ∆ := {t0, . . . , tN}, then:

V ∆
T (σ0,n) := E

[︄∑︂
i

⃓⃓⃓⃓
⃓E[σ0(ti+1, ϖ

n
ti+1

)− σ0(ti, ϖ
n
ti)|F

n,l
ti

]

⃓⃓⃓⃓
⃓
]︄

≤ E

[︄∑︂
i

E[σ0(ti+1, ϖ
n
ti+1

)− σ0(ti, ϖ
n
ti)|F

n,l
ti

]
]︂
+ 2 sup

t,ϖ
|∂tσ0(t,ϖ)|E[

∑︂
i

(ti+1 − ti)]

+ 2 sup
t,ϖ

|∂ϖσ0(t,ϖ)|E

[︄∑︂
i

|E[ϖn
ti+1

−ϖn
ti |F

n,l
ti

]|

]︄
= E[σ0(T,ϖn

T )− σ0(0, ϖn
0 )] + 2 sup

t,ϖ
|∂tσ0(t,ϖ)|T

+ 2 sup
t,ϖ

|∂ϖσ0(t,ϖ)|E

[︄∑︂
i

|E[ϖn
ti+1

−ϖn
ti |F

n,l
ti

]|

]︄

Applying the supremum in n ∈ N, we conclude that:

sup
n∈N

Vt(σ
0,n) ≤ 2 sup

n∈N

{︄
E

[︄
sup

t∈[0,T ]
|σ0(t,ϖn

t )|

]︄
+ sup

t,ϖ
|∂tσ0(t,ϖ)|T + sup

t,ϖ
|∂ϖσ0(t,ϖ)|Vt(ϖn)

}︄

≤ 2 sup
n∈N

{︄(︄
1 + E

[︄
sup

t∈[0,T ]
|ϖn

t |

]︄)︄
+ LT + LVt(ϖ

n)

}︄
<∞.

Tightness of (ϖn)n∈N guarantees that supn∈N E[|σ0,nταn∧T |] < ∞. We apply now [Kur91,

Lemma 5.4] to the process ˜︁σ0,nt := 1[0,τ)(t)σ
0,n
t to obtain:

Vt(˜︁σ0,n) ≤ Vt(σ
0,n) + LE[|ϖn

t |].

We notice that: σ0,nt∧τ := 1[0,τ)(t)σ
0,n
t + 1[τ,∞)(t)σ

0,n
τ , for every stopping time τ . Thus:

Vt(σ
0,n
·∧τ ) = sup

∆⊂[0,t]
E

[︄∑︂
i

⃓⃓⃓⃓
⃓E[σ0,nti+1∧τ − σ0,nti∧τ |F

n,l
ti

]

⃓⃓⃓⃓
⃓
]︄

≤ sup
∆⊂[0,t]

E

[︄∑︂
i

⃓⃓⃓⃓
⃓E[˜︁σ0,nti+1∧τ − ˜︁σ0,nti∧τ |F

n,l
ti

]

⃓⃓⃓⃓
⃓
]︄

+ sup
∆⊂[0,t]

E

[︄∑︂
i

⃓⃓⃓⃓
⃓E[σ0,nτ (1[τ,∞)(ti+1)− 1[τ,∞)(ti))|F

n,l
ti

]

⃓⃓⃓⃓
⃓
]︄

= Vt(˜︁σ0,n) + sup
∆⊂[0,t]

E

[︄∑︂
i

⃓⃓⃓
E[σ0,nτ 1(ti,ti+1](τ)|F

n,l
ti

]
⃓⃓⃓]︄

≤ Vt(˜︁σ0,n) + sup
∆⊂[0,t]

E

[︄∑︂
i

E

[︄
sup

s∈[ti,ti+1]
|σ0,ns |1(ti,ti+1](τ)|F

n,l
ti

]︄]︄
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≤ Vt(˜︁σ0,n) + sup
∆⊂[0,t]

∑︂
i

E

[︄
sup

s∈[ti,ti+1]
|σ0,ns |1(ti,ti+1](τ)

]︄

≤ Vt(˜︁σ0,n) + sup
∆⊂[0,t]

E

[︄
sup

s∈[0,T ]
|σ0,ns |

∑︂
i

1(ti,ti+1](τ)

]︄

≤ Vt(˜︁σ0,n) + sup
∆⊂[0,t]

E

[︄
sup

s∈[0,T ]
|σ0,ns |1(0,T ](τ)

]︄

≤ Vt(˜︁σ0,n) + E

[︄
sup

s∈[0,T ]
|σ0,ns |

]︄

≤ E

[︄
sup

t∈[0,T ]
|σ0(t,ϖn

t )|

]︄
+ sup

t,ϖ
|∂tσ0(t,ϖ)|T + sup

t,ϖ
|∂ϖσ0(t,ϖ)|Vt(ϖn)

+ LE[|ϖn
t |] + E

[︄
sup

s∈[0,T ]
|ϖn

s |

]︄
.

Taking the supremum we conclude that supn∈N Vt(σ
0,n
·∧ταn ) <∞.

As a consequence, applying Theorem 2.42 to ((σ0(t,ϖn
t ))t∈[0,T ], b), the sequence(︄

σ0(·, ϖn
· ), b,

(︄∫︂
σ0(t,ϖn

t )dbt

)︄)︄
is tight on M([0, T ],R)×D([0, T ];R2).

Moreover, the weak convergence on M([0, T ],R)×D([0, T ];R2) holds:

(︂
σ0(·, ϖn

· ), b,

∫︂
σ0(t,ϖn

t )dbt

)︄)︄
converges in distribution to

(︄
σ0(·, ϖ∞

· ), b∞,

(︄∫︂
σ0(t,ϖ∞

t )db∞t

)︄)︄
.

Since the weak convergence of the stochastic integrals is in D([0, T ];R) and the trajectories are

continuous, the tightness can be restricted in C([0, T ];R). In conclusion, doing the same com-

putations for Σn we obtain that Σn converges in distribution to Σ∞ on C([0, T ];R). Moreover,

up to subsequences, (Θn, Bn,Σ0,n,Σn)n converges to (Θ∞, B∞,Σ0,∞,Σ∞) on ˜︁Ωinput×C([0, T ];R)×
M([0, T ];R)× (C([0, T ];R))3 in distribution. We consider the function:

h : ˜︁Ωinput × C([0, T ];R)×M([0, T ];R)× (C([0, T ];R))3 → C([0, T ];R)

(Θ, B,Σ0,Σ) ↦→ (Xt − (X0 +Bt +Σ0
t +Σt))t∈[0,T ].

Since h is continuous, by the continuous mapping theorem, (h(Θn, Bn,Σ0,n,Σn))n is conver-

gent in distribution on C([0, T ];R). Moreover, h(Θn, Bn,Σ0,n,Σn) = 0. The convergent series

is constant, so we have the convergence also in probability ([Kal97, Lemma 5.7]). Therefore,

extracting a subsequence, we obtain that P∞-a.s.:

X∞ − (X0,∞ +B∞ +Σ0,∞ +Σ∞) = 0,
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that is:

X∞
t = X0,∞ +

∫︂ t

0
(ˆ︁α∞

s + l(s,ϖ∞
s ))ds+

∫︂ t

0
σ0(s,ϖ∞

s )db1,∞s +

∫︂ t

0
σ(s,ϖ∞

s )dw∞
s , t ∈ [0, T ].

(2.121)

This implies that
(︂∫︁ t

0 ˆ︁α∞
s ds

)︂
t∈[0,T ]

is F∞-adapted. As a consequence: P∞
-a.s.

ˆ︁α∞
t = lim

p→∞
p

∫︂ t

(t− 1
p
)+

ˆ︁α∞
s ds, a.e. t ∈ [0, T ].

In particular, this holds on the full-Lebesgue measured set in [0, T ] in which the càdlàg version

of the weak limit (ˆ︁αn,l)n,l in Meyer-Zheng topology is defined. We consider the optional

projection of the weak limit (ˆ︁α∞
t )t∈[0,T ] given the filtration F∞. We denote it by (◦ˆ︁α∞

t )t∈[0,T ].

By definition, ◦ˆ︁α∞
t = E[ˆ︁α∞

t |F∞
t ] =◦ ˆ︁α∞

t for almost any t ∈ [0, T ], P∞-a.s. (in particular,

(◦ˆ︁α∞) is progressively measurable with respect to F∞). As a consequence, for almost every

t ∈ [0, T ], equation (2.121) can be rewritten as:

X∞
t = X0,∞ +

∫︂ t

0
(◦ˆ︁α∞

s + l(s,ϖ∞
s ))ds+

∫︂ t

0
σ0(s,ϖ∞

s )db1,∞s +

∫︂ t

0
σ(s,ϖ∞

s )dw∞
s , t ∈ [0, T ].

Step 3 Since the process ϖ∞ has trajectories in D([0, T ];R), we can find a countable set τ ⊂ [0, T ]

such that:

P∞(ϖ∞ is continuous on [0, T ] \ τ) = 1.

Therefore, for eacn N ≥ 1, there exists a sequence 0 = tN0 < · · · < tNN = T of step length less

than 2T
N on [0, T ]/τ . Therefore, we can introduce a family (Φ(tNi ; ·))i=0,...,N−1 ⊆ Cb(˜︁Ωinput ×

C([0, T ];R);A). As a consequence, for every n ∈ N ∪ {∞}, we define:

γn,Nt :=
N−1∑︂
i=0

1[tNi ,tNi+1)
(t)Φ(tNi ;X0, b·∧tNi

,Wn
·∧tNi

, w·∧tNi
, Xn

·∧tNi
), t ∈ [0, T ].

In particular, γn,N is Fn-progressively measurable, then:

Jϖn
(ˆ︁αn) ≤ Jϖn

(γn,N ), ∀n ∈ N ∪ {∞}, N ∈ N.

In particular, Φ(tNi ;X0, b·∧tNi
,Wn

·∧tNi
, w·∧tNi

, Xn
·∧tNi

) weakly converges in A by the continuous

mapping theorem. As a consequence, the function:

Ψ : Ωinput × C([0, T ];R) → D([0, T ];R)

(x0, b,W, w, x) ↦→
N−1∑︂
i=0

1[tNi ,tNi+1)
(t)Φ(tNi ;x0, b·∧tNi

,W·∧tNi
, w·∧tNi

, x·∧tNi
)

is continuous. This implies that (γn,N )n∈N weakly converges to γ∞,N in D([0, T ];A) for each
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N fixed. By the uniform square integrability of {Y n}n also the optimal controls {ˆ︁αn}n are

uniformly square integrable. By Assumption A2:

lim
n→∞

En

[︄∫︂ T

0
f(t,Xn

t , ϖ
n
t , ˆ︁αn

t )dt+g(X
n
T , ϖ

n
T )

]︄
= E∞

[︄∫︂ T

0
f(t,X∞

t , ϖ
∞
t , ˆ︁α∞)dt+g(X∞

T , ϖ
∞)

]︄

As a consequence, Jϖ∞
(ˆ︁α∞) ≤ limn→∞ Jϖn

(γn,N ), ∀N ≥ 0. To pass to the limit in the right

hand-side we recall that the sequence (X0, b,Wn, w,Xn, γn,N )n converges in distribution to

(ξ∞, b∞,W∞, w∞, X∞, γ∞,N ) (by the continuous mapping theorem). Let us notice that we

can define the weak limit on the same filtered probability space (Ω∞,F∞,P∞,F∞) on which

the limit game is defined. Indeed, since the state equation satisfies strong uniqueness when the

input (ξ∞, b∞,W∞, w∞, γ∞,N ) is given, we can define on the filtered space (Ω∞,F∞,P∞,F∞)

the control γ∞,N introduced in equation

γ∞,N
t :=

N−1∑︂
i=0

1[tNi ,tNi+1)
(t)Φ(tNi ;X0,∞, b1,∞·∧tNi

,W∞
·∧tNi

, w∞
·∧tNi

, X∞
·∧tNi

), t ∈ [0, T ],

that is F∞-progressive measurable by definition.

Denoting by ˜︁F the complete and right-continuous augmentation of

(ξ∞, b∞,W∞, w∞, γ∞,N ),

by the Yamada-Watanabe theorem the solution to the state equation is ˜︁F-progressively meas-

urable. As a consequence, on (Ω∞,F∞,P∞, ˜︁F), the solution X∞,N driven by the control

γ∞,N is uniquely determined by the law of (ξ∞, b∞, (W∞, γ∞,N ), w∞) and therefore it is˜︁F-progressively measurable.

Since ˜︁F ⊆ F∞ and b∞ and w∞ are F∞-Brownian motions, we can define the solution to the

state equation with the control γ∞,N on (Ω∞,F∞,P∞,F∞).

We conclude that the functional (
∫︁ T
0 f(t,Xn

t , ϖ
n
t , γ

n,N
t )dt + g(Xn

T , ϖ
n
T )) converges in law to∫︁ T

0 f(t,X∞
t , ϖ

∞
t , γ

∞,N
t )dt+g(X∞

T , ϖ
∞
T ) and the limit can be seen as the distribution of a pro-

cess defined on (Ω∞,F∞,P∞,F∞). Finally, to prove that Jϖn
(γn,N ) converges to Jϖ∞

(γ∞,N )

we need to check square uniform integrability of the controls (γn,N )n. This condition is guar-

anteed by the boundedness of the functionals Φ(ti; ·) that define γn,N .

Therefore, the sequence Jϖn
(γn,N ) converges to Jϖ∞

(γ∞,N ) and we have:

Jϖ∞
(ˆ︁α∞

t ) ≤ Jϖ∞
(γ∞,N ), ∀N ≥ 0.

We now approximate every F∞-progressively measurable process with the limit of a sequence

like the one (γ∞,N )N , applying the strategy proposed in the third step of the proof of [CD18b,

Proposition 3.11]. We proceed as follows:
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(a) By convexity, we can approximate γ by πR(γ) where, πR is the projection on B0(R). As

a consequence, we can take γ bounded.

(b) We consider the process
(︂

1
h

∫︁ t
t−h γsds

)︂
0≤t≤T

where for negative s we impose that γs = a,

for an arbitrary a ∈ R. As a consequence, we can assume that γ has Lipschitz continuous

paths.

(c) We can approximate now γ with a sum
(︂∑︁N

i=1 γtNi−1
1[tNi ,tNi+1)

(t)
)︂
0≤t≤tN

.

(d) Since γ is supposed to be continuous in time, each γtNi−1
is measurable with respect to

the completion of σ{(ξ∞, b∞s ,W∞, w∞
s , X

∞
s : s ≤ tNi−1)}.

By Lemma 2.43, there exists a version of γtNi−1
, which is measurable with respect to

σ{(ξ∞, b∞s ,W∞
s , w

∞
s , X

∞
s : s ≤ tNi−1)}.

This implies that, there exists a bounded and measurable function Φ(tNi ; ·) such that:

γN
tNi

:= Φ(tNi ; ξ∞, b∞·∧tNi
,W∞

·∧tNi
, w∞

·∧tNi
, X∞

·∧tNi
).

(e) Finally, we can approximate the function Φ(tNi ; ·) in L2(Ωinput × C([0, T ];R)) with con-

tinuous functions, applying Lusin theorem.

Step 4 By the previous step the following holds Jϖ∞
(ˆ︁α∞) ≤ Jϖ∞

(◦ˆ︁α∞). As a consequence:

Jϖ∞
(ˆ︁α∞) = E∞

[︄∫︂ T

0

f(s,X∞
s , ϖ∞

s , ˆ︁α∞
s )ds+ g(X∞

T , ϖ∞
T )

]︄

A3 ≥ E∞

[︄∫︂ T

0

f(s,X∞
s , ϖ∞

s ,
◦ ˆ︁α∞

s )ds+ g(X∞
T , ϖ∞

T )

]︄
+

+ E∞

[︄∫︂ T

0

(ˆ︁α∞
s −◦ ˆ︁α∞

s )∂αf(s,X
∞
s , ϖ∞

s ,
◦ ˆ︁α∞

s )ds

]︄
+

1

2
L−1E∞

[︄∫︂ T

0

|ˆ︁α∞
s −◦ ˆ︁α∞

s |2ds

]︄

= Jϖ∞
(◦ˆ︁α∞) +

1

2
L−1E∞

[︄∫︂ T

0

|ˆ︁α∞
s −◦ ˆ︁α∞

s |2ds

]︄
.

In conclusion

E∞

[︄∫︂ T

0
|ˆ︁α∞

s −◦ ˆ︁α∞
s |2ds

]︄
= 0

and thus ˆ︁α∞
s possesses an F∞-progressively measurable modification.
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CHAPTER 3

On a foundamental theorem for statistical arbitrage

opportunities

3.1 Introduction

The term statistical arbitrage is commonly adopted to denote a trading strategy characterized

by milder conditions than the ones that define an arbitrage opportunity. We recall that an ar-

bitrage opportunity is defined as a self-financing strategy that guarantees a net profit taking no

risks. If a market allows for arbitrage opportunities, it is considered inefficient, because the pres-

ence of arbitrage opportunities implies that certain assets are not priced correctly. Indeed, if an

arbitrage opportunity is present, a large demand (or supply) of some assets is created, leading to

a modification of the prices and consequently the disappearance of the opportunity itself. The

characterization of the absence of arbitrage opportunities has been a crucial task in mathematical

finance. The study of the conditions that guarantee absence of arbitrage opportunities leaded to

the fundamental theorem of asset pricing ([DS94, Theorem 1.1]).

As discussed, it is reasonable to suppose that the market is free of arbitrage opportunity. As a

consequence, speculators aim at constructing strategies that lead profit involving some risks that

can be either controlled or assessed. These strategies are called statistical arbitrage opportunities.

Widely analysed in the literature, the term of statistical arbitrage can refer to different kinds

of financial strategies, that extend the definition of arbitrage opportunities. All these different

strategies, linked with the term statistical arbitrage, are surveyed in [LBŠ+18]. In this paper, the

authors compared the differences between the strategies commonly adopted in the market that

are referred as statistical arbitrage opportunities. In particular, a statistical arbitrage can refer

to the notion of δ-Arbitrage, defined in [Led95] as an investment strategies satisfying a prescribed

condition on its Sharpe ratio. Successively, this definition of δ-Arbitrage was replaced by the notion

of Approximate Arbitrage, introduced in [BL00]. Another generalization of the notion of arbitrage

opportunity, that is linked by the definition of statistical arbitrage is given by the Good Deal,

145



3.1. INTRODUCTION

introduced in [CS00] in the context of incomplete financial markets and investigated successively

in [ČH02], [Sta04] and in [BS06]. Finally, there can be found links with the notion of statistical

arbitrage in [CGM01] (Acceptable Opportunity) and in [BKL01] (ϵ-Arbitrage). In [HJTW04],

in the context of infinite-time horizon models, a statistical arbitrage is defined as a zero-cost, self

financing strategy, that asymptotically has positive expected payoff, a probability of loss converging

to zero and a time-averaged variance converging to zero (if the probability of a loss does not become

zero in finite time). In [Bon03] a statistical arbitrage is defined, in a finite-horizon economy, as a

zero-cost trading strategy for which the expected payoff is positive and the conditional expected

payoff in each final state of the economy is nonnegative.

In this chapter we focus on the notion of statistical arbitrage analysed in [Bon03]. The author

studied the case of a market model determined by a single asset, modelled by a discrete-time

stochastic process defined on a finite probability space. The time horizon, denoted by T > 0, is

finite. The state of the economy at time t is represented by a random variable ξt. Therefore,

the information structure in the market is determined by the vector It := (ξ0, . . . , ξt), for each

t = 0, . . . , T . A statistical arbitrage opportunity (SAO) is defined in [Bon03] as a zero-cost trading

strategy for which the expected payoff is positive and the conditional expected payoff in each final

state of the economy (i.e. each realization of the random variable ξT ) is nonnegative. To formalize

this setting, the author introduced the vector of augmented information set IξTt := (ξ0, . . . , ξt; ξT ).

Then, a (SAO) is defined as follows:

Definition 3.1. ([Bon03, Definition 2]) A zero-cost trading strategies, with payoff ZT (depending

on IT ), is called (SAO) if:

1. E[ZT |I0] > 0;

2. E[ZT |IξT0 ] ≥ 0, for every realization of ξT .

In [Bon03, Proposition 1], it is shown shown that the absence of (SAO) is equivalent to the

existence of a probability measure Q such that the price process is a Q-martingale and its kernel

with respect the objective measure P is measurable with respect to ξT . To prove this result, the

author applied the same techniques described in [HK79] and [HP81] to characterize the absence of

classical arbitrage opportunities in a multi-period finite dimensional market. Its generalization to

financial markets defined on general probability spaces represents an open problem.

In this chapter we present some preliminary results in the direction of a characterization of

the absence of statistical arbitrage opportunities, under a suitable generalization of the definition

introduced by Bondarenko, in the case of market models defined on general probability spaces. In

the recent work [RRS21], some results in this direction have already been provided. The authors

generalized Definition 3.1 to the case of self-financing zero-cost trading strategies that allow for

a positive expected payoff and conditional expected payoff that is nonnegative in (almost) every

realization of an augmented information set, described by a given sigma-algebra G. In [RRS21,

Section 2.2], the authors provided a counterexample to the characterization of absence of (SAO)
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opportunities proved in [Bon03, Proposition 1]. However, we confirm [Bon03, Proposition 1] in the

case of finite dimensional markets.

The chapter is structured as follows. In Section 3.3, we present the mathematical setup. In

Section 3.4, we describe the characterization of the absence of statistical arbitrage opportunities

in the case of a market defined on a finite probability space. In particular, we prove that the

absence of statistical arbitrage opportunities is equivalent to the existence of a martingale measure

for the price process, whose Radon-Nykodym derivative with respect to the objective measure

P is G-measurable. Moreover, we study the counterexample proposed in [RRS21], showing that

it does not disprove [Bon03, Proposition 1]. In Section 3.5, we show that the existence of the

martingale measure introduced in the finite setting is actually equivalent to a stronger condition

than the absence of statistical arbitrage opportunities. In Section 3.6, we focus on discrete-time

market defined on a general probability space. In particular, we provide conditions under which

the characterization that holds in the finite-dimensional case is preserved. Finally, in Section 3.7,

we establish a characterization of the absence of statistical arbitrage opportunities in the case of a

semimartingale market under a taylor-made condition.

3.2 Notation

In this section we introduce the notation we are adopting along the chapter.

• Given a probability space (Ω,F ,P), for any p, q ∈ [1,∞] such that 1
p + 1

q = 1, we compactly

denote Lp(Ω,F ,P) by Lp(F). We adopt the convention that p = 1 if and only if q = ∞ and

vice versa. When it is clear from the context, we may adopt the notation Lp(F), to denote

also the space of Rd-valued random variables, whose components are in Lp(F).

• For any p ∈ [1,∞), the dual of Lp(F) is Lq(F), where q := p
p−1 (if p = 1, q = ∞). The weak

topology of Lp(F) induced by Lq(F) is denoted by σ(Lp(F), Lq(F)).

• For p = ∞, we denote by σ(L∞(F), L1(F)) the weak-∗ topology on L∞(F), induced by

L1(F).

• Let A be a set in Lp(F), for p ∈ [1,∞]. We denote:

– the σ(Lp(F), Lq(F))-closure of A, by Cl∗(A), where 1
p + 1

q = 1.

– the closure of A in the norm topology of Lp(F) by Cl(A).

• In a probability space (Ω,F ,P), we consider a sub-sigma-algebra G ⊆ F . We recall that

the conditional expectation of X ∈ L1(F) with respect to G is a random variable Y ∈
L1(G), such that for every G ∈ G, E[Y 1G] = E[X1G]. It can be proved that such random

variable Y is P-a.s. unique and we denote it by E[X|G]. In the following, we may denote the

conditional expectation E[X|G] by πG(X), to emphasize that the conditional expectation can
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be interpreted as a linear projection:

πG : L1(Ω,F ,P) → L1(Ω,G,P)

X ↦→ E[X|G].

In analogy to [JS13, equation (1.1)], we extend the definition of condition expectation to

every random variable X ∈ L0(Ω,F ,P), introducing the generalized conditional expectation:

E[X|G] :=

⎧⎨⎩E[X+|G]− E[X−|G] on the set where E[|X||G] <∞,

+∞ otherwise

where X+ := max{X, 0} and X− := max{−X, 0}.

• We denote the positive cone on RN , by RN
+ , i.e. RN

+ := {x ∈ RN : xi ≥ 0, ∀i = 1, . . . , N}.
For every p ∈ [1,∞], we denote the positive cone on Lp(F), by Lp

+(F) = {l ∈ Lp(F), l ≥
0, P-a.s.}.

• We denote the scalar product of two vector a, b ∈ Rd by a ·b :=
∑︁d

i=1 aibi. If E is a topological

vector space and E∗ is its dual, then for every a ∈ E and b ∈ E∗, we may denote by ⟨b, a⟩ the
duality introduced in [AB06, Definition 5.90]. In particular, for any p ∈ [1,∞], given q such

that 1
p + 1

q = 1, for every f ∈ Lp(F) and g ∈ Lq(F), ⟨f, g⟩ = E[f · q].

3.3 The formalization of the problem

In this section, we introduce the mathematical framework, the definition of statistical G-arbitrage
opportunity and the preliminary properties of the set of statistical G-arbitrage opportunities.

We consider a finite time-horizon T and a probability space (Ω,F ,P). We define the class

of admissible trading strategies in two cases, when the price process is a discrete-time stochastic

process defined on T := {0, . . . , T} and when the price process is a continuous-time stochastic

process defined on the time interval T := [0, T ]. In what follows, we denote the price process by

S and assume that it is defined by a stochastic process taking values on Rd, expressed already in

discounted terms.

Definition 3.2. We consider a probability space (Ω,F ,P) and a discrete time set T. We introduce

a filtration F := (Ft)
T
t=0 defined on T := {0, . . . , T}. We consider an Rd-valued stochastic process

S adapted to F. We introduce the following concepts:

• An admissible trading strategy ϕ is an Rd-valued predictable discrete-time stochastic process

(ϕi)
T
i=1, i.e. ϕi is Fi−1-measurable for any i = 1, . . . , T . We denote the set of such strategies

by A.
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• The value process of ϕ is defined by V0(ϕ) = 0 and

Vt(ϕ) :=
t∑︂

i=1

ϕi ·∆Si, t ∈ {1, . . . , T},

where ∆Si := Si − Si−1 for any i = 1, . . . , T . We compactly denote (Vt(ϕ))t∈[0,T ] by V (ϕ).

In continuous time, we give the following definition:

Definition 3.3. We consider a probability space (Ω,F ,P) and a time interval [0, T ]. We introduce a

right-continuous and complete filtration F := (Ft)t∈[0,T ]. We consider an Rd-valued locally bounded

semimartingale S := (S1, . . . , Sd). We suppose that S is adapted to F. Then:

• A trading strategy ϕ is every S-integrable and predictable stochastic process on taking values

on Rd;

• The value process of ϕ is defined by:

Vt(ϕ) :=

∫︂ t

0
ϕs · dSs + ϕ0S0, t ∈ [0, T ].

We compactly denote (Vt(ϕ))t∈[0,T ] by V (ϕ).

• A trading strategy ϕ is called admissible if ϕ0 = 0 and there exists a constant a ≥ 0 such that

Vt(ϕ) ≥ −a, a.s., for all t ∈ [0, T ]. In this setting, analogously with Definition 3.2, we denote

the set of admissible trading strategies by A.

In analogy to [RRS21, Definition 2.1], we introduce the definition of statistical G-arbitrage
opportunity, that can be applied both for discrete-time and continuous-time markets:

Definition 3.4. Let G ⊆ FT be a sigma-algebra. An admissible strategy ϕ is called statistical

G-arbitrage opportunity if the two following conditions hold:

E[VT (ϕ)] > 0,

E[VT (ϕ)|G] ≥ 0, a.s.

Let us notice that, if G := FT , we recover the classical notion of arbitrage opportunity. Moreover,

in the context of discrete-time markets, if G := σ{ST }, we recover the notion of statistical arbitrage

opportunities introduced in [Bon03] (Definition 3.1). Finally, By the tower property if G1 ⊂ G2 are

two sigma-algebras on (Ω,F ,P), the set of statistical G2-arbitrage opportunities is contained in the

set of statistical G1-arbitrage opportunities. In particular, this implies that absence of statistical

G-arbitrage opportunities guarantees that the market is free of standard arbitrage opportunities.

Remark 3.5 (Financial interpretation). By definition, a statistical G-arbitrage opportunity is a

trading strategy ϕ whose final portfolio value can be negative at the condition that the aggregated
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value in each scenario of the sigma-algebra G is non negative and, moreover, there exists a non

negligible set on F on which VT (ϕ) is strictly positive in average. From an economic point of view,

the definition of statistical G-arbitrage can be employed to evaluate if a trading strategy is worth to

be applied. For instance, one can introduce a fixed benchmark of scenarios to provide a criterion to

establish the quality of a trading strategy. In particular, an investment based on a strategy ϕ can

be labelled as a good investment if the average final value of the portfolio determined by ϕ is non-

negative in all the benchmark scenarios. In this example, denoted by B1, . . . , Bm the benchmark

scenarios, ϕ generates a good investment if and only if ϕ is a statistical G-arbitrage opportunity,

where G := σ{B1, . . . , Bm}.
Let us notice that richer is the sigma-algebra G stricter become the conditions that guarantee

absence of statistical G-arbitrage opportunities. If for example G is the trivial sigma-algebra the

statistical G-arbitrage is a weak definition and it is rather unrealistic to suppose absence of statistical

G-arbitrage opportunities. On the other hand, practitioners can be interested in conditions under

which the market the free of statistical G-arbitrage opportunities, when G is defined by a large

number of benchmark scenarios.

In what follows, we denote the absence of statistical G-arbitrage opportunities with the symbol

NSA(G). We introduce the set KG by:

K0
G := {E[VT (ϕ)|G]| ϕ ∈ A}. (3.1)

Then, NSA(G) is equivalent to:
K0

G ∩ L0
+(Ω,G,P) = {0}. (NSA(G))

Our goal is to find equivalent conditions to NSA(G).
Let us recall that, in the framework described in [Bon03] (i.e. G = σ{ST }), condition NSA(G)

is equivalent to the existence of a probability measure Q, equivalent to P such that S = (St)
T
t=0 is

a Q-martingale, i.e. EQ[St+1|Ft] = St and the Radon-Nykodym derivative dQ
dP is σ{ST }-measurable

([Bon03, Proposition 3]).

The natural generalization of this result to the case of statistical G-arbitrage opportunities is

the characterization of NSA(G) in terms of the following condition:

• On (Ω,F ,P, (Ft)
T
t=0), there exists a probability measure Q equivalent to P such that S =

(St)
T
t=0 is a Q-martingale and the Radon-Nikodym derivative dQ

dP is G-measurable. We denote

this condition by EMM(G).

• On (Ω,F ,P, (Ft)t∈[0,T ]), there exists a probability measure Q equivalent to P such that S =

(St)t∈[0,T ] is a Q-local martingale and the Radon-Nikodym derivative dQ
dP is G-measurable. We

denote this condition by ELMM(G).

When the market structure is not specified, we denote both these conditions by E(L)MM(G).
As discussed in Section 3.1, in [RRS21, Section 2.2] a counterexample to [Bon03, Proposition

3] is proposed in the case in which G := σ{ST }. However, as described in Section 3.4.1 below,
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a gap affects the computations of the counterexample. Then, as we show in Section 3.4 below,

NSA(G) ⇐⇒ EMM(G) holds for generic sigma-algebra G, when Ω is a finite set.

As expected, in the general case, the difficult implication is NSA(G)⇒E(L)MM(G). Indeed, in

[RRS21, Theorem 2.1], the converse implication is proved. We give the proof of this result, for

completeness of presentation:

Theorem 3.6. Let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space on which an Rd-valued, locally

bounded semimartingale process S is defined. Then, if the set of admissible strategies is the one

introduced in Definition 3.3, ELMM(G) ⇒NSA(G).

Proof. We consider an equivalent local martingale measure Q for the price S. By assumption the

kernel Z := dQ
dP is a G-measurable random variable. By contradiction, suppose that there exists a

statistical G-arbitrage opportunity ϕ, in the sense of Definition 3.4. We first observe that:

EQ[VT (ϕ)|G] =
1

EP[Z|G]
EP[VT (ϕ)Z|G] = EP[VT (ϕ)|G], a.s.

Therefore, by definition of statistical G-arbitrage and the equivalenece between Q and P:

EQ[VT (ϕ)|G] ≥ 0, a.s.

Moreover, since ϕ is admissible, (Vt(ϕ))t∈[0,T ] is a Q-local martingale ([AS94, Proposition 3.3]).

Applying then Fatou’s lemma it is possible to show that (Vt(ϕ))t∈[0,T ] is a Q-supermartingale. This

implies that EQ[VT (ϕ)] ≤ V0(ϕ) = 0. Therefore, 0 = EQ[VT (ϕ)|G] = EP[VT (ϕ)|G] a.s., that is a

contradiction.

The same reasoning can be applied in the case of discrete-time markets, under the notation

introduced in Definition 3.2. Indeed, for every ϕ = (ϕt)
T
t=0 predictable, if S is a Q-martingale, also

(Vt(ϕ))
T
t=0 is Q-martingale:

EQ[Vt+1(ϕ)|Ft] = EQ
[︂ t+1∑︂
i=1

ϕi ·∆Si|Ft

]︂
=

t∑︂
i=1

ϕi ·∆Si + ϕt+1 · EQ[∆St+1|Ft] =
t∑︂

i=1

ϕi ·∆Si = Vt(ϕ).

As a consequence, EMM(G) implies that EQ[Vt+1(ϕ)|Ft] = 0, for every ϕ ∈ A. Thus, no statistical

G-arbitrage opportunities are allowed.

Remark 3.7. The converse implication, NSA(G) ⇒ ELMM(G), has to be handled more carefully, as

we are going to see in the next sections. However, assuming additionally that there exists a unique

element in

Me(S) := {Q ∼ P probability measure on (Ω,F) s.t. S is a Q-local martingale}, (3.2)

it is possible to show that NSA(G) is equivalent to ELMM(G). This result, shown in [RRS21,

Theorem 3.3], is based on the application of [DS95, Theorem 16]) and [KL17, Proposition 6].
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3.4 Absence of statistical G-arbitrage opportunities in finite di-

mensional markets

As discussed in Section 3.1, when Me(S) ̸= {Q}, condition NSA(G)⇒ E(L)MM(G) is not guar-

anteed. In this section, we show that if the market is defined on a finite probability space, the

equivalence is verified, meaning that

(⋆) If Ω is a finite set, then NSA(G) ⇐⇒ EMM(G).

This result, stated in Theorem 3.10 below, extends and confirms the characterization first provided

in [Bon03, Proposition 3]. However, it is in contrast to the counterexample proposed in [RRS21,

Section 2.2]. In the next section, we describe the gap that affected this counterexample, proving

that it does not disprove condition (⋆).

3.4.1 Analysis of the counterexample proposed in [RRS21, Section 2.2]

In the example studied in [RRS21, Section 2.2], the authors analysed the trinomial model described

by Figure 3.4.1. In particular, they considered a probability space Ω = {ω1, . . . , ω6} and T = 2.

s0 = S0(ω)

s+1 = S1(ωi), i = 1, 2, 3

s−1 = S1(ωi), i = 4, 5, 6

s◦2 = S2(ωi), i = 1, 4

s++
2 = S2(ω2)

s+−
2 = S2(ωi), i = 3, 5

s−−
2 = S2(ω6)

Figure 3.4.1: The tree of the price process.

In particular, the price process S is defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(ω1) = S1(ω2) = S1(ω3) = s+1 ,

S1(ω4) = S1(ω5) = S1(ω6) = s−1 ,

S2(ω1) = S2(ω4) = so2,

S2(ω3) = S2(ω5) = s+−
2 ,

S2(ω2) = s++
2 ,

S2(ω6) = s−−
2 ,
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Let us notice that a trading strategy ϕ = (ϕ1, ϕ
+
2 , ϕ

−
2 ) in the sense of Definition 3.2 is any

predictable process. The portfolio value associated with ϕ at t = 1, 2 is Vt(ϕ) =
∑︁t

i=1 ϕi∆Si, where

ϕ2 ∈ {ϕ+2 , ϕ
−
2 }.

The authors studied the absence of statistical G-arbitrage opportunities for the following sigma-

algebra:

G := σ(S2) = σ({ω1, ω4}, {ω3, ω5}, {ω2}, {ω6}).

By Definition 3.4, a stastistical G-arbitrage is an admissible trading strategy ϕ := (ϕ1, ϕ
+
2 , ϕ

−
2 ) such

that the following inequalities holds:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E[V2(ϕ)|{ω2}] ≥ 0, ϕ1∆S1(ω2) + ϕ+2 ∆S2(ω2) ≥ 0,

E[V2(ϕ)|{ω6}] ≥ 0, ϕ1∆S1(ω6) + ϕ−2 ∆S2(ω6) ≥ 0,

E[V2(ϕ)|{ω1, ω4}] ≥ 0, ϕ1∆S1(ω1)p1 + ϕ+2 ∆S(ω1)p1 + ϕ1∆S1(ω4)p4 + ϕ−2 ∆S(ω4)p4 ≥ 0,

E[V2(ϕ)|{ω3, ω5}] ≥ 0, ϕ1∆S1(ω3)p3 + ϕ+2 ∆S(ω3)p3 + ϕ1∆S1(ω5)p5 + ϕ−2 ∆S(ω5)p5 ≥ 0,

(3.3)

and at least one of them is strictly positive. As discussed in Section 3.1, one aims at characterizing

the absence of statistical G-arbitrage in terms of the existence of a martingale measure Q whose

kernel Z is G-measurable, i.e. Z must satisfy

Z(ω1) = Z(ω4) and Z(ω3) = Z(ω5).

In [RRS21, Lemma 2.6] the authors provided a characterization of the absence of statistical G-
arbitrage opportunities for the class of trinomial models described in Figure 3.4.1. Then, they

constructed an example of a market free of statistical G-arbitrage opportunities and, applying

[RRS21, Lemma 2.6], they shown that there is no martingale measure Q for the price process S

with a G-measurable kernel.

However, we show that there is a gap in the computations in the proof of [RRS21, Lemma 2.6]

and we propose, an alternative result, Lemma 3.8 below, under which this gap is corrected. In

Subsection 3.4.1.1, we study the trinomial model studied in [RRS21, Section 2.2] and we apply

Lemma 3.8 to show that EMM(G) is not satisfied. Finally, in Subsection 3.4.1.2, we construct

explicitly the statistical arbitrage opportunity, proving that equivalence (⋆) cannot be excluded

by this example.

Lemma 3.8. Let ν1 := p1
p4

and ν2 := p3
p5
. In the trinomial model above, suppose that the following

two conditions hold:

1. ν1 = −∆S2(ω3)
∆S2(ω1)

ν2;

2. ν2 ∈ [Γ1,Γ2], Γ1 < Γ2,

where

Γ1 :=
−∆S1(ω5) + ∆S2(ω5)

∆S1(ω6)
∆S2(ω6)

∆S1(ω3)−∆S2(ω3)
∆S1(ω2)
∆S2(ω2)

, (3.4)
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Γ2 :=

∆S1(ω6)
∆S2(ω6)

(∆S2(ω4) + ∆S2(ω5))− (∆S1(ω4) + ∆S1(ω5))

∆S1(ω3)−∆S1(ω1)
∆S2(ω3)
∆S2(ω1)

, (3.5)

Then, the market is free from statistical G-arbitrage if and only if ν2 ∈ (Γ1,Γ2).

Proof. First, we make some remarks on system (3.3), which determines the existence of statistical

G-arbitrage strategies. System (3.3) is equivalent to require that every row of Aξ ≥ 0 is nonnegative,

where

A :=

⎛⎜⎜⎜⎜⎝
∆S1(ω2) ∆S2(ω2) 0

∆S1(ω6) 0 ∆S2(ω6)

∆S1(ω1)ν1 +∆S1(ω4) ∆S2(ω1)ν1 ∆S2(ω4)

∆S1(ω3)ν2 +∆S1(ω5) ∆S2(ω3)ν2 ∆S2(ω5)

⎞⎟⎟⎟⎟⎠ (3.6)

and ξ := (ϕ1, ϕ
+
2 , ϕ

−
2 ). Moreover, at least one row must be strictly positive.

We change the basis of A doing operations on columns, obtaining

A→

⎛⎜⎜⎜⎜⎜⎝
0 ∆S2(ω2) 0

∆S1(ω6) 0 ∆S2(ω6)(︂
∆S1(ω1)− ∆S2(ω1)

∆S2(ω2)
∆S1(ω2)

)︂
ν1 +∆S1(ω4) ∆S2(ω1)ν1 ∆S2(ω4)(︂

∆S1(ω3)− ∆S2(ω3)
∆S2(ω2)

∆S1(ω2)
)︂
ν2 +∆S1(ω5) ∆S2(ω3)ν2 ∆S2(ω5)

⎞⎟⎟⎟⎟⎟⎠ ,

→

⎛⎜⎜⎜⎜⎝
0 ∆S2(ω2) 0

0 0 ∆S2(ω6)

B1 ∆S2(ω1)ν1 ∆S2(ω4)

B2 ∆S2(ω3)ν2 ∆S2(ω5)

⎞⎟⎟⎟⎟⎠ =: ˜︁A,
(3.7)

where

B1 := ν1

(︂
∆S1(ω1)−

∆S2(ω1)

∆S2(ω2)
∆S1(ω2)

)︂
+∆S1(ω4)−

∆S2(ω4)

∆S2(ω6)
∆S1(ω6). (3.8)

B2 := ν2

(︂
∆S1(ω3)−∆S2(ω3)

∆S1(ω2)

∆S2(ω2)

)︂
+∆S1(ω5)−∆S2(ω5)

∆S1(ω6)

∆S2(ω6)
. (3.9)

In particular, to pass from A to ˜︁A, we use the following change of basis:

E1 =

⎛⎜⎝ 1 0 0

−∆S1(ω2)
∆S2(ω2)

1 0

0 0 1

⎞⎟⎠ , E2 =

⎛⎜⎝ 1 0 0

0 1 0

−∆S1(ω6)
∆S2(ω6)

0 1

⎞⎟⎠ , (3.10)

i.e. AE1E2 = ˜︁A. Since the matrices E1, E2 are invertible, the following holds:

Aξ ≥ 0 ⇒ ˜︁A(E1E2)
−1ξ =: ˜︁A˜︁ξ ≥ 0.

We prove now the two implications of the Lemma.
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(⇐) Suppose that ν2 ∈ (Γ1,Γ2). In order to prove that the model is free of statistical G-arbitrage,
we need to show that Im( ˜︁A) ∩ R4

+ = {0}, where:

Im ˜︁A :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩α
⎛⎜⎜⎜⎜⎝

0

0

B1

B2

⎞⎟⎟⎟⎟⎠+ β

⎛⎜⎜⎜⎜⎝
∆S2(ω2)

0

∆S2(ω1)ν1

∆S2(ω3)ν2

⎞⎟⎟⎟⎟⎠+ γ

⎛⎜⎜⎜⎜⎝
0

∆S2(ω6)

∆S2(ω4)

∆S2(ω5)

⎞⎟⎟⎟⎟⎠ :

⎛⎜⎝αβ
γ

⎞⎟⎠ ∈ R3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.

We assume by contradiction that there exists v ∈ Im ˜︁A such that v ≥ 0 and at least one

coordinate is strictly positive. We denote with latin numbers the components of the vector˜︁A˜︁ξ, where ˜︁ξ = (α, β, γ)⊤.

( ˜︁A˜︁ξ)I ≥ 0 β∆S2(ω2) = β(s++ − s+1 ) ≥ 0 ⇒ β ≥ 0 (> 0 ⇔ β > 0),

( ˜︁A˜︁ξ)II ≥ 0 γ∆S2(ω6) = γ(s−−
2 − s−1 ) ≥ 0 ⇒ γ ≤ 0 (< 0 ⇔ γ < 0);

(3.11)

Moreover, since rows ( ˜︁A˜︁ξ)III and ( ˜︁A˜︁ξ)IV are nonnegative, then their sum is nonnegative too:

αC1 + β(∆S2(ω1)ν1 +∆S2(ω3)ν2) + γ(∆S2(ω5) + ∆S2(ω4)) ≥ 0, (3.12)

where

C1 :=ν1

(︂
∆S1(ω1)−∆S2(ω1)

∆S1(ω2)

∆S2(ω2)

)︂
+ ν2

(︂
∆S1(ω3)−∆S2(ω3)

∆S1(ω2)

∆S2(ω2)

)︂
+

∆S1(ω6)

∆S2(ω6)
(−∆S2(ω4)−∆S2(ω5)) + ∆S1(ω4) + ∆S1(ω5).

Then, since by hypothesis ν1 = −∆S2(ω3)
∆S2(ω1)

ν2, the coefficient multiplied by β in (3.12) is zero.

Moreover, by hypothesis:

ν2 < Γ2 =:
N2

D2
, (3.13)

where N2 and D2 are respectively the numerator and denominator of Γ2 introduced in (3.5).

Thus, we observe that

D2 := ∆S1(ω3)−∆S1(ω1)
∆S2(ω3)

∆S2(ω1)
= (s+1 − s0)− (s+1 − s0)

s+−
2 − s+1
so2 − s+1

> 0.
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Then,

C1 :=− ∆S2(ω3)

∆S2(ω1)
ν2

(︂
∆S1(ω1)−∆S2(ω1)

∆S1(ω2)

∆S2(ω2)

)︂
+ ν2

(︂
∆S1(ω3)−∆S2(ω3)

∆S1(ω2)

∆S2(ω2)

)︂
+

∆S1(ω6)

∆S2(ω6)
(−∆S2(ω4)−∆S2(ω5)) + ∆S1(ω4) + ∆S1(ω5)

=ν2

(︂
−∆S2(ω3)

∆S2(ω1)
∆S1(ω1) + ∆S1(ω3)

)︂
+

∆S1(ω6)

∆S2(ω6)
(−∆S2(ω4)−∆S2(ω5))

+ ∆S1(ω4) + ∆S1(ω5).

(3.14)

Equation (3.14), together with condition (3.13), leads to C1 = ν2D2 − N2, so that C1 < 0.

Then, condition (3.12) becomes:

α

<0⏟⏞⏞⏟
C1 +

≤0⏟⏞⏞⏟
γ

>0⏟ ⏞⏞ ⏟
(∆S2(ω5) + ∆S2(ω4)) ≥ 0 ⇔ α ≤ 0. (3.15)

Finally, by hypothesis:

ν2 >
−∆S1(ω5) + ∆S2(ω5)

∆S1(ω6)
∆S2(ω6)

∆S1(ω3)−∆S2(ω3)
∆S1(ω2)
∆S2(ω2)

= Γ1 =:
N1

D1
.

Then, since D1 = (s+1 − s0)− (s+−
2 − s+1 )

s+1 −s0

s++
2 −s+1

> 0:

B2 = ν2D1 −N1 > 0. (3.16)

Studying condition ( ˜︁A˜︁ξ)IV ≥ 0, we have that:

( ˜︁A˜︁ξ)IV ≥ 0 ⇔ B2α+ β∆S2(ω3)ν2 + γ∆S2(ω5) ≥ 0.

Thus:
≤0⏟⏞⏞⏟
α

>0⏟⏞⏞⏟
B2 +

≥0⏟⏞⏞⏟
β

<0⏟ ⏞⏞ ⏟
∆S2(ω3)ν2+

≤0⏟⏞⏞⏟
γ

>0⏟ ⏞⏞ ⏟
∆S2(ω5) ≤ 0,

and equality holds if and only if α = β = γ = 0. In conclusion, absence of statistical

G-arbitrage opportunities is guaranteed if ν2 ∈ (Γ1,Γ2).

(⇒) It is sufficient to prove that if ν2 ∈ {Γ1,Γ2}, then it is always possible to build a statistical

G-arbitrage. As done in the first part of the proof, we consider a generic vector ˜︁ξ := (α, β, γ)⊤

and we denote the components of ˜︁A˜︁ξ by latin numbers, where ˜︁A is defined in equation (3.7).

We are going to determine the values of the components of ˜︁ξ such that every row of ˜︁A˜︁ξ is

nonnegative and at least one row is strictly positive. The first two rows of system ˜︁A˜︁ξ ≥ 0 are

independent from the choice of ν2 and lead to conditions (3.11). There are two possibilities:
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(a) If ν2 = Γ2. By equation (3.14), C1 = 0. Then, a necessary condition for the existence of

a statistical G-arbitrage is ( ˜︁A˜︁ξ)III + ( ˜︁A˜︁ξ)IV ≥ 0, that is (3.12). Thus, under condition

ν1 = −∆S2(ω3)
∆S2(ω1)

ν2, inequality (3.12) becomes:

=0⏟⏞⏞⏟
C1 α+

≤0⏟⏞⏞⏟
γ

>0⏟ ⏞⏞ ⏟
(∆S2(ω5) + ∆S2(ω4)) ≥ 0 ⇔ γ = 0.

Therefore, in this case we have no constraints on α but it must hold γ = 0. Recalling

that B2 is defined in (3.9), we consider condition ( ˜︁A˜︁ξ)IV ≥ 0:

B2α+ β∆S2(ω3)ν2 +

=0⏟⏞⏞⏟
γ ∆S2(ω5) ≥ 0.

Since there are no conditions on α, we can choose:

α ≥ −∆S2(ω3)ν2
B2

β, (3.17)

we can divide by B2 because since ν2 = Γ2 > Γ1 condition (3.16) holds.

Finally, we have to find conditions on ˜︁ξ such that ( ˜︁A˜︁ξ)III ≥ 0. First, let us notice that

since ν2 = Γ2, then, since B
1 is defined in (3.8), 0 = C1 = B1 + B2. By condition

ν1 = −∆S2(ω3)
∆S2(ω1)

ν2, the following holds:

( ˜︁A˜︁ξ)III := αB1 +∆S2(ω1)ν1β +∆S2(ω4)

=0⏟⏞⏞⏟
γ = −αB2 −∆S2(ω3)ν2β = −( ˜︁A˜︁ξ)IV .

Thus, if we impose the equivalence in condition (3.17) we have that ( ˜︁A˜︁ξ)III = 0 =

( ˜︁A˜︁ξ)IV . Finally, let us consider the strategy:(︂
α β γ

)︂
=
(︂
−∆S2(ω3)ν2

B2
β β 0

)︂
. (3.18)

By (3.11), with β > 0, the following holds:

( ˜︁A˜︁ξ)I > 0,

( ˜︁A˜︁ξ)II = 0,

( ˜︁A˜︁ξ)III = 0,

( ˜︁A˜︁ξ)IV = 0,

Thus, if ν2 = Γ2 there exists a statistical G-arbitrage.

(b) ν2 = Γ1 < Γ2. In this case, condition (3.13), together with (3.14) and (3.15), leads to

C1 < 0 and then α ≤ 0. Moreover, B2 = 0 because condition (3.16) is an equality. This
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implies that B1 = B1 +B2 = C1 < 0. In that case, we can consider the strategy:(︂
α β γ

)︂
=
(︂
α 0 0

)︂
,

with α < 0, we have that:

( ˜︁A˜︁ξ)I = β∆S2(ω2) = 0,

( ˜︁A˜︁ξ)II = γ∆S2(ω6) = 0,

( ˜︁A˜︁ξ)III = αB1 > 0,

( ˜︁A˜︁ξ)IV = αB2 = 0.

Thus, we have a statistical G-arbitrage also in this case.

Remark 3.9. Note that in the statement of [RRS21, Lemma 2.6], the absence of statistical G-
arbitrage opportunities is equivalent to ν1 = −∆S2(ω3)

∆S2(ω1)
ν2 and ν2 ∈ (Γ1,Γ2], Γ1 < Γ2. However, as

we have seen in the proof of Lemma 3.8, for ν2 = Γ2 a statistical G-arbitrage exists.

3.4.1.1 The counterexample

In this subsection, we consider the trinomial model described in [RRS21, Section 2.2]. We show

that we can guarantee the existence of a martingale measure for the prices process S, determined

by Figure 3.4.1, whose kernel with respect the objective measure P is G-measurable. As in [RRS21,

Section 2.2], we consider a tree as the one described in Figure 3.4.1, where:

(s0, s
+
1 , s

−
1 , s

++
2 , s+−

2 , s−−
2 , so2) = (10, 12, 8, 13, 10, 6, 14).

The model is arbitrage-free, but it is incomplete. We consider the following filtration:⎧⎪⎪⎪⎨⎪⎪⎪⎩
F0 = {∅,Ω},

F1 = {∅,Ω, {ω1, ω2, ω3}, {ω4, ω5, ω6}},

F2 = P(Ω).

The space of the martingale measures is Me(S) := {Q : EQ[Si|Fi−1] = Si−1, i = 1, 2}. Since
the first two elements of the filtration are Ft = σ(St) for t = 0, 1, the condition that a vector

158



CHAPTER 3. ON A FOUNDAMENTAL THEOREM FOR STATISTICAL ARBITRAGE OPPORTUNITIES

Q = (q1, . . . , q6) = (Q(ω1), . . . ,Q(ω6)) ∈ R6 has to satisfy to be in Me(S) is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EQ[S2|S1 = s+1 ] = s+1 ,

EQ[S2|S1 = s−1 ] = s−1 ,

EQ[S1|S0 = s0] = s0,∑︁6
i=1 qi = 1,

qi ≥ 0, ∀i.

(3.19)

These conditions are explicitly given by:

12 = EQ[S2|S1 = s+1 ] = EQ[S2|S1 = 12]

= 14Q(S2 = 14|S1 = 12) + 13Q(S2 = 13|S1 = 12) + 10Q(S2 = 10|S1 = 12)

=
1

Q(ω1) +Q(ω2) +Q(ω3)
(14Q(ω1) + 13Q(ω2) + 10Q(ω3))

=
1

q1 + q2 + q3
(14q1 + 13q2 + 10q3),

8 = EQ[S2|S1 = s−1 ] = EQ[S2|S1 = 8]

= 14Q(S2 = 14|S1 = 8) + 10Q(S2 = 10|S1 = 8) + 6Q(S2 = 6|S1 = 8),

=
1

Q(ω4) +Q(ω5) +Q(ω6)
(14Q(ω4) + 10Q(ω5) + 6Q(ω6))

=
1

q4 + q5 + q6
(14q4 + 10q5 + 6q6),

10 = EQ[S1|S0 = s0] = EQ[S1|S0 = 10]

= 12Q(S1 = 12|S0 = 10) + 8Q(S1 = 8|S0 = 10)

= 12Q({ω1, ω2, ω3}) + 8Q({ω4, ω5, ω6})

= 12(q1 + q2 + q3) + 8(q4 + q5 + q6)m

1 = q1 + q2 + q3 + q4 + q5 + q6.

Solving this system, we find the same results of [RRS21, Section 2.2]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = −3
4q2 +

1
4 ,

q3 = −1
4q2 +

1
4 ,

q4 = q6 − 1
4 ,

q5 = −2q6 +
3
4 ,

q2 ∈ (0, 13),

q6 ∈ (14 ,
3
8).

(3.20)

Under the hypotheses of Lemma 3.8, the conditions under which absence of statistical G-arbitrage
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holds (i.e. if ν2 ∈ (Γ1,Γ2)) are:

ν1 = −∆S2(ω3)

∆S2(ω1)
ν2 = −10− 12

14− 12
ν2 = ν2,

ν2 ∈ (Γ1,Γ2) =
(︂2
3
, 3
)︂
.

(3.21)

We prove that the model described in the counterexample, on which ν2 = Γ2 is imposed, allows for

a statistical G-arbitrage.
We consider the kernel Z = (Zi)i :=

(︂
qi
pi

)︂
i
of Q with respect to P = (p1, . . . , p6). Z is G-

measurable if and only if Z1 = Z4 and Z3 = Z5. This condition implies that q1
q4

= ν1 and q3
q5

= ν2.

Adding these conditions to system (3.20) we have:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ν1q4 = −3
4q2 +

1
4 ,

ν2q5 = −1
4q2 +

1
4 ,

q4 = q6 − 1
4 ,

q5 = −2q6 +
3
4 ,

→

⎧⎨⎩− 3
4ν1
q2 +

1
4ν1

= q6 − 1
4 ,

− 1
4ν2
q2 +

1
4ν2

= −2q6 +
3
4 ,

By conditions (3.21): ⎧⎨⎩q2
(︂

3
2ν1

+ 1
4ν1

)︂
= −1

4 + 3
4ν1

→ q2 =
3−ν1
7 ,

q6 =
5ν1−1
14ν1

.

Then, ν1 ∈
(︂
2
3 , 3
)︂

implies that q2 ∈
(︂
0, 13

)︂
and q6 ∈

(︂
1
4 ,

1
3

)︂
. Thus, differently from [RRS21,

equation (8)], the existence of a martingale measure Q whose kernel is G-measurable is allowed.

3.4.1.2 Construction of a statistical arbitrage

We show that it is possible to provide a statistical G-arbitrage for the model studied in [RRS21,

Section 2.2]. In particular, ν2 = Γ2 and p = (0.15, 0.2, 0.3, 0.05, 0.1, 0.2). Using the same notation of

the proof of Lemma 3.8, we consider C1 introduced in (3.14), so that, C1 = 0. Moreover, adopting

notation (3.10), the following holds:⎛⎜⎝αβ
γ

⎞⎟⎠ = (E1E2)
−1

⎛⎜⎝ϕ1ϕ+2
ϕ−2

⎞⎟⎠ .

We consider the vector (α, β, γ) defined in (3.18). Then:⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ = 0,

β ≥ 0,

α ≥ −β∆S2(ω3)ν2
B2

= 3
7β.
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Recalling that the matrix ˜︁A is defined on (3.7), hence we notice that

˜︁A =

⎛⎜⎜⎜⎜⎝
0 1 0

0 0 −2

−14 6 6

14 −6 2

⎞⎟⎟⎟⎟⎠→ ˜︁A
⎛⎜⎝αβ
γ

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎝
β

0

−14α+ 6β

14α− 6β

⎞⎟⎟⎟⎟⎠ ≥

⎛⎜⎜⎜⎜⎝
0

0

0

0

⎞⎟⎟⎟⎟⎠ . (3.22)

Choosing α = 6 and β = 14, all the (3.22) is satisfied. Now we compute the two matrices E1, E2

and their product:

E1 · E2 =

⎛⎜⎜⎝
1 0 0

−∆S1(ω2)
∆S2(ω2)

1 0

−∆S1(ω6)
∆S2(ω6)

0 1

⎞⎟⎟⎠ =

⎛⎜⎝ 1 0 0

−2 1 0

−1 0 1

⎞⎟⎠
We conclude that:⎛⎜⎝ϕ1ϕ+2

ϕ−2

⎞⎟⎠ =

⎛⎜⎝ 1 0 0

−2 1 0

−1 0 1

⎞⎟⎠
⎛⎜⎝αβ
γ

⎞⎟⎠ =

⎛⎜⎝ 1 0 0

−2 1 0

−1 0 1

⎞⎟⎠
⎛⎜⎝ 6

14

0

⎞⎟⎠ =

⎛⎜⎝ 6

2

−6

⎞⎟⎠ . (3.23)

At this point, it is easy to check that system (3.3) is explictly given by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ1∆S1(ω2) + ϕ+2 ∆S2(ω2) = 14 > 0,

ϕ1∆S1(ω6) + ϕ−2 ∆S2(ω6) = −12 + 12 = 0,

ϕ1∆S1(ω1)p1 + ϕ+2 ∆S(ω1)p1 + ϕ1∆S1(ω4)p4 + ϕ−2 ∆S(ω4)p4 =
180
100 + 60

100 − 60
100 − 180

100 = 0,

ϕ1∆S1(ω3)p3 + ϕ+2 ∆S(ω3)p3 + ϕ1∆S1(ω5)p5 + ϕ−2 ∆S(ω5)p5 =
360
100 − 120

100 − 120
100 − 120

100 = 0.

Thus, the admissible trading strategy in equation (3.23) is a statistical arbitrage. In conclusion,

this example does not disprove the statement of [Bon03]. Indeed, the analysed model, on which a

martingale measure Q whose kernel is G-measurable does not exist, admits statistical G-arbitrage
opportunities.

3.4.2 The characterization when Ω is a finite set

In Section 3.4.1 we shown that the counterexample proposed in [RRS21, Section 2.2] is affected by

a gap and it does not disprove condition (⋆) in finite dimensional markets. In this section, we show

that condition (⋆) holds, generalizing [Bon03, Proposition 3] to a rigorous mathematical setting.

We consider a finite probability space (Ω,F ,P). In particular, there exists N ∈ N such that

Ω := {ω1, . . . , ωN}. We can assume without loss of generality that F = P(Ω) is the power sigma-

algebra. We introduce a discounted price process S = (St)
T
t=0 adapted to a filtration (Ft)

T
t=0.

We follow the proof of [HP81, Theorem 2.7] to obtain a characterization of the existence of a

martingale measure Q whose kernel Z := dQ
dP is G-measurable:
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Theorem 3.10. Let Ω be a finite set and S a Rd-valued stochastic process on (Ω,F ,P). Moreover,

we consider a sigma-algebra G ⊆ F . Then,

EMM(G) ⇐⇒ NSA(G)

Proof. The only implication to prove is NSA(G) ⇒ELMM(G) , because EMM(G)⇒ NSA(G) is a

particular case of Theorem 3.6.

We aim at applying the set separation theorem [Bre11, Theorem 1.7] to K0
G , introduced in (3.1)

and L0
+(F). Clearly, K0

G is convex and closed under the Euclidean topology in RN . L0
+(F) is not

compact, but we can consider the convex hull P of the unit vectors (1{ωn})n=1,...,N of L∞
+ (F):

P :=
{︂ N∑︂

n=1

µn1{ωn}

⃓⃓⃓
µn ≥ 0 :

N∑︂
n=1

µn = 1
}︂
.

By conditionNSA(G), it holds thatK0
G∩P = ∅. Since P is convex and compact we can apply hyper-

plane separation theorem, [Bre11, Theorem 1.7], there exists q ∈ (L∞(Ω,F ,P))∗ = L1(Ω,F ,P) =
RN and two constants α < β such that:

⟨q, f⟩ ≤ α, ∀f ∈ K0
G ,

⟨q, f⟩ ≥ β, ∀h ∈ P,

where ⟨q, f⟩ :=
∑︁N

i=1 qifi.

Since KG is a linear space we have that α ≥ 0. Moreover, we can assume α = 0. Indeed, if

f ∈ K0
G and λ > 0 is an arbitrary real constant, λf ∈ K0

G too. Then:

⟨q, λf⟩ ≤ α⇒ ⟨q, f⟩ ≤ α

λ
, ∀λ > 0.

As a consequence, β > 0 and, since 1{ωn} ∈ P for all n = 1, . . . , N :

⟨q,1{ωn}⟩ = qn > 0, ∀n = 1, . . . , N,

In conclusion, replacing q with q∑︁N
n=1 qi

, we can construct a measure Q := 1∑︁N
n=1 qi

(q1, . . . , qN )

equivalent to P such that:

EQ[f ] = ⟨q, f⟩ ≤ 0, ∀f ∈ K0
G . (3.24)

Condition (3.24) implies that EQ[EP[VT (ϕ)|G]] ≤ 0, for all ϕ. From Q we can construct a probability
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measure ˜︁Q that is an EMM(G). We observe that:

0 ≥ EQ[EP[VT (ϕ)|G]]

= EP[ZEP[VT (ϕ)|G]]

= EP[EP[Z|G]EP[VT (ϕ)|G]]

= EP[EP[Z|G]VT (ϕ)],

where Z :=
(︂
q1
p1
, . . . , qnpn

)︂
. Since Z(ω) > 0 for each ω ∈ Ω, we have that:

EP[Z|G](ωn) := ˜︁qn > 0, n = 1, . . . , N.

Then, we can define a new probability measure as follows:

˜︁Q :=
1∑︁N

n=1(pn ˜︁qn)
(︂
p1˜︁q1 · · · pN ˜︁qN)︂ .

It holds that ˜︁Q ∼ P by construction and

E˜︁Q[VT (ϕ)] = EP[EP[Z|G]VT (ϕ)] ≤ 0.

Repeating the same computations with −ϕ we conclude that E˜︁Q[VT (ϕ)] = 0 for every ϕ. By [DS06,

Lemma 2.2.6], we conclude that ˜︁Q is an EMM(G).

3.5 Characterization of ELMM(G) in general probability spaces

The strategy we applied to prove Theorem 3.10 cannot be generalized to a general probability

space. Indeed, the hyperplane separation theorem needs topological constraints, such as the closure

of the convex cone K0
G introduced in (3.1). In the infinite-dimensional setting there are delicate

topological issues to handle in order to guarantee the conditions necessary to apply the hyperplane

separation theorem. Therefore, even if E(L)MM(G)⇒NSA(G) still holds, it is unclear if the converse
implication is true. Our goal is to provide a characterization of E(L)MM(G) in the case of a general

market model.

In this section, we consider a probability space (Ω,F ,P), a finite horizon T , a complete and

right-continuous filtration F := (Ft)t∈[0,T ] and an Rd-valued locally bounded semimartingale S

representing the price process. We assume that S is adapted to F.

To characterize condition E(L)MM(G), we adapt the proof of the Kreps-Yan theorem in the

version of [DS06, Theorem 5.2.2] to our setting. First of all, we restrict condition NSA(G) to the

space L∞(G). To do so, we introduce:

KG := K0
G ∩ L∞(G). (3.25)
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Then, NSA(G) implies that KG ∩ L∞
+ (G) = {0}.

Following [DS06, Chapter 5], we restrict the set of admissible strategies to the family of simple

strategies. We recall this concept, introduced in [DS06, Definition 5.1.1]:

Definition 3.11. We say that an Rd-valued process ϕ = (ϕt)
∞
t=0 is a simple strategy if ϕ is of the

form:

ϕ =
n∑︂

i=1

ϕi1]τi−1,τi],

where 0 ≤ τ1 ≤ · · · ≤ τn <∞ a.s. are finite stopping times and ϕi are Fτi−1-measurable Rd-valued

random variables, for some n ∈ N. Moreover, we say that a simple strategy ϕ is admissible if, in

addition, the stopped process Sτn and the random variables ϕi are uniformly bounded. We denote

the set of simple admissible trading strategies by Asimple.

By Definition 3.11, the value of the portfolio obtained by a simple strategy ϕ at t ∈ [0, T ] is:

Vt(ϕ) =

n∑︂
i=1

ϕi · (Sτi∧t − Sτi−1∧t).

In the following, we provide a first characterization of ELMM(G) in terms of the closure with

respect the weak-∗ topology of a convex cone containing the restriction of KG to the conditional

expectation of the portfolio values at T obtained using only admissible simple strategies. To do so,

we introduce the cone Ksimple
G in L∞(F):

Ksimple
G := {E[VT (ϕ)|G] : ϕ ∈ Asimple}. (3.26)

We observe that Ksimple
G is defined as the image with respect to the operator πG of the family

of portfolio values, obtained from admissible simple strategies. It is convenient to introduce the

following convex cone:

Csimple
G := Ksimple

G − L∞
+ (G) = {E[VT (ϕ)|G]− l : ϕ ∈ Asimple, l ∈ L∞

+ (G)}. (3.27)

Csimple
G is defined as the image with respect πG of the family of the random variables X ∈ L∞(F)

for which there exists ϕ ∈ Asimple such that X ≤ VT (ϕ) a.s. In other words, Csimple
G is composed by

the conditional expectation with respect to G of random variables that can be superreplicated by

an admissible strategy ϕ ∈ Asimple. Note that

Csimple
G ∩ L∞

+ (G) = {0} (3.28)

is equivalent to

Ksimple
G ∩ L∞

+ (G) = {0}, (3.29)

The following remark justifies why it is convenient to consider (3.28) instead of (3.29).
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Remark 3.12. We aim at applying the Hahn-Banach separation theorem to separate L∞
+ (G) and

the closure with respect to a convenient topology in L∞(G) of either Ksimple
G or a closed convex cone

containing Ksimple
G . However, it is possible to construct examples which lead to counter intuitive

situations. For instance, in [Sch94, Example 3.1], the author described the situation of a convex cone

A such that Cl∗(A) ∩ L∞
+ (Ω,F ,P) = {0}, while B := A− L∞

+ (Ω,F ,P) satisfies Cl∗(B) = L∞(F).

Then, replacing Csimple
G with its weak-∗ closure in (3.28) and Ksimple

G with its weak-∗ closure in

(3.29), we obtain that Cl∗(Csimple
G ) ∩ L∞

+ (G) = {0} is a stronger condition.

In conclusion, admitting only simple strategies, it is convenient to define the absence of statistical

G-arbitrage strategies as:

Csimple
G ∩ L∞

+ (Ω,G,P) = {0}. (NSAs(G))

3.5.1 The characterization of E(L)MM(G)

Adapting the proof of the Kreps-Yan theorem [DS06, Theorem 5.2.2], it is possible to prove the

equivalence between ELMM(G) and the following condition:

Cl∗(Csimple
G ) ∩ L∞

+ (G) = {0}, . (NFL(G))

Analogously to “no free lunch” condition introduced in [Kre81], this strengthening of the condition

of no-arbitrage is tailor-made to state the following result:

Theorem 3.13. On a probability space (Ω,F ,P), we consider a sigmal-algebra G ⊆ F and an

Rd-valued locally bounded semimartingale S := (St)t∈[0,T ]. Then:

ELMM(G) ⇐⇒ NFL(G).

Proof.

• ELMM(G)⇒NFL(G) Analogously to Theorem 3.6 this implication is the easiest one. We

consider a local martingale measure Q satisfying ELMM(G). By definition, for every couple

of stopping times σ1 < σ2 a.s., which are localizing for S and every ϕ1 ∈ L∞(Fσ1),

EQ[ϕ1 · (Sσ2 − Sσ1)] = 0

Therefore, by linearity EQ[k] = 0 for every k ∈ Ksimple
G . s a consequence, EQ[c] ≤ 0 for

any c ∈ Csimple
G . Consider now an element c ∈ Cl∗G(C

simple
G ). By construction, there exists a

net (cδ)δ∈I ⊆ Csimple
G such that limδ∈I cδ = c. We recall that the expectation f ↦→ EQ[f ] is a

continuous operator with respect the weak-∗ topology. Therefore, we conclude that EQ[c] ≤ 0.

By contradiction, assume that c ≥ 0 a.s. and there exists a set A ∈ G, with P(A) > 0, such

that c > 0 on A. This would imply that EQ[c] > 0, thus, yielding a contradiction.

• NFL(G) ⇒ELMM(G)
first step. Let us notice that by NFL(G) we can apply the Hahn-Banach theorem ([Rud91,
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Theorem 3.5]) on L∞(Ω,G,P) to separate Cl∗(Csimple
G ) and every fixed f ∈ L∞

+ (G), f ̸= 0. In

particular, there exists an element Z ∈ L1
+(Ω,G,P) such that

EP[Zf ] > 0,

EP[Zh] ≤ 0, ∀h ∈ Cl∗(Csimple
G ).

second step. We apply the exhaustion argument to show that the Z we found is strictly

positive a.e. in Ω. Let us introduce

D := {d ∈ L1
+(G) \ {0} : EP[dh] ≤ 0, ∀h ∈ Cl∗(Csimple

G )}.

Clearly, D ̸= ∅ since 0 ∈ D. We consider the family S of subsets of Ω defined as:

S := {{g > 0} : g ∈ D}.

S is closed under countable unions. Indeed, for a sequence (gn) ⊂ D we can find strictly posit-

ive scalars (αn) such that
∑︁∞

n=1 αngn ∈ D (let us consider for instance αn := 1
2n maxj=1,...,n E[|gj |]).

Therefore, there exists g0 ∈ D such that:

P(g0 > 0) = sup
g∈D

P(g > 0).

In particular, P(g0 > 0) = 1. Indeed, if P(g0 > 0) < 1, we could apply the first step

to f := 1{g0=0}. This would yield the existence of g1 ∈ D such that EQ[fg1] > 0. As a

consequence, we could have g0 + g1 ∈ D, but its support is strictly greater than the one of

g0, thus yielding a contradiction.

Now, normalising g0 so that EP[g0] = 1, we can define a measure Q through dQ
dP = g0, such

that:

EP[g0h] ≤ 0 ∀h ∈ Ksimple
G ⇒ EQ[h] = EP[g0h] = EP[g0EP[VT (ϕ)|G]] ≤ 0, ∀ϕ ∈ Asimple.

(3.30)

third step. Since g0 ∈ D ⊂ L1
+(G), the measure Q we constructed in the previous step has

G-measurable kernel. We prove now that EQ[VT (ϕ)] ≤ 0 for each ϕ ∈ Asimple. From (3.30),

we conclude that:

0 ≥ EQ[EP[VT (ϕ)|G]] = EQ[EQ[VT (ϕ)|G]] = EQ[VT (ϕ)], ∀ϕ ∈ Asimple. (3.31)

Substituting ϕ with −ϕ in equation (3.31), we obtain that

EQ[VT (ϕ)] = 0, ∀ϕ ∈ Asimple. (3.32)

fourth step. Following the proof of [DS06, Lemma 5.1.3] we show now that EQ[VT (ϕ)] = 0
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implies that S is a local Q-martingale. Since S is locally bounded, there exists a sequence of

stopping times (τn)n∈N increasing to infinity a.s. such that Sτn is bounded for each n ∈ N.
We prove that Sτn is a Q-martingale. We introduce two arbitrary stopping times σ1, σ2

such that 0 ≤ σ1 ≤ σ2 ≤ τn a.s. for some n ∈ N and an arbitrary bounded Fσ1-measurable

random variable h. The strategy ϕ := h1]σ1,σ2] is admissible and simple. For this strategy,

(3.32) reduces to

0 = EQ[h · (Sσ2 − Sσ1)], ∀h ∈ L∞(Fσ1),

thus, proving the martingale property.

Theorem 3.13 states the equivalence between condition ELMM(G) and NFL(G). Condition

NFL(G), that is stronger than NSA(G), does not have a clear interpretation from an economical

point of view, because the characterization of the weak-∗ closure has to be made in terms of

converging nets. We have to deal with converging nets instead of converging sequences (for which

an economical interpretation would be much clearer, as discussed in [DS06, Section 5.2]), because

L∞(G) is not first-countable with respect the weak-∗ topology induced by L1(G).
To find a strategy to overcome this problem, we recall the procedure proposed in [DS94] to

characterize the absence of classical arbitrage opportunities. Our goal is to find the conditions that

the sigma-algebra G must satisfy in order to exploit the results developed in [DS94] and characterize

ELMM(G) by a condition that is interpretable from a financial point of view.

We consider an Rd-valued, locally bounded semimartingale S. We introduce the set of admissible

strategies A and define:

KA
0 := {VT (ϕ) | ϕ ∈ A},

CA
0 := {k − l | k ∈ KA

0 and l ∈ L0
+(F)}.

(3.33)

KA
0 is a convex cone in L0(F). Analogously with Remark 3.12, the absence of arbitrage opportun-

ities (NA) is defined as

CA := CA
0 ∩ L∞(F). (3.34)

Indeed, (NA) is defined in [DS94, Definition 2.8] by:

CA ∩ L∞
+ (F) = {0}. (NA)

As proved in [DS06, Proposition 5.1.7], a sufficient condition for the absence of standard ar-

bitrage opportunities is the existence of a probability measure Q equivalent to P, such that S is a

Q-local martingale. This property, that we denote by ELMM, is however not necessary, as shown

in the counter example proposed in [DS06, Proposition 5.1.7]. As a consequence, if A = Asimple,

a characterization of ELMM is obtained applying the Kreps-Yan theorem ([Kre81]). In particular,

ELMM is equivalent to the so called no free lunch condition:

Cl∗(CA) ∩ L∞
+ (Ω,F ,P) = {0}. (NFL)
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The authors observed that the difficulties related to the weak-∗ topology are due to the restriction of

the set of admissible strategies to simple strategies. Therefore, they extended the class of admissible

strategies considering the set A introduced in Definition 3.3. In conclusion, the authors proved that

ELMM is equivalent to:

Cl(CA) ∩ L∞
+ (Ω,F ,P) = {0}. (NFLVR)

In particular, condition NFLVR deals with the closure of CA with respect the norm closure of

L∞(F), replacing the more complicated weak-∗ convergence. The crucial point is that NFLVR

implies that CA is already weak-∗ closed ([DS94, Theorem 4.2]).

In the context of absence of statistical G-arbitrage opportunities, we notice that the cone Csimple
G ,

introduced in (3.27) is the image of CAsimple
with respect the conditional expectation πG . In

particular, NSAs(G) is equivalent to

Cl∗(πG(C
Asimple

)) ∩ L∞
+ (G) = {0}.

By relying on the same reasoning, condition NSA(G), restricted to L∞(G), is equivalent to:

πG(C
A) ∩ L∞

+ (G) = {0}.

Then, we introduce the following assumption:

Assumption 3.14. For every p ∈ [1,∞], the sigma-algebra G is such that πG : Lp(F) → Lp(G)
is a closed map. In other words, for every C ∈ Lp(F) weak closed, also πG(C) is weak closed on

Lp(G). If p = ∞, the weak topology has to be replaced by the weak-∗ topology.

Under Assumption 3.14, we can transfer to πG(C
A) the topological properties of CA. In parti-

cular, in Section 3.6 and Section 3.7 we are going to exploit Assumption 3.14 to transfer the closure

of the cone CA guaranteed by the results of [DMW90] and [DS94], to its image with respect to

πG . Then, applying Theorem 3.13, we establish the equivalence between NSA(G) and ELMM(G).
We point out, Assumption 3.14 is a tailor-made condition to apply this procedure. In Appendix

3.A, we prove that πG : Lp(F) → Lp(G) is a continuous map with respect the weak topology (if

p = ∞, the continuity is proved for the weak-∗ topology). However, it is at present unclear how

to characterize the closedness in Assumption 3.14.

Remark 3.15. Let us notice that NSA(G) and ELMM(G) are equivalent when G is the sigma-algebra

generated by a benchmark set of events B1, . . . , Bm ∈ F . Indeed, in this case Lp(G) = Rm and

every linear subspace of L∞(G) is closed. Since πG : Lp(F) → Rm is a continuous linear map,

πG(K0 ∩ L∞(F)) is closed in L∞(G). Hence, we conclude through the same strategy applied in

the proof of Theorem 3.10. This reasoning ensures that the equivalence between NSA(G) and

ELMM(G) is guaranteed in the motivating example introduced in Remark 3.5.
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3.6 Absence of statistical G-arbitrage opportunities in discrete-

time markets

In this Section, we focus on discrete-time models defined on a general probability space (Ω,F ,P).
We adopt Definition 3.2 and we propose two results. Theorem 3.16 states that, under Assumption

3.14, NSA(G) is equivalent to EMM(G). On the other hand, Theorem 3.19 states the equivalence

between NSA(G) and EMM(G) under an additional assumption.

Theorem 3.16. In the setting of Definition 3.2, consider a sigma-algebra G ⊆ F . Then, under

Assumption 3.14, the following holds:

EMM(G) ⇐⇒ NSA(G)

Proof. EMM(G)⇒ NSA(G) is granted by Theorem 3.6.

NSA(G)⇒EMM(G)
NSA(G) guarantees absence of classical arbitrage opportunities that, in the case of a discrete-time

market, corresponds to:

CA
0 ∩ L0

+(F) = {0}, (NA)

where CA
0 is introduced in (3.33) and A is the class of admissible strategies introduced in Definition

3.2. By [Sch92, Lemma 2.1], the cone CA
0 is closed in L0(Ω,F ,P), under the topology of the

convergence in probability. Let us notice that NSA(G) guarantees that

πG(C
A
0 ) ∩ L0

+(G) = {0}.

We then consider the cone

CA
1 := CA

0 ∩ L1(F). (3.35)

Since CA
0 is closed in L0(F), the set CA

1 is closed in the norm topology of L1(F). We notice the

CA
1 is a closed convex cone in L1(F), then by [Bre11, Theorem 3.7], CA

1 is closed with respect the

weak topology, that is σ(L1(F), L∞(F)). By Assumption 3.14, πG(C
A
1 ) is a σ(L1(G), L∞(G))-closed

convex cone.

Since πG(C
A
1 ) contains L1

−(G) and πG(C
A
1 ) ∩ L1

+(G) ⊂ πG(C
A
0 ) ∩ L0

+(G) = {0}, we can apply

[DS06, Theorem 5.2.3] to prove the existence of a probability measure Q on (Ω,G), such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q ∼ P;
dQ
dP ∈ L∞(G);

EQ[c] ≤ 0, ∀c ∈ πG(C
A
1 ).

(3.36)

Finally, let t = 0, 1 . . . , T − 1 and A ∈ Ft. Let us notice that ϕ := 1A1]t+1,t] ∈ A, thus VT (ϕ) =

1A · (St+1 − St) ∈ CA
1 . For the same reason, also −ϕ ∈ A, then VT (−ϕ) = −1A · (St+1 − St) ∈ CA

1 .
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By (3.36), we conclude that

0 = EQ[VT (ϕ)] = EQ[1A · (St+1 − St)], ∀A ∈ Ft,

thus proving the martingale property.

We prove now the equivalence NSA(G) and EMM(G) under the additional condition:

Assumption 3.17. In the framework introduced in Definition 3.2, We suppose that T = 1 and

F0 ⊆ G

This result is based on the adaptation of the [Rog94] To prove it, we apply the following result:

Proposition 3.18. ([KS09, Proposition 2.1.5]) Let ξ ∈ L0(G) and let F0 ⊆ G. Then, the following

are equivalent:

1. for every ϕ ∈ L0(F0), inequality ϕξ ≥ 0, holds as the equality;

2. there exists a bounded random variable ρ > 0 such that E[ρ|ξ|] <∞ and E[ρξ|F0] = 0.

Theorem 3.19. In the setting of Definition 3.2, let T = 1. Moreover, let G be a sigma-algebra

satisfying Assumption 3.17. Then,

NSA(G) ⇐⇒ EMM(G).

Proof. EMM(G)⇒ NSA(G) is follows by Theorem 3.6.

NSA(G)⇒ EMM(G) In this setting, the admissible strategies ϕ ∈ A are F0-measurable random

variables. A statistical G-arbitrage opportunity, is defined by E[ϕ∆S] > 0 and E[ϕ∆S|G] ≥ 0 a.s.,

where ∆S = S1 − S0. First, we notice that NSA(G) implies that:

E[ϕ∆S|G] ≥ 0 a.s. ⇒ E[ϕ∆S|G] = 0 a.s. (3.37)

By Assumption 3.17, every ϕ ∈ L0(F0) is G-measurable. As a consequence, (3.37) is equivalent to:

ϕE[∆S|G] ≥ 0 a.s. ⇒ ϕE[∆S|G] = 0 a.s. (3.38)

Then, we apply [KS09, Proposition 2.1.5] to ξ := E[∆S|G]. By (3.38), there exists a bounded

random variable ρ > 0 in L0(G) such that E[ρ|ξ|] <∞ and E[ρξ|F0] = 0. Thus, for any h ∈ L∞(F0),

E[ρhξ|F0] = 0. As a consequence, E[ρhξ] = 0. Since, ρ is bounded, we can define ˜︁ρ := ρ
E[|ρ|] . Hence,˜︁ρ defines an equivalent probability measure Q such that dQ

dP = ˜︁ρ and EQ[hξ] = 0, for all h ∈ L∞(F0).

We notice that:

0 = EQ[hξ] = EP[˜︁ρhEP[∆S|G]] = EP[EP[˜︁ρh∆S|G]] = EQ[h∆S], ∀h ∈ L∞(F0),

that is sufficient to conclude that S is a Q-martingale.
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In [KS09, Section 2.1.4], the result is generalized inductively to the case of a discrete-time

market defined for a time horizon T > 1. To apply the same reasoning and generalize Theorem

3.19, we have to assume that Ft−1 ⊆ G. However, this condition seems restrictive from a financial

point of view.

3.7 Absence of statistical G-arbitrage opportunities in a general

semimartingale model

In this section, we consider the general case of a probability space (Ω,F ,P), on which an Rd-valued,

locally bounded, semimartingale S is defined. The set of admissible strategies is A, introduced in

Definition 3.3. As in Theorem 3.16, our goal is to apply Assumption 3.14 to guarantee that the

topological properties of the cone CA provided by NFLVR are preserved when we introduce πG(C
A).

Theorem 3.20. In the setting of Definition 3.2, we consider a sigma-algebra G ⊆ F . Under

Assumption 3.14, if NFLVR holds, then:

NSA(G) ⇐⇒ ELMM(G).

Proof. We recall that, by NFLVR, the convex cone CA introduced in (3.34) is σ(L∞(F), L1(F))-

closed ([DS94, Theorem 4.2]). By Assumption 3.14, πG(C
A) is σ(L∞(G), L1(G))-closed in. Hence,

applying [DS06, Theorem 5.2.3], we conclude that there exists a probability measure Q on (Ω,G,P),
equivalent to P such that dQ

dP ∈ L1(Ω,G,P) and EQ[c] ≤ 0, ∀c ∈ CA. This implies that

EQ[k] ≤ 0, ∀k ∈ KA
0 ∩ L∞(Ω,F ,P).

Mimicking the fourth step of Theorem 3.13, we conclude that S is a Q-local martingale.

Observe that the proof is particularly short, thanks to NFLVR-based theory.

Let us notice that, Theorem 3.16 characterizes the absence of statistical G-arbitrage opportun-

ities NSA(G) in terms of ELMM(G) under Assumption 3.14. On the other hand, Theorem (3.20)

requires the additional condition of NFLVR. The key difference is that in a discrete time market, the

closure of the cone CA is guaranteed by the absence of standard arbitrage opportunities NA, that

follows from NSA(G). On the other hand, there is nothing that suggests a link between NSA(G)
and NFLVR.

3.8 Conclusions and further developments

In Theorem 3.10 we confirmed the result described in [Bon03, Proposition 3], showing that, when

the price process is defined on a finite probability space, the absence of statistical G-arbitrage
opportunities NSA(G) is equivalent to EMM(G). To generalize this result to more general cases,

we proposed a condition, introduced in Assumption 3.14. Assumption 3.14 implies that the image
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with respect to the conditional expectation πG of a weak closed set in Lp(F) remains weak closed

in Lp(G). This condition is tailor-made to exploit the properties provided in [DS94] and prove that

NSA(G) is equivalent to EMM(G).
The first task we should investigate is the existence of conditions on G under which Assumption

3.14 holds, or at least, when the image with respect πG of the cone CA, introduced in (3.34), is

closed. We recall that, in the case of discrete-time markets, the cone CA defined in (3.35) is already

weak closed in L1(F). This condition is ensured by the absence of standard arbitrage opportunities

NA. Moreover, we recall that NA follows from NSA(G). Thus, assuming NSA(G), the weak closure

of CA in L1(F) is guaranteed. This reasoning is crucial to prove the equivalence between NSA(G)
and ELMM(G) in the case of a discrete time market model under Assumption 3.14.

In the general semimartingale case, we shown that equivalence between NSA(G) and ELMM(G)
is guaranteed assuming NFLVR, in addition to Assumption 3.14. An interesting extension of this

result to delve into is a characterization of NSA(G) beyond NFLVR. If we do not assume NFLVR,

we cannot exploit the results already provided by [DS94]. Therefore, we should find alternative

approaches to guarantee that the image of superreplicable claims with respect the conditional

expectation operator is closed in the weak-∗ topology of L∞(G). Another interesting development

in this direction could be a NFLVR condition in a statistical sense. In other words, we could search

for a condition on the set of admissible strategies A or on G, under which the image of the cone of

super-replicable claims with respect to πG is already weak-∗ closed in L∞(G).
A second interesting problem to investigate is a link between the definition of statistical arbitrage

introduced in [Bon03] and the one proposed in [HJTW04]. As discussed in [RRS21, Remark 2.3], the

authors noticed that, iterating a statistical G-arbitrage over time, under some stationary condition,

one can obtain a statistical arbitrage strategy in the asymptotic sense described in [HJTW04]. It

could be interesting to understand if the results proved in [Bon03] can be extended, not only in

the direction of market models defined on more general probability spaces, but to also the case of

financial markets defined on an infinite time horizon.

Appendix

3.A Properties of conditional expectation

This Appendix is devoted to the description of some properties of the conditional expectation with

respect a sigma-algebra G, interpreted as a linear operator on Lp(F).

We recall that L∞(G) endowed with the weak-∗ topology is not first countable. Indeed, the

weak topology on a normed space X is first countable if and only if X if finite-dimensional (see

[AB06, Theorem 6.26]). Thus, we cannot characterize the weak-∗ closure of a set A through the

limits of sequences in A, but we have to consider the more general concept of converging net.

Moreover, in the context of absence of statistical G-arbitrage opportunities, we have to deal also

with the conditional expectation operator, that is in general discontinuous with respect the norm
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topology, as we are going to see in the following example.

Example 3.21. Let (Ω,F ,P) := ([0, 1],B([0, 1]),Leb([0, 1])). We consider the sigma-algebra G
generated by the set of the form (0, 12 + q) where q ∈ Q ∩ [0, 12 ]. We now consider the sequence of

functions:

fn(ω) := 2n1(0, 1
2n

)(ω).

As a consequence: limn→∞ fn(ω) = 0 for almost every ω ∈ [0, 1]. On the other hand:

lim
n→∞

πG(fn) = lim
n→∞

E[fn|G] = lim
n→∞

∫︂ 1

0
2n1(0, 1

2n
)(ω)dω = 1.

On the other hand, the conditional expectation πG is a continuous map, when L∞(F) and

L∞(Ω,G,P) are both endowed with the weak-∗ topology. To prove this continuity, we need to

introduce some concepts:

Definition 3.22. We consider two topological space (X, τX) and (Y, τY ). A function f : X → Y

is continuous, if f−1(U) ∈ τX for every U ∈ τY . Moreover, a function f : X → Y is continuous at

x ∈ X, if for every U ∈ τY such that f(x) ∈ U , then f−1(U) ∈ τX and x ∈ f−1(U).

Definition 3.23.

• A direction ⪰ on a set D is a reflexive transitive binary relation with the property that each

pair has an upper bound, that is:

∀α, β ∈ D there exists γ ∈ D such that γ ⪰ α and γ ⪰ β.

• A net in a set X is a function x : D → X, where D is a directed set, that is called index set

of x.

• We say that a net (xδ)δ∈I in a topological space (X, τX) converges to x if for every V ∈ τX ,

such that x ∈ V , there exists some index δV such that xδ ∈ V , for all δ ⪰ δV . We denote the

convergence with the symbol xδ → x.

Finally, we recall the following results

Theorem 3.24. ([AB06, Theorem 2.14]) Let us consider a topological space (X, τX). Then, the

following are equivalent:

1. x belongs to the closure of a set C in X;

2. there exists a net (xδ)δ∈D in C such that xδ → x in X.

Theorem 3.25. ([AB06, Theorem 2.28]) Let us consider two topological spaces (X, τX) and (Y, τY ).

For a function f : X → Y and a point x ∈ X the following are equivalent:

1. The function f is continuous at x;
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2. If a net (xδ)δ∈D converges to x in X, then (f(xδ))δ∈D converges to f(x) in Y .

We are now ready to prove the following proposition.

Proposition 3.26. Let us consider a probability space (Ω,F ,P) and a sub-sigma-algebra G ⊆ F .

Then, for any p, q ∈ [1,∞] such that 1
p + 1

q = 1:

πG : (Lp(Ω,F ,P), σ(Lp(F), Lq(F))) → (Lp(Ω,G,P), σ(Lp(G), Lq(G)))

X ↦→ πG(X) := E[X|G].
(3.39)

is a well-defined and continuous. Moreover, if (xδ)δ∈I is a net converging to x in Lp(F) such that

(πG(xδ))δ∈I converges to y ∈ Lp(G), then y = πG(x).

Proof.

• The fact that πG is well-defined is a straightforward consequence of Jensen’s inequality.

• To prove continuity, we apply Theorem 3.25. In particular, we consider a net (xδ)δ∈I in

L∞(F) such that xδ → x ∈ L∞(F) with respect the σ(Lp(F), Lq(F))-topology. By definition,

σ(Lp(F), Lq(F))-convergence amounts to

lim
δ∈I

E[xδϕ] = E[xϕ], ∀ϕ ∈ Lq(F).

By the tower property, for any ˜︁ϕ ∈ Lq(G), we have that:

lim
δ∈I

E[πG(xδ)ϕ] = lim
δ∈I

E[E[xδ|G]˜︁ϕ] = lim
δ∈I

E[xδ ˜︁ϕ] = E[x˜︁ϕ] = E[E[x|G]˜︁ϕ] = E[πG(x)˜︁ϕ].
This holds for arbitrary x and therefore continuity follows.

• Finally, we show that if (xδ)δ∈I in Lp(F) is a net converging to x under σ(Lp(F), Lq(F))-

topology, such that πG(xδ) → y in Lp(G), under σ(Lp(G), Lq(G))-topology, then y = πG(x).

By definition πG(xδ) → y is equivalent to:

lim
δ∈I

E[πG(xδ)˜︁ϕ] = E[y˜︁ϕ], ∀˜︁ϕ ∈ Lq(Ω,G,P).

On the other hand:

lim
δ∈I

E[πG(xδ)˜︁ϕ] = lim
δ∈I

E[E[xδ|G]˜︁ϕ] = E[x˜︁ϕ], ∀˜︁ϕ ∈ Lq(G).

For every G ∈ G, 1G ∈ L∞(Ω,G,P) ⊆ Lq(G), for every q ∈ [1,+∞]. Thus, E[y1G] = E[x1G],
for any G ∈ G. Since y ∈ Lp(G) and the conditional expectation is unique, it follows that

y = E[x|G] = πG(x).
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