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Abstract 

Among the energy-based approaches to estimate the fatigue life of steel specimens, the experimental method based on the heat 
dissipation (or intrinsic dissipation) per cycle, Q, proved effective for correlating the effects of geometrical stress concentrations , 
uniaxial and multiaxial loadings, and mean stress. The mean stress effect requires a properly defined temperature-corrected 
parameter 𝑄𝑄. The parameter Q is readily evaluable using temperature measurements and in this investigation it has been employed 
for fatigue strength assessment of plain specimens, extracted from a 42CrMo4 Q&T connecting rod big end of a marine engine. 
Completely reversed, strain-controlled, constant amplitude fatigue tests were carried out and the Q parameter evolution was 
monitored during each test by suddenly stopping the fatigue test several times and measuring the cooling gradient of material 
temperature. As result, besides the traditional strain-life (εa-2Nf) curve, the Q-Nf curve was also obtained, which is expected to be 
applicable for correlating notch and mean stress effects in future investigations. 
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1. Introduction 

The heat dissipation (or intrinsic dissipation) per cycle, Q, has been proposed as fatigue damage index in 
(Meneghetti 2007) along with the experimental procedure for its evaluation, which is based on the measurement of 
the material temperature undergoing fatigue. More precisely, the experimental evaluation of Q is based on the cooling 
gradient of the material which is measured immediately after a sudden stop of the fatigue test (time t * in Figure 1). 
Before test stopping, the material temperature must be stationary, i.e. the heat dissipation per cycle equates the heat 
transfer to the environment by conduction, convection and radiation, as shown in Figure 1. The Q parameter can be 
calculated according to Eq. (1): 
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where ρ is the material density, c is the material specific heat and f L is the load test frequency and T(t) is the time-
variant material temperature and t* is the time when the fatigue test has been suddenly interrupted. 

 

 
Figure 1. Experimental evaluation of the heat dissipation per cycle by measuring the cooling rate at t = t*. Temperature oscillations for t < t* 

due to the thermoelastic effect are shown in the detailed view. 
 
The Q parameter was initially adopted to correlate in a single scatter band more than 1 40 experimental results 

generated from constant-amplitude, fully reversed, stress- or strain- controlled fatigue tests on AISI 304L hot-rolled  
plain or notched specimens (notch radii between 0.5 and 8 mm) (Meneghetti and Ricotta 2012; Rigon et al. 2017a) 
and from cold drawn unnotched bars of the same steel under zero -mean stress axial or torsional fatigue loadings 
(Meneghetti et al. 2013), as shown in Figure 2a. Subsequently, the Q-based approach was extended to analyse the 
influence of the mean stress, which required to combine the Q-parameter with the thermoelastic temperature related 
to the maximum stress of the load cycle (Meneghetti et al. 2016) and resulted in a temperature-corrected energy 
parameter Q . The proposed approach was applied to collapse into a single scatter band fatigue data obtained on cold 
drawn AISI 304L stainless steel (see Figure 2b) and hot rolled quenched and tempered C45 steel specimens tested at 
different load ratios. In a recent investigation (Rigon et al. 2021), the energy approach has been adopted to successfully 
correlate fatigue test data generated from specimens made of C45 steel and subjected to in -phase and out-of-phase 
axial/torsional multiaxial fatigue loadings. 
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Figure 2. Fatigue data generated from specimens made of AISI 304L steel analysed in terms of (a) heat dissipation per cycle Q to account for 

specimen geometry and loading conditions (Rigon et al. 2017b); (b) the temperature-corrected energy parameter Q  to account for mean stress 
effect (Meneghetti et al. 2016). Used with permission of Elsevier, from (Rigon et al. 2017b) and (Meneghetti et al. 2016), respectively, permission 
conveyed through Copyright Clearance Center, Inc.  
 

Among the energy-based fatigue indexes, the hysteresis energy per cycle, W, proposed by Ellyin (Ellyin 1996) and 
the total mechanical energy expended to failure proposed by Halford (Halford 1966) are worth mentioning. 

2. Material, specimen geometry and test methods 

The aim of the present work is to investigate the fatigue strength of a 42CrMo4 Q&T connecting rod big end of a 
marine engine by adopting the Q-based approach. Accordingly, specimens were extracted from the big end of a 
connecting rod along radial directions, to account for the effects of the manufacturing processes. The main physical 
properties and the chemical composition of the material are reported in Table 1, while the geometry of the connecting 
rod big end has not been reported for confidentiality reasons. 

 
Table 1. Material properties, Ramberg-Osgood parameters (Eq. (2)) and chemical composition of 42CrMo4 steel 

ρ c Es σp0.2 σR A K n C Mn Si Cr Ni Mo Cu 
[kg/m3] [J/(kg K)] [MPa] [MPa] [MPa] [%] [MPa] [/] [%] [%] [%] [%] [%] [%] [%] 

7850 460 214500 656 860 8.68 993 0.0669 0.397 0.840 0.330 1.10 0.26 0.25 0.21 

 
A MTS 858 MiniBionix II axial servo-hydraulic testing machine with 15 kN load capacity and a MTS TestStar IIm 

digital controller, has been employed to perform both static tensile tests and strain -controlled fatigue tests at room 
temperature. The axial strain has been measured with an extensometer MTS 632.13F-20 having gauge length of 10 
mm.  

Static tensile tests have been carried out on three plain cylindrical specimens (Figure 3a) under displacement control 
according to ASTM E8 (2016) and by imposing a displacement rate of 0.375 mm/min. After each test, the static 
Young’s modulus Es, the engineering proof stress σp,0.2, the engineering tensile strength σR and the elongation after 
fracture A% have been derived and the average values are reported in Table 1.  

Strain-controlled fatigue tests have been carried out on plain cylindrical specimens (Figure 3b) according to ASTM 
E 606-04 (2004) by imposing a sinusoidal wave form with a  nominal strain ratio Rε = −1 and run-out condition at 
2∙106 cycles. Before performing the fatigue tests, the residual stress component along the specimen longitudinal axis 
has been measured for each specimen by adopting a SpiderXTM GNR diffractometer and resulted equal to σres = -559 
± 83 MPa. To mitigate residual stresses, a  surface layer of approximately 50 μm has been removed from each specimen 
by polishing (electrolytic machine StruersTM Lectropol 5). After polishing, the longitudinal residual stress component 
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was reduced by a considerable amount and resulted σres = -139 ± 36 MPa. The adopted test frequencies fL have been 
in the range between 0.3 and 6 Hz, depending on the applied strain amplitude. The signals from the load cell and the 
extensometer have been cross-plotted to derive the hysteresis loops, where stabilization has been assumed at half the 
fatigue life according to ASTM E 606-04 (2004). The temperature has been monitored during all fatigue tests by 
means of a copper–constantan thermocouple having accuracy 0.02 °C and fixed at the gauge section of the specimens 
by means of a silver-loaded conductive epoxy glue. A data logger Agilent Technologies HP 34970A operating at a  
sample frequency of facq = 22 Hz has been adopted to acquire the temperature signals measured by the thermocouples. 
To monitor the evolution of Q during each test, 1 to 8 cooling gradients (depending on the applied strain level) were 
performed by following the procedure proposed in (Meneghetti 2007).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Geometry of the plain specimens adopted for (a) the static tensile tests and (b) the strain-controlled fatigue tests. 

3. Results of experimental tests 

Figure 4 reports the monotonic static tensile curve and the fitted parameters according to the Ramberg-Osgood 
expression (Eq. (2)). 
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where K and n are the strength coefficient and the strain hardening exponent, respectively. It is worth mentioning 
that K and n reported in Table 1 and inside Fig. 4 have been fitted on the engineering stress-strain data up to a strain 
value equal to 0.8%. 

Figure 4 reports the half-life hysteresis loops along with the cyclic stress-strain curve, which has been determined 
by fitting the tips of the hysteresis loops for different applied strain amplitudes adopting a Ramberg-Osgood-type 
expression (Eq. (2)). The resulting K' and n' parameters are reported inside the figure. Comparing the monotonic and 
the cyclic stress-strain curves, it is concluded that the 42CrMo4 Q&T steel exhibits a softening behavior. 
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Figure 4. Half-life hysteresis loops, monotonic and cyclic curves. 

 
The experimental results εa versus 2Nf are presented in Figure 5 and they have been fitted using the Basquin 

(Basquin 1910), Manson (Manson 1954), and Coffin (Coffin 1954) equations, i.e. by dividing the total strain amplitude 
εa into its elastic (εa,el) and plastic (εa,pl) components (Eq. 3), the fitted parameters being reported in Fig. 5. 

( ) ( )
'

'
, , 2 2= + =  + 

b cf
a a el a pl f f fN N

E


                        (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Strain-controlled fatigue test results and parameters of the Manson-Coffin curve fitted on experimental data. 
 

-700

-500

-300

-100

100

300

500

700

-0,008 -0,006 -0,004 -0,002 0,000 0,002 0,004 0,006 0,008

σ [MPa]

ε [-]

Cyclic stress - strain curve

Monotonic tensile curve

Material: 42CrMo4 Q&T
Strain ratio Rε = -1

Es=214500 MPa, n'= 0.0971   
K'= 985 MPa

Es=214500 MPa,  n = 0.0669   
K= 993 MPa

𝜀𝜀 = 𝜎𝜎
𝐸𝐸𝑆𝑆

+ 𝜎𝜎
𝐾𝐾

ൗ1 𝑛𝑛

1,E-04

1,E-03

1,E-02

1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

ε a
[m

/m
]

2Nf, number of reversals to failure

εa,total

εa,plastic

εa,elastic

𝜀𝜀𝑎𝑎 = 4.98 ∙ 10−3 ∗ 2𝑁𝑁𝑓𝑓
−0.0777 + 2.48 ∙ 10−1 ∗ 2𝑁𝑁𝑓𝑓

−0.588

b = -0.0777 
c = -0.588 
σ'f = 1068.3 MPa
ε'f = 0.248 
Es = 214500  MPa

Material: 42CrMo4 Q&T
Strain ratio Rε = -1

Runout

6 Sofia Pelizzoni et al./ Structural Integrity Procedia  00 (2023) 000–000 

The temperature at the specimen’s surface increased in the range 6–21 °C from the beginning of the fatigue test, 
depending on the applied strain amplitude and the adopted loading frequency . Figure 6 shows the temperature data 
measured during the cooling phase for two exemplary specimens. After evaluating the cooling gradient, Q was 
calculated by means of Eq. (1) with the material parameters of Table 1 and the relevant loading frequency fL.  
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based fatigue curve reported in Figure 7a can be used for correlating notch effects in fatigue tests of specimens and 
components. 

4. Conclusions 

Static and push–pull, strain-controlled fatigue tests have been performed on plain specimens, extracted from a 
42CrMo4 Q&T steel big end of connecting rod of a marine engine. The monotonic and cyclic stress-strain curves as 
well as the strain-life (εa-2Nf) curve have been determined and afterwards the experimental data have been re-analysed 
by adopting the heat dissipation per cycle Q and a  scatter band has been fitted on available data . The scatter index of 
the Q-based synthesis was seen to be significantly lower than that derived when using the plastic strain hysteresis 
energy W. The use of the heat dissipation per cycle appears convenient in practical applications since it is readily 
valuable using temperature measurements. On the basis of previous works focused on different steel grades, the Q-
based scatter band calibrated in the present work is expected to correlate notch and mean stress effects, the latter 
requiring an existing temperature-corrected parameter 𝑄̅𝑄.  
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