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ABSTRACT

Fluctuations at different scales arise naturally as a result of coarse-graining dy-
namics at smaller spatial levels. In this thesis, wewill see how tools from statisti-
cal physics can help analyse fluctuations in different systems and the resulting
effects, especially in a biological context. We move from theoretical compu-
tations in non equilibrium statistical mechanics and numerical simulations of
biological examples to brief experimental verifications throughmicrobial com-
munities to understand such stochasticity at different spatiotemporal scales.

We begin initially with techniques to understand fluctuations of non equi-
librium currents in a stochastic process. We focus on entropy productionwhich
is a significant marker of out-of-equilibrium regime, and propose a simple and
graphical method to compute its various moments, not just in a discrete ex-
ample of interest, but also in general spatially continuous systems. From non-
equilibriumproducedbyheatbaths atdifferent temperatures, wepivot topresent
another kind of out-of-equilibrium processes due to sink-driven boundary dy-
namics. Such processes, found in systems with absorbing boundaries inval-
idate standard relations between fluctuations and dissipations. We propose
a generalization of powerful fluctuation-dissipation theorems to include the
effect of such boundary driven effects, and apply the results to strongly bio-
logically motivated examples of birth-death forest dynamics and DNA target
search on proteins. Here, we compute responses of previously infeasible quan-
tities which point to strong ecological considerations.

Boundary effects due to sinks in a local setting is significantly different from
a spatially structured system. This necessitates an explicit incorporation of in-
formation of the landscape structure into biological models, offered through
the lens of metapopulation theory. We present a first principles derivation of
classical theoretical models and demonstrate additional benefits that this sta-
tistical mechanics route offers, including the ability to incorporate heteroge-
neous landscape and dispersal network information. In such systems, close to
extinction, demographic fluctuations become significant. Contrarily, at the op-
posite spatial scale, in a laboratory environment, this regime is hardly reached,
withminimumpopulation ofmicrobes being in tens to hundreds of thousands
of individuals. Nevertheless, a natural setting involves constant environmen-
tal variability, captured through stochasticity in parameters in theoreticalmod-
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els. Specifically, serial dilution, a common experimental technique, gets repre-
sentedas aperiodic fluctuation in thedynamics of species and resources. Incor-
porating the different aspects of this technique through theoretical methods
demonstrates a relation between different associated parameters which en-
able a sensible comparison across different dilution frequencies, opening the
doors to further analysis of effects of environmental variability inmicroscale bi-
ological systems.

Techniquesdeveloped for specific processes yield specific resultswhose scope
remain limited. However, generalizations open up new paths of investigation
into extended systems offering novel findings. Through investigations of sys-
tems at different levels using generalizing methods, we not only understand
the specific process, but also observe the potential patterns of non-equilibrium
across scales. Such results serve to underscore the importance of fluctuations,
either thermal or externally driven, indeterminingdifferent observedbehaviours.
This not only aids in the search for general non-equilibrium principles, which is
inspired by biological systems, but also motivates further interdisciplinary re-
search.
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ONE

INTRODUCTION

Comprehending the natural world to its fundamental details has been a long-
standing goal of physics. Possessing insights of the smallest of scales gives
hope of completely understanding the universe, down to its most intricate de-
tails. Paradoxically, such granular detail makes it nearly impossible to predict
behaviour at macroscopic levels starting from fundamental processes, due to
the sheer volume of information and complexity involved. The shift from a de-
terministic descriptionusingNewtoniandynamics to amore statistical descrip-
tion of certain phenomena was in line with the increasing complexity due to
the large number of system constituents [1]. In an era where the underlying
philosophy of science was reductionism, statistical mechanics sought to move
against the flow by accounting for large systems through the process of ignor-
ing the exact microscopic details but only focussing on themacroscopic effect
of small-scale processes. The benefits it brought not only improved our under-
standing of many classical systems, but also had implications outside of tradi-
tional physics. This spark of interdisciplinarity soon extended into chemical and
biological systems, albeit in very limited capacity.

The limitations in part arose due to amissing key ingredient. Statistical me-
chanics startedwith systems that are in equilibrium. Initial forays byBoltzmann
and Einstein gave a way for statistical mechanics to connect microscopic pro-
cesses to macroscopic properties [2] . Einstein and Smoluchowski’s work on
connecting the diffusion constant (a measurable quantity) to Avagadro’s num-
ber gave initial estimates for validation of atomic theory of matter [3]. The
core idea necessitated an understanding of thermal fluctuations at themolec-
ular scale. These thermal fluctuations lead to fluctuations in positions of par-
ticles, which eventually lead to fluctuations in probability of collision between
molecules and hence result in eventual fluctuations in chemical reactions [4].
Typically, these variations are negligible in standard experimental settings, as
the vast number of molecules involved diminishes the relative impact of such
fluctuations.
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CHAPTER 1.

In certain scenarios, notablywhere reactingmolecules are fewandconfined,
these fluctuations assume critical importance. Such conditions are often en-
countered in cellular vesicles [5]. Though one cannot draw an exact and quan-
tified relationship between these different scales of fluctuations, the qualita-
tive connection is unmistakably apparent. In equilibrium systems at non-zero
temperatures, these fluctuations are constant with no external driving. Life,
contrarily, found a way to maintain constant driving (through the use of en-
ergy) that keeps the system out-of-equilibrium, thus harnessing the resulting
fluctuations forwork [6]. This inherent non-equilibriumnature of biological sys-
temsmeant that any study through equilibrium lens underestimates the space
of possible new behaviours that can arise [7]. Advancement in understand-
ing these phenomena required novel mathematical frameworks, particularly
the development of stochastic process tools, which conceptualize environmen-
tal fluctuations as effective random forces impacting the variables of interest
[8, 9, 10].

Such tools immediately open a vast number of fields that have inherent
noise in them. A notion of equilibrium can be extended to non-thermal sys-
tems by considering other kinds of fluxes in the system and not just that of
energy. This conceptual leap frees us from the constraints of being limited to
a specific definition of non-equilibrium arising from thermodynamics and al-
lows us to extend these mathematical tools into broad areas, even outside of
traditional physics.

At the smallest scale, one can find proteins on DNA performing diffusion
while searching for a target [11]. At intermediate biochemical scales, gene reg-
ulation has been found to be inherently stochastic in nature [12, 13]. Reactions
in cellular vesicles happen at such low concentration of chemicals that the rate
of reaction can no longer be described bymass action principle [5]. Cell growth
and division are effectively stochastic processes, partly due to the nature of en-
vironment the microbes reside in [14]. Cells in the gut experience a periodic
fluctuation of available resources, mirroring phenomena at larger scale due to
seasonality of climate [15]. At the macroscale, forests undergo birth death dy-
namics which once again happen at a fixed rate only on average [16]. Going
even beyond, urbanmobility links back to diffusive behaviours with stochastic-
ity [17] arising even in economic domain where, the stockmarket has inherent
fluctuations in prices arising due to collective action of millions of people [18].

Central to all these examples is the concept of fluctuations. The ability to in-
corporate them intomathematical framework is broadly providedby stochastic
processes theory. True to its nature and to the philosophy of statisticalmechan-
ics, these tools manage to bridge the gap across diverse fields and across di-
verse scales. In this thesis, I attempt to elucidate a small part of this grand scale
of things by analysing these fluctuations at different scales and demonstrate a
selection of biological applications. Extending ideas of entropy from thermo-
dynamics into stochastic non-equilibrium system leads to entropy as a fluctu-
ating variable. The characterization of these fluctuations provides estimates for
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CHAPTER 1. 1.1. MATHEMATICAL TOOLS FOR STOCHASTIC PROCESSES

quantification of how far a process is out of equilibrium. In the same vein, a
system at equilibrium can be turned into an out-of-equilibrium system by in-
troducing boundary effects into fluxes. Such effects propagate through in the
system which manipulate the equilibrium relation between fluctuations and
dissipations. One can then try to study the effect of suchboundaries inmacroe-
cological examples, where extinctions are a concern. A set of such macroeco-
logical interacting systems necessitates a broader perspective to look at popu-
lations of such systems to determinewhen extinction is eminent. Furthermore,
when fluctuations are not inherent in the system but are imposed upon it, this
leads to forced out-of-equilibrium behaviour. In order to look at these topics,
I will start with a brief introduction of tools and uses of stochastic processes
which will lay the groundwork for the rest of the thesis. This part will also in-
clude brief descriptions of the relations between fluctuations and dissipations
in equilibrium system and its history, and certain simple examples of how one
can apply stochastic tools for different biological systems. The interdisciplinary
essence of this introductory part will then be carried through the remainder of
the thesis.

1.1 Mathematical tools for stochastic processes

Diffusive phenomena were described throughout various points in history [4].
One of the most notable early accounts was from Robert Brown’s observation
of the seemingly random motion of pollen grains in water, which was initially
misattributed to a living phenomena coming from pollen. However, similar
observations in other areas invalidated this hypothesis. In 1904, Einstein fa-
mously describes that this randommovement occurs due to a bombardment
of the pollen grain by an extremely large number of water molecules. He went
on to connect the diffusion constant of this random motion to the viscosity of
the fluid, which was one of the earliest forms of what we term today as the
fluctuation-dissipation theorem. This pivotal insight also contributed to quan-
tifying Avogadro’s number, offering empirical support for the atomic theory of
matter [3]. Soon after this, Langevinwrote a seminal paper describing an equa-
tion with random forces, solving a stochastic differential equation, marking a
significant milestone in the genesis of non-equilibrium statistical mechanics
[19].

Thoughdiffusive phenomena occurs in continuous space, a simplified initial
point of analysis is to consider a one dimensional space where a certain parti-
cle performs a randomwalk, by jumping to one site on the right with a certain
probability and one site on the left with another probability [9]. Over time, the
probability distribution of the particle’s location tends to follow a Gaussian dis-
tribution, an outcome attributed to the Central Limit Theorem. As the spatial
separation between sites decreases, the model increasingly resembles contin-
uous diffusion. Integrating the notion of a drag force from the surrounding fluid
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1.1. MATHEMATICAL TOOLS FOR STOCHASTIC PROCESSES CHAPTER 1.

into this frameworkallows for aderivationof Einstein’s relation, linking thediffu-
sion constant to the fluid’s viscosity [4]. This approach quite effectively models
a random walker’s behaviour. However, to extend these insights to more com-
plex systems, a comprehensivemathematical framework is necessary, provided
by the theory of Markov processes.

Going beyond the one dimensional line, a set of arbitrary states (finite or in-
finite) can be considered to be accessible by a random walker. The łpositionž
of the walker then changes at random to one of the other states with a given
probability. A reasonable assumption we can make is that the walker’s future
state depends solely on its current position, not its prior history - this is the prin-
ciple of memorylessness intrinsic to Markov processes. This facilitates the con-
struction of a Markov chain describing the probability of finding the walker at
different states at different times. By reducing the time intervals between tran-
sitions, one can derive a continuous-time Markov chain, often represented by
the Master equation [8]. Since the nature of the walker is inherently random,
the description of the system is given by the probability to move out of that
state and the effective probability to move into that state, i.e.,

dP (x, t)

dt
=
∑

y ̸=x

[Wy→xP (y, t)−Wx→yP (x, t)] (1.1)

where P (x, t) is the probability of being in state x at time t. Wy→x and Wx→y

represent the rates of transitionbetween the states x and y. By defining amatrix
H such that Hxy = Wy→x − δxy

∑

zWx→z , we can express Eq (1.1) as a matrix
multiplication.

dP⃗ (t)

dt
= Ĥ P⃗ (t) (1.2)

where P⃗ (t) is the vector of probabilities P (x, t). The Master equation’s states are
abstractly defined, making the framework versatile across various fields. In a
random walker scenario, the states represent the walker’s positions, whereas,
in ecological models like forest dynamics, states might correspond to species
populations. The time independence of the transition rate matrix H in Eq (1.2)
allows for a direct calculation of solutions through spectral decomposition. This
method resembles the spectral decompositionofHermitianoperators in Schrödinger’s
equation, highlightinga commonality inmathematical techniques across fields.
A spectral decomposition of the solution is given by

P (x, t) =
∑

n

φn(x)cne
−λnt (1.3)

where φn are the eigenvectors of H corresponding to the eigenvalue −λn and
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CHAPTER 1. 1.1. MATHEMATICAL TOOLS FOR STOCHASTIC PROCESSES

cn are constants set by the initial condition of the system [8]. Several properties
become apparent immediately. Due to the nature of the transition rate matrix,
i.e., the total sum along the rows ofH is always zero, a zero eigenvalue is always
guaranteed. Further mathematical theorems demonstrate that other eigen-
vectors’ contribution to the spectral solution eventually decay, thereby leaving
the zero-eigenvalue eigenvector as the stationary solution of the dynamics.

While the abstract mathematical framework of Markov processes and Mas-
ter equations is powerful for generalizing various phenomena, a more tangible
connection to physical insights demands a description of diffusive phenomena
in continuous space. One approach to achieving this is through the proposal of
Langevin, which begins with a stochastic differential equation. However, start-
ing from such stochastic differential equations relies on observed behaviours
and empirical relationships to formulate the equations governing the system’s
dynamics.

An alternate approach is to begin with the Master equation and consider
transitions occurring between closely spaced states in real space, i.e, |x−y| << 1

(or ||x⃗−y⃗|| << 1 in the caseof higherdimensions). This assumption facilitates the
transition fromdiscrete to continuousdescriptions and leads to an infinite order
partial differential equation, known as the Kramers-Moyal expansion, given by

∂P (x, t)

∂t
=
∞
∑

k=1

(−1)k

k!

∂k

∂xk
[ak(x)P (x, t)] (1.4)

where ak are the jump coefficients of the transition rate matrix, i.e.,

ak(x) =
∑

y

(x− y)kWy→x (1.5)

The Kramers-Moyal expansion contains infinite terms. To describe the time
evolution of the probability similar to the one of Master equation, these terms
have to be considered to one of the two limits: either all the infinite terms are
needed, or only the first two orders are enough. When this expansion truncates
after the second term, it is known as the Fokker-Planck equation [10]. This ter-
mination essentially simplifies the infinite series into amoremanageable form,
capturing the essence of the process with two key coefficients: a1 representing
the drift, which captures the systematic change or trend in the process, and a2
representing the diffusion, which accounts for the random fluctuations.

This second-order truncation isn’t just a mathematical convenience; it’s of-
ten a robust approximation for a wide range of physical systems, especially
when there are finite size effects at play. When systems are large, but finite,
fluctuations arising from the third order of the Kramers-Moyal expansion are
too negligible compared to the diffusive fluctuations that truncation at the sec-
ondorder describes the timeevolution of the probabilities very closely to that of
theMaster equation. Such scenarios are addressed bywhat’s known as the van

✶✶



1.1. MATHEMATICAL TOOLS FOR STOCHASTIC PROCESSES CHAPTER 1.

Kampen system size expansion, which provides a framework for understand-
ing how fluctuations behave in finite systems. This understanding is crucial in
fields like chemical kinetics, population dynamics, and other areas where the
discrete nature and finite size of the system significantly influence its behaviour
[14]. The Fokker-Planck equation, therefore, serves as a foundational tool in the
study of stochastic processes, offering abalancebetweendetailed physical rep-
resentation and mathematical tractability.

Translating the Fokker-Planck equation into a form that resembles an equa-
tion of motion in the presence of random forces necessitates additional math-
ematical constructs. To achieve this, one has to start from a Langevin equa-
tion and write an equivalent second order partial differential equation, which
corresponds to the Fokker-Planck equation. This was developed by Ito and
Stratanovich separately, giving two different types of mathematical descrip-
tions of how to handle integration and interpretation of stochastic forces over
time [20]. Ito calculus, known for its non-anticipative nature, assumes that the
future increment of the stochastic process does not depend on the current
state [21]. Stratonovich calculus, on the other hand, incorporates amore physi-
cal intuition of noise by considering a symmetric interpretation of the stochas-
tic integral, aligning more closely with the classical equations of motion [22].
However, for a functional approach to stochastic dynamics, Ito calculus is pre-
ferred, giving a one to one mapping between the drift and diffusive terms in
the Langevin equation to those in the Fokker-Planck equation.

By applying either of these calculus rules to integrate the random forces
detailed in the Fokker-Planck equation, one can derive a stochastic differential
equation that not only resembles Langevin’s original formulation but also gen-
eralizes it. This generalized form provides a more robust and comprehensive
description of systems influenced by stochasticity, allowing for a deeper and
more accurate modelling of physical phenomena where random forces play a
critical role. A general Langevin equation in a one dimensional space is given
by

ẋ(t) = f(x) +
√

g(x)η(t) (1.6)

where now, η(t) is a Gaussian random variable with zero mean and delta corre-
lated variance, i.e., ⟨η(t)η(t′)⟩ = δ(t− t′). The functions f(x) and g(x) are related to
the drift and diffusion coefficients of the Fokker-Planck equation, in a manner
that depends on the interpretation of stochastic integrals. Such an equation is
termed Langevin equation in honour of the insight he had long before this was
formally shown.

Having this stochastic differential equation, let us consider the case of a par-
ticle of a mass m diffusing in a fluid. Instead of analysing the position, if we
consider the velocity of the particle v, then, it randomly changes with time, but
also experiences a drag force due to the viscosity of the fluid given by −mγv.
Then, the equilibrium distribution of the velocity which can be derived from
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CHAPTER 1. 1.1. MATHEMATICAL TOOLS FOR STOCHASTIC PROCESSES

the Fokker-Planck equation is given exactly by the Boltzmann distribution of
velocity of gaseous molecules!

Pst(v) = N e
− mv2

2kBT (1.7)

where N is the normalization factor of the probability distribution, kB is the
Boltzmann constant and T is the temperature of the system. Since we know
that this particle is also diffusing with the diffusion constant D, we obtain the
famous Einstein-Smoluchowski relation

Dγ = kBT (1.8)

which connects the diffusion constant to the drag force in the fluid
TheBoltzmanndistribution is indeedpredicated on the assumption of equi-

librium. But we need a way to formalize this in our presented mathematical
tools. Motivated by the thermodynamic idea that equilibrium implies no net
energy flux between a system and any connected heat bath, we can consider
the fluxes of the probability distribution at stationarity of the Fokker-Planck
equation. which, at equilibrium, is zero. At this point, the system’s microstates
are redistributed according to the Boltzmann distribution, and there’s no net
movement or flow of probability, reflecting the system’s equilibrium with its
surroundings. From the velocity distribution, given a starting velocity v0 at time
t0, theprobability tohavea velocity v at time t is givenby thepropagatorP (v, t|v0, t0)
which is the Green’s function of the Fokker-Planck equation. Then, at station-
arity, since there are no fluxes in the system, the probability to move in one
direction and the probability to move in reverse has to be the same which is
given mathematically as

P (v, t|v0, t0)Pst(v0) = P (v0, t|v, t0)Pst(v) (1.9)

for any arbitrary pair of velocities v, v0. This condition, known as Detailed Bal-
ance, states that for every microscopic change that takes place, the reverse
change occurs with equal probability in equilibrium. This condition takes on
a similar form for the discrete version in the Master equation, with the tran-
sition rates replacing the propagator. When this condition is satisfied, then,
equilibrium is attained. The beauty of the Detailed Balance condition is that it
is agnostic to the specific nature of the drift and diffusion forces acting within
the system. Instead, it offers a broad criterion for equilibrium, applicable re-
gardless of the exact forces or potentials at play. This universality allows for the
examination of equilibrium distributions under various potential forces.

Considering an additional potential force F (v) = −m∂vU(v), then, the equi-
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1.2. FLUCTUATIONS AND DISSIPATIONS CHAPTER 1.

librium distribution maintains a Boltzmann-like form, given by

Pst(v) = N e
−

mv2+2mU(v)
2kBT (1.10)

Evenwithin the equilibrium regime, the systemexhibits fluctuations in velocity,
underpinning phenomena such as the Einstein-Smoluchowski relation. These
fluctuations, along with the accompanying dissipative forces, are explored in a
broader class of theorems addressing the relationship between inherent fluc-
tuations and dissipation in systems [4]. These theorems offer profound insights
into how systems behave under various conditions and constraints, shaping
our understanding of statistical mechanics and thermodynamics in equilib-
rium and near-equilibrium scenarios.

1.2 Fluctuations and dissipations

The interplay between the diffusion constant and frictional drag force reveals
deeper insights into the behaviour of systems, particularly in how they respond
to and recover from perturbations. Consider a scenario where a particle expe-
riences a temporary increase in temperature, leading to a transient increase
in velocity. Once the temperature returns to its original state, the system’s sta-
tionary distributionwill also revert, necessitating a relaxation of the velocity dis-
tribution back to its equilibrium form. This reversion is driven by the inability
of diffusion to sustain the elevated velocities in the face of the prevailing drag
force. The drag, therefore, acts as a restorative mechanism, guiding the out-of-
equilibrium system back to its equilibrium state.

At the core of this dynamic lies a deep insight: one aspect of the systemgov-
erns equilibrium fluctuations (diffusion), while another manages the response
to out-of-equilibrium fluctuations (drag). The connection between these two
seemingly disparate facets reflects an elegant principle of how systems dis-
sipate energy and redistribute momentum, ensuring a return to equilibrium
conditions, highlighting the inherent balance and self-regulating properties of
physical systems.

The principles underlying the balance between fluctuations and dissipative
forces extend well beyond the realms of diffusion and drag. In any systemwith
fluctuations described by statisticalmechanics, these dissipative forces have to
be in balance. This balancemanifests in various forms across different domains,
including the behaviour of charged particles in electric fields [23], the relation-
ship between the density of holes and electrochemical potential in semicon-
ductors [24], the mobility of ions versus the conductivity of electrolytes, and
even the behaviour of noisy electric currents in vacuum tubes [25].

Onsager’s work in 1931 provided a pivotal formalization of the relationship
between fluctuations and dissipation with his regression hypothesis [26, 27].
The central point of the hypothesis was that a relaxation back to equilibrium
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after perturbation mirrors the pre-existing fluctuations of the system while at
equilibrium. Essentially, the system’s fluctuations are characterizedby their cor-
relation functions, and its recovery fromperturbations is described by response
functions. Hence, the fluctuation-dissipation theorem,whichwasprovedacou-
ple of decades later, was essentially a formulation also of response theory.

In the late 1960s, Kubo’s formulation of linear response theory for Hamil-
tonian systems provided a rigorous framework for the fluctuation-dissipation
theorem [28, 29]. The key argument was that given a Hamiltonian dynamics
with (p⃗, q⃗) being the conjugate position andmomenta, the perturbation can be
expressed as a change in the Liouvillian, L, resulting in a change in the asso-
ciated phase space probability distribution f(p⃗, q⃗). If the perturbation is small
enough, the subsequent change in f can be approximated to the first order.
Then, an ensemble average of an arbitrary function in the phase space can be
expressed as the convolution of a time-correlation function and the perturba-
tion. Notably, Kubo’s argument, while initially framed for Hamiltonian dynam-
ics, is equally applicablewhen the Liouvillian is replacedwith the Fokker-Planck
operator. This relation, where the response of the system (or an observable) is
connected to the time correlation of fluctuations at equilibrium, encapsulates
the essence of the fluctuation-dissipation theorem.

The fluctuation-dissipation theorem prompts a departure from the conven-
tional equilibrium-centric view of thermodynamic systems. It underscores the
fact that any perturbation nudges an equilibrium system into a transient, non-
equilibrium state. During this period, the principle of detailed balance is tem-
porarily disrupted as the system evolves back towards equilibrium, reflecting
the transient imbalances in probabilistic transitions.

However, the real intrigue arises in scenarios where a system is perpetually
prevented from achieving equilibrium. Consider a gas exposed to two ther-
mal baths at differing temperatures. Here, the gas acts as a conduit for energy,
continuously transferring it from the hotter to the cooler reservoir without ever
settling into an equilibrium state. In such scenarios, detailed balance is per-
petually disrupted; the system is in a constant state of flux and disequilibrium
[7].

Yet, reaching a stationary state in the Fokker-Planck equation doesn’t nec-
essarily require detailed balance. It allows for the existence of a time-invariant,
yet non-equilibrium, stationary state. For the dual-temperature gas system, al-
though it never achieves thermal equilibrium, it can reach a steady state where
the temperature gradient and energy flux between the two reservoirs stabi-
lize, and the system’s overall behaviour becomes time-invariant. These scenar-
ios are described as non-equilibrium stationary states (NESS), characterized by
constant but directional flows of properties like energy, matter, or charge. They
represent a fascinating class of systems that, while stable in certain macro-
scopic properties, perpetually operate away from equilibrium.

In thermodynamics, the principle that equilibrium systems maximize en-
tropy is a cornerstone concept, implying that any deviation from equilibrium

✶✺



1.2. FLUCTUATIONS AND DISSIPATIONS CHAPTER 1.

necessitates energy expenditure, and subsequently, a non-constant entropy.
For use in statistical mechanics, this requires an understanding of entropy be-
yond the classical thermodynamic sense. An arbitrary system described by a
Master equation or Fokker-Planck equationmight have a NESS whichmay not
directly align with traditional thermodynamic behaviour. Hence, to connect
thermodynamics to non-equilibrium systems, we need to refine the notion of
detailed balance, leading to local detailed balance.

Local detailed balance applies the principle of detailed balance to each pair
of states individually rather than to the system as a whole, allowing for the de-
scription of systems where not all states may simultaneously be at equilibrium
[30]. This means,

P (x, t|x0, t0)
P (x0, t|x, t0)

= e−s(x,x0) (1.11)

The function s(x, x0) represents theenergyexpendedduring the transitionwhich
corresponds to the differences between forward flux and reverse flux. When
this function simplifies to a difference of two functions whose arguments are x
and x0 respectively, i.e., s(x, x0) = s(x) − s(x0), we recover detailed balance from
local detailed balance with the corresponding equilibrium distribution being
Boltzmann-like.

The hypothesis/notion of local detailed balance allows us to connect non-
equilibrium systems to thermodynamics by explicitly showing that energy is
being used to keep the system out-of-equilibrium. In various complex systems,
a non-equilibrium steady state can be reached even when it’s challenging to
explicitly define the function s(x, x0). These situations might not allow for a
straightforward application of classical thermodynamic entropy. Instead, the
concept of entropy can be expanded and reinterpreted as informatic entropy,
which offers an understanding of the system’s reversibility or predictability. By
treating entropy as a measure of information rather than solely as a physical
quantity related to heat and work, the concept can be generalized to apply to
a wider range of systems and scenarios [31].

A key point about equilibrium dynamics is that trajectories reversed in time
have the same statistical weight as forward trajectories forward. To extend the
concept of entropy for stochastic dynamics, one canconsider the ratio ofweights
of forward path and reverse path, i.e., given a trajectory Γt at time t, define Γ†t as
the set of states reversed in time. Then, the entropy for the trajectory Γt is

Σ(Γt) ≡ log

(

P(Γt)

P(Γ†t)

)

(1.12)

where P signifies the probability of a trajectory. Under conditions of local de-
tailed balance, this trajectory entropy can be shown to be the sum of entropies
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caused by a directional energy flux between a pair of states. Note that since we
are in a stochastic system, theentropymeasure itself is stochastic, whichmeans
certain jumps between states could decrease entropy for a short period of time.
However, if one considers both the system and the associated thermal bath in
their entirety, the second law of thermodynamics remains intact [32]. But in a
stochastic system where we do not explicitly consider the entropy of the heat
bath, in a non-equilibrium regime, entropy on average always increases. This
leads to the concept of entropy production rate, which serves as an indicator of
how far a system is from equilibrium [33].

Hence, analternateway todistinguish thenon-equilibriumnatureof a steady
state is to measure the entropy production and to examine if this quantity is
zero or increasing. Since entropy is a stochastic path variable, it follows a distri-
bution of possible values at a given time. This leads to a powerful generalization
of the Fluctuation-Dissipation Theorem for out-of-equilibrium systems, called
fluctuation relations [34, 35]. This was first described by Evans in 1993, who
showed that the ratio of positive entropy production to negative entropy pro-
duction can be shown to be exponentially related to the entropy produced, i.e.,

Pr(−Σ)

Pr(Σ)
= e−tΣ (1.13)

This implies that as time increases, the probability of observing a jump that
goes against the second law of thermodynamics decreases exponentially. Fur-
thermore, this also allows a generalization of the second law of thermodynam-
ics for non-equilibrium systems by considering the trajectory-ensemble aver-
age of the probabilities of entropy leading to

⟨e−tΣ⟩ = 1 ∀t (1.14)

The ability to quantify entropy production in non-equilibrium systems has
broad implications. It enables the establishment of Thermodynamic Uncer-
tainty Relations, which provide bounds on the average and variance of differ-
ent currents in the system based on entropy production [36]. It also leads to
Crook’s work fluctuation theorem [37], which analyzes the fluctuations of work
performedduring forward versus reverse transitions, and the Jarzynski equality,
which relates the work done on a system to the free energy change [38], even
when the system is driven far from equilibrium. A broad field of study started
due to advances in these areas, called stochastic thermodynamics. A big fea-
ture of this field is its closeness to biological systems which appear to operate
at out-of-equilibrium regimes in order to extract maximumwork.

However, not all non-equilibrium states are characterized by non-zero en-
tropy production. A significant class of systems, resembling glasses, demon-
strates out-of-equilibrium behaviour due to their unique relaxation times and
memory effects [39]. In such systems, typically stemming from disordered in-
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teractions like in spin glasses, the assumption of time translation invariance
(where correlations depend only on the time difference) is violated. The sys-
tem retains a memory of its initial state, leading to a breakdown of the tradi-
tional fluctuation-dissipation theorem. Instead, the relationship between fluc-
tuations and dissipations is distinct from unity, indicating a departure from
equilibrium behaviour. The Fluctuation-Dissipation Ratio (FDR), represented
by χA,B(t, s) , offers a measure of this departure. It is defined as

χA,B(t, s) =
TRA,B(t, s)
∂
∂sCA,B(t, s)

(1.15)

where T is the temperature, RA,B is the response function and CA,B is the cor-
relation function between two observables A and B. It provides an index of the
system’s effective temperature, which can differ significantly from the ambi-
ent or actual temperature, thereby serving as an indicator of the system’s non-
equilibrium state. This ratio and the concept of effective temperature are par-
ticularly useful in understanding and characterizing the complex dynamics of
glassy and other disordered systems.

The diverse mechanisms by which systems can be driven out of equilib-
rium indeed open up a vast landscape of potential behaviours, many of which
diverge significantly from our established understanding of equilibrium pro-
cesses. Such systems exhibit complex phenomena such as memory effects,
ageing, and hysteresis, and can adapt and self-organize in ways that are not
feasible at equilibrium. These behaviours are crucial for understanding a wide
array of phenomena, from the intricate workings of biological organisms and
ecosystems to the dynamics of climate and geophysical processes, as well as
the functional principles of engineered systems and materials.

1.3 Description of biological systems

The development of various tools in non-equilibrium statisticalmechanics over
the last centuryhas significantly contributed to ananti-reductionist, holistic ap-
proach, finding applications in amyriad of domains beyond traditional physics.
Complex systems, characterized by their emergent properties, defy simplifica-
tion into merely the sum of their parts. For a quantitative understanding, it’s
essential to start with a foundational description of the underlying processes,
incorporating the influence of smaller-scale processes as effective impacts on
the system of interest.

Statistical mechanics provides tools for this endeavour, particularly through
coarse-graining techniques that integrate over different levels of detail to reveal
macro-scale behaviours. This approach is particularly relevant to biochemical
and sociological systems, where interactions occur across various scales, ne-
cessitating a framework that can accommodate and explain the interplay of
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components [40]. For instance, the influence of external media on chemical
reactions can be incorporated as stochastic noise [41], ormovement of individ-
uals in densely populated areas can be described using diffusive models [42].
Such an approach is particularly well suited for ecological systems, where the
stochasticity is manifest in variations in birth and death rates, which can be
modelled using the tools described before [43].

The randomwalkermodel on a line, traditionally described using theMaster
equation, is readily extendible tomore complex one-dimensional systemswith
a discrete set of states where the transition rates are dependent on the current
state. In such an extended model, transitions between states aren’t uniform
but vary according to specific rates that depend on the current state. The rate
for a łbirthž event, or an increase from state n to state n+1, is denoted by bn+1,n,
while the rate for a łdeath" event, or a decrease from n to n−1 is given by dn−1,n..
This state-dependent mechanism allows the model to capture a wide variety
of processes and systems.

For example, in a physical context, the states might represent the position
of a particle moving in a potential field, with the transition rates corresponding
to the probability of the particle moving from one position to another under
the influence of the potential. In macroecological studies, the states could rep-
resent the population size of a particular species, with birth and death rates
modelling the growth and decline of the population due to reproduction, pre-
dation, and other ecological interactions. TheMaster equation for a birth-death
process then is simply given by

Ṗn = bn−1Pn−1 + dn+1Pn+1 − (bn + dn)Pn (1.16)

where the time dependence of Pn has been suppressed for clarity, and bn+1,n ≡
bn and dn−1,n ≡ dn. Depending on the support of P , which is based on the pro-
cesses being described, the transition rates are set appropriately.

Somewhat similar to a random walker, if in a forest, the rate of birth of a
species of a tree and the death are independent of the population, then bn = b

with dn = d. In such a case, the support is all non-negative states (arising from
the description of state being the population size), with transition into negative
stateshaving zero value. This canalsobe representedas a set of łreactionsž, bor-
rowing terminology from chemistry, to describe the underlying łmicroscopic
processž (microscopic not in the spatial sense, but rather, where the stochastc-
ity is present). If in a forest, ϕ describes an empty site and X describes a tree of
a species, under well-mixed conditions, the reactions are

ϕ
b−→ X (1.17)

X
d−→ ϕ (1.18)

✶✾



1.3. DESCRIPTION OF BIOLOGICAL SYSTEMS CHAPTER 1.

The first reaction refers to the birth eventwhile the second one refers to a death
event. Before proceeding to the solution of theMaster equation and the effects
of stochasticity, we can first compute the equation for the means given by

N(t) ≡ ⟨N⟩ =
∞
∑

N=0

N PN (t) (1.19)

On using the birth-death Master equation, Eq (1.16), we find that the time
evolution for mean population is simply

Ṅ(t) = (b− d)N(t) (1.20)

whose solution is the classic exponential growth/decay from theoretical ecol-
ogy, with the parameter r ≡ b − d and initial population N0, N(t) = N0e

rt. Many
equations in classical theoretical ecology can similarly be expressed as aris-
ing from stochastic processes, whose equations of means were earlier given
by phenomenological observation-based models [44].

Anothergreat exampleof suchadescription is the classical consumer-resource
model [45, 46], whereNs species reside in a well-mixed space withMr number
of unique resources. Each individual of species i denoted by Xi can use one or
more of these resources given by Cµ to reproduce at a certain rate or die at a
constant rate. Thedepleted resources are replenishedbyexternal eventswhose
origins could be from biotic or abiotic processes. The resources can possibly
also degrade naturally without the use by species. The microscopic reactions
can then be written down as

Xi + Cµ
αi,µ−−→ 2Xi (1.21)

Xi
di−→ ϕ (1.22)

φ
sµ−→ Cµ (1.23)

Cµ
δµ−→ φ (1.24)

where ϕ are empty sites for the species and φ are empty sites for the resources,
which are much larger in number when compared to the observed number of
species or resource units. In such a scenario, two species i and j do not com-
pete directly but introduce second-order competitive effects through the use
of common resources. An equation for means in this then gives
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ṅi = −dini +
Mr
∑

µ=1

αi,µnirµ (1.25)

ṙµ = sµ − δµrµ −
Ms
∑

i=1

αi,µnirµ (1.26)

where ni and rµ are the averages of species i and resource µ respectively.
In the context of forest dynamics, the concept of resourceunits canbe some-

what abstract,making it challenging todirectly connect the consumer-resource
model to real-world scenarios. However, these concepts find a more tangible
application in microbial ecology. In this field, resource units are clearly defined
asmolecules of carbon sources or other nutrients, and populations correspond
to the number of individual microbes.

One notable application of these models in microbial ecology is in under-
standing the competitive dynamics between different species. Under certain
simplifying assumptions about the rates of growth and decay, it emerges that
the number of species that can coexist in a stable community is limited by
the number of distinct resources available. This concept is encapsulated in the
competitive exclusion principle, sometimes referred to as the Gause exclusion
principle [47]. While this principle suggests a limit to species diversity based
on resource availability, the actual observed diversity of microbes, especially in
resource-limited environments, poses an intriguing paradox that continues to
stimulate research.

In addition to providing insights into competition and diversity, the tools of
the Master equation allow for an exploration of the effects of stochasticity on
population numbers. In microbial systems, where observed population sizes
are typically in the tens or hundreds of thousands, stochastic fluctuations in
population size are often negligible, and deterministic models provide a good
approximation of the dynamics. However, in macroecological contexts where
individual populations may be much smaller, stochastic effects can become
significant, influencing the dynamics and stability of populations and commu-
nities. Here, theMaster equation and related stochasticmodels become crucial
for accurately capturing and understanding the dynamics of these systems.

In considering the birth-death process,moving beyond themean equations
to examine the time evolution of the probability distribution offers a complete
description of the process. This approach allows one to derive the stationary
distribution for a generic birth-death process with rates bn and dn, given by

Pst(n) = N
n
∏

x=1

bx−1
dx

(1.27)

where N is again the normalization constant of the distribution. By choosing
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appropriate bn and dn, one can derive various distributions known from classical
statistical mechanics, although their ecological relevance may vary [16].

In ecological contexts, the relevance and applicability of these models of-
ten depend on incorporating density dependence into the transition rates. The
simplest form of such a dependence is linear scaling with population size, bn =

bn and dn = dn. Expanding on these ideas, one can consider a nullmodel in ecol-
ogy where similar birth-death dynamics apply across all species in a commu-
nity, assumingminimal differences between species. This approach is the foun-
dation of the neutral theory of biodiversity, which posits that the differences in
species abundances and distributions are largely due to stochastic processes
rather than distinct species characteristics [48]. Despite its simplicity, neutral
theory has been remarkably successful in predicting various distributions of
species observed in different ecosystems.

While theMaster equationprovides a rigorous framework formodellingbirth-
death processes and other stochastic phenomena, solving it can be challeng-
ing, especially for complex or large systems. An alternative and often more
tractable approach is to use the Fokker-Planck equation. In the context of forest
dynamics, considering second-orderdensity dependence inpopulation changes
allows for the derivation of an effective Langevin equation [49]. This equation
describes the continuous-timeevolutionof a species’ population x and includes
both deterministic and stochastic components:

ẋ = b− x

τ
+
√
2Dxη(t) (1.28)

where b represents the birth rate, τ is the characteristic timescale of decay, and
D is the noise strength. This Langevin equation can be transformed into a cor-
responding Fokker-Planck equation, which then allows for the solution of the
population’s probability distribution both at stationarity and at arbitrary times.
When applied within the framework of neutral theory, the resulting distribu-
tions from these models provide good approximations to empirical data from
various forest ecosystems.

Moreover, the utility of Langevin equations extends far beyond ecological
studies. They have become foundational in financial modelling, underlying in-
fluential models like the Cox-Ingersoll-Ross and Black-Scholesmodels [50, 51],
among others. While the exact parameters and interpretations may differ be-
tween ecological and financial contexts, the underlying dynamics character-
ized by continuous changeswith both deterministic trends and stochastic fluc-
tuations are observed universally across many systems [52]. This universality
highlights the fundamental nature of these equations and their wide appli-
cability in understanding and predicting the behaviour of complex, dynamic
systems in various domains.
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1.4 Philosophy of complex systems

Much of scientific history has been driven by reductionism, starting all the way
from Galileo’s method of analysis and synthesis [53] (metodo risolutivo and
metodo compositivo) where one goes from the whole to the part, dividing as-
pects of systems into its constituents and then attempting to put it back to-
gether. This drive for seeking atomic units across different domains of science
partly worked perhaps due to the tangible nature of discoveries. This approach
has led to the proliferation of numerous specialized sub-fields, extending be-
yondphysics into chemistry andbiology, despite the latter’s origins in observation-
based methodologies a la Francis Bacon [54]. However, the philosophy of re-
ductionismalso alignswith the innate human curiosity to understand the ’why’
and ’how’ behind natural phenomena to the deepest extent. Ultimately, the
Standard Model picture would not have been possible without a strong reduc-
tionist undercurrent pinning the physics of 20th century.

While reductionism is anessential component of scientific enquiry, theknowl-
edge of parts need not lend itself to the knowledge of the whole [55]. The
metodo compositivo of Galileo is effective in situations of limited constituents.
The principle łMore is different", famously stated by physicist Philip Anderson
[56], serves as a critical reminder of this limitation, suggesting that as systems
grow in complexity, they exhibit behaviours and properties that are not pre-
dictable from the understanding of their simpler, constituent parts alone. But
this sentiment is echoed by many other prominent scientists in various fields.
Notably, in line with this thesis, one of the most famous theoretical biologist,
JBS Haldane mentions the paradox, łIf my mental processes are determined
wholly by the motions of atoms in my brain, I have no reason to suppose that
my beliefs are true ... and hence I have no reason for supposing my brain to be
composed of atoms" [57].

Though the importance of holistic approach was understood, it remained
a fringe philosophy, not blooming into its full potential till the necessary cir-
cumstances came together. The advent of substantial computational power
and the maturation of mathematical tools, especially in network theory, have
catalyzed the exploration of complex systems [58]. Initially led by statistical
physicists dealing with the impracticality ofmanaging excessive detail, this en-
deavour has expanded significantly with the computational revolution, allow-
ing previously intractable problems to be addressed.

While navigating the philosophical implications of these developments in
statistical mechanics, a pertinent question arises regarding the classification
of today’s complex systems studies within the realm of łphysics". This debate
is not merely academic but influences the organization and focus of research
in university departments worldwide. However, questioning the disciplinary
boundaries of physicsmay inadvertently rest on a reductionist foundation, pre-
supposing a rigid categorization of scientific knowledge. By considering the
evolutionary nature of scientific disciplines [59], where today’s philosophical
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and mathematical inquiries might become tomorrow’s physics, we recognize
the limitation of strict categorization. Today, the distinction of what constitutes
"physics" is increasingly blurred, as complex systems studies permeate various
scientific domains, challenging traditional disciplinary boundaries [60, 61].

Just as there are debates around the limitations and applicability of reduc-
tionism, exemplified by the discussions around the validity and philosophy of
string theory, holism too invites scrutiny about its potential limits. The holis-
tic approach, while offering a comprehensive view of complex systems, risks
oversimplification ormisinterpretation if taken to an extremewithout acknowl-
edgement of individual components’ roles and interactions. Norbert Wiener’s
łThe Human Use of Human Beings," a foundational text in cybernetics, em-
bodies the potential overreach of holistic thought. The central thesis of the
book suggests that łsociety can only be understood through a study of the
messages and the communication facilities which belong to itž [62]. By sug-
gesting that societal understanding is predominantly a function of communi-
cation patterns, it adopts a deterministic view that may conflict with notions
of individual autonomy, free will, and the intrinsic unpredictability of human
behaviour.

This raises a philosophical dilemma about the extent to which holistic mod-
els can or should encapsulate complex systems, whether in society, biology,
or other domains. While holistic approaches provide invaluable insights into
the emergent properties and behaviours of systems, they must be balanced
with an understanding of the systems’ granular details and the unpredictable
nature of their components. As we delve deeper into the interconnectedness
of various scientific fields and the complex systems they study, maintaining a
critical awareness of the limitations andappropriate applications of both reduc-
tionism and holism becomes crucial. This balance ensures that while embrac-
ing the broad view of holism, we don’t lose sight of the individual elements and
uncertainties that contribute to the richness and diversity of the natural world.

This section represents a personal reflection on the philosophical consid-
erations that underpin my exploration in the field. It is not my intention to
provide definitive answers to the questions posed here. Periodically revisiting
these questions can significantly enrich the philosophical depth of one’s re-
search. It prompts one to continually consider how the underlying philosophy
of scientific pursuits aligns with or challenges the broader philosophical facets
of human nature.

In the subsequent sections of this dissertation, I will delve into a series of
studies focusedonout-of-equilibriumbehaviours observedacrossdifferent scales,
emphasizing the roles of fluctuations and boundary conditions in driving these
dynamics. For each scale, I will present a specific problem that we have at-
tempted to understand and resolve. The scope of these investigations spans
from theoretical analyses of entropy production fluctuations in general non-
equilibriumsystems topractical examinations of induced fluctuations and their
emergent, higher-order effects in microbial communities. The thesis will end
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with a concluding remark based on these findings, drawing connections be-
tween the various scales of study and discussing the broader implications of
our results.
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FLUCTUATIONS OF ENTROPY PRODUCTION

The following chapter is the basis of published work [63] łFluctuations of entropy pro-

duction of a run-and-tumble particlež [P. Padmanabha, D.M. Busiello, A. Maritan, and

D. Gupta; Phys Rev E 107, 014129 (2023)]. Parts of the contents presented, includ-

ing displayed figures, are taken with permission from the published work, copyright

(2023) by the American Physical Society.

2.1 Introduction

As discussed previously, biological systems are often found out of equilibrium.
They maintain a non-equilibrium steady state by constantly consuming en-
ergy [64, 65], displaying a variety of new behaviour not found in equilibrium
[66, 67, 68]. A net production of entropy is one of the most relevant signa-
tures indicating non-equilibrium conditionswhere the time reversal symmetry
is broken. This serves as a quantification of the distance from thermodynamic
equilibrium [69, 33]. Even outside the context of biological systems, entropy
production and its features have been extensively studied [32, 70, 71, 72, 73]
since it marks as a fundamental feature of non-equilibrium regime.

Fluctuations of different kinds of fluxes in the system can be investigated
within the framework of stochastic thermodynamics for different quantities
[74, 32, 75]: the work performed on a system [76, 77, 78], the entropy pro-
duction [79, 80, 81, 82], the heat flow [83, 84, 78, 85], and the efficiency of a
stochastic engine [86, 87, 88, 89, 90].

Equilibriumsystems canbedescribedaccording to certain elementary ther-
modynamic principles which includeminimum free energy andmaximumen-
tropy. Contrarily, non-equilibrium systems lack such overarching basic princi-
ples that are applicable to all systems. However, some universal laws that hold
out-of-equilibriumexist. This is shown through several resultswhich are system
independent andare valid not just near equilibrium. Someexamples are fluctu-
ation theorems [34, 37, 35, 91, 92], the Jarzynski equality [38], theCrookswork-
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fluctuation theorem [37, 93], the non-equilibrium linear response [94, 95], and
the thermodynamic uncertainty relations [36, 96, 97, 98].

Entropy production plays a prominent role in this context. Its fluctuations
are important in linear response theory, fluctuation theorems, and thermody-
namic uncertainty relations. In this context, various studies have focused on
the estimation of the mean entropy production, both theoretically and exper-
imentally, by using different methods, such as uncertainty relations [99, 100,
101], waiting-time distributions [102], machine learning [103], and stochas-
tic single-trajectory data [104, 105, 106]. While an explosion of research in-
vestigate the mean entropy production, there is a lack of general understand-
ing of the properties of its probability density function (pdf). Nevertheless, re-
searchers have obtained the distribution of entropy production for specific set-
tings using analytical [107, 108, 109], numerical [110], and experimental tech-
niques [111, 112, 113].

Having an estimate for the moments of the entropy production distribu-
tion might be as important as quantifying its mean. Measuring a very small
average entropy production does not necessarily imply that the system is close
to equilibrium, due to potentially large fluctuations of its dissipation. In fact,
estimating the entire probability density function provides information about
this variability [114]. From a broader perspective, our understanding of bio-
logical and chemical systems might benefit from the knowledge of fluctua-
tions of any thermodynamic quantity [115, 116, 33, 117, 118, 119]. Follow-
ing this research direction, in [120] the authors introduce a method to infer
mean and variance of entropy production from short-time experiments, while
in [112] thesequantities are estimatednumerically usingdifferential equations
for moments of dissipated heat, following [121]. Some studies place bounds
on all steady-state currents, including entropy production [122], specifically
through techniques of linear response theory [123], and large deviation the-
ory [97]. There exists no theoretical framework to compute the distribution of
entropy production which applies to a large class of systems. One of the diffi-
culties encountered is that entropy production is a trajectory-dependent quan-
tity, a property that makes the analytical computation of its statistics beyond
the mean a difficult task.

On the biological application side, modelling of active self-propelled parti-
cles has been a buzzing field. These particles break detailed balance via a self-
driven term that leads to a wide range of non-equilibrium phenomena [124,
125, 126]. Some examples include self assembly [127, 128], spontaneous seg-
regation [129], andmotility induced phase separation [130, 131]. Considering
the non-equilibrium nature of such systems, a detailed analysis of their ther-
modynamic features arises as a natural problem to be addressed. . Fluctuation
theorems in active Ornstein-Uhlenbeck processes [132, 133, 134], stochastic
thermodynamics of active particles [135, 136], their entropy production [137,
138, 139, 140, 141], heat fluctuations of interacting active particles [142], and
experimental measurements of uncertainty relations [143] are only a few ex-
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amples of works performed in this area.
One of the most studied models for active matter components is the run-

and-tumble motion. Particles undergoing this dynamics capture the typical
homonymous behavior displayed by microorganisms, such as E. Coli, charac-
terized by driven diffusive dynamics (run) interspersed by random changes of
the velocity direction (tumble) [144, 145]. In its simplest form, the model con-
sists of a random walker whose velocity direction is influenced by a dichoto-
mous noise [146, 147], often referred to as ‘telegraphic’ noise [148]. Though
the use of run-and-tumblemodels to study non-equilibrium properties is a rel-
atively recent development, the probability of finding a run-and-tumblewalker
in aparticular position obeys thewell known telegrapher’s equations, which are
coupled linear partial differential equations describing the evolution of voltage
and current in an electrical transmission line [149, 150]. This connection to a
classic system provides more tools to understand the non-equilibrium proper-
ties we wish to investigate. In addition to displayingmotion similar to microor-
ganisms, run-and-tumble particles exhibit interesting steady states [151, 147]
which also leads to clustering near the boundaries [145]. Recent studies have
also investigated the first passage properties of this system with [150] and
without stochastic resetting [152].

Run-and-tumble particles have been shown to have non-zero average en-
tropy production in one dimension [153]. Due to their popularity, the dynam-
ics might serve as a paradigmatic model to study active matter systems. In
this Chapter, we describe a spatially discrete state run-and-tumble model and
present a graphical method to compute cumulants of the entropy production
at any order. Although obtaining the full distribution remains a lofty goal, our
formalism can be, in principle, extended up to a desired precision. This can also
be extended to Langevin systems under a proper coarse-graining procedure,
leading to analytical computations of entropy production cumulants in con-
tinuous state systems as well.

2.2 Cumulants of entropy production

We consider a run-and-tumble walker on a discrete state-space. The walker
hops with a switching rate r between two lanes, representing two different ve-
locity directions in a one-dimensional system. On the upper (lower) lane, the
walker hops forward with a rate a (b), and backward with a rate b (a). Without
loss of generality, we consider a > b. The schematic diagram describing the
system is shown in Fig. 2.1. Thus, the system consists of 2N states, of which N

states are in the + regime (i.e., upper lane), and the remaining N are in the −
regime (i.e., lower lane), representing a Markovian and discrete version of the
spatially continuous one dimensional run-and-tumble model [153]. Here ‘+’
and ‘-’ correspond to the direction in which the walker hops on average.
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Figure 2.1: Schematic representation of a run-and-tumble particle. Top layer:
+ regime. Bottom layer: - regime. The particle hops forward and backward,
respectively, with a rate a (b) and b (a) in the + (-) regime, where a > b. Moreover,
the particle switches states in between the two layers with a rate r.

Summarizing, the master equation governing the probability of finding a
particle in the i-th state is [9]

Ṗ (i, t) =
∑

j

Hij P (j, t) (2.1)

Since theprobability distribution is normalizedat all times, i.e.
∑

i P (i, t) = 1, and
we consider a system in which if Hij ̸= 0, so is Hji, since there are no unidirec-
tional transitions (an assumptionwhichwewill relax in the following Chapters).

In the case of a discrete state-space, the total entropy production,Σtot, at the
level of a single trajectory is defined as follows. Given a forward trajectory Γ ≡
{(i0, t0), (i1, t1), . . . , (iM , tM )}, where the state ik is visited at time tk and changes
to state ik+1 at time tk+1, the asymmetry between the probability of forward and
reverse trajectories quantifies the total entropy production [74, 32, 154, 155]:

Σtot(Γ) ≡ ln
P(Γ)

P(Γ†)
, (2.2)

whereP(Γ) andP(Γ†), respectively, are the probabilities of observing a forward
and a time-reversed trajectory. Following [156], the total entropy production
along the trajectory Γ reads:

Σtot(Γ) = ln

[

P (i0, t0)

P (iM , tM )

∏

i,j∈Γ

(

Wij

Wji

)nij
]

, (2.3)

where P (i0, t0) and P (iM , tM ), respectively, are the probabilities of initial and fi-
nal states of the trajectory, and nij ≡ ni←j counts the number of jumps from the
state j to i in the trajectory Γ. Σtot can be split into two contributions: systemen-
tropy production Σsys, and environment entropy production Σenv. In particular,
Σenv is associated with the heat dissipated by the particle into the surrounding
bath along the trajectory Γ, taking into account the transitions occurring along
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the trajectory:

Σenv(Γ) ≡
∑

i,j∈Γ

nij ln
Wij

Wji
, (2.4)

where j precedes i in the trajectory Γ. Σenv is the only term that survives in the
stationary state, when averaged over many trajectories [156]. Additionally, for
any finite discrete-state systems, Σsys = Σtot −Σenv is a boundary term involving
the initial and final states for each trajectory, and is the sub-leadingcontribution
to the total entropy production in the long-time limit.

Since the number of jumps, nij , performed by the run-and-tumble walker
is a trajectory-dependent quantity, i.e., it varies from one realization to another,
the knowledge of its statistics is required to obtain the fluctuations of the en-
tropy production in Eq. (2.4).

To compute the various correlations of the number of jumps, we start froma
simpler dynamical model: a Markov chain [8, 157]. Unlike themaster equation
in which the time changes continuously, now the time increases in discrete
steps, ∆t. In one time increment, the transition probability of the system to
jump from the state j to i is P(i, t + ∆t|j, t) ≡ Aij = Wij∆t for i ̸= j, and the
probability of staying in the state i is Aii = 1−∑j ̸=iWji∆t = 1 +Wii∆t. It follows
that the sum of the elements of each column is unity, i.e.,

∑

iAij = 1. Therefore,
the Markov chain equation is

P (i, t+∆t) =
2N
∑

j=1

AijP (j, t). (2.5)

In the limit∆t→ 0, the aboveequation (2.5) reduces to themaster equation (2.1).
Note that herein we are considering time-independent transition rates.

Since the time evolution runs only over times multiple of ∆t, fixing the ob-
servation time T is equivalent to fixing the total number of jumps to T/∆t. In
a Markov chain, time is a bookkeeping measure, and therefore, we are able to
consider equally spaced time intervals for the trajectory. Hence, the probabil-
ity of a Markov chain (MC) trajectory ΓMC ≡ {(i0, t0), (i1, t1), . . . , (iM , tM )}, where
tk = t0 + k∆t is:

P(ΓMC) ≡ AiM iM−1AiM−1iM−2 . . . Ai2i1Ai1i0P (i0, 0), (2.6)

where P (i0, 0) is the initial probability distribution of the run-and-tumblewalker
at time t0 = 0. Note that in Eq. (2.6), it is possible that ik+1 = ik for some k’s, i.e.,
there is a possibility of staying in the same state after the time interval∆twhich
is a consequence of imposingM equally spaced time intervals. Whenwemove
back to the master equation, these probabilities of staying in the same state
lead to exponential waiting time distributions of times between jumps from
one state to another, thereby ΓMC converges to Γ.
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The path probability, P(ΓMC), is normalized over all trajectories, i.e.,

∑

ΓMC

P(ΓMC) =
∑

iM ,iM−1,...,i1,i0

AiM iM−1AiM−1iM−2 . . .

× Ai2i1Ai1i0P (i0, 0) = 1,

where we used
∑

i Aij = 1 for each summation.
The number of jumps performed up to the time T across a link from ℓ to m

in a trajectory Γ is then:

nmℓ(ΓMC) ≡
M−1
∑

k=0

δik+1,m δik,ℓ, (2.7)

where the Kronecker deltas give 1 whenever the system performs jumps from
state ℓ tom.

Let us first compute the average number of jumps over all possible trajecto-
ries:

⟨nmℓ⟩ΓMC
=
∑

ΓMC

P(ΓMC)
M−1
∑

k=0

δik+1,m δik,ℓ (2.8a)

=
M−1
∑

k=0

∑

iM ,iM−1,...,i1,i0

AiM iM−1AiM−1iM−2 . . . Ai2i1Ai1i0P (i0, 0) δik+1,m δik,ℓ

(2.8b)

=
M−1
∑

k=0

∑

iM ,...,ik+1,ik,ik−1

AiM iM−1 . . . Aik+1ik δik+1,m δik,ℓ Aikik−1

×
∑

ik−2,...,i0

Aik−1ik−2
. . . Ai1i0P (i0, 0) (2.8c)

=

M−1
∑

k=0

∑

ik−1,...,i0

AmℓAℓik−1
Aik−1ik−2

. . . Ai1i0P (i0, 0) (2.8d)

=
M−1
∑

k=0

Amℓ P (ℓ, k∆t). (2.8e)

To go from Eq. (2.8b) to (2.8c), we move the Kronecker deltas next to the
Â’s matrix elements with the corresponding indices, and identify two groups
of indices. Then, the summation over iM , . . . , ik+2 gives 1 using the property
∑

iAij = 1, while the one over the indices k + 1 and k can be carried out us-
ing the Kronecker delta. The resulting expression is in Eq. (2.8d). Finally, we use
the Markov chain evolution in Eq. (2.5) to perform the summation on indices
ik−1 to i0 to obtain the last equality, Eq. (2.8e).
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Similarly, we compute the correlations between two sets of jumps:

⟨nmℓ nm′ℓ′⟩ΓMC
=
∑

ΓMC

P(ΓMC)

M−1
∑

k=0

δik+1,m δik,ℓ

×
M−1
∑

k′=0

δik′+1,m
′ δik′ ,ℓ′

=
M−1
∑

k=0

M−1
∑

k′=0

∑

iM ,...,i0

δik+1,m δik,ℓ δik′+1,m
′

× δik′ ,ℓ′ AiM iM−1 . . . Ai1i0P (i0, 0).

We split the second summation over k′ depending on three different scenarios:
1) k′ < k, 2) k′ = k, and 3) k′ > k. Performing similar calculations as in the case
of the first moment, we obtain, for k′ < k,

⟨nmℓ nm′ℓ′⟩ΓMC
=

M−1
∑

k=0

k−1
∑

k′=0

Amℓ P(ℓ, k∆t|m′, (k′ + 1)∆t)

×Am′ℓ′ P (ℓ
′, k′∆t), (2.10)

for k < k′,

⟨nmℓ nm′ℓ′⟩ΓMC
=

M−1
∑

k=0

M−1
∑

k′=k+1

Am′ℓ′ P(ℓ′, k′∆t|m, (k + 1)∆t)

×Amℓ P (ℓ, k∆t), (2.11)

and for k′ = k,

⟨nmℓ nm′ℓ′⟩ΓMC
=

M−1
∑

k=0

Amℓ P (ℓ, k∆t) δm,m′δℓ,ℓ′ . (2.12)

Combining the above three contributions, Eqs. (2.10), (2.11), and (2.12), finally
we obtain:

⟨nmℓ nm′ℓ′⟩ΓMC
=

M−1
∑

k=0

[ k−1
∑

k′=0

Amℓ P(ℓ, k∆t|m′, (k′ + 1)∆t)Am′ℓ′ P (ℓ
′, k′∆t)

+
M−1
∑

k′=k+1

Am′ℓ′ P(ℓ′, k′∆t|m, (k + 1)∆t)Amℓ P (ℓ, k∆t)

+Amℓ P (ℓ, k∆t)δm,m′δℓ,ℓ′

]

. (2.13)

Such calculations become tedious on proceeding to higher order correlations.
However, we present a graphical method to scale up the calculations to any
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Figure 2.2: Graphical representation for the computation of second order cor-
relation for number of jumps. a) k′ > k, b) k > k′, and c) k′ = k. Circle indicates
the set of states corresponding to the summation label, either k or k′. The arrow
and equality, respectively, correspond to the transition probability from left set
of states to the right ones, and the Kronecker deltas equating the set of states.

order of correlations of the number of jumps. For a given correlation, we first
determine the set of all possible time-orderings of k-s, i.e., the times at which a
specific jump takes place. For the first moment, there is only one jump consid-
ered, hence no ordering is required. For the correlations between two sets of
jumps, say {m, ℓ} and {m′, ℓ′}, happening at times k∆t and k′∆t respectively, as
mentioned earlier, the possible permutations are k < k′, k > k′, and k = k′. Once
all the orderings are listed, the set of states are graphically located according
to the orderings. For example, corresponding to k < k′, the set of states {m, ℓ}
appears before in time than the set of states {m′, ℓ′}. Notice that inwhat follows,
we consider the time-axis from right to left to be consistent with the ordering
at which propagators appear.

Fig. 2.2 shows possible orderings for the second order correlation.
For k′ > k (see Fig. 2.2a), the rightmost circle carries a contribution from

its starting state, {m, l}, at time k∆t. The contribution is equal to its probability
AmℓP (ℓ, k∆t). Then the systemmoves towards the left circle, which is associated
to the final set of states in this scenario. This transition comes with its propa-
gator: Am′ℓ′P(ℓ′, k′∆t|m, (k + 1)∆t). Finally the summation runs over all possible
indices k and k′ with the prescribed ordering (k′ > k in this case). Hence, we can
immediately write the contribution to the second order correlation as given by
Eq. (2.11). Similarly, we can write the contributions for k′ = k, and k′ < k.

For the third order correlation, repeating the graphical procedure leads to
13 possible orderings with three k-s indices (i.e., k, k′, k′′). We show all the order-
ings in Fig. 2.3. Writing down the summation terms according to the graphical
rules, we find them to be equal to those obtained from the full calculation. In
order to avoid clutter, we relegate the detailed form of the third order jump
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Figure 2.3: Possible orderings in the graphical method for the third order cor-
relation of number of jumps.

correlation to Appendix A in 7.1.
To move back from a Markov chain to a master equation description, we

rewrite the transition probability as Amℓ = Wmℓ∆t, m ̸= l, and take the limit
∆t → 0. Thus, each summation over k-s appearing in the jump correlations is
converted into an integral over time, t. Although the calculations shown above
are valid for an arbitrary initial condition, in what follows, we focus on the case
in which the system starts from an initial steady state distribution, P (i0, t0) =

P st(i0) and P (iM , T ) = P st(iM ). Thus, the jump correlations in Eqs. (2.8e) and
(2.13) in the continuous-time limit read:

⟨nmℓ⟩Γ =

∫ T

0
dt Wmℓ P

st(ℓ), (2.14)

⟨nmℓnm′ℓ′⟩Γ =

∫ T

0
dt

(
∫ t

0
dt′ Wmℓ P(ℓ, t|m′, t′)Wm′ℓ′

× P st(ℓ′) +

∫ T

t
dt′ Wm′ℓ′ P(ℓ′, t′|m, t)

×Wmℓ P
st(ℓ)

)

+

∫ T

0
dt Wmℓ P

st(ℓ) δℓ,ℓ′ δm,m′ , (2.15)

where P(ℓ′, t′|m, t) is the probability to be in the state ℓ′ at time t′, starting from
the statem at time t, computed from the master equation. The same limit can
be computed for the third order correlation.

The integration on the right-hand side of first jump moment, Eq. (2.14),
yields:

⟨nmℓ⟩Γ = T Wmℓ P
st(ℓ), (2.16)

whereas the computation of higher order jump moments requires the knowl-
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edge of the transition probability: P(i′, t′|i, t). To this end, weuse the eigenvector
expansion of the transition ratematrix Ŵ to compute suchquantity. Themaster
equation can be written in a compact matrix form:

|Ṗ (t)⟩ = Ŵ |P (t)⟩, (2.17)

where |P (t)⟩ = [P (1, t), P (2, t), . . . ]⊤ is the probability vector, and ⊤ is the matrix
transpose operator. The solution of the above linear differential equation (2.17),
given an initial state vector |P (t0)⟩, is

|P (t)⟩ = eŴ (t−t0)|P (t0)⟩. (2.18)

Let ⟨ψj| and |ϕj⟩, respectively, be the j-th left and right eigenvectors of the
transition rate matrix, Ŵ , corresponding to eigenvalue λj. The left and right
eigenvectors satisfy the normalization condition [9]:

⟨ψj|ϕj′⟩ = δj,j′ . (2.19)

Expanding the right-hand side of Eq. (2.18) in the eigenbasis of Ŵ gives:

|P (t)⟩ =
∑

j

⟨ψj|P (t0)⟩ e−λj(t−t0) |ϕj⟩, (2.20)

where 0 = λ1 < Re(λ2) ≤ Re(λ3) ≤ · · · ≤ Re(λ2N ), where Re(λj) represents the real
part of λj. This hierarchy is guaranteed in finite and discrete system due to the
Perron-Frobenius theorem.

The system considered here reaches a steady-state in the long-time limit,
|P (t → ∞)⟩ → |P st⟩ which is the right eigenvector corresponding to λj=1 = 0

eigenvalue, i.e., |ϕj=1⟩. Since ⟨ψj=1| is a row vector with all entries equal to 1, it
gives the condition ⟨ψj=1|P (t0)⟩ =

∑

i P (i, t0) = 1.
In particular, if the initial state vector |P (t0)⟩ is a column vector of all zeros

except 1 at i0-th location, then the system is in the state i0 at time t0. Let us call
this vector |i0⟩. Then, the probability of the system to be in state i at time t given
the initial state i0 at time t0, P(i, t|i0, t0) ≡ ⟨i|P (t)⟩, can be written as:

P(i, t|i0, t0) =
∑

j

cj(i0) e
−λj(t−t0) ϕj(i), (2.21)

where we defined the projection of the left eigenvector onto the initial state as
the coefficients of the expansion, i.e., cj(i0) ≡ ⟨ψj|i0⟩. Similarly, we define ϕj(i) ≡
⟨i|ϕj⟩.

Using the eigenvector expansion, Eq. (2.21), in the integrals appearing in
Eq. (2.15), we obtain
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⟨nmℓnm′ℓ′⟩Γ =Wmℓ Wm′ℓ′

[

P st(ℓ) P st(ℓ′)T 2 +
∑

j>1

[cj(m) ϕj(ℓ
′) P st(ℓ) + cj(m

′) ϕj(ℓ) P
st(ℓ′)]

× 1

λj

(

T − 1

λj
(1− e−λjT )

)]

+ δℓ,ℓ′ δm,m′ Wmℓ P
st(ℓ) T. (2.22)

For the third order jump correlation, let us consider an example of one of
the orderings, k < k′ < k′′, with {m, ℓ}, {m′, ℓ′}, and {m′′, ℓ′′} being the set of states
corresponding to k, k′, and k′′ respectively. The contribution of this ordering is:

⟨nm,ℓnm′,ℓ′nm′′,ℓ′′⟩Γ =Wm′′ℓ′′ Wm′ℓ′ Wmℓ P
st(ℓ)

×
∑

j1,j2

[

ϕj1(ℓ
′′) cj1(m

′)

× ϕj2(ℓ
′) cj2(m) Tj1,j2

]

, (2.23)

where Tj1,j2 represents the solution to the integral over time appearing in the
third order jump correlation (see Appendix A). It is given by:

Tj1,j2 ≡
λ2j2
(

1− Tλj1 − e−Tλj1
)

− λ2j1
(

1− Tλj2 − e−Tλj2
)

λ2
j2
(λj1 − λj2)λ

2
j1

. (2.24)

When λj1 = λj2, Eq. (2.24) is indeterminate. Taking L’Hôpital’s rule, we find

lim
λj1→λj2

Tj1,j2 =
Tλj1 + e−Tλj1 (Tλj1 + 2)− 2

λ3
j1

. (2.25)

Eq (2.24) is also indeterminate when either of the eigenvalues is zero. In such
circumstances, applying L’Hôpital’s rule twice, we obtain its limiting value. As
an example, the limit λj2 → 0with λj1 ̸= 0 results in the integral having the form

lim
λj2→0

Tj1,j2 =
2
(

1− e−Tλj1
)

+ Tλj1 (Tλj1 − 2)

2λ3
j1

. (2.26)

The solution (2.26) is similar for λj2 if λj1 → 0with λj2 ̸= 0. If both eigenvalues are
zero, i.e., λj1 = λj2 = 0, Eq. (2.24) results in

lim
λj1 ,λj2→0

Tj1,j2 =
T 3

6
. (2.27)

Notice that for all the terms in which two events happen at the same time,
for example, k1 = k2 < k3, the contribution to the n-th order jump correlation
can be written in terms of the n − 1-th order one (see Appendix ??). Iterating
through all possible orderings and using the solution of the time integral in
Eq. (2.24), we can obtain the complete third order correlation for the number
of jumps.

Themoments and the cumulants of the environmental entropy production
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can be calculated from the correspondingmoments and correlations for num-
ber of jumps. Indeed, for instance,

κ1(T ) ≡ ⟨Σenv(T )⟩ =
∑

i,j

⟨nij⟩Γ ln
Wij

Wji
, (2.28)

where the i, j indices run over all 2N states. Scaled cumulants can then be de-
fined as

κ̂1(T ) ≡
κ1(T )

T
, (2.29a)

κ̂2(T ) ≡
κ2(T )

T
≡ 1

T

(

⟨Σ2
env⟩ − ⟨Σenv⟩2

)

, (2.29b)

κ̂3(T ) ≡
κ3(T )

T
≡ 1

T

(

⟨Σ3
env⟩ − 3⟨Σ2

env⟩⟨Σenv⟩+ 2⟨Σenv⟩3
)

, (2.29c)

where the time dependence of Σenv has been omitted for convenience.
We can immediately see that the first jump moment scales linearly with

time as seen from Eq. (2.16), so does the average entropy production, ⟨Σenv(T )⟩.
Concerning the secondcumulant, the first termon the right-hand sideof Eq. (2.22)
scales with T 2. However, this term cancels out when evaluating the cumulant,
since it is equal to ⟨nmℓ⟩⟨nm′ℓ′⟩ [see Eq. (2.16)]. Hence, in the long-time limit, i.e.,
T ≫ max(1/λj, 1 < j ≤ 2N) (λ1 = 0 corresponding to the stationary state), the
second and third terms on the right-hand side of Eq. (2.22) grow linearly with
the observation time T . Therefore, in this limit, the second cumulant defined in
Eq. (2.29b) becomes

⟨Σ2
env⟩ − ⟨Σenv⟩2 ≈ T ×

∑

i,j,k,l

f(i, j, k, l) (2.30)

where f(i, j, k, l) is a function that depends only on the states of the system but
not on time, and can be readily determined fromEq. (2.22). Hence, Eqs. (2.29a)
and (2.29b) give that, in the long-time limit,

κ̂1 = constant, (2.31)

κ̂2 = constant. (2.32)

Therefore, in any finite discrete system with bidirectional time-independent
transition rates, at large times, themean and the variance of the environmental
entropy production scale linearlywith time. This agreeswith previous results by
Lebowitz and Spohn [35] and hence, we expect all cumulants to scale linearly
with time at large times, for both discrete and continuous state systems.
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2.3 Entropy Production in the run-and-tumble model

In the proposed framework, we return to the run-and-tumble model shown in
Fig. 2.1. The transition rate matrix Ŵ has the following elements: Wi+,i++1 =

b, Wi+,i+−1 = a, Wi−,i−+1 = a, Wi−,i−−1 = b, Wi+,i− = Wi−,i+ = r with zero cross
transition rates between two layers, and W1±,0± = 0 and WN±,N±+1 = 0, where
the subscript ± again denotes the respective regime of the states.

We analytically calculate the cumulants of the environmental entropy pro-
duction for this system in the stationary state (up to the third one, for the sake
of simplicity). Furthermore, we simulate the dynamics, generating trajectories
that start from the steady state, and numerically compute the entropy produc-
tion. Figure 2.4 shows a comparison of the scaled cumulants of Σenv for various
values of switching rate r, obtained from analytical results with their numerical
simulation counterpart. We find that each scaled cumulant reaches a station-
ary value in the long-time limit. The non-vanishing value of the third cumulant
reflects the fact that the probability density function of the entropy production
is asymmetric about its mean value.
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Figure 2.4: Scaled cumulants of entropy production. Dots: Numerical simula-
tion. Lines: theoretical predictions. Number of states in each regime N = 8,
with transition rates a = 1.0, and b = 0.1. Inset shows the variation of κ̂1,2.3 with
different switching rates r. Here the averaging is performed over 105 trajecto-
ries (generated using the Gillespie algorithm). In each panel, the color intensity
increases with r.
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Figure 2.4 also shows how κ̂1,2,3 change with increasing r as a function of
time. Wenotice that the scaledaverageentropyproduction increaseswhen the
switching rate increases. This effect can be understood by realizing that, when
r → 0, each layer will relax to an equilibrium distribution, hence generating no
entropy into the environment on average. Hence, when r increases, the system
starts to feel thenon-equilibriumcondition that is generatedby thepresenceof
two regimes, + and −, and the entropy production increases. Due to the same
reason, the variance of the entropy production also increases with increasing
r. As a second observation, the third cumulant is consistently far from zero,
stressing the non-Gaussianity of the pdf of entropy production.

It is also important to analyze the scaling of the cumulants with the num-
ber of nodes, in order to investigate how the distribution of entropy production
changes as a function of the system size. We analytically compute the scaled
cumulants κ̂1,2,3 for various system sizes, starting from the steady state, and
show them in Fig. 2.5a. We observe that the first two cumulants increase with
N . Then, we consider simulations of the system for different N , starting from
the steady state, to compute the distribution of entropy production. We nu-
merically find the leading order scaling with N for the complementary cumu-
lative density function (c-cdf) of Σenv to be (ln (N))5/3. In Fig. 2.5b, we show the
collapse of different c-cdf for an increasing number of nodes, N . Clearly, there
are also sub-leading contributions to the scaling of the moments that play a
role in determining the behavior of the third cumulant shown in Fig. 2.5a.
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Figure 2.5: a) Scaling of cumulants (κ̂1,2,3) of entropy production for different
number of states of the discrete run-and-tumble model. Points are obtained
using analytical expressions (lines serve as a visual aid to connect the dots). b)
Cumulants against time for largest time predicted from theory (dashed lines)
and compared to simulations (points) c) Collapse of the complementary cumu-
lative density function (c-cdf) of entropy production, P>(Σenv|N,T ), for different
number of nodes in the discrete run-and-tumble model. Entropy production
at time T = 200 is obtained from numerical simulation using 106 trajectories
initialized from stationary state. Inset shows the uncollapsed c-cdf, without ap-
propriate rescaling with number of nodes. d) Uncollapsed complementary cu-
mulative density function for probability in panel c. Parameters for all panels
are a = 1.0, b = 0.1 and r = 0.05.

Notice that increasing the number of states without scaling the rates by N
does not correspond to the correct continuum limit [72]. In the next section, we
present how to generalize our findings to the case of a run-and-tumble particle
in a continuous domain by considering appropriate rescaling of the transition
rates.
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2.4 Spatially continuous limit

Let us start from the description of a particle experiencing run-and-tumble dy-
namics in a 1D continuous space [−L,L], with reflecting boundary conditions
and noise. The Langevin equation describing this dynamics is [147]:

ẋ = v σ(t) +
√
2Dη(t), (2.33)

where σ(t) = ±1 is a dichotomous noise that switches between +1 and −1 with
a constant rate r, v the bare velocity of the particle in either direction in the ab-
sence of thermal noise, D the diffusion constant, and η(t) is the Gaussian white
noisewith zeromeanandunit variance. The correspondingFokker-Planckequa-
tion reads:

∂tρ+ = −v ∂xρ+ +D∂2xρ+ − r(ρ+ − ρ−), (2.34a)

∂tρ− = +v ∂xρ− +D∂2xρ− − r(ρ− − ρ+), (2.34b)

where ρ+ and ρ−, respectively, are the probability density functions for the sys-
tem to be in the state σ = +1 and σ = −1, respectively, at the position x and time
t [147]. For convenience, we have omitted the position and time dependence
from ρ±(x, t).

Let us now go back to our original discrete-state description. The particle
can move either in the upper or in the lower 1D lattices, i.e., lanes, with a rate
of switching between the lanes equal to r. The master equation associated
solely with the motion along the upper lane (+), ignoring the switching be-
tween lanes, is:

Ṗ (i+, t) = aP (i+ − 1, t) + bP (i+ + 1, t)− (a+ b)P (i+, t). (2.35)

A similar equation holds also for the lower lane, interchanging a with b, follow-
ing the model sketched in Fig. 2.1). In order to map this dynamics to a contin-
uous space, we introduce the information that the system exists in a 1D box,
[−L,L]. Hence, as we increase the number of states N in each lane, the spacing
between the states has to decrease. In particular, let the spacing between the
states δ ≡ 2L/N . Considering again the upper lane, employing this mapping,
the spatial position of the particle, x = i+δ, and the probability density function
transforms as follows: ρ+(x) = P (i+)/δ = P (x/δ)/δ.

A standard Kramers-Moyal expansion [8] on Eq. (2.35), taking δ as small pa-
rameter in the limit N → +∞, up to the second order, gives:

∂tρ+ = −(a− b)δ
∂ρ+
∂x

+
(a+ b)

2
δ2
∂2ρ+
∂x2

. (2.36)

Performing the sameexpansionon the lower lanedynamics aswell, andadding
the switching process between these two regimes, we can compare the result-
ing set of coupled differential equation with Eq. (2.34). Thematching between
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these two dynamical evolution becomes exact in the N → +∞ limit, when the
following scaling holds:

a =
N

4L

(

DN

L
+ v

)

, (2.37a)

b =
N

4L

(

DN

L
− v

)

. (2.37b)

It is indeed always true that when performing the continuum limit starting
fromadiscrete-stateprocess, the rates have toproperly scaledwith thenumber
of states.

Let us now compute the thermodynamics of the continuous process. Given
the Langevin equation (2.33), the amount of theheat absorbedby the run-and-
tumble particle from the heat bath during an observation time, T , is [75]:

Q ≡
∫ T

0
dτ
[

√

2Dγ2η(τ)− γẋ(τ)
]

◦ ẋ(τ), (2.38)

where γ is the dissipation constant, and ◦ denotes the Stratonovich product.
Substituting Eq. (2.33), we obtain

Q = −γ
∫ T

0
dτ vσ(τ)ẋ(τ). (2.39)

Thus, the environmental entropy production is [74]:

Senv(T ) =
v

D

∫ T

0
dτ σ(τ) ẋ(τ). (2.40)

where we use the Einstein relation,Dγ = kBTwhere T is the temperature of the
bath and we set kB = 1. This system is known to have non zero mean entropy
production rate [153].

Fig. 2.6 shows the first two scaled cumulants of the entropy production for
various system sizes, using the scaling in Eq. (2.37), against their value for the
continuous system. In particular, the mean entropy production rate has been
computed analytically in [153] while we compute the variance of Senv in Eq.
(2.40) from Langevin simulations. The convergence to the continuous case as
N increases can be clearly appreciated.

Unlike the mean entropy production rate, to the best of our knowledge,
there have been no theoretical considerations into calculating the variance of
entropy production of the run-and-tumble model in continuous space. We
have shown that we can compute it using our method under appropriate scal-
ing, and its value converges towhat is observed in the continuous system. Sim-
ilar procedure can also be performed for any moment of the entropy produc-
tion, but the computation of the thirdmoment in discrete-state systemalready
scales as O(N3), making its computation intensive for a large number of states.
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Figure 2.6: Comparison between scaled cumulants of entropy production in
the discrete and the continuous run-and-tumblemodel. The dashed line is the
mean entropy production rate (EPR) given analytically in Ref. [153]. The dot-
ted line is the variance of environmental entropy production calculated from
Langevin simulations of the continuous run-and-tumble model on 1D box
within [−5, 5] with velocity of the particle v = 1.0, diffusion coefficient D = 0.5,
and switching rate r = 1.0. The points are analytically calculated scaled cu-
mulants of environmental entropy production in the discrete run-and-tumble
model with scaling of transition rates given by (2.37).

2.5 Conclusion

In summary, this chapter presents a graphical method to compute the exact
moments of entropy production for any finite and discrete-stateMarkovian sys-
tem. Employing this method, we have shown that the first and second cumu-
lants scale linearly with time in the long-time limit.

Then, wehave applied thedeveloped framework topredict the cumulants of
the environmental entropy production in the discrete run-and-tumble model
at stationarity, finding non-zero mean, variance and skewness. Additionally, in-
creasing the system size, the environmental entropy production exhibits a re-
markablenon-Gaussianbehavior, highlighting thepotential relevanceof higher
moments when studying the fluctuations of discrete-state systems. Finally, we
have performed the continuum limit on the proposed model, finding the cor-
rect scaling of the rates with the number of nodes. Within this description,
we computed the cumulants of the environmental entropy production for a
Langevin run-and-tumble model. We found striking agreement between our
predictions, numerical simulations, and a theoretical result previously obtained
only for the mean [153].

The graphical method here presented can be straightforwardly extended to
analyze the moments of currents of any discrete-state systems (and also their
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continuous counterparts). These findings suggest that cumulants other than
the first two might be relevant in quantifying out-of-equilibrium fluctuations.
In principle, one could try to estimate the full probability density function (pdf)
of the entropy production including more than the first two moments, using
a Maximum Entropy Principle. This task is usually computationally expensive
even with only the first three cumulants. Hence, a smarter approach to move
from cumulants to an estimation of the PDF would be an interesting topic for
future investigations.

The critical role of entropy production is featured in its application to fluctu-
ation relations, which are fundamental to understanding systems even in non-
equilibrium steady states and more generally, far from equilibrium conditions.
Entropy production in such non-equilibrium steady states (NESS) is largely in-
fluenced by external or environmental factors. For instance, in the run-and-
tumble particle model, environmental driving forces can cause the particle to
switch its directional bias from right to left, significantly affecting the system’s
dynamics.

However, even systems that have reached a NESS can be disrupted and
driven out of this state by introducing boundary effects. When a system ex-
periences a boundary leakage, it induces a perpetual flux that continuously in-
fluences the system. This introduced flux does not dissipate but rather interacts
with the system’s inherent fluctuations, leading to alterations in fluctuation re-
lations andpotentiallymodifying the classical fluctuation-dissipation theorems
observed in equilibriumstates. Such interactionshighlight thedelicatebalance
and dynamic interplay between system boundaries, environmental forces, and
internal fluctuations in determining the behaviour and properties of both equi-
librium and non-equilibrium systems. Understanding these effects is crucial
for a comprehensive understanding of complex systems and their responses
to external perturbations.
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THREE

FLUCTUATION-DISSIPATION THEOREMWITH ABSORBING

STATES

Part of the following chapter is the basis of published work [158] łGeneralisation of

fluctuation-dissipation theorem to systems with absorbing statesž [P. Padmanabha,

S. Azaele, A.Maritan; NewJ. Phys. 25113001 (2023)]. Parts of the contents presented,

including displayed figures, are takenwith permission from the publishedwork, copy-

right with the authors .

3.1 Introduction

Studying the fluctuations of entropy production provides a valuable perspec-
tive on non-equilibrium systems, often focusing on their behavior at steady
states. However, an equally important and revealing approach involves exam-
ining transient dynamics, those periods during which a system is adjusting to
changes and is inherently out-of-equilibrium. Such transient states offer in-
sights into themechanisms and behaviours of systems as they respond to and
recover from perturbations.

The fluctuation-dissipation theorem is particularly pertinent in the study of
transient dynamics. It bridges thegapbetween the system’s response to a tran-
sient perturbation and its inherent equilibrium fluctuations. Even in a system
that has reached a state of maximum entropy, any perturbation will momen-
tarily disrupt this equilibrium, leading to non-zero entropy production as the
systemgoes through a non-equilibrium regime before eventually settling back
into equilibrium. Understanding these transient dynamics improves our com-
prehension of the principles underlying non-equilibrium statistical mechanics.

The bridge between microscopic dynamics and macroscopic observables
is provided in multiple forms, such as the Einstein-Smoluchowski equation,
the regression hypothesis by Onsager [4, 26, 27], linear response theory by
Kubo [28, 29], and fluctuation-dissipation relations in stochastic systems [10,
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159]. Though equilibrium dynamics is a useful description, studies into non-
equilibrium systems have gained much traction due to the numerous reasons
outlined previously. In this context, attempt to understand the regimes of fail-
ure of these relations promises to improve our search in underlying fundamen-
tal principles in non-equilibrium statistical mechanics.

A large body of literature exists on the violation of the fluctuation-dissipation
theorem in glassy systems [39]. Additionally, there have been attempts at ex-
tending the validity of FDT to non-equilibrium systems [160, 161] using the
concepts of asymmetry [162, 163], frenesy [95], local currents [164, 165, 166].
In particular, successes have been obtained at predicting response to pertur-
bation in an arbitrary non-stationary state [167]. However, the focus has been
mainly on systems that have some form of non-trivial long-time steady state.
Instead, the focusof this chapter is onanentirely different class of non-equilibrium
systems with absorbing states/boundaries.

Systems with absorbing states are widespread in many fields. Some of the
examples includechemical reactions, epidemics, andpopulationdynamics [168,
16, 8, 9]. In such systems, the net flux out of the system is positive, and hence
the total probability distribution decays with time, rendering the steady-state
trivial. However, such systems are also frequently found in a quasi-stationary
state for a long time before reaching extinction. There exists extensive math-
ematical literature analysing the properties of quasi-stationary systems [169,
170, 9]. The properties of extinction time distributions, the existence of quasi-
stationary distribution [171, 172], simulation methods [173] have been stud-
ied with applications to cellular automata [174], birth-death processes [175],
Brownian motion [176], contact process [177], and many others.

Despite the presence of literature on quasi-stationary systems, there have
been no attempts into looking at the change in FDT in such systems. Pre-
vious studies to develop a linear response theory in łquasi-stationaryž states
considered systems that remain in metastable states before reaching thermal
equilibrium [178, 179]. In general, there appears to be a gap between fields of
quasi-stationary systems and non-equilibriumFDT. This gap in literaturewill be
attempted to be bridged in the following chapter by consideringmodifications
needed by linear response theory to accommodate the presence of absorbing
states. This is performed through the method of conditioning observable av-
erages over trajectories that have not yet hit the absorbing state, calling this
operation conditioning to survival. Within this framework, a new FDT arises
with new observables that account for the survival of trajectories. This new FDT
is benchmarked against several paradigmatic examples, thereby generalizing
the equilibrium (and near-equilibrium) fluctuation-dissipation theorems to a
different class of non-equilibrium processes.
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3.2 Stationary systems

3.2.1 Standard FDT

Consider a stochastic system comprised of a finite set of discrete states, repre-
sented by Ω. Let Px(t) be the probability of finding the system in state x ∈ Ω at
time t. The evolution of the probability Px(t) is governed by the familiar Master
equation

Ṗx(t) =
∑

y ̸=x

[

Wxy Py(t)−Wyx Px(t)
]

(3.1)

where Wxy is the rate of transition from state y to state x. By defining a matrix
with elements Hxy ≡Wxy − δxy

∑

zWzy , the Master equation can be written as

˙⃗P (t) = H P⃗ (3.2)

and hence has the solution P (t) = P (0) eH t [9]. Without any absorbing bound-
aries, at large times a stationary state is reached [180], where the probability
of finding the system in state x is P stx .. Any external perturbation will shift the
system away from this steady state. Assuming that the perturbation is small,
the response of the system can be analyzed within the linear approximation.
The perturbations to the transition matrix can then be written as [10]

H(t) = H0 + δH(t) (3.3)

Here, H0(x) is the unperturbed transition matrix. We consider small pertur-
bations and hence, retain terms upto the first order. Similarly, we also write the
solution to the perturbed distribution in terms of the stationary distribution of
the master equation and the perturbation:

Px(t) = P stx + δPx(t) (3.4)

Since we are looking at small perturbations, we also assume that the devia-
tion δPx(t) is small. With HP st = 0, we can write:

Ṗ (t) = δ̇P (t) = HδP (t) + δH(t)P st + δH(t)δP (t) (3.5)

of which the last term is negligible. Solving this, we obtain

δP (t) =

∫ t

−∞

dt′ eH(t−t′) δH(t′) P st (3.6)

Having obtained this, we also assume that δH(t) can be split into state com-
ponents and temporal components.

δHxy(t) = δHxy F (t) (3.7)
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Let A be any observable. Then, the deviation of A from its mean value ⟨A⟩,
where the mean is computed over an ensemble average, caused due to the
perturbation can be written as

⟨∆A(t)⟩ =
∫ ∞

−∞

dt′RA,δH(t− t′)F (t′) where (3.8)

RA,δH(t) = Θ(t)
∑

x,y,z

Ax [e
H t]xy δHyz P

st
z (3.9)

Assuming that the perturbation occurs in one of the parameters of the sys-
tem, f ≡ (f1, f2..., fN ), i.e, f → f +∆f(t). If H = H(f) then,

H(f) P st(f) = 0 (3.10a)

P st = eϕ(f) (3.10b)

H(f +∆f(t)) = H(f) + ∆f(t)δH +O(∆f2) (3.11)

δH =
∂H(f)

∂f
(3.12)

From (3.10) and (3.12), we can obtain the following

δH P st(f) = −H(f)
∂P st(f)

∂f
(3.13)

Subsequently, the response function in (3.9) can now be written as

RA,f (t− t′) = −Θ(t− t′)
∂

∂t

〈

A(t)
∂ϕ

∂f
(t′)

〉

= −Θ(t)
d

dt

〈

A(t)
∂ϕ(t′ = 0)

∂f

〉

(3.14)

Suppose we denote Xf =
∂ϕ(t = 0)

∂f
, then, (3.14) can be written as

RA,Xf
(t) = −Θ(t)

d

dt
KA,Xf

(t) (3.15)

where KA,B(t) is the two time correlation function between observables A and
B. Equation (3.15) forms the main Fluctuation Dissipation Theorem we wish
to pursue in a generalized form. Though we have presented the discrete case
here, the same calculations hold for continuous state space with the Fokker-
Planck operator being analogous to the transition matrix H [10].
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3.2.2 Application in forest dynamics

An application of the linear response theory can be seen from the second-order
forest density dependant forest dynamics equation presented in Eq (1.28). The
Langevin equation describing the evolution of population of a species is given
by

ẋ = b− x

τ
+
√
2Dx η(t) (3.16)

where η(t) is a Gaussian white noise with zero mean and delta-correlated vari-
ance. The corresponding Fokker-Planck equation, under Ito prescription, takes
the form

Ṗ (x, t) = − ∂

∂x

(

b− x

τ

)

P (x, t) +
∂2

∂x2
DxP (x, t) (3.17)

whose stationary solution is a Gamma distribution given by

Pst(x) =
1

N x
b
D
−1e−

x
Dτ (3.18)

with N as the normalization factor. Hence, this obeys the Boltzmann-like form
(Pst(x) = e−ϕ(x)) that a stationary distribution takes in equilibrium, with the ef-
fective potential being given by

ϕ(x) ≡ x

Dτ
−
(

b

D
− 1

)

log(x) (3.19)

With this effective potential, the response for a change in an observable due
to a perturbation in b, τ or D can be computed using Eq (3.15). For instance,
the change in average population ⟨x⟩ due to various parameters is given by the
response functions

Rx,τ =
−1

Dτ2
dKx,x

dt
(3.20)

Rx,b =
−1

D

dKx,log(x)

dt
(3.21)

Rx,D =
1

D
(τRx,τ − bRx,b) (3.22)

where KA,B(t) = ⟨A(t)B(0)⟩ is the correlation function evaluated at stationarity.
A point of note is that the response is only determined by two independent

parameters. Any perturbation in D can be represented as weighted perturba-
tions in b and τ . Using the definition of correlation function and the Fokker-
Planck equation, we can compute the differential equation obeyed by the cor-
relation function. On solving the requisite ODEs, we find the correlation func-
tions, and subsequently, the response functions
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Kx,x(t) = ⟨x(t)x(0)⟩ − ⟨x⟩2 = bDτ2e−t/τ (3.23)

Kx,log(x) = ⟨x(t)log(x(0))⟩ − ⟨x⟩⟨log(x)⟩ = Dτe−t/τ (3.24)

Rx,τ =
b

τ
e−t/τ (3.25)

Rx,b = e−t/τ (3.26)

Rx,D = 0 (3.27)

It is interesting to note that demographic stochasticity has zero linear re-
sponse to average population levels. However, higher cumulants of the popu-
lationwill potentially have non zero response functions for all three parameters.
Notably, the model remarkably reproduces observed distribution of species
population even though it makes a neutral theory assumption. The applica-
tion of this model to contemporary data from perturbation experiments, such
as those conducted at the Paracou station where forest surveys are performed
and compared between plots which are both perturbed and unperturbed, rep-
resents a promising avenue for research. These field studies provide valuable
data on how populations and communities respond to various environmental
changes and disturbances. In both this example and in the standard theory,
the inherent assumption rests on there being a stationary distribution, which
is invalidated on introducing absorbingboundary into the system, (for instance,
setting b to zero), necessitating a generalization of the presented FDT.

3.3 Absorbing systems

Before proceeding to the derivation of fluctuation-dissipation theorem in ab-
sorbing systems, wemake clear the distinction between different kinds of non-
equilibrium. There are states which break detailed balance, but due to local
detailed balance, reach a non-equilibrium stationary states. Run-and-tumble
particle considered in the previous chapter is one example of this, where there
are stationary but non zero fluxes with a non-trivial stationary state. Another
kind of out-of-equilibrium occurs due to slow relaxation, for instance, in glassy
systems where there are memory effects in correlation functions, thereby also
violating fluctuation-dissipation theorems. We consider systems that belong
to neither classes of non-equilibrium processes. Our examples centre around
states being sinks for probability fluxes, i.e., trajectories routinely łdisappearž by
getting stuck in the absorbing state. A long-time steady state does exist in such
systems, however, that steady state is trivial and is delta peaked at the absorb-
ing state, having no fluctuations around it. However, we will proceed to show
that there exists a regime of time when the statistics of survived trajectories
offer a kind of stationarity (which is what we call quasi-stationarity since it is
only stationarity of the unabsorbed trajectories and not a complete non-trivial
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stationarity) and the statistics of this stationarity leads us to a new fluctuation-
dissipation theorem.

3.3.1 Discrete Systems

If the system has an absorbing boundary, this boundary is represented by a
set of states where all trajectories eventually end up in. We can denote the
boundary of this space by ∂Ω and the interior byΩ◦ = Ω−∂Ω. The transition rates
between different states shall be represented by Wy→x = Wxy . The absorbing
boundary condition can be represented by setting the rate of transition out of
the boundary states to be zero.

Wxy = 0 ∀x ∈ Ω, y ∈ ∂Ω

Wxy ≥ 0

With these, we can now split the ME between abosrbing boundary and the
interior.

Ṗx(t) =
∑

y∈Ω

[

Wxy Py(t)−Wyx Px(t)
]

=
∑

y∈Ω◦

WxyPy(t) if x ∈ ∂Ω

or =
∑

y∈Ω◦

WxyPy(t)−
∑

y∈Ω

WyxPx(t) if x ∈ Ω◦ (3.28)

To make expressions simpler, we can introduce a single state 0 to represent
the entire boundary. The corresponding entries for this state thatwould go into
the Master equation would be

P0(t) ≡
∑

x∈∂Ω

Px(t) (3.29)

W0x ≡
∑

y∈∂Ω

Wyx and Wx0 ≡
∑

y∈∂Ω

Wxy = 0 (3.30)

These represent the total probability of being on the boundary and the total
rates of transition into and out of the boundary respectively. Note that these
also implyW0x = 0 if x ∈ ∂Ω.

Let us now redefine our state space to include this special 0 state. The cor-
responding rates are defined in Eq. (3.29) and (3.30) and

Ω′ = Ω◦ ∪ {0} (3.31)
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In this new space, we can rewrite our ME as follows

Ṗx(t) =
∑

y∈Ω′

[

Wxy Py(t)−Wyx Px(t)
]

(3.32)

which can similarly be broken down depending on whether x = 0 or otherwise.
Note that since P0 never enters on the r.h.s. of the previous equation due to our
rates, we only need to solve the redefined ME for non zero states, i.e, only the
interior. It is always possible to get back the individual boundary states on ∂Ω

by integrating

Ṗy(t) =
∑

x∈Ω◦

WyxPx(t)

We continue representing the entire boundary by state 0. This also helps
avoid degenerate ground states for each boundary state in the initial Ω.

Eigenvales and Eigenvectors

Note that
∑

x Ṗx(t) = 0 (since the sum over states includes the absorbing state),
i.e, the total probability is conserved (and equivalently we can normalize it). We
can define the operator H with which we have Ṗ (t) = H P (t)

Hxy =Wxy − δxy
∑

z

Wzy (3.33)

Normalizing the left and right eigenvectors ofH such that ⟨ψn|φm⟩ = δm,n, the
first left eigenvector is ψ0

x = 1 ∀x ∈ Ω for the corresponding eigenvalue λ0 = 0.
The corresponding right eigenvector is φ0x = δx,0 as it can be easily verified.

In general, for the nth right eigenvector and eigenvalue, withRe(z) represent-
ing the real part of a complex number z,

Hφn = −λnφn
and hence 0 = λ0 < Re(λ1) < Re(λ2) ≤ Re(λ3)... (3.34)

We will always work with an irreducible W , i.e. for any pair of interior nodes,
there is always apathof non zeroW ’s fromone to theother. This implies that the
boundary state is not visited, since such a visit would correspond to the reverse
transition rate being equal to zero. In such a system, (3.34) can be proved using
Perron-Frobenius Theorem (See Appendix B)

With the preliminaries we have listed above, we can start looking at how
this affects observable quantities like correlation functions. We find results that
differ from themore standard casewhere there is no absorbingboundarywhile
looking at survived trajectories only.
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Average and Correlation Functions

Let us consider an initial condition to be P lt(0) = φ0 + φ1. This is a valid initial
condition since it satisfies all requirements for a physical initial condition.

P ltx (0) = φ1x ≥ 0 x ̸= 0 (3.35)

P ltx (0) = 0 x = 0 (3.36)
∑

x

P ltx (0) = ⟨ψ0|P lt(0)⟩ = 1 (3.37)

Then, P ltx (t) = φ0x+e
−λ1tφ1x. We also define an observable χx = 1−δx,0, whose

average value at time t gives the survival probability, i.e. the probability that the
systemhas not yet been absorbedby theboundary. For any other observableA,
we require that Ax = 0 on the boundary state, i.e, x = 0. If the observable does
not have this criteria, we can always multiply it by χ and have χxAx satisfying
this criterion.

⟨A⟩ltt =
∑

x

AxP
lt
x (t) = e−λ1t

∑

x ̸=0

Axφ1x

⟨χ⟩ltt = e−λ1t
∑

x ̸=0

φ1x = e−λ1t this represents the survival probability

Conditional Average

⟨A⟩ltt
⟨χ⟩ltt

=
∑

x ̸=0

Axφ1x ≡ ⟨A||χ⟩lt (3.38)

Weuse double delimiter in ⟨•||•⟩ to avoid confusionwith the inner product of
left and right eigenvectors. For an arbitrary initial condition (IC), at large times, it
is equivalent to averaging over the defined P lt as seen frombelow. For arbitrary
P (0),

P (t) = φ0 + c1e
−λ1t

[

φ1 +O(e−t(Re(λ2)−λ1))
]

⟨A⟩t =
∑

x

AxPx(t) = c1e
−λ1t

∑

x ̸=0

Axφ1x

[

1 +O(e−t(Re(λ2)−λ1))
]

⟨χ⟩t = c1e
−λ1t

∑

x ̸=0

φ1x

[

1 +O(e−t(Re(λ2)−λ1))
]

= c1e
−λ1t

[

1 +O(e−t(Re(λ2)−λ1))
]

⟨A⟩t
⟨χ⟩t

=t→∞

∑

x ̸=0

Axφ1x = ⟨A||χ⟩lt

This gives us the conditional average. For the time correlation function, we
need to consider the propagator.
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Time Evolution

The ME can be written as matrix operation with the H defined earlier.

Ṗ (t) = H P (t) =⇒ P (t) = eHtP (0)

If Px(0) = δx,x0 , we obtain the propagator P (x, t|x0, 0) = [eHt]x,x0 . Hence, for a
general IC,

Px(t) =
∑

x0

P (x, t|x0, 0)Px0(0)

Since Hx,0 = 0we have

P (x, t|x0 = 0, 0) = [eHt]x,0 = δx,0 ∀t (3.39)

Correlation functions are defined as ⟨A(t)B(t′)⟩ =
∑

x,y Ax P (x, t|y, t′) ByPy(t′)
and similarly for correlations involving more than two observables evaluated
and different times. Since we have defined observables to be zero at node 0

(boundary) it follows from (3.39) and the Chapman Kolmogorov equation that

⟨A(t)B(t′) · · ·C(t′′)χ(t′′′)⟩ = ⟨A(t)B(t′) · · ·C(t′′)⟩ if t′′′ ≤ max{t, t′ . . . t′′} (3.40)

This has to be true logically too. Since we are calculating the correlation till
max{t, t′ . . . t′′}, the only contributing trajectories have to last at least till time
max{t, t′ . . . t′′}. Hence, at time ≤ t′′′ the trajectories have not yet hit the bound-
ary, i.e. χ(t′′′) = 1. But for the contrary case, this is not true

⟨A(t)B(t′) · · ·C(t′′)χ(t′′′)⟩ ≠ ⟨A(t)B(t′) · · ·C(t′′)⟩ if t′′′ > max{t, t′ . . . t′′} (3.41)

since on the l.h.s. we are requiring that trajectories have not hit the boundary at
least till time t′′′ whereas in the r.h.s. we require that they only survive till a time
≥ t′′. This is a consequence of having absorbing boundary. In the standard
no absorbing boundary case, χ = 1 trivially and

∑

x P (x, t|y, t′) = 1. With the
absorbing boundary, we are forced to neglect the 0 state and hence the sum
over x ̸= 0 is no longer unity. If the IC is P lt,

⟨A(t)B(t′)⟩lt =
∑

x,y

Ax By P (x, t|y, t′) P lty (t′)

=
∑

x,y

Ax By P (x, t|y, t′) φ1y e
−λ1t′ t′ < t (3.42)

In this case, a conditional correlation function, which represents the correlation
with only surviving trajectories is written as

⟨A(t)B(t′)⟩lt
⟨χ⟩ltt

=
∑

x,y

Ax By P (x, t|y, t′) φ1y e
λ1(t−t′)

= Tr[A e(H+λ1I)(t−t′) B Φ1] ≡ ⟨A(t) B(t′)||χ⟩lt t′ < t (3.43)
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where I is the identity matrix. In this, we define Axy = Axδxy and Bxy = Byδxy .
(Φ1)xy = φ1x δxy . Similar to the conditional average, we can start fromarbitrary IC
and at large times, it becomes equivalent to averaging over the long time state.
Hence, in further calculations, we can just use P lt(t) to determine correlations
at large times. 1

At large time limit, t′ → ∞ and denoting ∆t = t − t′, the propagator can be
approximated as

[

eH∆t]xy = ψ0
yφ0,x + ψ1

yφ1xe
−λ1∆t +O(e−Re(λ2)∆t)

Using this in (3.43),

⟨A(t) B(t′)||χ⟩lt =
∑

x

Ax φ1x

∑

y

By φ1y ψ
1
y

(

1 +O(e−(Re(λ2)−λ1)∆t
)

(3.45)

By defining ⟨B||χ⟩ltcond ≡
∑

y By φ1y ψ
1
y = ⟨B ψ1||χ⟩lt. Therefore, at large time limit,

t− t′ → ∞,

⟨A(t) B(t′)||χ⟩lt = ⟨A||χ⟩lt ⟨B||χ⟩ltcond
(

1 +O(e−(Re(λ2)−λ1)∆t
)

(3.46)

Sinceψ1
x > 0, we alsohave ⟨B||χ⟩ltcond > 0 ifBx ≥ 0. IfB = χ, ⟨χ||χ⟩ltcond =

∑

y ̸=0 φ1yψ
1
y =

∑

y φ1y ψ
1
y = 1 (since ψ1

0 = 0 thanks to the normalization of left and right eigen-
vectors). It is important to note that this is a significant difference from the stan-
dard treatment where ⟨A(t)B(t′)⟩st = ⟨A⟩st⟨B⟩st at large time separation. This
is because in the standard case with a non trivial stationary state, φ0, one has
ψ0
x = 1 for all x. This can also be generalized to multiple correlations

⟨A(t) B(t′) · · ·C(t′′)||χ⟩lt =⟨A||χ⟩lt ⟨B||χ⟩ltcond · · · ⟨C||χ⟩ltcond×

×
(

1 +O(e−(Re(λ2)−λ1)min(∆t,∆t′ ··· )
)

(3.47)

when t′′ < t′ < t in the t− t′ = ∆t and t′ − t′′ = ∆t′ large limit.
Using some examples illustrates this point and provides further insight. If

we have A = χ, then, ⟨χ(t)B(t′)||χ⟩lt → ⟨B||χ⟩ltcond. This is in contrast to the stan-
dard treatment. Correlation in standard treatment would be definied using
the stationary state, i.e, the non trivial Pst = φ0. Standard correlation, Kst

A,B =
∑

x,y Ax P (x, t|y, t′) By Pst(y). Therefore, if Ax = 1,Kst
1,B =

∑

x,y P (x, t|y, t′) By Pst(y) =
∑

y By Pst(y) = ⟨B⟩st
Remark. Looking at the previous two examples, we can see that usingA = χ

the average is over trajectories that survive in the interior and don’t get ab-

1In practice in order to calculate conditional averages at large times, as defined above (see for
example (3.43)), we can use the following formula

⟨A(t) B(t′)||χ⟩lt = lim
t0→−∞

∑
x,y,z Ax P (x, t|y, t′) By P (y, t′|z, t0) Pinitial(z)

∑
x,z χx P (x, t|z, t0) Pinitial(z)

(3.44)

and similarly for multiple time correlation functions. The initial condition Pinitial at time t0 is
arbitrary as far as Pinitial(0) < 1. But for our purposes, it is easier to choose Pinitial(0) = 0.
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sorbed by the boundary at least till time t where A = χ is evaluated. So, we are
essentially averaging over only the remaining/surviving particles/trajectories.

With these preliminaries in place, we can now look at how a perturbation in
the system affects the observables. We now proceed to look at linear response
to perturbation in such systems.

Linear Response

To capture the effect of perturbation, let us consider the perturbation to be
representedby a change in the rates, i.e, consequently a change inH . The effect
of this perturbation will be a change in the long time state. The general case at
all times will be treated in Section 3.3.4

H → H + δH(t)

P lt(t) → P lt(t) + δP (t)

where P lt(t) = φ0 + c1e
−λ1tφ1 which is a more general version of the long time

state starting from P lt(0) defined in the earlier subsection. Therefore, we can
write an equation for the time evolution of δP (t) and solve it as a first order
ODE.

Ṗ lt(t) + ˙δP (t) =
(

H + δH(t)
)(

P lt(t) + δP (t)
)

(3.48)

˙δP (t) = H δP (t) + δH(t) P lt(t) + higher order terms (3.49)

The solution of this with initial condition, δP (0) = 0 is

δP (t) =

∫ t

0
ds eH(t−s) δH(s) P lt(s) (3.50)

Then, the change in our conditional average of observable is going to be

δ
⟨A⟩t
⟨χ⟩t

=
δ⟨A⟩t
⟨χ⟩ltt

− ⟨A||χ⟩lt δ⟨χ⟩t⟨χ⟩ltt
+ higher order terms (3.51)

δ⟨A⟩t
⟨χ⟩ltt

=
∑

x

AxδPx(t)/⟨χ⟩ltt

=
1

⟨χ⟩ltt

∫ t

0
ds
∑

x,x′,y

Ax P (x, t|x′, s) δHx′,y P
lt
y (s)

Let us assume that the perturbation can be split into time and state com-
ponents, i.e, δH(s) = V δF (s), with Vx,0 = 0. Then, we can write the perturbation
of the operator average as a response function times the time component of
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the perturbation. That is,

δ⟨A⟩t
⟨χ⟩ltt

=

∫ ∞

0
ds RA,V (t, s) δF (s) (3.52)

with RA,V (t, s) =
Θ(t− s)

⟨χ⟩ltt
∑

x,x′,y Ax P (x, t|x′, s) Vx′,y P lty (s) ≡ Θ(t− s) ⟨A(t) B(s)||χ⟩lt

and

Bx′ =
1

φ1x′

∑

y

Vx′,yφ1y (3.53)

Similarly we also write
δ⟨χ⟩t
⟨χ⟩ltt

=
∫∞

0 ds Rχ,V (t, s) δF (s). Ultimately, with the de-

fined B, we have

δ
⟨A⟩t
⟨χ⟩t

=

∫ ∞

0
ds R̂A,V (t− s) δF (s) (3.54)

R̂A,V (t− s) = Θ(t− s)
[

⟨A(t) B(s)||χ⟩lt − ⟨A||χ⟩lt ⟨χ(t) B(s)||χ⟩lt
]

(3.55)

Notice that, thanks to Eq.(3.46) and ⟨χ||χ⟩lt = 1, we have limt→∞ R̂A,V (t) = 0.
Now that we have the form of the response function with conditional correla-
tions, we can try and understand the fluctuation dissipation theorems associ-
ated with it.

Fluctuation Dissipation Theorem

Similar to the standard case, let us assume that the transition ratematrixH de-
pends on some parameter f (can also be a set of parameters. For simplicity, we
consider one, but the calculations remain the same for multiple parameters).
We can now Taylor expand H around no perturbation in f

H(f +∆f) = H(f) +
∂H(f)

∂f

∣

∣

∣

∣

∆f=0

∆f +O(∆f2)

Wedrop the subscript∆f = 0 for visual simplicity. We see that V = ∂fH(f). Since
(H + λ1I)φ1 = 0, differentiating the left hand side with respect to the parameter
f ,

(

V +
∂λ1
∂f

I

)

φ1(f) +
(

H(f) + λ1I
) ∂φ1

∂f
(f) = 0 (3.56)

Using the above and Eq (3.43) and (3.53), we canwrite the correlation func-
tion
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⟨A(t) B(s)||χ⟩lt =
∑

xy

Ax

(

e(H(f)+λ1I)(t−s)

)

xy

(V φ1)y

=

[

− ∂

∂t
⟨A(t) ∂ϕ(s)

∂f
||χ⟩lt − ⟨A||χ⟩lt∂λ1(f)

∂f

]

(3.57)

In (3.57), if we use A = χ, we get a similar form for the second term in (3.55)
and we finally obtain (we have dropped the f dependence in ϕ only for simplic-
ity of expression)

R̂A,V (t− s) = −Θ(t− s)
∂

∂t

〈(

A(t)− χ(t)⟨A||χ⟩lt
)

∂ϕ(s)

∂f
||χ
〉lt

(3.58)

Equation (3.58) is the Fluctuation Dissipation Theorem for our case of ab-
sorbing state in finite and discrete systems! Notice that

〈(

A(t)− χ(t)⟨A||χ⟩lt
)

||χ
〉lt

= 0. (3.59)

In the standard treatment without absorbing boundaries, the second term in-
volving χ(t)⟨A||χ⟩ in eq.(3.58), is absent. Its presence is important since, from,
the remark at the end of the previous section, we expect that, in general

∂

∂t

〈

χ(t)
∂ϕ(s)

∂f
||χ
〉lt

̸= 0 (3.60)

3.3.2 Continuous State Space

The Fokker-Planck Equation (FPE) describes the time evolution of probability
density function under drift and diffusive forces [10]. Though the FPE can be
derived from the Master equation assuming small jumps, the derivations we
have for discrete state systems may no longer hold in the case of continuous
space. One of the primary reason is the change in the eigenvalue spectrum.
The formulation developed earlier assumes finite set of states and hence has
a finite number of eigenvalues. The spectrum of eigenvalues is infinite or even
continuous in certain cases as we shall see.

For simplicity, we consider a one dimensional case. Let us consider the sys-
tem to be defined on a space S ⊆ R. S contains absorbing boundaries at Sa ⊂ S .
Then, using the Fokker-Planck Equation, we canwrite the probability of finding
a particle at x at time t

∂P (x, t)

∂t
= L(x) P (x, t) (3.61)
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where L(x) is the Fokker Planck Operator given by

L(x) = − ∂

∂x
D1(x) +

∂2

∂x2
D2(x) (3.62)

In theabsenceof a sufficient source term, if anabsorbingboundary is present,
then, the probability P (x, t|x0, t0) → 0 for t → ∞. In such cases, the probability
is not normalized at all times, i.e, the total probability is not conserved. But,
like with discrete case, certain considerations on the asymptotic nature of the
probability distribution allows us to make progress.

Let us consider a perturbation occurring at time t = 0 and consider t0 < 0.
The solution to (3.61) can be written with P (x, t0) being the initial condition,

P (x, t) = eL(x) (t−t0) P (x, t0) (3.63)

Similar to the standard case, we represent the perturbation by a change in
the Fokker Planck Operator and equivalently the resulting change in the solu-
tion to the FPE, i.e, the probability

Lperturb(x, t) = L(x) + δL(x, t)
Pperturb(x, t) = P (x, t) + δP (x, t) (3.64)

P (x, t) and L(x) are used to represent the unperturbed quantities. We assume
that the F-P operator has the same form as without the perturbation, i.e.

δL(x, t) = − ∂

∂x
δD1(x, t) +

∂2

∂x2
δD2(x, t) (3.65)

At the leading order, we get,

δṖ (x, t) = δL(x, t) P (x, t) + L(x) δP (x, t) (3.66)

Because of causality, the solution to (3.66) can be written down as follows

δP (x, t) =

∫ t

−∞

dτ eL(x)(t−τ)
(

δL(x, τ) P (x, τ)
)

, (3.67)

since δL = 0 for all negative times. Until this stage, it has a common form as
that of the standard case. The survival probability of finding a non-absorbed
trajectory at time t starting from the initial condition at t0 is

Π(t) =

∫

S
dx P (x, t) (3.68)

We can also see the total probability conservation failing from (3.68) given
absorbing boundary conditions. For an observable A(x), the average at time t
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is given by

⟨A(t)⟩ =
∫

dx A(x) P (x, t) (3.69)

This average decays to zero due to the decay of the probability. But, if we
condition the observable average to be calculated on only the surviving trajec-
tories, we can expect a non-trivial result. Then, we define

⟨A(t)⟩s =
⟨A(t)⟩

prob of survival
=

⟨A(t)⟩
Π(t)

(3.70)

It is now useful to define a conditional distributionQ(x, t). Eventually, at long
times, this will give us the quasi stationary distribution [169].

Q(x, t) =
P (x, t)

∫

dx′P (x′, t)
→t→∞ Qst(x) (3.71)

At this point, we are assuming that a quasi stationary distribution (QSD) ex-
ists, for the unperturbed state. This is equivalent to saying Π(t) and P (x, t) have
the same rate of decay. The implications of this canbe seen in termsof averages
and correlation of observables. In terms of (3.71), the average can bewritten as

⟨A(t)⟩s =
∫

dx A(x) Q(x, t)

Since we assume QSD exists, as t→ ∞, ⟨A(t)⟩s → ⟨A⟩s ≡
∫

dx A(x) Qst(x)

For correlation between two observables, we can also perform similar oper-
ation conditioned on survival . If A(x) and B(x′) are two observables, assuming
t′ < twithout loss of generality, the correlation is written as

⟨A(t) B(t′)⟩ =
∫ ∫

dxdx′ A(x) P (x, t|x′, t′) B(x′) P (x′, t′) (3.72)

Since P (x, t|x′, t′) = exp{L(x)(t− t′)}δ(x− x′)we get

⟨A(t) B(t′)⟩ =
∫

dx A(x) eL(x)(t−t
′)
(

B(x) P (x, t′)
)

(3.73)

Correlation conditioned on survived trajectories have to be divided by the
survival probability at time t. The caveat is that the survival probability should
be considering when the system started, i.e, at t0 and not just from t′. Then, we
have

⟨A(t) B(t′)⟩s =
⟨A(t) B(t′)⟩
∫

dx′P (x′, t)
=

1

Π(t)

∫

dx A(x) eL(x)(t−t
′)
(

B(x) P (x, t′)
)

=

∫

dx A(x) eL(x)(t−t
′)
(

B(x) Q(x, t′)
) Π(t′)

Π(t)
(3.74)
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Since (3.63) depends on t−t0, whatwe need is the difference to go to infinity
to reach QSD. Hence, we can also take the limit t0 → −∞. This is consistent with
our formulation of the perturbation happening at t = 0. With t0 → −∞, we can
assume that Π(t′)

Π(t) should approach the form exp{λ(t− t′)} for some λ (which will
turn out to be the leading eigenvalue of L(x)). Further in the calculations, we
consider different cases where we we make some deeper assumptions based
on the eigenvalue spectrum from which the exponential behaviour immedi-
ately follows. Although the long time ratio does not depend on t0, this does not
mean that the individual Π(t) do not depend on t0. This is a heuristic assump-
tion based on the nature of eigenvalues and a broad class of examples which
show this behaviour.

Then,

⟨A(t) B(t′)⟩s =t0→−∞ eλ(t−t
′)

∫

dx A(x) eL(x)(t−t
′)
(

B(x) Qst(x)
)

. (3.75)

Having seen how conditioning on survival changes the original definitions,
we can use them to modify our response function. Change in the observable
caused by perturbation in the operator can then be written as

δ⟨A(t)⟩s = δ

[

1
∫

dx′ P (x′, t)

∫

dx A(x) P (x, t)

]

=
1

∫

dx′ P (x′, t)

∫

dx A(x) δP (x, t)−
∫

dx δP (x, t)

(
∫

dx P (x, t))2

∫

dxA(x) P (x, t) (3.76)

Using (3.67),

δ⟨A(t)⟩s =
∫

dx

∫ t

−∞

dτ A(x) eL(x)(t−τ)
(

δL(x, τ) Q(x, τ)
) Π(τ)

Π(t)
−
∫

dx A(x) Q(x, t)

×
(
∫

dx

∫ t

−∞

dτ eL(x)(t−τ)
(

δL(x, τ) Q(x, τ)
) Π(τ)

Π(t)

)

(3.77)

We assume that the perturbation is separable, i.e, the spatial and temporal
components are described separately. Assuming δL(x, t) = δL(x) F (t), we can
then write (3.77) in terms of a response function. We also assume t0 → −∞.
This is equivalent to allowing the system to evolve for a long period of time
before introducing the perturbation. In the standard case, i.e. when a non-
trivial stationary state exists, it is equivalent to starting at stationarity.
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δ⟨A(t)⟩s =
∫ ∞

−∞

dτRA,L(t, τ) F (τ)

RA,L(t, τ) =t0→−∞Θ(t− τ)

[
∫

dx A(x) eL0(x)(t−τ)
(

δL(x) Qst(x)
)

eλ(t−τ)

− ⟨A⟩s
∫

dx eL0(x)(t−τ)
(

δL(x) Qst(x)
)

eλ(t−τ)
]

(3.78)

In the standard case the last term of (3.78) would be

I(t) ≡
∫

dxeL(x)tδL(x)Pst(x) (3.79)

and it is zero due to the normalization of Pst(x).
If we define the observableB(x) = Q−1st (x) δL(x)Qst(x), then, we canwrite the

response function in terms of correlation like in the standard case. In doing so,
we assume thatQst(x) > 0 ∀x. Wedefine an additional variable that accounts for
survival of the trajectories. Let χ(x) = 1 ∀x ∈ S− (absorbing boundary). Then,

RA,B(t, t
′) = ⟨A(t) B(t′)⟩s − ⟨A⟩s⟨χ(t) B(t′)⟩s (3.80)

Here it becomes clear that χ accounts for survival of the trajectories till the
time t, according to the definition given in eq.(3.75).

Fluctuation Dissipation Theorem

While (3.80) connects the response of an observable to a correlation, it is quite
uninformative since we do not know anything about the perturbation. Like in
the standard case, we can analyze the effect of change in paramaters and how
this affects the response function.

Before we proceed further, it is necessary to take into account the decay-
ing nature of the distribution. Systems that reach a stationary state do not
need such considerations. In the standard case, the leading eigenvalue of the
Fokker-Planck operator, λ0 = 0. The associated eigenfunction is the stationary
state. But in decaying systems,while the solution to the FPE is still determined
by the eigenvalues and the eigenfunctions, we no longer know anything about
the leading eigenvalue except that it is non zero. Since that is the case, we also
need the information about the spectrum of eigenvalues. Unlike in discrete
space, the eigenvalue spectrum can be discrete or continuous in the contin-
uous space case. This changes the problem significantly but also helps us in
arriving at a FDT!
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Discrete Eigenvalue Spectrum

Let us assume that the eigenvalue spectrum of L(x) is discrete. If λ is an eigen-
value and ψ is the associated right eigenfunction,

Lψ = −λψ (3.81)

Then, we assume that the spectrum is of the form

0 < λ1 < Re(λ2) ≤ Re(λ3)... (3.82)

Note: In discrete and finite systems, we proved the analogous of (3.82) start-
ing from irreducible matrices. In continuous systems, in cases where without
absorbing boundaries, there is a stationary solution and x-variables are even
under time reversal, then, all the eigenvalues of the system are real. This is be-
cause we can write a measure such that the operator L is Hermitian (see V.7
in [9]). Consequently, if our system remains the same except for the boundary
conditions changed to ensure decaying distribution, we can still use the same
measure (Section 5.4 of [10]) to make the operator Hermitian and hence, all
eigenvalues and eigenfunctions are real. But if we are more general, then, the
eigenvalues can be complex. Asymptotically, the leading eigenvalue is what
we expect to have dominant contribution to the probability. Since probability
is real and non negative, we can expect the leading eigenvalue to be real and
corresponding eigenfunction to be real and non-negative. Hence, (3.82) is a
general assumption encompassing different examples.

With (3.82), the solution to the FPE (3.63), with initial condition δ(x−x0) can
be written in term of the eigenfunctions and eigenvalues [10].

P (x, t) =
∞
∑

k=1

ck(x0) ψk(x) e
−λk(t−t0) (3.83)

where ck(x0) are determined by the initial conditions. They are also the left
eigenfunctions of the FP operator, i.e, eigenfunctions of adjoint of L(x). Hence,
at long times, t− t0 → ∞, (3.83) and the corresponding survival probability are

P (x, t) = c1(x0) ψ1(x) e
−λ1(t−t0)[1 +O(e−(Re(λ2)−λ1)(t−t0))]

Π(t) = c1(x0) e
−λ1(t−t0)

∫

dx′ ψ1(x
′) [1 +O(e−(Re(λ2)−λ1)(t−t0))] (3.84)

From this, it can be seen that Π(t) is equivalent to ⟨χ⟩t in the finite system case.
Hence, from Eq (3.71) and (3.68),

Qst(x) = lim
t0→−∞

P (x, t)

Π(t)
=

ψ1(x)
∫

dx′ ψ1(x′)
(3.85)
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and

lim
t0→−∞

Π(τ)

Π(t)
= e−λ1(t−τ) (3.86)

and hence, (3.86) is no longer a primary assumption, but follows from a more
basic assumption about the eigenvalue spectrum!

More General Eigenvalue Spectrum

Unlike discrete space with finite states, there is no reason for the eigenvalue
spectrum to be discrete. The spectrum can be continuous and discrete to-
gether. To be general, we consider a spectral density ρ(λ). Solely discrete spec-
trum is a particular case of the spectral density being a sumofDirac δ functions.
Then, in general, for λ ∈ D ⊂ C with Re(λ) > 0 due to the absorbing boundary,
Eq. (3.83) changes to

P (x, t) =

∫

D
ρ(λ) ψx(λ) cx0(λ) e

−λ(t−t0) dRe(λ) dIm(λ) (3.87)

Whilenaively, wemight try touseasymptoticmethods to calculate thedom-
inant value, that would be based on the assumptions that ρ(λ), ψ(λ) and c(λ)

are well behaved and non trivial at λ = λ1 ≡ inf{Re(λ)}. As we shall see in some
physical examples, like the biased random walk on semi infinite line, the spec-
trum is real and near the edge of the spectrum, the density of states has power
law behaviour (λ− λ1)

−β where β > 0 and the right and left eigenfunctions de-
pend on the eigenvalues through sin(

√
λ− λ1x) and sin(

√
λ− λ1x0).

For simplicity, we assume that λ is real near the left edge of the spectrum
and ρ(λ) has the form

ρ(λ) ∼ (λ− λ1)
−β g(λ) (3.88)

where g(λ) is a well behaved function, finite at λ1 . The right edge of the spec-
trum is irrelevant since at asymptotically large times, the contribution is expo-
nentially smaller. Assumption (3.88) has the advantage that in case there is no
divergence, the exponent can be set to zero.

Similarly, for the right and left eigenfunctions (which are ψ and c), we can
make similar assumptions near the edge of the spectrum. But in this case, the
functions don’t diverge and instead can go to zero. For the case of eigenfunc-
tions going to zero near the edge, let us assume

ψx(λ) = (λ− λ1)
αψ̂x(λ)

cx0(λ) = (λ− λ1)
γ ĉx0(λ) (3.89)

In principle, we expect α = γ, but to be more general, we can allow them to
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be different. Similar to (3.88), ψ̂x(λ) and ĉx0(λ) are well behaved near the edge
of the spectrum. Assumptions (3.88) and (3.89) can actually be presented in a
more elegant manner.

Let Λ = λ− λ1 and α ≥ 0, β ≥ 0 and γ ≥ 0 be the smallest numbers such that

lim
Λ→0

Λ−α ψx(Λ + λ1) ̸= 0

lim
Λ→0

Λ−γ cx0(Λ + λ1) ̸= 0

lim
Λ→0

Λβ ρ(Λ + λ1) ∈ R (3.90)

The assumptions (3.88) and (3.89) are equivalent to saying α, β and γ are
finite. With these assumptions, we are in a position to tackle the beast that is
(3.87).

First, we note that at asymptotically large times, the dominant contribution
comes fromthe largest valueof the exponential, i.e, the smallest valueof λ(t−t0),
which would be λ1(t − t0). But since our functions diverge/decay at that point,
we first need to consider the integral in a small range λ1 to λ1 + ϵ. Then, we are
able to use our assumptions.

P (x, t) ∼
∫ λ1+ϵ

λ1

ρ(λ) ψx(λ) cx0(λ) e
−λ(t−t0) dλ

∼
∫ λ1+ϵ

λ1

g(λ) ψ̂x(λ) ĉx0(λ) e
−λ(t−t0)Λα+γ−β dλ

(u = Λ(t− t0)) ∼ e−λ1(t−t0)

(t− t0)1+α+γ−β

∫ ϵ(t−t0)

0
du g

(

u

(t− t0)
+ λ1

)

× ψ̂x

(

u

(t− t0)
+ λ1

)

ĉx0

(

u

(t− t0)
+ λ1

)

e−uuα+γ−β (3.91)

We now consider the limit t0 → −∞. Let h(y) = g(y) ψ̂x(y) ĉx0(y). Then, Taylor
expanding h around λ1,

P (x, t) ∼ e−λ1(t−t0)

(t− t0)1+α+γ−β

∫ ∞

0
du

[

h(λ1) +
u

(t− t0)
h′(λ1) +O

(

u2

(t− t0)2

)]

e−uuα+γ−β

∼ e−λ1(t−t0)

(t− t0)1+α+γ−β

[

h(λ1)Γ(1 + α+ γ − β) + h′(λ1)
Γ(2 + α+ γ − β)

(t− t0)
+O

(

1

(t− t0)2

)]

∼ e−λ1(t−t0)

(t− t0)1+α+γ−β
Γ(1 + α+ γ − β) g(λ1) ψ̂x(λ1) ĉx0(λ1) + h.o.t (3.92)

Similarly, we can also perform the asymptotic limit for the survival probabil-
ity Π(t) =

∫

dx P (x, t) obtaining
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Π(t) ∼ e−λ1(t−t0)

(t− t0)1+α+γ−β
Γ(1 + α+ γ − β) g(λ1) ĉx0(λ1)

∫

dx ψ̂x(λ1) + h.o.t (3.93)

Hence, the conditional probability density leads us to the quasi stationary
distribution. We denote ψ̂x(λ1) by ψ̂1(x).

Q(x, t) =
P (x, t)

Π(t)

t0→−∞−−−−−→ ψ̂1(x)
∫

dx′ψ̂1(x′)
= Qst(x)

Π(t′)

Π(t)
=

t0→−∞
eλ1(t−t

′) (3.94)

L(x)Qst(x) = −λ1 Qst(x) (3.95)

It should be noted that the above relation also holds when the eigenvalue
spectrum is discrete since it directly follows from (3.85)

Perturbation of Parameters

Wenowhave all the necessary tools to arrive at a FDT. Like in the standard case,
let us consider that L(x) depends on a set of parameters f ≡ {f1, f2, ..., fn}. We
show the calculations for a perturbation in one of these parameters because
perturbation in multiple parameters follows in a similar manner. Assuming a
perturbation in a parameter f → f + ∆f , the Fokker-Planck operator can then
be written as

L(x, t) = L(x) + ∂L(x)
∂f

∆f(t) +O(∆f2) (3.96)

Assuming perturbation till linear order, this is of the form

L(x, t) = L(x) + δL(x) F (t),

with δL(x) = ∂L(x)
∂f

, F (t) = ∆f(t) (3.97)

From (3.95), differentiating with respect to the parameter, we have

δL(x)Qst(x) = −(L(x) + λ1)
∂Qst
∂f

− ∂λ1
∂b

Qst (3.98)

Because of (3.95) and Π(τ)/Π(t) =
t0→−∞

eλ1(t−τ) in (3.78) with λ = λ1, the last

term in (3.98) does not contribute to the response function. Substituting the
rest into (3.78), we get

✻✽



CHAPTER 3. 3.3. ABSORBING SYSTEMS

RA,f (t− τ) =−Θ(t− τ)

[
∫

dx A(x) e(L(x)+λ1)(t−τ) (L(x) + λ1)
∂Qst
∂f

+

+ ⟨A⟩s
∫

dx e(L(x)+λ1)(t−τ) (L(x) + λ1)
∂Qst
∂f

]

=

=−Θ(t− τ)
∂

∂t

[
∫

dx A(x) e(L(x)+λ1)(t−τ)
∂Qst
∂f

+

− ⟨A⟩s
∫

dx e(L(x)+λ1)(t−τ)
∂Qst
∂f

]

(3.99)

Since x dependence of (3.92) is given by ψ̂1(x), we assume that it has to be
positive for the probability to be positive. This is equivalent to our earlier state-
ment about Qst(x) > 0. Therefore, we are able to write Qst(x) = eϕ(x) where ϕ is
some potential. Setting the perturbation to happen at τ = 0 and assuming t > 0

in (3.99), we can write it as

RA,f (t) =− ∂

∂t

[
∫

dx A(x) e(L(x)+λ1)(t−τ)
∂ϕ(x)

∂f
Qst(x)

− ⟨A⟩s
∫

dx e(L(x)+λ1)(t−τ)
∂ϕ(x)

∂f
Qst(x)

]

RA,f (t) =− ∂

∂t

[〈[

A(t)− ⟨A⟩sχ(t)
]

∂ϕ(τ = 0)

∂f

〉

s

]

(3.100)

where we have used (3.75).
Equation (3.100) is the Fluctuation Dissipation theorem we desire and we

see that this is of the same form as Eq. (3.58). This connects the response of
the perturbation of a parameter to a given observable that we can compute
if we know the potential, i.e, the QSD. We have made a significant number of
assumptions that we believe is based on physical systems. It might very well
be possible to arrive at a very particular set of D1 and D2 in the Fokker-Planck
operator that renders our assumptions invalid. But for the systems we believe
the assumptions to hold, it now remains thatwe take those examples and verify
whether the fluctuation dissipation theorem holds.

3.3.3 Examples and Verification

In the derivation of the FDT, we have made several assumptions, especially in
the continuous state-space case. Here, we present several examples in increas-
ing order of feasibility of solution/in same order of the assumptions that vali-
date our derivation. Specifically, we start from a simple discrete system where
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all quantities can be calculated exactly, proceeding finally towards geometric
Brownianmotionwherewe compute the response using directly the long time
limit of the propagator.

In each system,we analytically/numerically compute the response functions
from the appropriate formula given the system. Then we consider a delta per-
turbation in the parameters, i.e,

∆f(t) = ∆f × δ(t) δ(t) is a Dirac Delta function

This would reduce our response in the observable to perturbation in a pa-
rameter to just the response function, i.e,

δ⟨A(t)⟩survived = RA,f (t) ∆f

We perform simulation of the system to verify the results obtained analyt-
ically. For discrete systems, we perform the simulations using Gillespie algo-
rithm. For continuous systems, we consider the Langevin equation and evolve
it in a small time interval dt using the Euler-Maruyama algorithm. The system
is allowed to run for a long time before the perturbation is applied, following
which the responses are calculated. The response is calculated by measuring
the conditional observable, i.e, mean value of the observable computed using
only theparticles that have survived till that time instant. We then compare it to
the unperturbed observable and plot how the perturbation response changes
with time.
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Figure 3.1: Predicted response against observed response for different discrete
and continuous processes. Predictions were made using the generalized the-
ory and observations usingnumerical simulations of the systemwith averaging
over 106 trajectories

Figure 3.1 shows the validity of our generalized FDT through comparison
betweenpredictions and simulations of various examples. Thepredictionagrees
with the observation at all significant values, with deviations only seen at lower
response values where larger number of trajectories are needed to obtain the
correct average result (a large number requirement arising from the presence
of absorbing boundary and the necessity of good temporal resolution). Subse-
quently, it is also noted that our assumptions about the continuous eigenvalue
spectrum and the ability to make predictions using the generalized FDT with
the long-time limit of the probability distribution are correct. While this val-
idates our theory where the prediction occurs at quasi-stationary times, the
FDT can be generalized to perturbations at all times.

The details of each example is given below. However, in some examples,
though it is possible to analytically compute the quasi-stationary distribution,
a computation of the response function is not feasible. In such cases, we have
computed the response by numerically integrating Eq (3.100). In simple cases
where response function computation is analytically possible, they have been
mentioned.
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I. Three State System

We consider a simple three state system with an absorbing boundary ar zero,
from which all the eigenvectors and eigenvalues can be computed.

0 1 2

d

b

c

Corresponding to this, we can also write Master Equation as

Ṗ (t) = HP (t)

where H is






0 d 0

0 −(b+ d) c

0 b −c







Writing t ≡ t′ = ct, b ≡ b′ = b/c, d ≡ d′ = d/c, we can set c = 1 in our system.
The first eigenvalue is 0 as expected, which corresponds to a delta-centered
eigenvector on the zero state. The other two eigenvalues are both real and

λ± =
b+ d+ 1±

√

(b+ d+ 1)2 − 4d

2
(3.101)

λ1 is the smaller of the two eigenvalues. It is also seen that the condition on
the eigenvalue spectrum is satisfied, as expected. Starting from this, we obtain
the eigenvectors as

φ1 =











−1

λ1
d

bλ1
d(1−λ1)











(3.102)

To compute the propagator, i.e, the exponential of H , we do diagonal decom-
position of (H + λ1I)(t− s) and exponentiate the diagonal matrix.

We consider the observable An = n and An = n2. These satisfy our require-
ment of A0 = 0. We have two parameters to perturb, the birth rate b and the
death rate d. We observe a timescale in the system which we denote by 1/τ =
√

(b+ d+ 1)2 − 4d. The response functions for perturbations in the parameters
then are (for t > 0)

Rn,b(t) =
λ1 e

−t/τ

d
(3.103)

Rn2,d(t) =
3(d− 1− b2 − b(2 + d) + (b+ 1)/τ) e−t/τ

2d2
(3.104)
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II. Contact Process

TheContactProcess is oneof the importantmodels in continuous time stochas-
tic processes. A simplified model of the Directed Percolation class, the contact
process showsmany interesting non equilibrium properties and is a useful tool
in fields like epidemics. Themodel consists of N sites, which can be infected {1}
or not {0}. Infected sites have chance at infecting their healthy neighbours with
rate λ/2d (λ is the standard notation used in the Contact Process model. It has
no connection to the eigenvalues we have discussed) where d is the dimension
of the system. The infected sites heal into healthy sites at rate 1 (any other rate
R can be considered to be equal to 1 by appropriate rescaling of time). A repre-
sentation of the model with the transition rates in 1D is given below. The filled
circles represent infected sites and the empty sites are healthy sites.

. . . . .

. . . . .

λ/2 λ/2 1 t

In the mean field limit this model shows phase transition. For λ < λc, all
sites eventually heal. Once all sites are healthy, there is no infected site to arise
and hence, this is an absorbing state. For λ > λc, there exists a non trivial value
of the stationary value of average number of infected sites. We consider the
absorbing regime to test the validity of our response theory. Notice, however,
that as far as the system is finite we always end up in the absorbing state. The
master equation for the contact process is

∂Pi
∂t

=
∑

j

(

Wi,jPj −Wj,iPi

)

(3.105)

where i = (i1, i2, . . . , iN ), j = (j1, j2, . . . , jN ) with ik, jk ∈ {0, 1} being the possible
states of node k, whereas i and j representing the state of the entire system. i =
0 is the absorbing state corresponding to ik = 0, ∀k. We consider 1D model of
the contact process with N = 10 lattice sites and λ = 0.5 and periodic boundary
conditions. There are a total of 210 possible states with absorbing state denoted
by 0. The transition matrix is constructed based on the rules presented above.
We consider only 1 event per transition. This means if there are two healthy
neighbours of an infected site, only one of them can be infected per transition.
From the transition matrix, we numerically calculate the second eigenvalue,
the second right eigenvector and also the derivative of the eigenvector. Then,
we can use this formula to calculate the response function for average number
of infected sites, i.e Ai = xi =

∑N
k=1 ik being the number of infected sites in the
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state i:

Rx,λ(t) =
∂

∂t

(

−
∑

i,j

xi (e
(H+λ1I)t)ij

∂φ1j

∂λ
+
∑

j

xjφ1j

∑

i,j

χi (e
(H+λ1I)t)ij

∂φ1j

∂λ

)

=−
∑

i,j

xi ((H + λ1I) e(H+λ1I)t)ij
∂φ1j

∂λ

+
∑

j

xjφ1j

∑

i,j

χi ((H + λ1I) e(H+λ1I)t)ij
∂φ1j

∂λ

χi = 1 for all non zero states and zero for i = 0. φ1 is the second right eigenvector
and λ1 is the corresponding eigenvalue of H (see Eq. (3.58)).

III. Ornstein-Uhlenbeck Process with absorbing boundary

TheOrnstein-Uhlenbeckprocess is oneof themost standardexamples in stochas-
tic processes, describing theevolutionof velocity in theoverdamped limit. While
the process can be considered over the entire real line in 1D, for our purposes,
we limit the domain of velocity to be [0,∞)with an absorbing boundary at zero.
The Langevin equation is given by

v̇(t) = −γv(t) +
√
D η(t) (3.106)

with η(t) being a Gaussianwhite noise with zeromean and delta correlation,
⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = 2δ(t− t′).

The Fokker Planck operator can be transformed into a Hermitian operator.
This is achieved by the use of an appropriate function ϕ.

L = eϕs/2 L e−ϕs/2 (3.107)

The potential ϕs is the same one that controls the stationary solution, i.e, Pst =
N e−ϕs , whereN is the normalization constant. In the presence of an absorbing
boundary, the stationary solution does not exist, but the function ϕs can still
be written in certain cases. Usually, this can occur from the stationary solution
which exists if the boundary condition is changed from absorbing to reflect-
ing. With the Hermitian form of the operator, it is possible to transform the
Fokker-Planck equation to a Schrodinger like equation (see 5.4 in [10]). There-
fore, problems in stochastic processes can be solved by identifying the appro-
priate potential that enters into the Schrodinger equation.

For the Ornstein-Uhlenbeck process on the real line with natural boundary
conditions, the solution is given by the eigenfunctions which are Hermite poly-
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nomials, Hn.

L0ψn = −λnψn

λn = γn

ψ0(v) =
4

√

γ

2πD
e−

γ
4D
v2 =

√

Pst(v) =
√
N e−ϕs(v)/2

ψn(v) =
4

√

γ

2πD

1√
2n n!

Hn

(
√

γ

2D
v

)

e−
γ
4D
v2

P (v, t|v0, 0) = eϕs(v0)/2−ϕs(v)/2
∑

n

ψn(v) ψn(v0) e
−λnt (3.108)

For absorbing boundary at zero, only the eigenfunctions which are zero are
zero should be retained. Furthermore, the flux at zero should be non zero. The
odd Hermite polynomials satisfy these conditions. Hence, only the odd eigen-
functions are eigenfunctions for the problemwith absorbing boundary, i.e, only
m = 2n− 1 for n ≥ 1 eigenvalues are eigenfunctions of (3.108) are solutions. For
our problem, we only need the first non zero eigenvalue and the eigenfunction,
which corresponds to n = m = 1.

While there is no summation formula for the odd Hermite polynomials, we
are able to use themethod of images to construct the solution to the problem.
To find the probability distribution of finding the velocity to be v at a time t, con-
sider two initial conditions, v0 and −v0. We know the solution to the OU process
on the real line. Using the two initial conditions and consequently the two so-
lutions, imposing the absorbing boundary condition implies that we need the
combination of the two solutions to be zero at zero. This is achieved simply by
taking the difference of the two. It can be verified that the solution satisfies the
corresponding FPE to (3.106) with absorbing BC.

P (v, t|v0, 0) =
√

γ

2πD(1− e−2γt)

{

exp

[

− γ(v − v0 e
−γt)2

2D(1− e−2γt)

]

− exp

[

− γ(v + v0 e
−γt)2

2D(1− e−2γt)

]}

(3.109)

Thequasi stationary distribution canbe evaluated, both from long time limit
of (3.109) and the first eigenfunction. They both match and give the result

Qst(v) =
γv

D
e−

γv2

2D (3.110)

IV. Biased Diffusion on positive real line

Diffusionproblemsare central in the study of stochastic processeswith applica-
tions tomany fields. One of the common extension to diffusion is the presence
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of a constant drift term, thereby biasing the diffusion in a certain direction. The
presence of a drift termmodifies the Langevin equation to

ẋ(t) = −v +
√
D η(t) (3.111)

where v > 0 and η(t) is a Gaussian white noise as described in the earlier exam-
ple. There is no stationary solution for the diffusion problem on the entire real
line since the distribution decays to zero with larger time. For a biased diffu-
sion, we restrict the domain to the positive part of the real line with absorbing
boundary to be at zero. The solution to this problem can be found through the
method of images [181, 182].

P (x, t|x0, 0) =
1√
4πDt

(

e−
(x−x0+vt)2

4Dt − e
vx0
D e−

(x+x0+vt)2

4Dt
)

(3.112)

But the solution does not give us the eigenfunctions or the eigenvalues. We
can start to find the solution by initially considering the domain to be closed
between [0, L]. Then, for reflecting BC, the stationary solution gives us the po-
tential with which we can transform the FP operator to a Hermitian operator.

For a closed interval solution, let the system be on the domain [0, L]. Then,
the corresponding FPE of (3.111) is given by

Ṗ = v∂xP +D∂2xP (3.113)

In the case of domain being [0,∞) with reflecting boundary condition at x = 0,
the stationary solution of (3.113) is Pst = v/De−vx/D . Since the Fokker-Planck
operator has the same form for different boundary conditions and domains, we
are able to get the potential ϕs(x) from the stationary solution in semi-infinite
problem. Because of the existence of the potential, we are also able to trans-
form the Fokker-Planck operator into aHermitian operator in the case of closed
domain [0, L]with absorbing boundary conditions. Hence, the eigenvalues and
the eigenfunctions of the operator are real. We stress that this might not be
possible in all examples, but only in examples where the potential can be com-
puted (See [183] for an example of non Hermitian form).

With a closed domain, we split the spatial and the temporal components of
the solution to the FPE.

P (x, t) = Pλ(x) e
−λt (3.114)

Pλ(x) are the eigenfunctions of the FPE. Then, if e−µx is a guess solution for the
equation obeyed by Pλ(x),

µ =
v

2D
±
√

v2

4D2
− λ

D
(3.115)
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Then, applying the boundary conditions, i.e, P (x, t) = 0 at x = 0 and x = L, with
the knowledge that the eigenfunctions and eigenvalues are real, we obtain

Pλ(x) =

√

2

L
e−

vx
2D sin

(

πk

L
x

)

λk =
v2

4D
+
Dπ2k2

L2
(3.116)

The eigenvalues in this case are discrete. But note that in the limit L → ∞,
the gap between successive eigenvalues continues to shrink. They then lead
to a continuous spectrum. Such mixed spectrum problems can also be solved
[184, 185]. Solving for the continuous spectrum, we obtain

P (x, t|x0, 0) =
∫ ∞

v2/4D
dλ

(

λ

D
− v2

4D2

)−1/2

e−v
x−x0
2D e−λt

sin

(

√

λ

D
− v2

4D2
x

)

sin

(

√

λ

D
− v2

4D2
x0

)

(3.117)

Note that the integral when evaluated also gives the same solution as the
one obtained frommethod of images. The problem can also be solved bymak-
ing the change into QM perspective [10]. Considering a V shaped potential in
the FPE, we get the biased diffusion problem. Imposing absorbing BC is equiv-
alent to restricting the domain and considering eigenfunctions satisfying the
BC. This method gives us the same eigenfunctions and the eigenvalues as ear-
lier.

The eigenfunctions approach zero near the edge of the spectrum, i.e, near
λ = v2/4D. Then, expanding the eigenfunctions and taking the limit as men-
tioned in the theory, we obtain the quasi stationary distribution. This agrees
with the simulations of the systems when we take the conditional distribution
at large times from simulation.

Qst(x) =
v2x

4D2
e−

vx
2D (3.118)

V. Geometric Brownian Motion

In the standard Brownian Motion, the noise strength is constant. But the dif-
fusion coefficient can also depend on the variable under evolution. Geometric
Brownian Motion is a model in which the logarithm of the position follows bi-
ased diffusion [186] and consequently, the position has a demographic noise
component to it. The model has been widely used in finance to model stock
prices [51]. Themodel is usually considered with positive drift and hence, solu-
tions can be found to be a lognormal distribution.
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ẋ(t) = µx(t) +
√
2σx(t) η(t) (3.119)

For µ > 0 and natural boundary conditions for log(x), the time dependant
distribution is

P (x, t|x0, 0) =
1

x
√
4πσ2t

e−
[log(x/x0)−(µ−σ2)t]2

4σ2t (3.120)

This is obtained by considering a change of variables y = log(x/x0) under Ito
prescription. This leads to the SDE

ẏ(t) = (µ− σ2) +
√
2ση(t) (3.121)

Note that this is just a biased diffusion Langevin equation, for which we know
the solution. By using the solution and changing the variables back to x, we
obtain (3.120). But it is important to note that at x = 0, y = −∞. This means,
applying natural boundary conditions on y, i.e, the flux and the probability are
zero at infinities, we also impose that on changing the variables back to x, the
flux and probability are zero at x = 0. This leads to complications, such as, if
µ < 0, then, the particle never reaches zero. The closer it gets to zero, the slower
it moves. Hence, although it asymptotically reaches zero, there is no hitting the
boundary.

Under thismodel, it is not possible to impose absorbing boundary condition
at x = 0 since the particle is effectively never absorbed. We introduce a small
ϵ > 0 where the boundary is present. This changes the boundary conditions of
themodel, but allows us to impose an absorbing boundary at x = ϵ. We replace
µ with −µ so that µ > 0 and then follow similar procedure with the change
of varibales. Then, under the new boundary conditions, the time dependant
distribution is

ẋ(t) = −µx(t) +
√
2σx(t)η(t) (3.122)

P (x, t|x0, 0) =
1

x
√
4πσ2t

[

e−
(log(x/x0)−vt)2

4σ2t − e
v
σ2 log(ϵ/x0)e−

(log(x x0/ϵ)−vt)2

4σ2t

]

(3.123)

where v = −(µ + σ2) is the effective drift velocity. The flux at x = ϵ is negative.
Hence, the boundary is absorbing. Furthermore, the original model is recov-
ered in the limit ϵ→ 0 as expected.

Since we have the time dependant distribution, we can also compute the
long time distribution and use it to calculate the quasi stationary distribution
and the eigenvalue. This has the benefit of avoid themachinery that one needs
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to deal with to calculate the eigenvalues and the spectrum.

λ1 =
v2

4σ2
(3.124)

Qst(x) =
v2

4σ4x

(

x

ϵ

)− v
2σ2

log

(

x

ϵ

)

(3.125)

3.3.4 Extension to arbitrary times

In the standard case and in the extension to absorbing systems, the pertur-
bation occurs either at stationarity or at long times when the solution to the
FPE/ME is dominatedby the leadingeigenvalue and the eigenfunction. But the
perturbation can also occur at a general non-stationary state. In the standard
case with non-absorbing boundaries, themodified fluctuation dissipation the-
oremwas derived by [167, 187]. We slightly modify the notation used so far to
be in line with the previous work on out-of-equilibrium fluctuation-dissipation
theorem [167]. In a discrete systemwith an external field h, the response func-
tion is given by

RA(t, t
′) = − d

dt′
⟨A(t) ∂hψ(t′)|h=0⟩ (3.126)

Here, {c} are the set of states, ht is the time dependant perturbation and the
probability distribution, with the time dependant perturbation replaced by a
constant perturbation h is given by ρt(c, h) = e−ψt(c,h). Now, ψt is an explicit time-
dependentpotentialwhich at large times, leads to ϕof the standard case (or see
later for appropriate modification for absorbing case) that we were employing
previously.

The deviation from the observable A is then given by

δ⟨At⟩h =

∫ t

0
dt′ ht′ RA(t, t

′) (3.127)

where the subscript of h is used to identify perturbed observable, equivalent to
F (t) from previous derivations.

Similar topreviousprocedures, wecondition theobservable to survival. Then,

δ
⟨At⟩h
⟨χt⟩h

=
1

⟨χt⟩0
δ⟨At⟩h −

⟨At⟩0
⟨χt⟩0

δ⟨χt⟩h
⟨χt⟩0

(3.128)

The subscript 0 is used to denote unperturbed dynamics. Writing the condi-
tioned observable with response functions,

δ
⟨At⟩h
⟨χt⟩h

=

∫ t

0
dt′ ht′

[

RA(t, t
′)

⟨χt⟩0
− ⟨At⟩0

⟨χt⟩0
Rχ(t, t

′)

⟨χt⟩0

]

(3.129)

Since the distribution decays to zero in the presence of absorbing boundary,
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the solution to ME with constant perturbation also needs to be conditioned to
survival. Defining a new potential as

ϕt(c) = ψt(c) + log(⟨χt⟩) (3.130)

we obtain the conditioned distribution ρ/⟨χ⟩. Since log(⟨χt⟩) is independant of
states,

1

⟨χt⟩
⟨At [∂hϕt′ − log(⟨χt⟩)]⟩ =

1

⟨χt⟩
⟨At ∂hϕt′⟩ −

⟨At⟩
⟨χt⟩

log(⟨χt⟩) (3.131)

Similarly, the term involving χ results in

⟨At⟩
⟨χt⟩2

⟨χt [∂hϕt′ − log(⟨χt⟩)]⟩ =

⟨At⟩
⟨χt⟩2

⟨χt ∂hϕt′⟩ −
⟨At⟩
⟨χt⟩2

⟨χt⟩log(⟨χt⟩) (3.132)

We have dropped the subscript 0 and the evaluation at h = 0 of ∂hϕt′ for visual
simplicity in calculations. The last two terms in (3.131) and (3.132) cancel out.
Then, the modified FDT has two contributions to the effective response func-
tion.

R̂A(t, t
′) = − d

dt′

[

1

⟨χt⟩0
⟨A(t) ∂hϕ(t′)⟩ −

⟨At⟩0
(⟨χt⟩0)2

⟨χ(t) ∂hϕ(t′)⟩
]

(3.133)

At the long time limit, i.e, t0 → −∞, the form of χt depends only on the sec-
ond right eigenvector and eigenvalue giving us result of previous calculations.
It is to be noted that this is not entirely straightforward from the initial formula
without introducing survival. The quantities in (3.126) end up becoming trivial
under long time limit. Furthermore, the considerations of entropy production
in [167] do not hold valid when there is absorbing boundary and therefore out-
going rate out of boundary state is zero.

We verify the modification of the FDT for a general non-stationary pertur-
bation. The calculations of the quantities are more intensive, since there is no
simplification arising out of asymptotic long time limit. Hence, we consider the
earlier Three-State System inwhich we know the eigensystem completely. Fig-
ure 3.2 shows remarkable agreementwith the simulations at various perturba-
tion times. Furthermore, the evolution of the response function with changing
perturbation times is clearly seen, with the approach to the analytically pre-
dicted response from quasi stationary state.

✽✵



CHAPTER 3. 3.3. ABSORBING SYSTEMS

Figure 3.2: Verification of modification of FDT to non stationary perturbation
with absorbing boundary in three state system. The perturbation is applied at
time t′with the systembeing prepared at t0 = 0. The legend shows the different
perturbation timeswith the systemstartingat x0 = 2. Thedashed line represent
the predictions from (3.133). The gray lines represent the prediction and the
simulation from the quasi stationary state

3.3.5 Biological Examples

Having seen many standard examples of stochastic processes and verified out
FDT, we proceed to use this in some biologically relevant examples. A crucial
point similar to the continuous system is that if the state space is discrete and
infinite, the eigenvalue heirarchy is no longer guaranteed. But the dynamics
might be such that the heirarchy is still satisfied, which happens in the Birth-
Death model of forest ecosystems presented in the Introduction chapter. We
then also apply the FDT in a biochemical regimewith an example ofDNA target
search by proteins.
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Birth-Death Process

The birth-death process is a common starting point for modelling stochastic
population dynamics in ecological communities. A random fluctuation may
lead a species to reach zero population, from where it will never recover (with-
out immigration). To investigate howpopulations approach extinction, we con-
sider a model where the effective (per capita) rates of reproduction and death
of an individual are constant. Thus, the rates of the master equation are given
by Wn+1,n = bn = bn (birth event), and Wn−1,n = dn = dn (death event). Here the
population size of a species is given by the discrete variable n = 0, 1, 2, . . . . Un-
der the neutrality assumption [48, 188], the probability distribution of n gives
the distribution of the population of all species in the system. When b < d the
state n = 0 is an absorbing boundary. The eventual probability that all species’
populations reach zero is one since there are no possible birth events when a
species has gone extinct.

A key point is that the birth-death process is an infinite state system, but
still satisfies the requisite eigenvalue spectrum since they are discrete and are
given by λk = (d− b)k for k ≥ 1. Hence, we proceed to use the derived response
theory and FDT since the necessary hierarchy is still satisfied. With b−1 = 0, the
Master equation is given by

Ṗi(t) = bi−1Pi−1(t) + di+1Pi+1(t)− (bi + di)Pi(t) i ≥ 0 (3.134)

The second eigenvector and the eigenvalue can be obtained by the generating
function [16]

G(z, t) =
∑

n≥0

Pn(t)z
n =

(

1−A(z, t)

1− (1− ν)A(z, t)

)n0

(3.135)

with Pn(t = 0) = δn,n0 , ν = 1− b/d, A(z, t) = (1− z)(1− (1− ν)z)−1e−νt. At large times
A(z, t) is small enough to use the approximation 1/(1 − x)y ≈ 1 + yx. Since the
coefficient of the slowest exponential in the long-time state gives the second
eigenvector, we obtain φ1n = ν(1 − ν)n−1. The time-dependent solution to the
Master equation is calculated by using the Meixner Polynomials [189].

Figure 3.3a shows the comparison between results from simulation, the
new theory given by Eq. (3.58), and the standard-equivalent case given by only
the first term of Eq. (3.58). The first term of the generalized FDT is similar to
the standard FDT, but with the quasi-stationary distribution in place of the sta-
tionary distribution, corresponding to a direct substitution. We consider the
average population squared, i.e., ⟨n2⟩, since this shows a significant deviation
from standard theory. It is immediately apparent that the standard-equivalent
case significantly underestimates the response of the system while the pre-
dictions from the new theory and results from simulations match very well, as
expected from the several examples presented before. This also indicates that
the direct replacement of the distribution is awrong approach and could result
in an incorrect estimate of the response.
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Figure 3.3: Simulated and predicted responses in the birth-and-death pro-

cess with absorbing boundaries: a) Comparison between modified response
theory, standard-equivalent case, and simulations of the system. The observ-
able considered is the average population size squared (An = n2). The plots
show the deviation of survived observable from the unperturbed value. The
green line indicates the contribution from the first term of the generalized the-
orem. The black line is the prediction using both terms, and themajenta line is
the deviation observed in simulations. The perturbation strength is ∆b = b/10.
b) Increase in extinction probability of a species due to sustained perturbation
for a period of t = 1 year in both birth and death rates. Inset shows the av-
erage survived population (from simulations) against time in both perturbed
and unperturbed cases. The dotted black line in both plots indicates the time
till which perturbation occurs. Solid black line shows the extinction probability
in an unperturbed scenario. Dashed lines are predictions, and coloured solid
lines are observations from simulations with perturbation strengths ∆b = b/10,
and ∆d = d/10. Common parameters are b = 0.4 and d = 0.5.

An important quantity for ecosystems is the survival probability of species.
An increase or decrease in this quantity could mean the difference between
extinction and persistence. To study this, we consider a sustained period of
perturbation in both rates, reasoning that any increase in death rate caused by
natural or man-made causes results in more available resources, thereby also
increasing the birth rate. After computing the response function for survival
probability, it is possible to compute the extinction probability which is given
by 1− ⟨χ⟩t.

Figure 3.3b shows the extinction probability for a perturbation in both the
birth rate and the death rate that lasts for a period of t = 1 year while compar-
ing it to the extinction probability in the unperturbed case. The inset shows
the change in average survived population size during and after the perturba-
tion. It is seen that the average population size is unaffected by this perturba-
tion. While not plotted, the quasi-stationary distributions in both cases remain
the same, despite the perturbation, which indicates that the observed relative
species abundance distribution can appear to be constant in time. The critical
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point of note is that the extinction probability of the species immediately in-
creases, especially during the period of perturbation, and remains larger than
the unperturbed case even after the perturbation has ended. The increase in
extinction rate caused by the changing population distribution in both cases is
exactly compensated by the changing survival probability, which leads to the
constant quasi-stationary distributions, but the increase in death rate is not
aptly compensated by the birth rate increase and hence, more species could
go extinct. This means that even though the observed average population size
and the abundance distribution of the system stay constant, the total number
of species in the system decreases faster than usual, and this effect persists
beyond the perturbed duration.

While the constant population size and the relative species abundance is
ultimately an effect of the particular choice of same perturbation strength for
the birth and death rate, the observed phenomenon of increased extinction
probability demonstrates the importance of investigating ecological systems
using more comprehensive statistical tools.

Targeted Search on DNA by Proteins

Wemove from the ecological time and length scales to the biochemical scale
involving proteins and DNA. Proteins search for a specific set of base pairs on a
DNA to which they have a strong binding affinity, thereby forming an absorb-
ing site in the dynamics. We consider a discrete state model of the targeted
search for the binding site, which has already been described in the literature
[190, 191]. Themodel consists of L−1 non-specific sites and one specific bind-
ing site on the DNA (called ‘target’). The protein slides along the DNA with a
constant diffusion rate u in either direction, until it reaches the target site. At
every non-specific site, the protein can get detached from the DNA strandwith
the rate koff (which determines the average sliding length), and this results in
the protein being in free space. Since diffusion in free space ismuch faster than
diffusion in 1D, we consider free space as a single site. From this site, the pro-
tein can attach itself to any spot of the DNA strand with the rate kon. Due to
faster diffusion in 3D, all sites are reachable with equal probability, and hence,
kon is the same for all sites.

Under this framework, we consider rates estimated from observed exper-
imental data, and extract the eigenvalues and eigenvectors of the transition
matrix to perform the computations. For all the simulations of the system, the
protein starts from free space andmoves according to the transitions described
above. Eventually, every simulation will end when the protein reaches the tar-
get. But, at any given time, a fraction of them will still have the protein not
bound to the target site (which we shall term survived realizations, equivalent
to survived species in the birth-death process). The long-time probability of
finding the protein at a particular site in these survived realizations is equal to
the quasi-stationary eigenvector of the transition matrix.
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Figure 3.4: Prediction of responses in targeted search by proteins on DNA:

a) Top panel: Root mean squared distance of the protein from the target DNA
site for periodic changes in temperature. The RMS distance is given in terms
of base pairs, where 1bp = 340pm The blue dashed line is the prediction and
the solid line is observations from simulations of the protein distance. Bottom
panel: Change in the rates of the system assuming Arrhenius rate law. Blue
regions indicate the normal temperature (300K), and red regions indicate the
higher temperature (305K). The coloreddashed lines indicate the rates as given
in the legend. b) Prediction of deviation of absorption time distribution with a
delta-perturbation of koff in the system. The histogram of absorption time dis-
tribution computed through multiple simulations is represented by the bars
with the corresponding probability of absorption on the y-axis. Grey bars in-
dicate the unperturbed absorption time distribution, and the orange bars are
the deviation upon perturbation. The solid black line is the prediction from the
theory. Perturbation strength is∆koff = koff/10. The unperturbed first passage
time distribution is exponential with a large characteristic time, hence appear-
ing flat at plotted scales. The effect of the delta-perturbation is observed only
at times much shorter than the characteristic timescale.

Binding and detachment of the protein happen through chemical reac-
tions, whose rates can be approximated by the Arrhenius law, given by rate =

const × e−Erate/RT , where Erate > 0 is the activation energy of the reaction, R is
the gas constant, and T is the temperature of the system. Assuming the Ar-
rhenius law for each of the rates, we consider a periodic temperature change
of 5◦C (from 300K to 305K). This results in a perturbation of the rates, which
changes the distance of the protein from the target. We compute this change
through the root mean squared (rms) distance of the protein from the target.
Figure 3.4a shows that even though the observed pattern of change in dis-
tance is non-trivial, the new response theory is able to predict it quite well. The
specific pattern of whether the proteinmoves away from the target or towards
it depends on the activation energies. In a chosen experimental setting, the
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activation energies can be first computed and the theory can then be used to
predict the change in distance due to temperature change exactly using the
generalized theorem.

The time toextinction is anessential randomvariable in absorbingprocesses.
The average of this distribution, also called the mean first passage time, pro-
vides important information about the protein reaching the target [191]. Fig-
ure3.4b shows the change in theabsorption timedistribution fromsimulations
and from theory when there is a delta-perturbation in the rate of detachment,
koff . We see that the probability of absorption at short times immediately in-
creases by a significant proportion. Since a delta-perturbation is considered, at
large times, the change in distribution will beminimal, which is seen in the fig-
ure where the perturbed and the unperturbed distributions converge at times
much larger than the time of perturbation. The flat nature of the unperturbed
distribution is due to it being an exponential decay with a characteristic scale
much larger than the time which is plotted. The matching between simula-
tions and the theory opens new possibilities in ensemble experiments to con-
trol mean first passage time through perturbations.

3.4 Conclusion

Our results apply to a broad class of systems that were previously intractable
from the lens of response theory. Conditioning to survival is a common tool in
mathematical literatureof quasi-stationaryprocesses. Thegeneralized fluctuation-
dissipation theoremprovides insights into how this conditioning affects the re-
sponse to perturbations. Specifically, this new insight is needed because by
direct replacement of the stationary distribution with the quasi-stationary one
significantly underestimates the actual response. Thoughperturbation of finite
linear operators has been studied previously, obtaining the transient dynamics
and connections to statistical mechanics and relevant examples aremissing to
the best of our knowledge. In order to take into account the inherent decay of
the system and to predict the response, the generalized theorem is necessary.

Absorbing processes form a large class of systems which are ubiquitous in
nature. Their disruption of equilibrium and stationarity in general occurs in a
very specific manner which disrupts what we know of the relations between
fluctuations and dissipations. Starting from quasi-stationarity is still similar to
starting near equilibrium. Though our results can be generalized to be applica-
ble at all times, the computation of the necessary quantities becomes com-
plicated, especially in situations where a non-equilibrium stationary state is
present. In this context, changes in fluctuation relations caused to changes
in entropy production and subsequent connections to quasi-stationary distri-
butions is a pertinent topic for future research.

In the various models discussed, including the birth-death forest model, an
underlying assumption is that of locality of dynamics. However, in natural set-
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tings, this assumption often falls short due to spatial influences and interac-
tions from neighbouring areas. Even in fragmented habitats, there’s typically
some level of species migration, which means local extinction doesn’t neces-
sarily equate to global extinction. Therefore, a species’ absorbing state is more
realistically considered at the global extinction level. To grasp the interplay be-
tween extinctions and the spatial structure of populations, an expanded theo-
retical framework is necessary, which incorporates not just local dynamics but
also the broader spatial effects, including extinction and recolonization pro-
cesses, thereby offering a more accurate understanding of population dynam-
ics and species survival in complex and varied natural environments.
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FOUR

EXTINCTION OF BIOLOGICAL POPULATIONS IN COMPLEX

LANDSCAPES

The following chapter is the basis of published work [192] łEmergent encoding of dis-

persal network topologies in spatial metapopulation modelsž [G. Nicoletti*, P. Pad-

manabha*, S. Azaele, S. Suweis, A. Rinaldo, and A. Maritan; Proc. Natl. Acad. Sci 120

(46) e2311548120 (2023)]. Parts of the contents presented, including displayed fig-

ures, are taken with permission from the published work.

4.1 Introduction

Classical theoretical ecologymodels such as the Lotka-Volterramodels and the
MacArthur Consumer Resource models, including recent stochastic counter-
parts coming fromNeutral theorymainly focus on thepopulationdynamics of a
given set of species in a local patch of interest. Effects of the landscape andmi-
gration are usually considered through constant immigration rates which get
incorporated into the dynamics [193]. But frequently, species reside in com-
plex landscapes and the structure of this landscape impacts the dynamics of
focal set of species.

Certain landscape configurationsmight bemore prone to extinction, which
is considered an absorbing state when it occurs across all local patches. The
response theory for absorbing states presented in the previous chapter is gen-
eral in prescription, but the chosen biological systems to demonstrate the ap-
plicability are yet rooted in the hypothesis of locality of dynamics. Counting for
dispersal and migration between different habitats of species involves a set of
interacting local patches, each undergoing similar dynamics. Historically, such
models are termedmetapopulation models, in order to highlight their facet of
dealing with population of populations. While classical metapopulation mod-
els are successful and widely used, they often stem from phenomenological
or empirical observations rather than first principles.. Hence, before proceed-
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ing to analyse the effects of stochasticity and demographic fluctuations in the
flavour of statistical mechanics, it is necessary to provide a more foundational
formalism to derive classical models.

Understanding spatial ecology and unravelling the intricate dynamics of
ecological interactions in relation to biodiversity and population dynamics has
been a longstanding pursuit in ecological research [194, 195, 196, 197, 198,
199]. Models of metapopulations [200, 201] proved central to the description
of extinction and colonization events, especially in connection with population
persistence and dynamics [202, 203]. Habitat patches arise from, and are deci-
sively influenced by, the spatiotemporal changes of landscapes, and play a cru-
cial role in the persistence and extinction of metapopulation [204, 202, 205].

The application of network theory to ecological problems, particularly in the
field of spatial ecology, has emerged as a valuable approach [196, 206, 207],
but it often overlooks exact results derived in the context of river networks [208,
209, 210]. Graph theory, which allows the representation of space as a net-
work comprising of interconnected habitats and fragmented dispersal path-
ways [211], enables a shift in focus from spatially continuous characteristics to
the relationships between patches [212, 213, 214]. Networks, sensu South-
wood [215], act as templates for ecological strategies. This network-based per-
spective has yielded valuable insights into hownetworks of habitat patches can
support metapopulations and how connectivity affects a multitude of proper-
ties including persistence and invasibility, in both experimental and field stud-
ies [205, 216, 217, 218, 219]. Such studies underscore the profound influence
of network structure on ecological dynamics [220, 197, 221].

In this context, the pioneering work of Hanski and Ovaskainen (HO) holds
particular significance [200, 201, 222, 213]. It introduced a novel measure
knownasmetapopulation capacity, derived fromaphenomenologicalmetapop-
ulationmodel, to assess survivability in fragmented landscapes [222]. Thismea-
sure canbe readily applied to both randomly fragmented landscapes [223] and
real-world networks of habitat fragments where the areas and connectivities
of the patches are known [224, 213]. Technically, metapopulation capacity is
quantified as the leading eigenvalue of a carefully defined landscape matrix
[222]. By comparing themetapopulation capacity of a landscape to a threshold
value determined by species-specific properties, predictions can be made re-
garding species persistence in that landscape [222]. Thismeasure offers a con-
venient ranking system for assessing the ability of different landscapes to sup-
port viablemetapopulations [222, 225, 213]. Furthermore, similar results have
been independently derived outside of ecology and metacommunities, most
notably in the context of epidemic spreading [226, 227] where the influence of
networks and stochasticity have been extensively investigated [228, 229, 230].

Motivated by the need for a deeper understanding of metapopulation dy-
namics, our study introduces a fundamental approach that aims at capturing
the essential ingredients of spatial ecology in arbitrarily connected patches.
Our frameworkexplicitly distinguishesbetween twogroupsof individualswithin

✾✵



CHAPTER 4. 4.2. HISTORIC MODELS OF METAPOPULATION

the metapopulation: the łsettled populationž comprising individuals that re-
main in a specific habitat patch, and the łexplorersž who venture out to colo-
nize new regions. By incorporating this distinction, we construct a stochastic
individual-based model that accounts for the specific landscape characteris-
tics and fundamental processes driving metapopulation dynamics. We pro-
pose a general exact solution to ourmodel, which allows us to derive an explicit
metapopulation kernel that naturally reflects both the microscopic dynamical
features and the underlying dispersal network. We then study how thismecha-
nism interactswith theecological template on various structures, including real
topographic landscapes, whose features are ultimately encoded in the global
metapopulation dynamics.

4.2 Historic models of metapopulation

It is necessary todemonstratebriefly classicalmetapopulationmodels and show
the phenomenological assumptions before proceeding to generalize them.

The Levins model, introduced by Richard Levins in 1969, represents a foun-
dational model in metapopulation theory [231]. It was developed to describe
the dynamics of a species dispersed across a landscape in a series of habi-
tat patches. The central idea is that the species does not occupy all available
patches at all times due to local extinctions and recolonizations. Instead, the
model considers the fraction of patches occupied over time, denoted by p. The
model is defined by two primary parameters: the colonization rate c and the
extinction rate e. The colonization rate refers to the rate at which unoccupied
patches are colonized by the species, while the extinction rate refers to the rate
at which the species goes extinct in occupied patches. The dynamics govern-
ing the fraction of occupied patches is given by

ṗ = −ep+ c(1− p)p (4.1)

This dynamical equation is exactly that of themean field contact process. Sim-
ilar to the critical parameter value λ = 1 in the contact process, δ ≡ e/c governs
whether the fraction of occupied patches is zero or otherwise. If δ > 1, then,
extinction process dominates and hence, the set of patches reaches extinction,
Otherwise, a non-zero value can be obtained.

The Levins model, through its mean-field like assumption ends up with all
patches equally accessible and each having the same probability of coloniza-
tion andextinction, essentially treating themetapopulation as a series of identi-
cal and independently fluctuating patches. However, real landscapes aremore
complex, with habitat patches varying in size, quality, and isolation, all of which
affect colonization and extinction rates. Recognizing the need for amore realis-
tic approach, Hanski andOvaskainen expandedupon the original Levinsmodel
to incorporate spatial structure intometapopulation dynamics, leading towhat
is often referred to as the łspatially realistic" Levins model.

✾✶



4.3. MICROSCOPIC MODEL AND DERIVATIONS CHAPTER 4.

This spatially realistic version, instead of analysing the fraction of occupied
patches, dealswith theprobability of occupancyof a singlepatch, termedstochas-
tic patchoccupancymodel. Similar processes of extinctionoccur oneachpatch,
but instead, colonization processes now depend on pairs of patches. In a spa-
tially embeddednetwork of habitats, eachpairs of patches i and j are separated
by a distance dij . The phenomenological assumption ofHanski andOvaskainen
was that colonization rates decay exponentially with distance between patches
[222]. Hence, including this modification into the Levinsmodel results in a sys-
tem of dynamical equations for each patch governing its probability of occu-
pancy pi given by

dpi
dt

= − e

Ai
pi + (1− pi)

∑

j ̸=i

ce−dij/αpjAj (4.2)

where α is the characteristic dispersal length of the focal species and Ai and Aj
are patch quality parameters that denote the quality of the patch and its effect
towards extinction and colonization.

This model has been notably successful in predicting the occupancy pat-
terns of the Glanville fritillary butterfly (Melitaea cinxia) in the Aland islands of
Finland. The model’s ability to connect landscape structure with species’ life
history parameters into a cohesive framework has been a significant advance-
ment in metapopulation and conservation biology.

However, the model relies on two crucial assumptions that limit its appli-
cability to more general scenarios without further modifications. The first as-
sumption is that colonization rates decay exponentially with distance, which
might not accurately reflect all species’ dispersal patterns. The second assump-
tion is that the network of habitats is fully connected and undirected, an ide-
alization that may not hold in more complex or fragmented landscapes or in
cases like river networks where flow direction can heavily influence dispersal
patterns.

While additional modifications to the model can extend its applicability to
these more complex landscape structures, a derivation of the model from first
principles would allow it to bemore directly appliedwithout necessitating con-
tinuous ad-hoc adjustments. A first-principles approach would adapt more
naturally to various ecological contexts and landscape configurations, provid-
ing a more robust framework for metapopulation studies.

4.3 Microscopic model and derivations

4.3.1 Model

We model the dynamics of a given species in a network of N patches. Figure
4.1 illustrates the core ideas of our microscopic model. We make the explicit
distinction between individuals that stay in a given patch and do notmove, i.e.,
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the łsettled populationž, and those that insteadmove between patches, i.e., the
łexplorersž.

Figure 4.1: Sketch of themicroscopic derivation of themetapopulationmodel.
We explicitly consider a dispersal network and describe, in each of its patches,
the local population of a given species. These settled individualsmay give birth
to explorers, whose role is to diffuse along thedispersal network. At any time, an
explorer can attempt colonization by settling on anewpatch. By assuming that
only the settled population can be observed, we derive an effectivemetapopu-
lationmodelwith an all-to-all dispersal kernel that explicitly includes the effects
of the underlying dispersal topology.

Each patch i = 1, . . . , N is inhabited by a local settled population. We denote
a single individual in patch iwith Si, and the total number of settled individuals
by [Si]. We further assume that each patch can accommodate at mostM indi-
viduals, so that max([Si]) =M . Individuals of the settled population die at a rate
ei, denoted by the reaction

Si
ei−→ ∅i, (4.3)

where ∅i denotes an individual empty site in patch i. Notice that, at any time,
[Si] + [∅i] = M . In principle, we could also include reproduction - e.g., Si + ∅i →
Si + Si - and other reactions on the same patch without qualitatively changing
our results.

Although settled individuals Si do not move, they can produce explorers in
another patch j at a rate Cij . We denote a single explorer in patch j with Xj . In
the present work, we focus on the reaction

Si
Cij−−→ Si +Xj (4.4)

, (4.5)

which may describe, e.g., seed production by trees. Once more, modifications
to this reaction - such as settled to explorer conversion, Si → ∅i + Xj - can be
easily included. Explorers can move between patches, and thus we assume
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they do not occupy any of the M spaces. We denote the rate of moving from
patch i to patch j with Di→j = Dij , namely

Xi
Dij−−→ Xj . (4.6)

With a given rate λ, an explorer may attempt to settle on one of theM available
patches. Intuitively, this corresponds to diffusion with a stochastic stopping
time modeled by a Poisson process [9], which translates into the reactions

Xj +∅i
λ/M−−−→ Sj (4.7)

Xj + Sj
λ/M−−−→ Sj (4.8)

where the rate λ/M takes into account that the single individual explorer in
patch j, Xj , needs to choose one specific site on the patch. Notice that, if the
explorer tries to settle on an already occupied space, it will die - hence, only
empty sites on the patch can be colonized. This corresponds to a neutral-like
assumption, where all sites on a patch are equal when it comes to explorers’
attempts at colonization. Notice that one may add an intrinsic mortality rate
for explorers, e.g., a constant death rate dX . It can be easily shown that this
would introduce a new dimensionless parameter in the model dX/λ, without
changing the form of the equations nor qualitatively affecting the results. In
particular, we recover the present model in the limit dX ≪ λ, which amounts to
assuming that explorers attempt settling much faster than they die.

Importantly, we take Dij = 0 if the two patches are not connected, Dii = 0,
and Cii = 0. Further, we take Cij = ci h(D/λ)Aij , where ci is the colonization
rate, the function h encodes the feasibility of such creation, and Aij are the ele-
ments of the adjacency matrix Â describing the dispersal network. With these
choices, the microscopic dynamics of the explorers is local - they are created
in neighboring patches and, to reach distant patches, they must move along
the dispersal network. Without loss of generality, we write the diffusion rate as
Dij = DAij , where D is a baseline rate. Note that the dispersal network may
be directed and weighted, in principle, and thus Â may not be symmetric or
binary.

4.3.2 Rate equations

We can write the master equation for the probability p( ⃗[S], ⃗[X], t), where ⃗[S] =

([S]1, . . . , [S]N ) and ⃗[X] = ([X]1, . . . , [X]N ) are the numbers of settled individuals
and explorers across patches, respectively. From the master equation, one can
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easily obtain the equations for their means in a given patch,

⟨Si⟩ (t) =
M
∑

[Si]=0

[Si] p(Si, t) (4.9)

⟨Xi⟩ (t) =
+∞
∑

[Xi]=0

[Xi] p(Xi, t), (4.10)

which read

d ⟨Si⟩
dt

= −ei ⟨Si⟩+ λ/M(M − ⟨Si⟩) ⟨Xi⟩

d ⟨Xi⟩
dt

= −



λ/MM ⟨Xi⟩ − h

(

D

λ

) N
∑

j=1

Ajicj ⟨Sj⟩



+D
N
∑

j=1

(Aji ⟨Xj⟩ −Aij ⟨Xi⟩)

(4.11)
where we used the fact that ⟨Si⟩ + ⟨∅i⟩ = M . (4.11) can be also understood as
the first term of the Kramers-Moyal expansion of the master equation.

We define the density of settled population ρi = ⟨Si⟩ /M and the number of
explorers per empty site xi = ⟨Xi⟩ /M . Hence, we rewrite (4.11) as

ρ̇i = −eiρi + λ(1− ρi)xi

ẋi = −



λxi − h

(

D

λ

) N
∑

j=1

Ajicjρj



+D

N
∑

j=1

(Ajixj −Aijxi)
(4.12)

which are the rate equations reported in theMaterial andMethods of themain
text. Let us also note that, even if we introduce a patch-dependent number of
sites Mi, the relative densities ρi = ⟨Si⟩ /Mi and xi = ⟨Xi⟩ /Mi would follow the
same equations.

4.3.3 Quasistationary approximation

We now make the crucial but physically meaningful assumption that we can-
not observe the explorers directly and that their dynamics is much faster than
that of the settled population. That is, we only have access to the density of the
settled population in a given patch, and thus we want an effective equation for
ρi that takes into account the otherwise hidden dynamics of explorers. In prac-
tice, this means that, in order to solve (4.12), we employ the quasistationary
approximation

ẋi = 0, ∀i

for the explorer dynamics. Note that this approximation does not affect the
steady state of the settled populations. Recalling that f = D/λ, we obtain

λx⃗(t) = F̂−1ĈT ρ⃗(t) (4.13)
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where
Fij = δij + fLji. (4.14)

and Lij are the elements of the out-degree Laplacian matrix of the network,

Lij = δijqi −Aij , (4.15)

with qi =
∑

j Aij the weighted out-degree of patch i. Overall, by inserting (4.13)
in (4.12), we obtain an effective equation for the density of the settled popula-
tion in patch i,

ρ̇i = −eiρi + (1− ρi)

N
∑

j=1

N
∑

k=1

(F̂−1)ikCjkρj (4.16)

and notice that, although Â is in general a sparse matrix, F̂−1 is always dense -
and therefore it introduces effective couplings between all patches, regardless
of the underlying connections.

To understand the properties of the all-to-all effective couplings appearing
in (4.16), we need to find the inverse F̂−1 which is, in general, a challenging task.
In this particular setting, it is possible to compute F̂−1 directly in the eigenspace
of L̂. However, as a general method to take into account possible extensions in
which F̂ does not contain the identity matrix, we resort to the recursive form of
the Woodbury matrix identity [232]. We have

F̂−1 = (Ĝ− Ê)−1 = Ĝ−1 + Ĝ−1Ê(Ĝ− Ê)−1 =

∞
∑

n=0

(Ĝ−1Ê)nĜ−1, (4.17)

where, in our case, Ĝ = I is the identitymatrix, and Ê = −fL̂T . Notice that, in this
case, the Woodbury identity is equivalent to the Neumann series (I − A)−1 =
∑∞

0 Ak . However, more complex microscopic dynamics may lead to a matrix
Ĝ that is different from the identity, and the Woodbury expansion would still
be useful in such scenarios. In general, it is fundamental to highlight that the
infinite sum appearing in (4.17) must be interpreted in terms of its analytic
continuation, and can only be written provided that the inverse of F̂ exists. We
check a posteriori that this is indeed the case. We have that

F̂−1 =
∞
∑

n=0

(−1)nfn(L̂T )n. (4.18)

(4.18) canbedrastically simplified in the eigenspaceof the transpose Laplacian.
We denote with ωi is the i-th eigenvalue of L̂T with eigenvector v⃗(i), and with
(V̂ )ij = v

(j)
i the matrix of the eigenvectors. Recalling the analytic continuation

of the generalized hypergeometric function 1F0,

∞
∑

n=0

(−1)n(fωk)
n = 1F0(1; ;−fωk) =

1

1 + fωk
,

✾✻



CHAPTER 4. 4.3. MICROSCOPIC MODEL AND DERIVATIONS

we obtain

(F−1)ij =
N
∑

k=1

Vik(V̂
−1)kj

1 + fωk
(4.19)

which is an explicit expression for the matrix inverse of F̂ . It can be trivially
checked that F̂ F̂−1 = I for all values of f and all network topologies.

4.3.4 Explicit dispersal kernel

We introduce the dispersal kernel, defined as

Kji =
N
∑

k=1

(F̂−1)ik
Cjk
cj

which, using the results of the previous sections, we can write as

Kji = h(f)

N
∑

l=1

Ajl

N
∑

k=1

Vik(V
−1)kl

1 + fωk
(4.20)

so that the effective metapopulation model reads

ρ̇i = −eiρi + (1− ρi)

N
∑

j=1

Kji cj ρj . (4.21)

Notice that, in a q-regular network where all nodes have the same degree q, we
can immediately write

Fij = (1 + fq)δij − fAji,

which leads to

(F̂−1)ij =
∞
∑

n=0

fn

(1 + fq)n+1
(Ân)ji. (4.22)

Crucially, the recursive nature of the Woodbury matrix identity now acquires a
clear physical interpretation. The sum in (4.22) is, in fact, a sum over all pos-
sible paths of length n between j and i, whose number is determined by the
elements of the n-th power of the adjacency matrix (Ân)ji. Each path needs
to be weighted appropriately so that shorter paths are more likely and longer
paths are not - depending on the value of f , which represents how far an ex-
plorer can diffuse before stopping. Remarkably, we can assign a finite result to
this sum - here, we can write it as

(F̂−1)ij =

N
∑

k=1

UikU
−1
kj

1 + f(q − γk)
,

where γi is the i-th eigenvalue of the adjacency matrix, and Uij = u
(j)
i is the

matrix of its eigenvectors.
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We also note that, in general, in the f → ∞ the kernel becomes

Kji
f→∞−−−→ ξ

N
∑

k=1

Ajk(V̂
−1)1k√
N

∀i (4.23)

where we assume that ω1 is the zero eigenvalue of the Laplacian. This implies
that the effective coupling from patch j to patch i does not depend on i, so
explorers can reach all patches uniformly.

The results of Hanski and Ovaskainen [200, 201, 222, 213] can be directly
applied to (4.21). In particular, wemay assume ci = cAi and ei = e/Ai, where Ai

is the area of patch i. The survival of a species is determined by the maximum
eigenvalue of the landscape matrixMij = KijAiAj , i.e., the metapopulation ca-
pacity λM - if λM > e/c the species survives, otherwise it goes extinct. In our
case, λM will depend on the form of the function h(f).

Althoughwe cannot find ageneral analytical expression for λM , we can com-
pute it in certain limits in undirected dispersal networks. Not surprisingly, f → 0

gives λM → 0, implying that in the absence of exploration, survival is not pos-
sible. On the other hand, in the opposite limit of large exploration efficiency
f → ∞, the metapopulation capacity is proportional to the average out-degree
of the network. This clearly shows that the topological features of the disper-
sal network affect a species’ persistence. In particular, we expect more densely
connected networks to have larger metapopulation capacity, whereas species
in highly fragmented landscapes are more prone to extinction. This result had
beenpinpointed earlier for patchy landscapes [225, 203, 224] and for dendritic
metapopulations [233, 234] using the original kernel, and it is reinforcedby the
present results employing a more general framework.

4.4 Results

4.4.1 Effects of network topology

In Figure 4.2 we study how the topological features of the dispersal network
affect both species survival and dynamics. We first focus on the simple case
of a ring network, which represents a one-dimensional model with periodic
boundary conditions. We find that the kernel elementsKij decay exponentially
with the network distance dij , in striking similarity with the HO effective ker-
nel where this decay was phenomenologically assumed (Figure 4.2a). Notably,
the characteristic decay length increases with f , leading to a stronger effective
coupling between patches at large distances. This suggests a direct relation
between the exploration efficiency f and the average dispersal distance, α, ap-
pearing in the HOmodel.
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Figure 4.2: Effects of network topology on the effective dispersal kernel. (a) Be-
havior of the kernel elements Kij as a function of the network distance dij in
ring networks (sketched on the left). The kernel decays exponentially with dij
regardless of thepatches’ identities, and larger values of f imply a larger charac-
teristic length of such decay. (b-c) Behavior in small-world and Barabasi-Albert
networks. At the same distance dij there are, in general, multiple values of Kij ,
which depend on all possible paths between patch i and j. Scatter points rep-
resent their average ⟨Kij⟩, and the shaded area is the area between their max-
imum and minimum value. (d-e) The metapopulation capacity as a function
of f (at fixed ξ = 10) and the average stationary population

〈

ρst
〉

as a function
of e/c (at f = 0.5) show that, in general, survival is favored by more heteroge-
neous topologies. (f-h) Dynamical evolution of the population density in differ-
ent patches ρi (shaded lines) and its average (solid line) at e/c = 6. The stationary
population shows localization in heterogeneous topologies, e.g., with a larger
population in the hubs of Barabasi-Albert networks.
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Crucially, we are now able to study how changes in the underlying disper-
sal network topology are reflected in the metapopulation model. In partic-
ular, small-world networks [235] introduce long-range connections between
patches that may be otherwise very far apart. In Figure 4.2b we show that
such connections have a deep impact on the kernel elements Kij , which are
not solely a function of the network distance dij , i.e., of the minimum number
of edges that connect the two patches. Rather, at fixed dij we have a distribu-
tion of values of Kij . This effect becomes especially relevant at higher f , and
it is a direct consequence of the fact that Kij encodes contributions from all
possible paths between patch j and patch i and thus it will depend on the en-
tire network structure rather than on distance alone. Although on average the
kernel ⟨Kij⟩ still displays an exponential behaviour with the network distance,
heterogeneity in the network structure induces heterogeneity in the elements
of the kernel matrix at fixed dij . In other words, for a given pair of patches i and
j, there are two contributions to the kernel Kji: an approximately exponential
decay like in the original HO model, and an entropic contribution associated
with the multiplicity of paths connecting i and j. Such a contribution emerges
naturally and was not present in previous approaches.

In the case of Barabasi-Albert dispersal networks [236], few patches behave
as hubs, connecting to a large number of other nodes and resulting in a scale-
free degree distribution. This highly heterogeneous structure translates into
very diverse kernel elements at equal distances, as we show in Figure 4.2c. This
is not surprising, since being closer or farther from a hub introduces significant
differences in the number of steps an explorer needs to take before reaching
farther parts of the network.

Furthermore, topological features also affect the survival of a species. In par-
ticular, the metapopulation capacity increases with the heterogeneity of the
network (Figure 4.2d). This effect is particularly significant at intermediate val-
ues of exploration efficiency f , where the fine structure of the dispersal net-
work is most relevant. Conversely, in the limit f → ∞ explorers can reach all
patches before attempting colonization (see Supporting Information). The rel-
evance of dispersal network structure at intermediate values of f consequently
affects the average stationary population aswell (Figure 4.2e). Suchdifferences
across diverse dispersal topologies result not only in distinct extinction thresh-
olds but also in different approaches to extinction. For instance, in small-world
networks, a species’ decay to extinction is slower than in a ring, which could
have a significant impact when demographic stochasticity is considered.

Finally, we observe marked differences in both the total population and the
population in each patch. In Figure 4.2f-h, we show that settlement is more
favored in nodes with a higher degree, and hubs in particular. Overall, het-
erogeneity and long-range connections drive faster colonization dynamics and
strongly boost the total population. These results imply that the same species
may colonize and survive in, e.g., a small-world dispersal network, but go extinct
in a ring topology at the same value of extinction threshold, e/c. Such benefi-

✶✵✵



CHAPTER 4. 4.4. RESULTS

cial effects on survivability are not unexpected. However, our results arise in a
globalmetapopulationmodel derived frompurely localmicroscopic dynamics,
demonstrating its fundamental improvements over previous approaches.

4.4.2 Effects of modularity and fragmentation

A crucial aspect of dispersal networks that has important ecological implica-
tions is thepresenceofmultipleweakly interconnectedcommunities, with each
community consisting of strongly connected patches. This modular structure
(Figure 4.3a) reflects that of ecological corridors, with few corridors between
ecosystems for species tomove across. Understanding dynamics in such struc-
tures is a key ingredient in habitat conservation efforts [237].

In Figure4.3bwe show that amodular dispersal network is associatedwith a
block-like metapopulation kernel, where patches belonging to the same com-
munity are more strongly coupled. Notably, the metapopulation capacity in-
creaseswith theprobability of connectionbetweendifferent communities (Fig-
ure 4.3c). Thus more connections between ecosystems allow for easier disper-
sal, thereby increasing survivability. It is a natural consequence of the entropic
effect alluded to above, which is associated with the multiplicity of corridors
connecting ecosystems. Hence, sparsity is detrimental to a species, whereas
more dense networks are less prone to extinction.
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Figure 4.3: Effects of modularity and fragmentation on the metapopulation
model. (a) Amodular network comprised of six realizations of ErdősśRényi net-
works [238, 239] with the same wiring probability pintra = 0.05 and intercon-
nection probability pconnection = 0.2. (b) The matrix kernel displays a block struc-
ture, with larger elements between patches belonging to the same commu-
nity. (c) The metapopulation capacity increases with the connection probabil-
ity between communities. (d-e) Evolution of the settled population ρi in each
patch, and comparison with the HO model. Each color represents patches in
different communities. (f-g) Comparison of the total population in themodular
network (dashedblack line) and the isolatednetwork (solid black line), where all
links across communities have been removed, in our and in the HOmodel. (h)
Effect of fragmentation on themetapopulation capacity on amodular network
with 11 communities. As we randomly isolate communities from the network,
themetapopulation capacity decreases, showing that a fragmented landscape
hinders survival. The gray lines represent a single realization of the stochastic
disconnection process.

Themodular structure of the network is also reflected in the dynamics. This
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point represents a crucial difference between our microscopic model and the
HO model. Figures 4.3d-e show that the dynamics in the microscopic model
immediately reflects the different communities, with patches of a given com-
munity being colonized together. On the contrary, this is completely absent in
the dynamical evolution predicted by the HO model, since only the patch dis-
tances are considered. As a consequence, pair of patches at the same distance
are equivalent in the HOmodel regardless of the communities they belong to,
whereas such topological information is naturally encoded in our approach.

This fundamental difference is especially relevant tounderstand the resilience
of the metapopulation model in events of landscape fragmentation [240]. In
particular, the presence of ecological corridors favors a larger total population,
both in HO and our microscopic model (Figure 4.3f-g). However, since the HO
effective kernel does not distinguish between communities, the total popula-
tion in the absence of inter-community connections drastically decreases. On
the contrary, in ourmicroscopicmodel, the settled population in each commu-
nity does not solely depend on the presence of corridors among them.

Finally, we can study in detail the effect of landscape fragmentation by ran-
domly disconnecting communities from the rest of the network. Figure 4.3h
shows the decreasing metapopulation capacity of the whole network with in-
creasing fragmentation. Hence, isolation is detrimental to survivability, and the
metapopulation capacity eventually saturates to that of the weakest isolated
community. Remarkably, this shows that although the overall change to the
total population may not appear significant (Figure 4.3f), fragmentation - and
sparsity in general - drastically reduces a species’ persistence.

4.4.3 Effects of landscape topography

Topography plays a vital role in shaping the ecological features of real land-
scapes [241], from hindering themovement of species in mountain regions to
impacting the behavior of fishes inhabiting lakes located far apart in terms of
water flow. The presence or absence of such topographic features could sig-
nificantly alter the effective distance between two areas. We now exploit our
microscopic approach to study how elevation gradients affectmetapopulation
models.
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Figure 4.4: Stationary populations in Digital Elevation Models (DEMs).(a) To-
pography and DEM of a region of the Ene River in Peru, South America and (b)
Comparison between the stationary population at different values of f and α
(d) Similar to (a), but for Kauriala River, Nepal and the subsequent comparisons
in (c)

HydroSHEDSDigital ElevationModels (DEM) [242] provide elevation data at
15 arc-second resolution obtained from NASA Shuttle Radar Topography Mis-
sion. We select two mountainous areas of interest (Figure 4.4a-b): a part of

✶✵✹



CHAPTER 4. 4.4. RESULTS

Ene River in Peru, in the Andes region, and the Kauriala River in Nepal, in the
Himalayas. These areas show geographic features that could potentially have
ecological effects - the Ene region displays a fractal-like flow channel structure,
and the Kauriala region includes a bottleneck-like passage between two zones
of high elevation. In each region, we construct a grid of points at the latitudes
and longitudes where elevation data exists. From this grid, we construct the
exponential HO kernel using an elevation-dependent distance matrix with a
characteristic migration distance α. Our model, however, allows for biased ex-
ploration. Thus, in our case, we consider exploration along the elevation gradi-
ent, with a downhill diffusion rate much larger than the uphill one.

Figures 4.4c and 4.4d show the stationary population density at each grid
point for increasing dispersal parameter - α and f - for the chosen regions. At
low dispersal parameters, the resulting metapopulation capacity is low, and in
both models, the only surviving population is in low-lying areas. With increas-
ing dispersal, it becomes easier and easier tomove against the elevation differ-
ence. Hence, perhaps unsurprisingly, species with different dispersal parame-
ters experience the topography differently.

While both models predict similar qualitative behaviors, there are stark dif-
ferences in the stationary populations. In the HO model, species immediately
occupy low-lying areas at significantly high population densities with respect
to higher-elevation zones. Conversely, in the microscopic model, the densities
increase smoothly along the elevation gradient.

This difference is a direct consequence of the fact that, in the HO kernel, the
dispersal between two points at different elevations is the same regardless of
whether the species is trying to colonize uphill or downhill. This naturally leads
to a preference for connected regions at similar elevation levels, but does not
take into account the fine topographic structure that arises from changes in
the elevation gradients. Hence, only the overall topography is qualitatively re-
flected in the stationary population densities, which is strongly biased towards
colonizing uniformly regions at the same elevation. This is in clear contrast with
our model, where downhill exploration is intrinsically favored and thus allows
for elevation gradients to be encoded into the dynamics through the entropic
contribution due to the multiplicity of paths between two points. As a result,
species are able to settle along the fractal-like flow channel structure in the Ene
region and are forced tomove across the bottleneck of the Kauriala region. The
reflection of the topographic structure is not only limited to the DEM, as it does
follow the dendritic river network constructed from elevation data. Therefore,
topography influences and is clearly reflected in the species dynamics.

In principle, this allows for a deeper understanding of how changes to the
landscape topography directly affect metapopulation models, e.g., changes in
river flow due to natural or anthropogenic causes, landslides changing the ele-
vation of a region, urbanization creatingmore flat areas, etc. When topography
is involved, the basic assumption of unbiased colonization would become in-
valid, further highlighting the need for a consistent microscopic description.

✶✵✺



4.5. CONCLUSION CHAPTER 4.

4.5 Conclusion

Through derivation of a general metapopulation model by incorporating the
fundamental characteristics of the dispersal networks and the detailed dynam-
ics of settlers and explorers, we have found that the metapopulation capacity,
which determines whether a species survives or goes extinct, is manifestly de-
pendent on the substrate for ecological interactions. This approach encom-
passes asymmetric interactions, allowing for the study of real landscapes and
biased colonization.

The presented work generalizes the classical model through providing mi-
croscopic reactions. Since a finite size of the patch exists, at low patch capaci-
ties, fluctuations in the population become important. This is underscored es-
pecially in the context of the absorbing boundary. In the deterministic equa-
tions, if λM is greater than δ, then, persistence always holds. But, in reality, there
is always a chance of demographic fluctuations to drive populations to extinc-
tion. Our ongoing work on utilizing the Kramers-Moyal and van Kampen ex-
pansions indicates that the type of arising stochasticity is quite interesting, in-
dicating connections to the previously analysed forest model of Eq (1.28), but
with absorbing boundary. Furthermore, under conditions of deterministic per-
sistence, the slow explorer regime indicates a sort of non-equilibrium quasi-
stationary state for the absorbing boundary, with flux between the explorers
and settled populations. These bring back to fore our analyses into violation of
FDT in absorbing boundary systems.

Another direction of future work is to continue to utilize the generalized
model in the deterministic setting to answer classical theoretical ecology ques-
tions, of which a key one is that of coexistence. Here, we have considered a
single focal species. But the microscopic reactions can easily be generalized
to multiple species competing for space and subsequent effects of topology
on coexistence can be analysed. Furthermore, our model presents a tractable
approach for the study of the interplay between metapopulations and the un-
derlying physical constraints, trade-offs and universality of river and optimal
channel networks [243, 244].

Notably, the presented deterministic setting provides a good example of ig-
noring stochastic effects at large population numbers, a situation frequently
encountered in microbial communities in the laboratory. These communities
comprise of species with populations in the order of hundreds of thousands,
which effectively dampen the demographic systems inherent in the system to
negligible levels. Nevertheless, these communities reside in an external envi-
ronment which can always experience fluctuations. The effect of these fluctu-
ations is then manifest in the dynamics through stochastic parameters, which
brings it back into the foray of tools from stochastic processes.
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FORCED FLUCTUATIONS OF MICROBIAL COMMUNITIES

5.1 Introduction

The persistence of populations across extensive landscapes is dependent on
the structure of these landscapes and their interaction with species dynamics.
Such populations are vulnerable to stochastic effects and demographic fluctu-
ations, particularly as they approach extinction thresholds. But at the opposite
scale, microbes exist at such large population numbers even on a small scale
that demographic fluctuations don’t really play a role in determining whether
they survive or not. In this instance, the species’ properties appear to be more
important, allowing us to consider the deterministic limit of stochastic differ-
ential equations.

Mathematical formulations of a community of microbial species immedi-
ately run into a problemwhen analysed from the level of resource usage. Com-
monly referred to as competitive exclusion principle / Gause’s law [47], it states
that the number of species cannot exceed the number of resources in a system.
This is clearly in disagreement with observations in the natural world. Themost
famous of this is the łparadox of the planktonž where the estimated number
of species is approximated at 106 [245], which presents an improbable number
for the types of resources.

However, in thenaturalworld, there aremanyenvironmental factors that are
not described by simple mathematical models. Even in laboratory conditions,
where fine control of environment is possible, frequently, on a single carbon
source, more than one species coexist [246]. The most common explanation
of this is the ability ofmicrobes to use the by products ofmetabolismof another
species, called cross-feeding [247]. While on surface this appears to violate the
Gause’s law, when accounted for these additional resources, some evidence
suggests that competitive-exclusion principle still holds [248].

Resolving the paradoxical observations that challenge Gause’s law requires
an exploration of potential mechanisms that could facilitate the coexistence of
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more species than the number of distinct resources. One such mechanism,
widely observed in the natural world, is the impact of seasonality, which in-
troduces potentially aperiodic fluctuations in resource availability. In macroe-
cological studies, such seasonality and resource fluctuations are often found
to foster coexistence [249], particularly in predator-prey models, suggesting a
broader application of these principles to smaller scales, likemicrobial commu-
nities.

When applied to microbial systems, these periodic fluctuations introduce
a continual source of variability, consistently driving the system out of equilib-
rium. This persistent disequilibrium could, in theory, allow for the violation of
the competitive exclusionprinciple by creatingniches or opportunities for addi-
tional species to persist. These fluctuationsmight not act in isolation but could
interact synergistically with other biological or environmental factors, further
promoting diversity and coexistence [250]. To fully understand these complex
interactions and their implications, it is essential to develop a robust under-
standing of how systems compare across different intensities and patterns of
fluctuation.

In this Chapter, we revisit the constraints disallowing coexistence of more
species than resources and show how serial transfers, a common laboratory
technique, allows violation of this principle. Then, through certain heuristic
arguments and experimental data, the interdependent relation between dif-
ferent parameters of transfer mechanism is shown, allowing for a consistent
comparison across different transfer frequencies. This leads to interesting and
potentially important effects, especially when this forced fluctuation is coupled
with a systematic stochasticity that can inherently occur due to human or ma-
chine inaccuracy. The initial results here serve as potential seeds for future re-
search on control of microbial systems to optimize specific functions, both on
theoretical and experimental settings.

5.2 Competitive exclusion principle

The dynamics of species in ecological systems are often studied using their
population time series data. From these data, effective interactions between
species can be inferred, typically manifesting as so within the context of Gen-
eralized Lotka-Volterra (gLV) equations [251]. However, it’s crucial to under-
stand that these interactions are effective rather than direct representations
of interspecies dynamics. The gLV equations offer a simplified view, capturing
the essence of species interactions through coefficients that represent compe-
tition, predation, or mutualism.

Yet, in many cases, the interactions between species are not direct but are
mediated through shared resources, leading to competition or facilitation in-
directly. This more nuanced view of interspecies dynamics can be captured
by the MacArthur consumer-resource (CR) model. The CR model explicitly ac-
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counts for the shared pool of resources that species compete for, providing a
moredetailed and realistic descriptionof howspecies interactwithin anecosys-
tem [252].

Under certain simplifying assumptions, the CRmodel can resemble the gLV
equations, particularly when the resource competition is linear and species
have similar consumption patterns. However, in most realistic scenarios, es-
pecially under controlled laboratory conditions, the CR model diverges signif-
icantly from the gLV model. This distinction is especially important in experi-
mental settings, where resourceavailability andconsumptionpatterns are care-
fully controlled and monitored [253].

Consider a flask with ns species and nr resources which is connected to a
source of resources and anoutlet for drainage. Such a system is termed chemo-
stat, which conserves the total volumeof the flask, and eventually reaches equi-
librium. Each species uses all resources to grow, albeit with diffferent growth
rates. For a general resource usage function, we can write the equations of
growth and usage as,

ṅi =

(

∑

µ

gi,µ(rµ)− δf

)

ni

ṙµ = δf (sµ − rµ)−
∑

i

gi,µ(rµ)

yi,µ
ni (5.1)

where δf is the rate of inflow and outflow with yi,µ being the yield per unit use
of resource µ for species i and sµ being the supply of concentration of resource
µ. At stationarity, the effective flux of resources is balanced by the usage, and
the population outflow is balanced by growth. This leads to

nr
∑

µ

gi,µ(r
∗
µ) = δf (5.2)

ns
∑

i

gi,µ(r
∗
µ)

yi,µ
n∗i = δf (sµ − r∗µ) (5.3)

Notice that Eq (5.2) has to be satisfied for ns different species, but there are
only nr growth functions. This means that the stationary growth values of at
least two species have to be the same for all the resources. This problem then
simplifies to show that two species cannot coexist on one resource.

When Eqs (5.3) and (5.2) are written for two species and one resource, we
obtain
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g1(r
∗) = g2(r

∗) = g(r∗) = δf (5.4)

g(r∗)

(

n∗1
y1

+
n∗2
y2

)

= δf (s− r∗) (5.5)

Eq (5.5) shows that there exists a coexistence solution, based on the ratio of the
yields. But any small change in r∗ means that g1(r∗) ̸= g2(r

∗) anymore, thereby
implying that one of the species has a beneficial growth compared to the other
for this small perturbation. Hence, the predicted coexistence solution is unsta-
ble and can never be reached unless the populations started exactly from that
value.

But this is clearly not what is observed in the laboratory when species are
grown on a single carbon source, such as glucose. This is because during the
metabolism cycle, other byproducts such as acetate are produced which can
then be used both by the species that produced it and potentially other species
as well. This cross-feeding mechanism then raises the limit of CEP. Without
resorting to cross-feeding, coexistence could still be possible by a fine-tuned
set of growth rates, or by time-varying resource usage strategies.

5.3 Serial transfer induced coexistence

When δf = 0 in the CR equation, there exists a central manifold in the dynam-
ics of the species. In the phase space of species populations, there are infinitely
many coexistence states in this case, with each coexistence state depending
on the initial conditions. Experimentally, this corresponds to a batch-culture
experiment where microbes are grown in a flask with a concentration of re-
sources that are determined at the beginning of the experiment [254, 255].
Eventually, when all the resources are used up, the system reaches the cen-
tral manifold where the species populations do not change and both of them
coexist. This state is neither stable not unstable, i.e., any small perturbation
of species population will result in no deviation from the perturbed value, as
long as the resource remains zero. Any non zero δf immediately disrupts this
state making it unstable, with the new steady state having only one surviving
species.

A frequently used laboratory technique to enable long experiments is that
of serial transfers (also called serial dilutions). At the end of each batch-culture
cycle, a small fraction of the volume in the flask is inoculated in another flask
with a certain amount of resources, where the new flask now corresponds to a
fresh batch-culture cycle. This technique is both cheap and easy to implement.
By repeating this cycle multiple times, the regime of experimental timescales
can be extended to much beyond a single batch-culture experiment without
needing technically sensitive setups such as a chemostat. Such setups have
been used to run long evolution experiments, the most notable of which has
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spanned thirty five years and is still ongoing [256].
From the perspective of the dynamics of the system, serial transfer corre-

sponds to a forced perturbation once the system reaches the central manifold.
This system is going to then reach a new point on the central manifold due to
different initial conditions, especially in the resource concentration. Eventually,
this cycle will reach some form of steady state where the perturbation from the
central manifold will reach the same point at the end of each cycle. This steady
state is not in equilibrium, since there is a periodic and predictable fluctuations.
This predictable fluctuation can be represented in the CR equations. In a series
of batch-culture experiments, if we denote the set of times when the transfers
occur by (τ1, τ2 · · · τN ), then, the dynamical equations are

ṅi = ni
∑

µ

gi,µ(rµ)−
N
∑

k=1

δ(t− τk)∆nini

ṙµ =

N
∑

k=1

δ(t− τk)∆rµ −
∑

i

gi,µ(rµ)

yi,µ
ni (5.6)

where δ(x−x0) is theDirac delta function, and∆ni and∆rµ are the spiking death
rates and resource influx rates happening at times of transfer. Note that the
functional formsof supply of resource anddeathof species is different fromthat
of the chemostat. In a chemostat, the continuous dilutions provide a simpler
way towrite the terms arising from the flow. However, dilutions occur discretely
in time and there is not influx of resources of death of species due to outflow in
the times between dilutions. Hence, representation of the dilution events has
to be done through Dirac delta functions that peak at times of dilutions.

The delta functions in the equations present difficulties in attempts to ob-
tain a solution. Alternatively, eachbatch-culture canbe analysed individually by
using a fraction of the steady state population at the end of one batch-culture
as the initial conditions for the next, thereby mirroring the experimental tech-
nique.

To do this, we need to assume a form of the growth function gi,µ(rµ). A com-
mon assumption for this function is that of Monod form, with the idea that
growth rate saturates at a certain concentration level of the resource, beyond
which an increase in resource concentration has no noticeable effect on the
growth of microbes. Such a function then takes the form

gi,µ(rµ) = αi,µ
rµ

Ki,µ + rµ
(5.7)

where αi,µ is the maximal growth rate and Ki,µ is the half-saturation constant.
Figure 5.1 shows an example growth curve for different concentrations of a
carbon resource, with highlighted α and K .

For two species and one resource with Monod growth dynamics, the equa-
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Figure 5.1: Example of Monod growth function with α representing the maxi-
mal growth rate andK showing the half-saturation constant, where the growth
rate is half the maximal rate

tions in a batch culture are

ṅ1 = n1α1
r

K1 + r

ṅ2 = n2α2
r

K2 + r
(5.8)

ṙ = −n1
α1

y1

r

K1 + r
− n2

α2

y2

r

K2 + r

where the Greek index has been suppressed since there is only one resource.
Since we are considering the equations in a single batch and not across mul-
tiple dilutions, there are no terms representing the infux of resources of out-
flux of species. If at the beginning of the culture, if r(0) resource is supplied,
the concentration monotonically decreases. Under the assumption that the
resource has been almost completely used up, i.e., r(t) ≈ 0, then, the begin-
ning of the new batch starts again with the resource concentration r(0) and
the initial conditions of the populations as fractions of previous populations, i.e.,
ni+1
1/2 (0) = ni1/2(∞)/D, where the superscript refers to the batch-culture number

/ transfer.
Checking for coexistence of two species can also be done by checking their

mutual invasion probabilities, initially done in [257]. If both species can invade
each other, then, the only feasible solution is the coexistence of two species.
Assuming that only species 1 is present, the serial transfer dynamics give the
steady state solution of the populations based on the dilution factor D, since
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the quantity n1 + y1r is always conserved.
Hence, for a single species and one resource,

ni1(t) + y1r
i(t) = const

=⇒ n∗1/D + y1r0 = n∗

=⇒ n∗ =
D

D − 1
y1r0 (5.9)

where n∗ is the steady state transfer population of species 1.
Once species 1 has reached its steady state value, if a small population of

species 2 is introduced at the beginning of the transfer, then, during onebatch-
culture, the resource usagewill be dominated by species 1. Hence, Eq (5.8) can
be approximatedby ignoring thedepletion of resourcedue to species 2. Hence,
the conserved quantity now is given by n1(t) + n2(t) + y1r(t). In such a case, the
invasion probability of species 2 is given by the ratio of the final population to
the initial population, which if greater than unity, implies growth and hence,
invasion. This quantity is given by [257, 258]

w2,1 =
1

D

[

(

1 +
r0
K2

)K1−K2

DK2+
r0D
D−1

]

α2/α1

K2+
r0D
D−1

(5.10)

and a similar expression given by w1,2 for invasion of species 1 in a dominant
population of species 2. When both w1,2 and w2,1 are greater than unity, coex-
istence is ensured. For a range of parameters [258], these conditions are satis-
fied, especially when there is a trade-off between the maximal growth rate, α
and the half-saturation constant, K , i.e., a high maximal growth rate implies a
high half-saturation constant [259]. Intuitively, the coexistence can be under-
stood in terms of temporal niches. When the new batch-culture is begun, one
of the species grows faster than the other. But eventually, the slow grower with
a higher maximal growth rate takes over towards the end of the transfer cycle.
Due to repeating this procedure, we create temporal niches in the resource
consumption where different species are favoured at different times.

In practice, this schemepresents problems, primarily being, one cannotwait
infinite time before performing another transfer. Frequently, the growth rate
parameters are such that timescales of resource usage are fairly fast, especially
at lower initial resource concentrations. In such cases, the question is, where
does this time enter in Eq (5.10).

5.3.1 Scaling of parameters

If we assume that dilution is happening at an interval of ∆τ which is constant,
then, we can derive a heuristic relation between the times between transfers,
the dilution factor and the initial resource concentration after transfer.
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First, let us consider the scenario in which there are no species. Then, trans-
fers should not change the concentration, especially when compared to the
chemostat. Let us assume that the concentration of resource in the new batch
culture is r0. Then, a fraction 1/D is carried over from the previous batch and
a fraction (1 − 1/D) comes from the new batch. Consequently, the evolution
of resource concentrations can be written in the serial transfer sysem and the
chemostat as

ṙST =

(

r0

(

1− 1

D

)

+
r∗

D

)

∑

k

δ(t− τk) (5.11)

ṙCH = δf (s− rCH) (5.12)

where rST and rCH are the serial transfer and chemostat resources, δf is the
chemostat flow rate, r∗ is the concentration of resource just before dilution, and
s is the chemostat supply concentration. Note that since there are no species
using the resources, the concentration in both systems have to remain con-
stant. By comparing the concentrations, we obtain the relation that the re-
source concentration in the new flask in terms of the supply concentration of
the chemostat:

ri+1(0) = s

(

1− 1

D

)

+
ri(∆τ)

D
(5.13)

where i refers to the serial transfer cycle number.
Similarly, if we assume that a species exists in the transfer, then, the dynam-

ics of the logarithm of the population is given by

d log(nST )

dt
= g(r)−∆n

∑

k

δ(t− τk) (5.14)

d log(nCH)

dt
= g(r)− δf (5.15)

We can assume that in the chemostat, resource dynamics are at a timescale
such that g(r) is effectively constant, i.e., the resource concentration quickly
changes to the instantaneous steady state value based on the usage by the
species. This argument is somewhat similar to analysing the species growth
and death keeping the resource concentration fixed. Then, in a given time in-
terval [0, T ], the total change in log-abundance of the species is given by

log

(

nCH(T )

nCH(0)

)

= (g(r∗)− δt)T (5.16)

where r∗ is the quasi-stationary value of the resource. A similar procedure can-
not be done in the serial transfer equation since the resources also changewith
every dilution, and hence, cannot be considered to be at stationarity. Instead, if
we consider the growth in one single batch-culture between [0,∆τ ], then, the
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total growth can be given by

log

(

nST (∆τ)

nST (0)

)

= g(r∗)∆τ (5.17)

Here, g(r∗) is an approximation, since by the end of the batch culture, all re-
sources are used up. But if the initial resource concentration is well beyond the
half-saturation constant, then, most of the growth occurs with a constant rate,
given by themaximum growth rate. At the end of the batch-culture, when the
species are transferred to a new flask, then, the subsequent population is given
by nST (∆τ)/D. By equating the chemostat concentration at T = ∆τ to the initial
condition of the new batch-culture, we obtain that

D = e∆τδf (5.18)

which connects the dilution rate in the chemostat to the dilution factor in se-
rial transfers, depending on the time between dilutions. It indicates that the
longer the dilution times are, the larger the dilution factorsmust be, in order to
conserve the total growth when compared to a chemostat.

This sort of scaling is important for comparison, especially when we ob-
serve that comeptetive exclusion principle can be violated. Since the CEPholds
strictly true in the chemostat system, it is necessary to have a single system of
reference to compare across dilution times, which means that all three factors
of serial transfer are interlinked. Previous studies have found that varying di-
lution factors in a community of multiple species can lead to different effects,
based on the dilution factor, including changing of dominant species andmul-
tiple stable states [260]. Crucially, the dilution times was kept constant, which
meant that the chemostats being referred to were different for each of the se-
rial transfer systems, potentially contributing to the different results.

This is especially highlighted in Fig 5.2 where the dilution factors and the
dilution times are varied independently in a simulated two species, single re-
source consumer resource system and the equivalent chemostat correspond-
ing to that diluton rate and dilution factor is displayed. Each species grows
according to the Monod growth curve, with a tradeoff between the maximal
growth rate and the half-saturation constant, i,e, a higher α of a species corre-
sponds to a higher K . Two key results obeserved here are that serial dilution
systems show coexistence of two species consistently at different sets of di-
lution factors and times, but also, the corresponding chemostat changes the
dominant species. This is a simple two species system with only one carbon
source whose results will further complicate on addition of more species.

When the effective dilution rate in the chemostat and the supply concen-
tration for different sets of dilution times and dilution factors are compared in
Fig 5.3a and Fig 5.3b, it becomes apparent that the referenced chemostats
have different parameters, and hence, is not a surprise that there are differ-
ent species compositions for different parameters. Specifically, in the three di-
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Figure5.2: Consequences of serial transferwithdifferent dilution factors anddi-
lution times without scaling them accordingly. Top left inset shows the Monod
growth curves for two species on one resource. Plots along the orange line
indicates changing dilution factors while those along the green line indicates
changing dilution times. Each serial transfer system is accompanied with its
equivalent chemostat that would correspond to the value of the particular pa-
rameters of transfer. Each chemostat and serial transfer time series is plotted
with the proportion of species 1 (red) and 2 (blue) with the total population
marked at the top.

mensional phase space of the serial transfer parameters, referencing a single
chemostat draws a parametric curve, that changes with the dilution rate as
seen in Fig 5.3c. Ignoring this parametric curve and manipulating the param-
eters individually draws perpendicular lines in this phase space.

When these scaling factors are incorporated, we can look at the emergence
of coexistence solely due to themechanism of serial transfer, and not changing
compositions due to changing chemostats. In Fig 5.4, we see that at certain
intermediate values of dilution times, there is a broad region of coexistence.
The region of coexistence shrinks with increasing resource supply. At a certain
concentration of resource supply, this becomes a region of zero measure, i.e., a
single point on the y-axiswhich corresponds to the case in the chemostatwhen
the growth rates of the two species intersect which is in line with the idea that
on the y-axis, the serial transfer system is effectively a chemostat and hence,
cannot allow coexistence apart from this point of zero measure.

In an experimental system, we cannot control against crossfeeding, amech-
anismwherein a species secretes a secondary carbon sourcedue to themetabolism
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Figure 5.3: a) Equivalent chemostat dilution rate and b) resource supply con-
centration from each of the serial transfer system in Fig 5.2. Orange lines in-
dicate transfer systems where dilution time was fixed and green line indicates
fixed dilution factor. Setup index refers to the transfer system number in Fig
5.2. c) Phase plot of all three serial transfer parameters with parametric curves
indicating referencing the same chemostat, with different chemostat dilution
rates. Orange and green lines provide comparison to constant dilution times
and constant dilution factors case presented in a) and c).

of a primary resource. Such crossfeeding mechanisms break the CEP if only
the primary sources are considered. Nevertheless, on designing an in-house
automated setup that can perform serial transfers at any chosen arbitrary di-
lution times and factors, we observed that population curves of different dilu-
tion times collapse onto a single curve. Figure 5.5 shows population time series
data for two species of bacteria, Agrobacterium tumefaciens andComamonas

testosteroni grown in amediumcomprising of Fumaric Acid at a concentration
of 8 mM. The cultures were subject to dilution times ranging from 4 hours to
24 hours which was done by the specially designed automated transfer setup.
To compute the populations, for each dilution time setup, at intervals of 24
hours, 20 µL of the sample was diluted and plated onto plates containing spe-
cific antibiotics for each species. The number of colonies weremeasured after a
period of 48 hours in an incubator at 37 ◦C, giving an indicator of total popula-
tion through colony forming units per mL (CFU/mL). Even though the dilution
times are significantly different, the population time series show remarkable
similarities for both species, indicating that the scaling arguments holds true
and is necessary to compare across different transfer parameters.

While Fig 5.5 only dealswith two species, when communities of larger num-
ber of species are considered, more interesting effects start to emerge. A long
standing debate in microbial ecology has been whether community assembly
is predictive, i.e., whether information fromsmaller communities canbeused to
predict compositions of larger communities. Instances have been foundwhere
this is both true and false [246, 261]. The cheapestway todo these experiments
is to use a batch-culture set-up, which automatically brings with it the possible
additional effects of serial transfer mechanism. In Fig 5.6 we show that when
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Figure 5.4: Theoretical prediction of oexistence of two species on one resource
with correct scaling of serial transfer parameters. Prediction was made using
invasion criteria analysis given by Eq (5.10). Both the species have the same
Monod growth curves as in Fig 5.2.

three species are considered on a single carbon source, using pairwise predic-
tive rules fails to account for emergent coexistence between two species when
compared to a simulated system. The presence of one of the species has a
strong competetive effect on another specieswhich allows the third one to find
a temporal niche thanks to constant serial transfers. This is effectively an emer-
gent property that cannot be predicted solely from pairwise invasion criteria.
Additionally, incorporating stochasticity in serial transfer mechanism seems to
indicate that extinction of species is delayed significantly, especially close to
the coexistence boundary, potentially due to the stochasticity enabling some
temporal niches of coexistence, allowing for effectively longer survival times.

5.4 Conclusion

Effect of environmental variability in ecological setting has a long theoretical
history coming from macro-ecology. But in such examples, manipulations of
considered systems are neither feasible nor recommended due to their im-
pact on local climate and possible long term environmental repercussions. In-
deed, perturbation of large scale macro-ecological systems has to be done in
very controlled manner such that there is no spillover effects, thereby severely
limiting our ability to corroborate theoretical studies. However, microbial sys-
tems readily offer the solution to this conundrum. Not only are they amenable
to a variety of manipulations, but, a particular kind of forced fluctuation is a
commonplace experimental technique used to prolong the time-scales of the
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Figure 5.5: Experimental verification of scaling of parameters in a systemof two
species grown on one carbon source (Fumaric Acid) at different dilution times.
Different colours represent different dilution times. Each plotted point refers to
a data measurement at 24h intervals of colony forming units (CFU) per mL of
culture.

study. Before proceeding to test various theories of environmental switching,
understanding the role of this forced fluctuation and its implications is an im-
portant endeavour.

In this context, analysing one of the basic predictions of theoretical ecol-
ogy is paramount. This is true especially in light of the multitude of studies on
community assembly and coexistence outcomes being done currently. These
studies not only deepen our understanding of biological systems atmicro scale
but also present potential applications in areas of bioreactors. But such appli-
cations necessitate a functioning community of microbes. Additionally, cheap
and ready-to-scale technologies quite likely mean that batch-culture methods
will be used for any potential applications. Ultimately, this leads to a require-
ment to understand the effect of serial transfer on community existence and
functions. Studies into this have started to pick up pace in the last decade
[262, 263, 264, 265]. In the presented analysis, we show that the parameters
used in current literature are not independent, andnot counting for this depen-
dence could conflate results from differentmechanisms. Furthermore, with an
initial experimental validation of the scaling hypothesis and computational in-
sights into fluctuation driven emergent effects in community assembly, there
appears to be a lot of potential for future work in this area.

The serial transfer mechanism, at its heart, is a deterministic and periodic
fluctuation. But tools from statistical physics can easily be incorporated, with
real world implications. The mechanism of serial transfer, whether performed
manually or automated has an intrinsic and systematic error associated with
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Figure 5.6: Emergent community assembly in three species system with one
resource. Theoretical predictionon the left ismade frompairwise invasion crite-
ria analysis while phase plot on the right is from simulation of the system. Blue
region indicates coexistence of species 1 and 3 which is absent in the pairwise
analysis.

it. Such errors result in a noisy dilution factor, which in a continuous flow sys-
tem results in a chemostat with a noisy dilution rate. This noisy dilution factor
appears to significantly delay extinction in certain regimes. Chemostats with
noisy dilution rates correspond to a environmental stochasticity that is usually
seen in ecological SDEs [266, 267, 268]. Consequently, tools from statistical
physics become applicable to deal with this inherent noise in the system, and
potentially offer ways to control system composition or functional outcome by
controlling the source of the stochasticity.

Ultimately, even though we are looking at scales where the demographic
fluctuations arising from population numbers is significantly suppressed due
to large populations, variability in the environment bring the issue back into
the spotlight of statistical physics. This presents an application where though
the inherent noise is not thermal, the source of the stochasticity is known, and
hence, can be controlled. Forced fluctuations arising from serial transfers offers
us the same possibilities of studying out-of-equilibriumbehaviour as processes
with thermal noise in a non-equilibrium regime, albeit in a different kind of
system altogether with its own set of interesting questions and paradoxes to
answer.
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CONCLUSION AND DISCUSSION

In this thesis, I have presented a culmination of my research into fluctuations
at different scales and its implications using tools from statistical physics and
demonstrating applications in theoretical and experimental biology.

At the starting point of this exploration is the concept of entropy production,
a fundamental marker of non-equilibrium conditions. By developing a graph-
ical method to compute exact moments of entropy production for discrete-
state Markovian systems, this work gives a window of exploration of the poten-
tial effects of non-Gaussian behaviour of environmental entropy production.
This method’s application to the run-and-tumblemodel demonstrates curious
scaling laws present in the system. This non-equilibrium system, driven pri-
marily by the heat bath which switches the average direction of motion, still
results in a non-equilibrium steady state. Such a steady state captures fluctu-
ations in various currents whose average is non zero. However, an extension to
equilibrium systems can also occur through a non-equilibrium regime where
there exists no steady state, or equivalently, the steady state is trivial and has
no fluctuations.

Such steady states, occurring in the presence of absorbing states, present
a conundrum for powerful statistical mechanics theorem connecting equilib-
rium fluctuations and out-of-equilibrium dissipations. Through the use of con-
ditioning of survived trajectories, we obtained a generalization of the classical
fluctuation-dissipation theorem that applies to a large class of previously little-
explored systems. Demonstration of this generalization in various standard sta-
tistical mechanics examples and biochemically relevant examples shows both
its validity andapplicability, includingextending the standardFDTs to trajectory-
dependent quantities which was previously not feasible.

Moving one step above, the work on metapopulations considers the ques-
tion of absorbing boundary at a larger spatial scale. Extinction of multiple local
populations residingonanetworkof habitats has important ecological implica-
tions. Classicalmodels to analyse such questions about persistence include ob-
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servational and phenomenological assumptions. Generalizing this to obtain a
metapopulation theory valid for heterogeneous landscape structures through
the use of common stochastic processes tools extends our ability to investigate
questions about species’ persistence in more complex network structures and
include effects of demographic stochasticity and population fluctuations from
a first principles approach.

In a shift to a smaller scale of microbial populations where demographic
fluctuations areweak due to the large population size involved, we investigated
the idea of environmental fluctuations, through themechanism of serial trans-
fers, which have an interplay with the dynamics. Such environmental fluctu-
ations brings about a constant driving that keeps the system out of equilib-
rium, thereby bringing about new behaviours in terms of coexistence of multi-
ple species. Such forced fluctuations also bring about emergent effects in the
assembly of systemconstituents, i.e., in the community composition. Goingbe-
yond theoretical analyses, we also experimentally investigated scaling relations
between parameters necessary in such fluctuating systems to observe consis-
tent comparison across systems.

Throughout the thesis, a common thread is the interplay between deter-
ministic models and the stochastic nature of biological systems. Each chap-
ter builds upon the last, through a narrative that highlights the importance of
considering both macroscopic patterns and microscopic details, equilibrium
behaviors, and far-from-equilibrium dynamics. In line with the philosophy pre-
sented in the Introduction, most of the chapters focus on the concept of gen-
eralising a given problem or method to be applicable to a larger class of sys-
tems. Though motivations and applications occur in certain examples, the re-
sults eventually demonstrate applicability to a wide variety of systems, being in
line with both a holistic perspective and a theoretical physics demand.

Each result by itself provides multiple threads to unravel for future studies.
In the case of entropy fluctuations, the provided method is not just general
across systems for application to compute entropy production moments, but
similar methods of jump correlations can be used to calculate themoments of
any current in the system that depends on changing of states. Both cumulants
of entropy production and arbitrary currents feature significantly on Thermo-
dynamic Uncertainity Relations, giving a window into possibility of extending
these very general relations to include higher cumulants beyond themean and
the variance. The ability to compute exactly the third cumulant and the con-
vergence to a continuous state system provides a possibility of classifying the
effect of non-Gaussian current behaviour in terms of the non-equilibriumness
of the system.

In the case of response theory in absorbing systems, the validity of gener-
alized fluctuation-dissipation theorem lends itself to applicability in various ex-
amples that show interesting behaviour, such as systems with stochastic am-
plification. Themethod of conditioning to survived trajectories raises important
and fundamental statistical physics questions on what is the relation between
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the conditioning process and actual observation in an experimental setting,
bringing us to compare the provided conditioning against Doob’s h-transform
which is commonly used in literature [269]. Implications of the additional term
of generalized FDT and its connection to Kullback-Leibler divergence of the
quasi-stationary distribution against the Doob’s conditioned stationary distri-
bution remains to be investigated to understand a better picture of the effects
of absorbing boundary on the dynamics.

Moving to a bottom up approach to metapopulation models provides not
only the framework to incorporatediverse life-cycles andbehaviours in complex
landscapes, but also gives the opportunity to analyse the effects of landscape
close to extinctionwhere demographic stochasticity is crucial [270]. Extending
the proposed framework from single to multiple species potentially has coex-
istence effects that depend on the translational invariance of the underlying
space. Heterogeneous network habitats introduce trade-offs in species disper-
sal which impact its survivability potentially leading to landscape-based opti-
mality and adaptation. Another potential thread is that of classical metapop-
ulation models to riverine populations which live on a network with dendritic
connectivity following flow distance rather than geodesic distance.

Serial transfers which induce forced fluctuations though periodic are not
constant in real experimental settings. The second order stochasticity further
intertwines with already present environmental fluctuations, potentially lead-
ing to different coexistence outcomes. Community function potentially adapts
to changing environmental conditions, with evidences being seen in adapta-
tions of growth rate to transfer frequency [271]. There exists a large gap in how
to optimize community function using serial transfers. Furthermore, similar
ideas can be extended to chemostats with noisy dilution rates which drives the
system out of equilibrium through stochasticity acting in amultiplicativeman-
ner.

While each chapter delves into distinct scales - from the microscale of in-
dividual particles in non-equilibrium steady states (NESS) to the macroscale of
metapopulations and microbial communities - they are unified by the under-
lying theme of fluctuations, whether arising intrinsically or driven by the envi-
ronment. The use of common analytical tools across these examples not only
merely address specific questions at each scale but also builds connections be-
tween them.

The analyses of higher-order cumulants of currents in a NESS can be used
to distinguish the nature of disequilibriumbrought about by absorbing bound-
aries. Such insights can then be extended to understand the response of sys-
tems close to extinction, utilizing the generalized fluctuation-dissipation theo-
rem (FDT). This approach is not restricted tomicroscalephenomena; it is equally
applicable to metapopulations, offering a valuable perspective on the persis-
tence and extinction dynamics of interacting local populations. Moreover, the
development of first principles metapopulation models, integrating detailed
landscape information, can be leveraged to enhance our understanding of mi-
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crobial ecology. By applying these models to microbial communities, one can
begin to account for effect of spatial heterogeneity of natural structures on
species coexistence and community function. Such interconnections are only
possible due to the interwoven thread of common tools and the generality of
obtained results, owing testament to the strength of statistical mechanics to
bridge various spatiotemporal scales and diverse fields.

The introduction to this thesis strongly focussed on holism and the philos-
ophy of anti-reductionist approaches. Arguments were made through the his-
toric lens of statistical physics, which althoughwent against reductionism, was
still rooted in traditional physics domain. A natural extension of this philoso-
phy comes through in complex systems which strongly promoted interdisci-
plinary areas of research. The presented topics cover both fundamental sta-
tistical physics questions with connections to traditional physics and also in-
clude biological applications, both in a theoretical and an experimental setting,
bringing to it the quantification and rigour of theoretical analyses. Hopefully,
through these chapters, this thesis has successfully highlighted the possibili-
ties and the necessities of a new and fast growing lens of research ś one that
seeks not to dissect the natural world into its finest details but to understand
andexplain thewondrous variety of behaviours observed across different scales
of life.
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APPENDICES

7.1 Appendix A

Third order jump correlations

In order to compute the third cumulant, we require all the third order corre-
lations for the number of jumps between states. In this section, following the
graphical method, we show some of the terms that arise in this computation.
From Fig. 2.3, we choose three orderings of different kinds, a) k > k′ > k′′ where
all three k-s are different, b) k > k′ = k′′ where only two of the k-s are different,
and c) k = k′ = k′′ where all three k-s are equal.

For k > k′ > k′′, the contribution to third order correlation is

⟨nmℓnm′ℓ′nm′′,ℓ′′⟩ΓMC
=
M−1
∑

k=0

k
∑

k′=0

k′
∑

k′′=0

Amℓ

× P(ℓ, k∆t|m′, (k′ + 1)∆t) Am′ℓ′

× P(ℓ′, k′∆t|m′′, (k′′ + 1)∆t)

×Am′′ℓ′′ P (ℓ
′′, k′′∆t). (7.1)

Similarly for k > k′ = k′′,

⟨nmℓnm′ℓ′nm′′,ℓ′′⟩ΓMC
=
M−1
∑

k=0

k
∑

k′=0

Amℓ

× P(ℓ, k∆t|m′, (k′ + 1)∆t) δm′,m′′

× δℓ′,ℓ′′ Am′ℓ′ P (ℓ
′, k′∆t), (7.2)
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and for k = k′ = k′′,

⟨nmℓnm′ℓ′nm′′,ℓ′′⟩ΓMC
=

M−1
∑

k=0

δm,m′ δℓ,ℓ′ δm′,m′′ δℓ′,ℓ′′

×Amℓ P (ℓ, k∆t)

=⟨nm,ℓ⟩ΓMC
δm,m′ δℓ,ℓ′ δm′,m′′ δℓ′,ℓ′′ . (7.3)

The contributions from k < k′ = k′′, and k > k′ = k′′ can be written in terms of
the second order jump correlations and the first moment of jumps, i.e.,

⟨nmℓnm′ℓ′nm′′,ℓ′′⟩ΓMC
= ⟨nmℓnm′ℓ′⟩ΓMC

δm′,m′′ δℓ′,ℓ′′

− ⟨nm,ℓ⟩ΓMC
δm′,m′′ δℓ′,ℓ′′

× δm′,m′′ δℓ′,ℓ′′ (7.4)

Conversely, starting from a stationary state, P st, and taking the limit ∆t → 0 to
recover the master equation formalism, the term arising from Eq. (7.1) gives
the following integral:

⟨nmℓnm′ℓ′nm′′,ℓ′′⟩Γ =Wml Wm′ℓ′ Wm′′ℓ′′ P
st(ℓ′′)

×
∫ T

0
dt

∫ t

0
dt′ P(ℓ, t|m′, t′)

×
∫ t′

0
dt′′P(ℓ′, t′|m′′, t′′) (7.5)

Using the eigenvector expansion for the transition probability P(i, t|i0, t0) (see
Eq. (2.21)), the integrals on the right-hand sideof Eq. (7.5) give Tj1,j2 , i.e, Eq. (2.24).
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7.2 Appendix B

Perron-Frobenius proof of eigenvalue hierarchy

Consider an infinitesimal increment in time ϵ. Then, the Master equation can
be discretized to the Markov chain

P (t+ ϵ) = P (t) + ϵH P (t) (7.6)

Consequently, define T ≡ (I+ ϵH)where I is the identity matrix. We are con-
sidering an irreducible system. Hence, T is a non negative, irreducible matrix
of size N ×N where N is the number of states. The eigenvalues of T are simply
αi = 1 − ϵλi. We consider the submatrix of T corresponding to the interior. Let
T ∗ be amatrix of size (N−1)×(N−1) accounting for the interior states. Sincewe
are in an irreducible system, there exists a path from one state to another, and
hence, there always exists a kxy > 0 for which the (Wxy)

kxy is non zero. There are
(N−1)2 such positive numbers. Choosing the largest of these numbers ensures
that T ∗ is primitive, i.e, (T ∗)klargest > 0, if ϵ is sufficiently small (see below).

The characteristic function of the eigenvalues of T ∗ is the characteristic func-
tion of T without the (α − 1) factor coming from the first eigenvalue. Hence,
finding the eigenvalues of T ∗ is equivalent to finding the eigenvalues of T . Note
that T ∗xy ≥ 0 when x ̸= y and T ∗xx = 1 − ϵ

∑

zWzx which is bounded allowing
us to choose sufficiently small ϵ such that T ∗xy ≥ 0 ∀x, y. Thus, we can apply
the PerronśFrobenius theorem [272] on the matrix T ∗. Then, we have a lead-
ing real eigenvalue α1 > 0. For any other eigenvalue α2, then, α1 > |α2|. Since
T = I + ϵH , and from the eigenvalue definition in (3.34), the eigenvalues are
related as α = 1− ϵλ. Then, with Re(z) and Im(z) representing the real and imag-
inary parts of z,

α1 > |α2|
=⇒ (1− ϵλ1)

2 > |1− ϵRe(λ2)− iϵ Im(λ2)|2

=⇒ ϵ2λ21 − 2ϵλ1 > ϵ2(Re(λ2)
2 + Im(λ2)

2)− 2ϵRe(λ2) (7.7)

In the limit ϵ→ 0, which is the correct limit to get the Master equation back, we
have Re(λ2) > λ1.

The Perron-Frobenius Theorem also guarantees that the left and the right
eigenvector of T ∗ corresponding to the eigenvalue α1 (equivalently, λ1) are non-
degenerate andhave components strictly positive. Ifφ1 andψ1 are the right and
left eigenvectors of H corresponding to −λ1, then, φ1x, ψ

1
x > 0 ∀x ̸= 0. Hence, we

can choose the normalization such that
∑

x ̸=0 φ1x = 1. Since 0 =
∑

x ψ
0
xφ1x =

∑

x φ1x =⇒ φ10 = −1. Then, if at least one of theW0y is positive,

λ1 = −λ1φ10 =
∑

y

H0y φ1y =
∑

y ̸=0

W0y φ1y > 0 (7.8)
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