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ABSTRACT
Digital reconstruction through Building Information Models
(BIM) is a valuable methodology for documenting and ana-
lyzing existing buildings. Its pipeline starts with geometric
acquisition. (e.g., via photogrammetry or laser scanning) for
accurate point cloud collection. However, the acquired data
are noisy and unstructured, and the creation of a semantically-
meaningful BIM representation requires a huge computational
effort, as well as expensive and time-consuming human annota-
tions. In this paper, we propose a fully automated scan-to-BIM
pipeline. The approach relies on: (i) our dataset (HePIC), ac-
quired from two large buildings and annotated at a point-wise
semantic level based on existent BIM models; (ii) a novel ad
hoc deep network (BIM-Net++) for semantic segmentation,
whose output is then processed to extract instance informa-
tion necessary to recreate BIM objects; (iii) novel model pre-
training and class re-weighting to eliminate the need for a large
amount of labeled data and human intervention.

Index Terms— Point Clouds, BIM, Semantic Instance Seg-
mentation, Scan-to-BIM, Few Shot Learning.

1. INTRODUCTION

Digital reconstruction of existing buildings through Building
Information Models (BIMs) is becoming a popular method
to document and analyze heritage and existing buildings us-
ing reality acquisition techniques. The inherent nature and
purposes of BIM approaches require the combination of fast
and accurate modeling of the 3D scene (by means of point
cloud modeling with photogrammetry and/or laser scanning),
together with some data organization algorithms. Indeed, the
acquired 3D points lack an explicit structure, and labeling
process is hardly automated and time-consuming.
Scan-to-BIM is the specific process of documenting existing
buildings by recognizing objects present in the scene, model-
ing their geometry, and defining their mutual relationships [1].
Scan-to-BIM is concluded by typical multi-faceted class-type-
entity, spatial, and functional BIM organization; this setting
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works as a base for any building restoration design. For this
task, instance-level segmentation and geometry reconstruction
represent most of the process complexity. Existing methods
have been developed to tackle this issue using machine learn-
ing techniques. A first method [2] proposes to use Region
Growing algorithms on voxelized input clouds for surface ex-
traction. Points are classified as surfaces belonging to 3 classes,
i.e., walls, ceilings, and floors. Surfaces are further analyzed
in order to identify the openings present. The output of the
algorithm is a model based on semantically classified surfaces,
which is considered to be the basis for subsequent work gener-
ating a volumetric model. In [3], authors automatically identify
elements with Random Forests starting from a series of planar
primitives obtained from clouds pre-segmentation, and apply
class-specific reconstruction algorithms to create BIM objects.
In [4] a voxelization-based methodology is developed with
skeleton extraction algorithms to derive a 3D graph of the
building. In [5] a semi-automatic approach is proposed, using
Random Forests for segmentation and visual programming
for geometry generation. Although most of these methods
show good results in Scan-to-BIM, they are usually derived
from the combination of multiple separate modules, manually
tuned and combined. Current approaches are still far from
a fully-automated pipeline that requires reasonable computa-
tional complexity and reduces the need for human intervention.
In this paper, we propose BIM-Net, a deep learning architec-
ture inserted in a fully automated scan-to-BIM pipeline that
accurately recognizes objects inside the scanned point clouds
and labels samples through semantic segmentation.
Semantic Segmentation is the task of providing dense predic-
tions of input data x ∈ R3, assigning labels ŷ to each point ac-
cording to a predefined set of classes [6]. Popular approaches
are based on input voxelization [7, 8], raw point cloud pro-
cessing [9, 10] or both [11, 7], and recent techniques have also
resort to transformers [12]. The task has been successfully
applied to architectural data, despite being more popular in au-
tonomous driving [12, 13, 14, 15]. Examples of architectural
semantic segmentation benchmarks and labeled architectural
datasets exist but are limited in the literature. S3DIS [16] is
one of the largest examples, composed of 271 everyday in-
door scenes labeled with 13 classes; Arch [17] is a dataset of
heritage buildings, composed of 17 scenes annotated with 9
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Fig. 1: Representation of the whole Scan-to-BIM pipeline.

Fig. 2: Church floor plan. Green boxes denote sampled rooms.

classes and acquired with photogrammetry. This scarcity of
benchmarks motivates our choice to propose a novel Heritage
Point cloud Instance Collection (HePIC), annotated from two
large-scale buildings at a point-wise semantic and instance
level. Moreover, the strong imbalance of point cloud datasets
biases segmentation network towards frequent samples [18]:
small objects like stairs and doors have very few points with
respect to classes like walls and are hardly recognized by stan-
dard architectures. For this reason, previous Scan-to-BIM
approaches limited BIM reconstruction to the most frequent
classes, while our approach reconstructs all the 8 classes in the
dataset. Indeed, our lightweight semantic segmentation archi-
tecture (BIM-Net++) outperforms heavy networks in dealing
with few training data, i.e., few-shot learning.
Few-shot semantic segmentation has been tackled in several
ways. In [19] an attention-aware mechanism is developed
to build multi-prototypes for class aggregation. In [6, 20],
regularization strategies and weighting schemes are used to
obtain balanced per-class results. In this paper, we propose
ad hoc model pre-training and class re-weighting schemes
to eliminate the need for a large amount of labeled data and
human intervention, upgrading our BIM-Net to BIM-Net++.

To summarize our contribution, we propose: (i) HePIC, a
dataset with semantic and instance annotations; (ii) BIM-Net,
a novel ad hoc deep network for semantic segmentation to
extract instances information and recreate BIM objects; (iii)
BIM-Net++, an improved version of BIM-Net equipped with
novel model pre-training and class re-weighting schemes.

2. METHODOLOGY

Our Scan-to-BIM pipeline (Fig. 1) starts with point cloud ac-
quisition and consists of three main components: (1) BIM-Net
to recognize the semantics of architectural elements present
in each scene, (2) a module for recognizing single instances
of each class, and (3) a module for reconstructing the geome-
try and the relationships between elements. Note that in this
process, each class needs specific algorithms for extracting

Table 1: Basic statistics about HePIC dataset.

# items total # points
Class Church Castle Tot Church Castle Tot

unassigned 23 66 89 216132 296201 512333
beams 147 1809 1956 6393 415069 421462
columns 18 238 256 18951 74588 93539
doors 27 265 292 13962 133257 147219
floors 83 314 397 146516 745314 891830
roofs 218 535 753 564371 632383 1196754
stairs 16 104 120 2394 77089 79483
walls 417 1141 1558 1229115 4229447 5458562
windows 189 81 270 62056 46512 108568

Tot 1250 4441 5691 2299983 6609767 8909750

different properties necessary for BIM object creation (e.g.,
location lines for walls or location points for doors). Different
geometric properties rule object hierarchies and relationships
in different classes. Similarly, the class determines the selec-
tion of the most appropriate instance segmentation algorithm.
From this perspective, an accurate semantic segmentation is
essential to ensure good results in reconstruction, especially in
presence of few labeled data. In the following paragraphs, we
describe each component of the pipeline separately.
Dataset Acquisition. Our dataset was acquired via terrestrial
laser scanning, supported by photogrammetry for roofing sys-
tems. Internal and external acquisitions were performed on
two large buildings: a Castle and a Church1. Point labeling
for dataset creation was performed using BIM models man-
ually generated. Castle and Church point clouds were split
into K = 91 (68 + 23) rooms, each composed of 100k points
with both semantic and instance labels, automatically assigned
by comparing the point cloud with the BIM model obtained
from it (Fig. 2). Eight classes were considered: walls, floors,
roofs, doors, windows, beams, columns, stairs. Any point not
belonging to one of these classes was marked as unassigned.
Basic statistics about HePIC dataset are reported in Tab. 1.
Semantic Segmentation. Automatic point-wise labeling is
performed independently on each sampled room, via seman-
tic segmentation. Labels are given according to semantics,
while a distinction among instances is performed successively.
BIM-Net, an ad hoc voxel-based convolutional semantic seg-
mentation network, was designed for this purpose. This choice
is motivated by the fact that state-of-the-art architectures for
point clouds are memory-requiring and very slow to be trained.
A smaller network, sized with the dataset, with proper loss

1Church has been created by Maria Rosaria Cundari coordinated by prof.
A. Giordano and NEOS s.r.l., Castle has been created by LaserPlan+. Code-
base available at https://github.com/LTTM/Scan-to-BIM.
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Fig. 3: Representation of BIM-Net architecture.
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Fig. 4: BIM-Net modules. Fig. 5: BIM walls.

function can instead obtain good performance while limit-
ing the memory footprint and training time. In particular,
BIM-Net is a simple 4-layer convolutional architecture. Each
layer is composed of a separable convolution layer (SCL) of
size M = [16, 32, 64, 128] respectively. SCL is based on
3D separable convolutions with filters of size D = 7, which
lighten the computational burden. A Separable Residual In-
verse Layer (SRIL) and an Instance Normalization block are
added before each SCL to prevent instance-specific mean and
covariance shift, simplifying the learning process. SRIL is
based on Inverted Residual Block of [21], with input size W .
The overall architecture is shown in Figs. 3 and 4. BIM-Net
computes point clouds as voxels, with a given granularity (for
HePIC, we used 96× 96× 96 blocks), as in general architec-
tural point clouds have regular, squared structures. Few-shot
learning is finally addressed by BIM-Net++, adopting specific
loss and regularization methods, such as weighting and pro-
gressive weighting. The final objective has been defined as:
L = γ√

n
Lce + γinv Lcwce, where n is each class frequency

in the dataset, γ grows linearly with steps (from 0 to 1) and
γinv decreases linearly with steps (from 1 to 0).
Instantiation. Plane extraction algorithms have been used to
perform instance segmentation on planar elements (i.e., walls,
floors, and roofs) and clustering algorithms for other elements
(i.e., columns, beams, doors, windows, and stairs). For pla-
nar elements, we used RANSAC algorithm from Point Cloud
Library (PCL) [22]. The algorithm is enforced by computing
cosine similarity (between planes of the same instance) and
point-plane distance (between each plane and instance cen-
troid), in order to group points belonging to planes with the
same normal and distance lower than a threshold. For non-
planar elements, we use the DBSCAN algorithm, to cluster
points of each instance. In this case, instance boundaries are
well-defined and no additional refinements are required.
BIM Reconstruction. BIM entity reconstruction requires
geometry reconstruction algorithms specific to each class of
objects. Consequently, meaningful parameters and relation-
ships between elements must be defined. Classes are grouped
by BIM object creation method: curves for walls, columns,
beams and stairs, polylines and polycurves for floors and roofs,
points for doors and windows. Then, these elements are used

Algorithm 1: Walls geometric features extraction.
Input: {Xk}Kk=1 point clouds, {Ŷk}Kk=1 pred. semantic labels
Output: {Pt}Tt=1 parameters for each walls instance t ∈ [T ]

1 foreach point set X = Xk|k=walls do
2 while outliers in X do

// get interior and exterior planes
3 Plane P1 ← RANSAC(X )
4 Centroid c1 ← Avg(P1 inliers)
5 Normal n1 ← P1 normal
6 Plane P2 ← RANSAC(X \ P1 inliers; n1)

// compute wall width and height.
// xz is the z coordinate of inliers

7 width, height← distL2(P1, P2); xz,max − xz,min

// get principal plane
8 c0 ← c1 + (width/2) · n1

9 Plane P0 ← Plane(c0,n1)
// P⊥ is set with origin on c0 and y axis parallel to

global z axis
10 Plane P⊥ ← Plane normal to P0

// get axis endpoints via signed point-plane distance
11 xstart ← max dist(x;P⊥),x ∈ X
12 xend ← min dist(x;P⊥),x ∈ X
13 Pt ← {width, height,xstart,xend}

Table 2: Comparison with other state-of-the-art architectures.
5k steps 25k steps

model PA% PP% IoU% PA% PP% IoU%

SegCloud [8] 17.6 24.7 13.2 17.6 24.7 13.2
Cylinder3D [7] 21.0 23.2 14.2 21.0 23.2 14.2
RandLA-Net [9] 35.4 49.3 27.8 35.6 56.2 28.8
PVCNN [11] 40.7 45.3 32.9 43.3 48.1 34.9

BIM-Net 44.0 54.4 37.3 47.1 58.9 40.6
BIM-Net++ 56.2 49.4 40.9 59.1 53.0 43.7

to aggregate points and derive the appropriate BIM representa-
tion. For example for class walls, geometric parameters used
for standard BIM creation are thickness, height and axis. The
procedure to extract walls geometric properties is reported in
Alg. 1, and the reconstructed BIM is shown in Fig. 5, where
blue points represent point set X and white volumes represent
the reconstructed wall model. For floors and roofs, a similar
procedure is used, implementing PCL ConcaveHull algorithm
of [22] for extracting bounding polycurve. Similar algorithm
has also been applied to other classes. BIM reconstruction was
finally performed through Dynamo visual programming [23].

3. RESULTS

An experimental evaluation has been performed on BIM-Net
and HePIC dataset, split into training and test sets. 15 rooms
(≈ 1.5M points) from Castle and 4 rooms (≈ 400k points) from
Church have been selected for testing and the rest for training
(disjoint with the test ones). An NVIDIA GeForce RTX 3090Ti
GPU was employed for all the experiments. The training of



Fig. 6: Per-class mIoU on 25k steps. The last entry denotes
the mIoU, averaged over all the classes.

Fig. 7: mIoU vs the number of rooms in the training set.
Rooms 1-50 are from Castle, 51-63 are from Church.

BIM-Net was optimized with Adam, with the learning rate
polynomially decreasing from 10−3 to 10−5 and weight decay
10−5. Batch size was set to 8. The training was performed
on 5k steps, but we also tested the final models with longer
training (25k steps) for comparison. The results deriving from
this longer training do not show a great variation, especially
on the state-of-the-art baselines, as the dataset counts very
few labeled samples. Tab. 2 shows the final segmentation
performance of our architecture on HePIC dataset, compared
with others. Being our dataset composed of a few labeled
point clouds, state-of-the-art networks (with large number of
parameters) tend to overfit the training data, while BIM-Net
obtains better performance with reduced training time (Fig. 6).
This result is clearly visible also in Fig. 7, where our BIM-
Net (red) outperforms Cylinder3D (yellow) by a large margin.
Additionally, BIM-Net takes about 1/5 of training time with
respect to Cylinder3D [7]. BIM-Net shows to be suitable for
our dataset, but also to achieve state-of-the-art performance on
popular point cloud datasets (Tab. 3). Pretraining the network
on a similar dataset like S3DIS [16], further improves the per-
formance; this happens both when considering the full set of
classes, and when restricting evaluation to the most frequent
ones (i.e., walls, roofs, floors). Experiments on the restricted
set of classes were performed to show that the network obtains
most of the performance on these classes. Indeed, results on
BIM-Net trained on 3 classes are comparable with results on
these 3 classes, when training on 8 (fifth row in Tab. 3). BIM-
Net outperforms baselines in terms of mean Intersection over
Union (mIoU) [25], Point Accuracy (PA) [26], and Point Pre-
cision (PP) [27], but still lacks accuracy on rare classes (e.g.,
stairs, doors, columns). The introduction of regularization
methods, like progressive weighting and an additional class-
wise cross-entropy (cwce) loss, helps the network improve the
overall per-class results. A detailed ablation on progressive
weighting schemes is reported in Tab. 4. The last row repre-
sents our final BIM-Net++ model. BIM-Net++ obtains the best
results also on few-shot learning (Fig. 7). Indeed, when train-

Table 3: Different datasets and pretraining schemes with a
variable number of classes on 5k steps.

model dataset # classes pretraining PA% PP% IoU%

BIM-Net Arch [17] 9 ✕ 26.0 39.8 18.4
BIM-Net S3DIS [16] 13 ✕ 71.7 76.5 59.5

BIM-Net HePIC 3 ✕ 90.2 89.1 81.3
BIM-Net HePIC 3 S3DIS [16] 90.7 90.7 83.1
BIM-Net HePIC 8 (3) S3DIS [16] 88.4 85.0 76.1

BIM-Net HePIC 8 ✕ 42.1 56.2 35.7
BIM-Net HePIC 8 Arch [17] 40.8 48.8 34.6
BIM-Net HePIC 8 S3DIS [16] 44.0 54.4 37.3

Table 4: Regularization on BIM-Net pretrained on S3DIS
using HePIC with 8 classes on 5k steps. w is the loss weight.

loss w γ PA% PP% IoU%

w Lce 1/
√
n [20] ✕ 51.5 48.7 39.3

w Lce 1/n [9] ✕ 59.2 43.3 34.3
w Lce 1/ log(n) ✕ 43.6 54.4 37.3
Lcwce ✕ ✕ 59.6 47.1 38.7
Lohem [24] ✕ ✕ 44.9 59.6 38.0

γ w Lce 1/
√
n 0 )1 51.6 47.1 38.7

w Lce + Lcwce 1/
√
n 0 )1 56.3 47.8 39.6

w Lce + Lcwce 1/
√
n ✕ 54.4 46.7 38.6

γ w Lce + Lcwce 1/
√
n 1 ) 0 55.7 47.1 38.8

γ w Lce + γinv Lcwce 1/
√
n 1 ) 0 53.0 47.3 38.5

γ w Lce + γinv Lcwce 1/
√
n 0 )1 56.2 49.4 40.9

ing the network on a few rooms only (≈1 to 20), BIM-Net++
outperforms both BIM-Net and Cylinder3D. Its improvement
is minor when the room number increases. Cylinder3D (used
with voxels partitions, instead of cylindrical to suit better ar-
chitectural data), performs poorly in both cases, being suitable
only for large-scale datasets [7]. Finally, instance clustering,
applied on top of previous semantics, obtains 56.0% mAcc and
0.608 similarity score [28], which results sufficiently accurate
for BIM reconstruction, as we show for walls in Fig. 5.

4. CONCLUSION

This paper proposes a pipeline for a fully automated Scan-to-
BIM process, discussing the automatic recognition of archi-
tectural elements based on deep learning. Our HePIC dataset
was developed to compensate for the scarcity of semantic-
and instance- level labeled architectural benchmarks. Our
BIM-Net was designed to obtain semantic segmentation la-
beling without human intervention which is then exploited to
reconstruct BIM objects; further, its small size allows it to
obtain better results on HePIC. BIM-Net was equipped with
re-weighting schemes and regularization to obtain BIM-Net++.
Our final model outperforms RandLA-Net and Cylinder3D by
14.9% and 29.5% mIoU, respectively. It also improves our
base BIM-Net of 3.1% mIoU, reaching good accuracy also
on rare classes. Finally, instantiation results are good enough
for: (i) providing the overall spatial structure of each building
or part of it; (ii) reconstructing the basic elements such as
walls, floors, and roofs to create spatial containers; (iii) giving
information to create hosted elements (i.e., windows, doors).
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