
Consensus sensor fusion to estimate the relative
attitude during space capture operations

Alex Caon∗, Mattia Peruffo†, Francesco Branz†, Alessandro Francesconi†
∗Centre of Studies and Activities for Space “G. Colombo”, University of Padova, Padova, Italy

†Department of Industrial Engineering, University of Padova, Padova, Italy
Email: alex.caon@phd.unipd.it

Abstract—The concept of space capture refers to the capability
of a spacecraft to grasp a target satellite with the ultimate
goal of executing servicing operations on the captured vehicle.
Much research effort is currently focused on the development of
technologies that enable such complex operations by means of
autonomous vehicles. Sensors and estimation technologies used
to retrieve the relative pose of the two satellites in close proximity
are of key importance.

This work1 presents an algorithm for sensor fusion based on a
consensus filter that leverages on the measures provided by a set
of four Time–of–Flight distance sensors. The goal is to obtain an
estimate of the relative orientation of two planes, one holding the
sensors, the other being a target surface. The algorithm is based
on the computation of five different orientations on which the
consensus filter is applied. Numerical simulations show that the
estimated orientation is more accurate than the simple average
of the five different orientations.

The proposed algorithm is performance is further evaluated
using real measures collected from four Time–of–Flight sensors in
a simple experimental setup. The experiment allows to compare
the obtained estimation with the real orientation and with the
output of a classic model-based Kalman filter used as a reference.
The results suggests that the consensus algorithm estimates the
relative attitude with a lower error, although requiring more
measures compared to the Kalman filter.

I. INTRODUCTION

On–Orbit–Servicing (OOS) represents appealing mission
scenarios for both the industrial and the scientific community
[1]. The term OOS comprises a variety of operations involving
a chaser and a client vehicle, including inspection, refuelling,
maintenance and refurbishment, with the aim of extending
or improving the operational life of the client satellite. A
common point of OOS missions is represented by the so called
close proximity operations, that culminate with the capture of
the client satellite. Due to their complexity, these operations
require a dedicated hardware in order to be safely executed.

Focusing on the retrieval of the relative pose, heterogeneous
sensors can be employed in the same system by establishing
a network of sensors. The term “sensor fusion” refers to
techniques that consists in merging signals from multiple
sensors, in order to retrieve an information that is more
reliable or accurate than the one derived from the sensors used
singularly [2].

Based on the sensor configuration, three main categories of
sensor fusion can be identified [3]:

1This work was partially funded by Università degli Studi di Padova in the
framework of the BIRD 2021 programme (BRAN_BIRD2121_01).

• complementary: sensors do not depend on each other
and their signals can be mixed together in order to
have a more comprehensive information of the observed
property;

• competitive: different sensors investigate the same prop-
erty;

• cooperative: data generated by the sensors are used to
get information that would not be available from the
individual measurements of a single sensor.

These configurations can be exploited at the same time since
they are not mutually exclusive.

To enable space–capture operations, the authors are devel-
oping a smart interface, composed by a capture mechanism, a
suite of close–range navigation sensors and a microcontroller
to manage all the information. The smart interface is capable
of retrieving the pose of the target by its own sensors and
performing the capture by its own actuators. For the determi-
nation of the relative pose between the vehicles at very close
range, the interface is equipped with two types of sensors:
(i) a matrix positioning sensor [4], and (ii) four Time–of–
Flight (ToF) distance sensors. The measures from the ToF
sensors are used to retrieve multiple values of the orientation
of the target. These information are then fused together in a
competitive configuration by the application of a consensus
algorithm [5] [6] [7]. The consensus algorithm employs a
consensus matrix that holds the information of the variance
and covariance computed between the different signals to be
fused.

In the following sections, the algorithm will be presented
and the approach to define the consensus matrix is described
in detail. To evaluate the algorithm performance, it has been
tested in two different ways: (1) numerical simulations allows
to compare the algorithm outputs the simple average of the
measures, and (2) an experimental set–up is used to compare
the algorithm outputs with the actual relative attitude between
the sensors and the target object. In the second case, in partic-
ular, the performance of the consensus estimator is compared
with the output of a model–based Kalman filter.

The reminder of this paper is organized as follows: Sec. II
provides a description of the ToF sensors and how they are
employed; Sec. III describes the working principles of the
consensus and of the model–based filters; Sec. IV presents
the results obtained with numerical simulation; Sec. V presents
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Fig. 1: Layout of the four ToF sensors (A, B, C, D) with
reference frame.

the experimental setup and test results; finally in Sec. VI final
conclusions are drawn.

II. TIME OF FLIGHT SENSORS

Time–of–Flight (ToF) distance sensors measure the time
that the light takes to travel from the sensor to the object,
and back after reflection. By knowing the value of the speed
of light, it is possible to compute the relative distance between
the sensor and the object. For the purpose of this work, the
targetis a flat surface and a set of four coplanar ToF sensors
is employed to retrieve the inclination of the target interface
with respect to the plane of the sensors. The ToF sensors are
arranged as shown in Fig. 1 to indirectly measure the rotation
of the target about the z–axis, considering that the target is
centred in the reference frame in the figure (the case of the
rotation about the y–axis is similar). In this configuration,
the measurements provided by the sensors B and D are not
affected by the rotation around the z–axis.

Figure 2 depicts the layout of ToF sensors with reference to
the target surface, showing the relative orientation angle α. To
this aim, define xA, xB , xC and xD as the measures taken by
the four sensors (A, B, C and D), and define a as the distance,
measured in the y direction, of A and C from the z–axis. Five
values of α can be computed by combining the measurements
as follows:

α1 = arctan
xB − xA

a
α2 = arctan

xD − xA
a

α3 = arctan
xC − xB

a
α4 = arctan

xC − xD
a

α5 = arctan
xC − xA

2a

(1)

A limit of ToF sensors is the considerable jitter that affects
their output. In fact, their output is dispersed with a standard
deviation of approximately 2 mm, that translates into an error
of ±3 deg on planes orientation. This work presents method
to reduce this error and improve the estimation of the relative
attitude between the considered surfaces.

III. ESTIMATION METHODS

This section presents two estimation methods applied to
the problem of determining the angle α. First, the proposed
consensus–based method is described, while its performances
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Fig. 2: Configuration of the ToF distance sensors with respect
to the target surface.

are discussed in the following sections. Additionally a model–
based Kalman filter is reported, since it is used as a reference
in the following to better understand the advantages provided
by the consensus estimation method.

A. Consensus filter

A consensus filter is a way to fuse different signals of
sensors, even if they have a different nature and a different
logic [7]. It is an iterative filter that considers the measures
of several sensors to retrieve a final estimation more reliable
than the single measures.

The first step to design a consensus filter is to define the
so–called consensus matrix P whose general element P(i, j)
is greater than zero if sensor j has access to the state of sensor
i. It must satisfy the fact that the sum of the elements of each
row must be equal to one. This property guarantees that the
filter has its first eigenvalue equal to 1, while all the others
are lower than 1, hence it is stable and converges to a solution
(due to the Gershgoring theorem).

The dynamics of the filter is described as follows:

v(t+ 1) = P · v(t) (2)

where x is a column vector containing the values of each
measure. As the equation shows, the filter might be seen as
an iterative way to retrieve a final measure that is a linear
combination of all the other measures.

In the case of this work, the consensus filter is applied
to the five orientations described in Eq. 1. The α1, · · · , α5

estimates are computed N times from N sets of consecutive
distance samplings (xA, · · · , xD). The elements P(i, j) of the
consensus matrix P are related to the covariance cov(αi, αj)
of the estimated angle αi with respect to αj . For each couple
(αi, αj) of estimates, a weight is defined as the inverse of the
covariance cij = cov(αi, αj):

wij =
1

cij
(3)

The elements P(i, j) are computed from the weights wij

and normalized so that each row of the P matrix is a unit
vector:

P(i, j) =
wij∑5
k=1 wik

(4)
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Fig. 3: The network established between the five orientation
originated by the consensus matrix P . In the network, all
the orientations communicate with each other and with them-
selves.

The elements on the diagonal of the matrix are the inverse
of the variance of αi. The matrix is symmetric and full,
meaning the network composed by the five αi estimates is
fully connected, as shown in Fig. 3. The pseudo–code that
implements the consensus estimator is detailed in Alg. 1 and
visually presented in Fig. 4.

Algorithm 1 Pseudo-code implementation of the consensus
estimation algorithm.

Require: N measures of xA, xB , xC , xD from ToF sensors
compute N values of αi, i = 1 · · · 5
ᾱi = mean(αi)
cij = cov (αi, αj)

wij =
1

cij
P (i, j) =

wij∑5
k=1 wik

while err > toll do
α (k) = P · α (k − 1)
err = max |αj (k)− αi (k) |, i, j = 1 · · · 5, i 6= j
k = k + 1

end while

B. Model–based filter

Model–based estimation methods are a common choice
and the Kalman filter is widely applied. Suppose that the
target is not moving except for a small oscillation around its
equilibrium point, then it is possible to describe the system
with the following model:

X(t+ 1) = A ·X(t) + v

Y(t) = C ·X(t) + w

leading to:

ToF A ToF B ToF C ToF D

N
measures

N
measures

N
measures

N
measures

5 different α for
each measure

average each αi

compute the covarience
and the P matrix

initial vector of 5 αi

i = 1 · 5

consensus iterations

estimation of the
attitude angle

Fig. 4: Logic scheme that illustrates how the different ToF
sensors and the consensus algorithm are employed to estimate
the attitude orientation.

 x̄
tan (α)
tan (β)

 (t+ 1) =

 1 0 0
0 1 0
0 0 1

 ·
 x̄

tan (α)
tan (β)

 (t) + v


x1
x2
x3
x4

 (t) =


1 −a 0
1 0 a
1 a 0
1 0 −a

 ·
 x̄

tan (α)
tan (β)

 (t) + w

(5)

where β is the rotation about the y axis, while v and w are the
white Gaussian noises that affect the model and the measure
respectively. The second value is related to the jitter of the
ToF sensors output.

Equation 5 describes the dynamics of a common Kalman
filter, whose implementation is reported in Alg. 2. This method
is employed as a reference to assess the performance of the
consensus method in terms of errors on the estimation on the
relative attitude of the target.

IV. SIMULATION RESULTS

A preliminary validation of the proposed estimation method
is obtained through numerical simulations. The simulations are
performed as follows:

1) a series of N = 100 angular positions are defined
between −5 deg and 5 deg;

2) a set of four ideal distance measurements are defined for
each position;



Algorithm 2 Pseudo–code implementation of the Kalman
filter algorithm.

Require: System model A, B, C
Require: Noise model v, w
Require: First estimation of the state vector xpost
Require: First estimation of the matrix Ppost

Ensure: Input vector u = 0 (for this specific case)
loop
xpre = A · xpost +B · u
Ppre = A · Ppost ·AT +Q

K = Ppre · CT ·
[
C · Ppre · CT +R

]−1

take the measure y
erry = y − C · xpre
xpost = xpre +K · erry
Ppost = Ppre −K · C · Ppre

end loop

average std
[deg] [deg]

α1 0.39 0.29
α2 0.37 0.30
α3 0.42 0.32
α4 0.39 0.27
α5 0.25 0.20

filter 0.24 0.18

TABLE I: Average and standard deviation of the error on the
reconstruction of the trajectory for the five orientations αi and
the filtered orientation.

3) for each ideal measurement a series of N noisy measures
are defined considering a random error with a standard
deviation of 2 mm;

4) with the noisy measures, the five attitude angles αi are
computed, for each of the N measures;

5) the N orientations are used to estimate the orientation
with two methods: (i) the first is based on the average of
all the measurements, and (ii) the second is the consensus
filter;

6) the covariance between the five N × 1 vectors of αi has
been computed;

7) the elements of the consensus matrix are based on the
covariance between the αi;

8) finally the consensus problem is solved and the perfor-
mances errors with respect to the nominal attitude angle
are computed;

9) the process is repeated for each point on the trajectory.

Figure 5 shows the results of one of the numerical sim-
ulations, with the comparison between the averaged and the
filtered orientations. The error of the proposed method is lower
than that of the noisy measures. The average and the standard
deviation of all the errors of all the orientations are reported
in Tab. I.
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Fig. 5: Results of one numerical simulation for the five orienta-
tion αi and the filtered orientations in terms of reconstruction
of trajectory (above), and the error with respect to the nominal
trajectory (below)

V. EXPERIMENT

The consensus method has been tested with measures from
real ToF sensors and its results are compared with those
obtained with the Kalman filter. This section describes the
experiment set–up and presents the results.

A. Experimental setup

As introduced before, for the sake of simplicity, the rotation
around the y axis is zero. This allows to use a planar slide
to test the estimation algorithm. The slide provides 3 DoFs:
two translations and one rotation. The target is mounted on
the fixed part of the slide, while the plate containing the ToF
sensors has been mounted on the moving part of the slide, as
shown in Fig. 6.

For the experiment, eleven values of α are imposed to
the slide (called nominal positions αn). At each αn, each
ToF sensor has taken one hundred measures to have a good
database for both the model–based estimation and the consen-
sus estimation.

B. Results

The consensus filter has been employed to compute the
α1, · · · , α5 estimates. The process of the estimation is the
following (see also Fig. 4):

1) each ToF sensor takes N = 100 measures;
2) for each couple of ToF sensors and for each measure, the

algorithm computes the N values of αi;
3) computation of the average ᾱi of the N values of αi;
4) computation of the covariance for the N couples (αi, αj);
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Fig. 6: Experimental set–up employed to test the estimation
algorithm; the red arrows highlight the DoF of the planar slide.
All the axis of motion are provided with encoders that enable
to reconstruct the relative position with high accuracy.

αn Consensus Consensus Kalman Kalman
estimation error estimation error

[deg] [deg] [deg] [deg] [deg]

-3.96 -3.98 0.02 -4.55 0.59
-2.88 -2.80 0.08 -2.76 0.12
-1.98 -2.03 0.06 -1.64 0.33
-1.26 -1.43 0.17 -1.68 0.42
-0.18 -0.57 0.39 -0.36 0.18
-0.09 0.16 0.25 0.40 0.49

0 0.005 0.005 0.51 0.51
1.26 1.11 0.15 0.85 0.41
1.98 2.21 0.23 2.27 0.29
3.96 3.27 0.69 3.40 0.56
4.68 4.55 0.13 4.82 0.14

TABLE II: Estimation of the relative attitude by using the
consensus–based and the model–based methods. The error
is taken as the absolute value of the difference between the
nominal and the estimated values.

5) the average value ᾱi is employed as the initial guess for
the consensus problem;

6) repeat from point 1 until all the values of the elements
of the vector are within a certain tolerance (10−3deg in
this case).

Tab. II reports the estimation for each αn using respectively
the consensus algorithm and with the model–based method.

By considering all the estimation errors reported in Tab. II,
it is possible to evaluate a global average error and a global
standard deviation of the estimation, reported in Tab. III.

The first plot of Fig. 7 shows the estimation of the different

Method Average error Standard deviation
[deg] [deg]

Kalman 0.37 0.16
Consensus 0.20 0.20

TABLE III: Average and standard deviation of the errors of
the two methods for all the different attitudes considered in
the experiment.
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Fig. 7: For both the methods are shown the estimation with
respect to the nominal position (above) and the estimation
errors with the average error (below), the errors are considered
as the absolute value between the estimation and the nominal
orientation.

nominal orientations both for the consensus method and for
the Kalman method. The second plot of the figure, shows the
errors on the estimation with its average value (Tab. III).

C. Discussion

As shown in Tab. III and in Fig. 7, the consensus algorithm
has a lower average on the estimation error with respect to the
Kalman algorithm. However the estimation with the consensus
method is based on the initial value of each αi, hence the
more precise is this value, the more the estimation is near to
the real value. A proof of this is the fact that the estimation
error obtained with an initial value computed by averaging 10
values of αi is higher than the error obtained by averaging 50
values of αi. Specifically, the error decreases by a factor of 10
from a value in the order of 10−1deg to a value in the order
of 10−2deg.

The estimation based on the Kalman filter, instead, uses a
different approach: it is iterated until it converges. Since at
every iteration a new measure is required, it could occur that
more than one hundred measure are taken. After the conver-



gence, the estimation is effected by error, as a consequence of
the noise of the ToF sensors, but with the lowest variance.

Based on the above results, the advantages of using the
consensus estimation are:

• applicability even in the case of lack of measures, since
they are necessary only for the definition of the first value
of the algorithm;

• based on an iterative method that does not require any
additional measure;

• possibility merge different data (even of different nature)
by weighting them with their variance and covariance;

• convergence is ensured by the fact that the consensus ma-
trix P has all the eigenvalues lower that 1 by definition.

VI. CONCLUSIONS

This paper presents a consensus estimation algorithm for
the sensor fusion to be applied to a capture system for On–
Orbit operations. The algorithm is applied to the results of
the measures instead of to the measures themselves. More
precisely, four Time–of–Flight sensors are employed in pairs
to retrieve five different values for the orientation of a target;
the algorithm is applied to these five orientations.

The consensus matrix of the filter is based on the covariance
of the five orientations. In such way, the algorithm considers
the fact that the measure with the lower covariance has the
highest weight in the consensus process.

The numerical simulations presented in this work state that
the consensus filter approach allows to reduce the error of the
orientation compared to the one taking determined by taking
the average of orientations

Once the numerical simulations proves the reliability of
the estimation algorithm, it has been employed with measures
from the ToF sensors. To this purpose, an experiment has been
established with the aim to reconstruct the relative orientation
between the ToF sensors and the target object by using the
algorithm. To evaluate the performances of the consensus
method, it has been compared with a model–based estimation
model. The results of the tests showed that the consensus
algorithm estimate the orientation with a lower error, but it
requires more measures to be processed than the model–based
algorithm.
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