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Abstract Completeness of an abstract interpretation is an ideal situation where
the abstract interpreter is guaranteed to be compositional and producing no false
alarm when used for verifying program correctness. Completeness for all possible
programs and inputs is a very rare condition, met only by straightforward abstractions.
In this paper we make a journey in the different forms of completeness in abstract
interpretation that emerged in recent years. In particular, we consider the case of local
completeness, requiring precision only on some specific, rather than all, program
inputs. By leveraging this notion of local completeness, a logical proof system
parameterized by an abstraction 𝐴, called LCL𝐴, for Local Completeness Logic on
𝐴, has been put forward to prove or disprove program correctness. In this program
logic a provable triple [𝑝] c [𝑞] not only ensures that all alarms raised for the
postcondition 𝑞 are true ones, but also that if 𝑞 does not raise alarms then the
program c cannot go wrong with the precondition 𝑝.
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1 Completeness, Fallacy, and Approximation

Formal methods are fundamental to have rigorous methods and correct algorithms
to reason about programs, e.g., to prove their correctness or even incorrectness.
These include program logics, model checking, and abstract interpretation as the
most prominent examples. Abstract interpretation [8, 23] and most of well-known
program logic, notably Hoare logic [28], have a lot in common. On the one hand,
abstract interpretation can be seen as a fixpoint strategy for implementing a Hoare
logic-based verifier. On the other hand, Hoare logic can be seen as a logical, i.e. rule-
based, presentation of an abstract interpreter, deprived of a fixpoint extrapolation
strategy. In this sense, abstract interpretation solves a harder problem than Hoare
logic, and, more in general, program logics: Abstract interpretation provides an
effective algorithmic construction of a witness invariant which can be used both
in program analysis and in program verification [10]. It is in this perspective that
abstract interpretation provides the most general framework to reason about program
semantics at different levels of abstraction, including program analysis and program
verification as a special case.

It is precisely in the ambition of inferring a program invariant that the need of
approximation lies: approximation is inevitable to make tractable (e.g., decidable)
problems that are typically intractable. The well known and inherent undecidability
of all non-straightforward extensional properties of programs provides an intrinsic
limitation in the use of approximated and decidable formal methods for proving
program properties [39]. This is particularly clear in program analysis, where the
required decidability of the analysis may introduce false positives/negatives. The
soundness of a program analyser, which is guaranteed by construction in abstract
interpretation, means that all true alarms (also called true positives) are caught,
but it is often the case that false alarms (also called false positives) are reported.
Of course, as in all alarming system, program analysis is credible when few false
alarms are reported, ideally none. Completeness holds when the abstract semantics
precisely describes, in the abstract domain of approximate properties, the property
of the concrete semantics, namely when no false alarm can be raised.

To substantiate the role of completeness, let us introduce some formal notation.
We consider Galois insertion-based abstract interpretations [7,8], where the concrete
domain 𝐶 and the abstract domain 𝐴 are complete lattices related by a pair of
monotonic functions 𝛼 : 𝐶 → 𝐴 and 𝛾 : 𝐴 → 𝐶, called, resp., abstraction and
concretization maps, forming a Galois insertion. We let Abs(𝐶) denote the class
of abstract domains of 𝐶, where the notation 𝐴𝛼,𝛾 ∈ Abs(𝐶) makes explicit the
abstraction and concretization maps. To simplify notation, in the following, we often
use 𝐴 as a function in place of 𝛾𝛼 : 𝐶 → 𝐶. When the concrete domain is a lattice
of program properties, a property 𝑃 ∈ 𝐶 is expressible in the abstract domain 𝐴

if 𝐴(𝑃) = 𝑃. Given 𝐴𝛼,𝛾 ∈ Abs(𝐶) and a predicate transformer 𝑓 : 𝐶 → 𝐶, an
abstract function 𝑓 ♯ : 𝐴 → 𝐴 is a correct (or sound) approximation of 𝑓 if 𝛼 𝑓 ≤ 𝑓 ♯𝛼

holds. The best correct approximation (bca) of 𝑓 in 𝐴 is defined to be 𝑓 𝐴 =
△
𝛼 𝑓 𝛾,

and any correct approximation 𝑓 ♯ of 𝑓 in 𝐴 is such that 𝑓 𝐴 ≤ 𝑓 ♯ holds. The function
𝑓 ♯ is a complete approximation of 𝑓 (or just complete) if 𝐴 𝑓 = 𝛾 𝑓 ♯𝛼 holds. The
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abstract domain 𝐴 is called a complete abstraction for 𝑓 if there exists a complete
approximation 𝑓 ♯ : 𝐴 → 𝐴 of 𝑓 . Completeness of 𝑓 ♯ intuitively encodes the greatest
achievable precision for a sound abstract semantics defined in 𝐴. In this case, the
loss of precision is only due to the abstract domain and not to the abstract function
𝑓 ♯ itself, which must necessarily be the bca of 𝑓 , namely if 𝑓 ♯ is complete in 𝐴 then
𝑓 ♯ = 𝑓 𝐴 and 𝐴 𝑓 = 𝐴 𝑓 𝐴 hold [26].

Although being desirable, completeness is extremely rare and hard to achieve in
practice. It is indeed worth noting that the existance of false positives is not just a
consequence of the required decidability of program analysis. In [16], the authors
proved that for any non-straightforward abstraction 𝐴 there always exists a program
c for which any sound abstract interpretation of c on 𝐴 yields one of more false
positives. Later, in [1] the authors showed that any program equivalence induced by
an abstract interpreter built over a non-straightforward abstraction violates program
extensionality. Here, non-straightforward abstractions correspond to those abstract
domains 𝐴 that are able to distinguish at least two programs, i.e., if J·K♯

𝐴
is a sound

abstract semantics defined on 𝐴 of a concrete semantics J·K, then there exist two
programs c1 and c2 such that Jc1K

♯

𝐴
≠ Jc2K

♯

𝐴
, and 𝐴 does not coincide with the

identical abstraction, i.e., J·K♯
𝐴
≠ J·K.

Making abstract interpretation complete is the holy grail in program analysis
and verification by approximate methods [23]. Since the very first non-constructive
solution to the problem of making abstract interpretations complete given in [21], a
constructive optimal abstraction refinement has been introduced in [25] and finalized
in [26], which had several applications in program analysis [11, 24, 27], model
checking [20,22,34,36,37,38], language-based security [17,32], code protection [14,
15,18], and program semantics [19]. The interested reader can refer to [35] to realize
how completeness arises everywhere in programming languages. The key result in
[26] is the notion of most abstract completeness refinement, called complete shell, of
an abstract domain 𝐴. This operation, which belongs to the family of abstract domain
refinements [12], always exists for any Scott-continuous predicate transformer —
therefore for all computable transfer functions — and it can be constructively defined
as the solution of a recursive abstract domain equation. Although extremely powerful,
this notion has an intrinsic global flavour: The complete shell of an abstract domain
with respect to a transfer function 𝑓 makes the abstract domain complete for 𝑓 on
all possible inputs. As a result, this complete shell yields an abstract domain that is
often way too fine grain to work for a program or a set of programs, possibly blowing
up to the whole concrete domain in many cases.

On the side of program logics, several over-approximation techniques are known
since the pioneering works by Floyd and Hoare [13, 29]. In classical Hoare correct-
ness logic, a triple {𝑝} c {𝑞} asserts that the postcondition 𝑞 over-approximates
the states reachable starting from states satisfying the precondition 𝑝 when execut-
ing the command c. Letting JcK denote the collecting semantics of c, this means
that JcK𝑝 ≤ 𝑞 holds. In an inductive setting, like forward program analysis, over-
approximations are useful for proving correctness w.r.t. a specification spec: in fact,
𝑞 ≤ spec implies JcK𝑝 ≤ spec. Likewise abstract interpretation, Hoare triples may
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exhibit false positives, meaning that from 𝑞 ≰ spec we cannot conclude that elements
of 𝑞 ∖ spec are real violations to the correctness specification spec.

In a dual setting, a theory of program incorrectness has been recently investigated
by O’Hearn [33]. A program specification [𝑝] c [𝑞] in O’Hearn incorrectness logic
states that the postcondition 𝑞 is an under-approximation of the states reachable
from some states satisfying 𝑝, i.e. 𝑞 ≤ JcK𝑝 must hold, therefore exposing only real
program bugs: if 𝑞 ≰ spec, then JcK𝑝 ≰ spec. Dually to Hoare correctness logic,
O’Hearn incorrectness logic cannot be used to prove program correctness because
it may exhibit false negatives, in the sense that from 𝑞 ≤ spec we cannot conclude
that JcK𝑝 ≤ spec holds.

2 Proving Completeness

The key fact that complete abstract functions compose [9], makes it possible to use
structural induction to check whether an abstract interpretation is complete for a
program. This idea was originally applied in [16] to define a very first sound proof
system for checking whether an abstract domain is complete for a given program.
Given an arbitrary abstract domain 𝐴 ∈ Abs(𝐶), the logical proof system ⊢𝐴 in
Figure 1 is such that if ⊢𝐴 c can be proved then the abstract interpreter on the domain
𝐴 is complete for the program c. Herem c is a program in a simple imperative
language and a proof obligation C𝐴( 𝑓 ) is set as the base inductive case, meaning
that the abstract domain 𝐴 is complete for the predicate transformer 𝑓 .

⊢𝐴 skip
[skip]

⊢𝐴 c1 ⊢𝐴 c2

⊢𝐴 c1; c2
[seq]

⊢𝐴 c C𝐴 (𝑏) C𝐴 (¬𝑏)

⊢𝐴 if 𝑏 then c
[if]

C𝐴 (𝑥 := 𝑎)

⊢𝐴 𝑥 := 𝑎
[:=]

⊢𝐴 c C𝐴 (𝑏) C𝐴 (¬𝑏)

⊢𝐴 while 𝑏 do c ew
[while]

Fig. 1 The core proof system ⊢𝐴 defined in [16].

This proof system ⊢𝐴 is very simple and basically postpones the checking of com-
pleteness for a given program c, no matter how complex c can be, to the checking of
completeness of the basic predicate transformers occurring in c, namely those asso-
ciated with boolean guards, i.e. C𝐴(𝑏) and C𝐴(¬𝑏), and with variable assignments,
i.e. C𝐴(𝑥 := 𝑎).

All the aforementioned methods to make an abstract interpreter complete or to
check its completeness, as in the case of the proof system in Figure 1, consider
completeness as a property that has to hold for all possible inputs. This, as we
remarked above, is extremely hard to achieve. Some recent works put forward the
idea of weakening the notion of completeness with the goal of making it more easily
attainable. The basic idea is not to require completeness of an abstract interpreter
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for all possible input properties, hence on the whole abstract domain, but rather to
demand completeness along only the sequence of store properties computed by the
program on a specific computation path. This approach makes completeness a “local”
notion, hence the name of local completeness introduced in [2]. An abstract domain
𝐴 ∈ Abs(𝐶) is locally complete for a predicate transformer 𝑓 on a precondition
𝑝 ∈ 𝐶 if the following condition holds:

C𝐴
𝑝 ( 𝑓 ) ⇔△ 𝐴 𝑓 (𝑝) = 𝐴 𝑓 𝐴(𝑝).

An abstract interpreter is therefore locally complete relatively to a given precondi-
tion 𝑝 when no false positives for the verification of a postcondition are produced
by running the abstract interpreter with 𝑝 as input. The soundness of the abstrac-
tion guarantees that JcK𝑝 ≤ 𝐴(JcK𝑝) ≤ 𝐴(JcK𝐴(𝑝)) ≤ JcK♯

𝐴
𝐴(𝑝) hold, where

𝐴(JcK𝐴(𝑝)) is the best correct approximating semantics of the program c on the
input precondition 𝑝. The novel objective here is to define a program logic where
an available under-approximation 𝑞 of the postcondition JcK𝑝 is tied to the over-
approximation of 𝑞 in the abstraction 𝐴. Hence, the aim is to design a program logic
where a provable triple ⊢𝐴 [𝑝] c [𝑞] guarantees that

𝑞 ≤ JcK𝑝 ≤ 𝐴(JcK𝑝) = 𝐴(𝑞) (1)

holds. To provide these guarantees, this proof system requires that any computational
step of the abstract interpreter is locally complete on the approximated input. As an
illustrative example, consider the program for computing the absolute value of integer
variables:

Abs(𝑥) =△ if (𝑥 ≥ 0) then ; if 𝑥 < 0 then 𝑥 := −𝑥

The ubiquitous interval abstraction Int [8,23] approximates any property 𝑠 ∈ ℘(Z) of
the integer values that the variable 𝑥 may assume by the least interval Int(𝑠) = [𝑎, 𝑏]
over-approximating 𝑆, i.e. such that 𝑆 ⊆ [𝑎, 𝑏], where 𝑎 ≤ 𝑏, 𝑎 ∈ Z ∪ {−∞} and
𝑏 ∈ Z ∪ {+∞}. Let us assume that the possible inputs for Abs(𝑥) range just in the
set 𝑖 = {𝑥 | 𝑥 is odd}. While the interval approximation of the outputs Abs(𝑖) is
Int(Abs(𝑖)) = [1, +∞], showing that 0 is not a possible result, it turns out that the
best correct approximation in Int of the concrete semantics is less precise, because it
also includes 0: in fact, Int(Abs(Int(𝑖))) = [0, +∞]. Technically, this means that Int
is incomplete for Abs on input 𝑖. This can spawn a problem in program verification:
for instance, if the result is used as divisor in an integer division, the abstract
interval analysis would raise a “division-by-0” false alarm. However, for different
sets of input, we can derive more precise results. For example, if we consider
𝑗 = {𝑥 < 0 | 𝑥 is odd}, we have that Int(Abs(Int( 𝑗))) = [1, +∞] = Int(Abs( 𝑗))
holds. This entails that the abstract domain Int is locally complete for Abs(𝑥) on
input 𝑗 but not on input 𝑖. Proving local completeness means, e.g., to prove the
following two triples:

⊢Int [{−7,−5,−3,−1}] Abs(𝑥) [{1, 7}] and ⊢Int [{−1, 0, 7}] Abs(𝑥) [{0, 7}]
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but not the triple
⊢Int [{−3,−1, 5, 7}] Abs(𝑥) [{1, 7}]

because some local completeness requirements are not met in this latter case, even if
the property {1, 7} ⊆ JAbs(𝑥)K{−3,−1, 5, 7} = Int({1, 7}) is indeed valid. Notably,
the triple ⊢Int [{−7,−5,−3,−1}] Abs(𝑥) [{1, 7}] can be used to prove correctness
w.r.t. the specification 𝑥 > 0, while the triple ⊢Int [{−1, 0, 7] Abs(𝑥) [{0, 7}] exhibits
a true counterexample for the same property.

Proving local completeness raises two main challenges. The first is obvious: the
proof obligations of the basic program components (boolean guards and assignments
in a simple imperative language) depend upon the input preconditions. The second
is more interesting and sheds a deeper insight in the way approximation and com-
putation interplay: the locality assumption closely tights completeness to the proof
system, which is inductively defined on program’s syntax, thus going well beyond
the basic program logic in Figure 1 for “global” completeness [16]. In particular,
a logic for locally complete abstract interpretations has to combine the standard
over-approximation of abstract interpretation with under-approximations used in in-
correctness logic, to encompass over- and under-approximating program reasoning
in a unified program logic.

3 LCL: Local Completeness Logic

We consider a simple language Reg of regular commands that covers imperative
languages as well as other programming paradigms [30, 31, 41]:

Reg ∋ r ::= e | r; r | r ⊕ r | r∗

This language is parametric on the syntax of basic transfer expressions e ∈ Exp,
which define the basic commands and can be instantiated, e.g., with (deterministic
or nondeterministic or parallel) assignments, boolean guards, error generation prim-
itives, etc. For simplicity, we consider integer variables 𝑥 ∈ Var and let a and b range
over, resp., arithmetic and Boolean expressions, so that:

Exp ∋ e ::= skip | 𝑥 := a | b?

The term r1; r2 represents sequential composition, r1 ⊕ r2 a choice that can behave
as either r1 or r2, and r∗ is the Kleene iteration, where r can be executed 0 or any
bounded number of times. Moreover, regular commands represent in a compact way
the structure of control-flow graphs (CFGs) of imperative programs, and standard
while-based languages, such as Imp in [41], can be retrieved by the following standard
encodings (cf. [30, Section 2.2]):

if (b) then c1 else c2 =
△ (b?; c1) ⊕ (¬b?; c2)

while (b) do c =
△ (b?; c)∗; ¬b?
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The concrete semantics J·K : Reg → 𝐶 → 𝐶 is inductively defined for any
𝑐 ranging in a concrete domain 𝐶 by assuming that the basic commands have a
semantics L ·M : Exp → 𝐶 → 𝐶 defined on 𝐶 such that LeM is an additive function
for any e ∈ Exp:

JeK𝑐 =
△ LeM𝑐 Jr1 ⊕ r2K𝑐 =

△ Jr1K𝑐 ∨𝐶 Jr2K𝑐
Jr1; r2K𝑐 =

△ Jr2K(Jr1K𝑐) Jr∗K𝑐 =
△ ∨

𝐶 {JrK𝑛𝑐 | 𝑛 ∈ N}

A program store 𝜎 : 𝑉 → Z is a total function from a finite set of variables of
interest 𝑉 ⊆ Var to values and Σ =

△
𝑉 → Z denotes the set of stores. The concrete

domain is 𝐶 =
△
℘(Σ), ordered by inclusion. When 𝑉 = {𝑥}, we let 𝑠 ∈ ℘(Z) denote

the set {𝜎 ∈ Σ | 𝜎(𝑥) ∈ 𝑠} ∈ 𝐶. Store update 𝜎[𝑥 ↦→ 𝑣] is defined as usual. The
semantics LeM : 𝐶 → 𝐶 of basic commands is standard: for any 𝑠 ∈ 𝐶,

LskipM𝑠 =△ 𝑠

L𝑥 := aM𝑠 =△ {𝜎[𝑥 ↦→ {|a|} 𝜎] | 𝜎 ∈ 𝑠}
Lb?M𝑠 =△ {𝜎 ∈ 𝑠 | {|b|} 𝜎 = tt}

where {|a|} : Σ → Z and {|b|} : Σ → {tt,ff} are defined as expected.
The abstract semantics J·K♯

𝐴
: Reg → 𝐴 → 𝐴 on an abstraction 𝐴𝛼,𝛾 ∈ Abs(𝐶)

is defined similarly, by structural induction, as follows: for any 𝑎 ∈ 𝐴,

JeK♯
𝐴
𝑎 =

△ JeK𝐴𝑎 = 𝐴(LeM𝑎) Jr1 ⊕ r2K♯𝐴𝑎 =
△ Jr1K♯𝐴𝑎 ∨𝐴 Jr2K♯𝐴𝑎

Jr1; r2K♯𝐴𝑎 =
△ Jr2K♯𝐴(Jr1K

♯

𝐴
𝑎) Jr∗K♯

𝐴
𝑎 =

△ ∨
𝐴{(JrK

♯

𝐴
)𝑛𝑎 | 𝑛 ∈ N}

(2)

It turns out that the above abstract semantics is monotonic and sound, i.e., 𝐴JrK ≤
JrK♯

𝐴
𝐴 holds. Note that the abstract semantics of a basic expression e is its bca JeK𝐴 on

𝐴. This definition (2) agrees with the standard compositional definition by structural
induction of abstract semantics used in abstract interpretation [7, 40]. Best correct
abstractions are preserved by choice commands, i.e., Jr1 ⊕ r2K𝐴𝑎 = Jr1K𝐴𝑎∨𝐴Jr2K𝐴𝑎,
but generally not by sequential composition and Kleene iteration: for example,
Jr2K𝐴 ◦ Jr1K𝐴 is not guaranteed to be the bca of Jr1; r2K.

Local completeness enjoys an “abstract convexity” property, that is, local com-
pleteness on a precondition 𝑝 implies local completeness on any assertion 𝑠 in
between 𝑝 and its abstraction 𝐴(𝑝). It is this key observation that led us to the design
of LCL𝐴, the Local Completeness Logic on 𝐴. LCL𝐴 combines over- and under-
approximation of program properties: in LCL𝐴 we can prove triples ⊢𝐴 [𝑝] r [𝑞]
ensuring that:

(i) 𝑞 is an under-approximation of the concrete semantics JrK𝑝, i.e., 𝑞 ≤ JrK𝑝;
(ii) 𝑞 and JrK𝑃 have the same over-approximation in 𝐴, i.e., 𝐴(JrK𝑝) = 𝐴(𝑞);
(iii) 𝐴 is locally complete for JrK on input 𝑝, i.e., JrK♯

𝐴
𝛼(𝑃) = 𝛼(𝑄).

Points (i–iii) guarantee that, given a specification spec expressible in 𝐴, any provable
triple ⊢𝐴 [𝑝] r [𝑞] either proves correctness of r with respect to spec or exposes
an alert in 𝑞 ∖ spec. This alert, in turn, must correspond to a true alert because 𝑞
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is an under-approximation of the concrete semantics JrK𝑝. The full proof system is
here omitted and can be found in [2]. Here, we focus on the two most relevant rules:
(relax), that allows us to generalize a proof, and (transfer), that checks for local
completeness of basic transfer functions.

The main idea of provable triple ⊢𝐴 [𝑝] r [𝑞] in LCL𝐴 is to constrain the under-
approximation 𝑞 as postcondition in such a way that it has the same abstraction of
the concrete semantics JrK𝑝. The rule (relax) allows us to weaken the premises and
strengthen the conclusions of the deductions in this proof system:

𝑑 ≤ 𝑝 ≤ 𝐴(𝑑) ⊢𝐴 [𝑑] r [𝑠] 𝑞 ≤ 𝑠 ≤ 𝐴(𝑞)
⊢𝐴 [𝑝] r [𝑞] (relax)

Since the proof system infers a 𝑠 that has the same abstraction of the concrete se-
mantics JrK𝑝, by the abstract convexity property mentioned above, we have that local
completeness of JrK on the under-approximation 𝑑 is enough to prove local complete-
ness on 𝑝. The conclusion 𝑠 can then be strengthened to any under-approximation 𝑞

preserving the abstraction (we have 𝐴(𝑠) = 𝐴(𝑞)).
All local completeness proof obligations are introduced by the rule (transfer),

in correspondence of each basic transfer function e, which is nothing else than the
local completeness version of the proof obligations C𝐴(𝑏), C𝐴(¬𝑏) and C𝐴(𝑥 := 𝑎)
in the proof system for global completeness in Figure 1:

C𝐴
𝑝 (JeK)

⊢𝐴 [𝑝] e [JeK𝑝] (transfer)

The main consequence of this construction is that, given a specification spec
expressible in the abstract domain 𝐴, a provable triple ⊢𝐴 [𝑝] r [𝑞] can determine
both correctness and incorrectness of the program r, that is,

JrK𝑝 ≤ spec ⇐⇒ 𝑞 ≤ spec (3)

holds. In equivalent terms:

• If 𝑞 ≤ spec, then we have also JrK𝑝 ≤ spec, so that the program is correct with
respect to spec.

• If 𝑞 ≰ spec, then JrK𝑝 ≰ spec also holds, thus meaning that JrK𝑝 ∖ spec is not
empty, and therefore includes a true alarm for the program. Moreover, because
𝑞 ≤ JrK𝑝, we have that 𝑞 ∖ spec ≤ JrK𝑝 ∖ spec. This means that already 𝑞 is able
to pinpoint some issues.

To illustrate the approach, we consider the following example (discussed in [2]
where the reader can find all the details of the derivation). Let us consider the
command r =△ (r1 ⊕ r2)∗ where

r1 =
△ (0 < 𝑥?; 𝑥 := 𝑥 − 1)

r2 =
△ (𝑥 < 1000?; 𝑥 := 𝑥 + 1)
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The concrete domain is 𝐶 = ℘(Z) and the abstract domain is 𝐴 = Int. Using the
pre-condition 𝑝 =

△ {1, 999}, we can derive the triple ⊢Int [𝑝] r [{0, 2, 1000}]. This
allows us to prove, for instance, that spec1 = (𝑥 ≤ 1000) is met, and exhibits two
true violations of spec2 = (100 ≤ 𝑥), namely 0 and 2.

4 Concluding Remarks

In this extended abstract, we presented the genesis and the main ideas behind the local
completeness logic LCL𝐴 that we introduced in [2]. Local completeness represents
a notable weakening of the notion of completeness originally introduced in [9] and
later studied in [26]. The key point in using LCL𝐴 is that the proof obligations
ensuring local completeness for the basic expressions occurring in a program have
to be guaranteed. Of course, this is an issue when the abstract domain 𝐴 is not
expressive enough to entail these proof obligations. This problem has been settled
in [3], where a strategy has been proposed to repair the abstract domain when a local
completeness proof obligation fails. The goal here is to refine the abstract domain
by adding a new abstract element, which must be as abstract as possible, such that
the proof obligation is satisfied in the new refined domain. This strategy is called
forward repair since it repairs the domain 𝐴 along a derivation attempt as soon as
a proof obligation of local completeness is found. After one such repair step, a new
derivation must be started in the refined domain 𝐴′, so that in general the process
is iterative and is not guaranteed to terminate, similarly to what happens program
verification based on counterexample-guided abstract refinement (CEGAR) [5, 6].
In fact, the repair 𝐴′ of a given proof obligation may compromise the satisfaction
of previously encountered proof obligations that were valid in 𝐴 but maybe not
in 𝐴′. A backward repair strategy has been therefore designed to overcome this
limitation. Because of the analogy with partition refinement, in a sentence we may
argue that abstract interpretation repair is for abstract interpretation what CEGAR
is for abstract model checking.

The general goal is to make LCL𝐴 an effective method for program analysis by
securing a good trade-off between precision and efficiency. In particular, the overall
objective is to reduce/minimize the presence of false positives/negatives. In our proof
system in order to guarantee that the property (1) holds, the stronger requirement

𝑞 ≤ JcK𝑝 ≤ 𝐴(JcK𝑝) = 𝐴(𝑞) = JcK♯
𝐴
𝐴(𝑝).

is enforced, that corresponds to ask for the actual abstract interpreter JcK♯
𝐴

to be locally
complete. This might be not strictly necessary, as the condition can be weakened to
require that the best correct abstraction is locally complete. Unfortunately, computing
the best correct abstraction JcK𝐴 is not always possible, but we are investigating
sufficient conditions to assure local completeness of best correct abstractions. The
idea here is to exploit different refinements of the abstract domain for different parts
of the derivations, so that precision can be improved whenever needed as far as
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the result can be transferred to the original domain. Furthermore, in the vein of the
so-called core domain simplification for global completeness introduced in [26],
we plan to investigate the chance to simplify the domain rather than refining it for
ensuring that local completeness holds on a given input.

Finally, let us mention that different types of weakening of the notion of com-
pleteness are possible. A notion of partial completeness has been introduced in [4],
meaning that (local) completeness holds up to some measurable error 𝜀 ≥ 0. [4]
studied a quantitative proof system which allows us to measure the imprecision of
an abstract interpretation and can be used to estimate an upper bound on the error
accumulated by the abstract interpreter during a program analysis. This quantitative
framework is general enough to be instantiated to most known metrics for abstract
domains.
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