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Abstract 

Background  Eosinophilic esophagitis (EoE) is a chronic immune-mediated rare disease, characterized by esopha‑
geal dysfunctions. It is likely to be primarily activated by food antigens and is classified as a chronic disease for most 
patients. Therefore, a deeper understanding of the pathogenetic mechanisms underlying EoE is needed to implement 
and improve therapeutic lines of intervention and ameliorate overall patient wellness.

Methods  RNA-seq data of 18 different studies on EoE, downloaded from NCBI GEO with faster-qdump (https://​
github.​com/​ncbi/​sra-​tools), were batch-corrected and analyzed for transcriptomics and metatranscriptomics profil‑
ing as well as biological process functional enrichment. The EoE TaMMA web app was designed with plotly and dash. 
Tabula Sapiens raw data were downloaded from the UCSC Cell Browser. Esophageal single-cell raw data analysis was 
performed within the Automated Single-cell Analysis Pipeline. Single-cell data-driven bulk RNA-seq data deconvolu‑
tion was performed with MuSiC and CIBERSORTx. Multi-omics integration was performed with MOFA.

Results  The EoE TaMMA framework pointed out disease-specific molecular signatures, confirming its reliability in 
reanalyzing transcriptomic data, and providing new EoE-specific molecular markers including CXCL14, distinguish‑
ing EoE from gastroesophageal reflux disorder. EoE TaMMA also revealed microbiota dysbiosis as a predominant 
characteristic of EoE pathogenesis. Finally, the multi-omics analysis highlighted the presence of defined classes of 
microbial entities in subsets of patients that may participate in inducing the antigen-mediated response typical of EoE 
pathogenesis.

Conclusions  Our study showed that the complex EoE molecular network may be unraveled through advanced bio‑
informatics, integrating different components of the disease process into an omics-based network approach. This may 
implement EoE management and treatment in the coming years.
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Introduction
Eosinophilic esophagitis (EoE) is a chronic inflammatory 
disease characterized by a T-Helper type 2 (TH2) inflam-
matory response, primarily induced by food antigens, 
resulting in an accumulation of eosinophils within the 
esophageal mucosa. The TH2-response-specific interleu-
kins were described to play a pivotal role in EoE patho-
genesis [1]. To date, EoE is no longer reported as a rare 
disease since its incidence and prevalence rates are stead-
ily increasing, being 3.7/100,000/year and 22.7/100,000 
respectively [2], with a strong male predominance with a 
3:1 ratio [3]. Several risk factors are associated with EoE, 
including allergic/atopic conditions, environmental fac-
tors, and lack of Helicobacter (H). Pylori infection [4]. 
However, the genetic predisposition to the disease has 
been proven, with up to 58% concordance in monozy-
gotic twins [5].

EoE clinical presentation is heterogeneous, with dys-
phagia and food impaction as the most common symp-
toms in adults, while heartburn, regurgitation, and 
feeding intolerance are typical in children. Moreover, a 
wide range of other symptoms may overlap at any age, 
such as vomiting, nausea, and chest and/or abdominal 
pain [1].

At present, endoscopy is the only way to diagnose and 
monitor the activity of the EoE. Specifically, the diagnosis 
is defined by a count of > 15 eosinophils per High power 
field (HPF) at histological evaluation of esophageal biop-
sies, whereas therapeutic response and remission are 
defined by a count of ≤ 15 or < 6 eosinophils per HPF, 
respectively [6]. However, endoscopy remains an invasive 
diagnostic tool, with low acceptability from the patients 
and limited availability in clinical practice. With this 
premise and taking into account the heterogeneity of the 
clinical onset, the development of new “non-endoscopic” 
tools aiding diagnostic assessment may be helpful [7].

Therefore, a deeper understanding of the pathoge-
netic mechanisms underlying EoE remains of paramount 
importance in order to implement and improve thera-
peutic lines of intervention and ameliorate overall patient 
wellness.

Along with the mucosal immunity alterations and 
fibrosis [8], the epithelial barrier function impairment 
does remain a hallmark of EoE, in terms of both increased 
permeability and antigen sensing and presentation roles. 
Indeed, EoE is featured by a striking pattern of dilated 
intercellular spaces, with the down-regulation of proteins 
associated with barrier function and adhesion molecules 
modulated via an IL-13-dependent mechanism [1]. As a 
consequence, altered epithelial permeability can lead to 
a permissive environment that enhances antigen presen-
tation, which in turn leads to persistent chronic inflam-
mation, associated with microbiota dysbiosis [1]. Despite 

some anatomical and molecular characterizations 
employed as a kind of gold standard for the definition of 
EoE pathogenesis, a meta-analysis of the molecular stud-
ies may improve the understanding of the physiopathol-
ogy of the disease and define molecular markers helpful 
for a straightforward diagnosis of EoE.

We recently developed and released the Inflammatory 
Bowel Disease (IBD) Transcriptome and Metatranscrip-
tome Meta-Analysis web app (IBD TaMMA, https://​ibd-​
meta-​analy​sis.​herok​uapp.​com/) [9], a complete survey of 
all public data sets generated for IBD-related studies.

Considering the utility that IBD TaMMA has been 
increasingly showing over the last few months [10] and 
the continuous access to the platform recorded by Google 
Analytics (1.8K individual users in October 2022), we 
here propose a similar meta-analysis of EoE-related pub-
lic data sets visualized in the EoE TaMMA interactive 
web app, (https://​eoe-​meta-​analy​sis.​herok​uapp.​com/; 
username: ungaro; password: steams).

EoE TaMMA, while confirming well-accepted EoE 
molecular characteristics, pointed out for the first time 
that esophageal dysbiosis is the main trait in EoE patho-
genesis. Of note, this computational platform may 
become a precious resource for all clinicians and scien-
tists to expedite discoveries in the field and ameliorate 
the overall understanding of EoE pathophysiology, which 
urgently needs further implementation.

Materials and methods
All authors had access to the study data and reviewed and 
approved the final manuscript.

Transcriptomics analysis
RNA-seq data were downloaded from NCBI GEO (18 
different studies, listed within the EoE TaMMA web 
app, in the metadata tab > analysis overview subtab, and 
metadata tab > sample characteristics subtab; Fig.  1A, 
B, and Additional file  2: Table  S1) with faster-qdump 
(https://​github.​com/​ncbi/​sra-​tools). FASTQ sequencing 
reads were adaptor-trimmed and quality-filtered with 
Trimmomatic [11], prior to mapping to the hg38 human 
reference genome with STAR [12]. Gene count normali-
zation and differential gene expression were performed 
with DESeq2 [13]. Functional enrichment analysis was 
done with GeneSCF [14]. Low-dimensional embedding 
of high-dimensional data was performed by either Uni-
form Manifold Approximation and Projection (UMAP) 
or t-distributed stochastic neighbor embedding (t-SNE) 
machine learning algorithms, within R (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​umap).

Statistical significance was set at FDR < 1e−5.

https://ibd-meta-analysis.herokuapp.com/)
https://ibd-meta-analysis.herokuapp.com/)
https://eoe-meta-analysis.herokuapp.com/
https://github.com/ncbi/sra-tools
https://cran.r-project.org/web/packages/umap
https://cran.r-project.org/web/packages/umap
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Web app design
The web app, available at https://​eoe-​meta-​analy​sis.​
herok​uapp.​com/ (username: ungaro; password: steams), 
was designed with plotly and dash (https://​plotly.​com/​
dash/). Processed data and code are hosted by GitHub 
and are available at https://​github.​com/​DU-​omics/​eoe-​
meta-​analy​sis_​data and https://​github.​com/​DU-​omics/​
eoe-​meta-​analy​sis. The complete guide and the related 
documentation are available at https://​ibd-​tamma.​readt​
hedocs.​io/. The user interface is described in Addi-
tional file 1: Fig. S1.

Newly released EoE datasets will be continuously 
searched and implemented in this platform to maintain 
it as timely updated. A suggestion link is available at the 

bottom of the home page of the platform for the users 
to notify newly released data sets.

Meta‑analysis
Batch-effect detection and correction were performed as 
previously described [9, 15], in accordance with source 
(batch covariate) and tissue of origin (explaining other 
possible covariance), with ComBat [16], within the Sur-
rogate Variable Analysis v1.8 R package (https://​bioco​
nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​sva.​html).

Metatranscriptomics analysis
Metatranscriptomics was performed as previously 
described [9, 15]. The reads that failed to align to the 

Fig. 1  EoE TaMMA overview. A Sankey plot showing the relationships between different metadata. B Table listing the details of the studies analyzed 
within the EoE TaMMA web app. C, D Sample distribution by multidimensional scaling of the human whole transcriptome by UMAP from patients 
with EoE, GERD, IBD, and healthy controls, where the closer the samples are, the higher the similarity between their transcriptomes

https://eoe-meta-analysis.herokuapp.com/
https://eoe-meta-analysis.herokuapp.com/
https://plotly.com/dash/
https://plotly.com/dash/
https://github.com/DU-omics/eoe-meta-analysis_data
https://github.com/DU-omics/eoe-meta-analysis_data
https://github.com/DU-omics/eoe-meta-analysis
https://github.com/DU-omics/eoe-meta-analysis
https://ibd-tamma.readthedocs.io/
https://ibd-tamma.readthedocs.io/
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html


Page 4 of 13Massimino et al. Journal of Translational Medicine           (2023) 21:46 

human genome were subsequently mapped to the com-
plete collection of all available microbial genomes 
(https://​www.​ncbi.​nlm.​nih.​gov/​genome) with Kraken2 
for exact alignment of k-mers and accurate viral read 
classification [17]. Relative abundances and differential 
analysis was performed with DESeq2 upon variance-
stabilizing transformation [13]. Microbial read calls were 
confirmed by manually aligning Kraken2-classified reads 
to the respective viral genomes with Bowtie2, and visual-
izing the resulting BAM alignments with the Integrative 
Genomics Viewer (IGV) [18]. Before statistical analy-
sis, classified reads were double-checked with FastQC 
(https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​
fastqc) to confirm quality filtering and adaptor trim-
ming and then submitted to BLAST [19] to exclude pos-
sible artifacts resulting from the in silico analysis. Species 
alpha diversity and dominance indices were calculated 
with vegan (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
vegan). The statistical significance threshold was set at 
P < 0.05.

Single‑cell RNA‑seq data analysis and deconvolution
Tabula Sapiens raw data [20] were downloaded from the 
UCSC Cell Browser (https://​cells.​ucsc.​edu). Esophageal 
single-cell raw data were downloaded from https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE17​5930 
[21]. The analysis was performed within the Automated 
Single-cell Analysis Pipeline (ASAP) [22]. Single-cell 
data-driven bulk RNA-seq data deconvolution was per-
formed with MuSiC and CIBERSORTx [23, 24].

Multi‑omics factor analysis
The different omics datasets were integrated with the 
Multi-Omics Factor Analysis (MOFA) framework [25] 
which interprets multi-layer (different data modalities) 
high-dimensional data and infers an interpretable low-
dimensional representation in terms of a few latent fac-
tors. Variance stabilization and z-scoring, followed by 
feature selection to select the most informative variables, 
namely those explaining more variance, were performed 
to ensure that all the molecular layers were equally rep-
resented. Variance decomposition was then performed 
between groups to find differences in terms of variance 
explained within factors and groups, thus stratifying 
patients into cohorts, each one of them displaying a spe-
cific molecular signature.

Results
The EoE TaMMA web app identifies EoE‑specific markers
EoE aetiopathogenesis is not fully explained, even if a 
major shift toward antigen-mediated TH2 response has 
been accepted as the most relevant characteristic [1]. 
Although some RNA-seq studies have been performed, 

the complete survey of all transcriptomics collections 
to advance EoE-related research has not been compiled 
yet. For this purpose, we analyzed and batch-corrected a 
total of 18 different studies, including 660 samples from 
esophageal mucosa and blood, combined into the EoE 
TaMMA web app (Fig. 1A and B).

We included blood and esophageal tissues from EoE 
and GERD patients and IBD-derived blood samples. Of 
note, we included also IBD samples because it helped to 
better correct the batch variability, a normal consequence 
of the combination of different studies coming from a 
variety of data sources generated by different operators, 
sequencers, and analytic platforms [9, 10]. However, 
IBD characterization was not shown but can be fully 
browsed at the dedicated platform (IBD TaMMA). After 
batch correction, esophagus and blood-derived sam-
ples appeared as two distinct clusters (Fig.  1C), despite 
the different study sources (Fig. 1D), indicating that the 
correction approach was effective in rendering samples 
harmonized and comparable. Differential gene expres-
sion (DGE) analysis revealed 533 and 504 genes up- and 
down-regulated, respectively, in the EoE esophagus by 
comparison with the control (Fig. 2A).

Since the role of TH2 cytokines is key in EoE pathogen-
esis, we specifically evaluated the expression of interleu-
kin (IL)13, IL4, IL5, and their receptors [26]. According 
to a previously published EoE single-cell (sc)RNA-seq 
[21], IL13 and IL5 were broadly expressed by pathogenic 
effector GATA-3 TH2 cells, expanded in EoE tissue biop-
sies [21] (Additional file 1: Fig. S2A, and Additional file 1: 
Fig. S3M and 3P). IL4 was expressed by Treg exclusively 
(Additional file 1: Fig. S3D and 3P), while IL4 receptor by 
both the stromal and immune compartments (Additional 
file  1: Fig.  3E, J, M–O). Additionally, IL5RA resulted 
as expressed by all myeloid cells, among which CLC-
expressing eosinophils (Additional file 1: Fig. 3F, N, O).

In EoE TaMMA, IL13 was the sole confirmed as upreg-
ulated in the EoE esophagus as compared to the control, 
while IL5, IL4, and IL13, IL4, and IL5 receptors were not 
significantly modulated, although a trend was observed 
(Fig.  2B). Additionally, IL13 did not result in a specific 
trait of EoE when compared with GERD-derived sam-
ples (Fig. 2B and Additional file 1: Fig. 4A). This evidence 
might support the difficulties in a straightforward diag-
nosis for patients with EoE and GERD-shared symptoms 
[1].

Nonetheless, we sought to further characterize and 
confirm EoE-related traits in our TaMMA platform. IL13 
is known as a mediator of a series of processes in allergic 
diseases, such as eosinophil chemotaxis, epithelial (gob-
let) cell proliferation, collagen deposition, and smooth 
muscle contractility [26], thus prompting us to evalu-
ate these features in EoE esophagi. Therefore, by gene 

https://www.ncbi.nlm.nih.gov/genome
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://cran.r-project.org/web/packages/vegan
https://cran.r-project.org/web/packages/vegan
https://cells.ucsc.edu
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE175930
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE175930
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ontology (GO) analysis, we observed biological processes 
related to epithelial cell proliferation, smooth muscle 
cell migration, proliferation, differentiation, extracellular 
matrix remodeling, and chemotaxis to be modulated in 
EoE by comparison with the control tissues (Fig. 2C).

Interestingly, we also found these biological signatures 
to be modulated when EoE tissues were compared to the 
GERD (Fig. 2D), indicating that the EoE pathogenesis is 
different from the GERD concerning these aspects.

We then evaluated which genes were involved in these 
biological process alterations and distinguished EoE from 
GERD in terms of expression levels. Besides the already 
known factor CCL26 (Eotaxin-3) expressed by stromal 
and epithelial cells (Additional file  1: Fig. S3G, 3J and 
3L) known to regulate the eosinophilic trafficking to 
the esophagus in patients with EoE and to discriminate 
between EoE and GERD [27], other markers were pointed 
out, such as CXCL14, PDGFRA, CXCL12, ACVRL1, 

Fig. 2  EoE TaMMA confirms EoE-specific traits. A MA plots showing the differential gene expression results expressed as log2(fold change) in the 
indicated comparisons as a function of log2(average gene expression). Red dots represent genes being differentially expressed with high statistical 
significance (false discovery rate (FDR) < 1 × 10−5). The number of differentially expressed genes and their trends are indicated in red and blue for 
the up and down-regulated genes, respectively. B Violin plots showing differential normalized expression of the indicated genes among EoE, GERD, 
and control esophagi. C, D GO plot showing modulation of biological processes related to epithelial cell proliferation, smooth muscle cell migration, 
proliferation, differentiation, extracellular matrix remodeling, and chemotaxis between EoE and control (C) and EoE and GERD (D). E, F Violin plots 
showing differential normalized expression of the indicated genes among EoE, GERD, and control esophagi. The asterisks indicate FDR < 1 × 10−5. G 
Pearson correlation analysis between CAPN14 and DSG1 expression levels expressed as log2(fold change)
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POSTN, NOX4 and LTBP4 (Fig. 2E). These results pro-
vided evidence that a composite panel of markers specific 
to EoE may be developed to make the diagnosis more 
accurate.

Furthermore, IL13 was acknowledged as a factor that 
induces calpain 14 (CAPN14) expression (Additional 
file 1: Fig. S3H and 3J), which affects the epithelial barrier 
through the degradation of the desmosomal protein des-
moglein 1 (DSG1) [28]. Our analysis revealed increased 
CAPN14 expression in the EoE esophagus by comparison 
with the control, while DSG1 was found down-regulated. 
(Fig.  2F, G), supporting the inverse relationship exist-
ing between these two proteins in the epithelial barrier 
[28]. Even if the bulk sequencing data are key for under-
standing the molecular process in a biological system, the 
great limitation remains the unavailability of information 
regarding the proportion of cell types within a sample. 

Nonetheless, in recent decades, approaches like compu-
tational deconvolution of single-cell RNA-seq data have 
been developed and optimized to obtain such informa-
tion starting from whole tissue expression profiling data 
[29]. Deconvolution is a time and cost-efficient approach 
for obtaining cell type-specific information from bulk 
gene expression of heterogeneous tissues, providing an 
estimation of cell-type proportions or abundances in 
samples.

To this end, we exploited Tabula Sapiens, a multiple-
organ, single-cell transcriptomic atlas of human tissues 
[30]. The analysis performed on the EoE TaMMA data 
confirmed the increased proportion of T helper cells, 
described as part of the EoE pathogenic process [31], by 
comparison with both the healthy and GERD tissues.

Furthermore, considering the role of invariant (i)
NKT cells, also known as classical NKT cells, during 

Fig. 3  Computational deconvolution of EoE-TaMMA bulk transcriptomic. A, B Bar plots showing the differential proportion of the indicated cell 
populations in Control (A), EoE (B), and GERD (C). D, E GO plots showing modulation of biological processes related to the transforming growth 
factor beta between EoE and control (D) and EoE and GERD (E)
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EoE pathogenesis [32], we verified and confirmed their 
increased proportion specifically in EoE tissues (Addi-
tional file 1: Fig. S5A–F).

Tissue remodeling by increased collagen deposi-
tion, matrix disassembly, and epithelial-to-mesenchy-
mal (EMT) transition are phenomena that lead to the 
peculiar fibrostenotic aspect of an EoE esophagus [33]. 
During fibrotic complications, epithelia lose many char-
acteristics, such as polarity, specific markers, and tight 
junctions, and acquire properties of mesenchymal cells, 
including motility, loose cell adhesion via N-cadherin, 
and de-polarized cytoskeletal arrangements such as 
vimentin [34]. Consistently, we observed an increased 
proportion of mesenchymal stem cells (MSC) in EoE 
compared to GERD and healthy samples (Fig.  3A–C), 
thus confirming the pro-fibrotic status of the esophagus 
in EoE conditions. This finding may have implications 

for developing prognostic molecular markers predict-
ing the risk of fibrostenosis in EoE patients.

These data were also paralleled by the dysregulation of 
biological processes related to the transforming growth 
factor beta (TGFB), which was found to increase in the 
EoE by comparison with both the healthy and the GERD 
tissues (Fig. 3D and E), with specific markers distinguish-
ing between EoE and GERD (Fig. 2E, specifically: WNT2, 
ACVRL1, POSTN, NOX4, LEFTY2, GDF5, and LTBP4), 
supporting the notion that the tissue remodeling and 
fibrotic process are associated with EoE pathogenesis 
[26].

Overall, these results pinpointed the EoE TaMMA web 
app as a reliable tool, evidencing the main hallmarks of 
EoE, often different from GERD, and thus resulting in a 
powerful asset for expediting research with novel insights 
into both pathogenesis and approaches for a more accu-
rate diagnosis of EoE.

Fig. 4  A, B MA plots showing the differential abundances expressed as log2(fold change) between the indicated comparisons. Red dots represent 
bacterial species being differentially expressed with high statistical significance (P < 0.05). The number of differentially expressed genes and their 
trends are indicated in red and blue for the up and down-regulated genes, respectively. C Violin plots showing differential normalized expression 
(log2 fold change) of the indicated bacterial species among EoE, GERD, and control esophagi. The asterisks indicate P < 0.05. D Violin plots showing 
the Shannon and Simpson indices among EoE, GERD, and healthy esophagi. The asterisks indicate P < 0.05
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EoE TaMMA reveals microbiota dysbiosis as a predominant 
characteristic during EoE pathogenesis
As mentioned above, EoE TaMMA provides a wide pic-
ture of omics profiling of EoE tissues, not only confirm-
ing the already known molecular landscape associated 
with EoE but also pointing out new insights for further 
investigation of their complex pathogenesis. For instance, 
among all the markers that were pointed out as specifi-
cally determining EoE (Fig.  2 and Additional file  1: Fig. 
S1), CXCL14, a chemoattractant chemokine expressed 
by the epithelium, stromal cells and by monocytes (Addi-
tional file  1: Fig. S3I, 3J, 3L, and 3R), gained our atten-
tion because of its documented antimicrobial activities 
against pathogens [35] and its higher level in EoE com-
pared with both control and GERD, suggesting possi-
ble EoE-specific microbial signatures different from the 
GERD.

Thus, going deeper into the microbiota profiling, EoE 
TaMMA pointed out the bacterial species as the most 
differentially dysregulated microbial entities among EoE, 
GERD, and control esophageal tissues (Fig. 4A and B and 
Additional file 1: Fig. S6A–6F).

We then intersected the bacterial species highly abun-
dant in EoE by comparison with the healthy or GERD 
and identified the 9 candidates specifically characterizing 
the EoE esophagus (Additional file 1: Fig. S6G). The most 
abundant were the Streptococcus mitis and Hemophilus 
parainfluenzae (Fig.  4C), normally colonizing the oro-
pharynx tract and already reported as being associated 
with EoE pathogenesis [36]. Moreover, increased bac-
terial diversity but no species dominance was found in 
EoE esophagi as compared to controls (Fig. 4D), despite 
previous studies reporting no differences between these 
experimental groups [7, 36–38]. Such a discrepancy 
might be explained by the former small-sized samples 
and the consequent lower statistical power that might 
have contributed to the loss of significant signals that, by 
contrast, our analysis pointed out.

This is an example of how this computational approach 
may be exploited to highlight specific signatures. Never-
theless, dissecting each omic at a time would be a huge 
effort, and many statistically relevant details could be 
lost.

Multi-omics approaches, often supported by machine-
learning algorithms [39], are facilitating the discovery of 
new molecular networks and hubs by comprehensively 
and simultaneously analyzing different data layers, such 
as the human transcriptome and metatranscriptome 
[40]. Also, it can allow the identification of the origin of 
patient heterogeneity, ultimately stratifying them based 
on their molecular characteristics. Indeed, this meth-
odological approach mitigates intersubject variability 

thanks to the discovery of the principal sources of varia-
tion in multi-omics data sets. In this regard, the possibil-
ity to perform such an analysis recently became effective 
thanks to the machine learning-based tool Multi-Omics 
Factor Analysis (MOFA). MOFA infers a set of (hidden) 
factors that capture biological and technical sources of 
variability [25].

Therefore, by applying MOFA for processing the six 
different types of omics data, encompassing the human 
transcriptome, virome, eukaryome (fungi and protists), 
bacteriome, and archaeome from EoE and healthy con-
trol samples (Additional file  1: Fig. S7A), the source of 
variation between the EoE and healthy (control) esopha-
geal mucosa was identified mainly among the metatran-
scriptomics (microbiome) factors. Specifically, a subset of 
archaea, fungi, protozoa, and viral species and, to a lesser 
extent some human transcripts, allowed the development 
of 4 multi-layers molecular signatures able to distinguish 
EoE patients from controls (Fig.  5A), indicating that 
microbial dysbiosis may be a key player during the EoE 
pathogenesis.

Going deeper into the analysis, the primary source of 
variance between EoE and control was found at the level 
of factor 1 mainly in the esophageal virome and archaeon 
composition and in the blood bacteriome and mycome 
(fungi, Fig. 5B–F). The top features within factor 1, show-
ing a high impact (weight) in explaining the variance, 
were the Staphylococcus virus Andhra (Fig.  5C and C′), 
the Sulfodiicoccus acidophilus, and the Nitrosopumi-
lus sp. K4 (Fig.  5D and D′), the Staphylococcus aureus 
and the Pasteurella multocida (Fig.  5E and E′), and the 
Malassezia restricta (Fig.  5F and F′). Besides the factor 
1-driven stratum of patients, the factor 2-driven defined 
another subset of human subjects with EoE where the 
Plasmodium knowlesi explained the majority of the vari-
ance in the protozoa profiling of the blood (Additional 
file  1: Fig. S7B and 7B′), while factor 3 was featured by 
the Proteus virus Isfahan, explaining most of the variance 
in this stratum of patients (Additional file 1: Fig. S7C and 
7C′).

Of note, since Staphylococcus virus Andhra parasitizes 
Staphylococci we checked the levels of these bacteria, but 
no differences in the esophagi were found (Fig. 6A).

Regarding the Proteus species (i.e., mirabilis), they are 
known to be parasitized by the Proteus virus Isfahan [41]. 
Thus, we wondered whether some Proteus species could 
change their levels according to the Proteus virus Isfahan 
abundance. Interestingly, Proteus vulgaris was pointed 
out as highly abundant in EoE blood by comparison with 
the control, while no differences in the esophagus were 
found (Fig. 6B).
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Fig. 5  Multi-omic analysis in EoE TaMMA. A Heatmaps showing the omics categories explaining the highest amount of variance for each factor 
found by MOFA in EoE and control. B Violin plots showing composite molecular signature scores within conditions. C–F Needle plots showing 
weights representing the variance explained by each feature for the indicated factors and layers (C–F) and violin plots showing the relative 
abundance of top features within conditions (C′–F′)

Fig. 6  EoE TaMMA reveals specific microbiota composition in EoE. A Heatmap showing the different Staphylococcus species colonizing EoE and 
control esophagi and blood. B Violin plots showing the differential normalized abundance of the Proteus vulgaris among EoE, and control esophagi 
and blood. The asterisks indicate P < 0.05
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Based on these pieces of evidence, we can speculate 
that the presence of defined classes of microbial enti-
ties in specific subsets of patients may participate in 
inducing the antigen-mediated response typical of EoE 
pathogenesis.

Discussion
EoE is a complex, clinically heterogeneous disease 
where many factors have been proposed to interact with 
each other and lead to chronically inflamed esophageal 
mucosa, with upper gastrointestinal symptoms that range 
from dysphagia to esophageal food impaction [42].

Even if some treatments are available, EoE remains a 
chronic disease, compromising the overall patients’ qual-
ity of life. Thus, having more mechanistic details of EoE 
pathogenesis may enable and support the development of 
new therapeutic lines of intervention. Moreover, molecu-
lar profiling may pave the road for further clinical phe-
notyping of EoE, ultimately reflecting better-personalized 
care.

In recent years, the analysis of different molecular 
aspects in the same patients with complex pathologies 
has often become one of the most powerful scientific 
approaches that have led, in some cases, to the discovery 
of disease-combined characteristics that remained hid-
den for a long time [43].

For this purpose, we recently released the IBD TaMMA 
framework [9], which is currently exploited worldwide as 
a support for research and has already led to new scien-
tific outputs further dissecting the complexity and het-
erogeneity of IBD pathogenesis [9, 41, 44]. Hence, we 
sought to create a similar computational framework for 
EoE by surveying the already published transcriptomics 
studies. The EoE TaMMA framework confirmed some 
well-accepted EoE traits and can therefore be considered 
a useful and reliable web app and a resource for foster-
ing novel fields of research. EoE TaMMA confirmed 
IL13 upregulation in the EoE esophagus by comparison 
with the control, while IL5, IL4, and the IL13, IL4, and 
IL5 receptors were not significantly modulated. IL13 was 
associated with EoE pathogenesis from a clinical stand-
point [25, 26], and the IL13 signaling inhibition was 
described as successful in the treatment of this disorder 
[45]. In this regard, we can speculate that Dupilumab, a 
monoclonal antibody against the IL4 receptor, mediat-
ing both IL4 and IL13 pathways, was found effective in 
phase 2 randomized trial of EoE patients [45] by inter-
fering with the IL13, rather than the IL4 signaling, jus-
tifying the absence of statistical significance in the IL4 
modulation in our platform. Further clarifications will 
come from other transcriptomics studies with larger 
sample sizes that, once they will be available to the sci-
entific community, will be integrated within the web app 

to better explain the role of IL4 and IL5 in EoE pathogen-
esis. Indeed, despite some pieces of evidence in experi-
mental models of EoE describing IL4 and IL5 as possible 
actors in EoE [25, 46–48], the direct link between the 
pathogenesis and their specific roles has not been uncov-
ered yet [49]. This may explain the lack of statistical 
significance in the differential expression of these two 
factors between EoE and control esophagi that certainly 
need further investigations and demonstration in future 
experimental models of EoE.

After pursuing an optimal batch correction, EoE 
TaMMA helped to draw molecular and biological signa-
tures able to distinguish EoE from GERD, often sharing 
symptomatic esophageal patterns. Therefore, such a spe-
cific profile, including increased levels of CXCL14, PDG-
FRA, CXCL12, ACVRL1, POSTN, NOX4, and LTBP4 in 
EoE by comparison with the GERD and control samples, 
may guide the correctness of diagnosis and might help 
to design accurate diagnostic panels. Future studies will 
clarify whether this may help the identification of clini-
cally relevant phenotypes of EoE (refractory or aggressive 
fibrostenotic forms), which may benefit from personal-
ized therapeutic approaches.

Although the microbiota has been already considered a 
player in EoE pathogenesis, so far no indication regarding 
its high impact on EoE pathogenesis was provided. Our 
MOFA-driven multi-omics revealed that the 4 factor-
based patient stratification was mainly characterized by 
differential microbiota compositions. Besides the well-
known bacterial dysbiosis, the other microbial compo-
nents (archaea, fungi, viruses, protozoa) were unveiled 
to be part of patient microbiota compositions that might 
drive patient stratification in future studies on EoE-
affected cohorts.

The results obtained indicated two main pieces of evi-
dence: (i) MOFA is useful for characterizing the source 
of diversity in patients with gastrointestinal diseases; 
(ii) patients can be stratified by MOFA-identified fac-
tors defining sub-cohort of patients displaying stratum-
specific molecular signatures, that we sought to explain. 
For example, the Staphylococcus virus Andhra was shown 
to act as an antimicrobial commensal by inhibiting the 
growth and degrading the cell walls of diverse Staphy-
lococci [50]. Its abundance, higher in the control than in 
the EoE (Fig. 5C) might be consistent with its protective 
function against detrimental commensals, such as other 
Staphylococci found highly abundant in the EoE blood by 
comparison with the control. Interestingly, in the esoph-
agi no differences in these bacterial species levels were 
found (Fig. 6A), supporting the indication of the EoE as a 
systemic rather than a local disease [51].

Similarly, the Proteus virus Isfahan acts as a lytic Pro-
teus phage active against planktonic and biofilms of 
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Proteus mirabilis [52]. Proteus species, low-abundance 
commensals of the human gut, possess many virulence 
factors that have been recently proposed as relevant to 
gastrointestinal disease pathogenesis and associated with 
alterations of gut motility and adherence [53]. Notably, 
from our analysis, Proteus vulgaris was pointed out as 
highly abundant in EoE blood by comparison with the 
control, while no differences in the esophagus were found 
(Fig. 6B) These results suggested that blood virome dysbi-
osis might enhance the expansion of pathogenic bacteria 
that in turn promote EoE pathogenesis in a specific clus-
ter of patients.

Sulfodiicoccus acidophilus and Nitrosopumilus sp. K4 
are thermoacidophilic and ammonia-oxidizer archaea, 
respectively, poorly studied in the context of human dis-
ease pathogenesis. In recent years, the archaeome has 
been acquiring a great interest in the context of chronic 
intestinal inflammation and its dysbiosis has been 
reported to modulate mucosal homeostasis [54]. There-
fore, the investigation of archaeal dysbiosis associated 
with esophagitis is worthwhile. As reported in Fig.  5D′, 
the Sulfodiicoccus acidophilus and the Nitrosopumilus 
sp. K4 are increased and decreased, respectively, in EoE 
compared to the healthy samples. Their differential abun-
dances may indicate their potential roles in EoE patho-
genesis, despite the current lack of knowledge in the 
field. Further studies may better characterize the possible 
mechanisms driven by these archaeal species during the 
EoE pathogenesis.

The Staphylococcus aureus, and the Malassezia 
restricta, although not significantly modulated between 
EoE and healthy controls (Fig.  5E and F), may under-
lie the pathogenesis in specific cohorts of patients (Fac-
tor-1 driven patient stratum) by stimulating the allergic 
response through the release of antigenic proteins [55, 
56], while the Pasteurella multocida may manipulate T 
cell differentiation through the release of specific toxins 
[57].

Similarly, we do not exclude that Plasmodium knowlesi, 
which emerged from our analysis as a specific feature of 
the factor 2-driven patient stratum, may act as a micro-
bial commensal stimulating the allergic response in these 
patients, despite its classification as a zoonotic malaria 
parasite [58].

One major limitation of this meta-analysis at the 
moment is the intrinsic lack of other information, such 
as clinical metadata. Indeed, the transcriptomic studies 
included in the framework missed, for example, informa-
tion on the treatment types, localization of the disease, 
if nonerosive esophageal reflux or GERD, or patients’ 
age, as well as many other important characteristics that, 
whether annotated, could have helped to assign to a clus-
ter of patients specific clinical characteristics. Future 

implementation of the framework including this informa-
tion may allow the patient clustering, virtually addressing 
them to tailored treatments.

Another intrinsic limitation of the platform is the small 
number of studies profiling the EoE samples if compared 
to those included in the IBD TaMMA, so we encourage 
scientists to perform transcriptomics experiments that 
will enable the platform to achieve much higher statisti-
cal power.

Despite these limitations, we believe the web app 
is helpful for other scientists who may use the EoE 
TaMMA-described features to foster new hypotheses 
and concepts for developing more accurate and personal-
ized therapies.

Conclusions
Our study represents a step forward to possibly unravel 
patient heterogeneity through advanced bioinformatics, 
integrating different components of the disease process 
into an omics-based network approach that sought to 
unravel the molecular landscape of EoE patients and to 
solve its intricacy, with a promise of better patient man-
agement and treatment in a short-term future.
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