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Abstract A combination of searches for top squark pair

production using proton–proton collision data at a center-

of-mass energy of 13 TeV at the CERN LHC, correspond-

ing to an integrated luminosity of 137 fb
−1

collected by the

CMS experiment, is presented. Signatures with at least 2

jets and large missing transverse momentum are categorized

into events with 0, 1, or 2 leptons. New results for regions

of parameter space where the kinematical properties of top

squark pair production and top quark pair production are very

similar are presented. Depending on the model, the combined

result excludes a top squark mass up to 1325 GeV for a mass-

less neutralino, and a neutralino mass up to 700 GeV for a top

squark mass of 1150 GeV. Top squarks with masses from 145

to 295 GeV, for neutralino masses from 0 to 100 GeV, with

a mass difference between the top squark and the neutralino

in a window of 30 GeV around the mass of the top quark,

are excluded for the first time with CMS data. The results

of theses searches are also interpreted in an alternative sig-

nal model of dark matter production via a spin-0 mediator in

association with a top quark pair. Upper limits are set on the

cross section for mediator particle masses of up to 420 GeV.

1 Introduction

The standard model (SM) of particle physics describes sub-

atomic phenomena with outstanding precision. However, the

SM cannot address several open questions such as the hier-

archy problem [1,2] and the absence of a suitable parti-

cle candidate for dark matter (DM) [3,4]. Supersymmetry

(SUSY) [5–12] is a well-known extension of the SM that

can resolve both of these problems by introducing a relation

between bosons and fermions. For each known particle, it

assigns a new SUSY partner that differs by a half unit of

spin. SUSY provides a natural solution to the gauge hier-

archy problem provided that the SUSY partners of the top

quark, gluon, and Higgs boson are not too massive. While

difficult to quantify precisely, values of the top squark mass

⋆
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up to the 1 TeV range are favored [1,13–15]. The lightest

SUSY particle (LSP), which is potentially massive, may be

a viable DM candidate if it is stable and electrically neutral.

This paper presents the combination of previously pub-

lished searches [16–18] for the pair production of SUSY

top quark partners in final states without leptons, with one,

or with two charged leptons, in events from proton–proton

(pp) collisions at a center-of-mass energy (
√

s) of 13 TeV at

the CERN LHC, corresponding to an integrated luminosity

of 137 fb
−1

, and referred to here as inclusive analyses. It also

includes a new analysis targeting a parameter space where the

mass difference between the top squark and the neutralino is

close to the top quark mass, whose results are combined with

the previously published studies. All analyses are performed

with the data set collected in 2016–2018 (Run 2) by CMS.

The inclusive searches are interpreted in terms of top

squark pair production with two different subsequent decays,

as described in the simplified model context [19–21]. Two

decay chains are considered, both of which lead to a signa-

ture with a neutralino (̃χ
0
1), which is the LSP, a W boson and a

bottom quark. These are the direct decay of the top squark to

a top quark and a neutralino, and the decay of the top squark

to a chargino (̃χ
±
1 ) and a bottom quark where the chargino

decays to a W boson and a neutralino. Three simplified mod-

els are used for interpretation. In the first model, both top

squarks decay according to the first decay chain; in the sec-

ond model, both decay according to the second decay chain;

in the third model, these two decays occur with equal proba-

bility. The mass of the chargino in the second model is chosen

to be an arithmetic average of the top squark mass (m t̃1
) and

the LSP mass (m
χ̃

0
1
), while in the third model the mass split-

ting between the neutralino and chargino is assumed to be

5 GeV. Typical diagrams are shown in Fig. 1. In previous

analyses by the CMS collaboration top squark masses up to

1310 GeV have been excluded [16–18,22–29]. Limits on the

production of top squark pairs with masses up to 1260 GeV

have been set by the ATLAS Collaboration [30–35].

If the mass difference between the top squark and the light-

est neutralino in the t̃1 → t̃χ
0
1 model is close to the mass of the
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Fig. 1 Diagrams of top squark pair production with further decay of

each top squark into a top quark and a neutralino (left), of each top squark

into a chargino and a neutralino, with the chargino decaying then into

a bottom quark and a W boson (center), and with a combination of the

two top squark decay scenarios (right)

top quark (mt), the kinematic distributions of the final states

of the SUSY signal are very similar to those of SM top quark

pair (tt) production processes. Therefore, this is a difficult

region in which to search for a signal. In this case, the signal

acceptance strongly depends on m t̃1
and m

χ̃
0
1
. The bound-

aries of the corridor are taken to be Δmcor = 30 GeV and

m t̃1
� 275 GeV, where Δmcor ≡ |Δm

(
t̃1, χ̃

0
1

)
− 175 GeV|

and 175 GeV is the reference value of the top quark mass.

The top quark corridor was not included in the parameter

space addressed by the previous inclusive searches by the

CMS Collaboration [16–18,22–29].

In the top quark corridor region, the signal could be

observed as an excess over the tt background prediction [36],

but the sensitivity to m
χ̃

0
1

≥ 20 GeV is limited. A dedicated

search was performed with the data set collected in 2016 by

CMS [37], that excluded the presence of top squark produc-

tion up to m t̃1
= 240 GeV for Δmcor = 0 and up to about

m t̃1
= 208 GeV for Δmcor = 7.5 GeV at 95% confidence

level. An analysis of the top quark corridor by the ATLAS

Collaboration has set exclusion limits for top squark masses

between 170 and 230 GeV [38].

This paper presents a new dedicated search in events with

an opposite-charge lepton pair that is sensitive to the top

quark corridor region. The sensitivity in the top quark corri-

dor is extended by using a larger data set and a more sophis-

ticated strategy, using a deep neural network (DNN) [39]

to exploit the differences between the signal and the SM tt

production, which is the main background.

In order to reduce the background from tt events, the miss-

ing transverse momentum ( �p
miss
T ) is used together with the

so-called “stransverse” mass of the leptons (mT2(ℓℓ)) [40],

defined as

mT2(ℓℓ) = min
�p

miss
T1 + �p

miss
T2 = �p

miss
T(

max
[
mT(p

ℓ1
T , �p

miss
T1 ), mT(p

ℓ2
T , �p

miss
T2 )

])
,

where ℓ refers to an electron or a muon, mT is the

Fig. 2 Feynman diagram of direct DM production through a scalar (φ)

or pseudoscalar (a) mediator particle, in association with a top quark

pair

transverse mass, and �p
miss
T1 and �p

miss
T2 correspond to the

estimated transverse momenta of the two invisible parti-

cles (neutrinos in the case of tt events) that are presumed

to determine the total �p
miss
T of an SM event. The transverse

mass is calculated for each lepton–neutrino pair, for different

assumptions of the neutrino transverse momentum ( �p
miss
Ti ).

The computation of mT2(ℓℓ) is done using the algorithm

discussed in Ref. [41]. A signal region is defined applying

requirements on mT2(ℓℓ) and on p
miss
T , the magnitude of

�p
miss
T . A DNN is used to optimize the sensitivity for signal

at each mass point.

We also consider the alternative model tt + DM shown

in Fig. 2, in which a DM particle is produced in association

with a pair of top quarks. In this simplified model, a scalar (φ)

or pseudoscalar (a) particle mediates the interaction between

SM quarks and a new Dirac fermion (χ ), which is the DM

candidate particle [42–46]. Under the assumption of mini-

mal flavor violation [47,48] the spin-0 mediators couple to

quarks having mass mq with SM-like Yukawa couplings pro-

portional to gqmq , where the coupling strength gq is taken

to be 1. The coupling strength gDM of the mediator to the

DM particles is also set to 1. In the case of a scalar mediator,

mixing with the SM Higgs boson is neglected. Prior searches

by the ATLAS and CMS Collaborations excluded scalar and

pseudoscalar mediator particles with a mass of up to 290 and

300 GeV, respectively [30,49–52].
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2 The CMS detector

The central feature of the CMS apparatus is a supercon-

ducting solenoid of 6 m internal diameter, providing a mag-

netic field of 3.8 T. Within the solenoid volume are a silicon

pixel and strip tracker, a lead tungstate crystal electromag-

netic calorimeter (ECAL), and a brass and scintillator hadron

calorimeter (HCAL), each composed of a barrel and two end-

cap sections. Forward calorimeters extend the pseudorapid-

ity coverage provided by the barrel and endcap detectors.

Muons are detected in gas-ionization chambers embedded in

the steel flux-return yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger

system. The first level, composed of custom hardware pro-

cessors, uses information from the calorimeters and muon

detectors to select events at a rate of around 100 kHz within

a fixed latency of about 4 µs [53]. The second level, known

as the high-level trigger, consists of a farm of processors

running a version of the full event reconstruction software

optimized for fast processing, and reduces the event rate to

around 1 kHz before data storage [54].

A more detailed description of the CMS detector, together

with a definition of the coordinate system used and the rele-

vant kinematic variables, can be found in Ref. [55].

3 Monte Carlo simulation

Monte Carlo (MC) simulation is used to design the searches,

predict or aid the prediction of the background events from

SM processes, and to provide estimations of the expected

SUSY and tt + DM signal event yields.

Several models from the simplified model spectra [19,21]

are used to simulate the SUSY signals. The helicity states of

the produced top quarks are not considered in these models,

and in the simulation the top quarks are treated as unpolar-

ized. The generation of signal samples is performed using the

MadGraph5_amc@nlo generator (MadGraph) [56,57]

(version 2.2.2 for 2016 and version 2.4.2 for 2017 and 2018)

at leading order (LO) in quantum chromodynamics (QCD)

with up to two additional partons from initial-state radiation

(ISR). To improve on the MadGraph modeling of the multi-

plicity of additional jets from ISR, MadGraph signal events

are reweighted based on the number of ISR jets (N
ISR
J ). These

weights are obtained using a tt MadGraph MC sample, so as

to make the tt jet multiplicity agree with data. The reweight-

ing factors vary between 0.92 and 0.51 for N
ISR
J between 1

and 6, respectively.

Signal samples of the tt + DM model [58] are generated

using MadGraph v2.4.2 at LO with at most one additional

parton in the matrix element calculations. Samples for medi-

ator masses of 50, 100, 200, 300, and 500 GeV have been

generated for both the scalar and

pseudoscalar models. The mass of the DM particle is set

to 1 GeV while a value of 1 is chosen for the couplings.

The SM tt process is simulated using the powheg

(v2) [59–61] generator at next-to-leading order (NLO) for

the dilepton analyses or the MadGraph generator at LO for

the analyses of zero or one lepton events. In the top quark

corridor analysis the powheg generator is used, as this anal-

ysis relies on a precise estimate of the tt background and its

associated modeling uncertainties, which are better described

in CMS by the powheg generator [36,62]. This sample is

also used to calculate the dependence of the tt acceptance on

mt and on the factorization and renormalization scales (µF,

µR, respectively). A parameter denoted as hdamp is used in

the modeling of the parton shower matrix element [63,64].

The central value and uncertainties in hdamp are discussed in

Sect. 6.4.2.

The powheg v1 [65] generator is used for the single top

quark and antiquark production in association with a W boson

(tW) at NLO. The MadGraph v2.2.2 [56] generator is used

at NLO for modeling the Drell–Yan (DY) process, the pro-

duction of W or Z bosons in association with tt events (ttW,

ttZ), and the WW, WZ, and ZZ production processes. The

production of the DY process is simulated with up to two

additional partons [66], and the FxFx scheme is used for

the matching of jets from the matrix element calculations

and from parton showers. Samples of W+jets, Z+jets events

(with Z → νν), γ+jets, and QCD multijet production are

simulated with up to four extra partons in the matrix element

calculations using the MadGraph (v2.2.2 in 2016 and v2.4.2

in 2017 and 2018) event generator at LO. Double counting

of the partons generated with MadGraph and via the parton

shower is removed using the MLM [57] matching scheme.

The NNPDF 3.0 [67] parton distribution function (PDF)

set is used for generating the samples corresponding to the

2016 period, while the NNPDF 3.1 NNLO [68] PDF is

used for the 2017 and 2018 samples. Parton showering and

hadronization are handled by pythia v8.226 (8.230) [69,

70] using the underlying event tune CUETP8M2T4 [63]

for SM tt events for the 2016 (2017, 2018) period, the

CUETP8M1 [71] tune for all other background and signal

events in the 2016 period, and the CP5 tune [64] for all back-

ground and signal events of the 2017 and 2018 periods. The

nominal top quark mass is 172.5 GeV in all the samples.

The Geant4 package [72] is used to simulate the CMS

detector for samples of the SM processes, the tt +DM signal

processes, and SUSY signal samples where m t̃1
− m

χ̃
0
1

is

close to the top quark mass. The CMS fast simulation pro-

gram [73,74] is used to simulate the detector response for

the remaining signal samples. The effect of additional inter-

actions in the same event (referred to as pileup) is accounted

for by simulating additional minimum bias interactions for

each hard scattering event. The observed distribution of the
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number of pileup interactions, which has an average of 23

and 32 collisions per bunch crossing for the 2016 period, and

for the 2017 and 2018 periods, respectively, is reproduced by

the simulation.

Simulated background events are normalized according

to the integrated luminosity and the theoretical cross section

of each process. The latter are computed at next-to-next-to-

leading order (NNLO) in QCD for DY [75], approximately

NNLO for tW [76], and NLO for WW, WZ, ZZ [77], ttW

and ttZ [78]. For the normalization of the simulated tt sam-

ple, the full NNLO plus next-to-next-to-leading logarith-

mic (NNLL) accurate calculation [79], performed with the

Top++ 2.0 program [80], is used. The PDF uncertainties

are added in quadrature to the uncertainty associated with

the strong coupling constant (αS) to obtain a tt production

cross section of 832
+20
−29 (scale) ± 35 (PDF+αS)pb assuming

mt = 172.5 GeV.

The SUSY signal events are normalized to cross sections

calculated at approximate NNLO+NNLL accuracy [81–90]

obtained from the simplified model for the direct pair pro-

duction of top squarks. The cross sections of the tt + DM

model are calculated at LO using MadGraph v2.4.2.

4 Event reconstruction

In this section, the event reconstruction common to all the

analyses presented in this paper is described.

An event may contain multiple primary vertices, corre-

sponding to multiple pp collisions occurring in the same

bunch crossing. The candidate vertex with the largest value

of summed physics-object p
2
T is taken to be the primary pp

interaction vertex. The physics objects for this determination

are the jets, clustered using the jet finding algorithm [91,92]

using tracks assigned to candidate vertices as inputs, and the

associated missing transverse momentum, taken as the neg-

ative vector sum of the transverse momentum of those jets.

The particle-flow algorithm [93] aims to reconstruct and

identify each individual particle in an event, with an opti-

mized combination of information from the various elements

of the CMS detector. The energy of photons is obtained from

the ECAL measurement. The energy of electrons is deter-

mined from a combination of the electron momentum at the

primary interaction vertex as determined by the tracker, the

energy of the corresponding ECAL cluster, and the energy

sum of all bremsstrahlung photons spatially compatible with

originating from the electron track. The energy of muons is

obtained from the curvature of the corresponding track. The

energy of charged hadrons is determined from a combination

of their momentum measured in the tracker and the

matching ECAL and HCAL energy deposits, corrected for

the response function of the calorimeters to hadronic show-

ers. Finally, the energy of neutral hadrons is obtained from

the corresponding corrected ECAL and HCAL energies.

For each event, hadronic jets are clustered from these

reconstructed particles using the infrared and collinear safe

anti-kT algorithm [91,92] with a distance parameter of 0.4.

The jet momentum is determined as the vectorial sum of all

particle momenta in the jet, and is found from simulation to

be, on average, within 5–10% of the generated momentum

over the whole pT spectrum and detector acceptance.

Additional pp interactions within the same or nearby

bunch crossings can contribute with additional tracks and

calorimetric energy depositions to the jet momentum. To mit-

igate this effect, charged particles identified as originating

from pileup vertices are discarded, and an offset correction

is applied to correct for the contribution from neutral par-

ticles [94]. Jet energy corrections are derived from simula-

tion to bring the energy of a jet measured from the detector

response to that of a particle-level jet on average. In situ mea-

surements of the momentum balance in dijet, photon+jets,

Z+jets, and multijet events are used to account for any resid-

ual differences in jet energy scale between data and simu-

lation [95]. The jet energy resolution amounts typically to

15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV [95]. Addi-

tional selection criteria are applied to each jet to remove jets

potentially dominated by anomalous contributions from var-

ious subdetector components or reconstruction failures [96].

Jets produced by the hadronization of b quarks are identified

using btagging multivariate algorithms: DeepCSV [97] for

the inclusive searches and DeepJet [98,99] for the corridor

search. The more recently developed DeepJet algorithm has

slightly better performance for some parts of the phase space

than the DeepCSV algorithm. All analyses use a medium

working point for the tagger, corresponding to a a misiden-

tification probability for jets originating from gluons or up,

down, and strange quarks of 1%, and a btagging efficiency

of about 70%. A tight working point, corresponding to a

misidentification rate of 0.1%, is also used in the analysis of

Sect. 5.2.

The missing transverse momentum vector is defined as

the negative vector pT sum of all particle-flow candidates

reconstructed in an event with jet energy corrections applied.

Events with serious p
miss
T reconstruction failures are rejected

using dedicated filters [100].

The requirements imposed to select reconstructed particle

objects specific to the separate search strategies incorporated

into the present combination are given in the following sec-

tions. In Sect. 5 we give brief summaries of the previously

published searches, and in Sect. 6 the detailed presentation

of the new top quark corridor search.
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5 Inclusive top squark searches

Three analyses targeting final states without leptons [16],

with one [17], or with two charged leptons [18] have been

previously published. The main features are briefly discussed

in this section.

5.1 Fully hadronic analysis

The search in the fully hadronic final state [16] targets events

with hadronic jets and large reconstructed p
miss
T . The SM

backgrounds with intrinsic p
miss
T generated through the lep-

tonic decay of a W boson, where the neutrino escapes detec-

tion, are significantly suppressed by rejecting events con-

taining isolated electrons or muons. The contribution from

events in which a W boson decays to a τ lepton is sup-

pressed by rejecting events containing isolated hadronically

decaying τ candidates [101,102]. A central feature of this

analysis is the deployment of advanced jet tagging algo-

rithms to identify hadronically decaying top quarks and W

bosons, with different algorithms covering both the highly

Lorentz-boosted regime and the resolved regime. For the

highly Lorentz-boosted regime, where the decay products of

the particle in quest are expected to merge into a single large-

R jet with a distance parameter of R = 0.8, the DeepAK8

algorithm [103] is used to identify these large-R jets origi-

nating from top quarks or W bosons. In the resolved regime,

where the decay products of the top quark are separately

reconstructed using jets with R = 0.4, the DeepResolved

algorithm [17] is used to tag these top quarks with interme-

diate pT, ranging from 150 to 450 GeV.

To enhance sensitivity to signal models with a compressed

mass spectrum where the mass of the top squark is close to

the sum of the masses of the LSP and the W boson, a dedi-

cated “soft b tag” algorithm developed to identify very low

pTb hadrons is also used for the event categorization [104].

The analysis includes a total of 183 nonoverlapping sig-

nal regions, defined in Ref. [16] and optimized for different

SUSY models and ranges of mass splittings between SUSY

particles. A large p
miss
T , due to the presence of a pair of neu-

tralinos in the signal model, is required.

The dominant sources of SM background with intrinsic

p
miss
T are the inclusive production of top quark pairs, W and

Z bosons, single top quark production, and the ttZ process.

The contribution from tt, W+jets, ttW, and single top quark

processes arises from events in which a W boson decays lep-

tonically to produce p
miss
T associated with an energetic neu-

trino, but the charged lepton either falls outside of the kine-

matic acceptance or fails the lepton identification criteria.

This background is collectively referred to as “lost-lepton”

background. The contributions from Z+jets and ttZ events

arise when the Z boson decays to neutrinos, resulting in large

genuine p
miss
T . Contributions from the QCD multijet process

enter the search sample in cases where severe mismeasure-

ments of jet momenta (i.e., jets passing through poorly instru-

mented regions of the detector) produce significant artificial

p
miss
T , or when neutrinos arise from leptonic decays of heavy-

flavor hadrons produced during the jet fragmentation. The

contribution of each SM background process to the search

sample is estimated through measurements of event rates in

dedicated background control samples that are translated to

predicted event counts in the corresponding search sample

with the aid of simulation. The data are found to be in good

agreement with the predicted backgrounds.

5.2 Single-lepton analysis

The search for top squark pair production in the single-lepton

final state [17] focuses on final states with exactly 1 lepton,

coming from the decay of a W boson from the decay chain

t̃1 → t̃χ
0
1 → bWχ̃

0
1 or t̃1 → b̃χ

±

1 → bWχ̃
0
1. Since the χ̃

0
1

in the final state of the signal gives rise to substantial p
miss
T

compared with SM processes, p
miss
T > 250 GeV is required.

The transverse mass computed from the lepton �pT and �p
miss
T

is required to be larger than 150 GeV to reduce the lepton+jets

background from tt and W+jets processes, for which mT has

a natural cutoff at the W boson mass (mW).

The dileptonic tt process, where one of the leptons is lost,

is the largest remaining SM background. In these lost-lepton

events mT is not bound by mW because of the additional p
miss
T

arising from the presence of a second neutrino. The modified

topness (tmod) variable, introduced in Ref. [17], is a measure

for the likelihood of a single lepton event to originate from

dileptonic tt and is used to introduce better discrimination

against this background.

The dileptonic tt background is estimated through a set of

dedicated control regions that require two isolated leptons.

The second lepton is added to p
miss
T in the calculation of

variables that depend on p
miss
T , e.g. mT and tmod, to mimic

the lost-lepton scenario.

The subleading SM background comes from the process

of W+jets production, where the W boson decays leptoni-

cally. While the single-lepton events from the W boson are

largely suppressed by the mT requirement, events where the

W boson is produced off-shell can still enter the signal

regions. The requirement of at least one b-tagged jet signif-

icantly reduces this type of background. Events are further

categorized in terms of the invariant mass of the lepton and

the b-tagged jet, which helps to further reduce the W+jets

background. The W+jets background is estimated using con-

trol regions with an inverted b-tagged jet requirement which

yields a high-purity sample of W+jets events.

Irreducible SM backgrounds arise from the ttZ and WZ

processes when the Z boson decays into a pair of neutrinos.

123



970 Page 6 of 35 Eur. Phys. J. C (2021) 81 :970

These rare backgrounds and the remaining events from the

single lepton tt process are sub-dominant contributions in

most search regions and are estimated using simulated sam-

ples.

This analysis also makes use of the same jet tagging algo-

rithms, described above in the fully hadronic channel, to

identify hadronic top quark decays in the final state. This

is motivated by the fact that none of the leading SM back-

grounds, except ttZ, has a hadronically decaying top quark

in the final state, while in some signal scenarios one hadron-

ically decaying top quark is expected. Events in the lower

p
miss
T search regions are categorized into different regions

according to the presence of at least one merged or resolved

top quark candidate.

Finally, a dedicated search strategy is used for signal sce-

narios with small mass splitting between the top squark and

the LSP to optimize sensitivity. In these compressed sce-

narios with Δm

(
t̃1, χ̃

0
1

)
close to mW or mt , p

miss
T can be

small when neutralinos are back-to-back, and therefore tmod

and the merged and resolved top quark tags are not used.

Instead, one non-b-tagged jet, which could arise from ISR

for a signal event, is required and a requirement on the prox-

imity of the lepton to the p
miss
T is introduced. In the case of

Δm

(
t̃1, χ̃

0
1

)
∼ mW at least one “soft b tag”, such as a sec-

ondary vertex, is required instead of the standard b-tagged

jets, to improve the acceptance for b quarks that do not carry

sufficient momentum to be reconstructed as a jet. In order

to enhance the sensitivity to different signal scenarios events

are categorized into 39 non-overlapping signal regions based

on the values of p
miss
T and several of the variables introduced

above.

5.3 Dilepton analysis

The search in the dilepton final state [18] is carried out

using events containing a pair of leptons (electron or muons)

with opposite charges. The invariant mass of the lepton pair

(mℓℓ) is required to be greater than 20 GeV to suppress back-

grounds with misidentified or nonprompt leptons from the

hadronization of heavy-flavor jets in multijet events. Events

with additional leptons, including candidates with looser

requirements on transverse momentum, and isolation are

rejected. Events with a same-flavor lepton pair that is consis-

tent with the SM DY production are removed by requiring

|mZ −mℓℓ| > 15 GeV, where mZ is the mass of the Z boson.

To further suppress DY and other vector boson backgrounds,

the number of jets is required to be at least two and, among

them, the number of b-tagged jets to be at least one.

The p
miss
T significance, denoted as S, is used to suppress

events where detector effects and misreconstruction of par-

ticles from pileup interactions are the main source of recon-

structed p
miss
T . The algorithm used to obtain S is described

in Ref. [100]. A requirement of S > 12 is used in order to

suppress the otherwise overwhelming DY background in the

same-flavor channel. This requirement exploits the stability

of S with respect to the pileup rate for events with no gen-

uine p
miss
T . The DY background is further reduced through

a requirement on the azimuthal angular separation between

�p
miss
T and the momentum of the leading (subleading) jet of

cos Δφ(p
miss
T , j) < 0.80 (0.96). These criteria reject a small

background of DY events with significantly mismeasured

jets.

The main variable in this analysis is mT2(ℓℓ), which

is defined in equation (1), and extensively discussed in

Ref. [23]. The key feature of the mT2(ℓℓ) observable is that it

retains a kinematic endpoint at the W boson mass for back-

ground events from the leptonic decays of two W bosons,

produced directly or through a top quark decay. Similarly, the

mT2(bℓbℓ) observable, defined with equation (1), but using

the vector sum of the leptons and the b-jets instead of leptons

alone [18], is bounded by the top quark mass if the leptons,

neutrinos and b-tagged jets originate from the decay of top

quarks. By contrast, signal events do not have the respec-

tive endpoints and are expected to populate the tails of these

distributions.

Signal regions based on mT2(ℓℓ), mT2(bℓbℓ), and S are

defined to enhance the sensitivity to different signal scenar-

ios. The regions are further divided into different categories

separately for events with a same-flavor and a different-flavor

lepton pair, to account for the different SM background com-

position. The signal regions are defined such that there is

no overlap between them, nor with the background-enriched

control regions.

Events with an opposite-charge lepton pair are abundantly

produced by the DY and tt processes. The event selection

rejects the vast majority of DY events. Therefore, the major

backgrounds from SM processes in the search regions are top

quark pair and single top events that pass the mT2(ℓℓ) thresh-

old because of severely mismeasured p
miss
T or a misidentified

lepton. In high mT2(ℓℓ) and S signal regions, ttZ events with

Z → νν are the main SM background. Remaining DY events

with large p
miss
T from mismeasurement, multiboson produc-

tion and other tt/single t processes in association with a W, a

Z or a Higgs boson (ttW, tqZ, or ttH) are sources of smaller

contributions. A detailed description of the background esti-

mation method is given in Ref. [18].

6 Top quark corridor analysis

The top quark corridor analysis is discussed in this section in

more detail, as it is presented for the first time in this paper.

In this search, events containing a dilepton pair with opposite

charge and p
miss
T are selected, and a DNN algorithm is used
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to increase the sensitivity to the signal. The full DNN score

distribution for events in the signal region is used to test the

presence of the signal.

6.1 Object and event selection

The object selection and baseline requirements of the event

selection are the same as those for the dilepton analysis sum-

marized in the first paragraph of Sect. 5.3, and are detailed

in this section. Electron and muon candidates are required

to have pT > 20 GeV and |η| < 2.4. In addition, the pT

of the leading lepton must be at least 25 GeV. The leptons

are required to be isolated by measuring their relative isola-

tion as the scalar pT sum, normalized to the lepton pT, of

the photons and of the neutral and charged hadrons within a

cone of radius ΔR =
√

(Δη)
2
+ (Δφ)

2
= 0.3 (0.4) around

the candidate electron (muon). In order to reduce the depen-

dence on the number of pileup interactions, charged hadron

candidates are included in the sum only if they are consistent

with originating from the selected primary vertex in the event.

The expected contribution from neutral hadrons due to pileup

is estimated following the method described in Ref. [105].

For an electron candidate the relative isolation requirement

depends on η (values close to 0.04) and for a muon it is

required to be smaller than 0.15.

Selected jets are required to have pT > 30 GeV and |η| <

2.4. Additionally, jets that are found within a cone of ΔR =

0.4 around the selected leptons are rejected. Jets originating

from the hadronization of bottom quarks are identified as b-

tagged jets by using the medium working point of the DeepJet

algorithm [98,99].

Simulated events are corrected to account for differences

with respect to data in the lepton reconstruction, identifi-

cation, and isolation efficiencies, as well as efficiencies in

the performance of b tagging. The values of the data-to-

simulation correction factors are parameterized as functions

of the pT and η of the object and deviate from unity by less

than 1% for leptons and less than 10% for b-tagged jets.

Selected events are classified in categories according to

the flavor of the two leading leptons (ee, eµ, µµ) and the

data-taking period (2016, 2017, 2018). Moreover, events are

required to contain at least two jets, one of which must be b

tagged. This set of requirements is referred to as the baseline

selection.

After the baseline selection, most of the background

events (about 98%) are expected to come from tt, tW, and

DY processes. To suppress these backgrounds, the signal

region is defined with the requirements p
miss
T > 50 GeV

and mT2(ℓℓ) > 80 GeV. As described in Sect. 5.3, mT2(ℓℓ)

serves to account for the multiple sources of p
miss
T in the

signal process and to exploit the differences with respect

to the background processes. For tt, tW or W+jets events

this variable’s distribution has a kinematic endpoint at the

W boson mass, because the transverse mass of each lepton–

neutrino pair corresponds to the transverse mass of the W

boson, whereas signal events have neutralinos contributing

to the total p
miss
T , so they populate larger mT2(ℓℓ).

6.2 Background estimation

Although most of the tt events are rejected by requiring

mT2(ℓℓ) > 80 GeV, it is still the dominant background con-

tribution in the signal region, where most of the events have a

large mT2(ℓℓ) value because of resolution effects when com-

puting �p
miss
T . In this region, some of the tt events contain jets

with a mismeasured energy and, in a smaller proportion, there

are events where one of the leptons is missed and a lepton that

is not from a W boson decay (nonprompt lepton) is taken as

the second lepton in the event. The effect of the jet mismea-

surements is checked in MC and an uncertainty is assigned.

Events containing nonprompt leptons are considered in a dif-

ferent background category.

The second-largest contribution is tW background, which

is approximately 4% of the total background, and is also

estimated from MC simulation. The DY events give the third-

largest background contribution in the same-flavor channel,

while their contribution is negligible in the eµ channel.

Background with nonprompt leptons is estimated from

MC simulation and validated in a control region with the

same selection as the signal region, but requiring two same-

sign leptons. These events include the contribution from jets

misidentified as leptons or with leptons coming from the

decay of a bottom quark mistakenly identified as coming

from the hard process. In the same-charge region, most of the

events come from tt with nonprompt leptons, with a smaller

contribution of events with prompt leptons from ttW and

ttZ production, and dileptonic tt with prompt leptons and a

mismeasurement of the electron charge. A reasonable agree-

ment with same-charge data, within 10–15%, is observed in

this validation region. Minor background contributions are

also estimated from MC simulation and come from dibo-

son (WW, WZ, and ZZ), ttW, and ttZ events, with a total

contribution of about 1%.

The distributions of the main observables in data, the lead-

ing lepton pT, mT2(ℓℓ), the scalar sum of the pT of all the

selected jets (HT) and p
miss
T in the signal region, are shown

in Fig. 3. The simulation and data are generally in agreement

within the uncertainties. The uncertainties are described in

Sect. 6.4.

6.3 Search strategy

In order to maximize the sensitivity and to exploit all the dif-

ferences between the signal and tt background, a multivariate
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Fig. 3 Pre-fit distributions of data and MC events in the signal region

with the signal stacked on above the background prediction for a mass

hypothesis of m t̃1
= 225 GeV and m

χ̃
0
1

= 50 GeV. Events from ttW,

ttZ, DY, nonprompt leptons, and diboson processes are grouped into the

‘Other’ category. The lower panel contains the data-to-SM prediction

ratio. The uncertainty band includes statistical, background normaliza-

tion and all systematic uncertainties described in Sect. 6.4. From upper

left to lower right: leading lepton pT, mT2(ℓℓ), HT, and p
miss
T

analysis is implemented using a DNN, trained with events

passing the baseline selection. The DNN takes into account

all the shape differences between signal and background dis-

tributions for the training variables, including correlations,

in turn achieving a strong final discriminator. The signal

model used was the direct pair production of top squarks,

for a sequence of m t̃1
mass values in the range 145–295 GeV

and Δmcor ranging from 0 to 30 GeV. The background input

to the training was simulated tt with eµ decays. To avoid

overfitting, 40% of the total tt and signal events are used for

the training and the rest for the signal extraction.

The training was done using events passing the baseline

selection in order to use the separation power of different

observables over a large range. A total of 13 variables are

selected for the training: top squark and neutralino masses

(m t̃1
, m

χ̃
0
1
), the transverse momentum of the electron–muon

pair (p
eµ

T ), the angle between the momentum of the leptons in

the transverse plane (Δφ(eµ)), the pseudorapidity difference

between the leptons (Δη(eµ)), the momenta and pseudora-

pidities of the individual leptons, mℓℓ, mT2(ℓℓ), p
miss
T , and

HT.

Figure 4 shows the normalized distributions of the most

discriminating variables for tt and signal samples for dif-

ferent values of m t̃1
and m

χ̃
0
1

, after the baseline selection.

This figure also shows that, in some variables, the shape of

the distributions does not have the same behavior for all the

signal points. The differences in p
miss
T and mT2(ℓℓ) between

signal and background are larger for signal points with large

m
χ̃

0
1
. To exploit these differences and improve the sensitiv-

ity, a parametric DNN [39] is used, in which the top squark

and neutralino masses are introduced in the training. In this

way, a specific model for each signal point training a single

DNN is achieved. For background events, m t̃1
and m

χ̃
0
1

are

randomly taken, to avoid introducing correlations, using a

probability distribution that matches the values of m t̃1
and

m
χ̃

0
1

in the signal sample.

The training was performed with TensorFlow [106]

using the Keras interface [107]. All the hyperparameters are
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Fig. 4 Normalized distributions for some of the training variables in the baseline selection. Distributions for signal points with different top squark

and neutralino masses and SM tt events are compared. From upper left to lower right: p
miss
T , mT2(eµ), ∆η(eµ), and ∆φ(eµ)

optimized with the aim of avoiding overfitting and achieving

the highest possible accuracy on the classification. The final

DNN structure is sequential: 7 hidden layers with a ReLU

activation function [107] (300, 200, 100, 100, 100, 100, 10

neurons). The output consists of two neurons with a softmax

normalization function [107], which allows one to interpret

the output numbers as probabilities. The optimizer that is

selected corresponds to Adam [108] with a learning rate of

0.0001. Out of the 40% of events used for the DNN imple-

mentation, 60% are used for training, 15% for validation, and

the rest to check that the DNN works properly and there is

no overfitting.

Figure 5 shows the DNN output for two different mass

parameters in the signal region for signal and tt background.

Since both masses are introduced in the training, the DNN

score shape is different for both signal and background. This

figure shows that the DNN score is a good discriminator

between signal and background, especially at high values of

the distribution.

The gain in sensitivity by using the DNN score instead

of using only the p
miss
T distribution increases with increasing

∆mcor and with increasing m
χ̃

0
1

for a fixed ∆mcor. For the

fully degenerate case (m t̃1
= 175 GeV, m

χ̃
0
1

= 1 GeV) the

Fig. 5 Normalized DNN score distribution comparing the signal and

the tt background in the signal region for two mass hypotheses: m
χ̃

0
1

=

50 (100) GeV and m t̃1
= 225 (275) GeV

kinematics of the SUSY process are very similar to the tt

background, so using the DNN does not help to improve the

separation. The sensitivity to that point relies completely on

the total measured cross section. For larger m t̃1
and m

χ̃
0
1
,
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even if Δmcor = 0, the DNN starts to improve the sensitivity

(as shown in Fig. 5). The score shape separation between

signal and background also starts to increase for relatively

low m t̃1
and m

χ̃
0
1

if Δmcor > 0.

The modeling of the DNN is checked in a validation region

in which the signal region selection requirements are applied,

except that p
miss
T < 50 GeV and mT2(ℓℓ) < 80 GeV are

required, and that only the eµ channel is used. This region is

orthogonal to the signal region, and the signal contamination

is expected to be small for the signal masses in which the

sensitivity relies on the DNN discriminant. This region is

highly dominated by tt and tW events and a good agreement

with data is observed. Furthermore, the DY modeling of the

DNN output distribution is also checked in a validation region

where the invariant mass of the same-flavor lepton pairs is

close to the mass of the Z boson. The DY background is

observed to be well modeled and populates preferentially

low DNN score bins.

6.4 Systematic uncertainties

Several sources of systematic uncertainty affect the back-

ground prediction and signal yields. Modeling of the trigger,

efficiencies of the lepton reconstruction, identification and

isolation, the jet energy scale and resolution, efficiencies of

the b tagging and mistag rate, and the pileup modeling have

uncertainties that are considered in the estimate of both back-

ground and signal yields. All these sources are described in

Sect. 6.4.1.

As the tt background plays an essential role and needs to

be accurately estimated, various modeling uncertainties are

taken into account. These uncertainties consider variations of

the main theoretical parameters used in the simulation and

have been studied previously by the CMS Collaboration [62,

63]. These uncertainties are explained in detail in Sect. 6.4.2.

Uncertainties in signal modeling are described in Sect. 6.4.3.

Section 6.4.4 includes other sources of uncertainty as the

background and signal normalization uncertainties.

6.4.1 Experimental uncertainties

The following experimental uncertainties are calculated for

every background and signal estimate and are propagated to

the final DNN output distribution in the signal region.

The uncertainties in the trigger, lepton identification, and

isolation efficiencies used in simulation are estimated by

varying data-to-simulation scale factors by their uncertain-

ties, which are about 1.5% for electron identification and iso-

lation efficiencies, 1% for muon identification and isolation

efficiencies, and about 1.5% for the trigger efficiency. The

uncertainties in the muon momentum scales are taken into

account by varying the momenta of the muons by their uncer-

Table 1 Summary of the contributions of the experimental uncertain-

ties in the DNN score distribution for signal and the tt background. The

values represent the relative variation in the number of expected events

across different signal models in the signal region

Source Uncertainties (%)

tt Signal

Electron efficiency 1.5

Muon efficiency 0.5

Trigger modeling 1.2

Muon energy scale 1.4

b tagging efficiency 3.0

Jet energy resolution 16.0 7.0

Jet energy scale 7.5 5.7

Unclustered energy 4.2 5.0

Pileup modeling 3.2 1.5

Size of the MC sample 3.0 25.0

tainties, taken from the muon momentum scale corrections

[109]. All these uncertainties are considered as correlated

between years.

For the b tagging efficiency and mistag rate the uncer-

tainties are determined by varying the scale factors for the

b-tagged jets and mistagged light-flavor quark and gluon jets,

according to their uncertainties, as measured in QCD multi-

jet events [97–99]. The uncertainties related to the jet energy

scale and jet energy resolution are calculated by varying these

quantities in bins of pT and η, according to the uncertainties

in the jet energy corrections, which amount to a few per-

cent [95]. The uncertainty in the effect of the jet mismea-

surements, described in Sect. 6.2, is added to the jet energy

resolution uncertainties. This uncertainty is taken as partially

correlated between years.

The uncertainty in p
miss
T from the contribution of unclus-

tered energy is evaluated based on the momentum resolu-

tion of the different particle-flow candidates, according to

their classification. Details on the procedure can be found

in Refs. [93,110,111]. The uncertainty in the modeling

of the contributions from pileup collisions is evaluated by

varying the inelastic pp cross section in the simulation by

±4.6% [112]. These uncertainties are treated as correlated

between data periods.

A summary of the experimental uncertainties in the tt

background and signal is shown in Table 1. These uncer-

tainties are also applied to the prediction of other minor

backgrounds and have an effect in both the shape and the

normalization.

6.4.2 Modeling uncertainties in the tt background

Modeling uncertainties for the tt background are calculated

by varying different theoretical parameters in the MC gener-
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Table 2 Summary of the contribution of each modeling uncertainty

source to the DNN score distribution for the tt background

Source Average for tt (%)

PDFs and αS (acceptance) 1.0

µF, µR scales (acceptance) 3.8

Initial-state radiation 0.6

Final-state radiation 3.4

Top pT 1.3

Matrix element/parton shower matching 2.0

Underlying event 1.5

Top quark mass (acceptance) 1.5

ator within their uncertainties and propagating their effect to

the final distributions.

The uncertainty in the modeling of the hard-interaction

process is assessed in the powheg sample varying up and

down µF and µR by factors of 2 and 1/2 relative to their

common nominal value of µ
2
F = µ

2
R = m

2
t + p

2
T,t . Here

pT,t denotes the pT of the top quark in the tt rest frame.

The effect of this variation is propagated to the acceptance

and efficiency, estimated using the tt powheg sample. This

uncertainty is correlated among the data-taking periods.

The uncertainty in the choice of the PDFs and in the value

of αS is determined by reweighting the sample of simu-

lated tt events according to the envelope of a PDF set of

100 NNPDF3.0 replicas [67] for 2016 and 32 PDF4LHC

replicas [113] for 2017 and 2018. The uncertainty in αS is

propagated to the acceptance by reweighting the simulated

sample by sets of weights with two variations within the

uncertainties of αS. Only the uncertainties for the 2017 and

2018 periods are taken to be correlated, while the 2016 period

is kept uncorrelated, because the PDF set used is different.

The effect of the modeling uncertainties of the initial-state

and final-state radiation is evaluated by varying the parton

shower scales (running αS) by factors of 2 and 1/2 [59]. In

addition, the impact of the matrix element and parton shower

matching, which is parameterized by the powheg generator

as hdamp = 1.58
+0.66
−0.59 mt [63,64], is calculated by varying

this parameter within the uncertainties. This uncertainty is

calculated using dedicated tt samples and is taken as corre-

lated between the years.

To model the measured underlying event the parameters

of pythia are tuned [64,70]. An uncertainty is assigned by

varying these parameters within their uncertainties using ded-

icated tt samples. The uncertainty corresponding to the 2016

period is applied for the CUETP8M2T4 tune and is kept as

uncorrelated to the uncertainty on the CP5 tune for 2017 and

2018, which is fully correlated for the two periods.

An uncertainty on the pT of the top quark is also con-

sidered to account for the known mismodeling found in the

powheg MC sample [63]. A reweighting procedure exists to

fix the mismodeling but, to avoid biasing the search, we use

unweighted distributions and assign an uncertainty from the

full difference to the weighted distributions.

For the top quark mass, 1 GeV is conservatively taken

as the uncertainty, which corresponds to twice the uncer-

tainty of the CMS measurement [114], and is also propa-

gated to the acceptance. The differences in the final yields

for each bin of the DNN score distribution between the tt

background prediction with mt = 172.5±1.0 GeV are taken

as an uncertainty, accounting for the possible bias introduced

in the choice of mt = 172.5 GeV in the MC simulation. The

uncertainty is assessed using dedicated tt samples produced

with a different mt .

The modeling uncertainties in the signal region yields for

the tt background are summarized in Table 2; they have an

effect on the shape and also on the normalization.

6.4.3 Signal modeling

The effect on the signal model of the ISR reweighting,

described in Sect. 3, is considered. Half of the deviation

from unity is taken as the systematic uncertainty in these

reweighting factors. This uncertainty is propagated to the

final distribution and taken as a shape uncertainty.

The uncertainty in the modeling of the hard interaction

in the simulated signal sample is calculated varying up and

down µF and µR by factors of 2 and 1/2 relative to their

nominal value. In addition, a 6.5% uncertainty in the signal

normalization is assigned, according to the uncertainties in

the predicted cross section of signal models in the top squark

mass range of the analysis [87].

6.4.4 Other uncertainties

The uncertainty in the overall integrated luminosity for the

combined sample, which affects the signal and background

normalization, amounts to 1.6% [115–118]. The total uncer-

tainty is split in different sources, partially correlated across

years.

A normalization uncertainty is applied to each background

and signal estimate separately. The uncertainty in the tt nor-

malization is taken from the uncertainty in the NNLO+NNLL

cross section, as quoted in Sect. 3, and additionally the top

quark mass is varied by ±1 GeV, leading to a variation of the

cross section of 6%.

For DY, dibosons, ttW, and ttZ processes a 30% normal-

ization uncertainty is assigned covering the uncertainty in

the theoretical cross section and in the measurements. For

the tWprocess an uncertainty of 12% is assigned. In the case

of the nonprompt lepton background, a normalization uncer-

tainty of 30% is also applied, covering the largest devia-
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Fig. 6 Post-fit DNN score distributions in the signal region for differ-

ent mass hypotheses of, from upper left to lower right, (m t̃1
, m

χ̃
0
1
) =

(225, 50); (275, 100); (275, 70); and (245, 100) GeV. The superim-

posed signal prediction is scaled by the post-fit signal strength and,

in the upper panels, it is also multiplied by a factor 20 for better

visibility. The post-fit uncertainty band (crosses) includes statistical,

background normalization, and all systematic uncertainties described

in Sect. 6.4. Events from ttW, ttZ, DY, nonprompt leptons, and dibo-

son processes are grouped into the ’Other’ category. The lower panel

contains the data-to-prediction ratio before the fit (dotted brown line)

and after (dots), each of them with their corresponding band of uncer-

tainties (blue band for the pre-fit and crosses band for the post-fit). The

ratio between the sum of the signal and background predictions and the

background prediction (purple line) is also shown. The masses of the

signal model correspond to the values of the DNN mass parameters in

each distribution

tions observed in the same-charge control region described

in Sect. 6.2.

Statistical uncertainties arise from the limited size of the

MC samples. They are considered for each signal and back-

ground process, in each bin of the distributions. They are

introduced through the Barlow–Beeston approach [119].

All the systematic uncertainties described in Sects. 6.4.1

and 6.4.2 are assigned to each DNN distribution bin indi-

vidually, and treated as correlated among all the bins and all

processes. The statistical uncertainties are treated as uncor-

related nuisance parameters in each bin of the DNN score

distribution. All of the systematic uncertainties are treated as

fully correlated among the different final states.

7 Results

7.1 Corridor results

The statistical interpretation is performed by testing the SM

hypothesis against the SUSY hypothesis. The data and pre-

dicted distributions for the DNN response in the signal region

are combined in the nine channels (3 data-taking period ×

3 lepton flavor combinations of the two leading leptons) in

order to maximize the sensitivity to the signal. Each of the

distributions is computed for different values of the mass

parameters and compared to the prediction for the signal

model with the corresponding masses. In Fig. 6 the DNN

score distributions for data are compared with those from the

fit. The fit function includes the background, and the signal

prediction scaled by the post-fit signal strength, for differ-

ent mass parameters. The points whose DNN distributions
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Fig. 7 Upper limit at 95% CL on the signal cross section as a function

of the top squark and neutralino masses in the top quark corridor region.

The model is excluded for all of the colored region inside the black

boundary

appear in the upper plots lie along the center line of the cor-

ridor, ∆mcor = 0, while those shown in the lower plots lie

on its boundary.

A binned profile likelihood fit of the DNN output distribu-

tion is performed, where the nuisance parameters are mod-

eled using Gaussian distributions. The correlation scheme for

different data periods is described in Sect. 6.4. No significant

excess is observed over the background prediction for any of

the distributions.

Upper limits on the production cross section of top squark

pairs are calculated at 95% confidence level (CL) using a

modified frequentist approach and the CLs criterion, imple-

mented through an asymptotic approximation [120–123].

Results are interpreted for different signals character-

ized by 145 < m t̃1
< 295 GeV and ∆mcor ≤ 30 GeV.

The observed upper limit on the signal cross section is

shown in Fig. 7. The expected and observed upper limits

are also shown for three different slices corresponding to

∆m

(
t̃1, χ̃

0
1

)
= 165, 175 and 185 GeV in Fig. 8. Both the

observed and expected cross section limits exclude the model

over the region of the search.

7.2 Combined results

A statistical combination of the results of the three searches

described in detail in Sect. 5 is performed outside the corri-

dor area in order to provide interpretations in the context of

the signal scenarios described in Sect. 1. The signal regions

of the analyses targeting different final states are designed to

be mutually exclusive. Additionally, there is no significant

overlap of any of the control regions with signal regions of a

different analysis. The overlap between control regions of the

single-lepton and dilepton analysis is found to be less than

1% and therefore considered negligible. Correlations of sys-

tematic uncertainties in the expected signal and background

yields are studied and taken into account. Uncertainties in

the jet energy scale and p
miss
T resolution, b tagging efficiency

scale factors, heavy resonance taggers, integrated luminos-

ity and background normalizations are treated as fully cor-

related. Because of differences in the lepton identification

methods and working points, as well as the triggers to select

events, the corresponding uncertainties are considered uncor-

related. Theory uncertainties in the choice of the PDF, µR and

µF and ISR modeling of the signal prediction, as well as SM

backgrounds that are estimated using simulation, are taken

to be fully correlated.

Figure 9 (upper left) shows the combination of the results

of the three searches for direct top squark pair production

for the model with t̃1 → t̃χ
0
1 decays. The analysis described

in Sect. 6 is exclusively used for extracting limits in the top

quark corridor region. No result of the other analyses is used

in this particular region of parameter space. The combined

result excludes a top squark mass of 1325 GeV for a massless

LSP, and an LSP mass of 700 GeV for a top squark mass of

1150 GeV. The expected limit of the combination is domi-

nated by the fully hadronic search for signals with large mass

splitting. In regions with smaller mass splitting between the

top squark and the LSP, searches in the zero- and single-

lepton channels have similar sensitivity.

Figure 9 (upper right) shows the equivalent limits for direct

top squark pair production for the model with t̃1 → b̃χ
+

1 →

bW
+

χ̃
0
1 decays. The mass of the chargino is set to the mean of

the masses of the top squark and the LSP. The combined result

for this scenario excludes a top squark mass of 1260 GeV for

a massless LSP and an LSP mass of 575 GeV for a top squark

mass of 1000 GeV. The combination extends the sensitivity to

both top squark and LSP masses by about 50 GeV compared

to the most sensitive individual result coming from the fully

hadronic channel.

Figure 9 (lower) shows the limits for the model with a

50% branching fraction of the top squark decays discussed

previously. In this model, the mass splitting between the neu-

tralino and chargino is assumed to be 5 GeV. Because of

the low acceptance for low-momentum leptons the dilepton

result is not interpreted in terms of this model. Top squark

masses up to 1175 GeV are excluded in this model when the

LSP is massless, and up to 1000 GeV for LSP masses up to

570 GeV.

As shown in Fig. 9 (upper left), the region of the parameter

space of the simplified SUSY models considered for inter-

pretation in this analysis, which is favored by the naturalness

paradigm, is now further constrained by the exclusion limits.
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Fig. 8 Upper limit at 95% CL on the signal cross section as a func-

tion of the top squark mass for ∆m

(
t̃1, χ̃

0
1

)
of 175 GeV (upper left),

185 GeV (upper right) and 165 GeV (lower). The green and yellow bands

represent the regions containing 68 and 95%, respectively, of the dis-

tribution of limits expected under the background-only hypothesis. The

purple dotted line indicates the approximate NNLO + NNLL production

cross section

7.3 Search for dark matter in association with top quarks

The results of the inclusive top squark searches are inter-

preted in simplified models of associated production of DM

particles with a top quark pair, shown in Fig. 2. The inter-

action of the DM particles and the top quark is mediated

by a scalar or pseudoscalar mediator particle. Assuming a

dark matter particle mass of 1 GeV, scalar and pseudoscalar

mediators with masses up to 400 and 420 GeV are excluded

at 95% CL, respectively, as shown in Fig. 10. The obtained

upper limits on σ(pp → ttχχ̃)/σtheory are independent of

the mass of the DM fermion (mχ ), as long as the media-

tor is produced on-shell [46]. Previous results are improved

by more than 100 GeV [50,51] and the sensitivity extends

beyond mφ/a > 2mt for the first time. The competing decay

channel of the mediator into a top quark pair, φ/a → tt, is

taken into account in the signal simulation and cross section

calculation.

8 Summary

Four searches for top squark pair production and their sta-

tistical combination are presented. The searches use a data

set of proton–proton collisions at a center-of-mass energy

of 13 TeV collected by the CMS detector and corresponding

to an integrated luminosity of 137 fb
−1

. A dedicated analy-

sis is presented that is sensitive to signal models where the

mass splitting between the top squark and the lightest super-

symmetric particle (LSP) is close to the top quark mass. A

deep neural network algorithm is used to separate the signal

from the top quark background using events containing an

opposite-charge dilepton pair, at least two jets, at least one

b-tagged jet, p
miss
T > 50 GeV, and stransverse mass greater

than 80 GeV. No excess of data over the standard model pre-

diction is observed, and upper limits are set at 95% confi-

dence level on the top squark production cross section. Top

123



Eur. Phys. J. C (2021) 81 :970 Page 15 of 35 970

Fig. 9 Expected and observed limits in the m t̃1
-m

χ̃
0
1

mass plane, for the

t̃1 → t̃χ
0
1 model (upper left), the t̃1 → b̃χ

+

1 → bW
+

χ̃
0
1 model (upper

right) and a model with a branching fraction of 50% for each of these

top squark decay modes (lower), assuming a mass difference between

the neutralino and chargino of 5 GeV. The color indicates the 95% CL

upper limit on the cross section at each point in the plane. The area

below the thick black curve represents the observed exclusion region at

95% CL, while the dashed red lines indicate the expected limits at 95%

CL and the region containing 68% of the distribution of limits expected

under the background-only hypothesis of the combined analyses. The

thin black lines show the effect of the theoretical uncertainties in the

signal cross section

squarks with mass from 145 to 275 GeV, for LSP mass from

0 to 100 GeV, with a mass difference between the top squarks

and LSP of up to 30 GeV deviation around the mass of the

top quark, are excluded for the first time in CMS. Previously

published searches in final states with 0, 1, or 2 leptons are

combined to extend the exclusion limits of top squarks with

masses up to 1325 GeV for a massless LSP and an LSP mass

up to 700 GeV for a top squark mass of 1150 GeV, for cer-

tain models of top squark production. In an alternative sig-

nal model of dark matter production via a spin-0 mediator in

association with a top quark pair, mediator particle masses up

to 400 and 420 GeV are excluded for scalar or pseudoscalar

mediators, respectively, assuming a dark matter particle mass

of 1 GeV.
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Fig. 10 The 95% CL expected (dashed line) and observed limits (solid
line) on σ/σtheory for a fermionic DM particle with mχ = 1 GeV, as
a function of the mediator mass for a scalar (left) and pseudoscalar
(right). The green and yellow bands represent the regions contain-

ing 68 and 95%, respectively, of the distribution of limits expected
under the background-only hypothesis. The horizontal gray line indi-
cates σ/σtheory = 1. The mediator couplings are set to gq = gDM = 1
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