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The block maxima method is one of the most popular approaches for extreme value analysis with independent
and identically distributed observations in the domain of attraction of an extreme value distribution. The lack of
a rigorous study on the Bayesian inference in this context has limited its use for statistical analysis of extremes.
In this paper we propose an empirical Bayes procedure for inference on the block maxima law and its related
quantities. We show that the posterior distributions of the tail index of the data distribution and of the return
levels (representative of future extreme episodes) are consistent and asymptotically normal. These properties guar-
antee the reliability of posterior-based inference. We also establish contraction rates of the posterior predictive
distribution, the key tool in Bayesian probabilistic forecasting. Posterior computations are readily obtained via an
efficient adaptive Metropolis-Hasting type of algorithm. Simulations show its excellent inferential performances
already with modest sample sizes. The utility of our proposal is showcased analysing extreme winds generated by
hurricanes in Southeastern US.
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1. Introduction

Extreme Value Theory (EVT) provides a mathematical foundation to analyse extreme events regardless
of the unknown underlying distribution. In this paper we focus on the univariate Block-Maxima (BM)
approach, see, e.g., Chapter 5 in [1] and Chapter 3 in [6]. Namely, we consider a dataset of n values
from an unknown distribution, which are then divided in k blocks say of m observations and from
which k maxima are computed. These, if suitably normalised, are asymptotically distributed according
to the Generalised Extreme Value (GEV) distribution for an increasing block-size, provided that some
weak conditions are satisfied, see Chapter 1 in [11]. EVT’s supreme aim is to provide the basis for the
statistical prediction of future extreme events, a vital task for risk management. In statistics, a robust
approach to prediction is through the Bayesian paradigm, which naturally takes into account model
uncertainty. Several Bayesian analyses of univariate BM and other extremes have been proposed over
time, see, e.g., Chapter 11 in [1], Chapter 9 in [6] and [8,9,27,28,36], to name a few. Nevertheless, the
potential of Bayesian inference does not seem to be fully exploited in earlier BM literature.

The first motivation is a reluctance to use asymptotic models, as the degree of accuracy of Bayesian
inference based on them is not fully understood. In real applications end users analyse BM pretend-
ing that they are exactly distributed according to a GEV distribution, the so-called vanilla approach,
ignoring that it is in fact a misspecified model for the data, since BM with fixed block-size are only
approximately GEV distributed. The vanilla approach leads to the naive conclusion that estimators of
the GEV parameters are asymptotically unbiased, and end users are inclined to believe that both a large
block-size and number of blocks are necessary to have negligible bias in practice. This is a problem
as a large data sample may not be available in many applications. In the frequentist context, recent
theory states that there is a potential asymptotic bias whenever the block-size does not increase suffi-
ciently fast along with the number of blocks, thus involving the typical applications where one worries
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to have a very large block-size or, in alternative, a large number of blocks. In fact, although basic
estimators such as the Maximum Likelihood (ML) and Probability Weighted Moments (PWM) (e.g.,
[22,23]) have been introduced decades ago, for a long time the only available asymptotic theory has
been that derived under the unrealistic vanilla framework (see, e.g., [4,15,35]; see also [1] and [11] and
the references therein for other estimators), while a proper theory that takes the model misspecification
issue into account is only recently developing, see [16–18]. We stress that standard likelihood-based
inference results under model misspecification (e.g., Theorem 5.5 in [24]) do not apply for the block
maxima method, as can be understood from the latter references. A theory for Bayesian analysis of BM
based on the misspecified GEV model is still missing.

The second motivation regards the complexity of the GEV class. Specifically, the GEV is a three
parameter (location, scale and shape) superset of distributions, comprehending three different subfam-
ilies, known as short-, light- and heavy-tailed, depending on the values of the shape parameter. The
latter, known as the tail index, describes the tail heaviness of a distribution (see Chapter 1 in [11]). No-
tably, its sign affects the GEV support, thus the GEV is an irregular class. Location and scale are fixed
parameters under the unrealistic vanilla framework, while they are block-size dependent in the more re-
alistic BM approach. Accordingly, the elicitation of a prior distribution for such parameters, capable of
taking the block-size into account, is not an easy task under a genuinely Bayesian approach. Moreover,
the expression of the posterior distribution is not available in closed-form, therefore posterior-based in-
ference relies on the generation of samples from the posterior via Markov Chain Monte Carlo (MCMC)
methods. In this regard, the dependence among parameters entails that standard MCMC procedures can
be computationally and statistically inefficient when the prior distribution is not appropriately speci-
fied. Note that in some literature other limiting distributions, like for example the Generalised Pareto,
are embedded in a wider class of distributions in order to model simultaneously the bulk and the tail
of a distribution. The resulting model is flexible enough for modelling the entire dataset and although
is still misspecified, classical Bayesian methods are not necessarily subject to the issues discussed here
(e.g., [10]).

In this article, we propose an Empirical Bayes (EB) procedure for statistical inference on the BM law
and its related quantities that circumvents the above mentioned complications. Our setting leverages on
the GEV approximation, but regarding the GEV distribution as a misspecified model for the data.
The most natural choice, in our opinion, is to define an overall prior distribution consisting of a data-
independent prior for the tail index and data-dependent prior distributions for the location and scale
parameters, overcoming the difficulties of an orthodox prior selection. Our EB method does not allow
to obtain a genuine posterior distribution since it does not follow an authentic Bayesian formulation,
but as typically happens for the latter, the former produces a proper distribution, which is shown to
comply with desirable asymptotic properties. In the sequel, we use the term “posterior” instead of
“quasi-posterior”, for simplicity. EB has a long tradition as an informal Bayesian approach that helps
in the selection of the hyperpamaters, which are estimated from the data, and gives rise to more robust
inferential procedures than those based on more discretionary prior distribution specification (see, e.g.,
Chapter 4.6 in [26]). In our context, since location and scale parameters depend on the way that the
data are blocked the benefit of EB in the prior distribution elicitation of such parameters is even more
prominent.

The first main contribution of this paper is to derive a solid theory for the proposed method to guar-
antee trustworthy inferences. We give simple conditions on the prior distribution to obtain a consistent
posterior distribution of the GEV parameters. In particular, we quantify the rate at which the posterior
distribution concentrates around the true parameter values, since this is useful to understand whether
accurate inference is achievable in practice with the available sample size. We then establish that the
posterior distribution is asymptotically close to a normal distribution. This result is particularly use-
ful to: show that posterior credible intervals have good frequentist coverage probability (close to the
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nominal confidence level); derive simple approximate credible regions for the entire parameter vector,
preventing practical complications in the derivation of such regions for multidimensional parameters.
We complete our analysis of posterior distributions extending the aforementioned theoretical proper-
ties, i.e. consistency with suitable contraction rates and asymptotic normality, to that of the so-called
return level corresponding to the return period T , namely the value that is expected to be exceeded by
the block maximum on average every T time periods (e.g., Chapter 3 in [6]). The scope of the a poste-
riori distribution of the return level is however limited to estimation activities (e.g. to produce point or
interval estimates), while prediction of extreme events, which is a far more ambitious task, goes beyond
it.

The ultimate goal of an extreme values analysis is the prediction of future extreme values, potentially
larger than those observed in the available dataset. Since the use of posterior predictive distributions
is undoubtedly one of the strengths of the Bayesian paradigm, from a forecasting view point, we focus
then on the posterior predictive distribution of the block maximum. So far, the use of posterior pre-
dictive distribution has been limited to point forecasting of the annual maximum, as far as we know
(see, e.g., [7]). In this regard, our second main contribution is to provide for the first time a general
definition of the posterior predictive distribution of a future unobserved block maximum, embedding
as a special case that of the annual maxima, with which the canonical return level point forecast is
derived. Our general formulation allows for a proper probabilistic forecasting approach to extreme
events, which, to the best of our knowledge, has not been discussed in earlier contributions. Moreover,
we establish important asymptotic results that guarantee the accuracy of posterior-predictive-based
inference.

The third main contribution of this paper is practical. Firstly, we provide simple concrete examples
of prior distributions that meet the conditions required by our theory. Secondly, we propose to adopt a
simple adaptive random-walk Metropolis-Hasting algorithm (see [21]) for the calculation of the poste-
rior distribution, since by embedding our proposed prior distributions it turns out to be computationally
and statistically efficient. By an extensive simulation study we show that the empirical posterior distri-
butions obtained via this sampling scheme comply with the theory. Most importantly, we demonstrate
that accurate inference is achievable with moderate dimensions of block-size and blocks number, real-
istically available in the vast majority of applications.

Recently, [29] have established consistency of an empirical Bayes approach to inference on multivari-
ate max-stable distributions, whose margins are all of one the following three types: reverse-Weibull,
Gumbel or Fréchet. This article, dealing with the (simpler) univariate case, aims at a greater degree of
generality, insofar as working with the GEV family allows to cover all the aforementioned distributions
simultaneously. Compared to the earlier work, we provide here a more complete picture: a finer theory
for the method, along with an algorithm and codes for its implementation. This work is accessible to a
wider scientific community, due to simplicity and popularity of the univariate case, and can be used as
a preliminary reading before approaching the multivariate theory.

Our methods and data have been incorporated into the R package ExtremeRisks, freely available
on CRAN. The paper layout is the following. Section 2 explains in detail our statistical context and
introduces our empirical Bayes method. Section 3 provides the asymptotic theory for the posterior
distribution of the parameters of the GEV family, the return levels, and for the posterior predictive
distribution. Section 4 describes practical aspects of the posterior distribution computation. The finite
sample performance of the proposed methods is examined via simulation in Section 5 and on periodic
maxima wind speed data generated by hurricanes in Southeastern US, in Section 6. The article ends
with a conclusive discussion in Section 7 and with the main proofs in 8.
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2. Background

2.1. Setting and notation

Let X1, . . . ,Xm be independent and identically distributed (iid) random variables with common (un-
known) distribution F which is assumed to be in the domain of attraction of a distribution Gγ, where
γ ∈ R is the tail index, in symbols F ∈ D(Gγ). This means that there are sequences am > 0 and bm ∈ R
such that

lim
m→∞

Fm(amx + bm) =Gγ(x), (1)

for all continuity points of Gγ, where the latter is a GEV distribution. From a purely distributional
view point GEV distribution function is of the form Gθ(x) := Gγ ((x − μ)/σ) for x ∈ Sθ , where θ :=
(γ, μ,σ)� ranges over R2 × (0,∞), while

Gγ(z) =
{

exp
(
−(1 + γz)−1/γ

+

)
, γ � 0,

exp (− exp (−z)) , γ = 0,

and Sθ is the set [μ − σ/γ,∞) or R or (−∞, μ − σ/γ], if γ > 0 or γ = 0 or γ < 0, respectively, see
Chapter 1 in [11] for details. In particular, for x ∈ R, (x)+ = max(0, x). Parameters μ and σ are the
location and scale, while γ is informative on how heavy the distribution tail is. We recall that Gθ is a
max-stable distribution, i.e. there are a suitable positive function s and a real-valued function c such
that Gt

θ(s(t)x + c(t)) = Gθ(x) for each t ≥ 1. The corresponding density is gθ(x) = gγ((x − μ)/σ)/σ,
with

gγ(z) =
{
(1 + γz)−1/γ−1

+ exp
(
−(1 + γz)−1/γ

+

)
, γ � 0,

exp (− exp (−z)) , γ = 0.
(2)

The vanilla approach simply assumes that data are exactly distributed according to Gθ , while the BM
method considered in this paper adopts a different data generating mechanism. Specifically, we consider
X1, . . . ,Xn iid random variables, n = 1,2, . . ., whose distribution satisfies F ∈ D(Gγ). We then assume
that the n variables can be split into k ≥ 1 blocks of size m ≥ 1, so that n =mk. The BM method is now
concerned with the analysis of the k block-maxima, where the i-th block maximum is given by

Mm,i =max(X(i−1)m+1, . . . ,Xim), i ∈ {1, . . . , k},

and whose distribution is Fm. By the domain of attraction condition in (1), also known as first-
order condition, the BM distribution can be approximated by the GEV distribution Gθm with θm :=
(γ,bm,am), for a large enough given block-size m. The first-order condition is equivalent to the condi-
tion

lim
m→∞

V(mx) −V(m)
a(m) =

xγ − 1
γ
=: QGγ (1 − e−1/x), ∀ x > 0, (3)

where a is a positive function, V(y) := F←(e−1/y), y > 0, QGγ (p) := G←γ (1 − p), p ∈ (0,1) and f←

denotes the generalised left-continuous inverse of a non-decreasing right-continuous function f (see
Chapter 1 in [11]), on which basis a possible selection for the norming constants is bm =V(m) and am =
a(m). Result (3) is also useful because it allows to approximate an extreme quantile of the distribution
F via

QF (p) := F←(1 − p) ≈QGθm
(pm) := bm + amQGγ (pm), (4)



2158 S.A. Padoan and S. Rizzelli

for a fixed small exceeding probability p and for a large enough m, where pm = 1 − (1 − p)m. In this
context, to study the asymptotic behaviour of some estimators (see, e.g., the estimators in Chapter 3 of
[11] and [16,17], to name a few), the following second-order condition has been introduced

lim
t→∞

V (tx)−V (t)
a(t) − xγ−1

γ

A(t) = Hγ,ρ(x), ∀ x > 0, (5)

where A(t) is a positive or negative function satisfying A(t) → 0 as t →∞ such that |A| is a regu-
larly varying function with index ρ ≤ 0, named the second-order parameter, while Hγ,ρ is a non-null
function whose expression depends on γ and ρ, see [13] and Appendix B of [11] for details. These are
useful in practice for the derivation of the non-negligible bias factor of an estimator, due to model mis-
specification. In particular, Dombry and Ferreira [17] use them for developing the asymptotic theory of
ML estimation in the frequentist context.

In this paper, we extend their results to the Bayesian paradigm. We conclude this section with some
notation used throughout the paper. For any pair of probability measures F,H over a Borel subspace of
R, with Lebesgue densities f ,h, we denote by

H ( f ,h)2 =
∫ (√

f (x) −
√

h(x)
) 2

dx

the squared Hellinger distance. For a real valued function f on R, f ′ and f ′′ denote its first and second
derivative. The operations cX and X/c, where X is either a vector or a matrix and c is a scalar, are
meant componentwise. If Xk has asymptotic distribution F, we use the symbol Xk �∼F. For d = 1,2, . . .,
B(Rd) denotes the Borel σ-field of Rd .

2.2. Inference

We specify here the inferential setting used to establish the asymptotic theory for our EB method,
presented in the next section. Assume that the sequence X1, . . . ,Xn follows a specific distribution F0 ∈
D(Gγ0 ), with γ0 > −1. Let Mm,i , i = 1, . . . , k, be the sequence of BM with joint distribution

∏k
i=1 Fm

0 (·)
and whose probability density function is denoted by f (m)0 . We assume that both m and k go to infinity
and, to avoid asymptotic results based on double limits, in the sequel we assume for simplicity that m
depends on k, say m ≡ mk , and that m→∞ as k→∞.

For a large fixed m, we assume that the family {Gk
θ , θ = (γ,bm,am)� ∈ Θ = (−1,∞) × R × (0,∞)} is

used as the misspecified statistical model for the sequence Mm,i , i = 1, . . . , k. Note that without loss of
generality here and in the sequel we use the simplified notation θ in place of θm since the parameter
space Θ does not depend on m and, accordingly, the reference statistical model is the same no matter
what the block-size is. Analogously, we also use the symbol θ0 in place of θm,0 = (γ0,bm,0,am,0)�. We
denote the likelihood function relative to the GEV misspecified class by Lk(θ) =

∏k
i=1 gθ(Mm,i), for

all θ ∈ Θ. Given the GEV log-density,

lθ(x) =
{

loggθ(x), x ∈ Sθ,
−∞, otherwise,
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for all θ ∈ Θ, where gθ is as in (2), then the log-likelihood is simply defined as lk(θ) = log Lk(θ) =∑k
i=1 lθ

(
Mm,i

)
. Accordingly, we denote by

S�k ,θ0
=

(
1
√

k

k∑
i=1

∂lθ
∂θ j

(
Mm,i

) )
j=1,2,3

�����
θ=θ0

, (6)

the score process vector of the log-likelihood evaluated at θ0.
Similarly to that in Section 4 of [29], the empirical Bayes procedure we propose is based on an

overall prior distribution on θ that has a Lebesgue density taking general form

πk(θ) = πsh(γ)πloc

(
bm − b̂m,k

âm,k

)
1

âm,k
πsc

(
am
âm

)
1

âm,k
, ∀θ ∈ Θ, (7)

where the prior distributions on the location and scale parameters are data-dependent. More precisely,
πsh, πloc and πsc are generic probability kernels for the shape γ, rescaled location bm and rescaled scale
am parameters, respectively, which are not depending on the data (see Section 3 for more details), while
the rescaling terms b̂m,k and âm,k are estimators of am and bm, respectively. The benefit of the prior
specification as in (7) is to address the problem of placing enough mass around true parameters that
change with the sample size, with a really simple form. The corresponding EB posterior distribution of
the parameters of GEV family is therefore defined by

Ψk(B) :=

∫
B

Lk(θ)πk (θ)dθ∫
Θ

Lk(θ)πk(θ)dθ
, ∀B ∈ B(Θ),

where B(Θ) is the class of Borel-subsets ofΘ. In the next section we establish the asymptotic properties
of such EB posterior distribution.

We point out that our theory benefits from the asymptotic results on the local reparametrised likeli-
hood and score processes developed by Dombry and Ferreira [17]. To save space we refer to Section 3.2
of Supplementary Material [30] for a detailed account, while below we only outline the basic idea. We
remind that Gθ̄0

with θ̄0 = (γ0,0,1)� arises as the limit distribution for suitably normalised maxima,
see (1). Accordingly, the likelihood theory in [17] is established focusing on a GEV likelihood function
defined using normalised maxima as data and the reparametrization

θ̄ = r(θ) := (γ, (bm − bm,0)/am,0, am/am,0)�, (8)

whose corresponding MLE sets then out to estimate θ̄0. Nevertheless, the likelihood defined on nor-
malised BM is linked to that of unnormalised BM and the asymptotic results can be rephrased for
estimation of θ0 and related quantities. This is especially relevant when interest goes on the far side
of inference on the tail behaviour, extending e.g. to extrapolation beyond observed levels, see Section
3.2. A similar reasoning applies to the posterior distribution, namely Ψ̄k(B) = Ψk(r−1(B)), where Ψ̄k
is a posterior using normalised BM as data. Since in applications the goal is often both to assess the
tail heaviness and to predict future extreme values, in the next section we present the asymptotic results
regarding Gθ0 and its related quantities, while postponing the technical discussion on Gθ̄0

to Section 8
and Supplementary Material [30].

Extreme value analyses are often based on the annual maximum as it allows for easily interpretable
results. According to EVT, the distribution of the block maximum can be approximated by a GEV one
as long as m is large and, as the theory in Section 3 suggests, the proposed inferential procedures are
accurate provided that the number of maxima k is neither too large (compared to the block-size) nor
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too small (to have a sufficient amount of information). What matters in practice is to select m and k that
allow to achieve good inferential results. In applications where the interest is in inferring features of
the distribution of a maximum over m∗ observations, this is still possible by starting from the analysis
of maxima with block-size m different from m∗ and exploiting max-stability. Hence, the choice of m
need not concur with m∗. A method for appropriately selecting the block-size m is proposed in Section
6 of Supplementary Material [30].

3. Theory for empirical Bayes inference

3.1. GEV distribution: Posterior asymptotic properties

In order to establish our theory we exploit the important notion of contiguity, we refer to Chapter
6 of [37] for a general discussion and to [5] for an application to approximate statistical modelling
of time series. Let F k

0 and Gk
0 be the joint probability measures of the normalised maxima (Mm,i −

β(m))/am,0, i = 1, . . . , k, and of k iid random variables with Gγ0 distribution, respectively. In particular,
β : N→ R is a suitable function satisfying condition (c) of Theorem 1 that generalises the centering
through bm,0. See also Section 3.3 (first paragraph) and Section 3.5 of Supplementary Material [30]
for further comments and technical details. Let Ek be any measurable set sequence. Then, F k

0 is said to
be contiguous with respect to Gk

0 , in symbols F k
0 	 G

k
0 , if Gk

0 (Ek ) = o(1) implies that F k
0 (Ek ) = o(1),

as k→∞.
Establishing the asymptotic behaviour of the numerator in the posterior distribution formula is es-

sential to obtain posterior contraction rates and asymptotic normality. This is done in the standard
setting where the statistical model is well specified, by showing the existence of tests for the true pa-
rameter, with type I and II error probabilities having a suitable decay rate (see, e.g., [20,37]). Thanks
to the contiguity result in Theorem 1, this method can be adapted to the nonstandard setting where the
misspecified model Gγ0 is considered in place of the unknown distribution Fm

0 .

Theorem 1. If the following conditions are valid together, they are sufficient conditions for F k
0 	 G

k
0 :

(a) V0 is twice differentiable, the following function is regularly varying of order ρ ≤ 0

tV ′′0 (t)/V
′

0 (t) − γ0 + 1 =: A0(t) → 0, t→∞; (9)

(b)
√

k A(m) → λ ∈ R as k→∞;
(c) (β(m) − V0(m))/(a(m)A0(m)) → λ′ ∈ R as k →∞ and, if λ � 0, there is an integer m′ ≥ 1 such

that

max
m≥m′

‖a(m) f (m)0 (a(m) · +β(m))/gγ0 ‖∞ <∞.

Condition (a) requires that F←0 (exp(−1/t)) is a smooth quantile function and the rate function A0,
defined as in (9) (see [12]), is essentially regularly varying. This condition is reasonably mild and is
satisfied by standard models considered in the simulation study of Section 5, see Section 1.1 of Supple-
mentary Material [30]. Note that, under assumption (a), the second order condition (5) is satisfied with
rate functions A(m) = A0(m) as in (9) and a(m) = mV ′0 (m). For this reason, assumption (a) is referred
to as second order von Mises-type condition, see also Theorem 2.3.12 in [11] for a similar, alternative
formulation. In addition, as k→∞

H ( f (m)0 ,gθ0) =O(A0(m)),
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which is a very important property to derive the asymptotic results for density estimation in Theorem
2 and for prediction in Section 3.3, see Section 3.5 of Supplementary Material [30]. Condition (b)
is the standard assumption adopted in EVT to quantify the bias amount of estimators arising from
misspecified extreme value models (e.g., [11]). Finally, condition (c) essentially requires that for a large
block-size m the approximating GEV density does not vanish faster than the true unknown one near
the endpoints. This condition, also used by [29] to study multivariate maxima, does not appear over
restrictive, we have indeed verified that standard models considered in the simulation study of Section
5 satisfy it, see Section 1.2 of Supplementary Material [30].

We next specify simple conditions on our proposed data-dependent prior πk with generic form in
(7), on the basis of which we establish our asymptotic theory.

Condition 1. The densities πsh, πloc and πsc satisfy the following conditions:

(a) πsh is a positive and continuous on (γ0 ± η), for an η > 0.
(b) there is η ∈ (0,1) and a integrable continuous function usc : R+→ R+ such that

(b.1) infx∈[1±η] πsc(x) > 0;
(b.2) supt∈(1±η) πsc(x/t) ≤ usc(x), for all x > 0.

(c) there is η ∈ (0,1) and an integrable continuous function uloc : R→ R+ such that

(c.1) infx∈[−η,+η] πloc(x) > 0;
(c.2) supt1∈(1±η),t2∈(−η,+η) πloc((x − t2)/t1) ≤ uloc(x), for all x > 0.

Furthermore, the estimators âm,k of am,0 and b̂m,k of bm,0 are such that:

(d) âm,k/am,0 = 1 + op(1) and (b̂m,k − bm,0)/am,0 = op(1), as k→∞.

Conditions (a)–(c) are satisfied by most of the usual probability density kernels. Prior densities of
the shape parameter with bounded support (e.g. uniform) are also allowed, as long as the latter contains
γ0 as an interior point. Condition (d) is satisfied by classical estimators, such as the ML in Theorem 2
of [16] and the PWM in Theorem 2.3 of [18]. We are now ready to establish posterior contraction rates.

Theorem 2. Let X1, . . . ,Xn be iid random variables with distribution F0 ∈ D(Gγ0 ), where γ0 > −1/2.
Let Mm,i , i = 1, . . . , k be the corresponding BM. Work with a prior density that is specified as in (7)
and complies with Condition 1. Work under conditions in Theorem 1(a)–(c). Let Ck be a sequence of
positive real numbers satisfying Ck →∞ and Ck = o(

√
k) as k→∞, and set εk =Ck/

√
k, k = 1,2, . . ..

Then, there exist constants c1 > 0 and c2 > 0, such that, with probability tending to 1 as k→∞:

(a) Ψk
({
θ ∈ Θ :

���(γ − γ0,
bm−bm,0

am,0
, am
am,0
− 1

) ���
1
> εk

} )
≤ e−c1C

2
k ;

(b) Ψk({θ ∈ Θ : H (gθ, f (m)0 ) > εk }) ≤ e−c2C
2
k .

A main implication of results (a) and (b) in Theorem 2 is that the posterior distribution of θ, based
on unnormalised BM, provides consistent estimation of the unknown parameter θ0 and unknown true
BM density f (m)0 , cumulating its mass in a neighbourhood of those. See Proposition 2 in Section 4.3
of Supplementary Material [30] for the explicit result on the posterior consistency. The result at point
(a) gives a refined Bayesian analog of the MLE consistency result in [16]. It is due to the fact that with
high probability the posterior of θ̄, based on normalised BM, concentrates most of his mass on a ball
centered at θ̄0, whose radius εk decreases with k, while out of the latter the residual mass decreases
(exponentially fast) as k increases see Section 8.2. From a practical view point, this allows to check
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whether accurate posterior-based inference on the original parameter θ0 is achievable with finite sam-
ples. In Section 5 we indeed assess the degree of posterior concentration via simulation showing that
with several standard statistical models accurate inference can be obtained using moderate dimensions
for m and k. We recall that the true density f (m)0 of the unnormalised BM becomes (topologically)
undistinguishable from gθ0 as m increases. Since the posterior distribution concentrates on a set of
parameters θ such that gθ is close to gθ0 (in Hellinger metric), then this allows for the concentration
result in point (b), see Section 4.1.1 in Supplementary Material [30] and Section 8.2. Its relevant theo-
retical implications for statistical prediction are highlighted in Section 3.3. Theorem 2 is also important
from a technical view point because is preparatory for establishing posterior asymptotic normality. In
the sequel, the d-variate normal distribution is denoted by N(μ,Σ), where μ and Σ are the mean and
covariance matrix, respectively. When d = 1, we write N(μ,σ2). We denote by N( · ; μ,Σ) the proba-
bility measure of such a distribution. Moreover, the Fisher information matrix of the distribution Gθ̄0
is denoted by I0, see Section 3.2 of Supplementary Material [30] and [31] for details. We recall that
Sk ,θ0 is the score vector process given in (6).

Theorem 3. Assume that the conditions of Theorem 2 are satisfied. Then, as k→∞

sup
B∈B(R3)

|Ψk({θ ∈ Θ :
√

k(r(θ) − θ̄0) ∈ B}) −N(B; I−1
0 Sk ,θ0, I

−1
0 )| = op(1).

This result establishes that the posterior distribution of θ̄, based on normalised BM, is asymptoti-
cally close to a normal distribution centred at θ̄0 + k−1/2I−1

0 Sk ,θ0 and with covariance matrix k−1I−1
0 ,

as k increases. In particular, I−1
0 Sk ,θ0 is also asymptotically normally distributed and behaves like the

normalised MLE, i.e.
√

k(r (̂θk) − θ̄0) �∼N(λ I−1
0 b, I−1

0 ) as k →∞, where b is a bias vector term, see
Section 3.2 of Supplementary Material [30] and Theorems 2.1-2.2 in [17] for details. Accordingly,
k−1/2I−1

0 Sk ,θ0 is asymptotically negligible as k→∞ and the posterior is therefore asymptotically cen-
tered at θ̄0, consistently with the previous findings. Since the reparametrization r(θ) is obtained via
the simple linear transformation in (8), the main practical implication of Theorem 3 is that also the
posterior distribution Ψk based on nonnormalised BM asymptotically resembles a normal distribution,
sayN(μk,Σk), with μk and Σk that are suitable linear transformations of the score vector and of the in-
verse Fisher information matrix, respectively. In turn, also the univariate marginal distribution Ψk , j of
the individual parameter θ(j), i.e. the j-th component of θ for j = 1,2,3, obtained from Ψk , is asymptot-
ically normal. We can show that for any α ∈ (0,1), the asymmetric (1− α)100%-credible interval given
by the (1 − α)-quantile of Ψk , j , QΨk , j (1 − α/2) and QΨk , j (α/2), respectively, with j = 1,2,3, has cov-
erage probability that asymptotically agrees with the nominal level 1 − α, whenever

√
k A0(m) = o(1),

i.e. λ = 0 and so I−1
0 Sk ,θ0 �∼N(0, I−1

0 ).

Corollary 1. For any α ∈ (0,1), let IA
k ,α
= [QΨk , j (1 − α/2); QΨk , j (α/2)], for j ∈ {1,2,3}. Under the

assumptions of Theorem 3, if λ = 0, as k→∞

P

(
{θ(j)0 ∈ IAk ,α}

)
= 1 − α + o(1), j = 1,2,3.

Theorem 3 can also be exploited to draw practical guidelines for constructing (approximate) credible
Highest Posterior Density (HPD) regions. The derivation of HPD regions is a complex task when
the expression of the posterior distribution is not known in closed-form. This is especially true for
multidimensional parameters, as pointed out, e.g., on page 262 of [33] and in the references therein.
Since Ψk , j , j = 1,2,3, is asymptotically similar to a normal distribution, say N(μk , j,σ2

k , j
), then the
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latter can be used to define HPD intervals with (1 − α)-credible level. Note that, μk , j and σ2
k , j

depend

on the true unknown parameter θ(j)0 and therefore they cannot be used for interval estimation in practice.
We can replace them by the posterior mean μ̂k , j and variance σ̂2

k , j
and then use the symmetric interval

IS
k ,α
= [μ̂k , j − zα/2σ̂k , j ; μ̂k , j + zα/2σ̂k , j], where zα/2 is the (1−α/2)-quantile of an univariate standard

normal distribution. The posterior asymptotic normality result is particularly useful when the interest
is in computing a HPD region for the true unknown parameter vector θ0. Again, since Ψk can be
approximated by N(μk,Σk), then a HPD region with (1 − α)100%-credibility for θ0 is given by the
random symmetric ellipsoid

Ek ,α = μ̂k + Σ̂
1/2
k B2

(
0,

√
χ2

3,1−α

)
, (10)

where Bp(0,r) is the closed Lp-norm-ball in R3 whose center is the origin 0 and the radius is r , χ2
3,1−α

is the (1− α)-quantile of the chi-squared distribution with 3 degrees of freedom and μ̂k and Σ̂k are the
posterior mean and covariance, since μk and Σk are not available.

3.2. Return levels: Posterior asymptotic properties

Estimation of extreme events through the BM approach can be achieved estimating the so-called return
level corresponding to a prefixed return period T (T-return level for brevity). For instance, suppose
X1, . . . ,Xm describe the random behaviour of an observational phenomenon, and the sequence Mm,i ,
i = 1, . . . , k with m = 366 is hence representative of yearly maxima. Then, the return level xT is the
value that is expected to be exceeded by the annual maximum on average once every T years. From
a probabilistic view point, it is the (1 − p)-quantile of the distribution Fm

0 , where p = 1/T is a small
exceedance probability such that p = 1 − Fm

0 (xT ). The distribution F0 is unknown in real applications,
therefore, for any p ∈ (0,1), statistical inference on the unknown quantile QFm

0
(p) can be based on the

approximation given by the GEV quantile QGθ0
(p), where in particular

QGθ (p) = bm + am
(− log(1 − p))−γ − 1

γ
. (11)

For any p ∈ (0,1), the map q : Θ→ R : θ �→QGθ (p) is continuous. Thus, the posterior distribution Ψk
on θ induces a posterior distribution on the GEV quantile q, which is given byΩk := Ψk ◦q−1. Next, we
provide a series of asymptotic results on the posterior distribution Ωk , which guarantee the reliability
of quantile-based inference.

Theorem 4. Assume that the conditions of Theorem 2 are satisfied. Let Ck be a sequence of positive
real numbers satisfying Ck →∞ and Ck = o(

√
k) as k →∞, and set ε ′

k
= am,0Ck/(

√
k |bm,0 |), k =

1,2, . . .. Then, for every p < 1− e−1, there is a constant c > 0 such that, with probability tending to 1 as
k→∞:

Ωk

(
q ∈ R : |q/QFm

0
(p) − 1| > ε ′k

)
≤ e−cC

2
k .

The result in Theorem 4 implies that for any p ∈ (0,1), the posterior distribution Ωk , based on un-
normalised maxima, is consistent and allows therefore for increasingly accurate inference on the true
unknown quantile QFm

0
(p), as k increases. Unlike the result in Theorem 2, in this one the contraction

rate of Ωk depends on the tail heaviness of F0. The lighter is the tail of F0, the narrower is the neigh-
bourhood of QFm

0
(p) on whichΩk concentrates, since am,0/bm,0 =max(γ0,0)+o(1) as k→∞. Hence,
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in practice, with short- or light-tailed distributions accurate estimate of BM quantiles are achieved with
smaller sample sizes than in the heavy-tailed case. The next result shows that the quantile posterior
distribution is also asymptotically normal.

Theorem 5. Assume that the conditions of Theorem 2 are satisfied. Assume that p < 1 − e−1 and set
�k = |bm,0 |

√
k/am,0. Then, there is a nonnull vector of constants D0 ∈ R3 and a constant v ∈ R such

that, as k→∞

sup
B∈B(R)

�����Ωk

(
q ∈ R : �k

(
q

QFm
0
(p) − 1

)
∈ B

)
−N(B;D�0 I

−1
0 Sk ,θ0 + v,D

�
0 I
−1
0 D0)

����� = op(1).

The exact expression of D0 and v and all the details are provided in Section 8.6. The main practi-
cal implication of Theorem 5 is that the posterior distribution Ωk is asymptotically close to a normal
distribution, say N(μk,σ2

k
). Once more, a benefit of posterior asymptotic normality is that it allows to

understand whether (1 − α)-credibility intervals, for α ∈ (0,1), defined using Ωk have coverage proba-
bility with asymptotic nominal level (1 − α), in the frequentist sense. In this regard, when λ = 0 then

we have v = 0 and D�0 I
−1
0 Sk ,θ0

d→N(0,D0I
−1
0 D0) as k →∞. We show that the coverage probabil-

ity of asymmetric (1 − α)100%-credible intervals defined by the 1 − α/2 and α/2 quantiles of Ωk ,
QΩk
(1 − α/2) and QΩk

(α/2), respectively, asymptotically agrees with the nominal level 1 − α.

Corollary 2. For any α ∈ (0,1), let IA
k ,α
= [QΩk

(1 − α/2); QΩk
(α/2)]. Under the assumptions of The-

orem 5, if λ = 0, as k→∞

P

(
{QFm

0
(p) ∈ IAk ,α}

)
= 1 − α + o(1).

Another benefit of the approximation N(μk,σ2
k
), for large k, is that we can derive for a small p an

approximate HPD set with (1 − α)-credibility for QFm
0
(p). This is given, likewise Section 3.1, by the

symmetric interval IS
k ,α
= [μ̂k − zα/2σ̂k ; μ̂k + zα/2σ̂k], where μ̂k and σ̂k are the posterior mean and

standard deviation of Ωk .
Finally we recall that, for a small p ∈ (0,1), the extreme quantile QF0(p) can be approximated by the

right-hand formula in (4), which is equal to that in (11) with m in front of the logarithm. The posterior
distribution Ψk induces a posterior distribution on the approximate extreme quantile QGθ0

(pm), which
is given by Ω̃k := Ψk ◦ q̃−1, where q̃ :Θ→ R : θ �→QGθ (pm), with pm as in (4). Thus, as done above for
return levels, we define an asymmetric (1−α)100%-credible interval IA

k ,α
= [QΩ̃k

(1−α/2); QΩ̃k
(α/2)],

where QΩ̃k
(p) is the (1 − p)-quantile of Ω̃k , and an approximate HPD set with (1 − α)-credibility by

the symmetric interval IS
k ,α
= [μ̂q̃;k − zα/2σ̂q̃;k ; μ̂q̃;k + zα/2σ̂q̃;k], where μ̂q̃;k and σ̂q̃;k are the mean

and standard deviation of Ω̃k .

3.3. Posterior predictive distribution

One unquestionable strength of the Bayesian paradigm is to be able to carry out prediction through
the use of the posterior predictive distribution, which incorporates uncertainty on the model. In a BM
approach, given a sequence of iid maxima Mm,i , i = 1, . . . , k, the distribution of the maximum Mm∗ of a
block of m∗ ≥ m future iid unobservable random variables can be described by the posterior predictive
distribution

Ĝ(m
∗)

k
(x) =

∫
Θ

Gm∗/m
θ (x)dΨk(θ), ∀x ∈ R, (12)
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where Gθ approximates the unknown distribution Fm
0 . Its posterior predictive density is

ĝ
(m∗)
k
(x) =

∫
Θ

(∂/∂x)Gm∗/m
θ (x)dΨk (θ), ∀x ∈ R.

For p ∈ (0,1), let Q
Ĝ
(m∗)
k

(p) be the (1 − p)-quantile of Ĝ(m
∗)

k
. Consider now the special case m∗ = m

in (12). The computation of Q
Ĝ
(m)
k

(1/T) provides an approach to point forecasting of the block max-

imum through the T-return level (see, e.g., [7]). The predictive distribution (12) allows for a more
comprehensive probabilistic forecasting approach. See, e.g., [25] for Bayesian approaches to proba-
bilistic forecasting that rely on the posterior predictive distribution. To illustrate this point, consider a
large time window W (e.g. 50 years) and set m∗ =W · m′, where m′ is the block-size corresponding
to a time unit of W (e.g. m′ = 366) and may differ from m. Beyond point forecasts (through predictive
mean, quantiles, etc.), the predictive distribution in formula (12) allows to formulate richer prediction
techniques than the point forecasting of return levels, and accounting then for far more extreme events.
An example is given by predictive regions to which the maximum level belongs in any particular time
window W , with a fixed probability. Given the vital importance of predicting extreme events, the next
result establishes key inferential properties of the posterior predictive distribution and density, not al-
ready discussed in the earlier literature, as far as we know.

Corollary 3. Work under the assumptions and with the notation in Theorem 2. Let K ⊂ (0,1) be any
compact set and, for any α ∈ (0,1), let Rk ∈ B(R) satisfy G(m

∗)
k
(Rk) = 1 − α. Then, if Ck/

√
log k→∞

and m∗ ≡m∗
k

satisfies m∗/m→ t, with t > 0, as k→∞:

(a) H
(
ĝ
(m∗)
k
, f (m

∗)
0

)
=Op(εk);

(b) supB∈B(R) |Ĝ
(m∗)
k
(B) − Fm∗

0 (B)| =Op(εk);
(c) Fm∗

0 (Rk ) = 1 − α +OP(εk)

(d) supp∈K

�����QĜ
(m∗)
k

(p)

Q
Fm∗

0
(p) − 1

����� =Op

(
εk

am∗ ,0
|bm∗ ,0 |

)
.

Points (a)–(b) guarantee that the predictive density ĝ
(m∗)
k

and distribution Ĝ(m
∗)

k
are good approxima-

tions of the density f (m
∗)

0 and distribution Fm∗
0 of a future block-maximum Mm∗ , for large enough m∗,

m and k, providing therefore a reliable basis for the probabilistic forecasting. A predictive region Rk

can be obtained by means of the quantiles of the predictive distribution in (12) or the highest predictive
density regions. Point (c) establishes that predictive regions based on the predictive distribution are
reliable for forecasting future BM. Finally, point (d) also guarantees that the return level functionals
Q

Fm∗
0
(1/T), with T ranging in a certain set and m∗ possibly different from m, can be accurately es-

timated. In particular, the predictive-based trajectory {Q
Ĝ
(m∗)
k

(1/T), Ta,≤ T ≤ Tb} is a reliable proxy

for the unknown return level path {Q
Fm∗

0
(1/T), Ta,≤ T ≤ Tb} relative to future return period interval

[Ta,Tb].

4. Computational aspects

We resort to a MCMC computational method for the empirical calculation of the posterior distribution
Ψk , due to the lack of its explicit formula. In particular, to draw samples from the posterior distribution
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Algorithm 1: Adaptive Random-Walk Metropolis-Hastings MCMC scheme
1 Initialize: Set θ(0), κ(0) and Σ(0);
2 for j = 0 to M do
3 Draw proposal θ′ ∼ φ3(θ(j), κ(j)Σ(j)).;

4 Compute acceptance probability η =min
(

Lk (θ′ |y)πk (θ′)
Lk (θ( j) |y)πk (θ( j))

, 1
)

;

5 Draw U1 ∼ U(0, 1). If η >U1 then set θ(j+1) = θ′ else set θ(j+1)
1 = θ(j);

6 Update Σ(j) according to (13) ;
7 Update κ(j) according to (14) ;

Ψk we use the Adaptive (Gaussian) random-walk Metropolis-Hastings (AMH) scheme discussed in
[19], which is a special case of the AMH class of algorithms introduced in [21].

The main elements are the likelihood function defined in Section 2.2 that is here denoted by Lk(θ |y),
where the data sample of maxima is denoted by y = (y1, . . . , yk) to simplify the notation, and the data-
dependent prior πk (θ) in (7). A prior density πk , satisfying Condition 1, is not difficult to specify. A
simple example is indeed easily given by taking in (7) the product of the following densities: πsh(γ) =
(1 −T1(−1))−1t1(γ)1(−1 < γ <∞), where tν and Tν are the Studen-t density and distribution function,
respectively, with ν degrees of freedom; πloc((bm − b̂m,k )/âm,k)/âm,k = φ((bm − b̂m,k)/âm,k)/âm,k ,
where φ is standard normal density and âm,k and b̂m,k are the ML estimators of am,0 and bm,0;
πsc(am/âm,k)/âm,k = ξ(am; 1, âm,k)/âm,k , where ξ(x;ϕ, ζ), x > 0 is a Gamma density with shape
ϕ > 0 and scale ζ > 0. Other simple choices can be readily obtained, but we hereafter focus on this
basic option.

A short summary of the algorithm is as follows. The current state of the chain θ(j) at time j is
potentially updated by the proposal θ ′ ∼ h(θ |θ(j)) = φ3(θ(j), κ(j)Σ(j)), where φd(μ,Σ) denotes a d-
dimensional Gaussian density function with mean μ and covariance matrix Σ. Following Haario, Saks-
man and Tamminen [21], the proposal covariance matrix Σ(j) is specified as

Σ(j+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + [κ(j)]2/ j)J3, j ≤ 100,

1
j − 1

j∑
s=1

(θ(s) − θ̃(j))(θ(s) − θ̃(j))� + ([κ(j)]2/ j)J3, j > 100,
(13)

where Jd is the d-dimensional identity matrix, θ̃(j) = j−1(θ(1) + · · · + θ(j)), and κ(j) > 0 is a scaling
parameter that affects the acceptance rate of proposed parameter values. According to Garthwaite, Fan
and Sisson [19] we adaptively update κ using a Robbins-Monro process so that

log κ(j+1) = log κ(j) + a(η(j) − η∗), (14)

where a = (2π)1/2 exp(ζ2
0 /2)/(2ζ0) is a steplength constant, ζ0 = −1/Φ(π∗/2), and where Φ is the uni-

variate standard Gaussian distribution function. The parameter η∗ is the desired overall sampler ac-
ceptance probability, which we specified as η∗ = 0.234, according to Gelman, Gilks and Roberts [34].
Given the symmetry of the proposal, i.e. h(θ ′|θ) = h(θ |θ ′), the acceptance probability of the update
θ(j+1) = θ ′ reduces to

η(j) =min
(

Lk(θ ′|y)πk(θ ′)
Lk(θ(j) |y)πk(θ(j))

,1
)
,
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otherwise we set θ(j+1) = θ(j) with rejection probability 1 − η(j). This algorithm is summarised in
Algorithm 1. Finally, let θ∗1, . . . ,θ

∗
N be a sample generated from the posterior Ψk , then, for any p ∈

(0,1), a sample q∗1, . . . ,q
∗
N from quantile posterior Ωk is obtained by exploiting the relation between

θ and q given in (11). Moreover an approximation of the posterior predictive distribution Ĝ(m
∗)

k
can

be obtained via simulation by considering the Monte Carlo counterpart of formula (12), i.e. Ĝ(m
∗)

k
≈

N−1 ∑N
i=1 Gm∗/m

θ∗i
(x).

5. Simulation study

In this section, we assess for finite sample sizes the behaviour of the posterior distributions Ψk , Ωk

and Ω̃k , computed via the MCMC method described in Section 4, and the performance of the resulting
inference. We consider nine distributions: three in the domain of attraction of the Fréchet, Gumbel
and reverse-Weibull families, respectively. To save space, we focus the discussion on the Half-Cauchy,
Gamma with both shape and rate parameters equal to 2 and Power-law distribution F(x) = 1 − K(x∗ −
x)α, where x∗ = 1, α = 3 and K = 1/9 are the end-point of the distribution, the shape parameter and a
positive constant, respectively. With these models the tail index is γ = 1,0,−1/3. The simulation results
for the other six models are discussed in Section 2.2. of Supplementary Material [30].

Our theory in Section 3 holds as long as the conditions in Theorem 1 are satisfied, in particular,
as long as its condition (b) is fulfilled. The function |A0 | is regularly varying of order ρ ≤ 0 and it
asymptotically behaves as Cmρ for most of the distributions in the Fréchet domain of attraction, where
C � 0 and ρ < 0. With the unit-Fréchet, standard-Pareto and Half-Cauchy distributions ρ = −∞,−1,−2
and condition (b) is satisfied setting k = [m−2ρ(log(m))−α] for some α ∈ R, where [x] denotes the
closest integer number to x, for any x ∈ R. However, with the other domains of attraction different
formulas for k may be needed. To avoid using different ways to select k depending on the distribution
taken into account, we simply put k = [m/

√
log(m)] for all the models and doing so condition (b) is

always satisfied except for the Gamma model. In this way, we are able to verify whether the posterior
distributions behaviour and the corresponding inference agree with theory of Section 3 but also if the
results are still satisfactory when the theoretical conditions are violated. We consider the block-sizes
m = 40,60,109,234 which entail the numbers of blocks k = 20,30,50,100 and sample sizes n = km =
800,1800,5450,23400. For each model we perform the following steps. In the first one, we simulate n
observations and derive on their basis k maxima. We run the AMH algorithm described in Section 4
generating 50,000 values of which we retain N = 20,000 realizations as a sample from the posterior
Ψk , after a burn-in period of 30,000. With this setting, the generation of a posterior sample is fast, it
takes 42 seconds using a MacBook Prowith M1 CPU and 8 GB of RAM. A diagnostic study to verify
the convergence of the produced Markov chains is reported in Section 2.1 of Supplementary Material
[30]. In the second step, we compute the following summaries. The uniform-norms

γ̃k = ‖γ∗k − γ0‖∞, b̃k = ‖(b∗k − bm,0)/am,0‖∞, ãk = ‖(a∗k/am,0 − 1)‖∞, (15)

are calculated first, where γ∗
k
= (γ∗

k ,1, . . . ,γ
∗
k ,N
)�, b∗k = (b

∗
k ,1, . . . ,b

∗
k ,N
)� and a∗

k
= (a∗

k ,1, . . . ,a
∗
k ,N
)� are

the values sampled fromΨk , (γ0,bm,0,am,0) are the true parameters with am,0 =mV ′0 (m), bm,0 =V0(m).
We compute the proportion of times that the Manhattan-norm of posterior draw exceeds the radius εk ,
i.e.

p̃N =
1
N

N∑
i=1

1

(�����
(
γ∗k ,i − γ0,

b∗
k ,i
− bm,0

am,0
,

a∗
k ,i

am,0
− 1

) �����
1

> εk

)
, (16)
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Figure 1: The box-plots report the Monte Carlo distribution of the statistics (uniform-norms of the
rescaled posterior draws) defined in formula (15) for the Half-Cauchy, Gamma and Power-law distri-
butions and for increasing value of k.

where εk = Ck/
√

k and Ck = o(
√

k) according to Theorem 2. We set Ck = log2(k) obtaining εk ≈ 2 for
all the k values (see Table 1), which is a fairly small radius for all the considered models. In the third
step, we compute: asymmetric- and symmetric-95%-credibility intervals for γ0, am,0 and bm,0 (see
Section 3.1); symmetric-95%-credibility region for θ0 (see (10)); asymmetric- and symmetric-95%-
credibility intervals for the return level QFm

0
(1/100) (see Section 3.2) and finally asymmetric- and

symmetric-95%-credibility intervals for the extreme quantile QF0(0.001) (see Section 3.2).
We repeat these three steps M = 1000 times and with the obtained results we assess the following

concentration properties of posterior distributions and coverage properties of posterior credible sets. A
sufficient condition for the posterior distribution to be consistent is that the theoretical counterpart of
the summaries in (15) converges to zero. Figure 1 reports via box-plots the Monte Carlo distribution
of such summaries obtained with different models, along the rows, and different k values, along the
columns. In all the cases the right end point of the distribution is close to zero and the spread of
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Half-Cauchy Gamma Power-law
k Ck εk R(k) bm,0 am,0 Pk bm,0 am,0 Pk bm,0 am,0 Pk

20 8.97 2.01 0.447 25.8 25.5 94.0 2.8 0.58 99.9 4.4 0.20 100
30 11.57 2.11 0.262 38.5 38.2 95.4 3.0 0.58 100 4.5 0.18 100
50 15.30 2.16 0.096 69.7 69.4 96.6 3.4 0.57 100 4.6 0.14 100
100 21.21 2.12 0.011 149.3 149.0 98.3 4.4 0.56 100 4.8 0.08 100

Table 1. Behaviour of the empirical posterior distribution of θ for increasing k. The seventh, tenth and thirteenth
columns report the percentage in (17) computed with the Student-t, Gamma and Power-law models and different

values of k and where R(k) = e−0.01C2
k .

the distribution is small already with k = 20 (although some outliers are present). As k increases, the
range of the distributions shrinks considerably, becoming a very small interval in proximity to zero
in the case k = 100. This suggests that the posterior concentration property theoretically envisaged by
consistency seems to hold in practice. Similar results are obtained also with other models, see Section
2.2 of Supplementary Material [30]. According to Theorem 2, the posterior distribution places out of
B1(0, εk ) (the L1-norm-ball with centre 0 and radius εk) an amount of mass that goes to zero at the rate
R(k) := e−cC

2
k , for a certain c > 0. The posterior mass outside of B1(0, εk ) is smaller than R(k), with

probability tending one. For practical purposes, in order to have an insight on the concentration speed
of Ψk around θ0, we compute the percentage of times that the proportion defined in (16) is smaller than
R(k), where for the latter term we have set c = 0.01, namely

Pk =
1
M

M∑
i=1

1(p̃N ,i < R(k)) · 100%, (17)

where p̃N ,i is the ith Monte Carlo realisation of the proportion in (16). Table 1 collects the results.
Considering the Half-Cauchy result, with k = 20, the posterior distribution places more than approxi-
mately 45% of its mass out of B1(0,2) only 6% of the time, and so on decreasing up to the point that, in
the case k = 100, only 1.7% of the times more than 1% of the posterior mass lies out of B1(0,2). Even
better results are obtained with the Gamma and Power-law models. Similar results are obtained with
the other six models, see Section 2.2 of Supplementary Material [30]. These results also suggest that
the posterior distribution concentrates around θ0 already with k = 20 and it rapidly increases its con-
centration degree as k increases. From the practical point of view, accurate posterior-based inference
is achievable with inexpensive values of m and k.

Finally we study the Monte Carlo coverage probability of the credible regions and intervals discussed
in Sections 3.1 and 3.2. The results for the different models and dimensions of k and m are reported
along the first two raws of each section between the dashed horizontal lines of Table 2. In the third row,
the results obtained with frequentist MLE-based confidence intervals and regions are also reported
in italics. Note that the confidence intervals for the return level and extreme quantile are obtained
by applying a type of delta method. When the column Type reports the letter S and A the coverage
probabilities of symmetric intervals and regions and asymmetric intervals are reported.

Overall, all the coverage probabilities are close to the 95% nominal level already with k = 20 and
then they get even closer as k increases. This finding is consistent with the previous outcome, as ex-
pected. The coverage of symmetric- and asymmetric-95% credible intervals is almost the same when
estimating the parameters γ0, am,0, bm,0. While, asymmetric intervals outperform the symmetric ones
when estimating QFm

0
(0.01) and QF0 (0.001). The smallest coverages (although still good) are obtained
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Coverage probability

Model k m Type γ0 bm,0 am,0 θ0 QFm
0
(0.01) QF0 (0.001)

Half-Cauchy 20 40 S 94.6 93.7 93.7 92.4 97.3 96.4
A 94.9 92.1 91.8 – 93.7 93.4
S 89.6 88.1 87.7 45.4 82.3 83.4

30 60 S 93.7 95.9 95.4 93.0 95.5 93.5
A 94.4 94.1 93.3 – 94.0 93.8
S 90.8 91.2 88.3 49.1 81.8 83.3

50 109 S 94.5 95.4 95.3 94.2 95.4 94.3
A 94.8 95.0 93.8 – 94.2 94.0
S 91.9 92.9 91.6 52.7 84.0 85.1

100 234 S 94.9 94.3 95.7 94.7 95.1 96.0
A 95.1 94.2 94.4 – 94.9 94.2
S 94.4 95.6 94.8 54.6 87.0 90.9

Gamma 20 40 S 97.0 93.8 96.6 93.1 96.5 96.2
A 96.4 94.5 95.9 – 95.3 93.8
S 80.7 91.2 88.6 67.3 84.0 90.4

30 60 S 96.3 94.8 96.2 93.7 96.3 96.8
A 96.5 94.9 94.9 – 94.4 93.7
S 83.5 91.9 90.7 73.7 89.6 94.8

50 109 S 95.3 95.9 95.5 93.9 96.0 96.3
A 95.0 96.2 95.4 – 94.2 94.4
S 86.8 93.4 93.0 78.3 92.6 97.8

100 234 S 94.9 95.7 95.1 94.3 94.9 94.9
A 94.4 94.6 95.0 – 94.7 94.8
S 91.3 93.3 92.6 81.9 95.0 98.1

Power-law 20 40 S 95.2 94.0 95.2 93.0 97.3 97.5
A 94.3 94.6 95.3 – 94.4 94.1
S 67.8 91.0 88.5 42.4 90.7 94.7

30 60 S 95.5 94.2 96.1 93.8 96.6 96.3
A 95.3 94.3 95.2 – 94.2 94.8
S 74.4 92.5 91.2 45.8 94.6 97.1

50 109 S 95.6 94.3 95.1 94.1 95.6 95.2
A 95.8 94.5 95.4 – 95.6 95.7
S 81.1 93.8 92.6 55.7 98.4 99.5

100 234 S 94.4 94.6 94.7 94.5 95.4 94.3
A 94.6 95.1 94.7 – 94.3 94.4
S 84.9 95.0 92.6 55.5 99.3 98.7

Table 2. Coverage probability of Symmetric (S) and Asymmetric (A) 95%-credible intervals for γ0, bm,0, am,0,
QFm

0
(0.01) and QF0 (0.001) and S-95%-credible region for θ0, obtained with the Half-Cauchy, Gamma and Power-

law models and different values of m and k. Analogous results obtained with the frequentist MLE-based confidence
intervals and regions are reported in italics.
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with the credible region ES
k ,0.05, but this is expected as estimating a three-dimensional parameter is

harder than estimating a scalar one. Similar results are obtained with the other six models, see Section
2.2 of Supplementary Material [30]. The take home message is that in practice the good properties
suggested by our asymptotic theory can be observed even when m and k are modest in size. The good
news is that our Empirical Bayes method considerably outperforms the MLE approach. Finally, in Sec-
tion 2.3 of Supplementary Material [30] we have compared the performance of our Empirical Bayes
approach with that of a posterior distribution obtained with standard non-data-dependent prior.

6. Atlantic basin hurricanes wind speed analysis

The effects of wind speed and heavy rainfall generated by hurricanes are catastrophic on the affected
areas. Such catastrophes have been experienced for example with Hurricane Katrina in August 2005. It
caused 1,836 deaths and approximately $125 billion in damage in the US, where the Maximum Wind
Speed (MWS) reached a peak of about 280 km/h. See National Hurricane Center (NHC)’s Tropical
Cyclone Reports at https://www.nhc.noaa.gov/data/tcr/ for similar episodes.

Understanding how frequently extreme wind speeds occur is important for planning actions that
can mitigate a hurricane’s devastating consequences. To this aim, we consider the MWS generated by
hurricanes in the Atlantic basin from 1851 to 2021 that have been collected in the Revised Atlantic
Hurricane Database developed by the NHC. To better assess the risk associated with hurricanes that
hit inland, we focus on the restricted area of the southeast of US, see the top-left panel of Figure 2.
The circles show the locations where hurricanes where recorded and the circles size highlights the
wind speed intensity, which ranges between approximately 102 km/h and 296 km/h. We then focus
on the data of the specific location marked by the cross, which was hit by a category 2 hurricane in
1985, named Kate, whose highest wind speed recorded there was approximately 171 km/h. We recall
that Saffir-Simpson Hurricane Wind Scale classifies hurricane’s wind speed as category: 1 if between
119-153 km/h; 2 if between 154-177 km/h; 3 if between 178-208 km/h; 4 if between 209-251 km/h
and 5 if higher than 252 km/h, see https://www.nhc.noaa.gov/aboutsshws.php for details. Alternatively,
one may want to consider data simultaneously on multiple sites, but unfortunately the empirical Bayes
method for multivariate extremes proposed by Padoan and Rizzelli [29] is not yet mature enough to be
used in practice.

Applying the selection criterion described in Section 5 of Supplementary Material [30] to the se-
quence of daily wind speed maxima from 1976 to 2021, we obtained that a block-size m = 122, resulting
into a number of blocks k = 120, is a suitable choice. We apply our empirical Bayes procedure to the
block maxima computing the posterior distribution of the GEV parameters via the algorithm described
in Section 4. All the details are provided in Section 6 of Supplementary Material [30]. The posterior
density of the location, scale parameters and tail index are reported from the bottom-left to bottom-
right plots of Figure 2. Their shape is similar to that of a normal distribution, with that of the tail index
that is slightly asymmetric on the right. The Posterior Mean (PM) and Asymmetric- and Symmetric-
95%-Credibility Intervals (A- and S-95%-CI) are reported in the second, third and fourth columns of
the upper part of Table 3 respectively. The former interval supports the hypothesis that the distribu-
tion of block maximum is heavy-tailed but with finite first four moments, while according to latter one
a light-tailed distribution is also plausible. The forecast of extreme wind speeds is performed in two
different ways: using our posterior predictive distribution of a block maximum associated to a certain
time window W (see Section 3.3) and a point forecast of the annual return level, that is obtained as
the quantile of the annual posterior predictive distribution, which is in turn a special case of our more
general posterior predictive distribution. The middle-top panel of Figure 2 displays the posterior pre-
dictive distribution of the 5-, 15-, 25-, and 50-years maximum. The posterior distributions of the 15-,

https://www.nhc.noaa.gov/data/tcr/
https://www.nhc.noaa.gov/aboutsshws.php
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Figure 2: Southeast US map with location and intensities of the recorded hurricane wind speeds
from 1851 to 2021 (top-left). Posterior predictive distributions of the largest wind speed over 5-, 15-
, 25- and 50-years time window (top-middle). T-return level posterior mean and asymmetric- and
symmetric-95% credibility intervals and T-return level point forecast for T = 3W and posterior pre-
dictive median and asymmetric-95% predictive intervals of the largest wind speed over W-years time
window with W ∈ [2, . . . ,1000] (top-right). Posterior and prior distributions of the location, and scale
parameters and tail index (form bottom-left to bottom-right). Squares are the posterior means. Circles
and diamonds are the asymmetric- and symmetric-95% credibility intervals

45-, 75- and 150-return levels associated to the four-month maximum are also computed for compari-
son purposes, but are reported in Figure 10 of Supplementary Material [30] to save space. According
to the latter distributions a return level of intensity equal to that recorded with hurricane Kate is im-
plausible, while in accordance with the former distributions we have that, for instance, the 50-years
maximum is expected to exceed such a level with a chance of approximately 11%. The bottom part of
Table 3 reports the PM and the A- and S-95%-CI relative to the posterior distributions of the quaert-
erly return level (with return periods converted in years) and the Posterior Predictive Median (PPM)
and Asymmetric-95%-Predictive Intervals (A-95%-PI) relative to the posterior predictive distributions.
The latter intervals are remarkably greater than the former ones entailing that, for example, on the one
hand it’s hardly credible that within each quarter the largest wind speed exceeds an intensity as that
generated by a category 1 hurricane with high chance (comparable to 1 − 1/15), on the other hand it’s
reasonably likely (approximately 12%) that such an intensity is exceeded by the 5-years largest wind
speed. Finally, the top-right panel of Figure 2 displays the PM and relative A- and S-95%-CI and the
T-return level point forecast for T = 3 ·W and the PPM and relative A-95%-PI for a time window of
W ∈ [2, . . . ,1000] years. Once again the A-95%-PI are much larger than A- and S-95%-CI uniformly
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Table 3. Posterior Mean (PM) and Asymmetric and Symmetric posterior 95%-Credibility Intervals (A- and S-
95%-CI) for parameters and return levels that are also estimated by Posterior Predictive Median (PPM) and Asym-
metric 95%-Predictive Intervals (A-95%-PI)

Parameter PM A-95%-CI S-95%-CI PPM A-95%-PI

Location 55.5 [53.7, 57.6] [ 53.6, 57.5]
Scale 10.1 [ 8.8, 11.7] [ 8.6, 11.6]
Tail index 0.10 [0.01, 0.23] [-0.01, 0.22]

5-years RL 85.9 [ 80.2, 94.12] [ 78.8, 92.9] 92.0 [70.5, 153.5]
10-years RL 102.7 [ 92.5, 119.3] [89.0, 116.5] 102.0 [78.5, 171.0]
25-years RL 111.1 [ 97.9, 132.8] [93.0, 129.1] 116.0 [89.5, 198.0]
50-years RL 123.1 [105.2, 153.9] [97.8, 148.4] 127.5 [98.0, 221.5]

over the entire time range. Concluding, when assessing extreme wind speeds, probabilistic forecasting
turns out to be a more precautionary approach than the canonical method, issuing point forecasts of
the form of return level estimates based on the posterior or the predictive distribution. Its use is then
advisable to achieve richer extreme values analyses.

7. Discussion

We discuss empirical Bayes inference for the block maxima approach from the theoretical and practical
perspectives. The proposed inferential method relies on the realistic assumption that block maxima are
not exactly distributed according to the GEV distribution, which best describes the practical situations
faced in applications. The accuracy of the inference based on our posterior distributions is guaranteed
by large-sample theory. An empirical study reveals that it is satisfactory even with moderate sample
sizes.

We defer to future work considerations on an even more general framework that allows to handle
nonstationary block maxima and additional information, e.g. using covariates. These extensions are by
far the most interesting for applications, but a still open challenge is to derive an equally solid theory
also in this case. Another important way of studying extremes is through the Peaks over a Threshold
approach, which is very popular in real analyses of univariate extreme events. A reformulation of our
empirical Bayes method in this context would therefore be of considerable practical utility. Whether
the posterior distributions of this alternative method allows for equally good performance needs to be
investigated.

8. Main proofs

Here we make extensive use of the notation introduced in Sections 3.2–3.4 of Supplementary Ma-
terial [30], to which we refer the reader for a comprehensive list of symbols. In particular, we de-
note by �k(δ) := log L̄k(θ̄0 + δ/

√
k) the local log likelihood process, where δ ∈

√
k(Θ − θ̄0) and

L̄k(θ̄) =
∏k

i=1 gθ̄((Mm,i − bm,0)/am,0)) is the likelihood function obtained with reparametrisation r
and rescaled block maxima. We also make use of the alternative reparametrisation

r̃ :Θ �→Θ : θ �→ (γ,(bm − β(m)/am,0),am/am,0)� =: θ̃
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and corrsponding posterior probability measure Ψ̃k (·) = Ψk ◦ r̃−1(·) and likelihood function L̃k (̃θ) =∏k
i=1 gθ̃((Mm,i − β(m))/am,0)). Finally, we denote by Qk the k-fold product measure pertaining to Fm

0 ,
i.e. the probability measure of the joint distribution of BM Mm,1, . . . ,Mm,k .

8.1. Proof of Theorem 1

If condition (b) is satisfied with λ = 0, the result in the statement of Theorem 1 follows from Lemma
3 of Supplementary Material [30]. If instead λ � 0, condition (c) allows to apply Lemmas 1 and 2 of
Supplementary Material [30], leading to the same final result.

8.2. Proof of Theorem 2

First observe that by conditions (b)-(c) of Theorem 1 we have (β(m) − bm,0)/am,0 = O(1/
√

k). Thus,
there exists a constant a > 0 such that, by triangular inequality,

Ψk

({
θ ∈ Θ :

����γ − γ0,
bm − bm,0

am
,

am
am,0

− 1
����

1
> εk

})
≤ Ψ̃k(Uc

aεk
).

For ε > 0 and k large enough, Ψ̃k(Uc
aεk
) = Ψ̃k (Uε \Uaεk ) + Ψ̃k(Uc

ε ). By Lemma 22 of Supplementary
Material [30], as k→∞, we have Ψ̃k(Uc

ε ) = op(e−ck), with c > 0. Moreover, by similar arguments to
those in formula (27) of Supplementary Material [30], Condition 1 and Lemma 21 of Supplementary
Material [30] lead to conclude that, if ε is small enough, as k→∞

Ψ̃k(Uε \Uaεk ) ≤ φ̃k +Op(k3/2)(1 − φ̃k)
∫
Uε \Uaεk

L̃k (̃θ)
L̃k (̃θ0)

πsh(γ)uloc(μ)usc(σ)dθ̃,

with probability tending to 1, where

φ̃k ≡ φk((Mm,i − β(m))/am,0,1 ≤ i ≤ k)

and φk(y), y ∈ Rk , is a test functional defined as in Lemma 20 of Supplementary Material [30], with
aCk in place of Ck . Accordingly, the contiguity relation established in Theorem 1 allows to deduce that
φ̃k = op(e−c

′C2
k ) and

k3/2(1 − φ̃k)
∫
Uc

ε

L̃k (̃θ)
L̃k (̃θ0)

πsh(γ)uloc(μ)usc(σ)dθ̃ = op(e−c
′′C2

k ),

for some positive constants c′,c′′. The result in point (a) of Theorem 2 now follows. The result in point
(b) of Theorem 2 follows from an application of Lemmas 2 and 4 of Supplementary Material [30].

8.3. Proof of Theorem 3

The result is established following the main arguments of the proofs of Theorem 10.1 in [37] and
Theorem 2.1 in [2], with a few adaptations. Thus, we only highlight the main changes. The proof
consists of three parts: preliminaries, intermediate result and conclusion.
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8.3.1. Preliminaries

Let δk ,0 = I−1
0 Sk ,θ0 and Φ̄k :=N( · ; θ0 + δk ,0/

√
k; k−1I−1

0 ). For all the sets of the form Δk =
√

k(Θk −
θ̄0), with Θk ∈ B(Θ) of positive Lebesgue measure, define Ψ̄k (Δk) := Ψ̄k(θ̄0 + Δk/

√
k) and Φ̄k (Δk) =

Φ̄k(θ̄0 + Δk/
√

k). Note that Ψ̄k and Φk are the probability measures corresponding to the empirical
Bayes posterior distribution of the local parameter δ and of the randomly located Gaussian distribution
with mean vector δk ,0 and covariance matrix I−1

0 , respectively. Define the event Zk := {Ψ̄k(Θk ) > 0}
and

Φ̄
Δk
k
(·) = Φ̄k( · ∩ Δk)

Φ̄k(Δk )
, Ψ̄

Δk
k
(·) =

⎧⎪⎪⎨⎪⎪⎩
Ψ̄k( · ∩ Δk)
Ψ̄k(Δk )

, 1Zk
= 1,

0, otherwise.

Observe that Φ̄k(Δk ) = Φ̄k(Θk ) > 0 with probability one, thus the random probability measure Φ̄Δk
k

is
well defined. Let 0 < Ck ↑ ∞ and Ck = o(

√
k), as k→∞, and choose Θk = {θ̄ ∈ Θ : ‖θ̄ − θ̄0‖1 < εk },

where εk =Ck/
√

k. Then,

T (Ψ̄k,Φ̄k) ≤ T (Ψ̄k,Φ̄k)1Zk
+ 1Zc

k

=T (Ψ̄k,Φ̄k)1Zk
+ 1Zc

k

≤ T (Ψ̄Δk
k
,Φ̄
Δk
k
)1Zk

+ ρk

(18)

where, by Theorem 2 and the fact that ‖δk ,0‖1 =Op(1) (see equation (2.18) in [17]), as k→∞

ρk := 2
Ψ̄k(Θc

k
)

Ψ̄k(Θk)
1Zk
+ 2
Φ̄k(Θc

k
)

Φ̄k(Θk)
1Zk
+ 1Zc

k
= op(1).

The final result is next obtained by showing that the first term on the right-hand side of (18) (third line)
converges to zero in probability, if Ck is appropriately chosen.

8.3.2. Intermediate result

As an intermediate step, we show that, choosing Θk as above but now with εk = c/
√

k, for any c > 0,
we obtain

T (Ψ̄Δk
k
,Φ̄
Δk
k
)1Zk

= op(1). (19)

Note that, in this setup, Δk ⊂ Δ := {δ ∈ R3 : ‖δ‖1 ≤ c} ⊂
√

k(Θ− θ̄0), for all sufficiently large k. Let p̄k
and ϕ̄k denote the Lebesgue densities of Π̄k(θ0 + · /

√
k) and Φ̄k , respectively. Moreover, for δ,δ′ ∈ Δ,

let ek(δ) = exp {�k(δ) − �k(0)} and

tk(δ,δ′) :=
(
1 − ϕ̄k(δ)ek(δ

′)p̄k(δ′)
ϕ̄k(δ′)ek (δ)p̄k(δ)

)
+

,

and define the event Ek := {supδ,δ′ ∈Δ tk(δ,δ′) < ε}, for an arbitrarily small ε > 0. Then, we obtain the
following inequality

T (Ψ̄Δk
k
,Φ̄
Δk
k
)1Zk

≤ T (Ψ̄Δk
k
,Φ̄
Δk
k
)1Zk∩Ek

+ 1Zk∩Ec
k
.

The expectation of 1Zk∩Ec
k

is bounded from above by Qk(Ec
k
). By Condition 1, the expansion

in formula (8) of Supplementary Material [30] and the fact that ‖δk ,0‖1 = Op(1), we have that
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supδ,δ′∈Δ tk(δ,δ′) converges in probability to zero, thus Qk(Ec
k
) = o(1). Moreover, by similar argu-

ments to those in the last display of page 359 of [2], we conclude that the expected value of the first
term on the right-hand side in the above display is smaller than that of

2
∫
Δk

∫
Δk

tk(δ,δ′)1Zk∩Ek
dΦ̄Δk

k
(δ)dΨ̄Δk

k
(δ′),

which, in turn, is smaller than ε. Since ε can be chosen arbitrarily small, by Markov inequality, we can
now deduce the convergence result in (19).

8.3.3. Conclusion

In the previous steps, we have established that (19) holds true for any choice of Θk yielding a ball
centered at 0 with fixed radius Δk = {δ ∈

√
k(Θ − θ̄0) : ‖δ‖1 < c}, for any c > 0. Similarly to line 11 on

page 143 of [37] and and lines 3–10 on page 360 of [2], we can now argue that such convergence result
is still valid for some sequence 0 < Ck ↑ ∞ and set Θk yielding Δk = {δ ∈

√
k(Θ − θ̄0) : ‖δ‖1 < Ck }.

The proof is now complete.

8.4. Proof of Corollary 1

The proof follows by similar arguments to those in the proof of Corollary 2 and is therefore omitted.
We only point of out that the marginal distributions of Ψ̄k ( · − δk ,0) and Φ̄k( · − δk ,0) have to be used
herein in place of �Ωk and Λ. Note that δk ,0 is as in the proof of Theorem 3.

8.5. Proof of Theorem 4

Triangular inequality and a few algebraic derivations allow to deduce that

Ωk(q ∈ R : |q/QFm
0
(p) − 1| > ε ′k) ≤ Ψ̃k

(
θ̃ ∈ Θ : ckdp (̃θ) + vk > ε ′k

)
,

where dp(θ) is as in Definition 2(a) of Supplementary Material [30] and

ck =
am,0

|QFm
0
(p)| , vk =

�����am,0QGγ0
(p) + β(m)

QFm
0
(p) − 1

����� .
Under the considered assumptions, Theorem 2.1 in [12] guarantees that, as k→∞,

1
ck
=QGγ0

(p) + V0(m)
am,0

+O(A0(m))

and

vk = ck

�����QGγ0
(p) −

QFm
0
(p) − β(m)
am,0

����� =O(ck A0(m)).
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Moreover, am,0/V0(m) →max(γ0,0) and, by hypothesis,
√

k A0(m) → λ. Thus, there exists C > 0 such
that, for any ε > 0,

Ψ̃k

(
θ̃ ∈ Θ : ckdp (̃θ) + vk > ε ′k

)
≤ Ψ̃k

(
θ̃ ∈ Θ : dp (̃θ) > Cεk

)
≤ Ψ̃k

(
θ̃ ∈Uε : dp (̃θ) > Cεk

)
+ Ψ̃k(Uc

ε ),

where εk =Ck/
√

k. By Lemma 22 of Supplementary Material [30], the second term on the right-hand
side is of order op(e−c

′k), for a positive c′ > 0. Moreover, a few adaptations to the proof of Lemma 22
of Supplementary Material [30], using Lemma 19 in place of Lemma 16 of Supplementary Material
[30], lead to conclude that the first term on the right-hand side is of order op(e−c

′′C2
k ), for a positive

c′′. The final result then follows.

8.6. Proof of Theorem 5

8.6.1. Preliminaries

We start by setting up some notation and pointing out some mathematical properties used throughout
the proof. Let j(γ) be as in formula (19) of Supplementary Material [30] with p1 = 1 − p. Note that
the map γ �→ QGγ (p) =: �qγ is monotone increasing, with positive and continuous derivative j(γ) on
(γ0± ε), for a suitably small ε > 0. Consequently, the inverse map �q �→ γ �q is continuously differentiable
over the interval ( �qγ0−ε , �qγ0+ε ), with derivative (∂/∂ �q)γq = { j(γ �q)}−1. By Lemma 12 of Supplementary
Material [30] and the positivity of j(γ), we also have the following Lipschitz continuity properties

|γ �q − γ �q0 | ≤
| �q − �qγ0 |

infγ̃∈(γ0±ε ) j(γ̃) , ∀ �q ∈ ( �qγ0−ε , �qγ0+ε ),

| �qγ − �qγ0 | ≤ sup
γ̃∈(γ0±ε )

j(γ̃)|γ − γ0 |, ∀γ ∈ (γ0 ± ε).
(20)

Next, we define the matrix �I0 := DI0D and the random vector �δk ,0 := �I−1
0 DSk ,θ̄0

, where D =

diag({ j(γ0)}−1,1,1). Finally, we define the set Ξ := ( �q−1,∞) × R × (0,∞) and the map Q : Θ �→ Ξ :
θ̄ �→ ( �qθ̄(1), θ̄(2), θ̄(3)). Then, for θ ∈ Θ, we introduce the reparametrisation

�r(θ) :=Q ◦ r(θ) = ( �qγ,(bm − b0,m)/a0,m,am/am,0))�,

yielding �r(θ0) = ( �qγ0,0,1)� =: ξ0. As an intermediate result, we show that the empirical Bayes posterior
distribution of �r(θ)merges in total variation with the sequence of randomly centred normal probability
measures �Φk :=N( · ; ξ0 +

�δk ,0/
√

k, k−1 �I−1
0 ) as k→∞. To do that, we adapt once more the arguments

in the proofs of Theorem 10.1 in [37] and Theorem 2.1 in [2].

8.6.2. Intermediate result

By the property in (20), there exist 0 < c1 < c2 <∞ such that, for any sequence εk ↓ 0, defining

Ξk := {ξ ∈ Ξ : ‖ξ − ξ0‖1 < εk }

and, for i = 1,2, εk ,i = ciεk , Θk ,i := {θ̄ ∈ Θ : ‖θ̄ − θ̄0‖1 < εk ,i} and

Ξk ,i := {ξ ∈ Ξ : Q−1(ξ) ∈ Θk ,i},
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we have Ξk ,1 ⊂ Ξk ⊂ Ξk ,2 for all large k. Consequently, denoting by �Ψk = Ψk ◦ �r−1 the empirical Bayes
posterior of �r(θ) and letting �ΨΞk

k
be its renormalised restriction to the set Ξk , provided that 1Zk

= 1
with Zk := { �Ψk (Ξk ) > 0}, we have that

Ψ̄k(Θk ,1) = �Ψk(Ξk ,1) ≤ �Ψk(Ξk). (21)

Let �ΦΞk
k

be the renormalised restriction of �Φk on Ξk . Finally, define the probability measures �Φk :=
�Φk(
√

k( · − ξ0)) and �Ψk := �Ψk(
√

k( · − ξ0)), as well as their renormalised restrictions �Φ �Δk
k

and �Ψ �Δk
k

over
�Δk :=

√
k(Ξk − ξ0), provided that 1Zk

= 1. Then,

T ( �Ψk, �Φk) ≤ T ( �Ψ �Δk
k
, �Φ �Δk

k
)1Zk

+ ρk, (22)

where

ρk = 2
�Ψk(Ξck )
Ψ̄k(Ξk )

1Zk
+ 2
�Φk(Ξck)
�Φk(Ξk)

1Zk
+ 1Zc

k
.

Choosing εk =Ck/
√

k, for any sequence 0 < Ck ↑∞ such that Ck = o(
√

k), by Theorem 2 we have that
Ψ̄k(Θc

k ,1) = op(1). Thus, by the inequality in (21), we also have that �Ψk (Ξck) = op(1). The latter result,
together with ‖ �δk ,0‖1 =Op(1), finally entails that ρk = op(1). To further prove that

T ( �Ψ �Δk
k
, �Φ �Δk

k
)1Zk

= op(1) (23)

for εk = Ck/
√

k and at least one sequence Ck with the properties given above, it suffices to establish
(23) for all the faster decaying sequences εk =C/

√
k, with C > 0.

To this end, note that, by the inclusion Ξk ⊂ Ξk ,2, for all large k we have

�Δk ⊂ �Δ := { �δ ∈ R3 : ‖ �δ‖1 ≤ C} ⊂
√

k(Ξk ,2 − ξ0).

Thus, for all �δ ∈ �Δ and sufficiently large k, setting δ �δ :=
√

k(Q−1(ξ0 +
�δ/
√

k) − θ̄0)�, we have

δ �δ ∈ Δ := {δ ∈ R3 : ‖δ‖1 ≤ c2C} ⊂
√

k(Θ − θ̄0).

As a result, using the expansion in formula (8) of Supplementary Material [30], we obtain

sup
�δ∈ �Δ

������k(δ �δ) − �k(0) − δ��δ Sk ,θ̄0
+
δ��δ I0δ �δ

2

����� ≤ sup
δ∈Δ

�����k(δ) − �k(0) − δ�Sk ,θ̄0
+
δ�I0δ

2

����
= op(1).

At the same time, the mean-value theorem guarantees that for all �δ ∈ �Δ there exists �q between
min( �qγ0, �qγ0 +

�δ(1)/
√

k) and max( �qγ0, �qγ0 +
�δ(1)/
√

k) such that

‖δ �δ − D �δ‖1 = |[{ j(γ �q)}
−1 − { j(γ0)}−1] �δ(1) |.

Therefore, by the continuity of �q �→ j(γ �q) at �qγ0 ,

sup
�δ∈ �Δ

�����δ��δ Sk ,θ̄0
−
δ��δ I0δ �δ

2
− (D �δ)�Sk ,θ̄0

+
(D �δ)�I0(D �δ)

2

����� = op(1).
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Consequently, using triangular inequality, we deduce that

sup
�δ∈ �Δ

�����k(δ �δ) − �k(0) − (D �δ)�Sk ,θ̄0
+
(D �δ)�I0(D �δ)

2

���� = op(1). (24)

Moreover, defining the data-dependent prior density of the local parameter
√

k( �r(θ) − ξ0) at �δ ∈ �Δ by

�pk( �δ) := πk ◦ r−1(θ̄0 + δ �δ/
√

k){
√

k j(γ �qγ0+
�δ(1)/
√
k
)}−1a2

m,0,

by Condition 1 and the continuity of q �→ j(γq) at qγ0 , it holds that

sup
�δ∈ �Δ

���� �pk( �δ)�pk(0)
− 1

���� = op(1). (25)

Hence, letting �ϕk be the Lebesgue density of �Φk , setting �ek( �δ) = exp{�k (δ �δ) − �k(0)},

�tk ( �δ, �δ
′) :=

(
1 − �ϕk(

�δ) �ek ( �δ
′) �pk( �δ

′)
�ϕk( �δ

′) �ek ( �δ) �pk( �δ)

)
+

with �δ, �δ′ ∈ �Δ and using (24)–(25) along with the equalities (D �δ)�Sk ,θ̄0
= �δ� �I0 �δk ,0, (D �δ)�I0(D �δ) =

�δ� �I0 �δ and ‖ �δk ,0‖1 = Op(1), we conclude that sup �δ, �δ′∈ �Δ �tk( �δ, �δ
′) = op(1). Consequently, defining the

event Ek := {sup �δ, �δ′ ∈ �Δ �tk( �δ, �δ
′) > ε}, for an arbritrarily small ε > 0, we have that the expected value of

the term on the left-hand side of (23) is bounded from above by that of

2
∫
�Δk

∫
�Δk
�tk( �δ, �δ′)1Zk∩Ek

d �Φ �Δk
k
( �δ)d �Ψ �Δk

k
( �δ′) + 1Zk∩Ec

k
,

which in turn is smaller than 3ε, for all sufficiently large k.
We can now deduce that (23) holds true for all choices εk = C/

√
k. Thus, we can also deduce that

there exists a sequence 0 < Ck ↑∞ satisfying Ck = o(
√

k) and such that (23) holds true for εk =Ck/
√

k.
Using this result along with ρk = op(1) and (22), we finally conclude that

T ( �Ψk, �Φk) =T ( �Ψk, �Φk ) = op(1), (26)

which is the desired intermediate result.

8.6.3. Conclusion

Define the sequences

ck :=
QGθ0

(p)
QFm

0
(p)
�k√

k

am,0

bm,0 + am,0 �qγ0

, vk := �k

[
QGθ0

(p)
QFm

0
(p) − 1

]

and dk := ck �qγ0 , then define the row vectors τk = (ck,ck,dk) and the maps

Tk :
√

k(Ξ − ξ0) �→ R : �δ �→ ck ( �δ(1) + �δ(2) + �δ(1) �δ(3)/
√

k) + dk �δ(3) + vk .
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Note that QGθ0
(p) = am,0 �qγ0 + bm,0 and, therefore,

�k

[
QGθ (p)
QFm

0
(p) − 1

]
= Tk

(√
k( �r(θ) − ξ0)

)
.

As a consequence, the empirical Bayes posterior distribution of the term on the left-hand side
is Ωk (QFm

0
(p) + ·QFm

0
(p)/�k) = �Ψk ◦ T−1

k
. Next, observe that under the considered assumptions

limk→∞ am,0/V0(m) =max(γ0,0), entailing

c := lim
k→∞

ck =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
1 + γ0 �qγ0

, γ0 > 0,

1, γ0 = 0,
1, γ0 < 0 and V0(∞) > 0,
−1, γ0 < 0 and V0(∞) ≤ 0,

and d := limk→∞ dk = �qγ0 c, while

v := lim
k→∞

vk = cλHγ0 ,ρ

(
− 1

log(1 − p)

)
.

Then, define T( �δ) = c( �δ1+ �δ2)+ d �δ3+ v and the row vector τ = (c,c,d). We now have that, by triangular
inequality,

T ( �Ψk ◦T−1
k ,
�Φk ◦T−1) ≤ T ( �Ψk ◦T−1

k ,
�Φk ◦T−1

k ) +T ( �Φk ◦T−1
k ,
�Φk ◦T−1).

On one hand, by the result in (26),

T ( �Ψk ◦T−1
k ,
�Φk ◦T−1

k ) ≤ T ( �Ψk, �Φk ) = op(1).

On the other hand, since ‖ �δk ,0‖1 = Op(1), �Φk ◦ T−1
k

is the probability measure of a univariate Gaus-

sian distribution whose mean and variance equal τk �δk ,0 + vk +Op(k−1/2) and τk �I
−1
0 τ�

k
+Op(k−1/2),

respectively, while �Φk ◦T−1 =N( · ;τ �δk ,0 + v,τ �I
−1
0 τ�). Thus, by Theorem 1.3 in [14],

T ( �Φk ◦T−1
k ,
�Φk ◦T−1) ≤

3|τk �I
−1
0 τ�

k
− τ �I−1

0 τ�| +Op(k−1/2)

2τ �I−1
0 τ�

+
|(τk − τ) �δk ,0 | + |vk − v |+Op(k−1/2)

2
√
τ �I−1

0 τ�

= op(1).

Concluding, note that by defining the vector D�0 = τD
−1, we have that τ �δk ,0 = τD−1I−1

0 Sk ,θ̄0
= D�0 δk ,0

and

τ �I−1
0 τ� = τD−1I−1

0 D−1τ� = D�0 I
−1
0 D0.

The proof is now complete.
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8.7. Proof of Corollary 2

Fix α ∈ (0,1) and set �Δk = �k (IAk ,α/QFm
0
(p) − 1) − D0δk ,0, where δk ,0 is as in the proof of Theorem 3.

Then, let

�Ωk =Ωk( ·QFm
0
(p)/�k +QFm

0
(p) − D0δk ,0)

and observe that

�Δk =
(
Q �Ωk
(1 − α/2),Q �Ωk

(α/2)
)
.

Next, let Λ =N( · ; 0,D�0 I
−1
0 D0). Thus, by Theorem 5, we have that T ( �Ωk,Λ) = op(1) and therefore

Q �Ωk
(1 − α/2) = QΛ(1 − α/2) + op(1),

Q �Ωk
(α/2) = QΛ(α/2) + op(1).

As a consequence, for any ε ∈ (0,min{α/2,(1 − α)/2}), defining the intervals

�Δ+ε := (QΛ(1 − α/2 + ε),QΛ(α/2 − ε))

and

�Δ−ε := (QΛ(1 − α/2 − ε),QΛ(α/2 + ε)),

we have that Qk{ �Δk ⊂ �Δ+ε } = 1 + o(1) and Qk{ �Δ−ε ⊂ �Δk } = 1 + o(1). In turn, we have that

Qk{QFm
0
(p) ∈ IAk ,α} = Qk{−D

�
0 δk ,0 ∈ �Δk}

≤ Qk {−D�0 δk ,0 ∈ �Δ
+
ε } + o(1)

= 1 − α + 2ε + o(1),

where the last line follows from D�0 δk ,0
d→N(0,D�0 I

−1
0 D0). Similarly, we have that

Qk{QFm
0
(p) ∈ IAk ,α} ≥ Qk {−D

�
0 δk ,0 ∈ �Δ

−
ε } + o(1)

= 1 − α − 2ε + o(1).

The result now follows, since ε can be chosen arbitrarily small.

8.8. Proof of Corollary 3

The result in point (a) of Corollary 3 is a direct consequence of Proposition 3 of Supplementary Ma-
terial [30] and Theorem 8.8 in [20]. The result in point (b) of Corollary 3 follows from that at point
(a) and Lemma B.1(i) in [20]. The result in point (c) of Corollary 3 follows from that at point (b). We
further have that

‖Ĝ(m
∗)

k
− Fm∗

0 ‖∞ =Op(εk), k→∞,

for all the sequences εk =Ck/
√

k satisfying the properties in the statement. As a result, with probability
tending to 1, for any fixed p

1 − p − εk ≤ Fm∗
0

(
Q
Ĝ
(m∗)
k

(p)
)
≤ 1 − p + εk,
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which can be re-expressed as

V0

(
m∗

− log(1−p−εk )

)
V0

(
m∗

− log(1−p)

) − 1 ≤
Q
Ĝ
(m∗)
k

(p)

Q
Fm∗

0
(p) − 1 ≤

V0

(
m∗

− log(1−p−εk )

)
V0

(
m∗

− log(1+p)

) − 1. (27)

The term on the left-hand side equals the product of

χ1(p) :=
V0

(
m∗

− log(1−p−εk )

)
−V0

(
m∗

− log(1−p)

)
m∗

− log(1−p)V
′

0

(
m∗

− log(1−p)

)
and

χ2(p) :=
m∗

− log(1−p)V
′

0

(
m∗

− log(1−p)

)
V0

(
m∗

− log(1−p)

) .

Using bounds (2.19a)–(2.19b) in Theorem 2.3 of [12] and the properties of A0 due to regular variation
(see, e.g., [3,32]), along with a few algebraic derivations, we can deduce that for a constant a1 > 0 as
k→∞

χ1(p) ≥ −a1εk + o(k−1/2)

for all p ∈ K . Moreover, if γ0 > 0, the function xV ′0 (x)/V0(x) is slowly varying and satisfies
limx→∞ xV ′0 (x)/V0(x) = γ0. Thus, by Theorem 1.2.1 in [3]

χ2(p) = (1 + o(1))
mV ′0 (m

∗)
V0(m∗)

= (1 + o(1))
am∗ ,0
|bm∗ ,0 |

where the o(1) terms are uniform in p ∈ K . If, instead, γ0 ≤ 0, the fact that limx→∞ xV ′0 (x)/V0(x) = 0
and the bounds (2.18) and (2.19a)–(2.19b) in Theorem 2.3 of [12] yield

|χ2(p)| ≤ (a2 + o(1))
m∗V ′0 (m

∗)���V0

(
m∗

− log(1−p)

) ���
≤ a2 + o(1)

a3 + o(1) + |V0(m∗) |
m∗V ′0(m

∗)

≤ a4
am∗ ,0
|bm∗ ,0 |

as k→∞, where a2,a3,a4 are positive constants and the o(1) terms are uniform in p ∈ K . As a conse-
quence of all these results, there exists a constant b > 0 such that, as k→∞, the term on the left-hand
side in (27) is bounded from below by −bεkam∗ ,0/|bm∗ ,0 |, uniformly in p ∈ K . By similar arguments,
there exists a constant c > 0 such that, as k →∞, the term on the right-hand side in (27) is bounded
from above by cεkam∗ ,0/|bm∗ ,0 |, uniformly in p ∈ K . The result in point (d) of Corollary 3 now follows,
and the proof is complete.
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