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Abstract
A recent paper (Di Giacomo et al. Cent Eur J Oper Res 28:1069–1090, 2020) on the 
Fleet Quickest Routing Problem on Grid graphs (FQRP-G) claims that eight levels 
guarantee that a fleet of vehicles, simultaneously starting from the bottom level of 
the grid, can reach the top level by moving on Manhattan paths without ever stop-
ping and without collisions, independently of the number of vehicles and columns 
of the grid and the configuration of vehicles’ origins and destinations. In this amend-
ing note, we will analyse the results in Di Giacomo et  al. (Cent Eur J Oper Res 
28:1069–1090, 2020) and show that the routing rule leading to this claim cannot 
be applied to all instances of FQRP-G, and that it can cause collisions. The analysis 
points out sufficient conditions under which the proposed rule draws proven colli-
sion-free routes for FQRP-G using no more than eight levels. Computational experi-
ments demonstrate the relevance of the eight-levels bound and the functionality of 
the routing rule in practice, showing that it correctly solves the majority of instances 
up to one thousand vehicles. From a theoretical perspective, the claim that eight 
(or any constant number of) levels are sufficient to solve any instance of FQRP-G 
remains an open issue.
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1  Introduction

The fleet quickest routing problem on grid graphs (FQRP-G) considers n vehicles 
moving on a grid graph with m rows (or levels) and n columns. Each node is identi-
fied by a pair (p, q), where p and q are, respectively, the row and column indexes. 
Any vehicle i has to move from its origin, located in position (1, i), to its destination 
in position (m, �(i)) . All vehicles start at the same time and all edges have the same 
crossing time. In order to avoid collisions, any two vehicles cannot visit the same 
node, or use the same edge, at the same time. The problem is to find a collision-free 
routing of the vehicles that minimizes the time needed by all the vehicles to reach 
their destinations. Under these conditions, it can be observed (Andreatta et al. 2010; 
Di Giacomo et al. 2020) that a solution is optimal if all vehicles move on origin-to-
destination Manhattan paths (i.e., shortest paths on a grid) without any intermediate 
stop. Therefore, following (Andreatta et  al. 2010; Cenci et  al. 2017; Di Giacomo 
et al. 2020), we only consider as feasible (hence optimal) solutions the ones made 
of collision-free nonstop Manhattan paths. However, it is also observed that such 
solutions may not exist if m is not large enough. In Cenci et al. (2017), Di Giacomo 
et al. (2020) the number m of levels is thus considered as a parameter, that should be 
as small as possible in order to obtain low values of the optimal solution, but high 
enough to guarantee the existence of a feasible solution.

An interesting upper bound for m is proposed in Cenci et  al. (2017), where it 
is shown that a solution to any instance of FQRP-G can be found using m∗ levels, 
where m∗ is an increasing function of n and it is equal to 3 + ⌊

n−1

4
⌋ if n ≥ 3 , 2 other-

wise. The same article also proves that such m∗ is indeed the minimum number of 
levels required by any feasible solution to FQRP-G, under the additional restrictive 
assumption that allowed Manhattan paths are simple, i.e., all the horizontal moves of 
a vehicle, if any, take place consecutively on the same level.

The bound for parameter m is further improved in Di Giacomo et  al. (2020), 
where the following result is stated: Eight levels are sufficient to solve any instance 
of FQRP-G (Proposition 8 in Di Giacomo et al. 2020).

The proof proposed in Di Giacomo et al. (2020) also includes a routing rule (RR) 
that exploits the opportunity of using non-simple Manhattan paths to build n routes, 
one for each vehicle of any FQRP-G instance, on a grid with a constant number (i.e., 
8, independent from n) of levels.

In this note, we identify some issues related to RR that may yield collisions 
in the output routing. By analysing these issues, we propose an amendment to 
Proposition 8 in Di Giacomo et al. (2020), stating two assumptions on considered 
FQRP-G instances that guarantee that eight levels are sufficient. In fact, we identify 
a class of FQRP-G instances for which the proofs provided in Di Giacomo et  al. 
(2020) show that RR outputs collision-free routing. Out of this class, we also build 
counterexamples where RR indeed fails. In order to state the practical implications 
of the proposed amendment, we also perform an extensive empirical analysis to 
estimate the percentage of FQRP-G instances that satisfy the amending assumptions 
or, otherwise, the percentage of instances where RR anyway outputs collision-free 
routing: empirical evidence shows that, up to n = 1000 , only in a minority of cases 
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RR generates collisions and thus that, although not general, m = 8 is a relevant 
bound from a practical perspective.

2 � Summary of the relevant notation and the routing rule

We briefly revise some notions from Di Giacomo et al. (2020) that will be useful in 
the following (see the cited paper for details).

Given an instance of FQRP-G, its vehicles set can be partitioned into three sub-
sets, according to the direction of their horizontal moves: R1 = {i ∈ V ∶ 𝜎(i) > i}, 
L1 = {i ∈ V ∶ 𝜎(i) < i}, H = {i ∈ V ∶ �(i) = i}.

Two vehicles i and j are in node conflict (resp. arc conflict) if there exist a Man-
hattan path for i and a Manhattan path for j that visit the same node (resp. cross 
the same edge in opposite directions) at the same time; if both vehicles use such 
paths, then they collide on a node (resp. on an arc), causing a node (resp. arc) colli-
sion. Notice that we here prefer to distinguish conflicts from collisions, even tough 
the term “collision" does not appear in Di Giacomo et al. (2020) and is sometimes 
replaced by “occurring conflict".

Following Di Giacomo et  al. (2020), node conflicts are further classified into 
three types. Two vehicles are in node conflict of type A (or A-conflict) if the conflict 
node is unique and coincides with one of their destinations, meaning that a collision 
of type A only occurs on the top level when a vehicle has already arrived at its des-
tination node, and the other vehicle crosses such node. Vehicles i and j are in node 
conflict of type B (or B-conflict) if they conflict on every node of the median column 
i+j

2
 , and the median column is neither column �(i) nor �(j) . Vehicle i is subject to a 

conflict of type C (or C-conflict) with vehicle j if i and j conflict on every node of the 
median column i+j

2
 , and the median column i+j

2
 coincides with �(i) (notation i(j) is 

used). In such case, the collision can only be avoided if vehicle i reaches its destina-
tion column after (hence, at a higher level) vehicle j has left it.

A C-conflict path is a sequence of vehicles (z1, z2,… , zk) such that, for each vehi-
cle zi with 1 ≤ i ≤ k − 1 , zi(zi+1) , i.e., each vehicle is subject to a C-conflict with its 
successor, and also there exists another vehicle v such that zk(v) . A vehicle zi in such 
C-conflict path, with 2 ≤ i ≤ k , is sigma adjacent if |�(zi) − �(zi−1)| = 1.

The routing rule (RR) proposed in Di Giacomo et al. (2020) is an algorithm that, 
given an instance of FQRP-G, assigns a route to each vehicle using 8 levels, inde-
pendently of the size n of the instance. According to RR, reported in Fig. 1 for ease 
of reference, vehicles in H move only vertically, whereas vehicles in R1 and, respec-
tively, L1 , perform their horizontal moves at odd and, respectively, even levels. The 
routes for vehicles in R1 and L1 depend on their positions in a C-conflict path: vehi-
cles not included in C-conflict paths (see cases 2. and  3. of RR) and the first ele-
ment of each C-conflict path (see cases 4.1. and 5.1.) use simple Manhattan paths; 
the routes of the remaining vehicles contain horizontal moves at two or three dis-
tinct levels and their shapes depend on the fact that the vehicles are sigma adjacent 
(cases  4.2. and 5.2.) or not (cases  4.3. and 5.3.). The columns where the vertical 
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Fig. 1   The routing rule (RR) for FQRP-G proposed in Di Giacomo et al. (2020)
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steps of a non sigma adjacent vehicle i take place also depend on a vehicle v such 
that v(i). In particular, vertical steps occur between:

•	 levels 1 and 3 of column �(v) , levels 3 and 5 of column �(v) + 1 and levels 5 and 
8 of column �(i) (vehicles in R1 , case 4.3.) or

•	 levels 1 and 2 of column i, levels 2 and 4 of column �(v) , levels 4 and 6 of col-
umn �(i) + 1 and levels 6 and 8 of column �(i) (vehicles in L1 , case 5.3.).

3 � Critical review of the routing rule

In Di Giacomo et  al. (2020), RR is used to show that there exists a routing rule 
that allows all vehicles to travel on a eight-levels grid using collision-free nonstop 
Manhattan paths. In this section, we will point out some issues related to RR whose 
main consequence is that, on the contrary, there are instances where RR leads to 
collisions.

3.1 � Issue 1: RR does not uniquely identify the route of vehicles that belong 
to more than one C‑conflict path

Let us consider vehicles i, j and k such that j(i), k(i), and i is subject to a C-conflict 
with another vehicle, i.e., i belongs to (at least) two C-conflict paths. If i falls into 
cases 4.3. or 5.3., its routing is different depending on the choice of the vehicle v 
mentioned in these cases, which is not uniquely identified by RR (it may be, for 
example, j or k).

This ambiguity is relevant because the arguments presented in Di Giacomo et al. 
(2020) only guarantee that the collision of i is avoided with the chosen v, with no 
discussion involving further C-conflicting vehicles, if any. Indeed, the following 
Counterexample 1 shows an instance with a vehicle in case 4.3. belonging to two 
C-conflict paths, such that one of the C-conflicts leads to a collision. A similar 
counterexample could be given for case 5.3.

Fig. 2   Counterexample 1: RR generates a collision between vehicles 1 and 11
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Counterexample 1  Consider an instance of FQRP-G on a grid with 19 columns and 
including vehicles origins and destinations as in Fig. 2. The following C-conflicts 
appear: 3(11), 11(1), 1(19) and 5(1). Therefore, vehicle 1 belongs to two C-conflict 
paths and case 4.3. does not specify whether its route is defined by either C-conflict 
11(1) or 5(1), showing the ambiguity of RR. Here 5(1) is chosen, Fig. 2 shows the 
RR vehicle’s routes and a C-collision between vehicles 1 and 11 at the circled node 
(5, 6).

We remark that, if i is sigma adjacent and therefore falls into cases 4.2. or 5.2., 
then its route is uniquely identified by RR. However, discussion in Di Giacomo 
et al. (2020) only guarantees that the C-collision of i related to sigma adjacency 
is avoided, while further possible C-collisions between i and any other vehicle z 
such that z(i) are not analysed.

Observation 1  RR may generate C-collisions in case one vehicle belongs to two or 
more C-conflict paths.

3.2 � Issue 2: The statement of Corollary 1 in Di Giacomo et al. (2020) is incomplete

Corollary 1 in Di Giacomo et al. (2020) considers two vehicles i and j in B-con-
flict and states that, assuming that each grid level allows horizontal movements 
in one direction only, a sufficient condition to avoid their collision is that vehicle 
i (or j) does not perform any vertical step on the median column i+j

2
 . The corol-

lary is given, without proof, after Proposition 2 (Di Giacomo et al. 2020), which 
characterizes routes with no B-type collisions. In particular, Proposition 2 works 
under the condition that the minimum level used by i (or, resp., j) on column 
i+j

2
 is strictly greater than the maximum level used by j (or, resp., i) on the same 

column. The corollary is indeed a direct consequence of such proposition, pro-
vided that vehicles i and j satisfy the same conditions, which however are not 
made explicit in its statement. In fact, if the paths of i and j satisfy the original 
statement of Corollary 1 in Di Giacomo et al. (2020), but they do not satisfy the 
aforementioned conditions, then vehicles in B-conflict may collide, as shown by 
Counterexample 2.

Fig. 3   Counterexample 2: a 
collision under the hypothesis 
of Corollary 1 in Di Giacomo 
et al. (2020)
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Counterexample 2  Consider Fig.  3: the routes of the B-conflicting vehicles i and 
j have a collision and satisfy the hypothesis of Corollary 1 in Di Giacomo et  al. 
(2020).

Issue 2 has impact, at least from a formal point of view, on the proof of 
Proposition 8 in Di Giacomo et  al. (2020), where Corollary 1 is mentioned. In 
particular, to exclude that RR generates any B-collision between two vehicles i ∈ R1 
and j ∈ L1 , the proof starts by distinguishing two situations: either i and j both 
belong to C-conflict paths and are not sigma adjacent (that is, i is routed by case 4.3. 
and j by case  5.3.), or not. The first situation will be analysed in the following 
Issue 3. Corollary 1 is mentioned in the second situation, in particular, to exclude 
B-collisions when i falls into case 4.3. or j falls into case 5.3.: this part of the proof 
can be straightforwardly amended since B-collisions are excluded as a consequence 
of Proposition 2 in Di Giacomo et al. (2020), instead of Corollary 1.

3.3 � Issue 3: RR may generate B‑collisions

Let i ∈ R1 and j ∈ L1 be two vehicles in conflict of type B. The last part of the proof 
of Proposition 8 in Di Giacomo et al. (2020) deals with B-collisions between i and j 
when they both belong to a C-conflict path (that may be different for i and j) and are 
not sigma adjacent, i.e., RR routes i and j according to cases 4.3. and 5.3., respec-
tively. In particular, the proof focuses on the case one vehicle moves vertically on 
the median column b =

i+j

2
 , and the other crosses the same column horizontally. 

Here, the proof presents some flaws, that we illustrate by distinguishing two pos-
sible situations, depending on i or, respectively, j is the vehicle that moves vertically 
on column b. The potential collision where i ∈ R1 moves vertically in b is explicitly 
taken into account by the proof, that properly identifies the collision node between 
levels 3 and 5, where the vertical moves of i on column b take place. Then, the proof 
claims that vehicle j crosses b at level either 2 or 6, which would exclude collisions. 
However, we notice that the path of j includes relevant horizontal moves even at 
level 4 (see case 5.3. of RR). Indeed, Counterexample 3 shows that these moves may 
cross column b and cause a B-collision between i and j. The case where j moves ver-
tically in b is not explicitly treated in the proof. Even in this case, RR may generate 
collisions, as shown by Counterexample 4.

Counterexample 3  In the instance of FQRP-G represented in Fig. 4, the following 
C-conflicts appear: 13(17), 17(1), 11(15), 15(5) and 5(19). There are two disjoint 
C-conflict paths, (13,17) and (11,15,5), and Fig. 4 discloses the routes of involved 
vehicles, as from RR: the paths of vehicles 5 and 17 are drawn by cases 4.3. and 
5.3., respectively, and have a B-collision at circled node (4,11).

Counterexample 4  Consider the instance of FQRP-G on a grid with 19 columns 
represented in Fig. 5. The following C-conflicts appear: 9(5), 5(15), 15(1), 7(3) and 
3(19). There are two disjoint C-conflict paths, (9,5,15) and (7,3), and Fig. 5 discloses 
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the routes of involved vehicles, as from RR: the paths of vehicles 15 and 3 are drawn 
by cases 5.3. and 4.3., respectively, and have a B-collision at circled node (5,9).

We remark that Issue 3 affects RR cases   4.3. and 5.3., which are also involved 
in Issue 1. However, in both the proposed counterexamples, each vehicle belongs 
to at most one C-conflict path and Issue 1 does not apply, so that B-collisions occur 
independently of Issue 1.

Observation 2  RR may generate B-collisions between two B-conflicting vehicles 
i ∈ R1 and j ∈ L1 if they both belong to C-conflict paths, are not the first vehicle of 
the respective C-conflict path and are not sigma adjacent, i.e., i is in case  4.3. and j 
is in case 5.3..

Fig. 4   Counterexample 3: RR generates a collision between vehicles 5 and 17

Fig. 5   Counterexample 4: RR generates a collision between vehicles 3 and 15
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4 � An amendment to Proposition 8 in [1]

We recall that Proposition 8 in Di Giacomo et al. (2020) affirms that eight levels are 
sufficient to solve any instance of FQRP-G, as a consequence of the correctness of RR. 
In view of the issues reported above, RR may generate collisions and cannot be used 
as argument in the proof of Proposition 8 in Di Giacomo et al. (2020). Of course, the 
same issues do not exclude that different arguments may exist to prove Proposition 8, 
like, e.g., a new routing rule that guarantees collision-free nonstop Manhattan paths 
using 8 (or less) levels. However, RR is still relevant, because available results from Di 
Giacomo et al. (2020) together with the analysis of the issues reported above allow us 
to amend the statement of Proposition 8 in Di Giacomo et al. (2020) and prove a weak-
ened version of it.

To this end, we restrict our attention to instances of FQRP-G that satisfy the follow-
ing assumptions.

Assumption 1  Each vehicle belongs to at most one C-conflict path.

Assumption 2  There are no B-conflicts between vehicles that (i) belong to C-conflict 
paths, (ii) are not the first vehicle of the respective C-conflict path and (iii) are not 
sigma adjacent.

For any instance of FQRP-G satisfying Assumption 1, the ambiguity of RR reported 
in Issue 1 is not relevant, as RR uniquely identifies the route of the vehicles and the 
C-collisions mentioned in Observation  1 are avoided. If such instance also satisfies 
Assumption 2, then, by the arguments in Issue 3, the B-collisions mentioned in Obser-
vation 2 are excluded as well. It follows that, under Assumptions 1 and 2, the proof of 
Proposition 8 in Di Giacomo et al. (2020) holds. By Issue 2, the only required adjust-
ment is to refer to Proposition 2 in Di Giacomo et al. (2020) rather than to Corollary 1 
in Di Giacomo et al. (2020).

The above discussion proves the following proposition, stating that Assumptions 1 
and 2 together constitute a sufficient condition for RR to generate collision-free routing.

Proposition 1  If an instance of FQRP-G satisfies Assumptions  1 and 2, then RR 
does not generate collisions.

The following proposition summarizes preceding results.

Proposition 2  Eight levels are sufficient to solve any instance of FQRP-G satisfying 
Assumptions 1 and 2.
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5 � Computational results and conclusions

In order to analyze the impact of Propositions  1 and  2 on the results in Di 
Giacomo et al. (2020), we performed some computational experiments. First, we 
aim at estimating the percentage of instances that satisfy Assumptions 1 and/or 2. 
Moreover, we estimate the probability that RR can correctly solve an instance 
of FQRP-G, even in case Assumptions 1 or 2 are not satisfied. To this end, we 
implemented RR, solving the ambiguity related to Issue 1 by randomly choosing 
the vehicle v that shapes the routes of vehicles falling into cases 4.3. or 5.3. (code 
is available at Andreatta et al. 2023).

Experiments consider instances with number n of columns and vehicles 
between 10 and 1000. Since the number of all possible instances is n!, in order 
to keep the overall processing time within computational feasibility, we consid-
ered one million instances per size, each generated by assigning vehicles’ destina-
tions according to a random permutation of the column indexes. It follows that 
our samples are less representative as n increases, and the results are empirical 
estimates derived from the generated sample.

Table 1   Estimated impact of Assumptions 1 and 2 and functionality of RR in practice

n 10 25 50 75 100 150 200 300 400 500 1000

A1 99.1 93.3 84.1 75.4 67.9 54.7 44.1 28.7 18.7 12.1 1.4
A2 100.0 99.5 94.5 84.8 73.1 49.0 29.7 8.9 2.2 0.5 0.0
A1 & A2 99.1 92.8 80.2 65.9 52.6 30.7 16.4 3.9 0.8 0.1 0.0
Coll. free 100.0 99.6 98.8 98.0 97.2 95.5 93.9 90.6 87.6 84.6 71.2
Avg coll 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.2
Max coll 1 2 3 3 3 5 4 7 4 5 6

Fig. 6   Percentages of instances satisfying Assumption 1 (A1), Assumption 2 (A2), both assumptions (A1 
& A2), and having a collision-free solution output by RR (Coll. free)
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Results are summarized by Fig. 6 and details are reported in Table 1. The top row 
of the table indicates the instance size, the following three rows give the percent-
ages of the one million sampled instances satisfying, respectively: Assumption  1, 
Assumption 2, and both assumptions. Row “Coll. free” reports the percentages of 
the one million sampled instances where RR generated collision-free routing, the 
last two rows refer to the remaining sampled instances and show the average and 
the maximum number of collisions observed in one instance in which at least one 
collision occurred. Fig. 6 plots the values of the first four rows of Table 1 for all the 
tested sizes but n = 1000.

In order to check if the obtained results depend on the specific set of instances 
considered, ten further independent repetitions of the experiments with different 
samples of one million instances have been performed: they took about one day 
computation overall, and each experiment consistently led to the same empirical 
estimates.

Up to size 50, more than 80% of the sample satisfies Assumptions 1 and 2, and 
therefore could be optimally solved by RR. Moreover, for the generated small-sized 
instances, RR always found collision-free routes, but in a few cases (less than 1.2%). 
The percentage of sampled instances satisfying the given assumptions drastically 
drops with larger instances, and it becomes negligible (less than 4%) after 300 vehi-
cles. In fact, no generated instance with size equal to 1000 satisfied Assumption 2. 
The trend is justified by the fact that as the instance size increases, the likelihood of 
a vehicle conflicting with others also increases. Consequently, conditions that would 
violate the assumptions (vehicles belonging to more than one C-conflict path, or 
specific combinations of B- and C-conflicts) are more likely to arise, which explains 
the increased estimated frequency of violations. Nevertheless, our tests show that, 
at least in our sample, collisions are very rare, and RR is still able to find feasible 
routes for more than 90% of instances up to size 300. This fraction stays above 80% 
up to size 500, and above 70% with size 1000. We remark that RR optimally solves 
not only all instances satisfying Assumptions 1 and 2, but also many others that fail 
to satisfy these assumptions, thus showing that they are not necessary conditions 
to generate collision-free routing. Even more interestingly, the last rows of Table 1 
state that the number of collisions observed in a single instance is always very small, 
even for the largest sizes we tested. For the instances where RR does not provide 
feasible routes, the average number of collisions is about one, and the maximum 
never exceeds seven. This means that we just need to remove a very small number of 
vehicles (one on average, no more than seven in the worst case) as to make the solu-
tion output by RR feasible.

Computational results demonstrate the relevance of RR as a fast algorithm that 
solves very large instances of FQRP-G, even if it has the drawback that it is possible 
that collisions might arise. The literature has consistently proposed alternative meth-
ods to solve FQRP-G, that differently trade off collision-free guarantee, running 
time and number of required levels. The algorithms CaR (Cenci et  al. 2017) and 
HeurA (Andreatta et al. 2021) output collision-free solutions in very small running 
times even for large instances, but the number of required levels may be high and, in 
some cases, it is equal to the bound m∗ . On the contrary, references (Andreatta et al. 
2021; De Francesco and De Giovanni 2023) run an Integer Linear Programming 
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model for each instance to find a collision-free routing that minimizes the number of 
required levels: experiments on 10 random instances per size (up to 500 vehicles), as 
well as on ad-hoc instances (up to about 200 vehicles) that contain longest possible 
C-conflict paths, show that solutions could be found using no more than four levels 
for horizontal moves, hence using a grid with m = 5 . However, the approach incurs 
higher computational costs, making it prohibitive for large instances.

From a theoretical standpoint, the discussion in this paper shows that the bound 
of eight levels, stated in Di Giacomo et al. (2020) and valid under Assumptions 1 
and 2, is not valid in general, even if it remains a relevant result in practice. The best 
known upper bound for FQRP-G is m∗ , provided in Cenci et al. (2017) and depend-
ing on the number of columns in the grid. However, the experiments reported in this 
paper, as well as preliminary computational results in Andreatta et  al. (2021), De 
Francesco and De Giovanni (2023), show that m∗ may be disproportionately high, 
and stimulate further research towards a general bound that is tighter and, possibly, 
independent from the instance size.
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