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Abstract 

Background  The threatening impact of conventional agriculture (CA) on soils could be due to the detrimental 
effects on soil microbial communities. Conversely, organic agriculture (OA) is envisaged as potentially enhancing 
helpful microbial communities and is proposed as environmentally sustainable. The soil microbiome influences soil 
health and quality, hence, it requires deeper investigation and understanding. In this study, applying 16S metabarcod-
ing and qPCR techniques, we compared the microbial patterns of long-term organically and conventionally managed 
soils to explore their similarities and differences.

Results  Total DNA quantification showed an over 20-fold higher amount of DNA in OA soils 
(mean = 22.1 ± 3.92 μg g−1), compared to CA soils (mean = 0.95 ± 0.17 μg g−1). While 16S metabarcoding evidenced 
the absence of significant differences among communities of the two farming systems in terms of ecological 
indices, the qPCR analyses targeting functional genes reported a significantly higher abundance of all considered 
targets in OA sites spanning up to four-fold log increases. While OA and CA did not appear to affect overall bacterial 
diversity or evenness per se, qPCR-based functional analysis in OA showed a consistently higher abundance of all 
the salient microbial genes tested, when compared to CA, underlying a potentially beneficial impact on soil fertility 
and sustainability.

Conclusions  In essence, the sequencing-based analysis of absolute bacterial diversity could not differentiate 
the farming systems based on the amount of diversity but identified a unique set of taxa defining each. Hence, 
pairing this evaluation with the qPCR-based functional gene analyses can be a suitable approach to distinguish 
the exerted effects of CA or OA on soils.

Keywords  Organic agriculture, Conventional agriculture, Sustainable agriculture, 16S-metabarcoding, Multi-amplicon 
sequencing, Functional genes, Soil profiling, Plant-growth-promoting rhizobacteria, Total soil DNA, Sugar beet

*Correspondence:
Piergiorgio Stevanato
stevanato@unipd.it
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40538-023-00450-3&domain=pdf


Page 2 of 15Maretto et al. Chem. Biol. Technol. Agric.           (2023) 10:78 

Graphical Abstract

Background
The global population, which is predicted to reach nine 
billion people by 2030 by the United Nations [1], is 
demanding the modern agricultural sector to achieve 
several goals that need careful long-term planning [2, 3]. 
Agriculture is expected to provide an increasing quantity 
of high-quality food to suppress hunger and malnutri-
tion, but at the same time, prevent further impact on the 
surrounding environment [4]. The dilemma of choosing 
between nutritional versus environmental sustainability 

requires a thoughtful search for reliable solutions. Con-
ventional agriculture has achieved several benefits for 
agricultural productivity, including increased yields 
and reduced crop losses, due to the utilization of exter-
nal inputs [5, 6]. However, these practices have led to an 
intensification of the environmental pressure [7, 8] and 
a diffuse detrimental impact on ecosystems across the 
world [9, 10]. By reducing the use of external inputs and 
integrating several practices considered more environ-
mentally friendly, organic agriculture strives to address 
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the challenge of limiting the anthropogenic factors that 
might cause the degradation of ecosystems [11].

Sugar beet (Beta vulgaris L.), which serves as the pri-
mary source of approximately 20% to 30% of the annual 
global sugar production, constitutes an essential crop 
within the agricultural landscape of 52 countries situ-
ated in the temperate climate zone [12–14]. According 
to Eurostat [15], EU-27 countries grew ~ 1.5 million ha of 
sugar beet in 2019 and harvested ~ 111.6 million t (74.4 
t ha−1 on average), which accounts for about half of the 
world’s total production. The largest sugar beet produc-
ers in the EU-27 are France, Germany, and Poland, which 
together produce more than 60.0% of the EU-27’s sugar 
beets (France 31.0%, Germany 22.8%, and Poland 12.1%). 
The demand for organic sugar is increasing in line with 
the growth of the organic market. In Europe, sugar pro-
duction from organically grown beets is still embryonic 
with production reported only in Italy, Sweden, Den-
mark, and the Netherlands. One of the reasons for the 
low availability of organically produced sugar beet is 
the vulnerability to failure due to the management gap 
in organic farming. Moreover, organic sugar beet farm-
ing requires further improvements to achieve true mul-
tifunctionality that can assure a root yield comparable 
to the one identifying conventional farming along with 
the provision of several collateral ecological services that 
contribute to the preservation of the agroecosystem [16, 
17].

The preservation of the agroecosystem revolves 
around the concepts of protection of soil health, qual-
ity and implementation of sustainable soil management 
practices. Soil, in this respect, has been defined as an 
indispensable complex natural resource that provides 
ecological functions, such as gene reservoir, and non-
ecological functions, like archaeological artifact protec-
tion [18]. However, seeing soil as a granted commodity 
rather than the delicate result of the continuous delivery 
of plant organic compounds, and their microbially medi-
ated breakdown and re-synthesis risks shifting its under-
standing from its actual nature. The live components 
of soil, encompassed within the soil microbiome pool, 
have a crucial role in building and maintaining its struc-
ture, which in turn regulates water availability, hosts the 
transformation and cycling of nutrients, the catabolism 
of toxins, mainly by microbes that account for a sizeable 
portion of the global genetic diversity [19]. Therefore, it is 
crucial to deepen our knowledge of soil microbes and the 
extent of their active services in agricultural contexts, to 
protect soil ecosystems and assure human welfare.

Improved molecular biology and high-throughput 
sequencing-based methods have been used in recent 
years to better understand microbial communities 
over traditional microbiology methods. By employing 

culture-independent techniques, the limitations associ-
ated with obtaining comprehensive information from the 
challenging cultivation of microorganisms collected from 
the environment have been effectively overcome [20]. 
DNA metabarcoding techniques using high-throughput 
sequencing, sequence alignment tools using bioinfor-
matics methods, and databases of annotated microbes 
contribute to the determination of microbial species and 
knowledge of their genome functions in the soil. This is 
crucial in determining soil fertility and productivity with 
the goal of improving the agricultural system by relying 
more on microbial ecosystem services and less on the 
utilization of external input factors. Lately, multi-ampli-
con-based sequencing approaches provide a robust com-
positional structure of individual microbial community 
members and quantitative Real-Time PCR (qPCR) based 
approaches are used downstream for precise quantifica-
tion of microbial targets [21]. Additionally, significant 
improvements in the algorithms and analysis methods of 
16S analysis have been undertaken for community diver-
sity estimation. Particularly, amplicon sequence variants 
(ASVs)-based clustering by predicting sequencing errors 
and denoising the reads [22] outperformed the opera-
tional taxonomical units (OTUs)-based approach [23].

The hypothesis underlying this study posits that soil 
bioindicators have the potential to display discernible 
variations when comparing conventional and organic 
farming practices. By investigating these bioindicators, 
the study is aimed to identify suitable markers from the 
soil microbiome in differentiating the effects of conven-
tional versus organic farming practices by testing: (a) 
total soil DNA content, (b) 16S bacterial community 
using metabarcoding, and (c) specific functional gene 
quantitation via qPCR amplification.

Methods
Sites’ location and soil sampling
Soil samples were collected in six agricultural sites 
located in the Po River valley, Northeast Italy (Fig.  1). 
Among these sites, three were under organic agricul-
ture (OA), and three were under conventional agricul-
ture (CA). The three organically managed sites were 
located in Canal Dei Cuori farm (Loreo, RO, N 45° 05′ 
02″, E 12° 10′ 55″), Le Barbarighe farm (San Martino 
di Venezze, RO, N 45° 06′ 10″, E 11° 53′ 03″) and Terre 
Emerse farm (Lozzo Atestino, PD, N 45° 17′ 25″, E 11° 
35′ 00″), respectively. One of the three convention-
ally managed sites was located in Marsilio farm (Pozzo-
novo, PD, N 45° 10′ 51″, E 11° 47′ 48″), and the other 
two were located in the Cooperativa Produttori Bieticoli 
(CoProB) farm (Minerbio, BO, CoProB 1 N 44° 36′ 56″, 
E 11° 31′ 0.4″; CoProB 2 N 44° 38′ 12″, E 11° 33′ 49″). 
The soil classification, reported in Table 1, was based on 
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the soil maps produced and published by the Regional 
Agency for Prevention and Environmental Protection of 
Veneto (ARPAV) [24] and by the Emilia-Romagna Region 
(RER) [25]. Regarding the OA sites, Canal Dei Cuori and 
Le Barbarighe soils were classified as Endoaquolls [26] 
and Gleyic Phaeozem [27], and Terre Emerse soil was 
classified as Haplustept [26] and Haplic Cambisol [27]. 
Concerning the CA sites, Marsilio soil was classified as 
Haplustept [26], and Fluvic Cambisol [27], and CoProB 
soils were classified as Haplustepts [26], and Fluvic Cam-
bisol [27]. All sampling sites, which have been apply-
ing their respective soil management for over 20  years, 
were under sugar beet cultivation at the sampling time, 
which occurred in the month of August 2020. At the 
sampling time, all sugar beets within the sampled fields 
had attained the harvestable size (BBCH-49) [28]. Sugar 
beet yield traits such as root yield, sugar yield, and pro-
cessing quality-related traits were evaluated in 2020 and 
2021 (Additional file 1: Table S1). Soil sampling was per-
formed by applying the grid sampling technique [29]. A 

manual auger was used to collect forty-eight sub-samples 
at a 15  cm depth from each sampling site. Sub-samples 
were, then, mixed to obtain two biological replicates 
from each farm, referred to as sample “a” and sample “b”. 
The composite samples were subjected to a 72-h air-dry-
ing process at room temperature [30], followed by siev-
ing through a nested 0.5 mm wire mesh and subsequent 
immediate physicochemical analyses and total soil DNA 
extraction.

Soil physicochemical analyses
Soil samples were profiled by applying physical and 
chemical analysis techniques. Particle size distribution, 
compiled in Table  1, was investigated for each sample 
using laser diffraction analysis (Mastersizer 2000, Mal-
vern Panalytical, Malvern, United Kingdom) [31]. Soil pH 
was measured potentiometrically by applying the soil/
ultra-pure water ratio 1:2.5 w/v. A combustion analy-
sis was performed to assess the concentration of total 
N, total C (Elementar Vario MACRO CNS, Elementar 

Fig. 1  Left: Contour border line of Italy with the indication of the experimental zone; Right: Aerial photograph of the studied area located in the Po 
River valley. The OA sites are in blue, and the CA sites are in purple

Table 1  Results of the physical analysis to assess the particle size distribution characterizing each soil sample

The Soil taxonomy classification is based on the USDA and the WRB guidelines

Sample Sand % Silt % Clay % USDA Soil Taxonomy WRB Soil Taxonomy

CoProB 1 30.2 54.7 15.1 Haplustept Fluvic Cambisol

CoProB 2 20.1 56.0 23.9 Haplustept Fluvic Cambisol

Marsilio 25.9 51.0 23.1 Haplustept Fluvic Cambisol

Canal Dei Cuori 3.6 63.5 32.9 Endoaquoll Gleyic Phaeozem

Le Barbarighe 4.2 56.8 39.0 Endoaquoll Gleyic Phaeozem

Terre Emerse 20.5 50.3 29.2 Haplustept Haplic Cambisol
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Analysensysteme GmbH, Hanau, Germany) and organic 
C (Skalar PrimacsSNC−100, Skalar Analytical BV, Breda, 
The Netherlands). The content of extractable phospho-
rus was determined using the Olsen P method [32]. 
Exchangeable cations assessment was performed using 
inductively coupled plasma optical emission spectrom-
etry (ICP–OES) (Spectro Arcos MV, Spectro Ametek, 
Kleve, Germany).

Total soil DNA extraction, multi‑amplicon 16S 
rDNA sequencing, quantification of functional 
genes for ecosystem services and bacterial 
plant‑growth‑promoting traits
Total soil DNA extraction from 250 mg of air-dried soil 
was performed using the DNeasy PowerSoil Pro Kit (Qia-
gen, Germany), in accordance with the manufacturer’s 
instructions. Purified nucleic acid quantification was car-
ried out using a Qubit Flex fluorometer (Thermo Fisher 
Scientific, Carlsbad, CA) with a Qubit 1 × dsDNA High 
Sensitivity Assay Kit (Thermo Fisher Scientific, Carlsbad, 
CA).

16S rDNA meta-barcoding library preparation was 
performed using the 16S Ion Metagenomics Kit (Thermo 
Fisher Scientific, Carlsbad, CA) that carries two sets of 
pooled primers targeting seven hypervariable regions of 
the 16S rRNA gene. The templating of 400 bp was carried 
out in an Ion One Touch 2 instrument using an Ion 520 
chip and sequenced on the Ion GeneStudio S5 System 
(Thermo Fisher Scientific, Carlsbad, CA).

Raw reads processing was performed conforming to 
the pipeline published in Maretto et  al. [33]. Demulti-
plexed uBAM files from the sequencer were converted 
into FASTQ format using samtools bamtofastq (v1.10) 
[34]. Raw reads were trimmed for 20 nucleotides on both 
ends to remove primers using cutadapt (v3.5) [35]. A 
Quantitative Insights Into Microbial Ecology 2 (QIIME2) 
(v2020.08) [36] microbiome pipeline was further used to 
analyze the raw reads. Imported reads were first denoised 
and dereplicated using the “qiime dada2” plugin fol-
lowed by taxonomic classification of ASVs by a “clas-
sify-consensus-blast” plugin using SILVA SSU (v138.1) 
[37] as the reference database. Alpha diversity rarefac-
tion analysis was done using the “qiime alpha-diversity” 
plugin and corresponding results were plotted using 
ggplot2 R-package [38]. The feature abundance table and 
taxonomic assignment table were exported and further 
processed using RStudio (version R-4.2.2) [39, 40] in con-
junction with the tibble package [41] and TaxaPhyloseq 
[42]. Partially classified taxonomic entries or entries with 
counts below 10 were excluded from the analysis. Micro-
biotaProcess packages [43] in R were used to calculate 
the diversity indices, perform PCoA analysis and, counts 

normalization. All plots were generated using ggplot2 
R-package.

The abundance of the 16S gene,  and that of genes 
involved in the N biogeochemical cycle such as 
amoA  (eubacterial, AOB and archaeal, AOA ammo-
nia oxidase/nitrification),  nifH (nitrogenase/nitrogen 
fixation), nirK (nitrite reductase/intermediate denitrifi-
cation), and nosZ (nitrous oxide reductase/terminal deni-
trification), and the abundance of the gene coding for the 
gh48 cellulase enzyme, of the PKs (polyketides) and NRPs 
(non-ribosomal peptide) cluster genes that are thought to 
play a crucial role in the adaptation of bacteria to soil, and 
in plants’ health and development [44], were analyzed by 
qPCR using a QuantStudio 12K-Flex apparatus (Thermo 
Fisher Scientific, Carlsbad, CA). Moreover, the presence 
of specific 16S rDNA from Asticcacaulis, Mesorhizobium, 
Nocardioides, Sphingobium and Sphingomonas, which 
are known prominent sugar beet growth-promoting 
rhizobacteria (PGPR) [45], was assessed using the same 
qPCR approach. All primers sequences used are reported 
in Table 2. The assays targeting the five PGPR have been 
designed based on the sequences retrieved from the 
16S metabarcoding data generated for this study. The 
reaction mix was composed of 2.5  µL PowerUp SYBR 
Green Master Mix (Thermo Fisher Scientific, Carlsbad, 
CA), 0.15 µL each of forward and reverse primer, 1.2 µL 
PCR-grade water, and 1 µL template DNA. The numbers 
of gene copies in soil for the targeted genes were calcu-
lated starting from the Ct values on the basis of calibra-
tion curves constructed using specific concentrations of 
Escherichia coli for the 16S gene or of the targeted func-
tional genes cloned in plasmids of known length for the 
other amplicons [46].

Overall statistical analyses, including those performed 
on soil chemical properties, were performed using RStu-
dio and the dplyr package [47]. The evaluation of signifi-
cant differences between the mean values occurred with 
the non-parametric Wilcoxon Rank Sum test [48]. Data 
are expressed as mean ± standard error.

Results
The analysis of the texture of the collected topsoil 
(Table 1), based on the size particle limits and abundance 
established by the United States Department of Agricul-
ture (USDA) in 1951 [58], showed that all CA samples are 
classified as “Silt Loam soils” since their silt percentage 
is higher than 50% and, those of sand and clay are in the 
range of 20–30% and 15–30% respectively. The samples 
from Canal Dei Cuori and Le Barbarighe farms are clas-
sified as “Silty Clay Loam soils” since they have less than 
the 20% of sand and clay content in the range of 27–40%. 
The samples collected in Terre Emerse farm are classi-
fied as “Clay Loam soils” since their percentages of clay 
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and sand are higher than 27% and 20%, respectively. All 
the soil chemical characterization results are compiled in 
Table 3. No significant differences were observed in soil 
pH, ranging between 7.60 and 8.11 in CA soils and 7.38–
7.91 in OA soils. Total N content was not significantly 
different in the two farming systems. Both carbon forms 
explored in this study were significantly higher (p < 0.01) 
in OA soils than in CA soils. In detail, the mean total C 
content in OA soils was 164% higher than in CA soils. 
Moreover, the organic C mean was 231% higher in OA 
soils when compared to CA soils. Olsen P did not show 
a significant difference between the two groups of soils. 
Among the exchangeable cations evaluated in this study, 

Ca++ and Mg++ were significantly (p < 0.05) more abun-
dant in OA soils than in CA soils. At the same time, Na+ 
and K+ showed no significant differences between OA 
and CA soils. The Principal Component Analysis (PCA) 
performed on the soil chemical analyses results showed 
(Fig. 2) that the main parameters influencing dimension 
1 are the exchangeable cations and the total N, and the 
main parameters influencing dimension 2 are total C and 
organic C. 

Total soil DNA quantification results highlighted 
that OA soils (mean = 22.1 ± 3.92  µg  g−1, individ-
ual farms: Canal Dei Cuori = 33.45 ± 0.75  µg  g−1, 
Le Barbarighe = 20.61 ± 0.27  µg  g−1, Terre 

Table 2  Sequences of the primers used in this project and targeted amplicon length

The NCBI accession number is provided for all the primers designed on the base of a reference sequence obtained from this work’s metabarcoding

Primer Sequence References

16S F GGG​TTG​CGC​TCG​TTGC​ [49]

16S R ATG​GYT​GTC​GTC​AGC​TCG​TG

Archaeal amoA F STAA​TGG​TCT​GGC​TTA​GAC​G [50]

Archaeal amoA R GCG​GCC​ATC​CAT​CTG​TAT​GT

Bacterial amoA F GGG​GTT​TCT​ACT​GGT​GGT​ [51]

Bacterial amoA R CCC​CTC​KGSAAA​GCC​TTC​TTC​

nifH F AAA​GGY​GGW​ATC​GGY​AAR​TCC​ACC​AC [52]

nifH R TTGTTSGCSGCR​TAC​ATSGCC​ATC​AT

nosZ F CGY​TGT​TCMTCG​ACA​GCCAG​ [52]

nosZ R CAT​GTG​CAGNGCR​TGG​CAGAA​

nirK F ATY​GGC​GGVCAY​GGC​GA [53]

nirK R RGC​CTC​GAT​CAG​RTT​RTG​GTT​

gh48 8F CGC​CCC​ABGMSWWG​TAC​CA [54]

gh48 5R GCY​TCC​CAIATR​TCC​ATC​

PKS I F GGC​AAC​GCC​TAC​CAC​ATG​CANGGNYT [55]

PKS I R GGT​CCG​CGG​GAC​GTA​RTC​NARRTC​

PKS II F TSGCSTGC​TTG​GAYGCSATC​ [56]

PKS II R TGGAANCCG​CCG​AABCCTCT​

NRPS I F CGC​GCG​CAT​GTA​CTG​GAC​NGGNGAYYT​ [55]

NRPS I R GGA​GTG​GCC​GCC​CARNYBRAA​RAA​

NRPS II F GCSTACSYSATSTACACSTCSGG [57]

NRPS II R SASGTCVCCSGTSCGGTAS

Primer Sequence NCBI Accession Number

Asticcacaulis F GCA​TTA​AGC​AAT​CCG​CCT​GG NR_109665.1

Asticcacaulis R GGG​ATG​TCC​AGG​CAT​GTC​AA

Mesorhizobium F ATC​CTG​GCT​CAG​AAC​GAA​CG NR_170463.1

Mesorhizobium R CCC​GGA​GTT​GTT​CCG​TAG​AG

Nocardioides F AAT​CTG​CCC​TTC​ACT​TCG​GG FJ423762.1

Nocardioides R GAG​CAC​ATC​CTC​CAC​CGA​AA

Sphingobium F CAC​TCG​AAG​GCG​TTG​AGC​TA NR_102886.2

Sphingobium R GCA​GGT​TCC​CCT​ACG​GCT​A

Sphingomonas F GGC​ATG​CCT​AAC​ACA​TGC​AA NR_132332.1

Sphingomonas R TAT​TCC​GAA​CCC​AAG​GGC​AG



Page 7 of 15Maretto et al. Chem. Biol. Technol. Agric.           (2023) 10:78 	

Emerse = 12.17 ± 0.08  µg  g−1) held a significantly 
higher (p < 0.01) amount of DNA than CA soils 
(mean = 0.95 ± 0.17  µg  g−1, individual farms: Mar-
silio = 1.45 ± 0.01  µg  g−1, CoProB 2 = 0.80 ± 0.11  µg  g−1, 
CoProB 1 = 0.59 ± 0.06 µg g−1).

The metabarcoding analysis of the bacterial 16S gene 
on the soil samples provided 9,682,353 single-end reads 
with an average length of 217 nucleotides. The 32,725 
identified ASVs were eventually classified into 980 
database-featured taxa names. 91.1% of the annotated 
reads were classified at the phylum rank level, 90.3% 
at the class level, 88.7% at the order level, 87.0% at the 
family level, the 80.4% at the genus level.

The sequences rarefaction analysis conducted to assess 
whether the samples had been sequenced to a suffi-
cient depth showed (Additional file  2: Fig. S1) that all 
the soils reached the plateau on the curve ranked from 
Canal Dei Cuori, the one with the highest number of 
detected sequences, to CoProB 1, the one with the low-
est. The alpha-diversity was examined within each taxo-
nomical level by calculating three ecological indices 
such as Chao1, Shannon, and Simpson 1-D to evaluate 
community richness, diversity, and evenness, respec-
tively. The results of the analyses conducted at the genus 
level, which is representative of all the higher taxonomic 
ranks, are reported in Fig. 3. It is visible that, for all the 

Table 3  Results of the chemical analyses on the soil samples at the beginning of the experiment

All the analyses have been conducted on the dry matter (d.m.). Means with the same letter in the vertical comparison are not significantly different at the Wilcoxon 
Rank Sum test. *Significance level p < 0.05, **Significance level p < 0.01

Sample pH Total N Total C** Organic C** Olsen P
g kg−1 d.m g kg−1 d.m g kg−1 d.m mg kg−1 d.m

CoProB 1a 7.99 1.96 29.54 11.86 71.53

CoProB 1b 8.11 2.02 29.89 11.77 72.44

CoProB 2a 7.61 1.56 28.30 11.16 58.09

CoProB 2b 7.73 1.63 28.47 11.20 60.31

Marsilio a 7.60 3.96 31.34 10.55 39.44

Marsilio b 7.66 4.02 32.15 11.26 40.58

CA 7.78 ± 0.09 a 2.53 ± 0.47 a 29.95 ± 0.63 b 11.30 ± 0.19 b 57.07 ± 5.89 a

Canal Dei Cuori a 7.38 5.06 42.36 23.54 109.34

Canal Dei Cuori b 7.45 5.13 43.59 22.46 101.86

Le Barbarighe a 7.91 2.72 58.10 36.19 25.04

Le Barbarighe b 7.87 2.87 58.73 35.78 27.03

Terre Emerse a 7.86 3.42 37.17 17.77 26.55

Terre Emerse b 7.69 3.58 37.33 17.32 22.98

OA 7.69 ± 0.09 a 3.80 ± 0.43 a 46.21 ± 4.00 a 25.51 ± 3.46 a 52.13 ± 16.95 a

Sample Exchangeable Ca* Exchangeable Mg* Exchangeable Na Exchangeable K
mg kg−1 d.m mg kg−1 d.m mg kg−1 d.m mg kg−1 d.m

CoProB 1a 1734 140.30 65.90 64.12

CoProB 1b 1703 138.68 67.78 69.31

CoProB 2a 1886 166.97 91.09 84.67

CoProB 2b 1963 178.20 99.33 82.73

Marsilio a 3834 216.92 54.72 159.73

Marsilio b 4001 224.66 60.82 137.72

CA 2520 ± 444 b 177.62 ± 15.03 b 73.27 ± 7.26 a 99.71 ± 16.08 a

Canal Dei Cuori a 7004 472.80 118.20 267.92

Canal Dei Cuori b 7153 465.11 120.96 243.19

Le Barbarighe a 5122 244.53 93.47 121.28

Le Barbarighe b 5348 238.67 91.40 135.88

Terre Emerse a 2354 171.74 17.67 70.67

Terre Emerse b 2199 183.44 16.80 72.91

OA 4863 ± 885 a 296.05 ± 55.95 a 76.42 ± 19.37 a 151.98 ± 34.56 a
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Fig. 2  Principal Component Analysis (PCA) biplot showing the analyzed samples’ spatial clustering based on their chemical properties. Samples 
on the same side of a given variable have a higher value for the same

Fig.3  Boxplot comparisons of Taxa Richness (a), Shannon Index (b), and Simpson 1-D Index (c) at the genus taxonomic level to evaluate the alpha 
diversity in OA sites (green) and CA sites (purple)
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considered indices, although some OA soils manifest the 
highest absolute values of richness, diversity and even-
ness, the means are even lower than those of the conven-
tional soils and moreover, for none of the indices there 
was any significant difference between the two farming 
systems.

To determine whether there could be any possible 
association between the multiple independent vari-
ables characterizing microbial communities, multi-
variate analyses were conducted. Figure  4 displays the 
results of the PCA, the Principal Coordinates Analysis 
(PCoA), and the Permutational Multivariate Analysis 
of Dispersion (PERMDISP2). Although PCA and PCoA 
approaches showed a partial overlap of the two clusters, 
it is noticeable that the OA samples clustered tightly 
compared to the CA samples. The PERMDISP2 analy-
sis, based on the Bray–Curtis dissimilarity matrix, indi-
cated a significant (p = 0.01035) separation of the ellipse’s 
centroids. The Permutational Multivariate Analysis of 
Variance (PERMANOVA) returned a p-value = 0.051 for 
999 permutations, a p-value = 0.0463 for 9999 permuta-
tions, a p-value = 0.04703 for 99,999 permutations, and 
the Analysis of Similarities (ANOSIM) reported an R 
value = 0.2481 and a p-value = 0.0177. The results of the 

analysis of the set of microbial taxa that are character-
istic of the two farming systems and the analysis of the 
taxa shared among OA sites and CA sites are reported 
in Fig. 5. The overall core microbiome analysis showed a 
higher abundance of detected taxa in CA soils compared 
to OA soils, however, for every considered taxonomical 
level, the analysis of the shared taxa reported that OA 
sites shared a higher number of taxa compared to CA 
sites. In detail, OA sites, from the phylum to the genus 
taxonomic level, shared 103%, 108%, 109%, 111% and 
113% more taxa than CA sites.

The qPCR analysis results, reported in Table 4, depict 
that OA sites when compared to CA sites, have a signifi-
cantly higher abundance of bacterial 16S gene (p < 0.01) 
and a significantly higher number of copies of func-
tionally relevant genes such as those involved in the N 
biogeochemical cycle (Archaeal-amoA p < 0.05, Eubac-
terial-amoA p < 0.001, nifH p < 0.001, nosZ p < 0.05, nirK 
p < 0.01), the one coding for the gh48 enzyme (p < 0.01) 
and those genes clusters coding for polyketides (PKs I 
p < 0.01, PKs II p < 0.001) and non-ribosomal peptides 
(p < 0.05). The relative abundance of the sugar beet-
growth-promoting rhizobacteria in OA and CA samples 
is portrayed in Fig.  6. In this figure, the threshold cycle 

Fig. 4  Multivariate analyses for the bacterial communities sequencing data at the genus taxonomic level to evaluate the beta diversity in OA sites 
(green) and CA sites (purple). a Principal Component Analysis (PCA), b Principal Coordinate Analysis (PCoA) based on the Bray–Curtis dissimilarity 
matrix, c Permutational Multivariate Analysis of Dispersion (PERMDISP2) showing the distance of each sample from the group’s centroid
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Fig. 5  Venn diagrams showing the number of shared and unique taxa between the two soil farming systems (OA green, CA purple) and among the 
same soil management, compiled for each taxonomic level from phylum to genus
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values (Ct) are shown (i.e., the lower the number the 
higher the abundance of the amplicon). All five bacterial 
genera were detected in all samples irrespective of the 
soil management but were significantly (p < 0.001) more 
copious in OA sites. 

Discussion
In this study, despite observing variations in several 
chemical soil characteristics and recording soil nutri-
ents concentrations that, in accordance with Seufert 
et al. [59], supported OA farms’ production rate, as well 
as an over twenty-year-long difference in the organic 

versus conventional management regimes, the six stud-
ied sites exhibited similar alpha-diversity profiles for the 
total bacterial communities, as far as the 16S metabar-
coding approach is concerned. The data confirm those 
from prior analyses of ours in a survey that included ten 
horticultural farms [60], as well as with the findings of a 
study covering 25 years of conversion from conventional 
to organic cropping in the Netherlands, in which authors 
concluded that the shift to organic management did not 
increase bacterial community diversity, and for fungi the 
increase occurred only in some soils [61].

The absence of significant differences in richness, 
diversity and evenness indices suggests that the bacterial 
community structures, in terms of absolute diversity per 
se, are determined by a combination of soil structure and 
chemistry [62], and the crop’s rhizosphere [63, 64], or by 
a passive atmospheric discharge of cells [65] rather than 
by a deterministic selection brought about by each of the 
two farming systems. Despite the diverse soil manage-
ment practices implemented over the past decades, the 
observed similarity in overall soil bacteria composition 
may be attributed to a long-lasting legacy effect of a much 
older common cropping regime before conversion to 
organic farming of part of the sites [66]. The beta-diver-
sity analysis partially clustered the two farming systems 
separately. Although the PERMANOVA analysis, oscil-
lating between significant and non-significant results, 
reports an uncertain level of differences in the overall 
community composition, PERMDISP2 analysis describes 
a significant difference in the dispersion of the samples, 
meaning that there is a somewhat detectable difference 
in the heterogeneity in the community composition [67, 
68]. On the other hand, the ANOSIM analysis reports 
exiguous but still significant differences in the microbial 

Table 4  Gene copy numbers resulting from the qPCR analyses

Means with different letters in the vertical comparison are significantly different at the Wilcoxon Rank Sum test. *Significance level p < 0.05, **Significance level 
p < 0.01, ***Significance level p < 0.001

Farming system 16S** Archaeal amoA* Eubacterial amoA*** nifH***
Gene copy number Gene copy number Gene copy number Gene copy number

CA 1.36 × 108 ± 2.99 × 107 b 2.43 × 103 ± 6.86 × 102 b 5.36 × 103 ± 1.42 × 103 b 5.40 × 103 ± 1.81 × 103 b

OA 3.52 × 108 ± 3.30 × 107 a 3.86 × 105 ± 1.34 × 105 a 9.46 × 105 ± 2.22 × 105 a 1.55 × 106 ± 4.02 × 105 a

Farming system nosZ* nirK* gh48** NRPS I*
Gene copy number Gene copy number Gene copy number Gene copy number

CA 1.13 × 103 ± 2.57 × 102 b 5.29 × 105 ± 1.18 × 105 b 1.12 × 104 ± 8.15 × 102 b 6.11 × 101 ± 2.12 × 101 b

OA 4.81 × 105 ± 1.89 × 105 a 4.91 × 106 ± 1.34 × 106 a 1.90 × 105 ± 2.52 × 104 a 2.17 × 105 ± 1.08 × 105 a

Farming system NRPS II* PKS I*** PKS II**
Gene copy number Gene copy number Gene copy number

CA 5.86 × 103 ± 1.09 × 103 b 8.88 × 101 ± 2.62 × 101 b 2.33 × 104 ± 6.87 × 103 b

OA 3.27 × 105 ± 1.26 × 105 a 1.01 × 104 ± 1.33 × 103 a 1.59 × 106 ± 5.23 × 105 a

Fig. 6  Relative abundance of five sugar beet growth-promoting 
rhizobacteria (PGPR) detected by qPCR. The plot shows 
the comparison between the Threshold Cycle (Ct) values for all 
the tested genera. Ct values are inversely related to the target 
abundance, meaning that a lower Ct value corresponds to a higher 
abundance of the investigated amplicon. ***Significance level 
p < 0.001
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communities’ composition. The core microbiome evalu-
ation reported an enhanced number of detected taxa 
within the CA soils compared to the OA soils.

The higher number of detected taxa can depend on the 
combination of environmental processes, for instance, 
the airborne immigration of foreign DNA from dif-
ferent sites as described by Rosselli et  al. [65], and the 
mechanical incorporation of that migrated DNA due to 
the frequent tillage the CA sites are subjected to. On the 
other hand, the qPCR results instead spotlight a remark-
ably different situation. Within a two-fold increase of the 
whole bacterial community shown by the 16S primers in 
OA soils, the single functional genes targets reported in 
Table  4 unraveled major changes. All these changes are 
pointed towards the same direction, as results from the 
ten-fold increase of the cellulase and nitrite reductase 
genes in OA soils, from the more than 100-fold increase 
of both nitrification genes, for the synthesis of the non-
ribosomal peptide II and polyketide II, and for the ter-
minal gene of the denitrification pathway nosZ, which 
eliminates nitrous oxide, which is one of the worst gases 
involved in global warming. Even more pronounced in 
OA soils as well, are the increases in the number of cop-
ies of other determinants as the nearly thousand-fold rise 
of the nitrogen fixation gene nifH, and of the polyketide 
synthesis I, and the almost 10,000-fold over-representa-
tion of the non-ribosomal peptide I. At the same time, the 
five genera Asticcacaulis, Mesorhizobium, Nocardioides, 
Sphingobium and Sphingomonas, which were all known 
as promoters of the sugar beet crop, that was in place at 
the sampling time, were found enriched in the OA fields. 
All the above-mentioned tested genes, all of which were 
significantly more abundant in the organic farms in com-
parison to the conventional ones, not only qualify as 
proxies to tell apart the effects of the two farming sys-
tems but are also positive indicators of actively ongoing 
cycles for C and N and of the abundance of proficient 
plant-growth promoting guilds. As a general considera-
tion, the 16S is a multicopy gene implying that some spe-
cies may possess more copies of the gene than others. 
However, as always in these types of studies involving 
metabarcoding, it is important to note that the number 
of microbial gene copies does not accurately reflect the 
actual number of genomes in the system. This is due to 
the variable gene dosage, which introduces a certain level 
of overestimation [69–71]. Nonetheless, this situation is 
averagely occurring across various habitats, and there 
are no indications or reasons to suggest that either of our 
compared soil types (organic vs. conventional manage-
ment) would unequivocally exhibit an overabundance of 
bacteria with higher numbers of 16S gene copies. There-
fore, we hypothesize that any differences should balance 
each other out.

Conclusions
The novel findings presented herein are consistent with 
earlier studies that compared soil properties between 
conventional and organic cropping systems using various 
approaches, such as microbial biomass estimation and 
plate counts [72], soil respiration and enzymatic assays 
[73], and phospholipid fatty acid (PLFA) profiles [74]. In 
the current report, the combination of the 23-fold more 
abundant total soil DNA, the 2.6 times more plentiful 16S 
gene, the significantly more copious amount of the con-
sidered functional genes in OA sites, and the consistently 
higher presence of all five PGPR taxa investigated, leads 
to the consideration that the OA management appears to 
have a positive effect on the functioning of the agroeco-
system which is tightly connected to soil fertility.

As concerns the approaches employed, the metagen-
omics-based barcoding of the 16S via sequencing was 
extremely valuable in providing a detailed taxonomi-
cal view of the community structure and allowed to 
achieve the very important finding that conventional 
soils feature a bacterial alpha diversity which does not 
record signs of decline when compared with the one 
occurring in organic soils. However, the approach was 
not providing clues to identify the impacts of each 
management as it yielded non-significant differences 
in the bacterial biodiversity stemming from each of 
the indices. It appears that a high taxonomic richness, 
equally characterizing CA, and OA sites does not reveal 
elements of functional biodiversity that instead occur 
in the soil and can be unraveled by qPCR. The lack of 
concordance between metabarcoding and qPCR results 
strongly suggests that the analysis of the absolute 
microbial biodiversity cannot adequately differentiate 
agricultural ecosystems as a function of their different 
managing systems. However, while the CA and OA soils 
show a similar level of diversity with the diversity indi-
ces, deeper investigation, as shown by Venn diagrams 
in Fig.  5, shows a set of taxa present uniquely in each 
soil type, which can perhaps lead to relevant functional 
attributes of the two soil types. Consequently, bacterial 
community sequencing, although extremely informa-
tive, is not a suitable stand-alone proxy to achieve the 
functional differentiation of the two farming systems. 
In this respect, it is necessary to state that this is not 
due to any limitation inherent to the technique, which 
remains one of the deepest tools for soil biota analysis, 
but rather on two distinct facts. The efficiency of taxa 
detection from environmental DNA strongly depends 
on the number of replicates, sequencing depth and 
quality, PCR conditions, and the characteristics of the 
environment itself. A lower number of biological rep-
licates, as the one characterizing this project, can be 
sufficient for the assessment of the presence/absence 
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of the main taxa but, at the same time, can lead to a 
biased analysis of rare taxa due to DNA degradation 
and sequencing errors. Moreover, soil as a whole is a 
poor reporter source of its ongoing true activity due to 
the way soils accumulate bacteria and preserve their 
DNA, i.e., to the fact that a vast majority of soil bacte-
rial DNA is a relic or belongs to passive inmates, with 
no physiologically functional roles in the system. This 
limit, however, may be more specific to the prokaryotic 
component and likely, fungal ITS-based metabarcod-
ing could be more suited to put in evidence function-
related differences [75] as future studies on the same 
soil could reveal. In any event, the present data show 
that the microbial profiling of soils, constituting a 
fundamental step in the evaluation of their quality, 
health and sustainability, should consider pairing DNA 
sequencing, also with other highly informative analy-
ses, such as qPCR targeting meaningful bio-indicator 
genes as the ones hereby covered along with functional 
biodiversity prediction from taxonomy data, and 
metatranscriptomics, to untangle the underlying mech-
anisms regulating the soil ecosystem functioning for its 
long-term stability and resilience.
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