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Abstract 

Background Archaea and Bacteria are distinct domains of life that are adapted to a variety of ecological niches. Sev-
eral genome-based methods have been developed for their accurate classification, yet many aspects of the specific 
genomic features that determine these differences are not fully understood. In this study, we used publicly available 
whole-genome sequences from bacteria ( N = 2546 ) and archaea ( N = 109 ). From these, a set of genomic features 
(nucleotide frequencies and proportions, coding sequences (CDS), non-coding, ribosomal and transfer RNA genes 
(ncRNA, rRNA, tRNA), Chargaff’s, topological entropy and Shannon’s entropy scores) was extracted and used as input 
data to develop machine learning models for the classification of archaea and bacteria.

Results The classification accuracy ranged from 0.993 (Random Forest) to 0.998 (Neural Networks). Over the four 
models, only 11 examples were misclassified, especially those belonging to the minority class (Archaea). From variable 
importance, tRNA topological and Shannon’s entropy, nucleotide frequencies in tRNA, rRNA and ncRNA, CDS, tRNA 
and rRNA Chargaff’s scores have emerged as the top discriminating factors. In particular, tRNA entropy (both topologi-
cal and Shannon’s) was the most important genomic feature for classification, pointing at the complex interactions 
between the genetic code, tRNAs and the translational machinery.

Conclusions tRNA, rRNA and ncRNA genes emerged as the key genomic elements that underpin the classifica-
tion of archaea and bacteria. In particular, higher nucleotide diversity was found in tRNA from bacteria compared 
to archaea. The analysis of the few classification errors reflects the complex phylogenetic relationships between bac-
teria, archaea and eukaryotes.
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Background
In the complex and diverse realm of life, Archaea 
and Bacteria stand out as two fundamentally distinct 
domains within the kingdom Procaryotae, each char-
acterized by their unique evolutionary trajectory and 
intrinsic properties [1]. The role of bacteria in eco-
systems is pervasive, as witnessed also by the rapidly 
expanding research on microbiomes [2], while archaea 
have been traditionally viewed as marginal and associ-
ated predominantly with extreme habitats. The position 
of Archaea in the tree of life is now being re-evaluated 
in the light of new scientific discoveries, as recent 
advancements in genomics have significantly expanded 
our understanding of this domain. The archaeal fam-
ily tree, once thought to encompass only two phyla, 
has blossomed into a more complex structure with 
the addition of new classes and superphyla, such as 
Methanonatronarchaeia, TACK, and the eukaryote-like 
Asgard group [3–5].

The advent of the 21st century marked a significant 
development in the understanding of the microbial 
world, driven by advances in sequencing technologies 
(NGS, 3rd-generation sequencing) and computational 
methods [6]. Indeed, the inception of modern genomics 
can be traced back to the sequencing of the first bacte-
rial genome in 1995 [7] and the first archaeal genome in 
1996 [8]. These seminal events heralded an era of expo-
nential growth in genomics, characterized by a doubling 
time for the number of available sequences of approxi-
mately 20 months for bacteria and 34 months for archaea 
[1]. This rapid accumulation of genomic data is reflected 
in the Reference Sequence Database (RefSeq: https:// 
ftp. ncbi. nlm. nih. gov/ genom es/ refseq) of the National 
Center for Biotechnology Information (NCBI) which 
has meticulously documented 1 222 archaeal and 51 425 
bacterial species. This collection encompasses annotated 
sequences of DNA, RNA and proteins which provide a 
standardized, reliable and publicly accessible set of ref-
erence sequences, and represent a pivotal resource in 
molecular biology and bioinformatics.

From the genetic point of view, archaea and bacteria 
display distinct biological processes regarding their DNA 
replication, transcription and translation machinery. 
While archaea share some similarities with eukaryotes in 
terms of transcription and replication, bacteria exhibit a 
different set of enzymes and pathways [9]. Metabolically, 
the two domains use varied pathways for energy produc-
tion and biosynthesis, reflecting their adaptation to dif-
ferent ecological niches [10]. Also, regulatory elements 
such as transfer RNAs (tRNAs) have been a focus of 
recent research in understanding the evolutionary diver-
gence between Archaea and Bacteria. Variations in tRNA 
patterns and their interaction with ribosomes provide 

insights into the evolutionary history and adaptation of 
these organisms [11].

From this perspective, the distinction between Archaea 
and Bacteria, which can often appear blurred at a first 
glance, becomes clearer under genomic scrutiny. While 
the analysis of the genomes of these organisms yields 
insights into their phylogeny [12], accurately identi-
fying the specific genomic features that differentiate 
Archaea from Bacteria is still a challenge. This highlights 
the need of integrating advanced bioinformatics meth-
ods with high-throughput sequencing to enable more 
refined microbial classification and to uncover the sub-
tle genomic distinctions between these domains. Thus, 
at the heart of current investigations is the utilization of 
modern machine learning (ML) algorithms for the analy-
sis of genomic data. ML has already been applied to the 
study of prokaryotic genomes, e.g. to annotate archaeal 
promoters [13], to predict the evolution of bacterial met-
abolic systems [14], to understand complex anaerobic 
digestion mechanisms [15], to advance forensic micro-
biology [16], and much more (reviewed in [17, 18]). A 
recent work from our research group [19] exemplifies 
this approach, by applying ML algorithms to accurately 
differentiate between probiotic and non-probiotic micro-
bial organisms, underlining the pivotal role of tRNAs for 
the accuracy of classification. These findings align with a 
growing evidence that places RNAs, especially tRNAs, in 
a central role for the modulation of gene expression and 
cellular regulation [20, 21].

Based on the above, it appears that it is of theoreti-
cal and practical interest to understand what drives 
the differentiation between archaea and bacteria at the 
genomic level. In this work we used multiple ML algo-
rithms (Regularized Logistic Regression, Random For-
est, Support Vector Machines and Neural Networks) to 
classify Bacteria and Archaea domains based on a set of 
genomic features (e.g. length in bps, proportion of cod-
ing and non-coding sequences, tRNA, rRNA and ncRNA 
genes). Given that we can expect the genomic classifi-
cation of Archaea and Bacteria to be highly accurate, 
extracting variable importance allows us to identify the 
genomic features that underpin the differences between 
the two domains. A deeper understanding of the genomic 
elements that distinguish Archaea from Bacteria can 
provide insights into the evolutionary history of their 
genomes and how these elements have shaped their bio-
logical characteristics.

Methods
Dataset construction and encoding of genomic features
The dataset used in the present study included, after 
filtering, 2655 whole-genome sequences from bacte-
ria (N=2546) and archaea (N=109) with good quality 

https://ftp.ncbi.nlm.nih.gov/genomes/refseq
https://ftp.ncbi.nlm.nih.gov/genomes/refseq
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annotation. The GBRAP (GenBank Retrieving, Analyz-
ing and Parsing) tool [22] was used to download genomic 
data from the NCBI GenBank [23] FTP databases for 
bacteria ( https:// ftp. ncbi. nlm. nih. gov/ genom es/ refseq/ 
bacte ria/) and archaea (https:// ftp. ncbi. nlm. nih. gov/ 
genom es/ refseq/ archa ea/). Only species with complete 
genomes were included. Contigs and scaffolds were 
directly excluded by GBRAP prior to the analysis. Bacte-
rial genomes with size and number of coding sequences 
(CDS) smaller than that of Mycoplasma genitalium –now 
renamed Mycoplasmoides genitalium– ( < 580 076 bp 
and < 491 cds; [24]), and archaea genomes with size and 
number of CDS smaller than that of Nanoarchaeum equi-
tans ( < 490 885 bp and < 493 cds; [25]) were removed. 
In addition, genomes lacking annotation in ribosomal, 
transfer and non-coding RNAs (rRNAs, tRNAs, and 
ncRNAs) were excluded. If more subspecies were pre-
sent, the one with the longest genome was retained. The 
downloaded Genbank files of the selected microorgan-
isms were used to calculate genomic statistics (e.g. nucle-
otide counts and relative frequencies, size in bps) on the 
whole genome and its components, i.e. CDS, rRNAs, 
tRNAs, ncRNAs. Briefly, the total number of bases (bp_
total) for each element was obtained, together with the 
total count for each base (bp_A, bp_T, bp_C, bp_G) and 
their relative frequencies (fr_A, fr_T, fr_C, fr_G). The 
frequencies of each genomic component (CDS, rRNA, 
tRNA, ncRNA) on the plus strand (n_plus), on the minus 
strand (n_minus), and their sum (n_total) in the genome 
sequence were also calculated. In addition, the GBRAP 
tool calculated multiple genomic synthetic scores on 
the whole genome and subcomponents: Shannon’s 
entropy [26], topological entropy [27] and scores based 
on Chargaff’s second parity rule [28]. The Shannon’s and 
topological scores are associated with the concept of 
information entropy, which can be seen as the complex-
ity of the message (e.g. the sequence ATGC has greater 
information content than AAAA). The two Chargaff’s 
scores refer to the deviation from the Chargaff’s second 
parity rule (details below). In summary, the dataset used 
in this study included the outcome to be predicted (the 
domain: Archaea or Bacteria) and 77 genomic features 
(57 genomic statistics and 20 scores) calculated for each 
of the 2655 microorganisms considered (109 archaea and 
2546 bacteria). The 77 genomic features, which were in 
part previously described in Bergamini et al. (2022 [19]), 
are listed in S1 Table.

Genomic scores
The four genomic scores described below were calcu-
lated from GBRAP on the microbial sequences down-
loaded from the NCBI repository. The scores were 
calculated on: the whole-genome, CDS, rRNA, tRNA, 

and ncRNA, for a total of 20 genomic score features to 
be used in the predictive models.

Shannon’s entropy
Shannon’s entropy (or information entropy [26]) is used 
in genomics to quantify the uncertainty or complexity in 
a set of sequences. It serves as a measure of the random-
ness or variability in genetic sequence data. The Shan-
non’s entropy (H) of a sequence is formally calculated as:

where pi represents the proportion of each nucleotide or 
amino acid in the sequence.

Topological entropy
Topological entropy is a theoretical measure that quan-
tifies the complexity or degree of randomness within 
infinite sequences. Differently from Shannon’s entropy, 
which evaluates the uncertainty or information con-
tent within a finite probabilistic distribution of events or 
symbols, topological entropy focuses on the asymptotic 
exponential rate of distinct substrings as the length of the 
sequence increases. Topological entropy was therefore 
introduced to study the complexity of infinite sequences, 
making its direct application to finite sequences challeng-
ing due to limited sampling effects and high-dimension-
ality issues.

Koslicki et  al. (2011 [27]) introduced a new approxi-
mation of topological entropy that overcomes these dif-
ficulties, making it applicable to finite length sequences 
like DNA, while retaining connections with information 
theory. This new definition enables the comparison of 
entropy between sequences of different length, a prop-
erty not incorporated in previous implementations of 
topological entropy.

Topological entropy in genomics is calculated based 
on the diversity of short repeated sub-sequences within a 
DNA sequence. Essentially, it counts how many different 
patterns of given length appear in the sequence. A higher 
variety of patterns indicates higher entropy, suggesting a 
more complex and less repetitive DNA region.

Chargaff’s scores
Chargaff’s score is used to assess a genome’s adherence 
to Chargaff’s second parity rule. This rule states that, in 
double-helical DNA the amount of adenine (A) and thy-
mine (T) is approximately equal to that of cytosine (C) 
and guanine (G) on each single strand (with the excep-
tion of mitochondrial DNA). The Chargaff’s score can be 
calculated with two methods:

1. The PF method uses the AT and GC skews:

(1)H = − (pi · log2(pi))

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/
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• AT skew = |(#A−#T )
(#A+#T )| 

• GC skew = |(#C−#G)
(#C+#G)| 

 where # indicates the frequency (counts) of the 
four nucleotides. The sum of the two skews quan-
tifies the deviation from perfect parity (a score of 0 
indicates perfect adherence to Chargaff ’s rule).

2. The CT method (from GBRAP [22]) calculates 
the score as the average of the A/T and C/G ratios, 
where the least frequent nucleotide is chosen as the 
numerator:

• Chargaff’s score = 0.5 ·
(

min(#A,#T )
max(#A,#T )

+ min(#C ,#G)
max(#C ,#G)

)

 

This version of the score ranges from 0 to 1, where 1 
represents perfect Chargaff ’s parity.

Chargaff’s score is widely used in genomics as an indi-
cator of genome stability, as a score approaching perfect 
parity suggests a stable genomic structure [28]. The two 
ways of calculating the Chargaff’s score have their own 
peculiarities (different ranges, different sensitivity to bias 
linked to sequence length), and in this study they provide 
two different genomic features to be used as input by ML 
predictive models.

Exploratory data analysis (EDA)
As data exploration steps, we used the 77 genomic fea-
tures extracted from GBRAP for Principal Component 
Analysis (PCA), correlation analysis, and clustering. 
In PCA, we assessed how well the data could be com-
pressed into a reduced number of variables (principal 
components: PCs), and how much of the total variance 
of the data was accounted for by PCs, by looking at the 
ratio of the corresponding eigenvalues over the sum of 
all eigenvalues. For correlation analysis, the Pearson 

linear correlations between all pairs of genomic features 
were calculated. For the clustering of the 2655 micro-
organisms, we first calculated their pairwise Euclidean 
distances based on the genomic features, and then used 
multidimensional scaling to plot the resulting distance 
matrix.

Model building, training and evaluation
The analysis workflow is summarized in Fig.  1 and was 
executed with the Caret v.6.0-86 [29] and Tidyverse 
v.1.3.1 [30] R packages (R v.4.1.2 [31]). First, a subset 
with 80% of the records (88 archaea and 2037 bacteria) 
was sampled to build and train the predictive models; the 
remaining 20% of the data (21 archaea and 509 bacteria) 
was excluded from model building and used as test set 
(unseen labels) to evaluate model performance in dis-
criminating between the two taxonomic domains. Strati-
fication was applied at subsetting to preserve the original 
class distribution (4.1% archaea and 95.9% bacteria) in 
both the training and test sets.

Before model building, automatic backward selection 
of features was performed on the training set, applying 
the recursive feature elimination (RFE) algorithm based 
on random forest (RF) [32]. RFE was based on the aver-
age accuracy of prediction from 10-fold cross-validation 
(CV) repeated 25 times. The rationale of applying RFE 
before model building is to identify the most predictive 
features to be included in the most parsimonious model 
reaching the greatest accuracy of prediction. In particu-
lar, for each resampling iteration, training data are fur-
ther partitioned into training and validation sets. The 
algorithm fits the RF model on the training set using all 
features, which are ranked according to their predictive 

Fig. 1 ML workflow. Machine learning workflow for the prediction of the taxonomic domain (Bacteria or Archaea) using genomic features. RLR: 
regularized logistic regression; RF: Random Forest; SVM: support vector machines; NN: neural networks
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importance on the validation set, and the less important 
ones are sequentially eliminated. Indeed, for each feature 
subset to be tested, rankings are re-computed, until the 
appropriate number of features is determined. The goal 
is to find the minimum set of data needed for accurate 
predictions (see Biscarini et al. 2015 [33] for an example).

Retained genomic features were then used to predict 
the taxonomic domain of the microorganisms (binary 
classification problem: Bacteria or Archaea) applying 
four ML methods: i) regularized logistic regression (RLR) 
with Ridge, Lasso or Elastic-Net penalties [34]; ii) ran-
dom forest with 500 classification trees (RF [35]); iii) Sup-
port Vector Machines with radial basis function (RBF) 
kernel (SVM [36]), and iv) a one-layer neural networks 
model: one hidden layer, one output node, sigmoid acti-
vation function at every node (NN [37]). The following 
hyperparameters were fine-tuned: i) the type ( α : Ridge, 
Lasso, Elastic-Net) and amount ( � ) of penalization for the 
RLR models; ii) the number of features randomly sam-
pled to be used in each classification tree of the RF mod-
els; iii) the amount of flexibility (cost “C”) for the SVM 
classifier; iv) the number of units in the hidden layer and 
the L2 penalty (weight decay) to apply to the estimated 
coefficients for the NN models.

Training and validation of the models was performed 
applying a stratified (by domain) 10-fold CV repeated 
100 times. Briefly, the training set was divided into 10 
subsets of equal size, nine used for model training and 
one for validation. The entire process was repeated 100 
times. Therefore, 100 mean accuracy values were then 
averaged to obtain the final metrics of each method to 
be compared. To resolve class imbalance of the domains, 
additional up-sampling was conducted inside the resam-
pling, i.e. randomly sampling (with replacement) the low-
frequency class to be the same size as the high-frequency 
class.

Data preprocessing (centering and scaling) was done 
within CV, after up-sampling. For each tested method, 
the train function of the Caret R package automatically 
created a grid of tuning hyperparameters. By default, the 
grid size is 3p , where p is the number of tuning hyper-
parameters specific to each method. The combination of 
hyperparameter values corresponding to the best perfor-
mance (accuracy) was then chosen as the final model to 
be fitted on the training set. Tuning details of the hyper-
parameters of each ML method are reported in the S1 
Appendix.

Metrics for the evaluation of model performance
For this binary classification problem, Bacteria (the 
majority class) were considered “positive” cases while 
Archaea (the minority class) were considered “nega-
tive” cases. The performance of the four ML methods on 

the validation set (fine-tuning of the hyperparameters 
through CV) was evaluated in terms of classification 
accuracy (proportion of correctly classified observations). 
The metric was calculated as the ratio between correct 
predictions over all predictions:

where TP is the number of true positives, TN that of true 
negatives, FP and FN are false positives and false nega-
tives. The model with the greatest values of accuracy was 
then used to rank the importance of genomic features in 
predicting the taxonomic domain.

The predictive ability of the ML methods on the test 
set (final evaluation of model performance) was assessed 
based on several metrics obtained from the confusion 
matrix: accuracy, true positive rate (TPR), true negative 
rate (TNR), positive predictive value (PPV), negative pre-
dictive value (NPV), the Matthew’s Correlation Coeffi-
cient (MCC). For clarity, MCC ranges in [-1,1] and was 
calculated as:

Results
Feature selection and model building
The genomic features used to develop the four ML predic-
tive models were obtained from the GBRAP tool, which 
allowed the calculation of several DNA and RNA-genes 
properties, including genome size, number and frequency 
of base pairs, and scores related to the genomic informa-
tion content. S1 Fig. reports results from EDA: i) scree plot 
of the PCs in decreasing order of the percentage of variance 
they explained (the first three PCs accounted for 61.5% of 
the total variability in the data); ii) correlation plot of the 
genomic features; and iii) multidimensional scaling plot of 
Euclidean distances between microorganisms (bacteria, 
archaea) based on the matrix of genomic features. Before 
model building and training, RF-based RFE was applied to 
remove least informative features and minimize the set of 
data needed to reach the greatest possible predictive abil-
ity. Using resampling (10-fold CV with 25 repeats), multi-
ple lists of predictors to be retained were generated from 
which a consensus ranking was obtained. This approach 
provides a more reliable assessment of feature importance 
in comparison to a single fixed ranking. The best subset 
was found to be that with 23 predictors (Fig. 2A): tRNA_
topological_entropy_score, tRNA_shannon_score, fr_
tRNA_A, fr_rRNA_C, ncRNA_topological_entropy_score, 
cds_chargaff_score_pf, rRNA_chargaff_score_pf, cds_char-
gaff_score_ct, fr_tRNA_C, n_ncRNA_total, bp_ncRNA_G, 

(2)accuracy =
TP+ TN

TP+ TN+ FP+ FN

(3)

MCC =
(TP · TN)− (FP · FN)

√
(TP+ FP) · (TP+ FN) · (TN+ FP) · (TN+ FN)
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rRNA_chargaff_score_ct, bp_ncRNA_total, bp_ncRNA_C, 
tRNA_chargaff_score_pf, bp_rRNA_T, fr_tRNA_G, 
bp_rRNA_G, fr_tRNA_T, tRNA_chargaff_score_ct, bp_
ncRNA_A, bp_rRNA_A, fr_rRNA_G.

Final model and feature importance from cross‑validation
The evaluation of the predictive performance of the four 
ML methods on the validation set (from cross-validation 
for fine-tuning of the hyperparameters) was based on the 
overall accuracy (Table 1). All algorithms reached a pre-
diction accuracy > 99% , from 99.7183% for RLR and RF 
to 99.9531% for SVM.

Features were ranked by importance from SVM, the 
best predictive method after cross-validation: tRNA top-
ological entropy, tRNA Shannon’s entropy score, nucleo-
tide absolute (bp) and relative (fr) frequencies in tRNAs 
and rRNA, total frequency of ncRNA and CDS Chargaff’s 
score (both PF and CT methods) were found to be the 
most important features for domain prediction on the 
validation set (Fig. 2B). For all features, values were sig-
nificantly different in bacteria compared to archaea (Wil-
coxon test: p-value << 0.01 , S2 Table). Notably, seven 
and eight out of 23 features are related to the nucleotide 
composition, entropy, and stability of rRNAs and tRNAs, 
respectively.

Predictive performance on the test set
The predictive performance of the four final ML models 
after cross-validation was evaluated on the test set (20% of 
the initial data) based on summary metrics (Table 1) and on 
the confusion matrix (error breakdown, Table 2). NN was 
found to be the best model to predict the domain based on 
genomic features, with an accuracy of prediction of 99.8% 
and the best agreement between the predicted and actual 
values (MCC = 0.975). NN was followed by RLR, SVM and 
RF in terms of predictive ability of the model.

Taking Archaea as “negatives” and Bacteria as “posi-
tives” in the binary classification problem, our results 
show: 0.40% false negative error rate (FNR) for RLR, 
and 0.2% FNR for both RF and SVM; 4.76% false posi-
tive error rate (FPR) for both NN and RLR, 9.5% FPR 
for SVM and 14.3% FPR for RF (Fig.  3). In particular, 
the archaea Methanobrevibacter ruminantium M1 
was misclassified as bacterium by all four classifica-
tion models, with P(y = 1|x) ∈ [0.87, 1] . The bacterium 
Deferribacter desulfuricans SSM1 was misclassified 
as archaea by both RF ( P(y = 0|x) = 0.78 ) and SVM 
( P(y = 0|x) = 0.55 ). RLR misclassified 2 out of 509 
bacteria as Archaea (Gottschalkia acidurici 9a, Tauto-
nia plasticadhaeren). All other mistakes were made by 
only one classifier. Details on the misclassifications are 
reported in Table 3.

Discussion
In this paper, we explored the application of ML meth-
ods to analyze genomic data for the classification of 
microbial samples belonging to the life domains Bac-
teria and Archaea. ML has already been extensively 
applied to the study of microbial populations, and has 
proven instrumental in forecasting disease conditions, 
evaluating environmental integrity, detecting the pres-
ence of contaminants in ecosystems and in forensic 
investigations [17]. Our main objective was to develop 
ML predictive models and, based on the expected high 
accuracy of prediction, extract the genomic features 
that are important for prediction and are hence help-
ful to differentiate microorganisms belonging to either 
the Bacteria or Archaea domain. We discuss hereby the 
identified genomic features, the obtained accuracy of 
prediction with a detailed analysis of the few classifi-
cation errors, and the biomedical and biotechnological 
implications of these results.

Table 1 Model performance. Accuracy on the validation set from 10-fold cross-validation (CV: fine-tuning of the hyperparameters). 
Accuracy, true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), negative predictive value (NPV) and 
Matthew’s Correlation Coefficient (MCC) on the test set

For model training, 80% of the data were used: 10-fold cross-validation (repeated 100 times) was used within the training set for the tuning of the hyperparameters. 
For testing, 20% of the data were left aside and used for the evaluation of the final models

Method 10‑fold CV 
(validation set)

Model performance (test set)

Accuracy Accuracy TPR TNR PPV NPV MCC

Regularized logistic regression 0.997183 0.994 0.996 0.952 0.998 0.909 0.928

Random Forest 0.997183 0.993 0.998 0.857 0.994 0.947 0.897

Support vector machines 0.999531 0.994 0.998 0.905 0.996 0.950 0.924

Neural networks 0.999528 0.998 1.0 0.952 0.998 1.0 0.975
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Feature importance: What drives the genetic differences 
between archaea and bacteria
As expected, the ML models that we tested were all able 
to distinguish with very high accuracy between samples 
from the domains Archaea and Bacteria, based on their 

genomic data. The key drivers of this highly accurate 
classification were the entropy of tRNAs (tRNA topologi-
cal entropy, tRNA Shannon’s entropy score), the nucleo-
tide absolute (bp) and relative (fr) frequencies in tRNAs 
and rRNA, and Chargaff’s scores -with both the PF and 

Fig. 2 Variable importance. A) Results of the recursive feature elimination, based on Random Forest. The number of features included in the model 
and the prediction accuracy are reported on the x-axis and on the y-axis, respectively; B) Plot of the 23 most important features for the prediction 
of the Bacteria/Archaea domain, using Support Vector Machine as the best predictive method. These are all features identified by the model 
during RFE (recursive-feature elimination). Importance values have been rescaled in 0-100; C) Comparative analysis of tRNA topological entropy, 
tRNA Shannon’s entropy and CDS Chargaff’s Score CT across archaea and bacteria. The violin plot, augmented with internal boxplots, displays 
the distribution and median values of the three genomic features for both Archaea (in light blue) and Bacteria (in light purple). The facets separately 
highlight each variable, providing insights into the genomic distinctions between these two domains
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CT methods- of CDS. Interestingly, 7 out of the total 23 
important variables identified by RFE are related to rRNA 
(nucleotide frequencies, Chargaff’s scores). This result 
highlights the significant role of rRNA genes in phylo-
genetic studies of bacteria and archaea, as shown also 
by the common use of rRNA marker genes to study the 
composition of microbial communities, which is at the 
foundation of the entire scientific field of metataxonom-
ics (e.g. 16S/18S/23S rRNA-gene sequencing [38, 39]).

Focussing on the top two features from Fig. 2B, while 
tRNAs are predominantly recognized for their role in 
protein synthesis, their broader impact on gene expres-
sion regulation and cellular processes has been increas-
ingly acknowledged [40, 41]. This multifunctionality 
makes them a critical molecular component to under-
stand the genomic differentiation between the two 
domains (Archaea vs Bacteria). It is worth mentioning 
that the complexity of tRNA functions extends beyond 

prokaryotes to oncogenesis in humans and mammals, 
where expression, modifications and aberrations of 
tRNA molecules are linked with cancer development 
[42, 43]. The observed higher topological and Shannon’s 
entropy in bacterial tRNAs (Fig. 2C) may be reflective 
of their adaptation to diverse ecological niches. Further 
dissecting the reasons behind the higher entropy in 
bacterial tRNAs, a number of hypothetical explanations 
may be formulated:

• Rapid Evolution and Mutation Rates (REMR): bac-
teria exhibit faster reproduction rates compared 
to archaea and eukaryotes, potentially leading to 
quicker evolutionary adaptations. This rapid evolu-
tion could result in increased mutation rates in vari-
ous genes, including those encoding tRNAs, thus 
contributing to higher entropy [44];

• Environmental Niche Diversity (END): bacteria have 
the ability to thrive in a wide range of environments 
from extreme conditions to various biomes within the 
human body, and might necessitate a diverse set of 
tRNA gene sequences. This diversity aids in adapting 
protein synthesis to different environmental condi-
tions, which would increase the entropy of their tRNA 
genes [45];

• Genetic Code Plasticity (GCP): the significant plas-
ticity observed in the bacterial genetic code, which 
includes variations to the standard genetic code, 
may extend to tRNA genes. This flexibility could 
contribute to the diversity and complexity of tRNA 
sequences, increasing their entropy [46, 47];

• Translation Needs (TN): although also archaea expe-
rience varying environmental conditions, the larger 
number of diverse environments in which bacte-
ria are found might justify a broader array of tRNA 
molecules to meet distinct translation demands. 

Table 2 Confusion matrix. Confusion matrices for the prediction 
of the Archaea/Bacteria domain on the test set of four machine 
learning methods: Regularized logistic regression (RLR), Random 
Forest (RF), Support vector machines (SVM), and Neural networks 
(NN)

Reference

 Method Predictions Archaea Bacteria

RLR Archaea 20 2

Bacteria 1 507

RF Archaea 18 1

Bacteria 3 508

SVM Archaea 19 1

Bacteria 2 508

NN Archaea 20 0

Bacteria 1 509

Fig. 3 Error rates. False negative error rate (FNR), false positive error rate (FPR) and total error rate (TER) for the prediction of the Archaea ( = 
Negative) or Bacteria ( = Positive) domain on the test set of four machine learning methods: Regularized logistic regression (RLR), Random Forest 
(RF), Support vector machines (SVM), and Neural networks (NN)
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This need for diverse tRNA sets could lead to higher 
entropy in their tRNA genes [48];

• Horizontal Gene Transfer (HGT): the potential for 
HGT in bacteria to introduce new genetic material, 
such as tRNA genes from diverse organisms, can sig-
nificantly enhance the diversity of the bacterial tRNA 
gene pool, contributing to the observed higher entropy. 
Although HGT occurs in archaea as well, there are 
notable differences in HGT frequencies across different 
bacterial and archaeal taxa [49]. These differences may 
impact genomic diversity and complexity in distinct 
ways within each domain, which could help explain the 
variability observed in our analysis.

It is intriguing to observe that bacterial CDS exhibit 
more extreme Chargaff’s scores (higher Chargaff-CT 
score, lower Chargaff-PF score), indicating overall greater 
sequence stability compared to archaea. This finding ini-
tially appears counterintuitive, considering the preva-
lence of archaea in extreme environments where genomic 
stability would presumably be a crucial adaptive trait. 
Nevertheless, we noticed that the median CDS Chargaff-
CT score in archaea (0.80) lies between that of bacteria 
(greater than 0.85) and eukaryotes (0.77: based on 24 
high-quality eukaryotic genomes from NCBI, including 
mammals, birds, fish, reptiles, amphibians, invertebrates, 
fungi and plants; data not shown). This observation sug-
gests that as CDS become less topologically random dur-
ing evolution, the strict applicability of Chargaff’s second 
parity rule diminishes, especially within coding genomic 
regions subjected to evolutionary pressure towards con-
servation. Koslicki (2011, [27]) demonstrated that human 
introns exhibit higher topological entropy compared 
to exons, indicating greater randomness. Similarly, our 
results show that the topological entropy of archaeal CDS 
is intermediate between that of bacterial and eukaryotic 
CDS (S2 Fig.), mirroring the pattern observed with Char-
gaff-CT scores. This suggests that prokaryotic CDS have 
higher topological randomness than eukaryotic CDS. 
Archaea plausibly represent an evolutionary intermedi-
ate, placed between these two extremes. Alternatively, it 
is also possible that the difference in Chargaff’s score can 
be influenced by other factors such as different mecha-
nisms of DNA repair, replication fidelity, or even varia-
tions in HGT processes between the two domains.

Classification accuracy and error analysis
The accuracy of classification achieved by the four ML 
models ranged between 0.993 (RF) and 0.998 (NN). 
Many approaches have been developed for the classifi-
cation of bacteria and archaea [50], and genomic-based 
approaches stand out as being highly accurate. The data-
set analysed in this work was imbalanced, with 2546 

bacteria (considered the ‘positive’ cases) and 109 archaea 
(‘negative’ cases), and the few classification errors 
therefore tended to be more frequently false positives 
(Archaea misclassified as Bacteria) than false negatives 
(Bacteria misclassified as Archaea). Here we compare 
the performance of the four ML models given the imbal-
anced classes, and then analyse in detail the few classifi-
cation errors that have been obtained.

Imbalanced classes: Area under the ROC curve (AUC) vs MCC
In this work, we compared the relative predictive perfor-
mance of four ML models in a binary classification prob-
lem using several metrics, particularly error ratios from 
the confusion matrix and MCC. Considering multiple 
performance metrics is a common approach to model 
evaluation, since it may be relevant to look not only at the 
total errors but also at the errors in the two classes. This 
is especially important when the dataset is imbalanced, 
with many examples of one class and few of the other: in 
such cases, the accuracy (Eq. 2) may provide an inflated 
and overly optimistic view of model performance [51]. 
The area under the ROC (receiver operating characteris-
tic) curve (AUC) is a widely used metric for the evalua-
tion of classification models on balanced and imbalanced 
binary prediction problems that combines the accuracy 
in both classes: AUC summarizes results over all possi-
ble classification thresholds, removes as a consequence 
the subjectivity of choosing a threshold, and makes a 
trade-off between TPR and FPR (thereby avoiding mod-
els that look deceptively good by predicting well in the 
majority class) [52]. Yet, to compare our four models 
we did not use AUC: the reason is that AUC has draw-
backs and in some cases can be a misleading measure of 
the model performance. AUC only takes into account 
TPR and FPR = 1-TNR (the accuracy measured on the 
true labels), but when data are strongly imbalanced this 
can be suboptimal: if, for instance, the number of posi-
tive examples (one class) greatly exceeds the number of 
negative examples (the other class), a sizeable change in 
the number of false negatives can lead to a small change 
in the false negative rate used in the calculations of AUC. 
This is exactly what happened in our work: the most false 
negative errors were made by RLR (FN = 2: “Bacteria” –
the “positives”, in the convention used here– misclassified 
as Archaea). Given the large number of Bacteria in our 
dataset (2546, 95.9% of the data), two Bacteria predicted 
as Archaea translates to TPR = 1-FNR = 0.996 and FPR 
= 0.048 (the two rates used by AUC). Conversely, three 
of the four errors made by RF were in the “Archaea” class 
(“negatives”, in the convention used here), which on one 
hand leads to TPR = 0.998, but on the other gives FPR = 
0.143. The AUC calculated on the results from the clas-
sification models tested in this work were 0.998 for RLR, 
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0.997 for RF, 1 for SVM, and 0.976 for NN (see S3 Fig.). 
Clearly, the results from AUC would be misleading in 
this case, giving NN, the model that gave the best results 
(only one error), a worse performance than RF, the model 
that made the most errors. This shortcoming of AUC 
under extreme conditions is known in literature [53, 54], 
together with the risk of misusing this metric [55]. Posi-
tive predictive value (PPV, a.k.a. precision), on the other 
hand, by comparing false positives to true positives rather 
than true negatives, captures the effect of the large num-
ber of negative examples on the algorithm’s performance. 
The same is true, mutatis mutandis, for the negative pre-
dictive value (NPV). From Table 1, we see that looking at 
ratios over predictions, the relatively poor performance 
of RLR in the Archaea class is highlighted (NPV = 0.909). 
This is why to evaluate our results we decided to use the 
confusion matrix and MCC: the confusion matrix gives 
the overall breakdown of errors, while MCC combines 
all four rates (TPR, TNR, PPV, NPV), thereby giving a 
complete picture of the model’s predictive ability. MCC 
values are high only if the classifier gave high values for 
all the four accuracy rates. Additionally, a high MCC 
value always corresponds to a high ROC AUC, while a 
given TPR-TNR pair can cover a broad MCC range [56]. 
Another approach to the evaluation of binary classifiers is 
represented by cost curves [57], which factor in not only 
the frequency of the classes but also the relevance (cost) 
of the different types of mistakes. This is not applicable, 
though, to problems where mistakes in the two classes 
are equivalent (they have the same cost), i.e. there is no 
more dangerous or more important class, as is the case of 
our Archaea and Bacteria genomic classification.

Error analysis
From Table 2, we see that over all four classification mod-
els 11 examples were misclassified in total, 3 bacteria (one 
twice) and 4 archaea (one four times): these are detailed 
in Table  3. In particular, the archaea Methanobrevibacter 
ruminantium M1 has been misclassified by all four models, 
with probabilities ranging from 0.87 (SVM) to 1 (NN). The 
erroneous classification of this archaea can be explained by 
its high values of tRNA topological entropy (0.8868) and 
tRNA Shannon’s entropy (1.9616), which are closer to the 
median values observed for bacteria (0.888 and 1.97) rather 
than to those of archaea (0.875 and 1.94, Fig. 2C).

Similarly, the bacteria Tautonia plasticadhaeren, mis-
classified as archaea by RLR with p(x) = 0.98 , has tRNA 
topological entropy and tRNA Shannon’s entropy of 
0.8732 and 1.9202, even lower than the median values 
found in archaea. Tautonia plasticadhaeren belongs to 
the PVC superphylum. This group includes the phyla 
Planctomycetes, Verrucomicrobia and Chlamydiae 
(founders of the PVC group), as well as Lentisphaerae, 

Kirimatiellaeota and some uncultured candidate phyla 
[58]. Results from transcriptomics confirmed the presence 
of genes associated with eukaryotic cellular functions, like 
membrane fusion, that might have enabled PVC microor-
ganisms to evolve features typical of eukaryotic cells [59]. 
Indeed, some members of this superphylum present cel-
lular features typical of archaea or eukaryotes, e.g. actin/
tubulin-based microfilaments, endoplasmic reticulum, 
Golgi apparatus, vacuoles and vesicles [60]. The presence 
of eukaryotic signatures might explain the misclassifica-
tion of a PVC bacterium as Archaea. Our findings reflect 
the complex and ever-changing evolutionary relationship 
between prokaryotes and eukaryotes [61]. Numerous phy-
logenetic analyses of archaeal and bacterial genomes, such 
as the work on Asgard archaea [62, 63], provide stronger 
evidence for the relationships among the three domains of 
life. However, it is interesting to note that our ML analysis 
identified a PVC as an outlier, which recalls earlier theo-
ries about their distinct evolutionary trajectories. These 
results add a complementary perspective to the ongoing 
exploration of these evolutionary relationships, recalling 
the hypothesis of a PVC-based eukaryogenesis process, 
where the PVC bacteria ancestor diverged by developing 
features typical of archaea and eukaryotes [59, 60]. Actu-
ally, the discovery of Archaea initially led to hypothesize 
a tree of life composed of three domains characterized by 
independent origins, with Archaea positioned closer to 
Eukarya (Fig.  4A [64]). Advancements in phylogenetics 
highlighted possible alternative scenarios, including the 
hypothesis formulated by Devos et al. [60] of a PVC-based 
single bacterial ancestral domain (Fig. 4B).

The exponential increase in the annual tally of 
sequenced microbial genomes permits to hypothesize 
a closer relationship between Archaea and Eukarya as 
compared to Bacteria, challenging conventional perspec-
tives and underscoring a complex evolutionary history 
[64–66]; yet, deciphering the relationships between life 
domains is still a difficult and partly unresolved topic.

Biomedical and biotechnological implications
Our study provides a set of genomic features and ML 
predictive models for discriminating microorganisms 
belonging to either the Bacteria or Archaea domain. 
While recognizing the value of taxonomic classification 
tools and repositories (e.g. Genome Taxonomy Data-
base (GTDB: [67]), NCBI Taxonomy [68]), which pro-
vide extensive phylogenetic analysis, our approach is 
different as it focuses on a broader comparison of dif-
ferent taxa using unique genomic features such as Char-
gaff’s score, topological entropy, and Shannon’s entropy 
across various genomic elements including total genome, 
CDS, rRNA, tRNA, and ncRNA. These features are cur-
rently not available in other software packages or public 
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repositories, which highlights the unique value of the 
present work in complementing existing phylogenetic 
resources. Furthermore, the results of this study can be 
helpful in phylogenomics, providing potential additional 
marker genes to be used in metataxonomics (e.g. tRNA, 
ncRNA genes) [69, 70]. The approach presented in this 
work, with appropriate modifications, could be geared 
towards addressing different classification problems. For 
instance, in a previous study [19] we demonstrated how 
ML algorithms and genomic data can identify novel pro-
biotics, beneficial symbionts of the human gut micro-
biome, and also discriminate them from pathogenic 
organisms. This novel methodology can open new fron-
tiers in biomedical research, enabling the monitoring of 
microbial dysbiosis involved in a wide range of disorders 
such as cancer, autoimmune and chronic intestinal dis-
eases [71]. Additional biomedically relevant classifica-
tion problems that can potentially be addressed, are for 
example the identification of beneficial bacteria, like Lac-
tobacillus [72] and Bifidobacterium [73] that can be used 
to counteract pathogens such as Helicobacter pylori [74] 
(risk factor for ulcers and gastric cancer), or Clostridi-
oides difficile (which can cause severe post-antibiotic 
infections [72]).

On the technological side, coupling ML techniques and 
a reduced set of microbial features extracted from the 
genome sequence improved the discovery rate of novel 
microorganisms with antifungal activity against plant 
pathogens [75]. ML approaches were recently adopted to 
predict the evolution of metabolic systems in bacteria [14], 
discovering evolutionary patterns which can potentially 
affect different biological fields (e.g., genome editing, path-
ogen control, synthetic biology). Tools based on ML meth-
ods applied to genomic sequences were developed for host 
prediction of viruses infecting bacteria and archaea [76], 
aiming at supporting the characterization of uncultivated 
viruses. Uncultured archaea from the environment, which 
can produce different cellular components with valuable 

applications on both green energy production and medi-
cine, can be classified with good accuracy using ML mod-
els [77]. Recently, ML approaches have been coupled with 
environmental DNA (eDNA) to explore biological diver-
sity of ecosystems and to provide novel insights about 
uncharacterized taxa [78, 79]. A future step would be the 
implementation of our approach also to not-completely 
annotated genomes, including unassembled contigs and 
scaffolds. The integration of artificial intelligence (AI) 
and microbiomics provides a substantial advancement in 
forensic science, for the identification and classification 
of microorganisms, as well as for a deeper understand-
ing of the human post-mortem microbiome [16]. Consid-
ering that most of the microbial genomes have not been 
sequenced yet, the molecular functions of several genes 
are unknown and that many proteins have not been func-
tionally annotated, the application of AI could illuminate 
the “microbial dark matter” of life [80].

Conclusion
In this study, leveraging ML techniques applied to 
genomic data, we classified microorganisms belonging 
to the life domains Bacteria and Archaea, and discerned 
unique genomic discriminators between them. The 
higher sequence entropy in bacteria may suggest their 
need for more dynamic and versatile genetic configura-
tions at the tRNA level. This is likely influenced by the 
diverse environmental niches they inhabit, demanding 
greater genomic plasticity and adaptability. Our results 
add to the existing knowledge on tRNA biology, empha-
sizing that these molecules are not mere bystanders in 
cellular dynamics. They are pivotal players, acting as 
conduits between genetic information and functional 
cellular activities. Understanding the nuanced differ-
ences in tRNA characteristics between Archaea and 
Bacteria offers a deeper insight into the biology of these 
two foundational domains of life and paves the way for 
further studies in other taxa. In addition, the analysis of 

Fig. 4 The tree of life. A The traditional three-domains tree of life and (B) the PVC-based one-domain tree of life (Devos et al., 2021)
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the classification errors observed in the present study 
reflects the complicated phylogenetic relationships 
between bacteria, archaea and eukaryotes.
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