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The robust and efficient numerical solution of coupled hydro-poromechanical problems is of 
paramount importance in many application fields, in particular in geomechanics and biomechanics. 
Even though the solution by means of the Finite Elements Method (FEM) still remains the preferred 
option, Physics-Informed Neural Networks (PINNs) are rapidly gaining attention as a powerful 
and promising approach. By involving the residual of the governing PDEs as a constraint in the 
training, PINNs combine a physics-driven approach together with a data-driven one, leveraging 
on deep learning techniques.

This work focuses on coupled hydro-poromechanical processes, where a PINN-based approach is 
implemented and investigated in classical benchmarks. An analysis of the influence of the hyper-

parameter selection has been performed to study the model sensitivity to PINN architecture and 
identify the most appropriate one. To take advantage of PINN ability to integrate data and reduce 
the complexity of the solution of the coupled hydro-poromechanical problem, a “sensor-driven” 
training is proposed where data are provided at locations inside the domain even to solve a forward 
problem. The goal is to assess and validate the approach, thus contributing to the foundation of 
this method in coupled hydro-poromechanics.

1. Introduction

Coupled hydro-poromechanics describes important processes occurring in many different fields, in particular in sectors of geome-

chanics, hydrogeology, and biomechanics. Timely challenges, such as gas, water, CO2, hydrogen injection and/or withdrawal from 
deep reservoirs, or the interaction between biological tissues and fluid flow, can be accurately described only by considering a fully 
coupled formulation. In essence, hydro-poromechanics consists of the simultaneous action of fluid flow and solid deformation in fully 
or partially saturated porous media. The native theory has been developed starting from K. Terzaghi’s one-dimensional consolidation 
in 1925 [1] and the three-dimensional extension by M. A. Biot in 1941 [2], with successive thermodynamically robust formulations 
available nowadays [3,4]. Nevertheless, the numerical solution of hydro-poromechanical partial differential equations (PDEs) is still 
an active subject of research, as they typically involve multi-physics and multi-scale systems, and efficiency and accuracy are chal-

lenging tasks. Many numerical strategies, based on either Finite Element (FE) and Finite Difference (FD) methods, have been applied, 
also in the case of complex materials and high dimensional problems, e.g. [5–7].
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Though the above mentioned numerical methods remain the preferred choice as solvers for this system of PDEs, in recent years 
Physics-Informed Neural Networks (PINNs) gained an increasing attention [8–11]. The combination of Machine Learning (ML) with 
physical modeling has been identified as one of the most promising and challenging approaches in the last years [12,13], since it could 
result in a potentially significant breakthrough for efficiency, accuracy, and generalization capability of numerical methods for PDE 
solution. The peculiarity of PINNs is that they allow to incorporate information from the physics in addition to data by means of the 
use of the governing PDEs. Indeed, the so-called loss function that has to be minimized contains not only data and prediction mismatch 
(as in traditional ML), but also the residual of the governing equations. Once a PINN has been trained, it can provide an almost real-

time solution [14–17], thus drastically improving tasks such as sensitivity analysis, model calibration, uncertainty quantification, 
parametric design, optimization, and so on. The nature of PINNs makes them suitable for different classes of problems, which can be 
classified into two main groups: i) feedforward solution of differential equations (direct problem), ii) parameter identification (inverse 
problem). In the first class, PINNs are used as a pure PDE solver, where the user only knows the governing equations alongside with 
the initial and boundary conditions. By distinction, in the second class some parameters of the PDE are assumed to be unknown, but 
it is assumed that some data inside the domain are available. A hybrid approach, where PDE solution is performed leveraging also 
on known data inside the domain, may also be possible. This strategy, similar to a data assimilation approach, makes PINNs more 
attractive from a practical point of view, and will deserve particular attention in this paper.

The application of PINNs, in their two classical approaches, has been already investigated in many fields, such as fluid mechan-

ics [18–20], solid mechanics [21,22], heat diffusion [23], acoustic [24], additive manufacturing [25], health science [26–28]. Also in 
the field of porous materials, the interest in PINNs has grown rapidly in recent years, focusing in particular on aspects related to fluid 
diffusion and transport [29–36]. However, the PINN training turned out to be a slow and tricky activity, especially for multi-physics 
problems with coupled governing equations, due to the multi-objective optimization problem resulting from the multiple-term loss 
function [37]. For these reasons, the use of PINNs for the solution of the coupled hydro-poromechanical problem still presents several 
issues that deserve attention [38,39]. For example, to fix this problem, a stress-split sequential training is proposed in [40] and later 
applied taking the temperature into account, too [41].

This work focuses on the development of a PINN-based model for hydro-poromechanical applications, in particular governed by 
Biot’s poroelasticity equations, discussing the principal aspects needed for an efficient and robust formulation. Initially, we investigate 
the role of PINN architecture and hyper-parameter selection in the construction of an effective model. Subsequently, to take advantage 
of PINN ability to integrate data and reduce the complexity of the solution of the coupled hydro-poromechanical problem, a so-called 
“sensor-driven” hybrid approach is proposed, where data are provided at locations inside the domain even to solve a forward problem. 
In other words, the idea is to exploit the possible availability of sensor-measured data in practical applications, so as to accelerate 
the PINN convergence to the problem solution and compensate for possible uncertainties in the problem formulation.

In order to check carefully the accuracy of the proposed approach, the paper focuses on well-known benchmark problems, which 
have been used to assess the numerical implementation and performance. This work aims to contribute to future applications of 
PINNs to challenging real-world problems, in particular those where monitored data recorded by sensors are available.

The paper is organized as follows. Section 2 contains a brief overview of the PINN methodology while Section 3 describes the 
general Biot’s equations of poroelasticity and how PINN can be applied to such problem. Section 4 presents a discussion on the 
identification of an optimal hyper-parameter selection for PINN architecture, with the analysis focusing on two specific well-known 
benchmarks, namely the one-dimensional Terzaghi’s consolidation and two-dimensional Mandel’s problem. Then, in Section 5 the 
identified optimal layouts are used to simulate the solution of a problem where recorded data are available from potential sensors. 
PINN is first used as a PDE solver for the forward problem, and then the advantages arising from the integration of recorded measure-

ments, even including possible noise effects and perturbation in the PDE parameters, are investigated. Finally, the PINN solution in a 
more realistic heterogeneous setting of a consolidation problem in the sensor-driven framework is described. In conclusion, Section 6

summarizes the outcome of the work and introduces the possible future developments.

2. Physics-Informed Neural Networks

PINNs are particular Neural Networks (NNs) that allow to incorporate information from the physics in addition to data by means 
of the governing PDEs [8]. The NN structure consists of many neurons (or nodes) distributed in different layers. Neurons in adjacent 
layers are connected each other and every connection is associated to a weight. Each neuron transfers to the following layer a linear 
combination of the signals received from the previous layer with some weights and biases, to which the activation function 𝜙 is 
applied.

Consider a NN with 𝐿 layers. Let 𝑛𝑖 be the number of neurons of the 𝑖-th layer and 𝐱(𝑖) ∈ℝ𝑛𝑖−1 be the input to layer 𝑖, for 𝑖 = 1, … , 𝐿. 
We define the function 𝚺(𝑖) ∶ℝ𝑛𝑖−1 →ℝ𝑛𝑖 :

𝚺(𝑖)(𝐱(𝑖)) = 𝜙(𝑖)(𝐖(𝑖)𝐱(𝑖) + 𝐛(𝑖)), (1)

where 𝐖(𝑖) ∈ℝ𝑛𝑖×𝑛𝑖−1 , 𝐛(𝑖) ∈ℝ𝑛𝑖 , 𝜙(𝑖) are weights, biases and the activation function of the 𝑖-th layer, respectively. For time dependent 
problems, the input of the first layer, 𝐱(1) ∈ℝ𝑛0 , reads 𝐱(1) = (𝐱, 𝑡) and 𝑛0 = 𝑛 +1, with 𝐱 ∈Ω ⊂ℝ𝑛 and 𝑛 = 1, 2, 3 the spatial dimension. 
Then, the neural network 𝐮̂(𝐱, 𝑡) ∶ℝ𝑛0 →ℝ𝑛𝐿 is built as the composition of functions:

𝐮̂(𝐱, 𝑡) = 𝚺(𝐿)◦𝚺(𝐿−1)◦⋯◦𝚺(1)(𝐱, 𝑡). (2)
2

Assume that a general PDE holds true in Ω × [0, +∞):
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𝐮𝑡 + [𝐮] = 0, 𝐱 ∈Ω ⊂ℝ𝑛, 𝑡 ≥ 0, (3)

where  [⋅] is a non linear differential operator in space and the subscript ⋅𝑡 indicates the derivative with respect to time. The 
solution 𝐮(𝐱, 𝑡) ∶ Ω × [0, +∞) → ℝ𝑚, with 𝑚 the output space size, is approximated by a neural network 𝐮̂(𝐱, 𝑡), whose training is 
performed by minimizing a cost function that includes not only the errors with respect to data, but also the residual of equation (3), 
thus constraining the model to both fit the data and comply with the expected physics. Furthermore, while data approximation is a 
point-wise learning mechanism, the residual entails also local knowledge of the solution, given by physical processes and dynamics 
involving partial derivatives [42].

Let us denote by  the function set of all the neural networks 𝐮̂(𝐱, 𝑡) defined in Ω × [0, +∞). Using the Mean Squared Error as 
loss measure, the training of the model aims at minimizing the functional  ∶ → [0, ∞):

(𝐮̂) =𝑤𝑑
1
𝑁𝑑

𝑁𝑑∑
𝑖=1

‖𝐮̂(𝐱𝑖
𝑑
, 𝑡𝑖
𝑑
) − 𝐮𝑖‖22 +𝑤𝑐 1

𝑁𝑐

𝑁𝑐∑
𝑖=1

‖𝐮̂𝑡(𝐱𝑖𝑐 , 𝑡𝑖𝑐) + [𝐮̂(𝐱𝑖
𝑐
, 𝑡𝑖
𝑐
)]‖22, (4)

with {𝐮𝑖}𝑁𝑑
𝑖=1 the set of 𝑁𝑑 training data for 𝐮̂(𝐱, 𝑡), located at the data points {𝐱𝑖

𝑑
, 𝑡𝑖
𝑑
}𝑁𝑑
𝑖=1; {𝐱𝑖

𝑐
, 𝑡𝑖
𝑐
}𝑁𝑐
𝑖=1 the set of 𝑁𝑐 collocation points 

for the residual computation; 𝑤𝑑 and 𝑤𝑐 proper weights to balance the two contributions in (4). With respect to standard neural 
networks, PINNs usually allow to obtain reasonable approximations with smaller datasets, as the governing physical laws are added as 
constraints. Furthermore, the residual contribution acts as a regularization term and increases the generalization ability of the neural 
network, thus allowing to deal with noisy data and outliers without a significant lack of robustness. In particular, PINN addresses 
two major challenges of deep learning application in Earth system science, as identified in [12]: (i) physical consistency, thanks to 
the residual term of the loss function providing a physical constraint, and (ii) limited labels, as the information given by the PDE 
balances the lack possibly coming from data, since Earth measurements are often sparse and noisy.

Different libraries have been recently developed to implement the PINN construction, e.g. [43–46]. The model considered in this 
work has been implemented using SciANN (Scientific Computational with Artificial Neural Networks), a recent TensorFlow and Keras 
wrapper specific to scientific computations with PINN [47]. This Application Programming Interface (API) makes it possible to build 
in a quite simple way the PINN structure with a readable code and to use automatic differentiation to compute at machine precision 
the derivatives of the neural network approximation of the solution 𝐮. Originally designed to optimize the Gradient Descent algorithm 
in the NN training [48], automatic differentiation turned out to be extremely useful in PINN implementation. The possibility of using 
automatic differentiation has been inherited by SciANN from TensorFlow and Keras, resulting in faster and more robust codes, as it 
avoids the numerical discretization and the related rounding error propagation. This is particularly attractive when dealing with noisy 
data, usually resulting from real measurements. This library also supports running computations on a variety of devices, including 
CPUs and GPUs.

3. PINN for hydro-poromechanics

We focus on Biot’s poroelasticity equations, governing the interaction between a granular material and the fluid filling its pores [2]. 
The set of PDEs consists of a stress equilibrium equation coupled with a fluid flow equation, which result from a conservation law of 
linear momentum and mass, respectively. Incorporating Terzaghi’s effective stress principle, which links the grain forces to the fluid 
pore pressure, the equilibrium equation for an isotropic poroelastic medium and the continuity equation for the fluid mass balance 
can be written as:

𝜇Δ𝐮+ (𝜆+ 𝜇)∇div𝐮 = 𝛼∇𝑝+ 𝐛, (5)

−div(𝜿∇𝑝) + 𝜕

𝜕𝑡
(𝜙𝛽𝑝+ 𝛼div𝐮) = 𝑓, (6)

where 𝐮 is the medium displacement, 𝑝 is the fluid pore pressure, 𝐛 is the body force, and 𝑓 is a flow source or sink. Equation (6)

has been obtained by coupling the continuity of pore fluid with Darcy’s law:

𝜿
−1𝐯+∇𝑝 = 0, (7)

where 𝐯 is Darcy’s velocity. The material parameters are Lamé’s moduli 𝜆 and 𝜇, the Biot coefficient 𝛼, Darcy’s conductivity tensor 
𝜿, the medium porosity 𝜙, and the fluid compressibility 𝛽. The Darcy’s conductivity tensor is given by 𝜿 = 𝒌∕𝛾𝑤 with 𝒌 the hydraulic 
conductivity tensor and 𝛾𝑤 the fluid specific weight. As usual, ∇ and Δ denote the gradient and the Laplacian operator, respectively.

Let Ω ⊂ ℝ𝑛 be the domain of the coupled partial differential system in (5)-(6) and Γ its boundary. The problem of finding the 
unknowns 𝐮 and 𝑝 is well-posed if proper boundary:

⎧⎪⎪⎨⎪⎪⎩

𝐮(𝐱, 𝑡) = 𝐮𝐷(𝐱, 𝑡), ∀𝐱 ∈ Γ𝑢, 𝑡 > 0,

𝝈(𝐱, 𝑡)𝐧(𝐱) = 𝐭𝑁 (𝐱, 𝑡), ∀𝐱 ∈ Γ𝜎, 𝑡 > 0,

𝑝(𝐱, 𝑡) = 𝑝𝐷(𝐱, 𝑡), ∀𝐱 ∈ Γ𝑝, 𝑡 > 0,

𝐯(𝐱, 𝑡) ⋅ 𝐧(𝐱) = 𝑞𝑁 (𝐱, 𝑡), ∀𝐱 ∈ Γ𝑞, 𝑡 > 0,

(8)
3

and initial conditions:
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𝐮(𝐱,0) = 𝐮0(𝐱), ∀𝐱 ∈Ω∪ Γ,

𝑝(𝐱,0) = 𝑝0(𝐱), ∀𝐱 ∈Ω∪ Γ,
(9)

apply. In equations (8) and (9), Γ𝑢 ∪Γ𝜎 = Γ𝑝 ∪Γ𝑞 = Γ, with Γ𝑢 ∩Γ𝜎 = Γ𝑝 ∩Γ𝑞 = ∅, 𝝈 is the total stress tensor, and 𝐧 is the outer normal 
to Γ, while the right-hand side functions 𝐮𝐷 , 𝐭𝑁 , 𝑝𝐷 , 𝑞𝑁 , 𝐮0, and 𝑝0 are known.

In our problem, a neural network for each unknown is set up, i.e., one for the pressure, 𝑝̂(𝐱, 𝑡), and one for every component of the 
displacement, 𝑢̂𝑗 (𝐱, 𝑡) with 𝑗 = 1, 𝑛. This is motivated by results obtained in [21], which suggest using many different NNs with single 
output instead of a unique one with multiple outputs, even if entailing a higher number of parameters. The use of distinct networks 
is more suitable, as the outputs of the problem have different physical natures. Denoting by 𝐮̂ the vector with components 𝑢̂𝑗 , the 
loss function reads:

(𝐮̂, 𝑝̂) =𝑑 +
𝑛∑
𝑗=1

𝑒𝑞𝑢,𝑗 +𝑐𝑜𝑛𝑡 +
𝑛∑
𝑗=1

Γ𝑢,𝑗 +
𝑛∑
𝑗=1

Γ𝜎 ,𝑗 +Γ𝑝 +Γ𝑞 +𝐼𝐶 . (10)

The terms in the loss function are defined as follows. The loss on training data 𝑑 is:

𝑑 =
𝑛∑
𝑗=1
𝑤𝑑,𝑢,𝑗

1
𝑁𝑑

𝑁𝑑∑
𝑖=1

‖𝑢̂𝑗 (𝐱𝑖𝑑 , 𝑡𝑖𝑑 ) − 𝑢𝑖𝑗‖22 +𝑤𝑑,𝑝 1
𝑁𝑑

𝑁𝑑∑
𝑖=1

‖𝑝̂(𝐱𝑖
𝑑
, 𝑡𝑖
𝑑
) − 𝑝𝑖‖22, (11)

where {𝐱𝑖
𝑑
, 𝑡𝑖
𝑑
}𝑁𝑑
𝑖=1 are the points where data are imposed. The weights 𝑤𝑑,⋅ are selected to ensure the dimensional consistency of 

equation (11) and so as to normalize the set of data {𝑝𝑖, 𝐮𝑖}𝑁𝑑
𝑖=1 between 0 and 1. Also the terms associated to the residual and 

boundary conditions must be multiplied by suitable weights 𝑤⋅, so that each contribution is comparable to others in the global loss 
function (10). This prevents from a term to largely prevail over the others in the minimization process and generally is a good practice 
for neural networks training, too. In practice, scaled neural networks 𝑝̂𝑠 and 𝐮̂𝑠 are built to fit the scaled data, while the neural network 
approximations 𝑝̂ and 𝐮̂ are obtained by the inverse denormalization. The contributions 𝑒𝑞𝑢,𝑗 and 𝑐𝑜𝑛𝑡:

𝑒𝑞𝑢,𝑗 =𝑤𝑒𝑞𝑢,𝑗
1
𝑁𝑐

𝑁𝑐∑
𝑖=1

‖𝜇(Δ𝐮̂)𝑗 (𝐱𝑖𝑐 , 𝑡𝑖𝑐) + (𝜆+ 𝜇)(∇div𝐮̂)𝑗 (𝐱𝑖𝑐 , 𝑡
𝑖
𝑐
) − 𝛼(∇𝑝̂)𝑗 (𝐱𝑖𝑐 , 𝑡

𝑖
𝑐
) + 𝐛𝑗 (𝐱𝑖𝑐 , 𝑡

𝑖
𝑐
)‖22,

𝑐𝑜𝑛𝑡 =𝑤𝑐𝑜𝑛𝑡
1
𝑁𝑐

𝑁𝑐∑
𝑖=1

‖− div(𝜿∇𝑝̂)(𝐱𝑖
𝑐
, 𝑡𝑖
𝑐
) + 𝜕

𝜕𝑡
(𝜙𝛽𝑝̂(𝐱𝑖

𝑐
, 𝑡𝑖
𝑐
) + 𝛼div𝐮̂(𝐱𝑖

𝑐
, 𝑡𝑖
𝑐
)) − 𝑓 (𝐱𝑖

𝑐
, 𝑡𝑖
𝑐
)‖22,

(12)

are the loss terms arising from the residual of the governing physical equations on the set of collocation points {𝐱𝑖
𝑐
, 𝑡𝑖
𝑐
}𝑁𝑐
𝑖=1, whereas 

the remaining terms in (10) are needed to impose the boundary conditions (8):

Γ𝑢,𝑗 =𝑤Γ𝑢,𝑗
1
𝑁Γ𝑢

𝑁Γ𝑢∑
𝑖=1

‖𝑢̂𝑗 (𝐱𝑖Γ𝑢 , 𝑡𝑖Γ𝑢 ) − 𝑢𝐷,𝑗 (𝐱𝑖Γ𝑢 , 𝑡𝑖Γ𝑢 )‖22,
Γ𝜎 ,𝑗 =𝑤Γ𝜎 ,𝑗

1
𝑁Γ𝜎

𝑁Γ𝜎∑
𝑖=1

‖(𝝈̂(𝐱𝑖Γ𝜎 , 𝑡𝑖Γ𝜎 )𝐧(𝐱𝑖Γ𝜎 ))𝑗 − 𝐭𝑁,𝑗 (𝐱𝑖Γ𝜎 , 𝑡
𝑖
Γ𝜎
)‖22,

Γ𝑝 =𝑤Γ𝑝
1
𝑁Γ𝑝

𝑁Γ𝑝∑
𝑖=1

‖𝑝̂(𝐱𝑖Γ𝑝 , 𝑡𝑖Γ𝑝 ) − 𝑝𝐷(𝐱𝑖Γ𝑝 , 𝑡𝑖Γ𝑝 )‖22,
Γ𝑞 =𝑤Γ𝑞

1
𝑁Γ𝑞

𝑁Γ𝑞∑
𝑖=1

‖𝜿∇𝑝̂(𝐱𝑖Γ𝑞 , 𝑡𝑖Γ𝑞 ) ⋅ 𝐧(𝐱𝑖Γ𝑞 ) − 𝑞𝑁 (𝐱𝑖Γ𝑞 , 𝑡
𝑖
Γ𝑞
)‖22,

(13)

and the initial conditions (9):

𝐼𝐶 =
𝑛∑
𝑗=1
𝑤𝐼𝐶,𝑢,𝑗

1
𝑁𝐼𝐶

𝑁𝐼𝐶∑
𝑖=1

‖𝑢̂𝑗 (𝐱𝑖,0) − 𝑢0,𝑗 (𝐱𝑖)‖22 +𝑤𝐼𝐶,𝑝 1
𝑁𝐼𝐶

𝑁𝐼𝐶∑
𝑖=1

‖𝑝̂(𝐱𝑖,0) − 𝑝0(𝐱𝑖)‖22. (14)

Here, 𝝈̂ = 𝝈(𝐮̂) indicates the approximation of the total stress, that is defined by the material constitutive law, {𝐱𝑖Γ𝑢 , 𝑡
𝑖
Γ𝑢
}
𝑁Γ𝑢
𝑖=1 , 

{𝐱𝑖Γ𝜎 , 𝑡
𝑖
Γ𝜎
}
𝑁Γ𝜎
𝑖=1 , {𝐱𝑖Γ𝑝 , 𝑡

𝑖
Γ𝑝
}
𝑁Γ𝑝
𝑖=1 and {𝐱𝑖Γ𝑞 , 𝑡

𝑖
Γ𝑞
}
𝑁Γ𝑞
𝑖=1 are points on the boundary, and {𝐱𝑖, 0}𝑁𝐼𝐶

𝑖=1 are points in the domain Ω at 𝑡 = 0. The 
presented PINN formulation is used in the next sections to solve two classical benchmarks and a heterogeneous test case in coupled 
4

hydro-poromechanics.
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Table 1

Hyper-parameter set of values.

Hyper-parameter Description Set

Layers Number of hidden layers {4,8,12}

Neurons Number of neurons per layer {20,40}

Act fun Activation function of each neuron in the hidden layers {tanh, elu}

4. Identification of PINN architecture

In this section, we investigate the optimal construction of PINNs for two classical coupled problems, namely Terzaghi’s problem 
(1D) and Mandel’s problem (2D), for which analytical solutions are available. In particular, we analyze the optimal choice of the 
hyper-parameters and evaluate the accuracy of the PINN model used as a forward solver for the governing differential problem.

It is well-known that an established procedure to choose the architecture of a neural network does not exist, but it mainly remains 
at the modeler’s experience. A general rule of thumb is the deeper the network, the higher the ability to capture complex links, but of 
course the slower the training time. Many factors can come into play, influencing in different ways the difficulty of the procedure. Some 
of them are specifically problem-dependent, e.g., the number of data and collocation points, or the hyper-parameters regulating the 
training, such as batch size and number of epochs. However, other factors basically depend on the class of problem and the structure 
of the governing equations. Driven by these motivations, we extensively analyze the founding elements of the architecture of PINNs 
for coupled hydro-poromechanics, with the aim at investigating its robustness and accuracy with respect to the hyper-parameter set 
selection.

Among the hyper-parameters needed to set up a PINN model, the most influential ones are:

• number of layers,

• number of neurons per layer,

• type of activation function.

For each item, we consider the set of possible entries reported in Table 1 with the effect of all possible combinations.

In this work, we assume for the sake of simplicity that all hidden layers have the same number of neurons and the same activation 
function. For PINN models, it is preferable to use differentiable activation functions, because the neural networks have to approximate 
a smooth PDE solution and are automatically differentiated to compute the loss terms (12). For this reason, along with tanh, we use 
the ELU activation function, defined as:

𝐸𝐿𝑈 (𝑥) =

{
𝑥 if 𝑥 ≥ 0

𝛼(𝑒𝑥 − 1) if 𝑥 < 0
, (15)

with 𝛼 = 1, instead of the more common Rectified Linear Unit (ReLU) function. In the following sections, we present the results 
obtained for a one-dimensional and a two-dimensional formulation of the problem, comparing the accuracy of the approximations 
for the different combinations of hyper-parameters.

A full factorial combination of the different values for the number of layers, neurons and the activation function type has been con-

sidered, with the networks obtained by each architecture properly trained. The quality of every realization is evaluated by computing 
the weighted L2-norm of the difference between the NN prediction, 𝐲̂, and the analytical solution, 𝐲:

𝐸(𝐲̂,𝐲) =
‖𝐲̂ − 𝐲‖2‖𝐲‖2 (16)

The use of such weighted norm allows to deal with dimensionless and comparable errors. Then, the population of 𝐸(𝐲̂, 𝐲) data is 
statistically processed in order to identify the impact of the hyper-parameters, their mutual influence, the robustness of the proposed 
PINN architecture with respect to their variation, and the setup providing the most accurate outcome.

4.1. 1D: Terzaghi’s problem

Terzaghi’s problem consists of a poroelastic fluid-saturated column with a constant loading 𝑃𝐿 applied instantaneously on top at 
time 𝑡 = 0, as shown schematically in Fig. 1. The column has height 𝐿 and at the basement there are zero flux and null displacement. 
Only through the upper boundary free drainage is allowed. In a one-dimensional configuration and assuming the 𝑧-axis positive 
downward (Fig. 1), equations (5) and (6) read:

(𝜆+ 2𝜇) 𝜕
2𝑢

𝜕𝑧2
= 𝛼 𝜕𝑝

𝜕𝑧
, (17)

−𝜅 𝜕
2𝑝

𝜕𝑧2
+ 𝜕

𝜕𝑡

(
𝜙𝛽𝑝+ 𝛼 𝜕𝑢

𝜕𝑧

)
= 0, (18)
5

with the following boundary conditions:
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Fig. 1. Sketch of the setup for Terzaghi’s problem with indication of sensor location.

Table 2

Material parameters definition.

Parameter Name Unit Definition

𝑀 Biot modulus MPa 𝑀 = [𝜙𝛽 + (𝛼 − 𝜙)𝑐𝑏𝑟]−1
𝐾𝑢 Undrained bulk modulus MPa 𝐾𝑢 = 𝜆+ 2𝜇∕3 + 𝛼2𝑀
𝑐𝑀 Vertical uniaxial compressibility MPa−1 𝑐𝑀 = [𝜆+ 2𝜇]−1
𝑐 Consolidation coefficient m2/s 𝑐 = 𝑘∕[𝛾𝑤(𝑀−1 + 𝛼2𝑐𝑀 )]
𝐵 Skempton’s coefficient – 𝐵 = 𝛼𝑀∕𝐾𝑢
𝜈𝑢 Undrained Poisson’s ratio – 𝜈𝑢 = [3𝜈 + 𝛼𝐵(1 − 2𝜈)]∕[3 − 𝛼𝐵(1 − 2𝜈)]

𝑝(0, 𝑡) = 0, (𝜆+ 2𝜇) 𝜕𝑢
𝜕𝑧

(0, 𝑡) = −𝑃𝐿, 𝑧 = 0,

𝜕𝑝

𝜕𝑧
(𝐿, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0, 𝑧 =𝐿.

(19)

The initial overpressure 𝑝0(𝑧) and displacement 𝑢0(𝑧) caused by the instant load 𝑃𝐿 read [4–7]:

𝑝0(𝑧) =
⎧⎪⎨⎪⎩

0 𝑧 = 0
𝛼𝑀

𝐾𝑢 + 4𝜇∕3
𝑃𝐿 otherwise

,

𝑢0(𝑧) =
1

𝐾𝑢 + 4𝜇∕3
𝑃𝐿(𝐿− 𝑧),

(20)

and the analytical solutions are:

𝑝(𝑧, 𝑡) = 4
𝜋
𝑝0

∞∑
𝑚=0

1
2𝑚+ 1

exp
[
−
( (2𝑚+ 1)𝜋

2𝐿

)2
𝑐𝑡

]
sin

[
(2𝑚+ 1)𝜋𝑧

2𝐿

]
,

𝑢(𝑧, 𝑡) = 𝑐𝑀𝑝0

{
(𝐿− 𝑧) − 8𝐿

𝜋2

∞∑
𝑚=0

1
(2𝑚+ 1)2

exp
[
−
( (2𝑚+ 1)𝜋

2𝐿

)2
𝑐𝑡

]
cos

[
(2𝑚+ 1)𝜋𝑧

2𝐿

]}
+ 𝑢0.

(21)

The definition of the material parameters arising in (20) and (21) is summarized in Table 2, where 𝑐𝑏𝑟 denotes the solid grain 
compressibility, 𝜈 the drained Poisson ratio, 𝜆 and 𝜇 the Lamé constants. All material parameter values are reported in Table 3. The 
poroelastic medium consists of a homogeneous sandy material (𝜆𝑠 , 𝜇𝑠 and 𝑘𝑠) with 𝐿 = 15 m and 𝑃𝐿 = 10−2 MPa.

In the 1D formulation (17)-(18), the unknown functions are the fluid pore pressure 𝑝 and the vertical displacement 𝑢. As stated in 
Section 2, they are approximated by two distinct neural networks, with the loss function built following (10). The terms of the loss 
function give their contribution on different portions of the space-time domain [0, 𝐿] × [0, +∞). For this reason, training points have 
to be properly distributed to cover the domain completely. They are generated with DataGeneratorXT of SciANN, which builds a grid 
with a number of points distributed in both the domain and the boundaries, so as to guarantee that each loss term is proportionally 
sampled and the optimizer performs better.

The numerical time domain is bounded at 𝑇 = 1000 s, which represents a value where steady state conditions are practically 
achieved for the selected material parameters. First of all, we notice that a uniform distribution of training points in time is not 
effective, since significant oscillations of the initial boundary bands can be observed (Fig. 2). Such sharp oscillations are substantially 
6

smoothed generating a logarithmic random sample in time. This is motivated by the shape of the analytical solution (21) that 



Journal of Computational Physics 516 (2024) 113299C. Millevoi, N. Spiezia and M. Ferronato

Table 3

Material properties.

Parameter Name Value

𝜆𝑠 Lamé constant (sand) 40 MPa

𝜇𝑠 Lamé constant (sand) 40 MPa

𝜆𝑐 Lamé constant (clay) 4 MPa

𝜇𝑐 Lamé constant (clay) 4 MPa

𝛼 Biot coefficient 1.0
𝜙 Medium porosity 0.375
𝛽 Fluid compressibility 4.4 ⋅ 10−4 MPa−1

𝑘𝑠 Hydraulic conductivity (sand) 10−5 m/s

𝑘𝑐 Hydraulic conductivity (clay) 10−7 m/s

𝛾𝑤 Fluid specific weight 9.81 ⋅ 10−3 MN/m3

𝜈 Drained Poisson ratio 0.3
𝑐𝑏𝑟 Solid grain compressibility 0 MPa−1

Fig. 2. Terzaghi’s problem: relative L2-norm pressure error (equation (16)) with a uniform (left) and logarithmic (right) training point distribution in time.

is exponentially decaying in time. This behavior is common for every coupled hydro-poromechanical problem, independently of 
application dimension and the specific boundary conditions.

The total number 𝑁𝑑 of training data is set to 3000, half of which is equally distributed between boundary and initial conditions. 
This is an empirical choice balancing the need of limiting the computational burden of the training processes and the size of the ap-

proximation errors. Therefore, we suppose to have pressure and displacement data {𝑝𝑖, 𝑢𝑖}𝑁𝑑
𝑖=1 obtained by evaluation of the analytical 

solutions (21) over training points {𝑧𝑖
𝑑
, 𝑡𝑖
𝑑
}𝑁𝑑
𝑖=1 spread all over the domain. The points located inside the domain are used as collocation 

points, while the ones on the space-time boundaries allow to evaluate (19) and (20), thus resulting in 𝑁𝑐 = 1500, 𝑁𝐼𝐶 = 750, and 
𝑁𝐵𝐶 = 750 split into top and bottom (Fig. 3).

We consider all the possible 144 architectures generated by varying the number of layers in {4, 8, 12}, the number of neurons 
in {20, 40} and the type of the activation function, either tanh or ELU, for both networks (Table 1). The number of epochs is set to 
5000 with a batch size of 500. Note that the size of the batches has to be quite big so as to contain points over the boundaries too. 
This is necessary because the gradient updates have to consider also information for the boundary terms of the loss function (10). An 
early stopping is added to quit the training if the loss function does not improve for 500 epochs. Adam algorithm [49] is used with a 
learning rate constantly equal to 0.001 until the 2000th epoch and then exponentially decreasing to 0.0001 until the last epoch [50]. 
The weights of both the neural networks are initialized with Glorot normal initializer of Keras.

As mentioned before, to improve the training procedure all data have been normalized between 0 and 1 by Scikit-learn Min-Max 
scaler. First, the scaled networks 𝑝̂𝑠 and 𝑢̂𝑠 have been trained over these scaled data, and then denormalized to obtain 𝑝̂ and 𝑢̂:

𝑝̂ = 𝑝̂𝑠𝑝𝑠𝑐 + 𝑝𝑚𝑖𝑛,

𝑢̂ = 𝑢̂𝑠𝑢𝑠𝑐 + 𝑢𝑚𝑖𝑛,
(22)

where 𝑝𝑠𝑐 = 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛, 𝑢𝑠𝑐 = 𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛, with 𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 the minimum and maximum pressure and displacement 
values, respectively. Also, each term of the loss function is multiplied by an appropriate weighting factor to balance their role in the 
training process. In this case, the weights have been set as follows: 𝑤𝑒𝑞𝑢,𝑧 =𝑤Γ𝑝 = 𝑝𝑠𝑐 , 𝑤𝑐𝑜𝑛𝑡 =𝑤Γ𝑢,𝑧 = 𝑢𝑠𝑐 , 𝑤Γ𝜎 ,𝑧 = 𝑃𝐿, 𝑤Γ𝑞 = 100𝑝𝑠𝑐 , 
7

𝑤𝐼𝐶,𝑢,𝑧 =
1

𝐾𝑢+4𝜇∕3
𝑃𝐿𝐿, and 𝑤𝐼𝐶,𝑝 =

𝛼𝑀

𝐾𝑢+4𝜇∕3
𝑃𝐿. The choice is also motivated by the different unit of measure of the loss function 
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Fig. 3. Terzaghi’s problem: training point distribution in the space-time domain. Blue ones are collocation points, while green, red and black ones are used to impose 
initial and boundary conditions at 𝑧 = 0 and 𝑧 =𝐿, respectively. Pressure and displacement data are given on them all (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.).

Table 4

Response optimization results.

Layers p Layers u Neurons p Neurons u Act fun p Act fun u

Terzaghi 10 12 40 20 elu elu

Mandel 4 8 20 20 tanh tanh

contributions, see eqs. (17) to (20). Notice that 𝑤Γ𝑞 is magnified 100 times with respect to other similar weights to better enforce 
boundary conditions at 𝑧 = 𝐿. The seed generating the random points is the same in all simulations in order to have reproducible 
and comparable results.

To evaluate the accuracy, the trained networks are computed over a uniform grid with 1501 × 1001 points in the 𝑧 − 𝑡 domain 
[0, 15] m × [0, 1000] s. The errors are evaluated by numerically computing the dimensionless weighted 𝐿2-norm (16) over such a 
uniform grid and plotted in Fig. 4 for all 144 architectures. Mean value and standard deviation of the errors are equal to 𝜇𝑝 =
3.291 × 10−2 and 𝜎𝑝 = 1.719 × 10−2 for 𝑝, 𝜇𝑢 = 5.622 × 10−2 and 𝜎𝑢 = 3.327 × 10−2 for 𝑢. Overall, we can observe that the PINN 
accuracy appears to be quite satisfactory for almost any of the investigated architectures. The displacement errors are larger than the 
pressure ones on average, with a similar statistical distribution. It is interesting to note that for both 𝑝 and 𝑢 the smallest errors occur 
in architecture indices between 100 and 120, which correspond to the use of ELU activation function, 12 layers and 20 neurons for 
𝑢. These plots highlight the robustness of the PINN method, that for a large number of combinations gives similar and satisfactory 
error values. Outliers are quite few and even in the worse cases the errors are at most around 12%. The full factorial combination of 
the values in Table 1 has been done with three repetitions for each architecture, obtained using three different random seeds. Graphs 
in Fig. 4 preserve the same allocation of the errors for all the different seeds, so that it is possible to conclude that the choice of the 
seed has a negligible impact.

Fig. 5 contains the main effect plots of the mean errors obtained with the different hyper-parameters. They show that the strongest 
impact on the PINN accuracy is given by the choice of the activation function for 𝑢̂ and the number of its neurons, with ELU and 
20 neurons being more effective. The choices for the 𝑝̂ architecture are not so significant for the accuracy in the displacement 
approximation. Conversely, for pressure approximation ELU is again more appropriate. It is also possible to conclude that a suitable 
value for the number of layers of both the NNs is between 8 and 12.

Finally, a classical response optimization process [51] applied to both 𝑝- and 𝑢-error provides the architecture in Table 4 as the best 
one. The response optimization is ideal for optimizing and exploring deployed predictive data mining models. It performs a discrete 
search in the independent variable space, so as to enrich the plumbed space of the hyper-parameters, until a set of independent values 
are discovered for which the model yield minimizes the responses. Note that the optimal values for 𝑢̂ are ELU activation function, 12 
layers and 20 neurons, as confirmed also from Fig. 4 and 5.

4.2. 2D: Mandel’s problem

Mandel’s problem simulates the consolidation of an infinitely long poroelastic slab, which is sandwiched between two rigid, 
impermeable and frictionless plates. The poroelastic fluid-saturated slab is homogeneous and isotropic and both plates are suddenly 
squeezed at time 𝑡 = 0 by a constant compressive vertical load per unit length 2𝐹 (Fig. 6). Let 2𝑎 and 2𝑏 be the slab sizes. The left 
and right boundaries (𝑥 = ±𝑎) are stress-free, drained and always at ambient pressure (𝑝 = 0), while top and bottom boundaries 
(𝑧 = ±𝑏) have a prescribed stress and no flux. As the domain is symmetric, only the highlighted quarter of the 𝑥 − 𝑧 plane in Fig. 6 is 
8

considered.
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Fig. 4. Terzaghi’s problem: errors in the pressure (top) and displacement (bottom) reconstruction for the different architectures. On the rightmost frames, the error 
statistical distribution is provided.

Equations (5) and (6) in two dimensions for Mandel’s configuration take the form:

(𝜆+ 2𝜇)
𝜕2𝑢𝑥

𝜕𝑥2
+ 𝜇

𝜕2𝑢𝑥

𝜕𝑧2
+ (𝜆+ 𝜇)

𝜕2𝑢𝑧
𝜕𝑥𝜕𝑧

= 𝛼 𝜕𝑝
𝜕𝑥
,

𝜇
𝜕2𝑢𝑧

𝜕𝑥2
+ (𝜆+ 2𝜇)

𝜕2𝑢𝑧

𝜕𝑧2
+ (𝜆+ 𝜇)

𝜕2𝑢𝑥
𝜕𝑥𝜕𝑧

= 𝛼 𝜕𝑝
𝜕𝑧
,

(23)

−𝜅
(
𝜕2𝑝

𝜕𝑥2
+ 𝜕2𝑝

𝜕𝑧2

)
+ 𝜕

𝜕𝑡

(
𝜙𝛽𝑝+ 𝛼

(𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑧

𝜕𝑧

))
= 0, (24)

where the Darcy conductivity 𝜿 is assumed to be the identity tensor 𝟏 multiplied by the scalar 𝜅 = 𝑘∕𝛾𝑤. The boundary conditions 
read:

𝜕𝑝

𝜕𝑥
(0, 𝑧, 𝑡) = 0, 𝑢𝑥(0, 𝑧, 𝑡) = 0,

𝜕𝑢𝑧

𝜕𝑥
(0, 𝑧, 𝑡) = 0, 𝑥 = 0,

𝑝(𝑎, 𝑧, 𝑡) = 0,
𝜕𝑢𝑥

𝜕𝑥
(𝑎, 𝑧, 𝑡) = 𝐹𝜈

2𝜇𝑎
,

𝜕𝑢𝑧

𝜕𝑥
(𝑎, 𝑧, 𝑡) = 0, 𝑥 = 𝑎,

𝜕𝑝

𝜕𝑧
(𝑥,0, 𝑡) = 0,

𝜕𝑢𝑥

𝜕𝑧
(𝑥,0, 𝑡) = 0, 𝑢𝑧(𝑥,0, 𝑡) = 0, 𝑧 = 0,

𝜕𝑝 𝜕𝑢𝑥 𝜕𝑢𝑧 𝐹 (1 − 𝜈)

(25)
9

𝜕𝑧
(𝑥, 𝑏, 𝑡) = 0,

𝜕𝑧
(𝑥, 𝑏, 𝑡) = 0,

𝜕𝑧
(𝑥, 𝑏, 𝑡) = −

2𝜇𝑎
, 𝑧 = 𝑏.
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Fig. 5. Terzaghi’s problem: main effect plots of the sensitivity analysis on all hyper-parameters for the pressure (top) and displacement (bottom) approximations. A 
gray background denotes a term not statistically significant in the model.

Fig. 6. Sketch of the setup for Mandel’s problem with indication of sensor locations, only in the portion of the domain considered for symmetry reasons.

The instantaneous load application at 𝑡 = 0 causes the initial overpressure 𝑝0(𝑥, 𝑧) and horizontal and vertical displacements 𝑢𝑥,0(𝑥, 𝑧)
and 𝑢𝑧,0(𝑥, 𝑧) [6,7]:

𝑝0(𝑥, 𝑧) =
⎧⎪⎨⎪⎩

0 𝑥 = 𝑎
1
3𝑎
𝐵(1 + 𝜈𝑢)𝐹 otherwise

,

𝐹 𝜈𝑢 𝑥
10

𝑢𝑥,0(𝑥, 𝑧) = 2𝜇 𝑎
, (26)
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𝑢𝑧,0(𝑥, 𝑧) = −
𝐹 (1 − 𝜈𝑢)

2𝜇
𝑧

𝑎
.

The analytical solution reads [7]:

𝑝(𝑥, 𝑧, 𝑡) = 2𝑝0
∞∑
𝑛=1

sin𝛼𝑛
𝛼𝑛 − sin𝛼𝑛 cos𝛼𝑛

(
cos

𝛼𝑛𝑥

𝑎
− cos𝛼𝑛

)
exp

(
−
𝛼2
𝑛
𝑐𝑡

𝑎2

)
,

𝑢𝑥(𝑥, 𝑧, 𝑡) =
[
𝐹𝜈

2𝜇𝑎
−
𝐹𝜈𝑢

𝜇𝑎

∞∑
𝑛=1

sin𝛼𝑛 cos𝛼𝑛
𝛼𝑛 − sin𝛼𝑛 cos𝛼𝑛

exp
(
−
𝛼2
𝑛
𝑐𝑡

𝑎2

)]
𝑥

+ 𝐹

𝜇

∞∑
𝑛=1

cos𝛼𝑛
𝛼𝑛 − sin𝛼𝑛 cos𝛼𝑛

sin
𝛼𝑛𝑥

𝑎
exp

(
−
𝛼2
𝑛
𝑐𝑡

𝑎2

)
,

𝑢𝑧(𝑥, 𝑧, 𝑡) =
[
− 𝐹 (1 − 𝜈)

2𝜇𝑎
+
𝐹 (1 − 𝜈𝑢)
𝜇𝑎

∞∑
𝑛=1

sin𝛼𝑛 cos𝛼𝑛
𝛼𝑛 − sin𝛼𝑛 cos𝛼𝑛

exp
(
−
𝛼2
𝑛
𝑐𝑡

𝑎2

)]
𝑧,

(27)

with 𝛼𝑛 the positive roots of the non-linear equation:

tan𝛼𝑛 = − 𝜈 − 1
𝜈𝑢 − 𝜈

𝛼𝑛. (28)

See Table 2 and 3 for the material parameter definitions and values, with 𝜆 = 𝜆𝑠, 𝜇 = 𝜇𝑠 and 𝑘 = 𝑘𝑠. We choose 𝑎 = 𝑏 = 1 m and the 
force 𝐹 equal to 10−2 MN/m.

In Mandel’s problem there are three unknown functions, i.e., fluid pressure 𝑝(𝑥, 𝑧, 𝑡), horizontal displacement 𝑢𝑥(𝑥, 𝑧, 𝑡), and 
vertical displacement 𝑢𝑧(𝑥, 𝑧, 𝑡). Each one is approximated by a neural network with the loss function built as in (10), so as to 
honor both the governing equations (23)-(24) and the auxiliary conditions in (25)-(26). The problem domain in space and time is 
Ω = [0, 𝑎] ×[0, 𝑏] ×[0, +∞). Given the material parameter values of Table 3, the domain is limited along the time direction to 𝑇 = 10 s. 
Recalling the observations made for Terzaghi’s problem, we empirically select 𝑁𝑑 = 6000 data points using SciANN DataGeneratorXYT 
to build the random samples {𝑥𝑖

𝑑
, 𝑧𝑖
𝑑
, 𝑡𝑖
𝑑
}𝑁𝑑
𝑖=1 with a logarithmic scale in time. The procedure is forced to produce half training points 

inside the domain and the remaining ones equally distributed along the boundaries. In particular, 375 points are set on each side of 
the space domain boundary and 1500 at 𝑡 = 0.

The same hyper-parameter domain as Terzaghi’s problem (Table 1) is considered for the sensitivity analysis. We use 5000 epochs 
with a batch size set equal to 1000 and the learning rate of Adam optimization algorithm to 0.001 for the first 2000 epochs, then 
exponentially decreasing to 0.0001 until the last epoch. As for Terzaghi’s problem, the weights of the networks are initialized with 
Glorot normal initialization and the training data are scaled with the min-max scaler. Then, three NNs, namely 𝑝𝑠 , 𝑢̂𝑥,𝑠, and 𝑢̂𝑧,𝑠, 
are built to fit the scaled data and other three networks, 𝑝̂, 𝑢̂𝑥, and 𝑢̂𝑧, are derived as in (22). The values for the remaining weights 
are: 𝑤𝑒𝑞𝑢,𝑥 =𝑤𝑒𝑞𝑢,𝑧 =𝑤Γ𝑝 =𝑤Γ𝑞 = 𝑝𝑠𝑐 , 𝑤𝑐𝑜𝑛𝑡 =𝑤Γ𝑢,𝑥 = 𝑢𝑥,𝑠𝑐 , 𝑤Γ𝑢,𝑧 = 𝑢𝑧,𝑠𝑐 , 𝑤Γ𝜎 ,𝑥 =𝑤Γ𝜎 ,𝑧 =

𝐹

2𝜇 , 𝑤𝐼𝐶,𝑢,𝑥 =
𝐹𝜈𝑢

2𝜇 , 𝑤𝐼𝐶,𝑢,𝑧 = − 𝐹 (1−𝜈𝑢)
2𝜇 , and 

𝑤𝐼𝐶,𝑝 =
𝐵(1+𝜈𝑢)𝐹

3𝑎 .

After training, the network accuracy is evaluated on an equally spaced grid in [0, 1] m×[0, 1] m×[0, 10] s of 101 ×101 ×201 points. 
The 𝐿2-errors of equation (16) are plotted in Fig. 7. As for Terzaghi’s problem, the 𝐿2-errors of equation (16) denote quite a limited 
spread, providing evidence again of the PINN robustness. It appears also that displacements are very marginally affected by the hyper-

parameter selection, with the worse outliers characterized by an error around 7%. By distinction, there exists a marked difference for 
the fluid pressure, where the realizations which correspond to the tanh activation function for displacements (from no. 1 to no. 72) 
exhibit a more consistent behavior than the remaining ones. Means and standard deviations of the errors are 𝜇𝑝 = 4.671 × 10−2, 
𝜇𝑢𝑥

= 4.653 ×10−2, 𝜇𝑢𝑧 = 5.131 ×10−2, and 𝜎𝑝 = 1.314 ×10−2, 𝜎𝑢𝑥 = 6.522 ×10−3, 𝜎𝑢𝑧 = 6.268 ×10−3, i.e., the same order of magnitude 
as Terzaghi’s problem. As for the 1D case, Fig. 7 provides evidence of the robustness of the method, since around 70% of the possible 
architectures leads to errors inside tight 𝜇⋅ ± 𝜎⋅ intervals.

According to the main effects, the activation function of the displacements is the hyper-parameter mostly affecting the overall 
network behavior. In this case, it appears preferable to set it at tanh. The other hyper-parameter showing an appreciable influence 
on the network accuracy is the number of layers for both displacement and pressure, the latter exclusively for vertical displacement 
errors. The response optimization process gives the architecture provided in Table 4.

5. PINN application with a sensor-driven condition

The quality and effectiveness of the PINN architectures identified in the previous section are tested on a more challenging situation, 
with the aim at applying a PINN strategy to something closer to a real-world application. First, we use the PINN model as a standard 
forward PDE solver with no other information but the initial and boundary conditions. Second, we add a few pieces of information 
as training data, arising from a synthetic “sensor” installed at some fixed locations to monitor the evolution of the process. This is 
quite a common situation that may occur in real-world applications, where data can be recorded at some points of the space-time 
domain. Third, to better replicate the condition driven by measured data, we add some noise to the synthetic data. The key idea here 
is to show that even a few training data points from a very limited subset of the domain can substantially improve the computational 
11

efficiency of the numerical procedure for minimizing the loss function in the forward PINN solution of a PDE system. At the same 
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Fig. 7. Mandel’s problem: errors in the pressure (top), horizontal (middle) and vertical displacement (bottom) reconstruction for the different architectures. On the 

rightmost frames, the error statistical distribution is provided.
12
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Fig. 8. Terzaghi’s problem: comparison between analytical and PINN solution using the model as a forward PDE solver.

time, exploiting the available, and even noisy, data can significantly improve the quality of the PINN prediction. We denote the 
applications investigated in this section as “sensor-driven” simulations, in the sense that we assume that data within the domain are 
available only where a physical sensor is installed.

The procedure is here applied to artificially-created synthetic examples, but the objective is to assess the PINN performance in 
view of its application to a real case, where monitoring data describing the evolution of the physical process are available at some 
specified locations. Both the one-dimensional and the two-dimensional configurations of Section 4 are tested and compared with a 
strictly forward solution.

5.1. 1D: Terzaghi’s problem

Following the outcome of Table 4, we build the PINN model by using a pressure network with 10 layers, 40 neurons and ELU 
activation function, while the displacement network has 12 layers, 20 neurons and ELU activation function. This PINN model is used 
to solve the classical 1D Terzaghi’s consolidation problem in the setting of Fig. 1 with the initial and boundary conditions of equations 
(19)-(20). Since we assume to use PINN as a forward PDE solver with no additional information available, the number of collocation 
points has to be significantly increased with respect to the analysis carried out in Section 4. In particular, to achieve a sufficient 
accuracy we needed 𝑁𝑐 = 20000 collocation points inside the domain where the PDE residual is evaluated, 𝑁𝐼𝐶 = 6000 initial points 
and 𝑁𝐵𝐶 = 9000 points uniformly distributed in time along the 𝑧-boundary. The training is performed with Adam algorithm for 
30000 epochs, with a batch size equal to 1000 and a learning rate constantly equal to 0.001 for the first 2000 epochs and then with 
an exponential decay to 0.0001 until the 5000th epoch and to 0.00001 until the end. The loss function is the same as in (10), but the 
weights vary following a Neural Tangent Kernel (NTK) guided gradient descent. This is chosen because it has been verified that this 
method generally improves convergence [52]. All the other parameters have been chosen the same as in Section 4.1, with no early 
stopping. The accuracy of the outcome is satisfactory (Fig. 8) with relative L2-errors for pressure and displacement at about 2% and 
0.7%, respectively.

Now, we assume that a sensor is located at 𝑧 = 7 m (Fig. 1) collecting pressure and displacement values in time. Exploiting the 
data coming from one single point in the physical domain, the number of collocation, initial and boundary points used for the PDE 
residuals and the auxiliary conditions can be reduced to 𝑁𝑐 = 10000, 𝑁𝐼𝐶 = 3000, and 𝑁𝐵𝐶 = 4000, with no other data points inside 
the domain, except for 𝑁𝑑 = 3000 points at 𝑧 = 7 m (Fig. 9a). Pressure and displacement data at the sensor location are synthetically 
obtained from the analytical solution (21). In order to better reproduce a realistic setting, noise has been also added to the exact 
values by introducing an error with a Gaussian distribution, zero mean and a standard deviation equal to 5% of exact values (Fig. 9b), 
similarly to what is done in [8].

The training is carried out with the same parameters as before, but now it can be stopped after 10000 epochs. The trends of the 
loss functions provided in Fig. 10 clearly show the improvement allowed by the introduction of one “sensor” point only in space with 
respect to a simple forward solution in terms of both speed of convergence and accuracy. The mean of the 𝐿2-norms of the errors 
on the validation set of three runs is about 0.5% for the predicted pressure and 0.2% for the vertical displacement (Table 5). Notice 
that also in case of noisy data we have an improvement both in the accuracy and in the convergence speed, hence in the overall 
computational load.

We considered also the case where only partial measurements are available, i.e. only pressure points are used within the domain 
at 𝑧 = 7 m with no data for displacements. This is usually closer to a real-world hydro-poromechanical problem, since in many 
applications, for example in subsurface engineering, it is generally easier and less expensive to monitor the fluid pressure in time 
with respect to deep displacements. In these last cases the accuracy obviously decreases, but the approximation errors still remain 
acceptable from an engineering application point of view, as it can be noticed in Table 5, with the related loss functions still efficiently 
13

minimized (Fig. 10a).
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Fig. 9. Terzaghi’s problem: (a) training points in the “sensor-driven” simulation in Terzaghi’s problem with data given only at 𝑧 = 7 m; (b) 5% noise is added to the 
training sensor data to better reproduce a realistic setting.

Fig. 10. Comparison between the losses relative to the initial value 0 of the forward and “sensor condition” frameworks.

Table 5

Errors for the different model applications. The mean errors computed from three runs and different random 
seeds are provided.

Terzaghi Mandel

1 sensor at 𝑧 = 7 m 2 sensors at (𝑥, 𝑧) = (0.3,0.3) m, (0.7,0.7) m

Error p Error u Error p Error ux Error uz

No data 2.279 × 10−2 7.205 × 10−3 2.655 × 10−1 1.921 × 10−1 1.268 × 10−1
Sensor data u&p 4.891 × 10−3 2.731 × 10−3 4.311 × 10−2 3.521 × 10−2 5.571 × 10−2
Noisy data u&p 1.556 × 10−2 3.106 × 10−3 2.177 × 10−2 3.518 × 10−2 6.799 × 10−2
Sensor data only p 6.654 × 10−3 1.314 × 10−2 2.595 × 10−2 1.446 × 10−1 1.265 × 10−1
Noisy data only p 1.411 × 10−2 1.051 × 10−2 4.327 × 10−2 1.437 × 10−1 1.275 × 10−1

5.2. 2D: Mandel’s problem

The same analysis as in Section 5.1 is applied to Mandel’s problem. We consider the PINN architecture defined by the hyper-

parameters in Table 4, using for fluid pore pressure 4 layers with 20 neurons and tanh activation, and for horizontal and vertical 
displacement 8 layers with 20 neurons and tanh activation. We refer to the problem setting of Fig. 6 and carry out an initial test with 
no other data but the initial and boundary conditions (25)-(26). The networks are trained over 𝑁𝑐 = 40000 collocation points for 
the PDE residuals, 𝑁𝐼𝐶 = 8000 initial points, and 𝑁𝐵𝐶 = 12000 points equally distributed along the four spatial boundaries. The loss 
function is built as stated before with the NTK weighting. The training is performed for 30000 epochs with Adam algorithm, a 0.001
learning rate constant until the 2000th epoch, with an exponential decay to 0.0001 for 3000 epochs and then to 0.00001 until the 
end. The size of the batch has been chosen equal to 2000, while the other choices follow those of the previous Section 4.2 without 
14

early stopping.
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Fig. 11. Mandel’s problem: comparison between analytical and PINN solution using the model as a forward PDE solver.

Fig. 11 shows a comparison between the PINN approximation and analytical solution. The outcome is only fairly satisfactory, with 
discrepancies that can be appreciated for both the pressure and the displacement solution. In this case, the relative L2-error norm is 
around 26% for pressure, 14% for horizontal displacement and 13% for vertical displacement.

If we add a few pieces of information, the training process can be substantially improved. We suppose that two sensors are located 
at (𝑥, 𝑧) = (0.3, 0.3) m and (𝑥, 𝑧) = (0.7, 0.7) m (Fig. 6) collecting pressure and displacement values in time. As before, the synthetic 
measurements in time taken from the analytical solution (27) at the sensor locations are also perturbed by some noise with the same 
characteristics as for Terzaghi’s problem. The networks are now trained over 𝑁𝑐 = 20000, 𝑁𝐼𝐶 = 6000, and 𝑁𝐵𝐶 = 8000 points, while 
𝑁𝑑 = 6000 training data points split into 3000 data points are collected at each location in time. As already observed in Terzaghi’s 
application, the introduction of a “sensor-driven” condition significantly improves both the accuracy and the convergence speed. The 
loss minimization process requires only 10000 epochs with the behavior shown in Fig. 10b, while the relative L2-errors decrease to 
4.3%, 3.5% and 5.6% for pressure, horizontal and vertical displacement, respectively (Table 5).

As done before, we considered also the case where only pressure measurements are available. A summary of the errors is reported 
in Table 5. In Mandel’s case, the errors are larger with respect to Terzaghi’s case, but the advantage of the “sensor-driven” framework 
is still evident (Fig. 10b and Fig. 11). In particular, in this example, the precision reached by the forward solution is not fully 
satisfactory. Assuming that the information is available both for the pressure and displacements field, the results are again quite 
accurate. As expected, in the case where only pressure data are available, the accuracy for pressure remains quite good, but the errors 
for the approximations of the displacements are higher.

5.3. Sensor-driven condition with perturbed material parameters

When dealing with real-world applications, the knowledge of the problem is always affected by a number of uncertainties. In 
the field of poromechanics, the most significant source of uncertainty is often the hydro-geological characterization of the porous 
medium, because of the difficulty intrinsically connected to the accurate measurement of material properties in the subsurface and 
their natural variability in space. Prior assumptions in the problem formulation can be derived from laboratory tests, e.g., [53], or 
in-situ direct or indirect observations with specialized measurement equipment, e.g., [54,55]. However, most of the measurement 
techniques are representative of the medium only at a very local level, hence they are naturally affected by some inaccuracies in the 
estimate of the actual material properties. Moreover, in a practical situation the general behavior of the physical process is known, 
but many other different phenomena, which can be hardly quantified, may affect the outcome in an unpredictable way. The proposed 
sensor-driven framework can also help in addressing this issue, since the integration of some data measured in the site can guide 
to the actual solution of the problem and help to account for marginal effects due to several minor dynamics that are not explicitly 
accounted for in the governing model equations. In this context, the solution is not forced to strictly satisfy the assumed main process, 
but can balance it with the actual measurements and with other natural occurrences.

We investigate this situation in Mandel’s problem, where we simulate a scenario in which the prior knowledge of the geomechanical 
and hydraulic properties of the medium is affected by an error. Suppose that the available material parameters 𝜆 = 𝜇 = 40 MPa and 
15

𝑘 = 10−5 m/s are inaccurate and that their true value is 𝜆∗ = 𝜇∗ = 50 MPa and 𝑘∗ = 10−4 m/s, i.e., the mechanical properties are 
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Fig. 12. Mandel’s problem: test case with inconsistent PDE parameters and sensor data.

Table 6

Errors of the PINN solution of Mandel’s problem for the case of sensor-

driven condition with perturbed parameters. The mean errors computed

from three runs and different random seeds are provided.

Mandel - perturbed parameters

2 sensors at (𝑥, 𝑧) = (0.3,0.3) m, (0.7,0.7) m

Error p Error ux Error uz

Sensor data u&p 5.415 × 10−2 8.405 × 10−2 8.096 × 10−2
Sensor data only p 7.934 × 10−2 2.765 × 10−1 2.615 × 10−1

affected by a 20% underestimate and the hydraulic conductivity is incorrect by one order of magnitude. Hence, the sensor data for 
pressure and displacements, {𝑝𝑖, 𝑢𝑖

𝑥
, 𝑢𝑖
𝑧
}𝑁𝑑
𝑖=1, correspond to the values obtained from the solution (27) at (0.3, 0.3) m and (0.7, 0.7) m 

with 𝜆∗, 𝜇∗ and 𝑘∗, which is not consistent with the prior available information used to compute the residual of the governing 
equations with 𝜆, 𝜇, and 𝑘. We build 𝑝̂, 𝑢̂𝑥, and 𝑢̂𝑧 with the architecture defined in Table 4 and we train them by minimizing the 
misfit with available sensor data and the residual of (23)-(24), along with boundary and initial conditions (25)-(26), with inaccurate 
parameters. The same training conditions as Section 5.2 apply.

Fig. 12 compares the solution obtained with PINNs, the true solution corresponding to 𝜆∗ , 𝜇∗ and 𝑘∗, and the solution corre-

sponding to the incorrect parameters 𝜆, 𝜇 and 𝑘. Table 6 reports the error with sensor data available for either both pressure and 
displacements, or pressure only. The results show that even if the PDE residual introduced in the loss function arises from an inac-

curate estimate of the true material parameters, its combination with available sensor data allows the PINN-model to converge to 
the actual solution, with an error and convergence time comparable to the sensor-driven case with consistent parameters. It is worth 
emphasizing that this outcome would not have been possible with any forward PDE solver. By distinction, the use of a PINN-based 
model appears to be very flexible in adjusting the prediction so as to respect the underlying physics learned from the governing 
equation and at the same time fitting the actual available observations.

5.4. Heterogeneous consolidation problem

Finally, the PINN application with sensor-driven condition is investigated in a more complex and realistic setting. We simulate the 
consolidation of a heterogeneous medium, consisting of clay and sand layers, subjected to a surface distributed load. This stratified 
subsurface setting is a representation of the actual shallow subsurface conditions in sedimentary basins and is a first step towards the 
use of PINN-based models in a realistic configuration with real sensor data.

We consider the 2D domain sketched in Fig. 13, with a clay layer lying on top of a sandy formation. The constant uniformly 
distributed load 𝑃𝐻 is applied on the ground surface. The lower and upper layers have thickness 𝐻1 and 𝐻2, respectively. The 
16

heterogeneity is modeled by setting 𝜆, 𝜇, and 𝑘 as the following jump functions:
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Fig. 13. Sketch of the setup for 2D consolidation in a heterogeneous setting with indication of sensor locations.

𝜆(𝑥, 𝑧) =
{
𝜆𝑠 ∀(𝑥, 𝑧) ∈ [0,𝐿] × [0,𝐻1]
𝜆𝑐 ∀(𝑥, 𝑧) ∈ [0,𝐿]×]𝐻1,𝐻] , 𝑘(𝑥, 𝑧) =

{
𝑘𝑠 ∀(𝑥, 𝑧) ∈ [0,𝐿] × [0,𝐻1]
𝑘𝑐 ∀(𝑥, 𝑧) ∈ [0,𝐿]×]𝐻1,𝐻] , (29)

and 𝜇(𝑥, 𝑧) = 𝜆(𝑥, 𝑧). In other words, the collocation points can be marked as belonging to the sandy or clayey layer, so as to identify 
which value of the material parameters has to be used in order to compute the corresponding residual. The full space-time domain is 
Ω = [0, 𝐿] × [0, 𝐻] × [0, +∞). The initial conditions read:

𝑝0(𝑥, 𝑧) =

{
0 𝑧 =𝐻

𝑃𝐻 otherwise
, 𝑢𝑥,0(𝑥, 𝑧) = 0, 𝑢𝑧,0(𝑥, 𝑧) = 0, (30)

and the boundary conditions are:

𝜕𝑝

𝜕𝑥
(0, 𝑧, 𝑡) = 0, 𝑢𝑥(0, 𝑧, 𝑡) = 0,

𝜕𝑢𝑧

𝜕𝑥
(0, 𝑧, 𝑡) = 0, 𝑥 = 0,

𝜕𝑝

𝜕𝑥
(𝐿,𝑧, 𝑡) = 0, 𝑢𝑥(𝐿,𝑧, 𝑡) = 0,

𝜕𝑢𝑧

𝜕𝑥
(𝐿,𝑧, 𝑡) = 0, 𝑥 =𝐿,

𝜕𝑝

𝜕𝑧
(𝑥,0, 𝑡) = 0,

𝜕𝑢𝑥

𝜕𝑧
(𝑥,0, 𝑡) = 0, 𝑢𝑧(𝑥,0, 𝑡) = 0, 𝑧 = 0,

𝑝(𝑥,𝐻, 𝑡) = 0,
𝜕𝑢𝑥

𝜕𝑧
(𝑥,𝐻, 𝑡) = 0, (𝜆𝑐 + 2𝜇𝑐)

𝜕𝑢𝑧

𝜕𝑧
(𝑥,𝐻, 𝑡) = −𝑃𝐻, 𝑧 =𝐻.

(31)

We set the external load 𝑃𝐻 = 90 kPa, and the domain dimensions 𝐿 = 100 m and 𝐻 = 30 m, with 𝐻1 = 18 m and 𝐻2 = 12 m the 
heights of the lower and upper layers, respectively. All the other parameters are chosen as indicated in Table 3. The numerical final 
time instant is 𝑇 = 218160 s. Since the analytical solution for this problem is not available in close form, we use as reference solution 
the one obtained by solving numerically the problem at hand with a very fine space and time discretization. In particular, we used the 
stabilized Mixed Finite Element approach presented in [56] with bilinear elements for the displacement representation and the lowest 
order Raviart-Thomas space for fluid pressure and velocity. This scheme was used for its stability and accuracy, already verified in a 
number of real-world test cases. The numerical reference solution has been used to extract the sensor data as well.

The sensor locations, highlighted in Fig. 13, are selected considering the potential data availability in a real-world setting. Since 
nowadays the ground surface motion can be easily detected with a great accuracy over a large number of points in space and 
time by satellite measurements, e.g., Interferometric Synthetic Aperture Radar (InSAR) maps and Continuous Global Positioning 
System (CGPS) stations, we consider displacement data available from four top surface points uniformly distributed over the domain 
(𝑥 = 20, 40, 60, 80 m). By distinction, data from the subsurface are usually much more difficult to detect, so we assume to have only 
one sensor in the position (𝑥, 𝑧) = (50, 15) m, measuring both pressure and vertical displacement in time. For instance, these data can 
be realistically provided by a single borehole instrumented with both a piezometer and an extensometer.

We build 𝑝̂, 𝑢̂𝑥, and 𝑢̂𝑧 with the architecture defined in Table 4 for Terzaghi’s test problem. The training is carried out by minimizing 
the misfit with available sensor data and the residual on the governing equations, the boundary and the initial conditions at 𝑁𝑐 =
10000 collocation points randomly distributed over the domain Ω, 𝑁𝐼𝐶 = 3000, 𝑁𝐵𝐶 = 4000. For each sensor, we provide 25 data 
computed with the numerical reference solution, so 𝑁𝑑 = 125. A logarithmic distribution is selected, as usual, in time. The same 
training technical choices as in Section 5.2 are used. The outcome of our sensor-driven PINN-based solution of Biot’s model is 
compared to the reference numerical result in Fig. 14, while Table 7 displays the approximation errors (16) for each of the unknown 
variables, 𝑝, 𝑢𝑥, 𝑢𝑧. The results show that, also in this more realistic test case, the PINN-based model is able to correctly learn the 
physics generating the reference solution behavior and the heterogeneity of the material properties. In particular, the errors are 
quantitatively comparable with those obtained in the theoretical benchmarks characterized by an analytical solution. The present 
17

outcome is particularly encouraging in view of the possible application of the proposed approach with real-world sensor data.
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Fig. 14. Heterogeneous consolidation problem: comparison between the reference and the PINN-based sensor-driven solution.

Table 7

Errors of the PINN-based sensor-driven solution 
for the heterogeneous consolidation problem.

Heterogeneous consolidation

Error p Error ux Error uz

3.466 × 10−2 1.231 × 10−2 1.696 × 10−1

6. Conclusions

The implementation of PINN models for problems governed by Biot’s equations of hydro-poromechanics has been investigated. 
By this approach, prior knowledge (theoretical, empirical, mathematical, observational, etc.) of a problem is used to enhance the 
overall modeling procedure. However, the construction of effective neural networks for an accurate representation of the physical 
process depends on the selection of a number of hyper-parameters and is often quite expensive, ultimately remaining on the modeler’s 
experience rather than on robust indications. For this reason, we have carried out an extensive experimentation to analyze the structure 
of effective architectures for the accurate PINN training in poromechanics. The analysis shows that some hyper-parameters are more 
influential than others in controlling the PINN model accuracy. Such a knowledge can limit the usually time-demanding empirical 
process required to build the approximating networks, driving the user into the design of NN architectures for the problem of interest. 
On the other side, PINN implementation on coupled problems suffers from well-known drawbacks as the high computational cost 
and the difficulties related to the multi-objective loss minimization. These limitations make the method non-competitive with most 
traditional and well-established PDE solvers based on discretization methods. However, PINNs have the advantage of allowing for an 
automatic data integration in the PDE solution stage. In this work, we introduced a “sensor-driven” framework, with the purpose of 
both accelerating the convergence of the minimization process and increasing the accuracy of the method. The numerical experiments 
on synthetic test cases show that integrating very few samples in space can substantially improve the PINN performance as a forward 
PDE solver. On summary, the results that follow are worth summarizing.

• The most significant hyper-parameter is the activation function of the neural networks approximating displacements. Care must 
be taken in its setting, restricting the choices to tanh and ELU.

• The NNs for poromechanical applications do not seem to require a very complex structure to achieve approximation relative 
errors lower than 10−2. Twelve layers or less, along with no more than 40 neurons per layer, are enough.

• The magnitude of the approximation errors appears to be acceptable (< 10%) for a wide range of hyper-parameter combinations, 
providing evidence of a good matching between analytical and PINN solutions.

• The analysis emphasizes the robustness of the PINN approach, also due to the presence of the PDE residuals in the loss function 
acting as regularization terms. This means that there is a high chance to reach good accuracy once identified only the most 
significant hyper-parameters.

• The proposed “sensor-driven” architecture has resulted in improvements with respect to a pure forward solution in terms of both 
computational training time and model accuracy.

• The application of the analysis to more practical cases, such as assuming the availability of a limited number of observations, has 
provided promising results, since it has led to accurate approximations from data given only on very few (1 or 2) fixed locations.

• The proposed framework has showcased its effective applicability in cases affected by uncertainties in the problem formulation 
and heterogeneous realistic settings. This appears to be a good starting point for the assimilation of data in real-world problems’ 
modeling, and will be the object of specific future investigations.

The PINN approach appears to be very promising for the generation of surrogate models, which could be of support in planning 
18

and decision-making processes by taking advantage of the machine learning nature of the method. Moreover, the capability of storing 
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knowledge by training a NN on a problem and then applying it to a similar one, called transfer learning, can be advantageous in case of 
limited physics understanding or short time changes. This can yield cheap and fast generalizations of the models, representing another 
attractive aspect to be investigated in the next future. PINN application in a heterogeneous context could be further investigated and 
an ad hoc implementation, such as a cusp-capturing PINN [57], could improve the capacity to model heterogeneities. In the near 
future, the goal is to apply the presented PINN approach to real-world applications, where materials properties are not homogeneous 
and data are available from real sensors installation.
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