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Abstract: Linear mixed models are a versatile statistical tool to study
data by accounting for fixed effects and random effects from multiple sources
of variability. In many situations, a large number of candidate fixed effects
is available and it is of interest to select a parsimonious subset of those
being effectively relevant for predicting the response variable. Variational
approximations facilitate fast approximate Bayesian inference for the pa-
rameters of a variety of statistical models, including linear mixed models.
However, for models having a high number of fixed or random effects, sim-
ple application of standard variational inference principles does not lead
to fast approximate inference algorithms, due to the size of model design
matrices and inefficient treatment of sparse matrix problems arising from
the required approximating density parameters updates.

We illustrate how recently developed streamlined variational inference
procedures can be generalized to make fast and accurate inference for the
parameters of linear mixed models with nested random effects and global-
local priors for Bayesian fixed effects selection. Our variational inference
algorithms achieve convergence to the same optima of their standard imple-
mentations, although with significantly lower computational effort, mem-
ory usage and time, especially for large numbers of random effects. Using
simulated and real data examples, we assess the quality of automated pro-
cedures for fixed effects selection that are free from hyperparameters tun-
ing and only rely upon variational posterior approximations. Moreover, we
show high accuracy of variational approximations against model fitting via
Markov Chain Monte Carlo sampling.
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1. Introduction

A variety of statistical models can be formulated as linear regression models
incorporating both fixed and random effects in the linear predictor. The former
are effects associated with the entire population or repeatable levels of exper-
imental factors; the latter arise from individual experimental units drawn at
random. In the statistical literature, models admitting both fixed and random
effects are known as mixed-effects models [68]. These models are employed in
an assortment of regression-type studies, including the analysis of classical lon-
gitudinal data [e.g. 26], repeated measurements [e.g. 84], blocked designs [e.g.
49], multilevel data [e.g. 30], as well as semi-parametric regression models [e.g.
72] such as those including spatial or spline-type components.

The focus of this work is on Bayesian fitting of linear mixed-effects mod-
els with nested random effects structures, which are commonly used for the
analysis of longitudinal, multilevel and panel data [e.g. 83, 3], or small area esti-
mation [e.g. 70]. These data are typically collected from experimental units that
can be grouped into different levels of nesting, and the interest is in modeling
within-group correlations. In areas of application such as genome-wide associa-
tion studies [e.g. 43, 75, 47]) and medical research [e.g. 14], datasets typically
possess a large number of group-invariant predictors of which only a few are
effectively relevant. A common misleading strategy is that of including all the
predictors as fixed effects in the model specification. This may compromise the
parsimony of the model specification and validity of inferential conclusions, es-
pecially in sparse covariate settings. Therefore, a proper fixed effects selection
procedure is recommended to identify the effectively relevant effects.

Although many frequentist procedures have been developed to tackle this
problem [e.g. 74, 25, 33, 38, 48]), little exists in the Bayesian literature. Bayesian
approaches are mostly focused on random effects selection induced by the de-
composition of their covariance matrix [e.g. 20, 89], or joint fixed and random
effects selection [e.g. 41, 90].

The current work focuses on fixed effects selection procedures from a Bayesian
perspective. This may be advantageous over frequentist approaches especially in
high-dimensional settings when likelihood-based inference is computationally in-
tractable and allow for prior knowledge about the parameters to be incorporated
in the model specification. Markov Chain Monte Carlo (MCMC) sampling still
represents the reference toolkit for exact Bayesian inference and all the afore-
mentioned references on Bayesian approaches for effects selection perform model
fitting via MCMC. Although not accounting for selection procedures, the brms
package [15] allows to fit Bayesian multilevel models in R [79] making use of
the popular probabilistic programming language Stan [17]. Using this package,
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practitioners only have to specify the appropriate model structure, the model
is automatically fitted and convergence can be assessed. However, automatic
sampling procedures usually generate higher computational times and, in gen-
eral, proper MCMC procedures necessitate convergence assessment for all the
model parameters, which may arise problematics such as poor mixing connected
to the model parameterization. These and other drawbacks have supported the
development of variational approximations for linear mixed models to improve
the speed of convergence, at the cost of employing an approximation to the true
posterior distribution for carrying out inferential conclusions.

[88] provide some insights on how to implement variational approximations
for approximate Bayesian inference in hierarchical models through Infer.NET
[57]. Although this computational framework is suitable for longitudinal and
multilevel models, its computational advantage quickly decreases for high num-
bers of groups and sub-groups, limiting the usefulness of variational inference.
Algorithm 3 of [65], and Algorithms 3 and 5 of [50] allow to implement vari-
ational inference for fitting longitudinal and multilevel data; however, they do
not perform efficiently for large dimensions, as they include naïve updates based
on inefficient matrix inversions.

[44] developed a streamlined updating scheme for variational inference mak-
ing efficient use of sub-matrix inversion operations whose number is linear in the
size of groups at each level. The streamlined scheme represents an improvement
of two orders of magnitude over naïve implementations of variational approxi-
mations. These results have also been extended to the class of generalized linear
mixed-effects models and applied, for instance, to models for multiple longitu-
dinal markers [37]. [60] took advantage of the sparse matrix results developed in
[62] for deriving streamlined algorithms and performing efficient Bayesian vari-
ational approximations for linear mixed models with two and three-level nested
random effects structures. This framework, named streamlined variational in-
ference, allows to dramatically reduce computational times when compared to
naïve implementations of variational inference, although achieving the same ap-
proximation. Furthermore, streamlined variational inference allows to efficiently
store the matrices needed to perform algorithm updates, hence providing sig-
nificant memory savings.

These developments have recently inspired streamlined algorithms for lin-
ear mixed-effects models with crossed random effects [55] and group-specific
curves [56]. Many extensions can be envisaged and are motivated by the high
demand for fast and accurate processing methods for big amounts of data from
clinical studies, psychological experiments or surveys in social sciences. The cur-
rent streamlined variational algorithms have been developed and tested using
generic uninformative priors over the fixed effects vector. In this work, we intro-
duce streamlined variational inference for models with priors inducing Bayesian
posterior shrinkage and study an efficient selection procedure for fixed effects.
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1.1. Contribution and article organization

To the best of our knowledge, scalable variational approximation methods for
fixed effects selection in linear mixed models are rarely present in literature.
[1] propose a sparse variational Bayes analysis of linear mixed models which
focuses on random effects shrinkage via decomposition of the random effects
vector covariance matrix. A more recent contribution is [81], where the suggested
approach performs simultaneous fixed-effect selection and parameter estimation
via variational Bayes and Bayesian adaptive lasso. However, the approach is
limited to high-dimensional two-level generalized linear mixed models and does
not account for any streamlined updating improvements.

The current work extends the results and algorithms of [60] by develop-
ing streamlined Bayesian variational approximations for multilevel linear mixed
models with two or three-level random effects where a subset of fixed effects is
subject to selection. The selection is performed by first placing global-local pri-
ors over the fixed effects being subject to selection, which ensures good shrinkage
properties towards the origin for irrelevant fixed effects marginal posteriors, and
then identifying those being relevant via an automated selection procedure free
from hyperparameters tuning.

The article is organized as follows. Section 2 provides an overview of lin-
ear mixed models from a Bayesian perspective, with a specific focus on two-
and three-level random effects specifications. Section 3 explains variational ap-
proximations for this class of models, with a particular focus on issues aris-
ing from naïve implementations of variational algorithms and the benefits of
streamlined variational inference. Section 4 discusses automated approximate
Bayesian methods for performing variable selection when global-local shrink-
age priors are introduced in a linear regression model. Section 5 connects the
previous two sections and provides streamlined variational Bayes algorithms for
mixed-effects models with global-local priors placed over a subset of fixed effects
which are subject to selection. Section 6 provides a detailed simulation study
that demonstrates the advantages provided by the methodology proposed in
this work. A real data illustration is included in Section 7. The article is sup-
ported by additional supplementary material containing details on distributions,
complementary algorithms and derivations [21].

1.2. Notation

The notation of this article matches the one of [60]. Here we briefly recall some
essential notation. Data vectors and design matrices can be combined using
stack and blockdiag operators defined as
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stack
1≤i≤d

(M i) ≡

⎡
⎢⎢⎢⎣
M1

...

Md

⎤
⎥⎥⎥⎦ and blockdiag

1≤i≤d
(M i) ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

M1 O · · · O

O M2 · · · O
...

...
. . .

...

O O · · · Md

⎤
⎥⎥⎥⎥⎥⎥⎦
,

for a sequence of matrices M1, . . . ,Md. The stack operator requires M i matri-
ces with the same number of columns. If M is a square matrix, diagonal(M) is
the main diagonal of M and tr(M) is the trace of M . For a vector v of length
d, diag(v) produces a diagonal matrix having the elements of v as main diag-
onal. Unless specified otherwise, given two vectors v1 and v2 of same length,
v1/v2 indicates their element-wise division. Element-wise addition, subtraction
and multiplication are similarly defined.

We use p and q for density functions. In particular, q is used for densities
arising from variational approximations. The letters p and q are used for the
dimensions of model vectors and matrices.

We use μq(θ) ≡ Eq(θ) for a generic parameter θ, μq(θ) ≡ Eq(θ) for a generic
vector of parameters θ and Mq(Θ) ≡ Eq(Θ) for a generic matrix of parameters
Θ, with Eq(·) denoting the expectation with respect to the probability density
function q.

2. Linear mixed models

This article treats linear mixed models with Gaussian responses and homoskedas-
tic independent errors from a Bayesian inference perspective. A general formu-
lation for these models is

y|β,u, σ2 ∼ N(Xβ + Zu, σ2I), u|G ∼ N(0,G), β ∼ N(μβ,Σβ),

σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2), aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

G|AG ∼ p(G|AG), AG ∼ p(AG),

(1)

where y is a vector of observed data, β and u are respectively the vectors of
fixed and random effects, X and Z are the associated fixed and random effects
design matrices, σ2 is the variance of the unit-specific error term and G is the
random effects covariance matrix.

A very general prior specification for the parameters of model (1) is consid-
ered. The fixed effects vector β has a multivariate Normal prior with hyperpa-
rameters μβ and Σβ. Following [28], the hierarchical prior specification on σ2

generates a Half-t distribution on σ with νσ2 degrees of freedom and scale param-
eter sσ2 , where larger values of sσ2 correspond to weaker informativity. A similar
hierarchical prior is imposed on the random effects vector covariance matrix G:
if, for instance, p(G|AG) is an Inverse-G-Wishart(Gfull, νG + 2q − 2,A−1

G ) den-
sity function and p(AG) is an Inverse-G-Wishart(Gdiag, 1,ΛAG

) density function
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with ΛAG
≡ {νG diag(s2

G, 1, . . . , s
2
G, q)}−1, then according to [36] such a prior im-

position may induce arbitrarily noninformative priors on the standard deviation
parameters for large values of sG, 1, . . . , sG, q and a Uniform(−1, 1) distribution
over the correlation parameters. The notations Gfull and Gdiag symbolize fully
connected and disconnected graphs arising from the structure of G−1 and A−1

G ,
as explained in [53].

The structures of Z, u and G embed a rich ensemble of mixed model specifi-
cations [92]. Hereafter, we will focus on multilevel models having two-level and
three-level random effects specifications.

2.1. Two-level linear mixed models

Multilevel models with two-level random effects arise from applications where
observations from different units belonging to separate groups are available, and
the interest is in capturing the within-group variability. Let m be the number of
groups, each composed by oi units, 1 ≤ i ≤ m. A two-level linear mixed model
can be expressed in terms of the observations from the ith group as follows:

yi|β,ui, σ
2 ind.∼ N(Xiβ + Ziui, σ

2I), ui|Σ ind.∼ N(0,Σ), 1 ≤ i ≤ m,

β ∼ N(μβ,Σβ), σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2),

aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

Σ|AΣ ∼ Inverse-G-Wishart(Gfull, νΣ + 2q − 2,A−1
Σ

),

AΣ ∼ Inverse-G-Wishart(Gdiag, 1,ΛAΣ
),

ΛAΣ
≡ {νΣ diag(s2

Σ, 1, . . . , s
2
Σ, q)}−1.

(2)

Here Σ is the covariance matrix for the group-specific random effects vector ui

of length q. Notice model (2) is a particular case of model (1), with

y = stack
1≤i≤m

(yi), X = stack
1≤i≤m

(Xi), Z = blockdiag
1≤i≤m

(Zi),

u = stack
1≤i≤m

(ui), G = Im ⊗ Σ, AG = Im ⊗AΣ.
(3)

The structure of Z is such that Zu =
∑m

i=1 Ziui and notice that as m increases,
Z becomes sparser with only the (100/m)% of its cells being non-zero.

2.2. Three-level linear mixed models

Multilevel models with three-level random effects extend two-level models by
adding a further hierarchy level. Such structures are employed when there is
interest in capturing both the variability within groups and that within their
subgroups.

Let m denote the number of level 1 (L1) groups, ni be the number of level 2
(L2) subgroups belonging to the ith group, 1 ≤ i ≤ m, and oij be the number of
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units belonging to the jth subgroup, 1 ≤ j ≤ ni, of the ith group. A three-level
linear mixed model can be defined in terms of the observations from the jth
subgroup belonging to the ith group as follows:

yij |β,uL1
i ,uL2

ij , σ
2 ind.∼ N(Xijβ + ZL1

iju
L1
i + ZL2

iju
L2
ij , σ

2I),⎡
⎣uL1

i

uL2
ij

⎤
⎦∣∣∣ΣL1,ΣL2 ind.∼ N

⎛
⎝
⎡
⎣ 0

0

⎤
⎦,

⎡
⎣ΣL1 O

O ΣL2

⎤
⎦
⎞
⎠ , 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

β ∼ N(μβ,Σβ), σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2),

aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

ΣL1|A
Σ

L1 ∼ Inverse-G-Wishart(Gfull, νΣ
L1 + 2q1 − 2,A−1

Σ
L1),

A
Σ

L1 ∼ Inverse-G-Wishart(Gdiag, 1,ΛA
Σ

L1 ),

ΛA
Σ

L1 ≡ {ν
Σ

L1 diag(s2
Σ

L1, 1
, . . . , s2

Σ
L1, q1

)}−1,

ΣL2|A
Σ

L2 ∼ Inverse-G-Wishart(Gfull, νΣ
L2 + 2q2 − 2,A−1

Σ
L2),

A
Σ

L2 ∼ Inverse-G-Wishart(Gdiag, 1,ΛA
Σ

L2 ),

ΛA
Σ

L2 ≡ {ν
Σ

L2 diag(s2
Σ

L2, 1
, . . . , s2

Σ
L2, q2

)}−1.

(4)

Here ΣL1 is the covariance matrix for the group-specific random effects vector
uL1
i of length q1 and ΣL2 is that for the subgroup-specific random effects vector

uL2
ij having length q2. Notice model (4) is a particular case of model (1), with

y = stack
1≤i≤m

(
stack

1≤j≤ni

(yij)
)
, X = stack

1≤i≤m

(
stack

1≤j≤ni

(Xij)
)
,

Z = blockdiag
1≤i≤m

([
stack

1≤j≤ni

(ZL1
ij ) blockdiag

1≤j≤ni

(ZL2
ij )

])
,

u = stack
1≤i≤m

([
(uL1

i )T
(

stack
1≤j≤ni

(uL2
ij )

)T ]T)
,

G = blockdiag
1≤i≤m

⎛
⎝
⎡
⎣ΣL1 O

O Ini ⊗ ΣL2

⎤
⎦
⎞
⎠ ,

AG = blockdiag
1≤i≤m

⎛
⎝
⎡
⎣A

Σ
L1 O

O Ini ⊗A
Σ

L2

⎤
⎦
⎞
⎠ .

(5)

The structure of Z is more involved than the one of two-level random effects
models and is such that Zu =

∑m
i=1

∑ni

j=1(Z
L1
iju

L1
i +ZL2

iju
L2
ij ). As m and the ni’s

increase, Z becomes sparser with only the {(q1+q2)/(q1m+q2
∑m

i=1 ni)×100}%
of its cells being non-zero. Notice that in the particular case where ni = 1 for
all 1 ≤ i ≤ m and q1 = q2 = q, the three-level specification corresponds to the
two-level one.
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3. Variational Bayesian inference

In this section, we provide a brief overview of mean field variational Bayes,
shortly MFVB [see e.g. 9, 10], which is the variational approximation technique
we employ in this work for fitting two- and three-level linear mixed models.

3.1. Overview

Consider a generic model with an observed data vector y and a parameter vector
θ ∈ Θ. Let q(θ) be an arbitrary density function over the parameter space Θ.
Then the logarithm of the marginal likelihood p(y) satisfies

log p(y) =
∫
Θ
q(θ) log

{
p(y,θ)
q(θ)

}
dθ +

∫
Θ
q(θ) log

{
q(θ)
p(θ|y)

}
dθ, (6)

where p(θ|y) ≡ p(y,θ)/p(y) is the posterior density function and p(y,θ) is the
model joint density function. The first addend of (6) is a lower bound to the
marginal log-likelihood and it is maximized when the second addend, that is the
Kullback-Leibler divergence KL{q(θ) ‖ p(θ|y)}, is minimized. The lower bound
corresponds to log p(y) when q(θ) = p(θ|y), although in practical situations
exact computation of the posterior density function is infeasible.

The central idea of MFVB is to approximate p(θ|y) with an approximating
density function q(θ) that solves the following optimization problem:

q∗(θ) = arg min
q(θ)∈Q

KL{q(θ) ‖ p(θ|y)}. (7)

Tractable solutions arise when q(θ) is restricted to some convenient product of
densities such that

Q =
{
q(θ) : q(θ) =

M∏
i=1

qi(θi), for some partition {θ1, . . . ,θM} ofθ
}
.

It is possible to show [e.g. 65] that under this restriction the optimal q-density
functions satisfy

q∗i (θi) ∝ exp
{
Eq(−θi){log p(θi|rest)}

}
, 1 ≤ i ≤ M, (8)

where Eq(−θi) denotes expectation with respect to
∏

j �=i qj(θj) = q(θ)/qi(θi)
and p(θi|rest) is the full-conditional density function of θi. An iterative coordi-
nate ascent procedure can be used to solve (7) and maximize the first addend
on the right-hand side of (6) through iterative updates for the optimal approx-
imating densities arising from (8). Tractability is achieved when the updating
steps reduce to updates of the approximating densities parameters and this
typically occurs when all the q∗i (θi)’s belong to known families of parametric
distributions. Convergence to at least local optima is guaranteed from convex-
ity properties of the lower bound [13] and once it is reached inference can be
performed employing the q∗i (θi) densities in place of the corresponding p(θi|y)
marginal posterior densities.
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3.2. Naïve variational inference

Assume the posterior density function p(β,u, σ2, aσ2 ,G,AG|y) of the generic
linear mixed model (1) is approximated by a q-density function factorized as
follows:

q(β,u, σ2, aσ2 ,G,AG) = q(β,u) q(σ2) q(aσ2) q(G) q(AG).

Using arguments from Section 3.1, it is possible to show that the optimal ap-
proximating densities that are function of (β,u), σ2 and aσ2 are the following:

q∗(β,u) is a N(μq(β,u),Σq(β,u)) density function,

q∗(σ2) is an Inverse-χ2(ξq(σ2), λq(σ2)) density function

and q∗(aσ2) is an Inverse-χ2(ξq(aσ2 ), λq(aσ2 )) density function.

(9)

Let C ≡ [X |Z ] and denote with n the number of its rows. The parameters of
these densities can be obtained by iteratively performing the updates

Σq(β,u) ←−

⎛
⎝μq(1/σ2) C

TC +

⎡
⎣Σ−1

β O

O Eq(G−1)

⎤
⎦
⎞
⎠

−1

,

μq(β,u) ←− Σq(β,u)

⎛
⎝μq(1/σ2) C

Ty +

⎡
⎣Σ−1

β μβ

0

⎤
⎦
⎞
⎠ ,

ξq(σ2) ←− νσ2 + n,

λq(σ2) ←− μq(1/aσ2 ) + ‖y −Cμq(β,u)‖2 + tr
{
Σq(β,u)C

TC
}
,

ξq(aσ2 ) ←− νσ2 + 1 and λq(aσ2 ) ←− μq(1/σ2) + 1/(νσ2s2
σ2)

(10)

until convergence, where

μq(1/σ2) ←− ξq(σ2)/λq(σ2) and μq(1/aσ2 ) ←− ξq(aσ2 )/λq(aσ2 ).

The approximating densities for the matrices G and AG vary according to
the random effects structure considered and are related to the structure of the
random effects design matrix. For the two-level random effects specification, the
structures of G and AG are given by the second row of (3), which involves
matrices Σ and AΣ. Their approximating densities are the following:

q∗(Σ) is an Inverse-G-Wishart
(
Gfull, ξq(Σ),Λq(Σ)

)
density function

and q∗(AΣ) is an Inverse-G-Wishart
(
Gdiag, ξq(AΣ),Λq(AΣ)

)
density function.

The parameters of these q-densities are updated according to:

ξq(Σ) ←− νΣ + m+2q−2, Λq(Σ) ←− M
q(A−1

Σ
) +

m∑
i=1

{
μq(ui)μ

T
q(ui)+Σq(ui)

}
,

ξq(AΣ) ←− νΣ+q and Λq(AΣ) ←− ΛAΣ
+ diag

{
diagonal

(
Mq(Σ−1)

)}
,
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where M
q(A−1

Σ
) ←− ξq(AΣ)Λ−1

q(AΣ), and μq(ui) and Σq(ui) respectively corre-
spond to the sub-vector of μq(β,u) and sub-matrix of Σq(β,u) associated with
the ith group random effects vector ui, for 1 ≤ i ≤ m. Also, the update for
Eq(G−1) appearing in the first line of (10) is

Eq(G−1) ←− Im ⊗Mq(Σ−1), (11)

with Mq(Σ−1) ←− (ξq(Σ) − q + 1)Λ−1
q(Σ).

For the three-level random effects specification, the structures of G and AG

are given by the last row of (5), which involves matrices ΣL1, ΣL2, A
Σ

L1 and
A

Σ
L2 . Their approximating densities are the following:
q∗(ΣL1) is an Inverse-G-Wishart

(
Gfull, ξq(ΣL1),Λq(ΣL1)

)
density function,

q∗(A
Σ

L1) is an Inverse-G-Wishart
(
Gdiag, ξq(A

Σ
L1 ),Λq(A

Σ
L1 )

)
density function,

q∗(ΣL2) is an Inverse-G-Wishart
(
Gfull, ξq(ΣL2),Λq(ΣL2)

)
density function and

q∗(A
Σ

L2) is an Inverse-G-Wishart
(
Gdiag, ξq(A

Σ
L2 ),Λq(A

Σ
L2 )

)
density function.

The parameters of these q-densities are updated according to:
ξq(ΣL1) ←− ν

Σ
L1 + m + 2q1 − 2,

Λq(ΣL1) ←− M
q(A−1

Σ
L1 ) +

m∑
i=1

{
μq(uL1

i
)μ

T
q(uL1

i
) + Σq(uL1

i
)

}
,

ξq(A
Σ

L1 ) ←− ν
Σ

L1 + q1,

Λq(A
Σ

L1 ) ←− ΛA
Σ

L1 + diag
{
diagonal

(
Mq((ΣL1)−1)

)}
,

ξq(ΣL2) ←− ν
Σ

L2 +
m∑
i=1

ni + 2q2 − 2,

Λq(ΣL2) ←− M
q(A−1

Σ
L2 ) +

∑m
i=1

∑ni

j=1

{
μq(uL2

ij
)μ

T
q(uL2

ij
) + Σq(uL2

ij
)

}
,

ξq(A
Σ

L2 ) ←− ν
Σ

L2 + q2

and Λq(A
Σ

L2 ) ←− ΛA
Σ

L2 + diag
{
diagonal

(
Mq((ΣL2)−1)

)}
,

where

M
q(A−1

Σ
L1 ) ←− ξq(A

Σ
L1 )Λ−1

q(A
Σ

L1 ), M
q(A−1

Σ
L2 ) ←− ξq(A

Σ
L2 )Λ−1

q(A
Σ

L2 ),

μq(uL1
i

) and Σq(uL1
i

) respectively correspond to the sub-vector of μq(β,u) and
sub-matrix of Σq(β,u) associated with the ith group random effects vector at
level 1 uL1

i , and μq(uL2
ij

) and Σq(uL2
ij

) respectively correspond to the sub-vector
of μq(β,u) and sub-matrix of Σq(β,u) associated with the jth subgroup of the
ith group random effects vector at level 2 uL2

ij , for 1 ≤ i ≤ m and 1 ≤ j ≤ ni.
Furthermore, the update for Eq(G−1) appearing in the first line of (10) is

Eq(G−1) ←− blockdiag
1≤i≤m

⎛
⎝
⎡
⎣Mq((ΣL1)−1) O

O Ini ⊗Mq((ΣL2)−1)

⎤
⎦
⎞
⎠ , (12)
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with
Mq((ΣL1)−1) ←− (ξq(ΣL1) − q1 + 1)Λ−1

q(ΣL1)

and Mq((ΣL2)−1) ←− (ξq(ΣL2) − q2 + 1)Λ−1
q(ΣL2).

The term naïve is used in this work when the MFVB updates described
in this section are implemented without exploiting sparse matrix structures.
Note, for example, that the update for Σq(β,u) in (10) involves the inversion of
a potentially massive matrix whose sparse structure is induced by those of Z
and G. As explained in Sections 2.1 and 2.2, when the model dimensions increase
such matrices may become extremely sparse and the inversion operation can
face many complications, both in terms of memory storage and computational
efficiency. By taking advantage of the specific random effects structure it is
possible to perform efficient streamlined variational updates.

3.3. Streamlined variational inference

The concept of streamlined variational inference for linear mixed models first
appears in [44], where the sparse structure of Σq(β,u) is exploited for efficiently
fitting a particular version of model (2) via MFVB. [62] define sparse matrix
classes arising from two-level and three-level random effects specifications and
provide efficient mathematical solutions to the associated matrix inversion prob-
lems in their Theorems 2.2, 2.3, 3.2 and 3.3. [60] implement such results and
develop streamlined MFVB algorithms for linear mixed models having both two-
level and three-level random effects specifications. These results are presented
as solutions of two- and three-level sparse matrix problems.

Two-level sparse matrix problems are described in Section 2 of [62]. These
problems are related to finding the vector x such that Ax = a, where

A ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12,1 A12,2 · · · A12,m

AT
12,1 A22,1 O · · · O

AT
12,2 O A22,2 · · · O
...

...
...

. . .
...

AT
12,m O O · · · A22,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, a ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2,1

a2,2
...

a2,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and x ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2,1

x2,2
...

x2,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and obtaining the sub-blocks of A−1 corresponding to the non-zero blocks of
A. The structure of A−1 is

A−1 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12,1 A12,2 · · · A12,m

A12,1T A22,1 × · · · ×
A12,2T × A22,2 · · · ×

...
...

...
. . .

...

A12,m × × · · · A22,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The blocks represented by the × symbol are not of interest. The relevant
blocks of A−1 can be efficiently computed applying Theorem 1 of [60] and the
formulas therein can be used to derive streamlined MFVB updates and achieve
fast computation.

Three-level sparse matrix problems are useful for the treatment of three-level
random effects models and details about this class of problems are provided in
Section S.2.2 of the supplementary material.

Algorithms using streamlined updates achieve the same MFVB approxima-
tions obtained with naïve updates, yet reducing memory usage and performing
algebraic steps more efficiently. The former is obtained by circumventing the
need of storing the zero sub-blocks of C and the sub-blocks of Σq(β,u) which
are not needed for performing the updates. The latter is achieved by computing
the useful sub-blocks of Σq(β,u) with faster lower-dimensional matrix inversions,
and the updates of μq(β,u) and λq(σ2) solely relying on the non-zero sub-blocks
of C and Σq(β,u).

Excellent performances both in terms of approximation accuracy, computa-
tional time and memory saving when compared to naïve MFVB or efficient
MCMC samplers are shown in [60], especially for large values of m. Neverthe-
less, this reference only treats the generic β ∼ N(μβ,Σβ) prior specification
for the fixed effects vector given in (1). In this article, we develop streamlined
variational inference procedures allowing for more general prior specifications
on β aiding selection of fixed effects.

4. Approximate variable selection with global-local priors

Regression modeling is often concerned with the problem of selecting an opti-
mal subset of plausible regressors with a significant impact on explaining the
variability of the response variable. This is of particular interest in sparse co-
variate settings, where a large set of regressors is considered but only a small
proportion of them is effectively relevant. We refer to [63] and references therein
for an exhaustive introductory review on variable selection procedures from a
Bayesian perspective.

4.1. Bayesian methods for variable selection

Most common Bayesian approaches involve placing suitable prior distributions
over the parameters subject to selection. Approaches of this type can be es-
sentially subdivided into two main families, based on the so-called spike-and-
slab priors [e.g. 58, 29, 40, 39, 23, 11] and global-local shrinkage priors [e.g.
18, 19, 31, 69, 2].

Spike-and-slab priors are two-component mixture priors. The first prior com-
ponent, the spike, is a point mass function at zero characterizing the noise,
usually given by a Dirac delta function or a Gaussian density function having
mean zero and very small variance. The second component, the slab, is an ab-
solutely continuous density function representing the signal density of nonzero
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coefficients associated with relevant covariates. The slab is usually given by
Laplace or Gaussian density functions and is typically centered around zero. A
weight parameter taking values in the unit interval is used to balance the con-
tribution of the two components. Although being highly appealing and allowing
for separate control of the level of sparsity and the size of the signal coefficients,
these priors may suffer from computational hurdles in high-dimensions.

Global-local shrinkage priors are absolutely continuous shrinkage priors that
are placed on each coefficient βh, 1 ≤ h ≤ H, which is subject to selection.
These priors admit the following convenient scale mixture representation [69],
for proper choices of p(τ) and p(ζh):

βh|τ, ζh ind.∼ N
(
0, τ2/ζh

)
, τ ∼ p(τ), ζh ∼ p(ζh), 1 ≤ h ≤ H. (13)

The global variance parameter τ2 is common to all the coefficients and induces
shrinkage towards the origin in the associated posterior density; the local vari-
ance parameter ζh is coefficient-specific. A more general specification including
the model response error variance parameter is proposed in [7]. Depending on
the distributional specifications for τ and ζh in (13), many well-known shrinkage
priors arise. Examples are the Horseshoe prior of [18], [19], the Bayesian lasso
of [67], the Normal-Gamma prior of [31], the Normal-Exponential-Gamma prior
of [32], the generalized double Pareto prior of [2], the Dirichlet-Laplace prior of
[8] and the horseshoe+ prior of [5]. Longer lists are given in Table 1 of [77] and
Table 2 of [6].

For spike-and-slab priors, the posterior distributions of negligible effects
present a higher weight for the spike: this provides a direct way to detect rel-
evant effects, and therefore to perform the selection. For global-local priors,
there is no posterior spike. The posterior density function, instead, is continu-
ous with probability mass highly concentrated around zero, and a direct way
for determining relevant effects is usually unavailable.

We employ global-local priors as they may offer substantial computational
advantages over spike-and-slab priors due to their convenient representation as
Gaussian scale mixtures, which give rise to convenient conjugate updates for all
the βh’s and ζh’s. [8] also show that such priors exhibit improved posterior con-
centrations. Furthermore, the estimates of frequentist regularization procedures
such as ridge [35], lasso [80], bridge [27] and elastic net [94] can be recasted as
posterior mode estimates from models with global-local priors.

4.2. Variational inference with global-local priors

Before considering their use within linear mixed model specifications, we illus-
trate the essential elements of variational inference for the simpler linear regres-
sion model. Without loss of generality, we will treat three of the most commonly
adopted global-local prior specifications, namely:

βh|τ ind.∼ Laplace(0, τ), βh|τ ind.∼ Horseshoe(0, τ) or βh|τ ind.∼ NEG(0, τ, λ), (14)
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Fig 1. Visual comparison of the probability density functions for the Laplace, Horseshoe and
Normal-Exponential-Gamma (NEG) distributions with zero mean and unit standard devia-
tion. For easiness of comparison, the standard Gaussian probability density function is also
displayed.

Table 1

Hierarchical formulation of the Laplace, Horseshoe and Negative-Exponential-Gamma
(NEG) priors (14) following the general global-local representation (13), for known τ .

Prior specification p(βh) p(βh|ζh) p(ζh|aζh) p(aζh)

Laplace(0, τ) N(0, τ2/ζh) Inverse-χ2(2, 1) −
Horseshoe(0, τ) N(0, τ2/ζh) Gamma(1/2, aζj ) Gamma(1/2, 1)
NEG(0, τ, λ) N(0, τ2/ζh) Inverse-χ2(2, 2aζj ) Gamma(λ, 1)

for each model coefficient βh, 1 ≤ h ≤ H. Hereafter λ > 0 is an additional shape
parameter that we always assume being user-specified.

The Laplace, Horseshoe and Normal-Exponential-Gamma (NEG) distribu-
tions account for different degrees of prior shrinkage towards zero and have
different tail behaviors, as shown in Figure 1. Each prior specification in (14)
can be recasted into the scale mixture framework (13), as summarized in Table 1.
For the Horseshoe and NEG priors, we use convenient hierarchical representa-
tions of p(ζh) based on auxiliary variables aζh , 1 ≤ h ≤ H, involving tractable
Gamma and Inverse-χ2 distributions. Details about the involved density func-
tions and auxiliary variable representations are summarized in Section S.1 of
the supplementary material.

A linear regression model with one of the three global-local priors in (14) is
then expressible as:

y|β0,β, σ
2 ∼ N(β01 + Xβ, σ2I),

β0 ∼ N(μβ0 , σ
2
β0

), β|ζ, τ2 ∼ N(0, τ2 diag(ζ)−1),

σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2), aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

τ2|aτ2 ∼ Inverse-χ2(1, 1/aτ2), aτ2 ∼ Inverse-χ2(1, 1/s2
τ2),

ζh|aζh
ind.∼ p(ζh|aζh), aζh

ind.∼ p(aζh), 1 ≤ h ≤ H,

(15)
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where β0 is the model intercept (which is usually excluded from the selection
procedure), 1 is a vector full of ones, β = [β1, . . . , βH ]T is the vector of coef-
ficients having global-local shrinkage priors, X = [x1, . . . ,xp] is the associated
design matrix, ζ = [ζ1, . . . , ζH ]T and aζ = [aζ1 , . . . , aζH ]T . The common Gaus-
sian and Half-t prior distributions are considered for β0 and σ, respectively.
Importantly, we specify a Half-t(sτ2 , 1) distribution with sτ2 > 0 for the global
scale parameter τ , allowing for weak prior informativeness about the global de-
gree of sparseness when a large scale parameter sτ2 is used. Hence, we let the
variable-selection procedure be free from hyperparameters that have to be man-
ually tuned by the user. The densities p(ζh|aζh) and p(aζh) vary according to
the global-local prior specification adopted, as shown in Table 1.

The model posterior density function p(β0,β, σ
2, aσ2 , τ2, aτ2 , ζ,aζ |y) admits

a tractable MFVB approximation when the following mean-field restriction is
used:

q(β0,β, σ
2, aσ2 , τ2, aτ2 , ζ,aζ)=q(β0,β)q(σ2)q(τ2)q(aσ2)q(aτ2)

H∏
h=1

{q(ζh)q(aζh)}.

The optimal q-density functions then results as follows:

q∗(β0,β) is a N(μq(β0,β),Σq(β0,β)) density function,

q∗(σ2) is an Inverse-χ2(ξq(σ2), λq(σ2)
)

density function,

q∗(aσ2) is an Inverse-χ2(ξq(aσ2 ), λq(aσ2 )
)

density function,

q∗(τ2) is an Inverse-χ2(ξq(τ2), λq(τ2)) density function,

q∗(aτ2) is an Inverse-χ2(ξq(aτ2 ), λq(aτ2 )) density function,

q∗(ζh) is

⎧⎪⎨
⎪⎩

an Inverse-Gaussian(μq(ζh), 1) d. f. for a Laplace prior
a Gamma(1, λq(ζh)) d. f. for a Horseshoe prior
an Inverse-Gaussian(μq(ζh), λq(ζh)) d. f. for a NEG prior

and q∗(aζh) is

⎧⎪⎨
⎪⎩

− for a Laplace prior
a Gamma(1, λq(aζh

)) d. f. for a Horseshoe prior
a Gamma(λ + 1, λq(aζh

)) d. f. for a NEG prior,

(16)

for 1 ≤ h ≤ H. When a Laplace prior is specified, the model does not include
the aζh auxiliary variables and therefore q(aζh) is not included. The expressions
for the parameter updates of these approximating densities, together with their
full derivations, are reported in Section S.3 of the supplementary material.

4.3. From shrinkage to selection: The signal adaptive variable
selector

One limitation of continuous global-local shrinkage priors is the unavailability
of direct information from the posterior of each βh for selecting relevant effects.
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Typically, the posterior distributions of less relevant coefficients arising from
such priors are highly concentrated around zero, with marked peaks and negli-
gible tails, although not having full mass at zero. Therefore, global-local shrink-
age priors do not provide any sparse posterior solution. This issue becomes even
more relevant when variational inference is used to fit the model because the
approximate marginal posterior densities of β are Gaussian, and so the peaks of
the true marginal posterior densities are approximated by bell-shaped curves.

Several heuristic methods have been developed for post-processing posterior
distributions arising from global-local priors and determining whether the asso-
ciated covariates have to be selected or not. A simple but possibly misleading
solution is to select as relevant the covariates associated with coefficients whose
posterior credible intervals do not contain the zero. Nonetheless, this approach
usually exhibits poor performances due to the difficulty of accurately estimating
the uncertainty in high dimensional problems, and depends on the chosen cred-
ible level. [19] define a local shrinkage factor which can take values in the unit
interval and help determine whether each variable is suggested to be selected or
not according to a pre-specified threshold, analogously to the classical posterior
inclusion probability of [4]. [12] propose a method based on posterior credible
regions, although its implementation and results rely upon the use of conjugate
Normal priors. [91] extended the method to global-local priors and propose an
intuitive approach to tune the prior hyperparameters based on minimizing a
discrepancy measure between the induced distribution of R2 from the prior and
the desired distribution.

All these methods and many others have a common issue, that is the depen-
dence on the choice of one or more thresholds. [8] propose grouping the entries of
posterior medians into null and non-null groups using 2-means clustering. While
this approach does not require any tuning parameters, issues emerge when there
are signals of varying strengths. [46] propose a similar approach which is based
on first obtaining a posterior distribution of the number of signals by clustering
the signal and the noise coefficients and then estimating the signals from the
posterior median.

In this work, we opt for the signal adaptive variable selector (SAVS) par-
tially motivated by [34] and accurately developed by [71]. The SAVS approach
post-processes a point estimate from the posterior distribution of a coefficient
having global-local prior distribution via soft-thresholding to determine whether
the associated covariate is assumed to be relevant or not. We adapt this pro-
cedure for usage in variational inference and propose Algorithm 1 as an imple-
mentation of the SAVS approach based on the optimal approximate posterior
densities q∗(βh), 1 ≤ h ≤ H. The procedure takes the approximate posterior
mean parameter of a generic coefficient subject to selection and the associated
unstandardized covariate as inputs. It then returns a sparsified approximate pos-
terior summary estimate μ∗

q∗(βh), together with a binary variable γh indicating
whether the hth covariate is suggested to be selected or not. The attractive-
ness of this approach comes from the fact that it is completely automated and
does not require any tuning parameters. [71] provide a theoretical justification
for the SAVS approach, noticing that its output can be obtained by solving an
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Algorithm 1 Signal Adaptive Variable Selector (SAVS) algorithm for perform-
ing variable selection using the optimal approximate density function q∗(βh) of
a generic coefficient with global-local prior.
Inputs: μq∗(βh)≡Eq∗ (βh) and xhbeing the covariate vector corresponding to βh, 1 ≤ h ≤ H.
If ‖xh‖2 ≤ |μq∗(βh)|−3:

μ∗
q∗(βh) = 0 and γh = 0;

else:

μ∗
q∗(βh) = sign(μq∗(βh))‖xh‖−2

(
|μq∗(βh)| ‖xh‖2 − μ−2

q∗(βh)

)
and γh = 1.

Output: A sparse estimate μ∗
q∗(βh) for q∗(βh) and the associated binary selector γh.

optimization problem closely related to the adaptive lasso of [93], and show it
is highly competitive among alternative Bayesian selection procedures.

5. Linear mixed models with global-local priors on fixed effects

Variational approximations for linear mixed models with two- and three-level
random effects are described in Section 3, using a generic β ∼ N(μβ,Σβ) prior
distribution for the fixed effects parameter vector. In this work, our interest is
in developing variational approximations for generalizations of model (1) em-
bedding prior specifications for fixed effects selection such as those discussed in
Section 4.

In order to do so, we subdivide the p-dimensional fixed effects vector β as
follows:

β =

⎡
⎢⎢⎢⎣
βR

βA

βS

⎤
⎥⎥⎥⎦ ,

where βR is a pR-dimensional vector of fixed effects associated to the random (R)
effects component of the model, βA is a pA-dimensional vector of additional (A)
fixed effects and βS is a pS-dimensional vector of fixed effects which are subject
to selection (S). Here p = pR +pA +pS, with pR, pA and pS varying according to
the application of interest. For the two- and three-level mixed models considered
in this work, pR = q and pR = max(q1, q2) respectively. Typically, q, q1 and q2
are relatively small, while pA and pS could take moderate to large values.

Similarly, we subdivide the fixed effects design matrix as follows:

X =
[
XR

∣∣∣XA
∣∣∣XS

]
,

with XS assumed to have columns with zero mean and unit variance, unless
differently specified. The fixed effects linear contribution of model (1) then fac-
torizes into Xβ = XRβR+XAβA+XSβS, and the same applies to the two-level
mixed model (2) and the three-level mixed model (4) specifications. Notice that
for the former specification Zi = XR

i , for all 1 ≤ i ≤ m.
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We assume without loss of generality that βR, βA and βS are a-priori inde-
pendent from each other, and specify the following prior distributions:

βR ∼ N(μβR ,ΣβR), βA ∼ N(μβA ,ΣβA), βS ∼ p(βS) =
pS∏
h=1

p(βS
h),

with hyperparameters μβR ∈ R
pR , μβA ∈ R

pA , ΣβR and ΣβA symmetric posi-
tive definite matrices. The prior specification for βS assumes a-priori indepen-
dence among all the coefficients subject to selection, with p(βS

h) taking one
of the three different global-local prior distributions treated in Section 4 for
1 ≤ h ≤ pS, specifically:

βS
h|τ

ind.∼ Laplace(0, τ), βS
h|τ

ind.∼ Horseshoe(0, τ) or βS
h|τ

ind.∼ NEG(0, τ, λ).

The resulting linear mixed model is a generalization of (1) that accounts for
global-local prior specification over a subset of the fixed effects, and can be
expressed as:

y|βR,βA,βS,u, σ2 ∼ N(XRβR + XAβA + XSβS + Zu, σ2I),

u|G ∼ N(0,G),⎡
⎢⎢⎢⎣
βR

βA

βS

⎤
⎥⎥⎥⎦
∣∣∣∣∣ ζ, τ2 ∼ N

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
μβR

μβA

0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

ΣβR O O

O ΣβA O

O O τ2diag(ζ)−1

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ ,

σ2|aσ2 ∼ Inverse-χ2(νσ2 , 1/aσ2), aσ2 ∼ Inverse-χ2(1, 1/(νσ2s2
σ2)),

ζh|aζh
ind.∼

⎧⎪⎨
⎪⎩

Inverse-χ2(2, 1) for a Laplace prior
Gamma(1/2, aζh) for a Horseshoe prior
Inverse-χ2(2, 2aζh) for a NEG prior,

aζh
ind.∼

⎧⎪⎨
⎪⎩

− for a Laplace prior
Gamma(1/2, 1) for a Horseshoe prior
Gamma(λ, 1) for a NEG prior,

for 1 ≤ h ≤ pS,

τ2|aτ2 ∼ Inverse-χ2(1, 1/aτ2), aτ2 ∼ Inverse-χ2(1, 1/s2
τ2),

G|AG ∼ p(G|AG), AG ∼ p(AG).

(17)

Here ζ ≡ [ζ1, . . . , ζpS ]T and aζ ≡ [aζ1 , . . . , aζpS
]T . This model can be fitted via

MFVB assuming that the full posterior density function is approximated as

p(β,u, σ2, aσ2 , ζ,aζ , τ
2, aτ2 ,G,AG|y) ≈

q(β,u, σ2, aσ2 , ζ,aζ , τ
2, aτ2 ,G,AG)

(18)
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and a tractable solution arises with the following mean-field restriction:

q(β,u, σ2, aσ2 , ζ,aζ , τ
2, aτ2 ,G,AG) =

q(β,u) q(σ2) q(aσ2)
{

pS∏
h=1

q(ζh) q(aζh)
}
q(τ2) q(aτ2) q(G) q(AG).

(19)

Arguments similar to those given in Section 3.2 and 4.2 lead to the optimal
approximating densities being:

q∗(β,u) is a N(μq(β,u),Σq(β,u)) density function,

q∗(σ2) is an Inverse-χ2(ξq(σ2), λq(σ2)) density function,

q∗(aσ2) is an Inverse-χ2(ξq(aσ2 ), λq(aσ2 )) density function,

q∗(ζh) is

⎧⎪⎨
⎪⎩

an Inverse-Gaussian(μq(ζh), 1) d. f. for a Laplace prior
a Gamma(1, λq(ζh)) d. f. for a Horseshoe prior
an Inverse-Gaussian(μq(ζh), λq(ζh)) d. f. for a NEG prior,

q∗(aζh) is

⎧⎪⎨
⎪⎩

− for a Laplace prior
a Gamma(1, λq(aζh

)) d. f. for a Horseshoe prior
a Gamma(λ + 1, λq(aζh

)) d. f. for a NEG prior,

for 1 ≤ h ≤ pS,

q∗(τ2) is an Inverse-χ2(ξq(τ2), λq(τ2)) density function

and q∗(aτ2) is an Inverse-χ2(ξq(aτ2 ), λq(aτ2 )) density function.

(20)

The optimal approximating densities for the matrices G and AG vary accord-
ing to the adopted random effect structure, as explained in Section 3.2. Notice
that (19) jointly approximates βR, βA, βS and u, allowing all the fixed effects to
share posterior dependence with the random effects. Also, the q∗(βS

h) approxi-
mating densities are Gaussian, although different global-local prior specifications
may lead to marginal posterior density functions p(βS

h|y) having shapes around
zero that are different from the typical bell-shaped behavior, especially those of
fixed effects associated to irrelevant covariates. Using MFVB we sacrifice some
degree of accuracy, yet obtaining a substantial computational time advantage
over standard MCMC sampling procedures. Section 6 investigates the quality
of these approximations and the fixed effects selection performances.

5.1. Naïve updates

The updates of the parameters of the q-densities in (20) can be derived combin-
ing and adapting the results discussed in Sections 3.2 and 4.2, and references
therein. In particular, those related to the q∗(β,u) optimal density function are:
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Σq(β,u) ←−⎛
⎜⎜⎜⎜⎜⎜⎝
μq(1/σ2) C

TC +

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ−1
βR O O O

O Σ−1
βA O O

O O μq(1/τ2)diag(μq(ζ)) O

O O O Eq(G−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

and μq(β,u) ←− Σq(β,u)

⎛
⎜⎜⎜⎜⎜⎜⎝
μq(1/σ2) C

Ty +

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ−1
βRμβR

Σ−1
βAμβA

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(21)

The update for Eq(G−1) is given by (11) or (12) depending on whether we
are considering a two-level or a three-level mixed model specification, respec-
tively. The main difference with the expressions given in (10) is that a global-
local prior specification on each element of βS introduces the diagonal matrix
μq(1/τ2)diag(μq(ζ)) of dimension pS×pS inside the update expression for Σq(β,u).
This diagonal matrix is updated at each iteration of the MFVB algorithm em-
ploying the updated values of μq(1/τ2) and μq(ζ), accordingly to the global-local
prior adopted.

The updates for the parameters of q∗(σ2) and q∗(aσ2) are identical to those
in (10). The updates for the parameters of the optimal approximating q-densities
of G and AG are identical to those described in Section 3.2. The updates for
the parameters of q∗(ζh) and q∗(aζh), 1 ≤ h ≤ pS, q∗(τ2) and q∗(aτ2) follow
with minor modifications from Section 4.2, replacing H with pS.

Nevertheless, updates (21) suffer from the same problematics elucidated in
Section 3.2 for large m values. Therefore, an appropriate streamlined enhance-
ment for efficient implementations is required.

5.2. Streamlined updates

Results 1 and 4 from [60] can be extended to derive a streamlined MFVB al-
gorithm for efficiently updating the parameters of the densities in (20) and, in
particular, for exploiting the sparse matrix structures presented in updates (21).
Such results are based on the two- and three-level sparse matrix least squares
problems defined in [60], and make use of the associated

SolveTwoLevelSparseMatrix and SolveThreeLevelSparseMatrix

routines, which are recalled in Section S.2 of the supplementary material. The
following results explain how to efficiently compute μq(β,u) and the relevant
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sub-blocks of Σq(β,u) which are necessary for finding the optimal q-density listed
in (20).

Result 1 (Result 1 of [60], revisited) The MFVB updates of μq(β,u) and
each of the sub-blocks of Σq(β,u) that are relevant for variational inference con-
cerning model (20) with a two-level random effects specification are expressible
as a two-level sparse matrix problem of the form Aμq(β,u) = a, where a and
the non-zero sub-blocks of A are, according to the notation in Section 3.3:

A11 = μq(1/σ2)

m∑
i=1

(XT
i Xi) +

⎡
⎢⎢⎢⎣

Σ−1
βR O O

O Σ−1
βA O

O O μq(1/τ2) diag(μq(ζ))

⎤
⎥⎥⎥⎦ ,

a1 = μq(1/σ2)

m∑
i=1

(XT
i yi) +

⎡
⎢⎢⎢⎣

Σ−1
βRμβR

Σ−1
βAμβA

0

⎤
⎥⎥⎥⎦ ,

A22,i = μq(1/σ2)Z
T
i Zi + M q(Σ−1), A12,i = μq(1/σ2)X

T
i Zi,

a2,i = μq(1/σ2)Z
T
i yi,

for 1 ≤ i ≤ m. Moreover, Xi = [XR
i |XA

i |XS
i ]. The SolveTwoLevelSparseMatrix

routine efficiently solves the associated linear system and provides the solutions:

μq(β) = x1, Σq(β) = A11

and, for 1 ≤ i ≤ m,

μq(ui) = x2,i, Σq(ui) = A22,i, Eq{(β − μq(β))(ui − μq(ui))
T } = A12,i.

Result 2 (Result 4 of [60], revisited) The MFVB updates of μq(β,u) and
each of the sub-blocks of Σq(β,u) that are relevant for variational inference con-
cerning model (20) with a three-level random effects specification are expressible
as a three-level sparse matrix problem of the form Aμq(β,u) = a, where a and
the non-zero sub-blocks of A are, according to the notation in Section S.2.2 of
the supplementary material:

A11 = μq(1/σ2)

m∑
i=1

ni∑
j=1

(XT
ijXij) +

⎡
⎢⎢⎢⎣

Σ−1
βR O O

O Σ−1
βA O

O O μq(1/τ2) diag(μq(ζ))

⎤
⎥⎥⎥⎦ ,

a1 = μq(1/σ2)

m∑
i=1

ni∑
j=1

(XT
ijyij) +

⎡
⎢⎢⎢⎣

Σ−1
βRμβR

Σ−1
βAμβA

0

⎤
⎥⎥⎥⎦ ,
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A22,i = μq(1/σ2)

ni∑
j=1

(
(ZL1

ij )TZL1
ij

)
+ M q((ΣL1)−1),

A12,i = μq(1/σ2)

ni∑
j=1

(Xij)TZL1
ij ,

a2,i = μq(1/σ2)

ni∑
j=1

(ZL1
ij )Tyij ,

A22,ij = μq(1/σ2)(ZL2
ij )TZL2

ij + M q((ΣL2)−1),

A12,i,j = μq(1/σ2)(ZL1
ij )TZL2

ij , A12,ij = μq(1/σ2)X
T
ijZ

L2
ij ,

a2,ij = μq(1/σ2)(ZL2
ij )Tyij ,

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. Moreover, Xij = [ XR
ij | XA

ij | XS
ij ]. The

SolveThreeLevelSparseMatrix routine efficiently solves the associated linear sys-
tem, and provides the solutions:

μq(β) = x1, Σq(β) = A11,

μq(uL1
i

) = x2,i, Σq(uL1
i

) = A22,i,

Eq{(β − μq(β))(uL1
i − μq(uL1

i
))T } = A12,i, 1 ≤ i ≤ m, and

μq(uL2
ij

) = x2,ij , Σq(uL2
ij

) = A22,ij , Eq{(β − μq(β))(uL2
ij − μT

q(uL2
ij

)} = A12,ij ,

Eq{(uL1
i − μq(uL1

i
))(uL2

ij − μq(uL2
ij

))T } = A12,i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

We employ these two results to derive streamlined MFVB algorithms for de-
termining the optimal parameters of the densities in (20) for multilevel models
having two-level and three-level random effects. The former specification is ac-
commodated by Algorithm 2, the latter by Algorithm 3. Notice all the sub-blocks
of A and components of a described in Results 1 and 2 can be updated sim-
ply performing linear transformations of matrices involving multiplications of
sub-vectors of y and sub-matrices of X and Z which need to be computed only
once instead of at each iteration of the associated algorithms.

Similar results are provided in [60] in terms of sparse least squares problems
of the type ‖b − Bμq(β,u)‖2, after exploiting the equalities A = BTB and
a = BTb. This class of problems can be solved via efficient QR-decompositions,
instead of sparse matrix problems of the type Aμq(β,u) = a which rely upon
matrix inversion routines. Section 2.1 of [62] claims that the former class of
problems and associated

SolveTwoLevelSparseLeastSquares and SolveThreeLevelSparseLeastSquares

routines proposed in Appendix A of [60] are numerically preferred to the latter,
since QR-decomposition methods are more computationally stable. However,
streamlined MFVB approximations based on the QR-decomposition require an
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additional set of matrices to be used at each algorithm iteration. Efficient QR-
decomposition routines and functions for performing matrix multiplications with
the associated Q and R matrices are not available in all standard computing en-
vironments and programming languages. Furthermore, the sub-blocks of B and
components of b become particularly sparse for large p, as for the cases con-
sidered in this work, entailing onerous memory consumption and compromising
efficiency of the QR-decomposition. For these reasons, we opt for routines based
on sparse matrix linear system problems such as those of Results 1 and 2.

The convergence of Algorithms 2 and 3 can be assessed in several ways.
One way is to monitor the relative increment of the variational lower bound
to the marginal log-likelihood having general expression given by the first ad-
dend of (6). The algorithm can be stopped when the increment falls below a
pre-specified threshold. The drawback is that much tedious algebra is required
to derive an explicit lower bound expression. An alternative way is to mea-
sure the absolute relative increments among all the parameters updated at each
algorithm iteration and stopping when the maximum increment falls below a
pre-specified threshold. However, both the approaches can be computationally
expensive, especially for large m values, and these convergence checks may sig-
nificantly slow down the overall streamlined iterations. Therefore, we suggest
letting Algorithms 2 and 3 run for a reasonable number of iterations fixed in
advance and increase the number of iterations if convergence checks suggest that
the desired level of convergence has not been achieved.

A code bundle with R and C++ implementations of our algorithms is publicly
available at github.com/lucamaestrini/DMTWcode, in the GitHub repository
DMTWcode.

Algorithm 2 Streamlined algorithm for obtaining the mean field variational
Bayes approximate posterior density functions (20) for the parameters of the
linear mixed model (17) with the two-level random effects specification (2). The
approximation is based on the mean-field density restriction (19). The algorithm
description requires more than one page and is continued on a subsequent page.
Data Inputs: yi(oi × 1),XR

i (oi × pR),XA
i (oi × pA),XS

i (oi × pS),Zi(oi × q),
1 ≤ i ≤ m. Build Xi = [ XR

i |XA
i |XS

i ](oi × p).
Global-local prior type choice: Laplace, Horseshoe or NEG.
Hyperparameter Inputs: μβR (pR × 1),μβA (pA × 1),

ΣβR (pR × pR),ΣβA(pA × pA) both symmetric and positive
definite, νσ2 , sσ2 , sτ2 , νΣ, sΣ, 1, . . . , sΣ, q > 0. If NEG: λ > 0.

Initialize: μq(1/σ2) > 0, μq(1/a
σ2 ) > 0, μq(1/τ2) > 0, μq(1/a

τ2 ) > 0,
μq(ζ)(pS × 1),μq(aζ)(pS × 1),
Mq(Σ−1)(q × q),M

q(A−1
Σ

)(q × q) both symmetric and positive definite.

ξq(σ2) ←− νσ2 +
∑m

i=1 oi; ξq(Σ) ←− νΣ + m + 2q − 2;
ξq(a

σ2 ) ←− νσ2 + 1; ξq(AΣ) ←− νΣ + q;
ξq(τ2) ←− pS + 1; ξq(a

τ2 ) ←− 2; ΛAΣ
←− {νΣ diag(s2

Σ, 1, . . . , s
2
Σ, q)}−1.

Cycle until convergence:
continued on a subsequent page . . .

https://github.com/lucamaestrini/DMTWcode
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Algorithm 2 continued. This is a continuation of the description of this
algorithm that commences on a preceding page.

Compute a1,A11, {a2,i,A22,i,A12,i : 1 ≤ i ≤ m} with expressions from Result 1.

S1 ←− SolveTwoLevelSparseMatrix

(
a1,A11, {a2,i,A22,i,A12,i : 1 ≤ i ≤ m}

)
.

μq(β) ←− x1 component of S1; Σq(β) ←− A11 component of S1;

μq((βS)2) ←− diagonal
(
Σq(βS) + μq(βS)μ

T
q(βS)

)
;

λq(σ2) ←− μq(1/a
σ2 ); Λq(Σ) ←− M

q(A−1
Σ

).

For i = 1, . . . ,m:

μq(ui) ←− x2,i component of S1; Σq(ui) ←− A22,i component of S1;

Eq{(β − μq(β))(ui − μq(ui))
T } ←− A12,i component of S1;

λq(σ2) ←− λq(σ2) +
∥∥yi −Xiμq(β) − Ziμq(ui)

∥∥2
+ tr(XT

i XiΣq(β))

+ tr(ZT
i ZiΣq(ui)) + 2tr[ZT

i XiEq{(β − μq(β))(ui − μq(ui))
T }];

Λq(Σ) ←− Λq(Σ) + μq(ui)μ
T
q(ui)

+ Σq(ui);

μq(1/σ2) ←− ξq(σ2)/λq(σ2); Mq(Σ−1) ←− (ξq(Σ) − q + 1)Λ−1
q(Σ);

λq(a
σ2 ) ←− μq(1/σ2) + 1/(νσ2s2

σ2); μq(1/a
σ2 ) ←− ξq(a

σ2 )/λq(a
σ2 );

λq(τ2) ←− μq(1/a
τ2 ) + μT

q(ζ)μq((βS)2); μq(1/τ2) ←− ξq(τ2)/λq(τ2);

λq(a
τ2 ) ←− μq(1/τ2) + 1/s2

τ2 ; μq(1/a
τ2 ) ←− ξq(a

τ2 )/λq(a
τ2 );

g ←− 1
2μq(1/τ2)μq((βS)2);

If Laplace: μq(ζ) ←−
√

1/(2g);

If Horseshoe: λq(ζ) ←− μq(aζ) + g; μq(ζ) ←− 1/λq(ζ);
λq(aζ) ←− μq(ζ) + 1; μq(aζ) ←− 1/λq(aζ);

If NEG: λq(ζ) ←− 2μq(aζ); μq(ζ) ←−
√

λq(ζ)/(2g);
μq(1/ζ) ←− 1/μq(ζ) + 1/(2μq(aζ));
λq(aζ) ←− μq(1/ζ) + 1; μq(aζ) ←− (λ + 1)(1/λq(aζ));

Λq(AΣ) ←− diag
{

diagonal
(
Mq(Σ−1)

)}
+ ΛAΣ

; M
q(A−1

Σ
) ←− ξq(AΣ)Λ−1

q(AΣ).

Outputs: μq(β),Σq(β),
{
μq(ui),Σq(ui), Eq{(β − μq(β))(ui − μq(ui))

T } : 1 ≤ i ≤ m
}

,
ξq(σ2), λq(σ2), ξq(aσ2 ), λq(a

σ2 ), ξq(τ2), λq(τ2), ξq(aτ2 ), λq(a
τ2 ),

if Laplace: μq(ζ), if Horseshoe:
{
λq(ζ),λq(aζ)

}
, if NEG:

{
μq(ζ),λq(ζ),λq(aζ)

}
,

ξq(Σ),Λq(Σ), ξq(AΣ),Λq(AΣ).
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Algorithm 3 Streamlined algorithm for obtaining the mean field variational
Bayes approximate posterior density functions (20) for the parameters of the
linear mixed model (17) with the three-level random effects specification (4). The
approximation is based on the mean-field density restriction (19). The algorithm
description requires more than one page and is continued on a subsequent page.
Data Inputs: yij(oij × 1),XR

ij(oij × pR),XA
ij(oij × pA),XS

ij(oij × pS),
ZL1

ij (oij × q1),ZL2
ij (oij × q2), 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Build Xij = [ XR
ij |XA

ij |XS
ij ](ni × p).

Global-local prior type choice: Laplace, Horseshoe or NEG.
Hyperparameter Inputs: μβR (pR × 1),μβA (pA × 1),

ΣβR (pR × pR) and ΣβA (pA × pA) both symmetric
and positive definite, νσ2 , sσ2 , sτ2 , ν

Σ
L1 , ν

Σ
L2 ,

s
Σ

L1, 1, . . . , sΣL1, q1
, s

Σ
L2, 1, . . . , sΣL2, q2

> 0. If NEG: λ > 0.
Initialize: μq(1/σ2) > 0, μq(1/a

σ2 ) > 0, μq(1/τ2) > 0, μq(1/a
τ2 ) > 0,

μq(ζ)(pS × 1),μq(aζ)(pS × 1),
Mq((ΣL1)−1)(q1 × q1),Mq((ΣL2)−1)(q2 × q2),M

q(A−1
Σ

L1 )(q1 × q1),

M
q(A−1

Σ
L2 )(q2 × q2) all symmetric and positive definite.

ξq(σ2) ←− νσ2 +
∑m

i=1

∑ni

j=1 oij ; ξq(ΣL1) ←− ν
Σ

L1 + m + 2q1 − 2;

ξq(ΣL2) ←− ν
Σ

L2 +
∑m

i=1 ni + 2q2 − 2;
ξq(a

σ2 ) ←− νσ2 + 1; ξq(A
Σ

L1 ) ←− ν
Σ

L1 + q1; ξq(A
Σ

L2 ) ←− ν
Σ

L2 + q2;
ξq(τ2) ←− pS + 1; ξq(a

τ2 ) ←− 2;

ΛA
Σ

L1 ←− {ν
Σ

L1 diag(s2
Σ

L1, 1
, . . . , s2

Σ
L1, q1

)}−1;

ΛA
Σ

L2 ←− {ν
Σ

L2 diag(s2
Σ

L2, 1
, . . . , s2

Σ
L2, q2

)}−1.
Cycle until convergence:

Compute a1,A11, {a2,i,A22,i,A12,i : 1 ≤ i ≤ m}, {a2,ij ,A22,ij ,A12,ij ,A12,i,j :
1 ≤ i ≤ m, 1 ≤ j ≤ ni} with expressions from Result 2.

S2 ←− SolveThreeLevelSparseMatrix

(
a1,A11, {a2,i,A22,i,A12,i : 1 ≤ i ≤ m},

{a2,ij ,A22,ij ,A12,ij ,A12,i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}
)

.

μq(β) ←− x1 component of S2; Σq(β) ←− A11 component of S2;

μq((βS)2) ←− diagonal
(
Σq(βS) + μq(βS)μ

T
q(βS)

)
;

λq(σ2) ←− μq(1/a
σ2 ); Λq(ΣL1) ←− M

q(A−1
Σ

L1 ); Λq(ΣL2) ←− M
q(A−1

Σ
L2 ).

For i = 1, . . . ,m:

μ
q(uL1

i
) ←− x2,i component of S2; Σ

q(uL1
i

) ←− A22,i component of S2;

Eq{(β − μq(β))(uL1
i − μ

q(uL1
i

))
T } ←− A12,i component of S2;

Λq(ΣL1) ←− Λq(ΣL1) + μ
q(uL1

i
)μ

T
q(uL1

i
)
+ Σ

q(uL1
i

).

For j = 1, . . . , ni:
μ
q(uL2

ij
) ←− x2,ij component of S2;

Σ
q(uL2

ij
) ←− A22,ij component of S2;

continued on a subsequent page . . .
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Algorithm 3 continued. This is a continuation of the description of this
algorithm that commences on a preceding page.

Eq{(β − μq(β))(uL2
ij − μ

q(uL2
ij

))
T } ←− A12,ij component of S2;

Eq{(uL1
i − μ

q(uL1
i

))(u
L2
ij − μ

q(uL2
ij

))
T } ←− A12,i,j component of S2;

λq(σ2) ←− λq(σ2) +
∥∥yij −Xijμq(β) − ZL1

ij μq(uL1
i

) − ZL2
ij μq(uL2

ij
)

∥∥2

+ tr(XT
ijXijΣq(β)) + tr((ZL1

ij )TZL1
ij Σ

q(uL1
i

))

+ tr((ZL2
ij )TZL2

ij Σ
q(uL2

ij
))

+ 2tr[(ZL1
ij )TXijEq{(β − μq(β))(uL1

i − μ
q(uL1

i
))

T }]

+ 2tr[(ZL2
ij )TXijEq{(β − μq(β))(uL2

ij − μ
q(uL2

ij
))

T }]

+ 2tr[(ZL1
ij )TZL2

ij Eq{(uL1
i − μ

q(uL1
i

))(u
L2
ij − μ

q(uL2
ij

))
T }];

Λq(ΣL2) ←− Λq(ΣL2) + μ
q(uL2

ij
)μ

T
q(uL2

ij
)
+ Σ

q(uL2
ij

).

μq(1/σ2) ←− ξq(σ2)/λq(σ2);

Mq((ΣL1)−1) ←− (ξq(ΣL1) − q1 + 1)Λ−1
q(ΣL1);

Mq((ΣL2)−1) ←− (ξq(ΣL2) − q2 + 1)Λ−1
q(ΣL2);

λq(a
σ2 ) ←− μq(1/σ2) + 1/(νσ2s2

σ2); μq(1/a
σ2 ) ←− ξq(a

σ2 )/λq(a
σ2 );

λq(τ2) ←− μq(1/a
τ2 ) + μT

q(ζ)μq((βS)2); μq(1/τ2) ←− ξq(τ2)/λq(τ2);

λq(a
τ2 ) ←− μq(1/τ2) + 1/s2

τ2 ; μq(1/a
τ2 ) ←− ξq(a

τ2 )/λq(a
τ2 );

g ←− 1
2μq(1/τ2)μq((βS)2);

If Laplace: μq(ζ) ←−
√

1/(2g);

If Horseshoe: λq(ζ) ←− μq(aζ) + g; μq(ζ) ←− 1/λq(ζ);
λq(aζ) ←− μq(ζ) + 1; μq(aζ) ←− 1/λq(aζ);

If NEG: λq(ζ) ←− 2μq(aζ); μq(ζ) ←−
√

λq(ζ)/(2g);
μq(1/ζ) ←− 1/μq(ζ) + 1/(2μq(aζ));
λq(aζ) ←− μq(1/ζ) + 1; μq(aζ) ←− (λ + 1)(1/λq(aζ));

Λq(A
Σ

L1 ) ←− diag
{

diagonal
(
Mq((ΣL1)−1)

)}
+ ΛA

Σ
L1 ;

Mq((A
Σ

L1 )−1) ←− ξq(A
Σ

L1 )Λ−1
q(A

Σ
L1 ).

Λq(A
Σ

L2 ) ←− diag
{

diagonal
(
Mq((ΣL2)−1)

)}
+ ΛA

Σ
L2 ;

Mq((A
Σ

L2 )−1) ←− ξq(A
Σ

L2 )Λ−1
q(A

Σ
L2 ).

Outputs: μq(β),Σq(β),

{
μ
q(uL1

i
),Σq(uL1

i
), Eq{(β − μq(β))(uL1

i − μ
q(uL1

i
))

T } : 1 ≤ i ≤ m

}
,{

μ
q(uL2

ij
),Σq(uL2

ij
), Eq{(β − μq(β))(uL2

ij − μ
q(uL2

ij
))

T } : 1 ≤ i ≤ m, 1 ≤ j ≤ ni

}
,

ξq(σ2), λq(σ2), ξq(aσ2 ), λq(a
σ2 ), ξq(τ2), λq(τ2), ξq(aτ2 ), λq(a

τ2 ),
if Laplace: μq(ζ), if Horseshoe:

{
λq(ζ),λq(aζ)

}
, if NEG:

{
μq(ζ),λq(ζ),λq(aζ)

}
,

ξq(ΣL1),Λq(ΣL1), ξq(ΣL2),Λq(ΣL2), ξq(A
Σ

L1 ),Λq(A
Σ

L1 ), ξq(A
Σ

L2 ),Λq(A
Σ

L2 ).
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6. Simulation study investigations

We discuss the results of a simulation study conducted to assess:

1. the accuracy of the optimal q∗-density approximations compared to the
marginal posterior density functions obtained via MCMC, when global-
local priors are specified;

2. fixed effects selection performances via the SAVS procedure for effectively
discriminating the relevant fixed effects from those being irrelevant;

3. computational timings and memory storage requirements for both naïve
and streamlined algorithm implementations, especially when the number
of parameters increases.

Notice that the accuracy and variable selection performances are not affected by
the use of streamlined updates in place of naïve counterparts, given that both
the implementations converge to the same solution.

The simulation study was performed on a MacBook Pro laptop with a 1.4
gigahertz processor and 8 gigabytes of random access memory. To allow for
maximal speed, both the MFVB algorithms and corresponding MCMC sampling
schemes were implemented in C++ employing the Armadillo library [73] and
executed into an R environment using the RcppArmadillo package [22].

The simulation study focused on three-level random effect models, which
give rise to more complex three-level sparse matrix structures. We simulated 50
datasets according to model specification (17) with m = 100 groups, each with
ni = 15 sub-groups, each having oij = 20 units, for 1 ≤ i ≤ 100, 1 ≤ j ≤ 15.
We included a random intercept and a random slope for both the group and
sub-group levels (q1 = q2 = pR = 2) with true parameter values being βR =
[0.58 1.98]T , and pA = 3 additional fixed effects having true parameter values
βA = [0.7 − 0.9 1.8]T . We also considered a sparse design setting with pS = 50
fixed effects such that the first 10 of them were βS

1 = 1.91, βS
2 = 1.96, βS

3 =
−0.10, βS

4 = 1.62, βS
5 = −1.45, βS

6 = −1.53, βS
7 = 0.24, βS

8 = 1.76, βS
9 = 1.79 and

βS
10 = −0.15, while the remaining 40 were assumed to be irrelevant and hence the

corresponding parameters had true value equal to zero (βS
h = 0 for each 11 ≤

h ≤ 50). The true variance parameter σ2 was fixed to 0.7. The random effects
vectors uL1

i and uL2
ij were respectively generated independently from N(0,ΣL1)

and N(0,ΣL2) distributions, having

ΣL1 =

⎡
⎣ 0.42 −0.09

−0.09 0.52

⎤
⎦ and ΣL2 =

⎡
⎣ 0.80 −0.24

−0.24 0.75

⎤
⎦ .

For each data replication, the slope-associated column of XR was generated from
a standard Gaussian distribution, while the rows of XA and XS were gener-
ated from two multivariate Gaussian distributions having zero mean vector and
covariance matrices generated from Wishart(pA, I) and Wishart(pS, I) distribu-
tions, respectively. This strategy produces covariates with different variability
and non-zero correlations that better mimic a real-data scenario. The setting
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embeds a fixed effects design matrix X of size 30,000 × 55, and a sparse random
effects design matrix Z of size 30,000 × 3,200 with 96 millions cells, of which
99.875% are zeros.

We proceed fitting model (17) for each data replication using diffuse pri-
ors with hyperparameters μβR = μβA = 0, ΣβR = ΣβA = 1010I, νσ2 = 1,
ν
Σ

L1 = ν
Σ

L2 = 2, sσ2 = s
Σ

L1, 1 = s
Σ

L1, 2 = s
Σ

L2, 1 = s
Σ

L2, 2 = 105. Without loss
of generality, a Horseshoe prior for all the elements of βS have been specified,
with sτ2 = 105 to limit prior information about the degree of sparsity. Along
all the simulation study, the MFVB approximations were obtained by running
200 iterations of the streamlined or naïve algorithms, i.e. four times the number
of iterations used in the numerical experiments of [60]. This number of MFVB
iterations was chosen to guarantee appropriate convergence of the variational
algorithms, as well as a fair computational time comparison between naïve and
streamlined MFVB. [53] suggest running variational algorithms until the rel-
ative change in the variational parameters reaches a certain threshold. In our
numerical experiments, the 200 MFVB iterations guaranteed that the relative
change in the variational parameter estimates was smaller that 10−3 and for this
or smaller values the accuracy and fixed effect selection performance of MFVB
was not impacted. Variational algorithm convergence could also be assessed by
monitoring the lower bound at every iteration or after a certain number of iter-
ations; however, deriving the variational lower bound is subject to calculation
errors and its computation can be time consuming.

6.1. Accuracy assessment

We measured the quality of the variational approximations using the accuracy
index proposed in Section 3.4 of [24]. For a generic univariate parameter θ ∈ Θ,
this is defined as

Accuracy(θ) ≡
(

1 − 1
2

∫
Θ
|q∗(θ) − p(θ|y)|dθ

)
%, (22)

where p(θ|y) is the marginal posterior density of θ and q∗(θ) is the associated
optimal approximating density function obtained via MFVB. This index takes
values between 0% and 100%, with a score of 100% indicating perfect matching
between q∗(θ) and p(θ|y), and 0% if the densities have no overlapping mass. In
practice, computation of the true p(θ|y) is numerically challenging, so we em-
ployed binned kernel density estimation with direct plug-in bandwidth selection
[see Section 3.6.1 of 86] and applied it to the MCMC samples using the R pack-
age KernSmooth [85]. The MCMC samplings were performed using a warmup of
length 5,000 followed by 100,000 iterations, to which we applied a thinning value
of 20. The integration in (22) was then accurately performed via trapezoidal nu-
merical quadrature. Figure 2 shows the accuracy results through boxplots for
the 50 data replicates. The boxplots refer to all the entries of βR and βA, to
10 elements of βS chosen such that 5 of them have non-zero values (βS

1 , βS
3 ,

βS
4 , βS

6 and βS
8 ) and 5 are null (βS

11, βS
23, βS

24, βS
36 and βS

48), the intercept- and
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Fig 2. Side-by-side boxplots of the accuracy scores from the simulation study for a selection
of model parameters and random effects. Outliers are displayed as solid points.

slope-associated elements of uL1
i and uL2

ij , for 1 ≤ i ≤ 3 and j = 1, the entries
of ΣL1 and ΣL2, σ2, and τ2. The intercept- and slope-associated parameters are
identified by the subscripts “int” and “slp”, respectively.

Variational approximations showed high accuracy scores for all the model
parameters considered and across the different data replications. All the fixed
effects subject to selection and having non-zero true values exhibited accuracy
scores greater than 90%. In contrast, those having true values equal to zero
had lower accuracy scores between 75% and 85% due to the spiky marginal
posterior densities being approximated by Gaussian variational densities. All the
other fixed effects parameters, random effects and variance parameters showed
accuracy scores greater than 90%. The accuracy scores of the global variance
parameter τ2 were under 50%. Despite not directly shown, all the q∗(ζh)’s had
accuracy scores between 75% and 80%. Similar results were obtained for the
alternative global-local prior specifications.

Figure 3 displays the MFVB and MCMC approximate posterior densities,
together with the associated accuracy scores, obtained for the first data replica-
tion of the simulation study. These plots allow to visually assess the quality of
the approximation and show that the approximate posterior density functions
are generally concentrated around the true parameter values. Notice that the
global-local prior shrinks the MCMC marginal posterior densities of the βS-
parameters having null true value towards zero. The corresponding q∗-densities
are Gaussian and, although they are not able to capture peak and tail behaviors,
they provide satisfactory approximations. Notice also that the τ2 approximate
posterior densities are concentrated around a very small value, as expected for
the sparse design setting we considered in the simulation study.
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Fig 3. Approximate posterior density functions of some of the three-lever random effects
model parameters obtained from the first replication of the simulation study. Each plot shows
the optimal approximate posterior density function q∗(θ) obtained via MFVB (black dashed
curves) and the MCMC-based p(θ|y) densities (grey curves). A vertical line indicates the
parameter true value. The percentages of accuracy are also provided.

6.2. Fixed effects selection assessment

We assessed fixed effects selection performances by running Algorithm 3 on
the same 50 data replications, also experimenting the other two global-local
priors considered in this work: the Laplace and Normal-Exponential-Gamma
with λ = 0.25. We also considered the Gaussian prior specification described
in [60] with hyperparameters μβS = 0 and ΣβS = 1010I. Then, for each data
replication and each of the different four prior specifications considered we used
the approximating densities corresponding to fixed effects subject to selection
to perform the SAVS procedure of Algorithm 1. We employed this procedure
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also for the approximate posteriors obtained from the Gaussian prior to provide
a comparison with a prior that does not belong to the global-local family.

Let TP (true positives) denote the number of selected fixed effects having
true value different from zero and TN (true negatives) denote the number of
unselected irrelevant fixed effects having true value equal to zero. We measured
the fixed effects selection performance for each prior choice using the F1-score
[82], which is defined as:

F1 ≡
(

2 × precision × recall
precision + recall

)
× 100%, (23)

with precision ≡ TP/(TP+FP) and recall ≡ TP/(TP+FN), where FP and FN
denote the number of false positives (incorrectly selected fixed effects) and false
negatives (relevant fixed effects that have not been selected), respectively. This
index takes values between 0% and 100%, with higher values to be preferred.

The median F1-score was 63.5% (1st quartile: 43.5%; 3rd quartile: 94.2%)
for the Gaussian prior and 95.24% (1st quartile: 80%; 3rd quartile: 100%) for
the Laplace prior. Both the Horseshoe and Negative-Exponential-Gamma pri-
ors exhibited a F1-score equal to 100% for all the 50 data replications of the
simulation study, meaning that perfect selection (TP = 10 and TN = 40) was al-
ways achieved. From this simplified simulated sparse data scenario it is apparent
that global-local priors effectively provide better variable selection performances
than the Gaussian prior. The lower performances of the Gaussian and Laplace
priors are due to the SAVS procedure being applied to optimal approximate
q∗-densities that have not been properly shrunk towards zero and so irrelevant
fixed effects tend to be selected. Nonetheless, all the four different priors gave
FP = 0, meaning that they did not incorrectly select irrelevant fixed effects.

6.3. Speed and memory saving assessment

Streamlined variational inference has been conceived to obtain efficient imple-
mentations of variational algorithms. Hence, the assessment of speed and mem-
ory savings is another important aspect. We assessed speed and memory per-
formances of the streamlined variational Algorithm 3 and its naïve counterpart,
whose updates are described in Section 5.1. Four different group numbers and
three different lengths for the vector of fixed effects to be selected were consid-
ered, namely m ∈ {10, 50, 100, 200} and pS ∈ {25, 100, 200}, aiming to explore
scalability of the streamlined methodology to high dimensions. For each com-
bination of m and pS, we simulated 10 data replications from model (17) with
a random intercept and one slope for a single continuous predictor, choosing
the sub-group dimensions ni uniformly on the discrete set {10, . . . , 20} and the
sub-group specific unit dimensions oij uniformly on the discrete set {20, . . . , 30}.
This setting allows to test models with heterogeneous dimensions but the same
number of groups m. We considered a Horseshoe prior for the fixed effects
subject to selection, and all the other model dimensions and hyperparameters
specifications were the same as those described before.
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Table 2

Average (standard deviation of) elapsed computing times in seconds and average (standard
deviation of) total size of required data inputs in megabytes for fitting model (17) with
three-level random effects specification and pS fixed effects subject to penalization via

Horseshoe prior. Results are shown for different group sizes m and different values for pS.

Total runtime of the algorithm (seconds) Total size of required data inputs (Mbytes)

m pS Stream. MFVB Naïve MFVB Naïve MFVB
Str. MFVB MCMC Stream. MFVB Naïve MFVB Naïve MFVB

Str. MFVB

10 25 0.70(0.06) 3.86(0.50) 5.54 13.03(0.96) 1.39(0.07) 11.06(1.00) 7.97
100 3.90(0.23) 6.51(0.82) 1.67 46.99(1.47) 3.68(0.24) 12.73(1.34) 3.46
200 9.71(1.22) 12.09(2.04) 1.24 176.22(9.37) 6.60(0.52) 15.09(1.89) 2.29

50 25 3.29(0.11) 365.07(37.10) 111.01 63.28(3.76) 6.69(0.20) 240.40(13.92) 35.91
100 19.66(0.87) 415.29(51.66) 21.12 138.42(5.72) 18.37(0.81) 254.04(20.84) 13.83
200 49.25(1.47) 501.33(39.76) 10.18 305.25(6.51) 34.00(1.04) 269.34(14.90) 7.92

100 25 6.77(0.32) 2877.33(177.77) 424.72 151.05(10.48) 13.56(0.34) 967.34(42.15) 71.33
100 40.42(1.66) 3172.66(116.83) 78.50 266.71(10.06) 36.77(1.29) 1010.25(26.94) 27.47
200 97.81(2.07) 3403.55(204.38) 34.80 494.15(9.34) 67.53(1.31) 1013.90(48.67) 15.01

200 25 13.30(0.30) > 5 hours > 1355 328.87(20.04) 26.90(0.56) 3817.06(113.85) 141.88
100 79.97(1.18) > 5 hours > 225 578.88(13.45) 73.74(1.01) 3941.15(97.90) 53.45
200 197.20(4.13) > 5 hours > 95 904.64(15.77) 135.84(2.73) 3991.66(102.48) 29.38

For each simulated dataset, we collected the computational timings and the
total size of the input data required for performing both the streamlined and
naïve algorithms. We also ran MCMC (warmup of length 5,000 followed by
25,000 iterations, to which we applied a thinning value of 5) and recorded its
computational timings, although MFVB and MCMC do not admit a genuine
comparison due to the fact that both depend upon different convergence require-
ments, as explained in Section 5.1 of [66]. Moreover, our efficient implementation
of MCMC is based on independent resampling from the full conditional densi-
ties of β, uL1

i and uL2
ij , whereas MFVB uses a joint approximation q(β,u) for

all these vectors. Nonetheless, MCMC timings are also reported to provide an
intuition on the computational effort required for sampling from the posterior
distribution when m and pS increase. The tabulated results are shown in Ta-
ble 2. The “ratio” columns help understand the gain obtained employing the
streamlined MFVB methodology over its naïve counterpart. For increasing m,
streamlined MFVB reached convergence faster than naïve MFVB. Notice that in
the biggest scenario under examination (last row of the table), the streamlined
MFVB algorithm ran in less then 4 minutes on average, while naïve MFVB re-
quired more than 5 hours. Bigger scenarios are computationally demanding for
the naïve implementation and may fail to run due to excessive storage demand,
whilst we did not experience these issues with Algorithm 3. Similar comments
apply to the huge saving of memory allocation for the required input data pro-
vided by the streamlined MFVB implementation.

We conclude the discussion by noticing that our methodology takes the ap-
proximate joint posterior dependence between the fixed effects and random ef-
fects parameters into account through the multivariate Gaussian approximating
density q(β,u). This choice allows to better capture the a posteriori covariance
structure between β and u and ensures better results in terms of approxima-
tion accuracy. Nevertheless, alternative and less restrictive factorizations can
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be considered, especially if the quality of the approximation can be sacrificed
and faster algorithms are desired. For instance, the additional factorization
q(β,u) = q(βR,u)q(βA,βS) could remarkably speed up the computations if
pR is small, regardless of the size of pA and pS. For implementing this and any
other additional independence constraints, mean field restrictions such as (19)
and the algorithms proposed in Section 5.2 need to be modified accordingly.

7. Application to data from a perinatal study

We present an application of the methodology and algorithms proposed in Sec-
tion 5 to the National Collaborative Perinatal Project data ([42]), a multisite
prospective cohort study which took place in the United States of America
between 1959 and 1974. This study was designed to identify the effects of com-
plications during pregnancy or the perinatal period on birth and child outcomes.
The data are publicly available from the U.S. National Archives with identifier
606622. Many online resources already employed this dataset or subset of it for
several analysis and over the years the dataset has become a high-quality ref-
erence for biomedical and behavioral research in many areas such as obstetrics,
perinatology, pediatrics, and developmental psychology.

The same data were examined in [60] and we expressly account for the same
model specification to experiment a suitable fixed effects selection for a moder-
ately large set of regressors that have been excluded from their analysis and that
may have a relevant impact onto explaining the response variable. A full-blown
analysis goes beyond the scope of this paper and we focused on predicting the
height-for-age z-score for 37,257 infants followed longitudinally over their first
year of life, following indications from [78]. The height-for-age z-score is a stan-
dardized measure of the World Health Organization for the height of children
after accounting for age; see [64] for insights on how notable discrepancies from
this index standard reference values constitutes an alarm signal for malnutrition
symptoms.

We performed a Bayesian analysis that accounts for the heterogeneity of the
evolution of such index across infants. Our analysis was performed through a
two-level random effects linear model having a random intercept, and linear and
quadratic slopes (q = 3) to account for the quadratic evolution of that score over
time. All the fixed effects regressors, excluding the intercept, age of the infant
(in days since birth) and its square, were subject to selection; these include
characteristics of the infant at birth (e.g. weight, length, head circumference,
sex and Apgar scores), and characteristics of the mother, father and family. We
also accounted for possible interactions between some infant characteristics and
sex, for a total of 38 candidate predictors subject to selection.

The model we fitted respects the general specification (17) and can be ex-
pressed for the generic ith infant as follows:

yi|β,ui, σ
2 ind.∼ N

(
XR

i β
R + XS

i β
S + Ziui, σ

2I
)
,
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ui|Σ ind.∼ N3(0,Σ), 1 ≤ i ≤ 37257 ,⎡
⎣ βR

βS

⎤
⎦
∣∣∣∣∣ ζ, τ2 ∼ N

⎛
⎝
⎡
⎣ 03

038

⎤
⎦ ,

⎡
⎣ 1010I3 O

O τ2 diag(ζ)−1

⎤
⎦
⎞
⎠ ,

σ2|aσ2 ∼ Inverse-χ2(1, 1/aσ2), aσ2 ∼ Inverse-χ2(1, 10−10),

Σ|AΣ ∼ Inverse-G-Wishart(Gfull, 6,A−1
Σ

),

AΣ ∼ Inverse-G-Wishart(Gdiag, 1, 2 × 10−10I3),

ζh|aζh
ind.∼

⎧⎪⎨
⎪⎩

Inverse-χ2(2, 1) for a Laplace prior
Gamma(1/2, aζh) for a Horseshoe prior
Inverse-χ2(2, 2aζh) for a NEG prior,

aζh
ind.∼

⎧⎪⎨
⎪⎩

− for a Laplace prior
Gamma(1/2, 1) for a Horseshoe prior
Gamma(λ, 1) for a NEG prior,

for 1 ≤ h ≤ 38,
τ2|aτ2 ∼ Inverse-χ2(1, 1/aτ2), aτ2 ∼ Inverse-χ2(1, 10−10).

(24)

For the ith infant, oi time-point measurements were recorded, ranging from one
to four in number. The XR

i matrix has size ni× 3 with the first column being a
vector of ones, the second one consists of the time-point measurements for the
ith infant and the third column containing the square of the elements of the
second one. We set XA

i = O, while the XS
i matrix of size ni × 38 consisted

of all the considered predictors subject to selection. Moreover, Zi = XR
i by

definition. Uninformative priors were placed over all the model parameters. We
fitted the model using the three global-local priors treated in this work, and the
Gaussian prior for βS treated in [60].

Streamlined MFVB and MCMC were used for model fitting. The former was
performed running Algorithm 2 and stopping it after 200 iterations, while the
latter was performed running 25,000 iterations to which a thinning factor of
5 was applied after discarding 5,000 burnin iterations. The whole input data
required approximately 200 megabytes of memory storage, while a naïve MFVB
procedure would necessitate several gigabytes of memory to entirely store the
Z matrix, that is composed by 11,693,705,562 cells of which the 99.997% are
zeros. All the covariates excluding the binary ones were standardized and the
estimates were rescaled back to the original scale before presenting the results.
The streamlined MFVB algorithms took 2 to 3 minutes to run for each prior
specification, while the associated MCMC samplers took more than 35 minutes.

We omit the presentation of model interpretation, goodness-of-fit analysis,
accuracy of the approximations, convergence of the MCMC chains and visu-
alization of the fitted height-for-age z-score trajectories over time. Instead, in
Figure 4 we present 90% high posterior density credible intervals for all the
fixed effects subject to selection. The thicker lines represent the intervals ob-
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Fig 4. The 90% high posterior density credible intervals for the fixed effects subject to se-
lection in the real data application. The four different priors for βS are represented with
different colors. For each fixed effect, the thicker lines correspond to the intervals obtained
from the MCMC approximate marginal posterior densities, while the thinner lines represent
those obtained from the streamlined MFVB approximating densities.

tained from the MCMC posterior samples through the emp.hpd function of the
TeachingDemos package [76], while the thinner lines represent those calculated
from the determined optimal MFVB approximate posteriors. The two lines are
superimposed to facilitate immediate comparison, for each different prior spec-
ification.

Overall, MFVB provided very accurate high posterior density credible in-
tervals when compared to MCMC. The MCMC chain associated to the birth
length fixed effect showed some convergence problems, probably due to its mod-
erate correlation with the response variable and this reduced the overlap with
MFVB. Importantly, the Laplace global-local prior produced results very sim-
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ilar to those provided by the Gaussian prior specification. On the other hand,
both the Horseshoe and Normal Exponential Gamma priors seem to have effec-
tively shrunk most of the fixed effects towards zero, especially those associated
to dummy variables.

The SAVS procedure applied to the approximate posterior densities classifies
the following fixed effects as relevant: indicator that the infant is male, infant’s
year of birth, birth length, birth head circumference, the Apgar score assessed
5 minutes after the infant’s birth and the mother height. Some effects such as
the ethnicity of the mother, the place where she conceived, her marital status
and informations on previous pregnancies were not indicated as relevant by the
SAVS procedure, albeit some of their associated high posterior density credible
intervals are far from zero. Notice also that, for some fixed effects, global-local
priors drag the intervals towards the origin, with different intensities probably
depending on the variability and correlation of the covariates. More ad-hoc
analyses are firmly suggested, although these go beyond the scope of the current
work.

8. Conclusions

In this work, we developed streamlined mean-field variational Bayes procedures
for Gaussian response linear mixed models having nested random effects struc-
tures and admitting fixed effects prior specifications alternative to the classi-
cal Gaussian one. The priors we considered are amenable to automated and
hyperparameter-free fixed effects selection procedures. Simulated and real data
examples showed how streamlined variational inference can provide impressive
benefits in terms of computational time and memory saving when compared to
inefficient implementations of variational approximations. Albeit the marginal
posterior densities of fixed effects subject to selection are approximated by bell-
shaped curves, our studies showed high performances of the automated selection
procedure. It is also worth mentioning that the more restrictive mean-field ap-
proximations discussed at the end of Section 6 can sensibly improve the benefit
of streamlined variational inference for large p scenarios and, in general, when
speed is more important than approximation accuracy.

Numerous ramifications of the proposed methodology can be envisaged. These
include the treatment of models with unit-specific errors, heteroskedastic covari-
ance structures for groups and sub-groups, higher levels of nesting or crossed
random effects and the extension to generalized linear mixed models. [65, 87,
61, 52, 54] provide variational inference algorithms for models with a variety of
response distributions such as Bernoulli with probit or logit link, Poisson, Nega-
tive Binomial, t, Asymmetric Laplace, Skew Normal, Skew t and Finite Normal
Mixtures. The variational algorithms presented in these references have been
derived using data-augmentation representations of the response distributions.
The same strategy can be adopted to derive MFVB algorithms for non-Gaussian
response mixed models and allow for the implementation of streamlined vari-
ational inference through a relatively straightforward adaptation of the algo-
rithms presented in this work. [51] also provides explicit streamlined variational
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inference algorithms for two-level mixed models with binary-logistic and Poisson
responses, and generic Gaussian priors for the fixed effects coefficients.

Regarding the selection of fixed effects, alternative shrinkage priors belonging
to the global-local family can be accounted for with minor modifications to the
proposed algorithms. Following the prescriptions of [59], it is possible to study
global-local prior specifications that are not based on auxiliary variables and in-
vestigate whether this could lead to better approximation accuracies, although
at the cost of more computationally intensive variational updates. We also men-
tion the possibility of admitting spike-and-slab prior formulations following, for
example, a variational inference approach similar to that of [16]. The drawback
is that spike-and-slab priors require more involved algebra for implementing
streamlined variational inference. Using the Bayesian adaptive lasso (BaLasso)
prior proposed by [45] it is also possible to extend our individual fixed-effects
selection approach to account for (ordered) group selection by imposing differ-
ent shrinkage levels to different coefficients. A variational Bayes approach for
generalized linear models with priors of this type has been explored by [81],
where the variational parameter updates of their VBGLMM algorithm could be
streamlined using the framework studied in our work.

One last possible direction to explore concerns streamlined variational infer-
ence for models with priors for selecting random effects. Consider for simplicity
the two-level random effects case in which ui

ind.∼ N(0,Σ) for 1 ≤ i ≤ m. If the
covariance matrix Σ is supposed to be diagonal, i.e. Cov(uih, uik) = 0 for each
1 ≤ h, k ≤ q with h �= k and 1 ≤ i ≤ m, and a global-local prior distribution is
imposed to each random effect, then explicit streamlined MFVB updates can be
obtained with straightforward manipulation of the results presented in the sup-
plementary material and references therein. This applies to three-level models
in a similar way. However, assuming that Σ is diagonal may sometimes be quite
restrictive and the highest computational advantage of streamlined MFVB over
its naïve counterpart is achieved when the random effects covariance matrix is
non-diagonal. Furthermore, it is typically easier to provide an interpretation to
the selection of fixed effects than explaining why certain random effects are rel-
evant only for a subset of clusters or sub-clusters. For these reasons the present
work provides a first extension of the streamlined MFVB approach of [60] fo-
cusing on fixed-effects selection. Another relevant extension is the derivation of
(streamlined) MFVB algorithms with random effects selection procedures ad-
mitting non-diagonal structures for Σ. The covariance matrix decomposition
approach of [20] and related methods discussed in Section 1 can be exploited
for this extension.

Supplementary Material

Supplementary Material for: Sparse Linear Mixed Model Selection
via Streamlined Variational Bayes
(doi: 10.1214/22-EJS2063SUPP; .pdf).

https://doi.org/10.1214/22-EJS2063SUPP
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S.1: Distributions and Associated Useful Results. We provide details on
the probability density functions associated to the probability distribu-
tions are used throughout the manuscript, together with additional useful
results.

S.2: Multilevel Sparse Matrix Problem Algorithms. Algorithms 2 and 3
described in Section 5 rely upon two matrix algebraic routines for ef-
ficiently solving the two-level and three-level versions of the multilevel
sparse matrix problems defined in [62]. We briefly describe two-level and
three-level sparse matrix structures, and give explicit definitions of the
routines for efficiently solving the associated linear system problems, fol-
lowing Appendix A of [60].

S.3: Derivations. We derive explicit updates for the parameters of the optimal
density functions in (16) using arguments similar to those provided in
[59] with some adjustments. Such updates are then combined with the
derivations in Appendix B of [60] for deriving the streamlined MFVB
algorithms for our two- and three- level linear mixed-effects models.
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