
1.  Introduction
In recent decades, natural hazards associated with extreme precipitation, such as floods and landslides, 
claimed thousands of lives and billions of US$ in damages every year (NOAA, 2020; Paprotny et al., 2018). 
These numbers are expected to grow in response to an expansion of population and wealth toward haz-
ard-prone areas and to modifications in the hydrological cycle induced by climate change (Ceola et al., 2014; 
Fischer & Knutti, 2016; Winsemius et al., 2016). Quantifying climate change impact on extremes is thus a 
major challenge for the research community (Blöschl et al., 2019). Hydrological design and risk manage-
ment, particularly relevant for adaptation efforts, require information on low yearly exceedance probabili-
ties (Chow et al., 1988), such as the events exceeded on average once in 100 years (hereon 100-year return 
levels, with 1% yearly exceedance probability). To directly quantify return levels, long data series are re-
quired, several times longer than the exceedance probability time scale. Since observational records rarely 
exceed 50–100 years, some form of statistical extrapolation is generally required (Coles, 2001).

Earth system models (ESMs) commonly guide impact studies. However, modern ESMs, used to simulate 
future-climate scenarios, are unable to explicitly resolve convective and microphysical processes critical 

Abstract  Projections of extreme precipitation based on modern climate models suffer from large 
uncertainties. Specifically, unresolved physics and natural variability limit the ability of climate models to 
provide actionable information on impacts and risks at the regional, watershed and city scales relevant for 
practical applications. Here, we show that the interaction of precipitating systems with local features can 
constrain the statistical description of extreme precipitation. These observational constraints can be used 
to project local extremes of low yearly exceedance probability (e.g., 100-year events) using synoptic-scale 
information from climate models, which is generally represented more accurately than the local scales, 
and without requiring climate models to explicitly resolve extremes. The novel approach, demonstrated 
here over the south-eastern Mediterranean, offers a path for improving the predictability of local statistics 
of extremes in a changing climate, independent of pending improvements in climate models at regional 
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Plain Language Summary  Climate change impact studies are currently restrained by the 
limited accuracy of climate models in resolving precipitation extremes, by the computational power 
required to run high-resolution models, and by the uncertainties characterizing their analysis. Here, we 
present a novel approach which permits to project extreme precipitation for future climatic scenarios 
based on the combination of coarse-scale information from climate models with local observations. 
Focusing on the south-eastern Mediterranean, we provide projections of precipitation extremes which 
could not yet be derived using traditional methods, such as the events occurring on average once in 
100 years. The combined effect of changes in intensity and occurrence of two dominant synoptic systems 
is projected to increase the intensity of the 100-year events in the coast and in the desert areas of the 
region and to decrease it elsewhere. The novel approach offers a path for improving the predictability of 
extremes in a changing climate, independent of pending improvements in climate models.
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for precipitation extremes, and rely instead on parameterizations (Wilcox & Donner,  2007). Additional-
ly, their output is most relevant at scales which are too coarse for many practical applications (Fischer 
et  al.,  2013; Hausfather et  al.,  2019). High-resolution dynamical downscaling methods can resolve con-
vective processes and can thus provide accurate projections of local extreme precipitation for a region of 
interest (Prein et al., 2020). However, the applicability of these models is limited by heavy computational 
requirements. Currently, only few regions are covered with 10–20-year simulations (Fosser et al., 2020; Ken-
don et al., 2014), too short to reliably estimate 10-year return levels, let alone 100-year events. Furthermore, 
convection-permitting models are sensitive to boundary conditions from ESMs (Keller et al., 2018; Shep-
herd, 2014); thus understanding the mechanisms behind observed changes requires sensitivity analyses, 
which are still computationally unfeasible. Strategies to exploit the available model runs are thus needed to 
reach even a minimal level of accuracy for, say, 100-year events (e.g., Kelder et al., 2020).

Alternatively, statistical models can be combined with variables that are strongly related to extreme precipi-
tation but more reliably reproduced in ESMs, such as temperature (Pfahl et al., 2017; Sippel et al., 2015). The 
methods currently adopted to quantify return levels, however, heavily rely on extremes, such as the maxima 
values in each year or the values exceeding high thresholds (Coles, 2001). As these are rare and subject to 
large stochastic uncertainties, the applicability of such methods in a changing climate is limited (Serinaldi 
& Kilsby, 2015; Tabari, 2021). In fact, stochastic climate variability sets a lower bound on the uncertainty in 
observed and modeled extremes (Fatichi et al., 2016).

This paper presents a novel statistical approach that avoids the stochastic uncertainties characterizing ex-
tremes and, relying on the understanding of the underlying processes, permits computationally efficient 
estimates of future return levels. It is shown here that the interaction of precipitating systems with local 
features, such as coastlines or orography, can constrain the statistical description of precipitation intensity. 
These constraints, derived from in situ observations, permit predicting future extreme return levels at the 
local scales based on coarse-resolution global climate model projections and without requiring models to 
explicitly resolve the extremes.

2.  Study Area and Data
The south-eastern Mediterranean is regarded as a climate change hotspot, highly vulnerable to water scar-
city and precipitation-induced hazards (Alpert et al., 2002; Giorgi, 2006). Strong spatial gradients in pre-
cipitation climatology (Figures  S1 and S2 in the Supporting Information) emerge from the interactions 
of two main types of precipitating systems with coastline and orography (Figure 1a) (Diskin,  1970): (i) 
low-pressure systems moving inland along westerly tracks (Mediterranean cyclones, hereon Type-1) and (ii) 
low-pressure systems mainly extending from the south (active Red Sea troughs, Type-2). These are charac-
terized by distinct spatial patterns and both yield extreme precipitation amounts (Armon et al., 2018; Marra, 
Zoccatelli, et al., 2019). ESMs predict substantial changes in the intensity and occurrence frequency of both 
systems (Hochman, Harpaz, et al., 2018; Hochman, Mercogliano, et al., 2018; Zappa et al., 2015), implying 
nonlinear changes in the compound extremes, which can be further complicated by local effects.

2.1.  Precipitation Data

Daily precipitation data, summed up to 6:00UTC, were provided by the Ministry of Water and Irrigation 
of Jordan (97 stations between 1980–1981 and 2017–2018) and the Israel Meteorological Service (>1,300 
stations between 1948–1949 and 2017–2018). Data from Israeli stations flagged as missing, inaccurate, in-
terpolated, or obtained from multiday accumulations were excluded from the analysis. Jordanian data were 
supplied with no quality indicators; we therefore rely on quality controls by the data provider. Separate 
records measured in proximity of up to 1 km distance and 50 m elevation were merged. Records were organ-
ized by hydrologic years (September 1 to August 31). For each station, years with more than 14 unavailable 
days and records with less than 30 hydrological years were discarded. The final data set consists of 459 
stations (404 from Israel, 55 from Jordan, average spatial density of ∼1/75 km‒2) with 30–70 complete years 
of record (50.1 ± 13.3 years). Stationarity of the annual maxima at each station is ensured using the Phillips 
and Perron (1988) test (5% significance level), indicating that the data adequately represent extremes under 
present conditions.
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2.2.  Local Groups of Stations

Groups of stations in which distinct local features dominate the interaction with the precipitating systems 
are identified using a k-means clustering algorithm based on geographical (latitude, longitude, and eleva-
tion) and precipitation (average wet-day amount, and standard deviation of the wet-day amounts) proper-
ties, without any direct use of extreme precipitation properties or classification of the precipitating systems. 
The variables are normalized to zero-mean equi-dispersed distributions; the algorithm is iterated 99 times 
to ensure stable results. Following the Calinski and Harabasz  (1974) criterion, six groups are obtained, 
roughly identifiable as mountains, northern coast, lowlands, coast, deserts west of the Dead Sea rift, and 
deserts east of the rift. The last two groups are characterized by similar climatic conditions and are likely 
separated primarily due to the geographical distance, although differences in other aspects may exist, such 
as elevation and distance from the sea. These two groups, which are sparsely populated (only 21 stations in 
one group), were merged. The classification used in the analysis consists of five groups: mountains, north-
ern coast, lowlands, coast, and deserts (Figure 1a).

3.  Methods
Extreme precipitation events were shown to emerge from underlying distributions of ordinary events 
(Marani & Ignaccolo, 2015; Zorzetto et al., 2016), whose tails are generally described by two parameters 
(e.g., stretched-exponential or power-type) (Cavanaugh et al., 2015; Marra, Borga, et al., 2020; Papalexiou 
et al., 2018). By relying on ordinary events, for which more data are available, this approach decreases the 
stochastic uncertainties inherent in the realization of extremes (Marra et al., 2018; Zorzetto et al., 2016). 
Events generated by different types of processes and thus described by distinct distributions, such as 
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Figure 1.  Extremes emerge from the interaction of precipitating systems with local features. (a) Map of the study region showing the local terrain elevation, 
the main precipitating systems tracks, and the location of the daily precipitation stations used in the study, colored according to groups in which different 
local features dominate the interaction with the precipitating systems. (b) Distribution of 2-year and 100-year return levels (50% and 1% yearly exceedance 
probability, respectively) of the five groups shown in (a) (with matching colors) displayed as transposed cumulative distributions. The respective uncertainty 
(shading) is calculated as the 90% confidence interval from 103 bootstrap samples with replacement among the years in the record. The median uncertainty 
across all groups is 14% (22%) for 2-year (100-year) return levels. (c, d) Map of the 2-year (c) and 100-year (d) return levels (colors indicate daily precipitation 
intensity).
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midlatitude versus tropical cyclones (or, in our case, Type-1 vs. Type-2), can be combined to derive a com-
pound distribution for extreme return levels (Marra, Zoccatelli, et  al.,  2019; Miniussi et  al.,  2020). This 
distribution quantifies the yearly exceedance probability   associated with the precipitation amount x as 
a function of the intensity distributions of the ordinary events (  1, ,i SF , where i represents the type of pro-
cess) and the expected value of their yearly number of occurrences ( in ) such that      1 2

1 2
nn n S

Sx F F F  
(Marra, Zoccatelli, et al., 2019). In this framework, changes in extreme return levels can be expressed as 
functions of the projected changes in the intensity distributions of the ordinary events and in the expected 
value of their yearly occurrences. While the occurrence frequency of synoptic events in the region can be 
resolved by ESMs (Cavicchia et al., 2020; Hochman, Harpaz, et al., 2018), precipitation intensity requires 
information on two degrees of freedom (i.e., the two parameters describing the distribution).

3.1.  Ordinary Events Distributions and Return Levels

Ordinary events are defined as nonzero (i.e.,  0.1 mm) daily precipitation amounts (Zorzetto et al., 2016) 
associated with a precipitation type based on a semiautomatic, daily-based, synoptic classification (Alpert 
et al., 2004). Wet days corresponding to systems that are expected to be dry may have been wrongly classi-
fied; for example, synoptic conditions in the aftermath of Mediterranean cyclones are easily misinterpreted 
by the semiautomatic method. These were individually examined and labeled as Type-1 if occurring up to 
2 days after a Type-1 day and as Type-2 in the remaining cases (Table S1).

Previous studies show that a Weibull distribution (stretched-exponential) in the form        /; , 1 xF x e ,  
where  is the scale and   the shape parameter, well describes the tail of the two types of ordinary events in 
the region (Marra, Zoccatelli, et al., 2019). The shape parameter determines the tail heaviness, with heavier 
tails for smaller shapes and vice versa. These parameters are estimated left-censoring the lowest 75% of the 
observations while keeping their weight in probability, and using a least squares linear regression in Wei-
bull-transformed coordinates (Marra, Zoccatelli, et al., 2019). The left-censoring prevents contaminations 
from the lower tail of the distribution, which may require more general formulations (Cavanaugh et al., 
2015; Papalexiou et al., 2018) and is sensitive to the accuracy of the measurement device (Marra, Zoccatelli, 
et al., 2019). After left-censoring, the number of data points used for the parameter estimation in each of 
the stations is 426 175 for Type-1 (minimum 66), and 153 68 (minimum 30) for Type-2. The expected 
number of yearly ordinary events is computed, for each type, as the mean of the yearly number of wet days. 
Extreme return levels are computed numerically by inverting the formulation    1 2

1 2
n nx F F . Sample 

uncertainty in parameters and return levels is quantified via bootstrap with replacement (103 repetitions) 
among the years in the record (Overeem et al., 2008). The resulting return levels (Figures 1 and S2) are con-
sistent with traditional methods based on the observed annual maxima (Figure S3) but have significantly 
smaller uncertainty (22%, as opposed to 39%, median uncertainty on 100-year return levels).

3.2.  Local Constraints of the Intensity Distributions

A functional relationship between the scale  and shape   parameter of the ordinary events distributions 
would reduce the representation of precipitation intensity to one degree of freedom, enabling us to provide 
projections of extremes based only on changes in the mean intensity of ordinary events. The significance 
of the relationship between the parameters describing the two types of ordinary events at each of the five 
groups of stations is tested using the rank correlation (104 Monte Carlo reshuffling realizations). The coeffi-
cient   of the relations in the form     log C is derived for each of the five groups and the two event 
types using a linear regression model based on a χ2 minimization and considering parameter estimation 
errors in a Monte Carlo framework (103 realizations).

The coefficients  , calculated for each group, represent the local constraints on the intensity distribution. 
Higher   implies a stronger decrease in tail heaviness in response to an increase in the median intensity and 
vice versa. Under these constraints, the distribution has one degree of freedom, meaning that any quantity 
not orthogonal to the constraint (e.g., mean, median, and standard deviation) is sufficient to describe the 
distribution. Here, we use the median intensity, hereon denoted I , as it is less sensitive than the mean to 
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the stochastic uncertainty in the realization of extremes:      ; , ;i i i iF x F x I . The return level x associat-
ed with the yearly exceedance probability p can be written as a function of median intensity and expected 
number of yearly occurrences of the two types of ordinary events by inverting the extreme value distribu-

tion   x :        1
1 1 2 2; , ; ,x p p I n I n .

We assume that temporal changes in the distribution of ordinary events will preserve these local observa-
tional constraints. This resembles the assumptions behind regionalization approaches in which spatial in-
formation is traded for record length (Buishand, 1991) but extends its meaning in that (i) temporal changes 
are allowed and (ii) the information on the interaction between precipitating systems and local features 
provided by each individual station is fully exploited (e.g., Marra, Armon, et al., 2020). To support our as-
sumption, we test the significance of the constraints in historical observations in a Monte Carlo framework 
by examining groups of nonconsecutive years with consistently different median intensity (see Figure S4) 
along the following steps: (1) at each station and precipitation type, years are ranked according to the me-
dian ordinary events intensity; (2) six 5-year subsets of nonconsecutive years are created by selecting three 
groups (15 years) from the largest intensity years and three from the smallest intensity; (3) Weibull param-
eters are estimated at each station for the 5-year subsets; (4) 103 m-elements synthetic samples, where m is 
the number of wet days in the observed 5-year subsets, are generated according to the obtained distributions 
and the parameters describing the samples are estimated to quantify the impact of parameter estimation 
uncertainty; (5) logarithmic relations between the parameter pairs are derived for each subset; and (6) the   
coefficient representing the local constraint is compared to the distribution of coefficients of the logarithmic 
relations at (5).

3.3.  Climate Projections

Projected changes in median intensity and expected number of yearly occurrences of the two precipitation 
types are obtained by examining the difference between the ends of the 21st century (∼2080–2100) and the 
20th century (∼1980–2005) under the RCP8.5 emission scenario (Riahi et al., 2011). We estimated these 
differences using the data presented in Hochman, Harpaz, et al. (2018) and Zappa et al. (2015), calculated 
for 8 and 17 CMIP5 models, respectively. We choose the changes in occurrence and median intensities from 
these two studies, as they are produced for the desired time period and emission scenario, and because these 
parameters are considered more robust than the changes in extremes that can be derived from the CMIP5 
models themselves (Fatichi et al., 2016). In particular, the changes in synoptic circulation over the study 
region derived from CMIP5 ensembles were shown to be consistent among models (Hochman, Harpaz, 
et al., 2018; Zappa et al., 2015).

The acquired changes we used are as follows—Type-1: expected number of yearly occurrence is projected to 
decrease by 15%–35% ( 25% 10%); median intensity is projected to decrease by 20%–25% ( 22.5% 5%  );  
Type-2: expected number of yearly occurrence is projected to increase by 13% ( 13% 5%); annual Type-2 
precipitation amounts are projected to remain unchanged, which leads to a 12% decrease in the median 
intensity ( 12% 5%). These numbers result in a 20%–30% decrease in mean annual precipitation, which 
is consistent with the AR5 IPCC report (IPCC, 2014). As based on relative differences between historic and 
future simulations, we expect these projections to be less sensitive to systematic biases in the quantification 
of wet days from CMIP5 models (e.g., too many drizzle days).

Changes in extreme return levels are computed in a Monte Carlo framework considering uncertainties in 
the projections and in the local constraints (i.e., the   coefficients), as follows. At each station, 103 projec-
tions are created by (1) sampling the projected change in number and median intensity of the two ordinary 
events types from normal distributions and (2) sampling the   coefficient of the local constraint relations 
from the Monte Carlo realizations. Note that, since the ratio between median and mean of Weibull distri-
butions smoothly depends on the shape parameter   and is independent from the scale , for the changes 
in shape observed in this study, one can safely assume a one-to-one correspondence between projected 
changes in the mean and in the median (e.g., the difference between percent change in the mean and per-
cent change in the median is smaller than the uncertainties on the projections themselves). This is useful 
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since the median is a better descriptor for observed data, whereas the mean is commonly provided by ESMs 
output.

4.  Application to the South-Eastern Mediterranean
4.1.  Local Constraints on the Distribution of Ordinary Events

While relations between scale  and shape   parameters of the ordinary events distributions are not expect-
ed a priori, statistically significant relations (>3σ significance level) are found for the given data when focus-
ing on local groups of stations in which distinct local features dominate the interactions with precipitation 
systems (Figures 2a–2c and S4). Functional dependence of the form     log C, where   andC  are 
empirically determined, was found to approximate these relations in each group, generally explaining most 
of the observed variance (Figure S4). The hypothesis of a local constraint   being significantly different 
from the coefficients obtained from temporally splitting the records is rejected in all the cases (5% signifi-
cance level). Thus, the local values of   indeed reflect historical changes in the median intensity of ordinary 
events at each station, supporting the validity of the approach under changing conditions (Figures 2c and 
S4). It is worth noting that these relations are based on historical observations and thus comprise observed 
changes in both dynamics and thermodynamics.

The observed constraints imply that changes in the median intensity are linked to contrasting changes in ex-
tremes, that is, decreasing median intensity decreases the precipitation amount yielded by typical ordinary 
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Figure 2.  Local constraints on the intensity distribution of ordinary precipitating events. (a, b) Scatter plots of the 
shape ( ) and scale () parameters of the observed distributions for the two types of ordinary events; colors refer 
to the five groups of stations as in Figure 1a. (c) Example of the local constraint (Type-1, northern coast); triangles 
represent the median (among stations) parameters obtained in the split-sample test using, for each station, groups of 
five nonconsecutive years with increasing median intensity of the ordinary events; triangles thus represent historical 
variations of intensity. Local constraints for all cases are shown in Figure S4. (d) Schematic of the projection of changes 
in the intensity distribution of the ordinary events along the constraints (  0.3,   11.0, 9.0, 7.0 mm day-1, and 
  0.8, 0.74, 0.66; black, blue, and cyan, respectively); (e) event exceedance probability distributions associated with 
the three pairs of scale and shape parameters shown in (d); and (f) the largest 1% of the events in these distributions.
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events (Figures 2d and 2e) but increases the probability associated with the largest events and vice versa 
(Figure 2f). This counterintuitive behavior is consistent with previous theory and observations of extreme 
precipitation and supports the local constraints approach as a framework for quantifying changes in ex-
tremes (Myhre et al., 2019; O'Gorman & Schneider, 2009; Pendergrass, 2018; Pendergrass & Knutti, 2018; 
Wasko et al., 2018).

4.2.  Projections of Future Extremes

The sensitivity of extreme return levels to changes in the ordinary events (Figures S5 and S6) highlights 
that different return levels can have different responses and that the local sensitivities associated with each 
event type can differ significantly. For example, in most of the region, return levels are tied to changes in 
intensity and number of Type-1 events, while changes in Type-2 are crucial drivers for extreme return levels 
in the desert areas (Figure S5). Local changes in extreme return levels are thus related to mean (or median) 
changes in precipitation in a complex manner.

The projected changes in occurrence frequency of the two types (25% decrease and 13% increase, respective-
ly) and intensity (20%–25% and 12% decrease, respectively) yield the changes in the extreme return levels 
shown in Figure 3 (see Figure S7 for more details). An overall 5%–20% decrease of the 2-year return levels is 
seen, driven by the decrease in the occurrence frequency of Mediterranean cyclones and in the median in-
tensity of both types of systems. Since in the climatological setting of the region, 2-year return levels roughly 
correspond to 99th wet-day percentiles, this is consistent with previous results based on downscaling meth-
ods (Hochman, Mercogliano, et al., 2018). The picture is drastically different for the 100-year return levels 
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Figure 3.  Projected changes in 2-year and 100-year return levels (50% and 1% yearly exceedance probability, 
respectively) for the end of the century (difference between ∼2080–2100 and ∼1980–2005) under the RCP8.5 emission 
scenario. (a) Distribution of the projected change and relative uncertainty (90% confidence interval considering 
uncertainties both in climate projections and local constraints) shown as transposed cumulative distributions; colors 
refer to the five groups of stations as in Figure 1a. (b, c) Map of the projected changes for the 2-year (b) and 100-year (c) 
return levels.
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which could not be assessed in previous studies. Along the coast and in the southern desert, the negative 
sensitivity to changes in the median intensity (Figures S5 and S6) dominates, and the rarest extremes are 
projected to increase, consistently with Figure 2f. These results imply two adverse effects: (i) amplified wa-
ter scarcity and reduced flood and landslide risks in most of the region (Alpert et al., 2002; Peleg et al., 2015; 
Samuels et al., 2009) and (ii) increased intensity of the most severe events along the coast and southern 
deserts, associated with augmented risk of extreme pluvial flooding in coastal cities, and of flash floods, 
debris flows and geomorphic responses in the southern deserts (Rinat et al., 2020; Shmilovitz et al., 2020).

5.  Discussion and Conclusions
In the south-eastern Mediterranean, the dominance of two precipitating systems and the availability of 
high-density local data makes it possible to simplify the statistical description of ordinary precipitation 
events, and therefore of extreme events that emerge as the tails of their distributions. Previous studies 
on the water resources of the region projected a “less rainfall, more extremes” situation, with increased 
extremes insufficient to impact water resources in generally drying conditions. However, these previous 
studies could not quantify changes in extreme return levels and therefore risk (Alpert et al., 2002; Peleg 
et al., 2015). Combining information on the occurrence frequency and intensity of the two dominant pre-
cipitation types from ESM projections and observational constraints from rain stations, we show that the 
changes in extreme return levels strictly depend on the sought probability. A tendency toward a general de-
crease in the intensity of the 2-year events is found, together with an increase of the most severe (100-years) 
events along the coast and in the desert areas.

The consistency of the synoptic variations in the RCP8.5 scenario in the region (Hochman, Harpaz, 
et al., 2018; Zappa et al., 2015) and of the local constraints (Figure S6) demonstrate the reliability of the pro-
posed approach and the local projected response. Nevertheless, our predictions may be refined by analyzing 
additional scenarios and local data. It is plausible that similar improvements in the projection of extremes 
can be made in other regions, even though projected changes in the synoptic circulation systems might be 
less robust (Shepherd, 2014), calling for specific efforts to narrow this source of uncertainty. Our results 
rely on the hypothesis that future changes in the distribution of ordinary events will preserve local observa-
tional constraints. Future convection-permitting model runs could help validate this hypothesis or suggest 
alternative constraints. In fact, future climate might reach some tipping point after which the observational 
local constraints may no longer hold. For example, new synoptic systems could be introduced in the region 
(such as tropical-like cyclones), or the track of existing systems could change to such a degree that the in-
teractions with local features might change substantially, thus deviating from the observed constraints (e.g., 
northward shift of Mediterranean cyclones track). Our results, which pertain to daily precipitation, assume 
no change in the spatial structure of precipitation events at scales smaller than the resolutions of the used 
climate models. Improvements in the statistical description of the precipitating systems at multiple tem-
poral and spatial scales derived from observations and/or convection-permitting models could fill this gap 
by quantifying their structural response to external forcing (Cannon & Innocenti, 2019; Chen et al., 2020; 
Marra, Borga, et al., 2020; Peleg et al., 2018; Wasko et al., 2016).

In contrast to traditional methods, the local constraints approach does not require long records; rather, 
it only requires local observations of ordinary events to constrain the intensity distributions. To this end, 
future work should address whether a similar methodology can be applied using remotely sensed precip-
itation as opposed to rain gauges, which would allow this technique to be applied in many ungauged lo-
cations of the Earth (Marra, Nikolopoulos, et al., 2019). While uncertainty in ESMs remains a significant 
challenge to the community (Palmer & Stevens, 2019), our results point to increased investment in local 
measurements as an actionable and promising path to reduced uncertainty in the projection of extremes, 
independent of climate modeling efforts.

The framework can be extended to other processes whose extremes emerge from underlying distributions of 
ordinary events, such as extremes emerging from the combination of different physical phenomena, for ex-
ample, winds and storm surges from different types of cyclones (Cavicchia et al., 2020; Miniussi et al., 2020). 
Similarly, it can be applied to phenomena whose intensity and occurrence may change independently, for 
example, occurrence and maximum lifetime intensity of tropical cyclones (Knutson et al., 2010) or pre-
cipitation in many areas (Markonis et  al.,  2019; Papalexiou & Montanari,  2019). In regions where local 
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constraints can be obtained, the approach proposed here can improve the predictability of climate change 
impact on extremes at scales relevant for impact studies, whose uncertainty was previously considered irre-
ducible due to modeling uncertainty and natural variability.

Data Availability Statement
Precipitation data were provided by Israel Meteorological Service (https://ims.gov.il/en, September 2018; 
data are freely available in Hebrew only) and Ministry of Water and Irrigation of Jordan, Technical Affairs, 
Studies Directorate, Hydrological and Meteorological Information Systems (rainfall stations archives files, 
October 2018; available upon request to the data providers). Data and codes supporting the results are avail-
able at: https://doi.org/10.5281/zenodo.4286160 and https://doi.org/10.5281/zenodo.3971558. The linear fit 
with uncertainty in x and y was performed based on the function by J. Browaeys, MATLAB Central File 
Exchange (https://www.mathworks.com/matlabcentral/fileexchange/45711-linear-fit-with-both-uncertain-
ties-in-x-and-in-y, retrieved March 25, 2020).
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