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Exercise-induced pulmonary hemorrhage (EIPH) in horses is a 
disease characterized by (repeated) hemorrhage from the lungs 
during high-intensity athletic activity.16 This disease is reported 
with very high prevalence in numerous breeds of sport horses.34 
Although the underlying pathophysiological mechanisms and 
predisposing risk factors of EIPH are not fully understood, it 
has been shown that severe EIPH has a negative impact on ath-
letic performance in horses.11,16,17

Following pulmonary bleeding, red blood cells (RBCs) are 
removed by mucociliary clearance through the upper airways 
or degraded to hemosiderin (iron-protein-complex derived 
from breakdown of hemoglobin) by alveolar macrophages. The 
presence and severity of EIPH can be evaluated by tracheo-
bronchoscopic examination,11,16 or quantification of RBC com-
ponents in respiratory tract fluid. Although there are numerous 
diagnostic methods with different specificities and sensitivi-
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Abstract
Exercise-induced pulmonary hemorrhage (EIPH) is a relevant respiratory disease in sport horses, which can be diagnosed by 
examination of bronchoalveolar lavage fluid (BALF) cells using the total hemosiderin score (THS). The aim of this study was to 
evaluate the diagnostic accuracy and reproducibility of annotators and to validate a deep learning-based algorithm for the THS. 
Digitized cytological specimens stained for iron were prepared from 52 equine BALF samples. Ten annotators produced a THS 
for each slide according to published methods. The reference methods for comparing annotator’s and algorithmic performance 
included a ground truth dataset, the mean annotators’ THSs, and chemical iron measurements. Results of the study showed that 
annotators had marked interobserver variability of the THS, which was mostly due to a systematic error between annotators in 
grading the intracytoplasmatic hemosiderin content of individual macrophages. Regarding overall measurement error between 
the annotators, 87.7% of the variance could be reduced by using standardized grades based on the ground truth. The algorithm 
was highly consistent with the ground truth in assigning hemosiderin grades. Compared with the ground truth THS, annotators 
had an accuracy of diagnosing EIPH (THS of < or ≥ 75) of 75.7%, whereas, the algorithm had an accuracy of 92.3% with no 
relevant differences in correlation with chemical iron measurements. The results show that deep learning-based algorithms are 
useful for improving reproducibility and routine applicability of the THS. For THS by experts, a diagnostic uncertainty interval 
of 40 to 110 is proposed. THSs within this interval have insufficient reproducibility regarding the EIPH diagnosis.
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ties, noted below, a true gold standard method (such as chemi-
cal quantification of hemosiderin) is lacking.10,12,35

Tracheobronchoscopic evaluation of blood content in the 
airways shortly after strenuous exercise has been proposed as 
the best available method by the American College of Veterinary 
Internal Medicine.16 This method is relatively easy to perform 
and seems to have a very high specificity.19 However, sensitiv-
ity was estimated to be only 59% (many false-negative diagno-
ses) when compared with RBC content in respiratory fluid.19 
Therefore, it has been proposed that a lack of tracheobroncho-
scopic evidence of blood cannot be used to rule out EIPH.19,29

Diagnosis of EIPH through examination of respiratory tract 
fluids has been derived from the RBC content,19,31 hemosiderin 
content in alveolar macrophages,12,14 or less commonly hemoglo-
bin concentration.31 When compared with tracheobronchoscopy, 
these tests are generally assigned a higher sensitivity and many 
authors have recommended these as the best available diagnostic 
tests.14,17,19,29,34,35 Whereas RBC counts can only be used to diag-
nose a recent EIPH episode within a few hours to days, increased 
hemosiderin content in alveolar macrophages (ie, hemosidero-
phages) may reveal less recent EIPH episodes.10 Previous studies 
have found that increased numbers of hemosiderophages can be 
detected from 7 up to 28 days after a single event of pulmonary 
bleeding or experimental blood inoculation.25,29,33

Different cytologic, semi-quantitative scoring systems to 
evaluate hemosiderin content in alveolar macrophages have 
been proposed, which either use conventional cytological 
staining or specific iron stains (eg, Prussian blue) for hemosid-
erin.12–14,18,30 The most complex scoring system by Doucet and 
Viel grades the intracytoplasmic hemosiderin content of 300 
alveolar macrophages into 5 tiers, based on the amount of blue 
hemosiderin pigment, using special iron stain. Scoring ranges 
from 0 (absence of intracytoplasmic hemosiderin) to 4 (macro-
phages are filled with hemosiderin). Subsequently, the total 
hemosiderin score (THS) is calculated per 100 cells, and can 
range from 0 to 400. Compared with post-exercise tracheo-
bronchoscopy, the presence of EIPH was best predicted at a 
cut-off value of THS ≥ 75, with a sensitivity of 94% and a 
specificity of 88%.14 Although this scoring system is probably 
the most sensitive and presumably most reproducible diagnos-
tic test currently available, it has been declared unsuitable for 
routine diagnostic use due to the high expenditure of human 
labor.10 Regardless of its quantitative nature, previous studies 
have also shown that grading hemosiderin content of individual 
cells based on the definition by Doucet and Viel has some inter-
rater and intrarater inconsistencies.20,22

To overcome these limitations of the THS, a deep learning-
based algorithm for automated image analysis has been devel-
oped by our research group.20,23 Automated image analysis is a 
field of great interest in veterinary medicine and is becoming 
increasingly feasible with incorporation of whole slide image 
(WSI) scanners into the workflow of veterinary laboratories, 
appropriate information technology (IT) infrastructure and 
computational power, and advancing artificial intelligence 
methods, specifically deep learning.8,24,28,36 However, a thor-
ough validation of those algorithms is necessary before they 

can be used for routine diagnostic service or clinical 
research.24,28

The aim of the present study was to determine the interob-
server variability of the THS between 10 human experts (anno-
tators) and to validate whether the diagnosis of EIPH can 
benefit from the use of a deep learning-based algorithm. The 
performance of the algorithm was compared with the 10 anno-
tators, a ground truth dataset, and chemical measurements. Our 
hypothesis was that the use of a deep learning-based algorithm 
allows for a more efficient THS analysis while having a high 
diagnostic consistency and accuracy that is at least equivalent 
to the annotators.

Materials and Methods

Study Specimens (Cytologic WSIs)

For this study, 29 bronchoalveolar lavage fluid (BALF) sam-
ples from 25 horses, including 2 samples from each of 4 horses 
with separate BALF samples from the left and right lungs, were 
prospectively collected from routine diagnostic samples sub-
mitted to VetPath Laboratory Services (Ascot, Australia; Fig. 
1). Twenty-eight samples were submitted for routine evalua-
tion of EIPH and 1 case was submitted for routine evaluation of 
equine asthma. Use of these samples for this study was 
approved by the State Office of Health and Social Affairs of 
Berlin, Germany, approval ID: StN 011/20. Two cytological 
specimens per BALF sample were prepared using cytocentrifu-
gation (CYTOPRO 7620, Wescor Inc., Logan, UT, USA) of a 
variable volume of BALF (depending on cellular density) at 
510 × g for 3 minutes. Unstained specimens were sent to the 
FU Berlin, Germany, and 1 of the 2 specimens was stained with 
Perl’s Prussian blue and the other using a modified Turnbull’s 
blue, Quincke reaction, according to standard protocols.32 In 
both cytochemical staining methods, nonheme-iron reacts with 
the staining solution forming an insoluble blue pigment.26 
Hemosiderin is largely composed of ferric iron (Fe+3); how-
ever, there is also some ferrous iron (Fe2+) present along the 
margins of hemosiderin.27 While Prussian blue stains iron in 
the ferric state, Turnbull’s blue detects Fe2+ and is considered 
less suitable to stain hemosiderophages. However, the Quincke 
reaction uses a pretreatment with ammonium sulfide that 
reduces Fe3+ to Fe2+, therefore, iron of both oxidation states is 
stained by the modified Turnbull’s blue reaction.32 Nuclear 
Fast Red solution was used to counterstain nuclei. Although 
previous studies on equine EIPH mainly used Prussian blue,12,14 
we used both staining methods in an attempt to increase image 
variability which in turn might improve the robustness of the 
developed algorithm. All slides were digitized with a linear 
scanner (ScanScope CS2; Leica) in 1 focal plane at 400× mag-
nification and a resolution of 0.25 µm per pixel. Focus points 
for scanning had to be selected manually for some slides to 
improve WSI quality. One slide stained with Prussian blue was 
excluded due to insufficient number of cells (< 300) present on 
the slide. In 12 WSIs stained with the modified Turnbull’s blue 
method, budding fungal hyphae and conidiophores were 
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detected. The most reasonable explanation was fungal contam-
ination of the staining solution. As fungal conidiophores may 
be difficult to distinguish from hemosiderophages with special 
iron staining, we excluded 2 WSIs with a proportion of > 1% 
of fungal conidiophores among alveolar macrophages. The 
other 10 cases had a proportion of conidiophores of < 1% and 
influence on the THS was considered negligible. Of the 3 
excluded WSIs, the corresponding WSI of the same BALF 
sample with the other staining methods was also excluded for 

consistent statistical analysis. The final study set comprised 26 
WSIs for each staining method (ie, a total of 52 WSIs).

Annotators’ Scoring

THSs of the 52 WSIs were performed by 10 annotators (J.S., 
F.B., J.B.M., A.K.B., G.B., M.E.G., A.G., K.d.P., K.W., and 
J.H.) including 5 board-certified veterinary clinical patholo-
gists, 4 veterinary clinical or anatomic pathologists in training, 

Figure 1.  Overview of the study material and methods. Abbreviations: PB, Perl’s Prussian blue; TB: modified Turnbull’s blue (Quincke 
reaction); WSI, whole slide image.
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and 1 equine internal medicine specialist with experience in 
equine BALF cytology. Participants were provided with the 
original publication on the THS system for horses14 and were 
instructed to follow that method. Hemosiderin content in mac-
rophages is a continuum (Fig. 2) and it may be difficult to apply 
the thresholds between the 5 discrete grades as defined in the 
original study.14 Nevertheless, we decided against providing 
more detailed instructions with respect to the grading thresh-
olds to keep the observer variability to a realistic degree of cur-
rent diagnostic practice. To both view WSIs and label each cell 
included in the THS, the offline SlideRunner annotation soft-
ware3 (N = 9) or the online annotation platform EXACT21 (N 
= 1) was used. Each annotators created a database containing 
centroid coordinate annotations (spot annotation in the middle 
of the cell) of the enumerated macrophages with individual 
label classes for the 5 hemosiderin grades. To ensure that anno-
tators labeled at least 300 cells, we developed a plug-in soft-
ware tool that automatically counted the annotations of all label 
classes combined and notified the annotator when 300 annota-
tions had been made. Seven annotators measured the time 
required to perform the THS in each WSI. Time measurement 
started with labeling the first macrophage and ended after 
labeling the last macrophage.

Supervised Deep Learning-Based Algorithms

For development of deep learning-based models using super-
vised learning, a state-of-the-art object detection network, 
RetinaNet, was used as previously described by Marzahl  
et al.20 The model was trained with reference annotations 
(ground truth dataset) for the 52 cases (see below). The cases 
of the ground truth dataset were split into 3 groups for 3-fold 
cross-validation. Three models were developed that each used 
a different subset of the data for training the model (training 
set), validating the training process (validation set), and test-
ing the performance of the final model (test set). Thereby, we 
were able to analyze all 52 WSIs with our algorithms while 
avoiding testing algorithmic performance on the same images 
that were used for training or validation. To guarantee that all 
3 subsets of the split dataset contained cases with Grade 4 
cells, we sorted the cases by their number of grade 4 cells and 
assigned them in alternating order to these groups. The models 
were trained with the Adam optimizer and a maximal learning 
rate schedule of 0.001 until convergence was reached on the 

respective validation set (early stopping paradigm), as previ-
ously described.20

Reference Methods

A true gold standard for quantification of hemosiderin in BALF 
is not available.10,12,35 For comparison of the performance of 
the THS determined by 10 annotators and the deep learning-
based algorithm, we used different reference methods: (1) 
mean annotators’ THS, (2) ground truth THS, and (3) labora-
tory tests (RBC count, hemoglobin, and iron concentration). 
The human and algorithmic performance in assigning individ-
ual macrophages into the 5 hemosiderin grades was compared 
with the ground truth cell annotations.

Mean annotators’ THS.  The mean THS of the 10 annotators was 
calculated for each WSI based on the ≥ 300 annotations of 
each annotator (see above). This reflects the consensus of the 
10 annotators and thereby the difference (systematic error) 
between each annotator is averaged.

Ground truth annotations.  The ground truth dataset used in this 
study contained annotations for all alveolar macrophages of the 
52 WSIs. Annotations were created by 1 experienced annotator 
(CAB). The ground truth is a theoretical concept of “correct” 
annotations.2 However, errors in the ground truth cannot be 
avoided as it is created by an annotator. We have tried to miti-
gate human errors by applying a computer-assisted labeling 
approach. For the analysis of the study results, either labels of 
the hemosiderin grade per alveolar macrophage or the overall 
ground truth THS (score for all cells annotated in the slide) 
were used.

The used ground truth dataset has been published by 
Marzahl et al23 and detailed labeling methods and dataset 
description can be found in that paper. In summary, develop-
ment of the final ground truth dataset was done in 5 consecu-
tive steps: (1) expert-derived annotations of 16 WSIs, (2) 
development of a deep learning-based algorithm (based on the 
dataset from step 1), (3) creation of algorithm-derived annota-
tions in the remaining 36 WSIs, (4) diligent review of the 
expert-derived and algorithm-derived annotations in all 52 
WSIs, and (5) review of the assigned label classes assisted by a 
histogram-like clustering of all annotations. Grading of alveo-
lar macrophages was done according to the definitions by 

Figure 2.  Schematic of the continuous hemosiderin content in alveolar macrophages stained with Perl’s Prussian blue. According to the 
scoring system by Doucet and Viel,14 macrophages have to be classified into 5 discrete grades, for which the cut-offs may be applied variably 
between different annotators. The following classification of the macrophages is according to the ground truth annotator. (a) Grade 0. (b) 
Borderline between Grades 0 and 1. (c) Grade 1. (d) Borderline between Grades 1 and 2. (e) Grade 2. (f) Borderline between Grades 2 and 
3. (g) Grade 3. (h) Borderline between Grades 3 and 4. (i) Grade 4.
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Doucet and Viel.14 Algorithmic pre-annotations (step 3) of the 
36 WSIs were performed to increase efficiency of dataset 
development (algorithm-expert collaboration). A previous 
study showed the suitability of this approach for dataset devel-
opment.22 Histogram-like clustering of cell patches based on a 
continuous, algorithmic regression score (density maps) 
allowed review of the assigned grade and thereby improved 
consistency of assigning the discrete hemosiderin grades.

Laboratory evaluation of BALF.  To obtain a more objective mea-
sure than the mean THS of the annotators or the ground truth 
THS, we measured other components of blood or its degrada-
tion products in BALF, ie, the RBC count, hemoglobin concen-
tration, and iron concentration. Chemical quantification of 
hemosiderin is not possible. A 5-ml aliquot of BALF was ana-
lyzed for RBC and hemoglobin content using a CELL-DYN 
3700 hematology analyzer (Abbott Laboratories, Abbott Park, 
IL, USA). RBC counts were obtained by means of impedance 
technology and hemoglobin determination was performed 
using the modified hemoglobin-hydroxylamine method. The 
remainder of the fluid aliquot was centrifuged and the cell-
lysed supernatant used for iron determination. Iron was mea-
sured using an AU680 (Beckman Coulter, Inc., Brea, CA, 
USA) using a chromogenic method with reduction of iron, and 
subsequent formation of a complex of Fe2+ with 2,4,6-tri-(2-
pyridil)-5-5triazine, which is measured photometrically.

Statistical Analysis

All calculations were performed using R version 4.1.2 (R 
Foundation, Vienna, Austria). Diagnostic accuracy of EIPH 
based on the published diagnostic THS cut-off value of ≥ 7514 
was calculated in comparison with the ground truth and the 
mean annotators’ score.

To calculate measures of variance including, overall mea-
surement error, error between annotators and residual error, 
and the intraclass correlation coefficient (ICC) for the THS, a 
mixed model for a fully crossed, single measure, agreement 
design (ICC [was fitted using the R package lme4, version 1.1-
27.1]).5 The percentage reduction of overall THS measurement 
error and reduction in between the annotators due to grade stan-
dardization was calculated by fitting 2 models using the score 
before and after standardization as outcome.

Cell-level color grading standardization was done by match-
ing the selected cells of every annotator with the cells in the 
ground truth dataset or the algorithmic dataset, both of which 
aimed to contain annotations/predictions for every macrophage 
in the WSIs. Macrophage annotations were considered match-
ing if the Euclidean distance between the center coordinates of 
both annotations was ≤ 50 pixels apart. Annotations without a 
match in the ground truth dataset were excluded from the stan-
dardized grading.

To evaluate the effect of the overall measurement error on 
the diagnosis of EIPH, we calculated an 80% uncertainty inter-
val around the classification threshold of ≥ 75.14 This uncer-
tainty interval, analogous to the definition of reference 

intervals,15 is defined as the 10% and 90% quantiles of the anno-
tators’ measurement errors. For individual annotator scores 
within this interval, the probability that the diagnosis matches 
the diagnosis of the mean annotators’ score is less than 80% and 
thus should be considered unreliable and not reproducible.

The correlation between the individual annotators’ scores, 
the mean annotators’ score, the ground truth score, the algorith-
mic score, and the BALF RBC count, hemoglobin, and iron 
concentration was calculated using a Spearman correlation.

Results

All 10 participants annotated at least 300 macrophages in each of 
the 52 WSIs, thereby creating 158,143 annotations. Annotators 
had different selection patterns of the 300 cells per image: While 
some annotators screened consecutive fields of view and anno-
tated all macrophages within those fields, others screened the 
slide in a longitudinal or meandering pattern or selected evenly 
distributed image locations and annotated some macrophages 
within these fields. The ground truth dataset included all alveolar 
macrophages in the 52 WSIs, and consisted of 215,426 annota-
tions (median: 4137 per slide; range: 596–8954 per slide). The 
deep learning-based algorithm analyzed the entire image of the 
52 WSIs (Fig. 3) and detected 218,003 macrophages (median: 
3943 per slide; range: 683–8670 per slide).

Time measurements for annotations were available for 7 
annotators and 358 WSIs. The median time per case was 14:01 
minutes for all annotators combined, and the median time per 
case ranged between 08:11 and 19:00 minutes for individual 
annotators. Automated analysis using the deep learning-based 
algorithms of the entire slides took 1:37 minutes on average 
(min: 1:31 minutes and max: 1:54 minutes) for each of the 52 
WSIs using a modern graphics processing unit (NVIDIA P5000).

Annotators’ THS: Consistency and Source of Error

The THS had notable variability between the 10 annotators 
(Fig. 4). The interquartile range of the difference to the mean 
annotators’ THS was 30 score points (–16 to +14) for all cases 
combined. The ICC for the THS of the 10 annotators was 0.685, 
ie, the scoring variance can be explained to 68.5% by a system-
atic error (difference between annotators in executing the THS) 
and to 31.5% by a random error (inconsistency within each 
annotator). Generally, the mean THS of the annotators was 
somewhat higher than the ground truth THS (on average 25.3 
score points). Comparison of the 2 staining methods revealed 
that the THS determined from slides stained with modified 
Turnbull’s blue were higher than the THS from the correspond-
ing slide stained with Prussian blue (on average 8.5 score 
points; standard error: 11.1). A stronger tendency of the THS 
difference due to the staining methods was observed in the 
ground truth dataset (average difference of 19.2 score points; 
standard error of 11.7).

To evaluate the variability in hemosiderin grading, we com-
pared the hemosiderin grade of each cell annotated by the annota-
tors with the hemosiderin grade of the ground truth dataset. For 
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the 158,143 annotations, we could find a cell-matched ground 
truth label in 121,217 (76.7%) cases. Only 61.7% (76,051/121,025) 
of the matched macrophage annotations had the same hemosid-
erin grade (Supplemental Table S1). Most of the divergent labels 
(93.6%, 42,411/44,974) differed only by one-grade level. The 
annotators assigned a higher grade in 37,919/44,974 divergent 
labels (84.3%). Subsequently, we exchanged the hemosiderin 
grade assigned by the annotators with the hemosiderin label from 
the ground truth dataset for all the matched cells, thereby creating 
a grade-standardized THS. Fig. 5 shows that the measurement 
error of the THS (difference between the annotators) was mark-
edly reduced when using the standardized hemosiderin grade. 
Variance analysis determined that the overall measurement error 
was reduced by 87.8%. The systematic error of annotators was 
reduced by 97.7%, proving high variability between annotators in 
applying the published hemosiderin grade stratifications (ie, 
judging color saturation). The random error was reduced by 
66.4% when the grade-standardized THS was used, which can be 
explained by the higher consistency in the ground truth dataset 
that was achieved by the multi-step labeling approach (see the 
“Materials and Methods” section).

Algorithmic THS: Comparison with Annotators’ and 
Ground Truth Annotations

The algorithmic THS was generally lower than the mean anno-
tators’ THS (on average 28.6 score points); however, it was 
similar to the ground truth THS (average difference of 3.2 score 
points; Fig. 4). The mean difference of the algorithmic THS 

between the 2 staining methods was 10.6 score points (standard 
error: 12.7). Algorithmically detected macrophages could be 
matched (Euclidean distance of ≤ 50 pixels) with 86.6% 
(186,650/218,003) of the ground truth annotations and 76.5% 
(121,025/158,143) of the participants’ annotations. Agreement 
between the assigned hemosiderin grade labels of these cell-
matched annotations was much higher between the algorithm 
and the ground truth (accuracy: 91.3%; 170,322/186,650, 
Supplemental Table S2) than between the algorithm and anno-
tators (62.8%; 76,051/121,025; Supplemental Table S3). 
Divergence between the algorithmic and ground truth hemosid-
erin grades, as well as the algorithmic and annotators’ hemosid-
erin grades differed mostly by one-grade level in 99.9% and 
94.3% of instances, respectively. However, annotators had a 
clear tendency to assign higher grades than the algorithm. Of 
the cells with divergent hemosiderin grade labels, 84.3% 
(37,919/44,974) of the annotators’ labels were higher than the 
algorithmic label. In contrast, the divergent algorithmic labels 
had a higher grade level in 50.8% (8289/16,328) and lower 
grade level in 49.2% (8039/8289) of instances, as compared 
with the ground truth label. This explains why the algorithmic 
THSs are generally similar to the ground truth THSs, but nota-
bly lower than the annotators’ THSs.

Diagnostic Accuracy of the Annotators’ and 
Algorithmic THS

In 28 of the 52 WSIs (54%), the THS value range of the 10 
annotators overlaps with the diagnostic cut-off value (THS = 

Figure 3.  Cytologic image of a bronchoalveolar lavage fluid stained with Prussian blue. The boxes around the cells represent algorithmic 
detections of alveolar macrophages with assigned hemosiderin grades according to the scoring system by Doucet and Viel.14 Yellow box, 
hemosiderin grade 0; pink box, hemosiderin grade 1; green box, hemosiderin grade 2; orange box, hemosiderin grade 3; hemosiderin grade 
4 not present in the image.
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75); thus, there would have been inconsistencies in diagnosing 
EIPH between the 10 annotators (Fig. 4). Consensus on the 
EIPH diagnosis (THS above or below cut-off value) by 8/10 
annotators was present in 82.7% of the cases (43/52, 
Supplemental Fig. S1) and consensus by 9/10 annotators was 
present in 69.2% of the cases (36/52; Supplemental Fig. S2 and 
Table S4). When using the grade-standardized THS of the 

annotators, the consensus for 9/10 annotators increased to 
90.4%.

Compared with the ground truth diagnosis of EIPH (ground 
truth THS < 75 or ≥ 75), annotators accurately classified the 
cases in 75.7% with a range of 63.5%–92.3% for individual 
annotators (Table 1, Fig. 6). The algorithmic THS had an accu-
racy of classifying the presence or absence of EIPH of 92.3%. 

Figure 4.  Comparison of the annotators’ total hemosiderin scores (box plots; N = 10) with the ground truth score (+) and the algorithmic 
score (×) separately for the 2 staining methods (blue boxplot: Prussian blue, PB; red boxplot: modified Turnbull’s blue, TB). Broken lines 
represent the cut-off value for diagnosis of exercise-induced pulmonary hemorrhage (EIPH; total hemosiderin score = 75) published by 
Doucet and Viel.14
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When comparing the algorithmic and individual annotator’s 
THS with the mean annotators’ THS, diagnostic accuracy was 
higher for annotators (89.0%) than for the algorithmic approach 
(71.2%). When analyzing the mean annotators’ THS, the THS 
range for which there was less than 80% probability of being 
consistent with a diagnosis of EIPH was 39.2–109.8. For 58% 
instances of the annotators’ THSs that were within this range, 
the WSIs had not obtained consensus on a diagnosis of EIPH 
by 9/10 annotators, whereas, in 89% of instances with a THS 
outside (THS <39.2 or THS > 109.8) of this range, the WSIs 
had achieved consensus in 9/10 annotators.

Correlation With the Reference Methods

The mean annotators’ THSs and algorithmic THSs had very 
high correlations (R = 0.98) with the ground truth THSs (Table 
2). The same correlation (R = 0.98) was identified when the 
algorithmic THSs were compared with the mean annotators’ 
THS, whereas, individual annotators had a correlation of 0.94 
to 0.97 to the mean annotators’ THS.

To facilitate an annotator-independent evaluation of the 3 
total hemosiderin scoring methods (the annotators’ THS, the 

ground truth THS, and the algorithmic THS), each method was 
correlated with the RBC count and chemical measurements of 
hemoglobin and iron concentration. The RBC count and hemo-
globin concentration did not correlate with any THS method 
(Table 2). The algorithmic THS had a slightly higher correla-
tion with the iron measurement (r = 0.79) than the individual 
(r = 0.61–0.79) or mean annotators’ (r = 0.75) THS or ground 
truth THS (r = 0.75). The iron concentration ranged between 
< 0.4 and 4.7 µmol/L and was below the measurable threshold 
(< 0.4 µmol/L) in 9 cases.

Discussion

The THS by Doucet and Viel14 is considered to be one of the 
most sensitive and accurate tools for the diagnosis of EIPH. 
However, this method is regarded as too time-consuming for a 
routine diagnostic test10 and it has not been used in prevalence 
studies to screen large horse populations. In this study, we evalu-
ated automated image analysis as an approach to improve speed, 
accuracy, and reproducibility of the THS. Our algorithm was 
able to score thousands of cells in less than 2 minutes and had 
equivalent diagnostic accuracy compared with the annotators.

In this study, we also evaluated interobserver variability of 
the THS and showed that there is high systematic error between 
annotators. Variability between the annotators’ THSs might 
have resulted from the following sources: (1) bias in selection of 
the 300 macrophages (representativeness of the included cells) 
and (2) variability and inconsistency in grading the intracyto-
plasmatic hemosiderin content of each cell. Regarding the first 
source of variability, we noticed that the annotators 

Figure 5.  Comparison of the total hemosiderin score (THS) 
differences of individual annotators to the mean THSs of all 
annotators. For the left box plot, the hemosiderin grade of each 
included macrophage was derived from the annotators’ annotations. 
The measurement error is derived to a large proportion from 
interobserver variability in hemosiderin grading (systematic error). 
For the middle and right box plots, the cells selected by the 
annotators were graded according to the hemosiderin label of 
the ground truth annotations (middle boxplot) or the algorithmic 
predictions (right boxplot), thereby eliminating the interobserver 
variability of hemosiderin grading.

Figure 6.  Scatter plots for the total hemosiderin scores (THSs) 
determined by the 10 annotators (black dots) and deep learning-
based algorithm (red dots). The 52 cases are separated based on the 
ground truth THS being above or below the diagnostic cut-off value 
of 75 indicated by the broken line. The gray bar around the broken 
line is the diagnostic 80% uncertainty interval determined for the 
human annotators in this study.
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had different selection patterns, which did not seem to have an 
obvious influence on the annotator’s variability. We determined 
that many of the expert’s annotations could not be matched with 
the ground truth annotations or algorithmic predictions. The 
most likely explanation for this is that it is quite difficult to dis-
tinguish the different cell types using the special iron stain. The 
study annotators and ground truth annotator seemed to have dif-
ficulty to differentiate alveolar macrophages from the other cell 
types. However, most of the systematic errors arose from the 
differences in applying the hemosiderin grading stratification to 
alveolar macrophages. Inconsistency in hemosiderin grading 
was most relevant in cases that were close to the diagnostic cut-
off, and led to a lack of consensus by the majority of annotators 
for the diagnosis of EIPH. For scoring by human experts, we 
therefore propose to use an 80% uncertainty interval of ± 35 
score points around the published cut-off value of 75, for which 
the diagnosis of EIPH is not reproducible by a human expert. 
Annotators with THS values within this uncertainty interval, ie, 
THS values between 40 and 110, had a likelihood of a discrep-
ant diagnosis in more than 20% of cases, when compared with 
the other annotators, for the presence or absence of EIPH. Our 
results highlight that increased standardization or specific train-
ing in the application of the scoring system is needed for future 
studies and for its use in the diagnostic setting. Development of 
a standardized “color chart” with images of alveolar macro-
phages with continuously increasing hemosiderin content and 
clearly defined thresholds might improve grading consistency 
between human experts. In our study, we determined that the 
hemosiderin grading of experts can be standardized by using 

algorithmic grade predictions, as this led to a marked reduction 
in the systematic error between annotators.

The present study identified that deep learning-based algo-
rithms are able to achieve high performance for scoring hemo-
siderophages that was in many aspects equivalent to the 
performance of experts. However, a major limitation of the 
present study is the lack of a true gold standard10,12,35 to compare 
the performance of expert annotators with the performance of 
the deep learning-based algorithm without bias. For the devel-
opment of deep learning-based algorithms for histopathological 
and cytological tasks, it is often the gold standard to compare 
the algorithmic predictions with expert-derived ground truth 
annotations.2,6,20,25 Nevertheless, it needs to be acknowledged 
that human errors in the ground truth labeling may have a bias 
on performance evaluation. This is why we sought to mitigate 
human errors in the ground truth dataset by using a multi-step, 
computer-assisted labeling approach,23 which our research 
group validated for this specific task in previous studies.22 As 
this ground truth dataset was also used to train the algorithmic 
models (using a 3-fold cross-validation), we found very high 
consistency between the ground truth dataset and algorithmic 
predictions, indicating that the models replicated the training 
data very well. When the ground truth THSs were used as the 
reference, the algorithm had a higher diagnostic accuracy than 
the annotators. In contrast, the 10 annotators had the clear ten-
dency to assign higher hemosiderin grades to alveolar macro-
phages, ie, systematically applied lower thresholds for the 
individual hemosiderin grades than the ground truth annotator 
and algorithm. This explains the marked difference between the 

Table 1.  Diagnostic accuracy of exercise-induced pulmonary hemorrhage (EIPH) based on the total hemosiderin score (THS; above or 
below diagnostic cut-off of 75) of the 10 annotators and the deep learning-based algorithm.

	 Accuracy for Diagnosis of EIPH (above or below cut-off)

  Compared With the Ground Truth THS
Compared With the Mean 

Annotators’ THS

THS Method All Cases (N = 52)
Cases Stained with 

Prussian Blue (N = 26)

Cases Stained with 
Modified Turnbull Blue  

(N = 26) All Cases (N = 52)

All annotators combined 75.7% 69.6% 81.9% 89.0%
Individual annotators 63.5%–92.3% 

(median: 75.0%)
57.7%–84.6%

(median: 69.2%)
69.2%–100%

(median: 80.8%)
60.8%–98.1% 

(median: 92.3%)
Algorithm 92.3% 100% 84.6% 71.2%

Table 2.  Spearman’s correlation of the annotator’s, ground truth, and algorithmic total hemosiderin score (THS) with the ground truth 
THS as well as the red blood cell count, hemoglobin concentration, and iron concentration from bronchoalveolar lavage fluid.

THS Method	 Ground Truth THS Red Blood Cell Count
Hemoglobin 

Concentration Iron Concentration

Mean annotators’ THS .98 .08 .11 .75
THS of individual annotators .91–.97

(median: .94)
−.11 to .14 

(median: .05)
−.07 to .19 

(median: .11)
.61–.79 

(median: .72)
Ground truth THS 1.0 .06 .15 .75
Algorithmic THS .98 .12 .20 .79
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THSs of the experts and the ground truth and algorithmic indi-
vidual THSs as well as the higher diagnostic accuracy of the 
individual annotators’ THSs compared with the mean annota-
tors’ THS. Depending on the training data, the deep learning 
model can learn any desired threshold between the 5 cell grades. 
Adaptation of the algorithmic results to individual users by 
applying multiplication factors to the predicted cell classes or 
THS may not be desired, as the scoring methods should be keep 
consistent between pathologists and laboratories.

Due to the above mentioned bias of the mean annotators’ THS 
and ground truth dataset as a reference method, we evaluated 3 
laboratory tests, which are observer-independent (RBC count, 
and hemoglobin and iron concentrations in BALF). We found 
that the iron concentration had a high correlation with the THSs, 
whereas, the RBC count and hemoglobin concentration did not 
correlate with the THSs. RBCs and hemoglobin are features of 
acute pulmonary bleeding and are degraded shortly after the 
hemorrhagic event and therefore seem to be inappropriate refer-
ence methods for the THS, which measures chronic hemorrhage. 
In the present study, we used iron concentration for the first time 
as a measure of pulmonary bleeding. The limitation of the chem-
ical iron measurement was the low iron content in BALF, which 
in some cases was below the limit of detection. Future studies are 
needed to determine the value of iron concentration as a refer-
ence method for the THS and as a potential diagnostic test for 
EIPH. Potential source of bias of the iron concentration is the 
variable cell density in BALF (and thus variable density of alve-
olar macrophages) and contamination with RBC.

Automated image analysis using deep learning is a highly 
relevant evolving technique, used in various fields of research 
in veterinary clinical, anatomic, and toxicologic pathology. 
Algorithms are mainly applied with the goal to increasing 
accuracy, reproducibility, and time efficiency of quantitative 
tasks.1,6,8,24,28,36 A precondition for computerized analysis is the 
availability of digital images, which is aided by the current 
trend of digitizing the diagnostic workflow of pathology labo-
ratories. The use of digital microscopy for cytological speci-
mens is, however, hampered by limited image resolution and 
lack of fine focus of default WSIs.7,8 Nevertheless, the annota-
tors of the present study consider WSIs appropriate to perform 
the THS in this study’s cases, because of the uniform depth of 
the samples, and as relatively little cellular detail is necessary 
to evaluate the intracytoplasmic hemosiderin content of macro-
phages. Another limitation of WSIs specific to the task of scor-
ing hemosiderophages is that different WSI scanners often 
exhibit a marked difference in the color representation, ie, they 
might have a higher or lower intensity of the blue color. This is 
likely to influence annotators and algorithms in evaluating the 
amount of blue pigment and needs to be evaluated in future 
studies. Currently, there are few studies that have evaluated the 
benefits of automated image analysis compared with the visual 
assessment by experts in veterinary medicine.4,6,9,20 These stud-
ies are needed to critically evaluate potential sources of algo-
rithmic errors before an algorithm can be used for routine 
diagnostic purposes. Based on our results, we suggest that 
algorithms may improve accuracy, reproducibility, and time 

efficiency and are therefore potentially useful for a routine 
diagnostic or research setting. Future studies need to evaluate 
how THS algorithms are best implemented in a diagnostic 
workflow, while ensuring high diagnostic reliability. Generally, 
algorithms can be used to automatically predict the diagnosis 
or they can be used as an assistive tool, which supports annota-
tors in critical steps of the diagnostic task (computer-assisted 
diagnosis). For the diagnosis of EIPH, THSs could be derived 
fully automatically by the algorithm with only rough verifica-
tion of the predictions by an expert. Alternatively, algorithms 
could be used to standardize hemosiderin grading of individual 
macrophages that are selected by annotators (computer-assisted 
THS). The benefits of both applications on diagnostic accuracy 
and reproducibility have been demonstrated in this study.

Conclusion

Cytologic quantification of hemosiderin content in alveolar 
macrophages using the THS is considered the most sensitive 
method for the diagnosis of EIPH. However, we have shown 
that the THS by human experts is time-consuming and there is 
high interobserver variability (systematic error) in applying the 
scoring criteria. We propose to use an uncertainty interval of 75 
± 35 score points for the diagnosis of EIPH by experts. 
Furthermore, to overcome the limitations of human experts, we 
validated a deep learning-based image analysis algorithm that 
had high accuracy/correlation compared with the mean THSs 
of 10 annotators, a ground truth dataset, and iron concentra-
tions of BALF. We have shown that deep learning-based algo-
rithms are a valuable tool for time-efficient, accurate, and 
reproducible scoring of hemosiderophages, which could be 
applied to research studies, such as large prevalence studies 
and routine diagnostic service.
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