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Abstract. This paper is divided into three parts. The first part focuses on

periodic layer heat potentials, demonstrating their smooth dependence on regu-
lar perturbations of the support of integration. In the second part, we present

an application of the results from the first part. Specifically, we consider a

transmission problem for the heat equation in a periodic domain and we show
that the solution depends smoothly on the shape of the transmission interface,

boundary data, and transmission parameters. Finally, in the last part of the

paper, we fix all parameters except for the transmission parameters and outline
a strategy to deduce an explicit expansion of the solution using Neumann-type

series.

1. Introduction. Understanding how the properties of an object depend on its
shape is a crucial aspect of many real-world problems, especially when seeking to
achieve the optimal configuration for maximizing some sort of efficiency.

In mathematical jargon, the quest for optimal shapes is commonly known as
“shape optimization,” and it has garnered considerable attention in the mathemat-
ical literature. The interested reader can find ample references and results in the
monographs by Henrot and Pierre [9] and Soko lowski and Zolésio [25].
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From a mathematical standpoint, addressing such questions often involves study-
ing how solutions to specific boundary value problems, as well as related quantities,
are affected by perturbations of the domain of definition and other problem param-
eters. This leads us to analyze the mappings that connect a set of perturbation
parameters to the solution of a boundary value problem. To undertake this project,
having access to the toolbox of differential calculus is advantageous. Consequently,
understanding the regularity properties of these maps becomes crucial. In other
words, it is important to determine whether these maps are continuous, differen-
tiable, or enjoy higher regularity properties, such as smoothness and analyticity.

These properties reveal different aspects of the perturbation and can be used
in different ways: Continuity implies that small variations of the perturbation pa-
rameters correspond to small changes in the solution. Differentiability allows for
characterizing the stationary points as critical points. These critical points are
important in optimization problems as they represent potential optimal configura-
tions. Smoothness and analyticity are stronger properties. With smoothness we can
approximate the solution with its Taylor expansion in the perturbation parameter
with any degree of accuracy, while with analyticity we can represent the solution as
a convergent power series.

Now, a common approach for studying boundary value problems is the layer
potential theoretic method, which employs integral operators to transform the orig-
inal problem into a system of boundary integral equations. Eventually, this method
allows us to obtain the solution as a sum of layer potentials.

As a result, an approach to understanding the perturbation sensitivity of a solu-
tion to a boundary value problem is by studying how the layer potentials and the
integral operators depend upon such perturbations.

Many authors have explored this approach for elliptic equations. For example,
Potthast [23] proved that layer potentials for the Helmholtz equation are Fréchet
differentiable functions of the support of integration. Applications to scattering
theory can be found, e.g., in Haddar and Kress [8] and Kirsch [14].

However, we observe that very few results prove regularities beyond differentia-
bility. An exception is the works of Lanza de Cristoforis and his collaborators,
dedicated to proving that layer potentials and integral operators depend analyti-
cally on domain perturbations. Here we mention Lanza de Cristoforis and Rossi
[18] for the layer potentials for the Laplace equation, Lanza de Cristoforis and Rossi
[19] for the Helmholtz equation, [3] for general second order equations, and [17] for
the periodic case. Moreover, in [5] we have obtained a smoothness result for the
heat layer potentials which, in the first part of the present paper, we will extend to
the space-periodic heat layer potentials.

The method developed by Lanza de Cristoforis and collaborators was called the
“functional analytic approach” (cf. [4]). It was used for both regular and singular
perturbations, where a perturbation is classified as regular if it does not cause any
loss of regularity in the domain, and as singular if it does.

Another approach to dealing with regular domain perturbations has recently
appeared in the literature, relying on complex analysis techniques and aiming to
prove the “shape holomorphy” of layer potential operators and integral operators.
For applications of this approach, we refer the reader to Jerez-Hanckes, Schwab,
and Zech [13], which deals with the electromagnetic wave scattering problem.

Apart from [5], all the above cited literature concerns elliptic equations. Notably,
corresponding results for parabolic problems are more scarse. To the best of our
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knowledge the only exceptions are some works of Chapko, Kress and Yoon (see, e.g.,
[2]) and Hettlich and Rundell [10] for the Fréchet differentiability upon the domain
of the solution of the heat equation with application to some inverse problems in
heat conduction, and the already cited [5] for the infinite order smoothness of the
layer heat potentials upon the support of integration.

In this paper, we adopt Lanza de Cristoforis’ functional analytic approach to
obtain higher order regularity results for the space-periodic version of layer heat
potentials upon the support of integration. In particular, in the first part of the
paper we investigate the space-periodic layer potentials for the heat equation and
demonstrate that they depend smoothly on a pair (ϕ, µ), where ϕ is a function
that characterizes the shape of the domain and µ is the (pull-back of the) density
function. To achieve this, we build upon similar findings for the nonperiodic heat
layer potentials established in [5]. To the best of our knowledge, this is the first paper
to show such a result for space-periodic heat layer potentials, previous papers dealing
with periodic layer potentials being dedicated to the case of elliptic operators.

In the subsequent sections, we showcase how the results obtained in the first
part can be utilized to examine the shape sensitivity of solutions to boundary value
problems. As an illustrative application, we consider a transmission problem for
the heat equation in a space-periodic domain. We show that the solution depends
smoothly on the shape of the transmission interface, as well as on the boundary
data and the transmission parameters.

Lastly, in the final part of the paper, we revisit the space-periodic transmission
problem studied in the previous section. However, this time, we fix all parameters
except for the transmission parameters. Then we outline a strategy to deduce an
explicit expansion of the solution using a Neumann-type series.

The paper is organized as follows: Section 2 introduces some notation and pre-
liminaries. In Section 3, we review certain results from [5] concerning nonperiodic
layer potentials. In Section 4, we derive analogous results for the space-periodic
layer potentials. Section 5 investigates the perturbation sensitivity of solutions to a
transmission problem in a space-periodic domain. Finally, in Section 6, we consider
the scenario where all parameters are fixed, except for the transmission parameters.

2. Preliminaries. From this point onward, we fix a value for n from the set N \
{0, 1}, where N denotes the set of natural numbers, including zero. Additionally,
we define a periodicity cell as follows:

Q :=

n∏
j=1

]0, qjj [,

where qjj > 0 for all j ∈ {1, . . . , n}. We denote by q the diagonal matrix

q :=


q11 0 · · · 0
0 q22 · · · 0
...

...
. . .

...
0 0 · · · qnn

 ,

and by |Q|n =
∏n

i=1 qjj the measure of the peridicity cell Q. Clearly

qZn = {qz : z ∈ Zn}
is the set of vertices of a periodic subdivision of Rn corresponding to the fundamental
cell Q. A set A ⊆ Rn is said to be q-periodic if A+ qz = A for all z ∈ Zn. If A is a
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q-periodic set, a function f : A → R is said to be q-periodic if f(· + qz) = f(·) for
all z ∈ Zn.

If Ω is a subset of Rn then Ω, ∂Ω, and νΩ denote the closure, boundary, and,
where defined, the outward normal to Ω, respectively. If Ω ⊆ Q, then we set

S[Ω] :=
⋃

z∈Zn

(qz + Ω) = qZn + Ω, S[Ω]− := Rn \ S[Ω].

We observe that both S[Ω] and S[Ω]− are q-periodic domains.
We will consider the heat equation

∂tu− ∆u = 0

in domains that are space-periodic and our approach will rely on the space-periodic
potential theory for the heat equation. Specifically, we will exploit space-periodic
layer potentials obtained by replacing the classical fundamental solution of the heat
equation with a periodic counterpart. As it is well known, a fundamental solution
of the heat equation is defined as follows:

Sn(t, x) :=

{
1

(4πt)
n
2
e−

|x|2
4t if (t, x) ∈ (0,+∞) × Rn ,

0 if (t, x) ∈ ((−∞, 0] × Rn) \ {(0, 0)}.

Then a q-periodic fundamental solution Sq,n : (R× Rn) \ ({0} × qZn) → R for the
heat equation is defined by taking

Sq,n(t, x) :=

{ ∑
z∈Zn

1

(4πt)
n
2
e−

|x+qz|2
4t if (t, x) ∈ (0,+∞) × Rn ,

0 if (t, x) ∈ ((−∞, 0] × Rn) \ ({0} × qZn)
(2.1)

(see Pinsky [22, Ch. 4.2] for the case n = 1 and Bernstein, Ebert and Sören
Kraußhar [1] for n ≥ 2, see also [20]).

We will use the functional framework of Schauder classes. For the classical defi-
nitions of sets and functions belonging to class Cj,α, with α ∈ (0, 1) and j ∈ {0, 1},
we refer to Gilbarg and Trudinger [7]. For the definition of time-dependent func-

tions in the parabolic Schauder class C
j+α
2 ;j+α on [0, T ]×Ω or [0, T ]× ∂Ω we refer

to Ladyženskaja, Solonnikov, and Ural’ceva [15]. In essence, a function of class

C
j+α
2 ;j+α is

(
j+α
2

)
-Hölder continuous in the time variable, and (j, α)-Schauder reg-

ular in the space variable. We also denote by C
j+α
2 ;j+α

0 the parabolic Schauder class

of functions that vanish at time t = 0, and by C
j+α
2 ;j+α

0,q the subspace of C
j+α
2 ;j+α

0

consisting of functions that are also q-periodic. The definition of parabolic Schauder
classes can be extended to products of intervals and manifolds by using local charts.
In the present paper all the functional spaces we consider consist of real valued
functions.

We will adopt the following notation: If D is a subset of Rn, T > 0 and h is a
map from D to Rn, we denote by hT the map from [0, T ]×D to [0, T ]×Rn defined
by

hT (t, x) := (t, h(x)) ∀(t, x) ∈ [0, T ] ×D.

Let α ∈ (0, 1) and assume that

Ω is a bounded connected open subset of Rn of class C1,α

and has connected exterior Ω− := Rn \ Ω .
(2.2)
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We take Ω to be the reference shape, and to formalize domain perturbations, we
consider specific classes of diffeomorphisms defined on the boundary ∂Ω.

Precisely, we denote by A1,α
∂Ω the set of functions of class C1,α(∂Ω,Rn) that are

injective together with their differential at all points of ∂Ω. According to Lanza de
Cristoforis and Rossi [19, Lem. 2.2, p. 197] and [18, Lem. 2.5, p. 143], A1,α

∂Ω is an
open subset of C1,α(∂Ω,Rn).

For ϕ ∈ A1,α
∂Ω , the Jordan-Leray separation theorem ensures that Rn \ ϕ(∂Ω)

has exactly two open connected components (see, e.g., [4, §A.4]). We denote the
bounded connected component of Rn \ ϕ(∂Ω) by I[ϕ] and the unbounded one by
E[ϕ]. Moreover, we will use νϕ to denote the outer unit normal to I[ϕ].

Then we set

A1,α
∂Ω,Q :=

{
ϕ ∈ A1,α

∂Ω : ϕ(∂Ω) ⊆ Q
}
,

and for brevity, we use the notation

S[ϕ] := S[I[ϕ]], S[ϕ]− := S[I[ϕ]]−

for all ϕ ∈ A1,α
∂Ω,Q. Both S[ϕ] and S[ϕ]− are q-periodic domains depending on the

diffeomorphism ϕ (see Figure 1). Therefore, we can perturb the shape of S[ϕ] and
S[ϕ]− by changing the function ϕ.

<latexit sha1_base64="JZjm9lzR8Xqf2tpVZQxXiPb9jWI="></latexit>

q22

q11

Q

S[�]�

S[�]

�(@⌦)

Figure 1. The sets S[ϕ]−, S[ϕ], and ϕ(∂Ω) in case n = 2.

We will consider integral operators supported on ϕ(∂Ω). To analyze their depen-
dence on ϕ, we will perform a change of variables. For this purpose, we rely on the
following technical lemma, which shows that the map related to the change of vari-
ables in the area element and the pullback νϕ ◦ ϕ of the outer normal field depend
analytically on ϕ. A proof of this lemma can be found in Lanza de Cristoforis and
Rossi [18, p. 166] and Lanza de Cristoforis [16, Prop. 1].



MULTI-PARAMETER PERTURBATIONS FOR THE HEAT EQUATION 149

Lemma 2.1. Let α ∈ (0, 1) and Ω be a bounded open subset of Rn of class C1,α

with connected exterior. Then the following statements hold.

(i) For each ϕ ∈ A1,α
∂Ω , there exists a unique σ̃n[ϕ] ∈ C0,α(∂Ω) such that σ̃n[ϕ] > 0

and∫
ϕ(∂Ω)

w(s) dσs =

∫
∂Ω

w ◦ ϕ(y)σ̃n[ϕ](y) dσy, ∀w ∈ L1(ϕ(∂Ω)).

Moreover, the map σ̃n[·] is real analytic from A1,α
∂Ω to C0,α(∂Ω).

(ii) The map from A1,α
∂Ω to C0,α(∂Ω,Rn) which takes ϕ to νϕ ◦ ϕ is real analytic.

3. Domain perturbations of classical layer potentials. Our first goal is to
prove that space-periodic layer potentials for the heat equation depend smoothly
on perturbations of the support of integration. As previously mentioned in the
introduction, related results have already been established in [5] for the non-periodic
layer potentials. We intend to leverage those existing results and extend them to
the periodic case.

Therefore, we begin by reviewing the findings of [5], which concern layer heat

potentials supported on [0, T ] × ϕ(∂Ω) for some T > 0 and ϕ ∈ A1,α
∂Ω , as well as

integral operators acting between Schauder spaces on [0, T ] × ϕ(∂Ω). However, to
treat ϕ as a variable and state smoothness results for ϕ-dependent functions, we
need to work in a ϕ-independent functional setting. We will then pullback the layer
potentials to the fixed domain [0, T ] × ∂Ω and, simultaneously, push forward the
density functions from [0, T ] × ∂Ω to [0, T ] × ϕ(∂Ω).

To be precise, we consider the operators that take µ ∈ C
α
2 ;α
0 ([0, T ] × ∂Ω) to

V [ϕ, µ](t, ξ) :=

∫ t

0

∫
ϕ(∂Ω)

Sn(t− τ, ϕ(ξ) − y)µ ◦ (ϕT )(−1)(τ, y) dσydτ,

Vl[ϕ, µ](t, ξ) :=

∫ t

0

∫
ϕ(∂Ω)

∂xl
Sn(t− τ, ϕ(ξ) − y)µ ◦ (ϕT )(−1)(τ, y) dσydτ

∀l ∈ {1, . . . , n},

W ∗[ϕ, µ](t, ξ) :=

∫ t

0

∫
ϕ(∂Ω)

DxSn(t− τ, ϕ(ξ) − y) · νϕ(ξ)µ ◦ (ϕT )(−1)(τ, y) dσydτ,

for all (t, ξ) ∈ [0, T ] × ∂Ω. Additionally, for ψ ∈ C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω) we define

W [ϕ, ψ](t, ξ) := −
∫ t

0

∫
ϕ(∂Ω)

DxSn(t− τ, ϕ(ξ) − y) · νϕ(y)ψ ◦ (ϕT )(−1)(τ, y) dσydτ,

for all (t, ξ) ∈ [0, T ]×∂Ω. In the expressions above, ∂xl
Sn and DxSn denote the xl-

derivative and the gradient of Sn with respect to the spatial variables, respectively.
The functions V [ϕ, µ], Vl[ϕ, µ], and W ∗[ϕ, µ] are the ϕ-pullbacks of the single-

layer potential and of integral operators associated to its xl-derivative and to its
normal derivative. Instead W [ϕ, ψ] is the ϕ-pullback of the double-layer potential.
They are defined on [0, T ] × ∂Ω and have densities given by µ ◦ (ϕT )(−1) and ψ ◦
(ϕT )(−1).

In [5, Thm. 6.3], it has been proven that the operators V [ϕ, ·], Vl[ϕ, ·], W ∗[ϕ, ·],
and W [ϕ, ·] depend smoothly on the shape parameter ϕ. Specifically, we have the
following result:
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Theorem 3.1. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Then, the maps

that take ϕ ∈ A1,α
∂Ω to the following operators are all of class C∞:

(i) V [ϕ, ·] ∈ L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω)
)
,

(ii) Vl[ϕ, ·] ∈ L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

α
2 ;α
0 ([0, T ] × ∂Ω)

)
for all l ∈ {1, . . . , n},

(iii) W ∗[ϕ, ·] ∈ L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

α
2 ;α
0 ([0, T ] × ∂Ω)

)
,

(iv) W [ϕ, ·] ∈ L
(
C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω), C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω)
)
.

Theorem 3.1 presents an extension of similar results that were already known
for layer potentials associated with elliptic equations to the parabolic setting. For
example, Lanza de Cristoforis and Rossi [18, 19] established these results for the
Laplace and Helmholtz equations, and [3] for general second-order equations. How-
ever, extending these results to the parabolic setting is not a trivial task. The main
difficulty lies in the interaction between the time and space variables. Applying
the strategy used in [18] to the parabolic case only yields a regularity result for C2

perturbations of the domain, falling short of the desired C1,α setting.
Another difference between the elliptic and parabolic cases is that in the elliptic

scenario, the layer potentials exhibit analytic dependence on the shape parameter ϕ,
while Theorem 3.1 only guarantees that they are infinitely differentiable maps. The
reason for this lack of analyticity lies in the regularity of the fundamental solution
Sn, which is C∞ but not real analytic over the entire space R1+n \ {(0, 0)} due to
its non-analytic behavior at t = 0. In contrast, the fundamental solution of the
Laplace equation, as well as other constant coefficient elliptic operators, is analytic
in Rn \ {0}.

As we shall see, such a difference implies a distinct behavior of the solutions to
boundary value problems: analytic dependence on ϕ for the elliptic case vs C∞-
dependence for the parabolic case.

4. Space-periodic layer heat potentials. We now shift our focus to space-
periodic layer heat potentials, where we replace the classical fundamental solution
Sn of the heat equation with its periodization Sq,n (see (2.1)). We will start by
introducing the definition of periodic layer potentials. Next, we will review some
properties established in [20]. Finally, we will utilize Theorem 3.1 to derive the
corresponding regularity results for the ϕ-pullback of periodic layer potentials.

Let α ∈ (0, 1) and T > 0. Let Ω be a bounded open subset of Rn of class C1,α

such that Ω ⊆ Q. For a density µ ∈ L∞(
[0, T ] × ∂Ω

)
, the q-periodic in space layer

heat potentials are defined as

vq[µ](t, x) :=

∫ t

0

∫
∂Ω

Sq,n(t− τ, x− y)µ(τ, y) dσydτ ∀ (t, x) ∈ [0, T ] × Rn,

and

wq[µ](t, x) := −
∫ t

0

∫
∂Ω

DxSq,n(t−τ, x−y)·νΩ(y)µ(τ, y) dσydτ ∀ (t, x) ∈ [0, T ]×Rn.

The functions vq[µ] and wq[µ] are called respectively the q-periodic single- and
double-layer heat potential. Moreover, we set

w∗
q [µ](t, x) :=

∫ t

0

∫
∂Ω

DxSq,n(t− τ, x− y) · νΩ(x)µ(τ, y) dσydτ
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∀ (t, x) ∈ [0, T ] × ∂Ω.

The map w∗
q [µ] is related to the normal derivative of the q-periodic in space single-

layer potential (see Theorem 4.1).
Periodic layer heat potentials enjoy properties similar to those of their standard

counterpart. We collect them in the following two theorems. The proofs can be
found in [20, Thms. 2, 3].

Theorem 4.1. Let α ∈ (0, 1) and T > 0. Let Ω be a bounded open subset of Rn of
class C1,α such that Ω ⊆ Q. Then the following statements hold.

(i) Let µ ∈ L∞([0, T ] × ∂Ω). Then vq[µ] is continuous, q-periodic in space and
vq[µ] ∈ C∞(

(0, T ]× (Rn \ ∂S[Ω])
)
. Moreover vq[µ] solves the heat equation in

(0, T ] × (Rn \ ∂S[Ω]).

(ii) Let v+q [µ] and v−q [µ] denote the restrictions of vq[µ] to [0, T ] × S[Ω] and to

[0, T ] × S[Ω]−, respectively. The map from C
α
2 ;α
0 ([0, T ] × ∂Ω) to the space

C
1+α
2 ;1+α

0,q

(
[0, T ] × S[Ω]

)
that takes µ to v+q [µ] is linear and continuous. Like-

wise, the map from C
α
2 ;α
0 ([0, T ] × ∂Ω) to the space C

1+α
2 ;1+α

0,q

(
[0, T ] × S[Ω]−

)
that takes µ with v−q [µ] is also linear and continuous.

(iii) Let µ ∈ C
α
2 ;α
0 ([0, T ] × ∂Ω) and l ∈ {1, . . . , n}. Then the following jump

relations hold:
∂

∂νΩ
v±q [µ](t, x) = ± 1

2
µ(t, x) + w∗

q [µ](t, x),

∂xl
v±q [µ](t, x) = ± 1

2
µ(t, x) (νΩ(x))l +

∫ t

0

∫
∂Ω

∂xl
Sq,n(t− τ, x− y)µ(τ, y) dσydτ,

for all (t, x) ∈ [0, T ] × ∂Ω.

Theorem 4.2. Let α ∈ (0, 1) and T > 0. Let Ω be a bounded open subset of Rn of
class C1,α such that Ω ⊆ Q. Then the following statements hold.

(i) Let µ ∈ L∞([0, T ]×Ω). Then wq[µ] is q-periodic in space, wq[µ] ∈ C∞(
(0, T ]×

(Rn \ ∂S[Ω])
)
, and wq[µ] solves the heat equation in (0, T ] × (Rn \ ∂S[Ω]).

(ii) Let µ ∈ C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω). Then the restriction wq[µ]|[0,T ]×S[Ω] can be

extended uniquely to an element w+
q [µ] ∈ C

1+α
2 ;1+α

0,q

(
[0, T ] × S[Ω]

)
and the

restriction wq[µ]|[0,T ]×S[Ω]− can be extended uniquely to an element w−
q [µ] ∈

C
1+α
2 ;1+α

0,q

(
[0, T ] × S[Ω]−

)
. Moreover the following jump formulas hold:

w±
q [µ](t, x) = ∓1

2
µ(t, x) + wq[µ](t, x) ,

∂

∂νΩ
w+

q [µ](t, x) − ∂

∂νΩ
w−

q [µ](t, x) = 0,

for all (t, x) ∈ [0, T ] × ∂Ω.

(iii) The map from C
1+α
2 ;1+α

0 ([0, T ]×∂Ω) to the space C
1+α
2 ;1+α

0,q

(
[0, T ]×S[Ω]

)
that

takes µ to the function w+
q [µ] is linear and continuous. Likewise, the map

from C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω) to the space C
1+α
2 ;1+α

0,q

(
[0, T ] × S[Ω]−

)
that takes

µ to the function w−
q [µ] is also linear and continuous.

The main idea in the proof of Theorems 4.1 and 4.2 revolves around represent-
ing periodic layer potentials as the sum of their non-periodic counterparts and a
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remainder, which is an integral operator with a nonsingular kernel. This is feasible
because the map

Rq,n(t, x) := Sq,n(t, x) − Sn(t, x), ∀ (t, x) ∈ (R× Rn) \ ({0} × qZn) (4.1)

can be extended by continuity to (R×Rn)\({0}×q(Zn\{0})). Keeping the notation
Rq,n for this extension, we have that

Rq,n ∈ C∞((R× Rn) \ ({0} × q(Zn \ {0}))).

In other words, Rq,n is smooth in a neighborhood of the origin (0, 0). A proof of
this assertion can be found in [20, Thm. 1].

The same idea can be used to recover the periodic counterpart of Theorem 3.1.
We first need to introduce the pull-back of the boundary integral operators asso-
ciated with q-periodic layer heat potentials. Let Ω be a bounded open subset of
Rn of class C1,α such that both Ω and Ω− are connected. Let ϕ ∈ A1,α

∂Ω,Q. For

µ ∈ C
α
2 ;α
0 ([0, T ] × ∂Ω), we consider the operators

Vq[ϕ, µ](t, ξ) :=

∫ t

0

∫
ϕ(∂Ω)

Sq,n(t− τ, ϕ(ξ) − y)µ ◦ (ϕT )(−1)(τ, y) dσydτ

Vq,l[ϕ, µ](t, ξ) :=

∫ t

0

∫
ϕ(∂Ω)

∂xl
Sq,n(t− τ, ϕ(ξ) − y)µ ◦ (ϕT )(−1)(τ, y) dσydτ

∀l ∈ {1, . . . , n}

W ∗
q [ϕ, µ](t, ξ) :=

∫ t

0

∫
ϕ(∂Ω)

DxSq,n(t− τ, ϕ(ξ) − y) · νϕ(ξ)µ ◦ (ϕT )(−1)(τ, y) dσydτ,

for all (t, ξ) ∈ [0, T ] × ∂Ω. Also, for ψ ∈ C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω) we set

Wq[ϕ, ψ](t, ξ) :=−
∫ t

0

∫
ϕ(∂Ω)

DxSq,n(t−τ, ϕ(ξ)−y) · νϕ(y)ψ ◦ (ϕT )(−1)(τ, y) dσydτ,

for all (t, ξ) ∈ [0, T ] × ∂Ω. Similarly to the non-periodic scenario, the function
Vq[ϕ, µ] is the ϕ-pullback of the q-periodic single-layer potential restricted on the
boundary [0, T ]×ϕ(∂Ω), while Vq,l[ϕ, µ] and W ∗

q [ϕ, µ] are respectively related to its
xl and normal derivatives. The function Wq[ϕ, ψ] is instead related to the boundary
behavior of the q-periodic double-layer potential.

We are now ready to present the main result of this section, concerning the
smoothness of the mappings that associate ϕ with Vq[ϕ, ·], Vq,l[ϕ, ·], W ∗

q [ϕ, ·], and
Wq[ϕ, ·].

Theorem 4.3. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Then the maps that

take ϕ ∈ A1,α
∂Ω,Q to the following operators are all of class C∞:

(i) Vq[ϕ, ·] ∈ L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω)
)
,

(ii) Vq,l[ϕ, ·] ∈ L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

α
2 ;α
0 ([0, T ] × ∂Ω)

)
for all l ∈ {1, . . . , n},

(iii) W ∗
q [ϕ, ·] ∈ L

(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

α
2 ;α
0 ([0, T ] × ∂Ω)

)
,

(iv) Wq[ϕ, ·] ∈ L
(
C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω), C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω)
)
.

Proof. We confine ourselves to demonstrate the theorem for the map ϕ 7→ Vq[ϕ, ·]
in point (i). The proof for the operators in (ii), (iii), and (iv) can be carried out by
a straightforward adaptation of the argument presented below. In these cases, we
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will use statements (ii), (iii), and (iv) of Theorem 3.1, analogously to how we will
use statement (i) of the same Theorem 3.1 in the forthcoming argument.

As shown in [20, Thm. 1], the map Rq,n defined in (4.1) is of class C∞ in the
set (R×Rn) \ ({0}× q(Zn \ {0})). In particular, Rq,n is smooth in a neighborhood
of (0, 0) ∈ R× Rn.

Let (ϕ, µ) ∈ A1,α
∂Ω,Q × C

α
2 ;α
0 ([0, T ] × ∂Ω). Clearly, definition (4.1) implies that

Vq[ϕ, µ](t, ξ) = V [ϕ, µ](t, ξ)

+

∫ t

0

∫
ϕ(∂Ω)

Rq,n(t− τ, ϕ(ξ) − y)µ ◦ (ϕT )(−1)(τ, y) dσydτ (4.2)

for all (t, ξ) ∈ [0, T ] × ∂Ω. By Theorem 3.1 (i), the map that takes ϕ ∈ A1,α
∂Ω,Q to

V [ϕ, ·] ∈ L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω)
)

is of class C∞. We now consider the second term on the right-hand side of (4.2).
By Lemma 2.1 we have∫ t

0

∫
ϕ(∂Ω)

Rq,n(t− τ, ϕ(ξ) − y)µ ◦ (ϕT )(−1)(τ, y) dσydτ

=

∫ t

0

∫
∂Ω

Rq,n(t− τ, ϕ(ξ) − ϕ(η))µ(τ, y)σ̃n[ϕ](η) dσηdτ.

We note that

ϕ(ξ) − ϕ(η) /∈ qZn \ {0} ∀ (ξ, η) ∈ ∂Ω × ∂Ω.

Indeed, if it was that (ξ, η) ∈ ∂Ω × ∂Ω and ϕ(ξ) − ϕ(η) ∈ qZn \ {0}, then we would
have that ϕ(ξ) ∈ ϕ(∂Ω) + qZn \ {0}, which clearly cannot be. Then, by Lemma 2.1
and by the results of [5, Lemma A.2, Lemma A.3] on non-autonomous composition
operators and on time-dependent integral operators with non-singular kernels, we

deduce that the map from A1,α
∂Ω,Q×C

α
2 ;α
0 ([0, T ]×∂Ω) to C

1+α
2 ;1+α

0 ([0, T ]×∂Ω) that

takes (ϕ, µ) to the function

K[ϕ, µ](t, ξ) :=

∫ t

0

∫
∂Ω

Rq,n(t− τ, ϕ(ξ) − ϕ(η))µ(τ, y)σ̃n[ϕ](η) dσηdτ

∀(t, ξ) ∈ [0, T ] × ∂Ω,

is of class C∞.
It remains to show that ϕ 7→ K[ϕ, ·] is C∞ from A1,α

∂Ω,Q to the operator space

L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω)
)
.

Given that K[ϕ, µ] is linear and continuous with respect to the variable µ, we have

K[ϕ, ·] = dµK[ϕ, µ] ∀(ϕ, µ) ∈ A1,α
∂Ω,Q × C

α
2 ;α
0 ([0, T ] × ∂Ω), (4.3)

where the term on the right-hand side is the partial Frechet differential of (ϕ, µ) 7→
K[ϕ, µ] with respect to µ, evaluated at the point (ϕ, µ). Because (ϕ, µ) 7→ K[ϕ, µ] is
a map of class C∞, the map that takes (ϕ, µ) to dµK[ϕ, µ] is also of class C∞ from

A1,α
∂Ω,Q ×C

α
2 ;α
0 ([0, T ] × ∂Ω) to L(C

α
2 ;α
0 ([0, T ] × ∂Ω), C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω)). Hence,

the map (ϕ, µ) 7→ K[ϕ, ·] is of class C∞ by (4.3), and, since it does not depend on
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µ, we conclude that ϕ 7→ K[ϕ, ·] is C∞ from A1,α
∂Ω,Q to the space L(C

α
2 ;α
0 ([0, T ] ×

∂Ω), C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω)).
Hence, the validity of the theorem for the map ϕ 7→ V [ϕ, ·] in point (i) has now

been proven.

It is worth recalling that a result similar to Theorem 4.3 has been previously
proven in [17] for periodic layer potentials corresponding to a general class of second-
order elliptic equations. Later, these findings were used to study the effect of per-
turbations on physical quantities relevant to materials science and fluid mechanics.
For instance, we refer to [6] which deals with the effective properties of periodic
structures.

5. A transmission problem. The theorem presented in the preceding section,
Theorem 4.3, serves as a toolkit to analyze the solution to boundary value prob-
lems for the heat equation in spatially periodic domains. The primary goal of using
this theorem is to demonstrate the smooth dependence of such solutions on shape
perturbations. As emphasized in the introduction, the feasibility of employing The-
orem 4.3 for this purpose relies on the applicability of boundary integral operators
and layer potentials to derive solutions for boundary value problems.

As an illustrative application, we consider a periodic transmission problem. We
will demonstrate that its solution depends smoothly on the shape of the transmission
interface, the boundary data, and the transmission parameters.

Now, let’s introduce this specific problem. Consider α ∈ (0, 1), T > 0, and a
bounded open subset Ω of Rn of class C1,α such that both Ω and its exterior Ω−

are connected. Let ϕ ∈ A1,α
∂Ω,Q. We fix the transmission parameters λ+, λ− > 0 and

choose f ∈ C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω) and g ∈ C
α
2 ;α
0 ([0, T ] × ∂Ω). With this setup, we

proceed to consider the following transmission problem:

∂tu
+ − ∆u+ = 0 in (0, T ] × S[ϕ],

∂tu
− − ∆u− = 0 in (0, T ] × S[ϕ]−,

u+(t, x+ qz) = u+(t, x) ∀ (t, x) ∈ [0, T ]×S[ϕ], ∀ z∈Zn,

u−(t, x+ qz) = u−(t, x) ∀ (t, x) ∈ [0, T ]×S[ϕ]−, ∀ z∈Zn,
u+ − u− = f ◦ (ϕT )(−1) on [0, T ] × ∂Ω,
λ− ∂

∂νΩ
u− − λ+ ∂

∂νΩ
u+ = g ◦ (ϕT )(−1) on [0, T ] × ∂Ω,

u+(0, ·) = 0 in S[ϕ],

u−(0, ·) = 0 in S[ϕ]−.

(5.1)

Problem (5.1) can be seen as the periodic version in (0, T ]× S[ϕ] and (0, T ]× S[ϕ]−

of the transmission problem for the heat equation considered in Hofmann, Lewis,
and Mitrea [12]. We emphasize that there are other transmission problems for the
heat equation that are relevant in applications, and in particular we refer to the one
considered in Qiu, Rieder, Sayas, and Zhang [24].

In [21, Thm. 4] it has been proved that the solution (u+, u−) of (5.1) exists,
is unique, and belongs to a suitable product of Schauder spaces. Moreover, this
solution can be expressed as a pair of periodic single-layer heat potentials, and the
densities of these potentials are solutions to a particular system of boundary integral
equations. To be precise, the following result holds:

Theorem 5.1. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Let ϕ ∈ A1,α
∂Ω,Q. Let

λ+, λ− > 0 and f ∈ C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω), g ∈ C
α
2 ;α
0 ([0, T ] × ∂Ω). Then problem
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(5.1) has a unique solution

(u+, u−) ∈ C
1+α
2 ;1+α

0,q ([0, T ] × S[ϕ]) × C
1+α
2 ;1+α

0,q ([0, T ] × S[ϕ]−).

Moreover,

u+ = v+q [µ+], u− = v−q [µ−],

where (µ+, µ−) is the unique solution in C
α
2 ;α
0 ([0, T ]×ϕ(∂Ω))×C

α
2 ;α
0 ([0, T ]×ϕ(∂Ω))

of the system of integral equations{
v+q [µ+]|[0,T ]×ϕ(∂Ω) − v−q [µ−]|[0,T ]×ϕ(∂Ω) = f ◦ (ϕT )(−1),

λ−
(
− 1

2µ
− + w∗

q [µ−]
)
− λ+

(
1
2µ

+ + w∗
q [µ+]

)
= g ◦ (ϕT )(−1).

(5.2)

Keeping in mind Theorem 5.1, we will use the notation

(u+[ϕ, λ+, λ−, f, g], u−[ϕ, λ+, λ−, f, g])

to denote the unique solution of problem (5.1).
Moreover, thanks to Theorem 5.1, we have a representation of the unique solu-

tion of the transmission problem as a pair of single-layer potentials with densities
that solve the system of boundary integral equations in (5.2). Then, to under-
stand how the solution depends upon variations of ϕ, λ+, λ−, f , and g, we plan
to first understand how the densities depend on such parameters. To maintain
consistency within the functional spaces, we have to perform a ϕ-pullback of the
integral equations in (5.2). This transformation results in a system of ϕ-dependent
integral equations defined on the fixed domain [0, T ]×∂Ω. This is achieved through
a change of variables applied to (5.2), leading to the following proposition:

Proposition 5.2. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Let ϕ ∈ A1,α
∂Ω,Q.

Let λ+, λ− > 0 and f ∈ C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω), g ∈ C
α
2 ;α
0 ([0, T ] × ∂Ω). Then the

unique solution

(u+[ϕ, λ+, λ−, f, g],u−[ϕ, λ+, λ−, f, g])

∈ C
1+α
2 ;1+α

0,q ([0, T ] × S[ϕ]) × C
1+α
2 ;1+α

0,q ([0, T ] × S[ϕ]−)

of problem (5.1) can be written as

u+[ϕ, λ+, λ−, f, g] = v+q [ρ+ ◦ (ϕT )(−1)] u−[ϕ, λ+, λ−, f, g] = v−q [ρ− ◦ (ϕT )(−1)],

where (ρ+, ρ−) is the unique solution in C
α
2 ;α
0 ([0, T ] × ∂Ω) × C

α
2 ;α
0 ([0, T ] × ∂Ω) of

the system of integral equations{
Vq[ϕ, ρ+] − Vq[ϕ, ρ−] = f,

λ−
(
− 1

2ρ
− +W ∗

q [ϕ, ρ−]
)
− λ+

(
1
2ρ

+ +W ∗
q [ϕ, ρ+]

)
= g.

(5.3)

Our next step is to understand the dependence of the solution (ρ+, ρ−) of (5.3)
upon (ϕ, λ+, λ−, f, g). To achieve this, we first observe that system (5.3) can be
equivalently reformulated as a single integral equation. In fact, by the linearity of
the single-layer potential Vq[ϕ, ·], we can rewrite the first equation in (5.3) as

Vq[ϕ, ρ+ − ρ−] = f. (5.4)

Then, by leveraging the invertibility of the single-layer potential (cf. [21, Thm. 2])
and using equality (5.4), we can express either ρ+ or ρ− in terms of the other.
Substituting this expression into the second equation of (5.3), we arrive at the
following proposition:
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Proposition 5.3. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Take ϕ ∈ A1,α
∂Ω,Q.

Assume λ+, λ− > 0 and take f ∈ C
1+α
2 ;1+α

0 ([0, T ]×∂Ω) and g ∈ C
α
2 ;α
0 ([0, T ]×∂Ω).

Define the contrast transmission parameter λc[λ+, λ−] by

λc[λ+, λ−] :=
λ− − λ+

λ− + λ+
. (5.5)

If (ρ+, ρ−) ∈ C
α
2 ;α
0 ([0, T ] × ∂Ω) × C

α
2 ;α
0 ([0, T ] × ∂Ω) is the unique solution of the

system of integral equations (5.3), then ρ− is the unique solution in C
α
2 ;α
0 ([0, T ]×∂Ω)

of the integral equation

ρ− − 2λc[λ+, λ−]W ∗
q [ϕ, ρ−]

= − 2

λ− + λ+

(
λ+

(
1

2
I +W ∗

q [ϕ, ·]
)(

Vq[ϕ, ·](−1)(f)
)

+ g

)
(5.6)

and ρ+ is given by

ρ+ = ρ− + Vq[ϕ, ·](−1)(f). (5.7)

Proof. As already noted, equation (5.7) follows by the first equation of (5.3) and

by the linearity and invertibility of the operator Vq[ϕ, ·] from C
α
2 ;α
0 ([0, T ] × ∂Ω) to

C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω) (cf. [21, Thm. 2]). Then, substituting (5.7) into the second
equation in (5.3) and using the linearity of W ∗

q [ϕ, ·], we obtain

λ−
(
−1

2
ρ− +W ∗

q [ϕ, ρ−]

)
− λ+

(
1

2
ρ− +

1

2
Vq[ϕ, ·](−1)(f)

)
− λ+

(
W ∗

q [ϕ, ρ−] +W ∗
q

[
ϕ, Vq[ϕ, ·](−1)(f)

])
= g,

which, after a rearrangement, yields

(λ− + λ+)

(
−1

2
ρ−

)
+ (λ− − λ+)W ∗

q [ϕ, ρ−]

= λ+
(

1

2
I +W ∗

q [ϕ, ·]
)(

Vq[ϕ, ·](−1)(f)
)

+ g.

Multiplying both sides of the above equation by − 2
λ−+λ+ , we obtain (5.6), which,

in view of [21, Lem. 2], is well known to have a unique solution (cf. the definition
of λc[λ+, λ−] in (5.5)).

In the proof of Proposition 5.3, we utilized the invertibility of the operator I −
2γW ∗

q [ϕ, ·] for γ ∈ (−1, 1), a fact established in [21, Lem. 2]. Even for γ = 1,
this operator remains invertible, as follows from [20, Lem. 6]. In the subsequent
lemma, we demonstrate the invertibility of this operator for γ = −1 as well, thereby
establishing its invertibility for all γ ∈ [−1, 1].

Lemma 5.4. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Let ϕ ∈ A1,α
∂Ω,Q and

γ ∈ [−1, 1]. Then the operator from C
α
2 ;α
0 ([0, T ]×∂Ω) into itself that maps ρ to the

function ρ− 2γW ∗
q [ϕ, ρ] is a linear homeomorphism.

Proof. As previously noted, the assertion for γ ∈ (−1, 1) and γ = 1 follows by
[21, Lem. 2] and [20, Lem. 6], respectively (note that for γ ∈ (−1, 1), there exist
γ+, γ− > 0 such that γ = (γ− − γ+)/(γ− + γ+)). Thus, the task at hand is to
demonstrate the statement for γ = −1.
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Due to the compactness of W ∗
q [ϕ, ·] (cf. [21, Thm. 1]), the operator I−2γW ∗

q [ϕ, ·]
is a Fredholm operator of index zero. Consequently, to demonstrate that it is a linear

homeomorphism, it suffices to prove its injectivity. So, let ρ ∈ C
α
2 ;α
0 ([0, T ]×∂Ω) be

such that

ρ+ 2W ∗
q [ϕ, ρ] = 0 on [0, T ] × ∂Ω.

By Theorem 4.1, the single-layer potential v+q [ρ ◦ (ϕT )(−1)] belongs to the space

C
1+α
2 ;1+α

0,q

(
[0, T ] × S[ϕ]

)
and is a solution of the following q-periodic homogeneous

interior Neumann problem:
∂tu− ∆u = 0 in (0, T ] × S[ϕ],

u(t, x+ qz) = u(t, x) ∀ (t, x) ∈ [0, T ] × S[ϕ], ∀ z ∈ Zn,
∂

∂νΩ
u = 0 on [0, T ] × ∂Ω,

u(0, ·) = 0 in S[ϕ] .

(5.8)

We proceed to prove that u = 0 is the sole solution of problem (5.8) by a standard
energy argument. It will follow that v+q [ρ ◦ (ϕT )(−1)] = 0 and, by the invertibility
of the restriction to [0, T ] × ϕ(∂Ω) of the single-layer potential (cf. [21, Thm. 2]),
we will conclude that ρ ◦ (ϕT )(−1) = 0, and thus that ρ = 0.

So, let u ∈ C
1+α
2 ;1+α

0,q ([0, T ] × S[ϕ]) be a solution of (5.8). Let

e(t) :=

∫
Ω

(u(t, y))2 dy ∀t ∈ [0, T ].

Given that u is uniformly continuous on [0, T ] × S[ϕ], we can see that t 7→ e(t) is
continuous on [0, T ]. Furthermore, we can demonstrate that e belongs to C1([0, T ]).
A detailed proof is provided in [20, Lem. 5 and Prop. 2], and it is based on classical
differentiation theorems for integrals depending on a parameter, along with a specific
approximation of the support of integration (see Verchota [26, Thm. 1.12, p. 581]).
Following the argument in the same reference ([20, Lem. 5 and Prop. 2]), we can
also verify that

d

dt
e(t) = −2

∫
Ω

|Du(t, y)|2 dy + 2

∫
∂Ω

u(t, y)
∂

∂νΩ
u(t, y) dσy

= −2

∫
Ω

|Du(t, y)|2 dy ∀t ∈ (0, T ),

where the integral on ∂Ω vanishes thanks to the boundary condition in (5.8). Hence
d
dte ≤ 0 in (0, T ). Since e ≥ 0 and e(0) = 0, we conclude that e(t) = 0 for all

t ∈ [0, T ]. Accordingly, u = 0 on [0, T ]×Ω, and the q-periodicity of u implies u = 0

on [0, T ] × S[ϕ]. Hence

v+q [ρ ◦ (ϕT )(−1)] = 0 in [0, T ] × S[ϕ] ,

a fact that, as explained above, concludes the proof of the statement.

Taking inspiration from Proposition 5.3 and Lemma 5.4, we define the map

Λ : A1,α
∂Ω,Q×(0,+∞)2×C

1+α
2 ;1+α

0 ([0, T ]×∂Ω)×C
α
2 ;α
0 ([0, T ]×∂Ω) → C

α
2 ;α
0 ([0, T ]×∂Ω)

given by

Λ[ϕ, λ+, λ−, f, g] :=
(
I − 2λc[λ+, λ−]W ∗

q [ϕ, ·]
)(−1)
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− 2

λ− + λ+

(
λ+

(
1

2
I +W ∗

q [ϕ, ·]
)(

Vq[ϕ, ·](−1)(f)
)

+ g

))
,

with λc[λ+, λ−] as in (5.5). Then the solution ρ−[ϕ, λ+, λ−, f, g] to the integral
equation in (5.6) is given by

ρ−[ϕ, λ+, λ−, f, g] = Λ[ϕ, λ+, λ−, f, g], (5.9)

and if we take

ρ+[ϕ, λ+, λ−, f, g] = ρ−[ϕ, λ+, λ−, f, g] + Vq[ϕ, ·](−1)(f), (5.10)

we see, by Proposition 5.3, that the pair(
ρ+[ϕ, λ+, λ−, f, g], ρ−[ϕ, λ+, λ−, f, g]

)
is the unique solution of (5.3).

Our next objective is to establish a regularity result for the map that takes (ϕ,
λ+, λ−,f,g) to (ρ+[ϕ, λ+, λ−,f,g], ρ−[ϕ, λ+, λ−,f,g]), which stems from the smooth
dependence of layer potentials on perturbations in the integration’s support of The-
orem 4.3, coupled with the analyticity of the inversion map in Banach algebras.
Subsequently, the regularity of the mapping

(ϕ, λ+, λ−,f,g) 7→
(
ρ+[ϕ, λ+, λ−,f,g], ρ−[ϕ, λ+, λ−,f,g]

)
will resolve into a regularity result for the mapping that relates (ϕ, λ+, λ−,f,g) with
the solution of (5.1).

Proposition 5.5. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Then the map

(ϕ, λ+, λ−,f,g) 7→
(
ρ+[ϕ, λ+, λ−,f,g], ρ−[ϕ, λ+, λ−,f,g]

)
is of class C∞ from A1,α

∂Ω,Q × (0,+∞)2 ×C
1+α
2 ;1+α

0 ([0, T ]× ∂Ω)×C
α
2 ;α
0 ([0, T ]× ∂Ω)

to C
α
2 ;α
0 ([0, T ] × ∂Ω) × C

α
2 ;α
0 ([0, T ] × ∂Ω).

Proof. By Theorem 4.3, the map that takes ϕ to Vq[ϕ, ·] is of class C∞ from A1,α
∂Ω,Q to

the space L(C
α
2 ;α
0 ([0, T ]×∂Ω), C

1+α
2 ;1+α

0 ([0, T ]×∂Ω)), and the map that takes (ϕ, γ)

to I − 2γW ∗
q [ϕ, ·] is of class C∞ from A1,α

∂Ω,Q × (−1, 1) to the space L(C
α
2 ;α
0 ([0, T ]×

∂Ω), C
α
2 ;α
0 ([0, T ]×∂Ω)). Since the map from (0,+∞)2 to (−1, 1) that takes (λ+, λ−)

to λ−−λ+

λ−+λ+ is also of class C∞, we deduce that the map from A1,α
∂Ω,Q × (0,+∞)2 to

the space L(C
α
2 ;α
0 ([0, T ]× ∂Ω), C

α
2 ;α
0 ([0, T ]× ∂Ω)) that takes a triple (ϕ, λ+, λ−) to

I − 2
λ− − λ+

λ− + λ+
W ∗

q [ϕ, ·]

is of class C∞.
Now, the map that takes a linear invertible operator to its inverse is real analytic

(cf. Hille and Phillips [11, Thms. 4.3.2 and 4.3.4]), and therefore of class C∞. So,
by the invertibility of the periodic single layer of [21, Thm. 2] and by Lemma 5.4

we deduce that the map from A1,α
∂Ω,Q to

L
(
C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω), C
α
2 ;α
0 ([0, T ] × ∂Ω)

)
that takes ϕ to Vq[ϕ, ·](−1) and the map from A1,α

∂Ω,Q × (0,+∞)2 to

L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

α
2 ;α
0 ([0, T ] × ∂Ω)

)
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that takes (ϕ, λ+, λ−) to (I − 2λ−−λ+

λ−+λ+W
∗
q [ϕ, ·])(−1), are both of class C∞.

Given the bilinearity and continuity of the evaluation map (L, v) 7→ L[v], which
acts from

L
(
C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω), C
α
2 ;α
0 ([0, T ] × ∂Ω)

)
× C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω)

to C
α
2 ;α
0 ([0, T ] × ∂Ω), as well as from

L
(
C

α
2 ;α
0 ([0, T ] × ∂Ω), C

α
2 ;α
0 ([0, T ] × ∂Ω)

)
× C

α
2 ;α
0 ([0, T ] × ∂Ω)

to C
α
2 ;α
0 ([0, T ]× ∂Ω), we can deduce that the mapping (ϕ, f) 7→ Vq[ϕ, ·](−1)(f) is of

class C∞ from A1,α
∂Ω,Q × C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω) to C
α
2 ;α
0 ([0, T ] × ∂Ω) and, similarly,

the map

(ϕ, λ+, f) 7→ λ+
(

1

2
I +W ∗

q [ϕ, ·]
)(

Vq[ϕ, ·](−1)(f)
)

is of class C∞ from A1,α
∂Ω,Q × (0,+∞) × C

α
2 ;α
0 ([0, T ] × ∂Ω) to C

α
2 ;α
0 ([0, T ] × ∂Ω).

By once again relying on the bilinearity and continuity of the evaluation map,
we ultimately deduce that the map taking (ϕ, λ+, λ−, f, g) to(
I − 2

λ− − λ+

λ− + λ+
W ∗

q [ϕ, ·]
)(−1) (

− 2

λ− + λ+

(
λ+

(
1

2
I +W ∗

q [ϕ, ·]
)(

Vq[ϕ, ·](−1)(f)
)
+ g

))
is of class C∞, where the domain is A1,α

∂Ω,Q × (0,+∞)2 × C
1+α
2 ;1+α

0 ([0, T ] × ∂Ω) ×
C

α
2 ;α
0 ([0, T ] × ∂Ω), and the codomain is C

α
2 ;α
0 ([0, T ] × ∂Ω).

Hence, the smoothness of the map (ϕ, λ+, λ−, f, g) 7→ ρ−[ϕ, λ+, λ−, f, g] follows
directly from (5.9) and the definition of Λ. The smoothness of (ϕ, λ+, λ−, f, g) 7→
ρ+[ϕ, λ+, λ−, f, g] is a consequence of (5.10).

Theorem 5.2 provides a representation formula for the solution of problem (5.1)
in terms of periodic single-layer potentials, while Proposition 5.5 demonstrates that
the corresponding densities exhibit smooth dependence on the shape, boundary
data, and transmission parameters. Specifically, we have the expressions

u+[ϕ, λ+, λ−, f, g](t, x)

=

∫ t

0

∫
∂Ω

Sq,n(t− τ, x− ϕ(y))ρ+[ϕ, λ+, λ−, f, g](τ, y)σ̃n[ϕ](y) dσydτ, (5.11)

for all (t, x) ∈ [0, T ] × S[ϕ], and

u−[ϕ, λ+, λ−, f, g](t, x)

=

∫ t

0

∫
∂Ω

Sq,n(t− τ, x− ϕ(y))ρ−[ϕ, λ+, λ−, f, g](τ, y)σ̃n[ϕ](y) dσydτ, (5.12)

for all (t, x) ∈ [0, T ] × S[ϕ]−, where ρ+[ϕ, λ+, λ−, f, g] and ρ−[ϕ, λ+, λ−, f, g] are
maps of class C∞ with respect to the variables (ϕ, λ+, λ−, f, g). We are ready to
show the main result of this section, about the smooth dependence of the solution
of (5.1) on (ϕ, λ+, λ−, f, g).

Theorem 5.6. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Let Ωi and Ωe be

two bounded open subsets of Rn. Let B1,α
∂Ω,Q be the open subset of A1,α

∂Ω,Q consisting
of those diffeomorphisms ϕ such that

Ωi ⊆ S[ϕ], Ωe ⊆ S[ϕ]−.
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Then, the map

(ϕ, λ+, λ−, f, g) 7→
(
u+[ϕ, λ+, λ−, f, g]|[0,T ]×Ωi , u

−[ϕ, λ+, λ−, f, g]|[0,T ]×Ωe

)
is of class C∞ from B1,α

∂Ω,Q × (0,+∞)2 ×C
1+α
2 ;1+α

0 ([0, T ]× ∂Ω)×C
α
2 ;α
0 ([0, T ]× ∂Ω)

to C
1+α
2 ,1+α

0 ([0, T ] × Ωi) × C
1+α
2 ,1+α

0 ([0, T ] × Ωe).

Proof. Without loss of generality we can assume that Ωi and Ωe are of class C1,α.
The maps that associate a diffeomorphism ϕ with the functions

Ωi × ∂Ω ∋ (x, y) 7→ x− ϕ(y) ∈ Rn

and

Ωe × ∂Ω ∋ (x, y) 7→ x− ϕ(y) ∈ Rn

are both affine and continuous (and thus, smooth), from B1,α
∂Ω,Q to C1,α(Ωi×∂Ω,Rn\

qZn) and C1,α(Ωe × ∂Ω,Rn \ qZn), respectively. By arguing as in the proof of [5,
Lem. A.1 and Lem. A.3] regarding the regularity of superposition operators, we
deduce that the maps that take ϕ to the functions

Sq,n(t, x− ϕ(y)) ∀[0, T ] × Ωi × ∂Ω

and

Sq,n(t, x− ϕ(y)) ∀[0, T ] × Ωe × ∂Ω

are of class C∞ from B1,α
∂Ω,Q to C

1+α
2 ;1+α

0 ([0, T ]×(Ωi×∂Ω)) and to C
1+α
2 ;1+α

0 ([0, T ]×
(Ωe×∂Ω)), respectively. Indeed, we note that the results of [5, Lem. A.1 and Lem.
A.3] remain valid also in the case of a manifold with a boundary.

Then, the statement follows by the representation formulas (5.11), (5.12) for the
functions u±[ϕ, λ+, λ−, f, g], by Proposition 5.5 on the smoothness of ρ±[ϕ, λ+, λ−,
f, g], by Lemma 2.1 on the analyticity of σ̃n[ϕ], and by the regularity result on
integral operators with non-singular kernels of [5, Lem. A.2], which continues to
apply even in the case of a manifold with a boundary.

6. An expansion result by Neumann-type series. If we consider fixed values

of ϕ ∈ A1,α
∂Ω,Q, f ∈ C

1+α
2 ;1+α

0 ([0, T ]×∂Ω), and g ∈ C
α
2 ;α
0 ([0, T ]×Ω), a combination of

Proposition 5.3 and a modified version of Proposition 5.5 allows us to establish that
the solution to problem (5.1) exhibits analytic dependence on the term λc[λ+, λ−].
Consequently, we can express the densities as convergent power series. Alternatively,
this result can be achieved more directly by employing the Neumann series Theorem.

To be more precise, we can demonstrate that locally, around a fixed pair of
parameters (λ+0 , λ

−
0 ) ∈ (0,+∞)2, the densities can be expressed by means of a

Neumann-type series. The terms of this series involve the difference of the terms
λc[λ+, λ−] and λc[λ+0 , λ

−
0 ], as well as iterated compositions of the operator(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1) ◦W ∗

q [ϕ, ·].

Naturally, once we establish this result for the densities, by utilizing the represen-
tation formula of the solution in terms of space-periodic layer potentials, we can
deduce a similar result for the solution. The detailed calculation is left to the zealous
reader.
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We will use the following notation: Given two Banach spaces X and Y and a
bounded linear map T : X → Y , we define

T j := T ◦ · · · ◦ T︸ ︷︷ ︸
j−times

for every j ∈ N,

with the convention that T 0 = I.

In the theorem below, we fix ϕ ∈ A1,α
∂Ω,Q, λ+0 , λ

−
0 > 0, f ∈ C

1+α
2 ;1+α

0 ([0, T ]× ∂Ω),

and g ∈ C
α
2 ;α
0 ([0, T ]×Ω) and we show a representation formula for ρ−[ϕ, λ+, λ−, f, g]

as a convergent power series depending on the difference of the terms λc[λ+, λ−]
and λc[λ+0 , λ

−
0 ]. For the sake of exposition, for every j ∈ N, we define the map

Kj : A1,α
∂Ω,Q × (0,+∞)2 → L(C

α
2 ;α
0 ([0, T ] × ∂Ω), C

α
2 ;α
0 ([0, T ] × ∂Ω)),

given by

Kj [ϕ, λ
+
0 , λ

−
0 ] := 2j

((
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1) ◦W ∗

q [ϕ, ·]
)j

. (6.1)

Then the following holds.

Theorem 6.1. Let α ∈ (0, 1) and T > 0. Let Ω be as in (2.2). Let ϕ ∈ A1,α
∂Ω,Q,

λ+0 , λ
−
0 > 0, f ∈ C

1+α
2 ;1+α

0 ([0, T ] × ∂Ω), and g ∈ C
α
2 ;α
0 ([0, T ] × Ω) be fixed.

Then, there exists a positive constant ε ∈ (0,+∞) such that the following holds:
For every (λ+, λ−) ∈ (0,+∞)2 such that

|λc[λ+, λ−] − λc[λ+0 , λ
−
0 ]| < ε, (6.2)

with λc[·, ·] defined by (5.5), we have

ρ−[ϕ, λ+, λ−, f, g] =

+∞∑
j=0

(λc[λ+, λ−] − λc[λ+0 , λ
−
0 ])jKj [ϕ, λ

+
0 , λ

−
0 ]


◦
(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1)

(ρ−0 [ϕ, λ+, λ−, f, g]), (6.3)

where the series
+∞∑
j=0

ζjKj [ϕ, λ
+
0 , λ

−
0 ]

converges normally in L(C
α
2 ;α
0 ([0, T ]×∂Ω), C

α
2 ;α
0 ([0, T ]×∂Ω)) for |ζ| < ε and where

ρ−0 [ϕ, λ+, λ−, f, g] :=− 2

λ− + λ+

(
λ+

(
1

2
I+W ∗

q [ϕ, ·]
)(

Vq[ϕ, ·](−1)(f)
)

+g

)
. (6.4)

Proof. Let ϕ ∈ A1,α
∂Ω,Q, λ+0 , λ

−
0 > 0, f ∈ C

1+α
2 ;1+α

0 ([0, T ]×∂Ω), and g ∈ C
α
2 ;α
0 ([0, T ]×

∂Ω). We first notice that, by the definition of ρ−0 in (6.4), we can rewrite (5.6) as(
I − 2λc[λ+, λ−]W ∗

q [ϕ, ·]
)
ρ−[ϕ, λ+, λ−, f, g] = ρ−0 [ϕ, λ+, λ−, f, g] , (6.5)

for every (λ+, λ−) ∈ (0,+∞)2. We now consider the operator on the left-hand side

of (6.5), which is I−2λc[λ+, λ−]W ∗
q [ϕ, ·] : C

α
2 ;α
0 ([0, T ]×∂Ω) → C

α
2 ;α
0 ([0, T ]×∂Ω). By

adding and subtracting the term 2λc[λ+0 , λ
−
0 ]W ∗

q [ϕ, ·] and factoring out the operator

I − 2λc[λ+0 , λ
−
0 ]W ∗

q [ϕ, ·], we can rewrite this operator as follows:

I − 2λc[λ+, λ−]W ∗
q [ϕ, ·]

= I − 2λc[λ+0 , λ
−
0 ]W ∗

q [ϕ, ·] − 2(λc[λ+, λ−] − λc[λ+0 , λ
−
0 ])W ∗

q [ϕ, ·]
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=
(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)

◦
(
I − 2(λc[λ+, λ−] − λc[λ+0 , λ

−
0 ])

(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1) ◦W ∗

q [ϕ, ·]
)
. (6.6)

In particular, by (6.6), we deduce that(
I − 2λc[λ+, λ−]W ∗

q [ϕ, ·]
)(−1)

=
(
I − 2(λc[λ+, λ−] − λc[λ+0 , λ

−
0 ])

(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1) ◦W ∗

q [ϕ, ·]
)(−1)

◦
(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1)

. (6.7)

Then, if we choose ε > 0 small enough, for example

ε :=
1

2
∥∥∥(I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1) ◦W ∗

q [ϕ, ·]
∥∥∥
L
(
C

α
2

;α

0 ([0,T ]×∂Ω),C
α
2

;α

0 ([0,T ]×∂Ω)

) ,
(6.8)

we have that, for every (λ+, λ−) ∈ (0,+∞)2 such that (6.2) holds, the inverse of
the operator

I − 2(λc[λ+, λ−] − λc[λ+0 , λ
−
0 ])

(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1) ◦W ∗

q [ϕ, ·]

from C
α
2 ;α
0 ([0, T ]×∂Ω) into itself can be written as a normally convergent Neumann

series in L(C
α
2 ;α
0 ([0, T ] × ∂Ω), C

α
2 ;α
0 ([0, T ] × ∂Ω)). In fact, by (6.2) and (6.8), and

by the Neumann series Theorem, we have that(
I − 2(λc[λ+, λ−] − λc[λ+0 , λ

−
0 ])

(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1) ◦W ∗

q [ϕ, ·]
)(−1)

=

+∞∑
j=0

(λc[λ+, λ−] − λc[λ+0 , λ
−
0 ])jKj [ϕ, λ

+
0 , λ

−
0 ] , (6.9)

where for each j ∈ N the operator Kj [·, ·, ·] is defined by (6.1). Finally, (6.5), (6.7)
and (6.9) yield to the validity of (6.3).

Remark 6.2. Let the assumptions of Theorem 6.1 hold. By equations (6.3) and
(6.4), we have

ρ−[ϕ, λ+, λ−, f, g]

= − 2λ+

λ− + λ+

+∞∑
j=0

(λc[λ+, λ−] − λc[λ+0 , λ
−
0 ])jKj [ϕ, λ

+
0 , λ

−
0 ]


◦
(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1)

(
1

2
I +W ∗

q [ϕ, ·]
)(

Vq[ϕ, ·](−1)(f)

)

− 2

λ− + λ+

+∞∑
j=0

(λc[λ+, λ−] − λc[λ+0 , λ
−
0 ])jKj [ϕ, λ

+
0 , λ

−
0 ]


◦
(
I − 2λc[λ+0 , λ

−
0 ]W ∗

q [ϕ, ·]
)(−1)

(g) ,

for every (λ+, λ−) ∈ (0,+∞)2 such that condition (6.2) holds.
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