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Abstract: Neuroblastoma (NB) is the most common extracranial tumor of early childhood and
accounts for 15% of all pediatric cancer mortalities. However, the precise pathways and genes
underlying its progression are unknown. Therefore, we performed a differential gene expression
analysis of neuroblastoma stage 1 and stage 4 + 4S to discover biological processes associated with NB
progression. From this preliminary analysis, we found that NB samples (stage 4 + 4S) are characterized
by altered expression of some proteins involved in mitochondria function and mitochondria–ER
contact sites (MERCS). Although further analyses remain necessary, this review may provide new
hints to better understand NB molecular etiopathogenesis, by suggesting that MERCS alterations
could be involved in the progression of NB.

Keywords: neuroblastoma; cancer; differentially expressed genes; cytoskeleton; microtubules;
mitochondria; endoplasmic reticulum; mitochondrial dynamics; mitochondria–endoplasmic
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1. Introduction

Neuroblastoma (NB) is a heterogeneous malignancy originating from the embryonic
cells composing the neural crest [1,2]. NB is the most widespread extracranial solid tumor
in children, accounting for nearly 10% of all childhood cancers [3,4]. NB is also the leading
cause of cancer death in children younger than 5 years old, accounting for 15% of all
pediatric cancer fatalities [5]. About 90% of NB cases are diagnosed before 5 years of age,
while a third of those are diagnosed within the first year of life [4,5]. On the other hand,
NB is a comparatively rare cancer with an incidence of 10.2 cases per one million children
younger than 15 years; it affects 12 infants per 100,000 births [4–6].

NB belongs to embryonal neuroendocrine tumors of the peripheral nervous system [2].
It originates from the neural crest progenitor cells, particularly from the sympathoadrenal
cell lineage [7]. Therefore, NB can grow anywhere along the sympathetic nervous system.
The majority of NB (65%) develops in the abdomen, usually originating in the adrenal
gland [8]. However, other sites of NB include the chest (20%), the neck (5%), or pelvis
(5%) [8]. Due to a number of primary tumor locations, NB exhibits heterogenous biological,
clinical, and morphological characteristics. Clinical symptoms of NB are often vague (e.g.,
fever, fatigues, loss of appetite) and diverse, depending on the site of malignancy, such as
constipation and abdominal distention (NB in the abdomen) or breathing problems (NB in
the chest) [9]. Similarly, the clinical outcomes of NB are variable, ranging from spontaneous
regression to major treatment-resistant metastatic cancer with poor patient prognosis [10].

NB is classified (by the International Neuroblastoma Staging System) into six stages,
in relation to the outcome of surgery used to remove the tumor [11]. In our work, we
focused on three stages: (i) stage 1: the tumor is localized in the area of its origin and can
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be completely removed by surgery; (ii) stage 4: the tumor is widespread to distant lymph
nodes, bone marrow, skin, liver, or other organs (except as defined for stage 4S); (iii) stage
4S (applicable only to infants under 1 year of age): the tumor mass locates as defined for
stage 1, but with propagation limited to skin, liver, or bone marrow [11].

The pathogenesis of NB and biological processes leading to NB development from
normal cells within the neural crest have not been fully described and elucidated. Only
little is known about the potential processes and biological pathways that may lead to
the initiation, development, and progression of NB. However, it seems there is no direct
cause of NB pathogenesis; it rather requires multiplicity and cooperation of several effects,
leading altogether to tumorigenesis [2]. The vast majority of neuroblastoma is sporadic
and non-familial [12]. Only approximately 1% of cases are familial; germline mutations
in several genes, such as anaplastic lymphoma receptor tyrosine kinase (ALK), paired
mesoderm homeobox protein 2B (PHOX2B), and kinesin family member 1B (KIF1B) have
been identified in patients with familial NB [12,13]. Interestingly, defects in ALK (anaplastic
lymphoma kinase) genes have been demonstrated to occur in about 15% of NB cases [13,14].
Additionally, only the activating mutations in ALK and amplification of v-myc avian mye-
locytomatosis viral oncogene neuroblastoma-derived homolog (MYCN) have been shown
to be oncogenic de novo in mice [15–17]. The presence of MYCN oncogene amplification
highly correlates to advanced NB stages [17]. MYCN, a member of the myc proto-oncogene
family, acts as a transcriptional factor for control of cellular differentiation and proliferation
and plays an important role in the survival of neuroblastoma cells.

Mitochondria are dynamic organelles responsible for several cellular functions. They
establish complex networks in the cells that can rapidly rearrange to react to the needs and
metabolic state of the cell, through specific mitochondria fission and fusion processes [18–21].
Mitochondrial dynamics is regulated by their interactions with other organelles as well as
the cellular cytoskeleton [18,22,23]. Evidence of the former are mitochondria–endoplasmic
reticulum (ER) contact sites (MERCS), in which their surfaces are separated by a 10–80 nm
gap [24–29]. Importantly, MERCS regulate crucial cell processes [27,30], such as Ca2+ and
lipid homeostasis [31–33], mitochondrial fission [34], and apoptosis [35]. Due to their
valuable role in mitochondrial biology and dynamics, MERCS have recently gained careful
attention from biologists; however, all of their biological functions have not yet been fully
described [36]. Similarly, mitochondria can also directly associate with microtubules and
actin, the components of the cytoskeleton [22]. While microtubules serve for long-range
mitochondria transport, the actin filaments regulate rather short-distance mitochondrial
movement [37], their docking [38], and fission [39,40].

Mitochondria play a valuable role in the control of several crucial cellular processes,
such as calcium homeostasis [41,42], ATP production [43–45], and apoptosis [46,47]. Thus,
it is not surprising that mitochondrial dynamics dysfunction has been linked with the devel-
opment and/or progression of tumors [48] including glioblastoma [49,50], melanoma [51],
hepatocellular carcinoma [52], and pancreatic [53], breast [54], ovarian [55], and prostate
cancers [56]. Regarding NB, interestingly, Çoku et al. has associated the reduction in the
number of MERCS with aggressive NB displaying chemoresistance. This suggests that
decreased mitochondria–ER interaction promotes neuroblastoma multidrug resistance [57].
Hence, the above-mentioned pieces of knowledge pose the challenging question of whether
MERCS participate in NB development and progression.

To tackle this question, we used previously published datasets to identify genes
differentially expressed in non-metastatic (stage 1) and metastatic neuroblastoma (stage
4 + 4S, which are characterized by metastases on skin, liver, and bone marrow) involved in
MERCS structure and mitochondrial dynamics. We found that MERCS proteins previously
shown to alter several aspects of cancer progression, i.e., cell metabolism, proliferation, and
division, are upregulated in NB stage 4 + 4S, indicating the possibility that MERCS could
be involved in the progression of this malignancy.
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2. Materials and Methods

We used the GEO dataset GSE45547. This dataset includes 649 NB tumor samples
whose gene expression was studied by a single-color Agilent-020382 Human Microarray
composed of 44 K oligonucleotide probes. Tumor samples were classified according to
the International Neuroblastoma Staging System. Data from NB stage 1 (153 samples)
have been compared to stage 4 + 4S (292 samples). Raw data were logarithmic-scaled and
quantile-normalized using the R Limma 3.26.8 package [58] in the R suite (Supplemental
Figure S1); normalized data were used to calculate differentially expressed genes (DEGs)
using the R Limma 3.26.8 package, which bases the identification of DEGs on linear models.
The Benjamini–Hochberg false discovery rate method was used to correct for multiple tests
and only genes with adjusted p-values under 0.05 were considered differentially expressed.
Differentially expressed genes were classified according to Gene Ontology (GO) definitions
using the WEB-based GEne SeT AnaLysis Toolkit [59], correcting statistical significance for
multiple tests with the Benjamini–Hochberg method, considering enrichment significant
when FDR < 0.05, and using 5 as the minimum number of IDs in the category and 2000 as
the maximum number of IDs in the category to allow the consideration of categories. GO
terms are either close in the GO hierarchy (sibling terms) or are related by inheritance (child
and parent terms). Therefore, they may consist of a redundant list difficult to interpret.
Revigo is a web tool used to reduce GO redundancy [60]. The tree map implemented in the
Revigo web tool was used to summarize GO categories. We maintained default parameters
(remove absolute GO terms, SimRel as semantic similarity measure) and used Homo sapiens
as a species to be used. GO terms and corresponding p-values were considered for analyses
with the Revigo web tool.

3. Results

The role of mitochondrial dynamics in NB progression is still poorly explored, despite
a reduction in the number of MERCS being associated with aggressive NB phenotypes
characterized by chemoresistance. To study their involvement in NB progression, we
took advantage of published transcriptomic datasets and analyzed the expression changes
occurring during NB progression. Using NB stage 1 as control, we found out that 1971 genes
were upregulated in stage 1 and 1529 were upregulated in stage 4 + 4S (Supplemental
Table S1 and Figure 1). Interestingly, we found that genes involved in the movement of
subcellular vesicles, in neurogenesis, and in synaptic signaling were downregulated in
stage 4 + 4S compared to controls (Figure 2 and Supplemental Table S2). At variance,
upregulated genes were involved in the control of the cell cycle (Figure 3 and Supplemental
Table S2). This is in agreement with the evidence that suggests dysregulation of the cell
cycle results in NB formation [61]. Of note, various mechanisms involved in the control of
cell cycle progression dictate whether NB cells undergo neural differentiation or enter into
cell cycle arrest and adopt senescence-like state [62].



Biomedicines 2023, 11, 596 4 of 11

Biomedicines 2022, 10, x FOR PEER REVIEW 4 of 11 
 

 
Figure 1. Overview of the proteins localized within or close to mitochondria–endoplasmic reticulum 
(ER) contact sites (MERCS) and their functions. Hexokinase 2 (HK2; outer mitochondrial membrane) 
and pyruvate dehydrogenase kinase 1 (PDK1; mitochondrial matrix) are involved in the (carbohy-
drate) metabolism. NME/NM23 nucleoside diphosphate kinase 4 (NME4; mitochondrial intermem-
brane space) and leucine zipper and EF-hand-containing transmembrane protein 1 (LETM1; inner 
mitochondrial membrane) participate in the cardiolipin and calcium transport. Finally, mitochon-
drial carrier 2 (MTCH2; outer mitochondrial membrane) and cyclin B1-dependent kinase 1 (CDK1; 
cytoplasm, mitochondrion, nucleus) regulate mitochondrial dynamics. 

 
Figure 2. Tree map of downregulated genes in the stage 4 + 4S. Each rectangle is a single cluster 
representative. The representatives are joined into “superclusters” of loosely related terms, visual-
ized with different colors. Sizes of the rectangles are adjusted to reflect the p-value of the GO term 
(“biological process”). Most representative terms are indicated. Several terms associated with neu-
ronal function are enriched. 

Figure 1. Overview of the proteins localized within or close to mitochondria–endoplasmic retic-
ulum (ER) contact sites (MERCS) and their functions. Hexokinase 2 (HK2; outer mitochondrial
membrane) and pyruvate dehydrogenase kinase 1 (PDK1; mitochondrial matrix) are involved in
the (carbohydrate) metabolism. NME/NM23 nucleoside diphosphate kinase 4 (NME4; mitochon-
drial intermembrane space) and leucine zipper and EF-hand-containing transmembrane protein 1
(LETM1; inner mitochondrial membrane) participate in the cardiolipin and calcium transport. Finally,
mitochondrial carrier 2 (MTCH2; outer mitochondrial membrane) and cyclin B1-dependent kinase 1
(CDK1; cytoplasm, mitochondrion, nucleus) regulate mitochondrial dynamics.
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Figure 2. Tree map of downregulated genes in the stage 4 + 4S. Each rectangle is a single cluster
representative. The representatives are joined into “superclusters” of loosely related terms, visualized
with different colors. Sizes of the rectangles are adjusted to reflect the p-value of the GO term
(“biological process”). Most representative terms are indicated. Several terms associated with
neuronal function are enriched.
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fied NB cells, altered energy metabolism due to direct or indirect activation of genes in-
volved in glycolysis, glutamine and fatty acid metabolism, and mitochondrial dysfunction 
has been reported [63]. It has been shown that PDK1 is specifically required for the meta-
bolic response to hypoxia and nutrient deprivation in some cancer types; PDK1 phosphor-
ylates pyruvate dehydrogenase (PDH) to inhibit its activity, thereby reducing the level of 
pyruvic acid in the tricarboxylic acid cycle, which affects the rates of oxidative phosphor-
ylation [64]. The outcome of upregulated PDK1 activity on metabolic reprogramming 
might be amplified by the concomitant increase in HK2 expression observed in stage 4 + 
4S (Supplemental Table S1). HK2 catalyzes the first step of glycolysis and it has been found 
upregulated in several types of cancer; its activity has been associated with the Warburg 
effect, e.g., high lactate production in the presence of oxygen [65]. Notably, upregulation 
of PDK1 and HK2 has been associated with an increased proliferation and poor prognosis 
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Figure 3. Tree map of upregulated genes in the stage 4 + 4S. Each rectangle is a single cluster
representative. The representatives are joined into “superclusters” of loosely related terms, visualized
with different colors. Sizes of the rectangles are adjusted to reflect the p-value of the GO term
(“biological process”). Most representative terms are indicated. Upregulated genes in the stage 4 + 4S
are prevalently associated with cell cycle regulation.

A significant number of altered genes encoded for cytoskeletal proteins, or localized
in mitochondria or in the endoplasmic reticulum (Figure 4 and Supplementary Table S3).
As speculated, we also found some differentially expressed genes (DEGs) encoding for
MERCS proteins (Figure 1).

Among the identified MERCS DEGs, HK2 (hexokinase 2) was 1.4 times upregulated
in stage 4 + 4S (Supplemental Table S1). It is interesting to note that PDK1 (pyruvate dehy-
drogenase kinase 1) was also upregulated. PDK1 and HK2 are involved in cell metabolism,
which is known to be affected in neuroblastoma. Indeed, in N-Myc (MYCN)-amplified
NB cells, altered energy metabolism due to direct or indirect activation of genes involved
in glycolysis, glutamine and fatty acid metabolism, and mitochondrial dysfunction has
been reported [63]. It has been shown that PDK1 is specifically required for the metabolic
response to hypoxia and nutrient deprivation in some cancer types; PDK1 phosphorylates
pyruvate dehydrogenase (PDH) to inhibit its activity, thereby reducing the level of pyruvic
acid in the tricarboxylic acid cycle, which affects the rates of oxidative phosphorylation [64].
The outcome of upregulated PDK1 activity on metabolic reprogramming might be ampli-
fied by the concomitant increase in HK2 expression observed in stage 4 + 4S (Supplemental
Table S1). HK2 catalyzes the first step of glycolysis and it has been found upregulated in
several types of cancer; its activity has been associated with the Warburg effect, e.g., high
lactate production in the presence of oxygen [65]. Notably, upregulation of PDK1 and HK2
has been associated with an increased proliferation and poor prognosis in MYCN-amplified
NB [66].

As mentioned before, many upregulated genes in grade 4 + 4S were involved in the
regulation of the cell cycle (Figure 3). Interestingly, several stages of the cell cycle are accom-
panied and/or controlled by changes in mitochondria dynamics; for example, the cell cycle
regulator CDK5 (cyclin-dependent kinase 5) is necessary for mitochondrial movement [67].
Interestingly, increased CDK5 activity was shown to be involved in several cancers [68–70].
Here, we found that CCNB1 (cyclin B1) and CDK1 (cyclin-dependent kinase 1) were twice
upregulated and NME4 (NME/NM23 nucleoside diphosphate kinase 4) was 1.6 times up-
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regulated (Supplementary Table S2). CDK1 is essential for cell division in mammals; CDK1
combines with cyclin B1 to form the cyclin B1–CDK1 complex, which is required for early
mitotic events such as spindle assembly, nuclear envelope breakdown, and chromosome
condensation. Genomic aberrations of cyclin B1 and CDK1 genes are associated with a
dysregulated G1 entry checkpoint and have been described in NB [71]. NME4 belongs
to a multifunctional NDPK/NME protein family. Its members are predominantly found
in the mitochondrial intermembrane space, tethered to the inner membrane via anionic
phospholipids, such as cardiolipin (CL) [72]. Here, NDPK-D plays two roles crucial for
proper mitochondrial physiology. Firstly, it transfers phosphate from ATP (generated by
oxidative phosphorylation pathway) to other NDPs (mostly to GDP). This phosphotransfer
reaction, thus, generates GTP necessary for powering mitochondrial GTPases, such as optic
atrophy 1 (OPA1) [73], a dynamin protein mediating mitochondrial fusion and maintaining
the cristae. Secondly, NDPK-D transports CL from the inner mitochondrial membrane to
the outer one; there, CL functions as a pro-apoptotic or pro-mitophagic signal.

NME4 inhibition was recently shown to reduce NB cell migration and to be involved
in NB cell differentiation [74]. However, further research needs to be undertaken both to
validate the functional NME4 role in NB pathogenesis and to identify the kinase targets and
signaling pathways regulated by NME1. If elucidated and confirmed, NME4 and its activity
may represent a novel target for NB therapy by inducing NB cell differentiation [75–77].

Other mitochondria genes differentially expressed in high-stage NB are LETM1
(leucine zipper and EF-hand-containing transmembrane protein 1; 1.4 times upregulated in
stage 4 + 4S) and MTCH2 (mitochondrial carrier 2; 1.5 times upregulated in stage 4 + 4S;
Supplemental Table S1).

LETM1 is a mitochondrial proton/calcium antiporter that has been described to
mediate proton-dependent calcium efflux from mitochondria [78]. Mitochondria calcium
handling is fundamental not only for their activity, but for the overall cell physiology,
fostering either ATP production in case of physiological calcium uptake, or promoting
permeability transition in case of calcium overload [32,35].

LETM1 is also crucial for the maintenance of mitochondrial tubular networks and
for the assembly of respiratory chain super-complexes [79]. LETM1 knockdown caused
mitochondria to become dot-like structures, losing their tubular networks to an extent
significantly greater than that observed in OPA1-knockdown cells. Images of mitochondria
lacking LETM1 were reminiscent of observations following overexpression of pro-fission
proteins such as Fis1 or knockdown of pro-fusion proteins such as OPA1 [80,81]. Although
the functions and mechanisms of LETM1 with respect to cell viability and tumorigene-
sis remain controversial, accumulating data suggest that LETM1 is a crucial candidate.
Deepening its role will clarify how mitochondria regulate the normal life of the cell and
tumor-associated metabolic reprogramming.

MTCH2 is an outer mitochondrial membrane protein that functions in the process
of intrinsic cell death as well as in the regulation of fatty acid metabolism. MTCH2
interacts with the truncated BH3-interacting domain death agonist (tBID) to regulate cell
apoptosis [82]. Previous studies demonstrate that loss of MTCH2 impairs mitochondrial
architecture and functions, including enlarged size [83], reduced motility [84], and elevated
oxidative stress [85]. MTCH2 expression was associated with several types of tumors.

Altogether, our data suggest that several MERCS-resident proteins, regulating (carbo-
hydrate) metabolism, mitochondrial dynamics, and molecular transport, may be involved
in the etiopathogenesis of NB.
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4. Discussion

Neuroblastoma is the most common extracranial tumor of early childhood and ac-
counts for 15% of all pediatric cancer mortalities. This tumor is characterized by high
clinical and biological heterogeneity. Indicating several genetic aspects, besides external
factors, might cooperate to define the phenotypic outcomes. A tremendous effort has
been made to elucidate the molecular mechanisms implicated both in the etiology and
pathogenesis of NB, which eventually resulted in identification of novel therapeutic targets.
Whole-genome-based methods, such as high-throughput genome analysis, genome-wide
association studies, and genome sequencing, have revealed genetic alterations and dis-
rupted pathways that participate in NB growth and development. However, the precise
pathways and genes involved during NB progression are still largely unknown. Metabolic
reprogramming accompanies development and progression of many cancer types; thus,
mitochondria, which are central for cells’ energy production, fundamentally contribute to
tumorigenesis. A great deal of evidence in the last years has shown that the shape of these
organelles, along with their interplay with other subcellular compartments, control their
function and energy production ability.

In the context of NB, the role of mitochondria in shaping the phenotypic outcomes and
progression of the disease has not been fully elucidated. Here, we performed a differential
gene expression analysis of NB stage 1 and stage 4 + 4S to discover NB-related biological
processes driven by mitochondrial dynamics. Among many differentially expressed genes,
we found some interesting genes coding for proteins either residing at mitochondria or
modulating their function: HK2, PDK1, NME4, LETM1, MTCH2, and CDK1. Based on the
current literature, we propose and explain that these proteins could cooperate to define the
metabolic adaptations needed to sustain cancer progression based on enhanced glycolysis
and to promote cell cycle progression.

Although further analyses remain necessary, this brief report provides new hints in NB
molecular etiopathogenesis, suggesting that alterations of mitochondria dynamics could
participate in the development and worsening of the disease.



Biomedicines 2023, 11, 596 8 of 11

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11020596/s1, Table S1: Differentially expressed genes;
Table S2: Gene Ontology analysis based on Biological Processes; Table S3: Gene Ontology analysis
based on Cellular Components. Figure S1: Normalized data used to identify DEGs. In green
stage 1 tumor samples and in violet stage 4 + 4S. Total number of samples (box plots) is 445. This
makes difficult the visualization of the sample names but it is possible to see that the median of the
fluorescence intensity is the same for all the samples (lane in the middle of each box).
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