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Abstract
In this paper, we consider a generic interest rate market in the presence of roll-over
risk, which generates spreads in spot/forward term rates. We do not require classical
absence of arbitrage and rely instead on a minimal market viability assumption, which
enables us to work in the context of the benchmark approach. In a Markovian set-
ting, we extend the control-theoretic approach of Gombani and Runggaldier (Math.
Finance 23 (2013) 659–686) and derive representations of spot/forward spreads as
value functions of suitable stochastic optimal control problems, formulated under
the real-world probability and with power-type objective functionals. We determine
endogenously the funding–liquidity spread by relating it to the risk-sensitive optimi-
sation problem of a representative investor.
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1 Introduction

Over the last 15 years, interest rate markets have been marked by two major facts:
first, starting with the global financial crisis, the emergence of the “multi-curve” phe-
nomenon; second, in more recent years, the reform of interest rate benchmarks. The
multi-curve phenomenon refers to the fact that interbank term rates, such as Euri-
bor and Libor rates, exhibit different characteristics depending on their tenor (i.e.,
the length of the term of the underlying loan). In particular, interbank term rates dif-
fer from risk-free forward rates by a certain spread, which depends on the specific
tenor under consideration. This is due to the presence of counterparty, funding and
liquidity risks that have emerged as major sources of risk during and after the global
financial crisis (see Filipović and Trolle [17] and, for an overview of the topic, Grbac
and Runggaldier [24]). The reform of interest rate benchmarks aims at overcoming
the deficiencies in the mechanism determining interbank benchmark rates. Existing
benchmark interest rates such as Libor rates are being gradually replaced by overnight
rates, i.e., nearly risk-free rates referring to a tenor of one business day. At the current
stage of the reform, one of the central issues concerns the construction and use of
term rates, i.e., rates referring to tenors that are longer than overnight.

The multi-curve phenomenon and the question of term rates in the Libor reform
are related to a common fundamental issue: the different impact of counterparty,
funding and liquidity risks in lending/borrowing at term with respect to rolled-over in-
vestments at overnight frequency. We generically refer to this aspect as roll-over risk,
following the recent work of Backwell et al. [2]. Apart from counterparty risk factors,
which are not explicitly considered in this work, roll-over risk refers to the possibility
that a borrower who needs to refinance a loan at a certain future date may only do so
at an increased interest rate, due to insufficient liquidity in the money market. This in-
creased interest rate is captured through a funding–liquidity spread which represents
one of the main ingredients of our framework, similarly as in [2]. In the market, the
funding–liquidity spread should be priced in term rates since they effectively hedge
against roll-over risk. Therefore, even in the absence of counterparty risk, roll-over
risk provides an explanation of the multi-curve phenomenon, since the spreads asso-
ciated to term rates with different tenors are due to the increased funding–liquidity
risk over longer time horizons. In this sense, the present work continues on the line
of Filipović and Trolle [17], Gallitschke et al. [20] and Alfeus et al. [1]. The recent
empirical analysis of Skov and Skovmand [34] demonstrates that roll-over risk is of
equal importance to credit risk in explaining the spread between Libor rates and rates
of overnight indexed swaps (OIS).

The first contribution of this work is to propose a general framework for roll-over
risk in interest rate markets, considering a financial market composed by zero-coupon
bonds for all maturities together with single-period swaps referencing term rates. The
study of bond markets with uncountably many assets goes back to seminal works of
T. Björk and co-authors (see Björk et al. [7, 8]). In our setting, we require a mini-
mal market viability condition, which amounts to the existence of the numéraire (or
growth-optimal) portfolio, making use of the recent results of Kardaras [29]. In par-
ticular, we develop our theory under the real-world probability since market viability
does not suffice to ensure the existence of a risk-neutral probability. Our framework
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therefore fits into the benchmark approach developed by E. Platen and co-authors (see
Platen and Heath [33]). We show that market viability does suffice to provide general
characterisations of spot and forward spreads associated to term rates. In doing so,
we extend the setup of Backwell et al. [2] by imposing less stringent no-arbitrage
requirements and weaker modelling assumptions.

Our second contribution consists in showing that in a Markovian setting, spot and
forward spreads can be represented as value functions of suitable stochastic optimal
control problems. This extends the results of Gombani and Runggaldier [23] where
a similar program has been carried out for classical (single-curve) term structures.
As acknowledged in [23], the original idea of linking the term structure equation to
stochastic control goes back to earlier discussions between T. Björk and the last au-
thor of this work. In the risk-neutral setting, the approach of [23] consists in viewing
the term structure PDE as the HJB equation associated to a stochastic optimal control
problem where the dynamics of the underlying Markov factor process are affected by
a feedback control, thus obtaining a representation of bond prices as the correspond-
ing value function. This method has also been extended to swap measures in Cogo et
al. [12]. Working under the real-world probability, we generalise this approach to the
case of multi-curve term structures generated by roll-over risk, under the assumption
that the growth-optimal portfolio has a Markovian structure. The obtained stochas-
tic control representations are based on power-type transformations and enable us to
interpret spot/forward spreads as the values of hypothetical games between a lender
and a borrower (see Remark 3.13 below).

Our last contribution concerns a possible approach for the determination of the
funding–liquidity spread, one of the key ingredients of our setup. We start from the
observation that if a risk-free savings account is assumed to exist, as we do in our
setting, then a borrowing account affected by funding–liquidity risk cannot be fairly
priced by a marginal utility pricing rule based on logarithmic preferences. We then
consider a more risk-averse representative investor who trades optimally according to
a risk-sensitive criterion. By considering more risk-averse preferences than logarith-
mic ones, we assume that the representative investor correctly prices roll-over risk.
This enables us to provide an equation for the funding–liquidity spread which de-
pends on the risk aversion of the representative investor and on the model coefficients.
Moreover, a common risk-aversion coefficient can be chosen for the risk-sensitive in-
vestment problem and for the stochastic optimal control problems described above,
thus providing a characterisation of all quantities in the model in terms of the risk
preferences of a single representative investor.

The paper is structured as follows. In Sect. 2, we revisit some foundational con-
cepts underlying the benchmark approach for a generic financial market containing
infinitely many assets. We then introduce the roll-over-risk-adjusted borrowing ac-
count and spot and forward term rates, alongside with their fundamental properties.
In Sect. 3, we consider a Markovian setting and derive representations of spot and
forward spreads as value functions of stochastic optimal control problems. In Sect. 4,
we propose an approach to determine the funding–liquidity spread by relating it to a
risk-sensitive optimisation problem of a representative investor.
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2 A general interest rate market with roll-over risk

In this section, we present a general setup for an interest rate market in the presence
of roll-over risk. We start in Sect. 2.1 by discussing market viability for a generic
financial market containing zero-coupon bonds for all maturities. In Sect. 2.2, we
introduce the roll-over-risk-adjusted borrowing account, and in Sect. 2.3, we describe
its connection to term rates. Section 2.4 completes the description of the interest
rate market by introducing forward term rates. We let (�,F ,P) be a probability
space endowed with a right-continuous filtration F = (Ft )t≥0 with respect to which
all processes introduced in the following are assumed to be adapted.

2.1 Setting and market viability

We consider a generic financial market over an infinite time horizon, where a family
S = {Si : i ∈ I } of assets is traded, where I is a non-empty index set. We assume that
all elements Si , i ∈ I , are strictly positive processes with continuous paths. We as-
sume the existence of a savings account process S0 := exp(

∫ ·
0 rt dt), where r denotes

the instantaneous risk-free rate, satisfying
∫ T

0 |rt |dt < ∞ a.s. for all T > 0.
The family S is assumed to include zero-coupon bonds (ZCBs) for all maturities

T > 0, together with the contracts introduced in Sects. 2.2 and 2.4, as well as possi-
ble additional securities that are not explicitly modelled in this work. We denote by
P(t, T ) the price at time t of a ZCB with maturity T , for all 0 ≤ t ≤ T < ∞. In this
market setting, the index set I is uncountable. At this level of generality, a complete
analysis of this infinite-dimensional financial market has been developed in Karatzas
and Kardaras [28, Sect. 4.3] and Kardaras [29], on which we rely for the present
subsection.

We assume that trading occurs in a self-financing way, investing in a finite but
arbitrary number of securities with simple strategies. In this subsection, we use a bar
notation to denote quantities discounted with respect to S0. In particular, S̄i := Si/S0

denotes the discounted price process of asset i, for each i ∈ I , while we denote by
V̄ the discounted value process of a generic portfolio, as defined below. Discounted
gains from trading processes are of the form

∑

j∈J

∫ ·

0
θ

j
t dS̄

j
t , (2.1)

where J is a finite subset of I and {θj : j ∈ J } is a collection of simple predictable
processes. Letting Ks be the set of all processes of the form (2.1), the set of simple
portfolios is defined as

Xs := {1 + X̄ : X̄ ∈Ks and 1 + X̄t > 0 a.s. for all t ≥ 0}. (2.2)

In this market setup, a first and fundamental question concerns the absence of
arbitrage. We say that market viability holds if we have

lim
m→∞ sup

V̄ ∈Xs

P[V̄T > m] = 0 for all T > 0. (2.3)
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Condition (2.3) is equivalent to the notion of viability considered in Kardaras [29]. In
a finite-dimensional setup, condition (2.3) becomes equivalent to the no unbounded
profit with bounded risk (NUPBR) condition of Karatzas and Kardaras [27] for all
finite time horizons. The fundamental theorem of asset pricing in the version of [29,
Theorem 3.3] asserts that market viability holds if and only if there exists a local
martingale deflator (LMD), i.e., a strictly positive local martingale Y with Y0 = 1
such that Y S̄i is a local martingale for every i ∈ I . Note that the existence of an LMD
implies the semimartingale property of S̄i for every i ∈ I . In the following, without
further mention, we consider market viability as a standing assumption.

In the present market setup, it is natural to allow the theoretical possibility of in-
vesting in infinitely many assets. In interest rate markets containing ZCBs for all
maturities, measure-valued strategies represent a possibility to define portfolios in-
vesting in infinitely many assets, as considered in Björk et al. [7, 8] also allowing
discontinuous price processes. We choose to work in the framework of Karatzas and
Kardaras [28, Sect. 4.3] and Kardaras [29] since it yields a workable characterisation
of market viability that naturally extends the theory of finite-dimensional financial
markets. To this effect, we denote by K the closure of Ks in the semimartingale
topology (see Jacod and Shiryaev [25, Sect. III.6c]), restricted to continuous semi-
martingales. Similarly to (2.2), the set of extended portfolios is defined as

X := {1 + X̄ : X̄ ∈ K and 1 + X̄t > 0 a.s. for all t ≥ 0}.

Theorem 2.1 Market viability holds if and only if there exists an extended portfolio
V̄ ∗ ∈X such that 1/V̄ ∗ is an LMD. Moreover, the process V̄ /V̄ ∗ is a local martingale
for every V̄ ∈ X .

Proof The result follows from [28, Exercise 4.48]. �

In line with the literature, we call numéraire portfolio the portfolio V̄ ∗ satisfying
the properties stated in Theorem 2.1. In a general finite-dimensional financial market,
the equivalence between condition (2.3) and the existence of the numéraire portfolio
has been proved in [27] and Kabanov et al. [26].

Remark 2.2 While market viability is defined in (2.3) in terms of simple portfo-
lios, it actually holds also with respect to extended portfolios. Indeed, let V̄ ∗ be the
numéraire portfolio, which exists as long as (2.3) holds. For any V̄ ∈ X , the process
V̄ /V̄ ∗ is a strictly positive local martingale, and by Fatou’s lemma a supermartin-
gale. Therefore we have E[V̄T /V̄ ∗

T ] ≤ 1, meaning that the set {V̄T /V̄ ∗
T : V̄ ∈ X } is

bounded in L1, for all T > 0. Since boundedness in L1 implies boundedness in L0

and boundedness in L0 is invariant by multiplication with a fixed strictly positive
random variable, it follows that {V̄T : V̄ ∈X } is bounded in L0 for all T > 0, i.e.,
condition (2.3) holds with respect to the set X of extended portfolios.

Remark 2.3 In our setup, the discounting asset is chosen as the savings account S0

generated by the risk-free rate r . This is coherent with the current adoption of the
secured overnight financing rate (SOFR) as the discounting rate for most cleared
derivatives. Accordingly, market viability has been directly defined with respect to
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S0-discounted quantities. An alternative approach, recently pursued by Bálint and
Schweizer [4], consists in considering a discounting-invariant absence of arbitrage
condition (named dynamic share viability) on the original undiscounted financial
market represented by (S0,S), without fixing a priori the discounting unit. The cor-
responding theory for large financial markets containing countably many assets is
developed in Bálint and Schweizer [3].

The numéraire portfolio enjoys several optimality properties. In particular, it coin-
cides with the so-called growth-optimal portfolio (GOP), i.e., the extended portfolio
that achieves the maximal instantaneous logarithmic growth rate. This follows from
Karatzas and Kardaras [28, Exercise 4.49] (in a general finite-dimensional setup, the
analogous property has been shown in Karatzas and Kardaras [27]). In Sect. 3.1, we
consider a finite-dimensional Markovian setting and provide an explicit description of
the GOP, together with an explicit characterisation of the validity of condition (2.3).

The numéraire portfolio (or equivalently the GOP) plays a central role in the
benchmark approach; see Platen and Heath [33, Chap. 10]. The benchmark approach
adopts the GOP as the reference (benchmark) asset and develops a pricing theory that
does not rely on risk-neutral valuation. Indeed, it is well known that market viability
does not suffice to ensure the existence of a risk-neutral probability, while it repre-
sents the minimal requirement allowing a meaningful solution to pricing and hedging
problems as well as to optimal investment/consumption problems (see e.g. Chau et al.
[10], Choulli et al. [11], Fontana and Runggaldier [18], Karatzas and Kardaras [27]
in the finite-dimensional case). The notions of fair portfolio and real-world price are
central in the benchmark approach and can be defined as in Definition 2.4. From now
on, we mostly work with undiscounted quantities. We therefore denote by V ∈ S0X
the undiscounted value process of a generic extended portfolio and by V ∗ := S0V̄ ∗
the undiscounted value of the numéraire portfolio.

Definition 2.4 A process V ∈ S0X is said to be fair if V/V ∗ is a true martingale.
For T > 0, if H is an FT -measurable random variable and there exists a fair process
V ∈ S0X satisfying VT = H a.s., then the real-world price πt (H) of H at time t is
given by

πt (H) = V ∗
t E

[
H

V ∗
T

∣
∣
∣
∣Ft

]

for all t ∈ [0, T ]. (2.4)

We say that a payoff H is fairly priced if its market value is given by formula
(2.4). The quantity πt (H)/V ∗

t represents the benchmarked price of H and, as a con-
sequence of (2.4), (πt (H))t∈[0,T ] is a martingale. More generally, if S denotes the
price process of a generic traded asset or portfolio, the corresponding benchmarked
price is given by Ŝ := S/V ∗. Since S0/V ∗ = 1/V̄ ∗ is an LMD, benchmarked prices
are local martingales (and true martingales in the case of fairly priced assets). In the
following sections, we denote by P̂ (t, T ) := P(t, T )/V ∗

t the benchmarked price of
a ZCB at time t with maturity T . Since we assume that P( · , T ) ∈ S for all T > 0,
market viability implies that benchmarked ZCB prices are local martingales. We re-
mark that the property that benchmarked prices are local martingales (and not only
supermartingales) is specific to financial market models based on continuous asset
price processes, as considered in the present paper.
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Remark 2.5 In the context of Definition 2.4, the real-world price πt (H) coincides
with the replication value of H . In the benchmark approach, the real-world pricing
formula can also be extended to non-attainable claims. In this case, formula (2.4)
corresponds to the marginal utility indifference price for a logarithmic utility func-
tion (see e.g. Platen and Heath [33, Sect. 11.4] and Fontana and Runggaldier [18,
Proposition 4.7.1]). This follows from the fact that V̄ ∗

T maximises expected loga-
rithmic utility at time T , provided that E[log V̄ ∗

T ] < ∞. Indeed, the first part of the
proof of Becherer [5, Proposition 4.3] implies that if E[log V̄ ∗

T ] < ∞, then it holds
that E[log V̄ ∗

T ] ≥ E[log V̄T ] for every V̄ ∈ X such that V̄T > 0 a.s., with E[log V̄T ]
potentially taking the value −∞.

2.2 Roll-over risk

As mentioned in the introduction, we consider a post-crisis financial market where
default risk and funding–liquidity risk are possibly present. While default risk can be
mitigated by considering fully collateralised transactions, funding–liquidity risk rep-
resents an important feature in the determination of interest rates even in the absence
of counterparty risk.

In line with Backwell et al. [2], we model funding–liquidity risk as roll-over risk,
consisting in the situation where an agent may no longer be able to access funding
at the risk-free rate r , but only at a usually higher rate r̃ , due for instance to insuf-
ficient liquidity in the money market. We denote by ϕ the funding–liquidity spread
process and let r̃ := r + ϕ. While the presence of roll-over risk corresponds to ϕ ≥ 0,
we do not a priori exclude possible negative values of ϕ that would correspond to
situations of excess of liquidity in the money market. Assuming that

∫ T

0 |ϕt |dt < ∞
a.s. for all T > 0, we define the roll-over-risk-adjusted borrowing account process
by S̃0 := exp(

∫ ·
0 r̃t dt).

Remark 2.6 It is important to note that S̃0 does not belong to the assets S available
for trading. Indeed, the possibility of borrowing/lending at distinct risk-free rates r̃

and r would give rise to obvious arbitrage possibilities. In line with [2], the process
S̃0 is only introduced as a modelling tool to account for roll-over risk in term rates.

According to [2], we define by A(t, T ) the market value at time t of S̃0
T /S̃0

t for
T ≥ t . In other words, A(t, T ) represents the value at time t of the repayment at T of
a continuously rolled-over loan over [t, T ], in the presence of funding–liquidity risk.
Observe that this definition implies that A(T ,T ) = 1 for all T > 0. For every T > 0,
we assume that the process (A(t, T ))t∈[0,T ] is continuous and nonnegative. In [2], the
quantity A(t, T ) is determined by risk-neutral valuation. In our context, we assume
the validity of the following weaker condition.

Assumption 2.7 For every T > 0, the process (A(t, T )S̃0
t /V ∗

t )t∈[0,T ] is a local mar-
tingale.

In Backwell et al. [2], in the absence of credit risk, A(t, T ) is defined as the dis-
counted risk-neutral expectation of S̃0

T /S̃0
t ; see [2, Eq. (3.10)]. Assumption 2.7 rep-

resents a natural generalisation of this definition to our context. In particular, As-
sumption 2.7 implies that the inclusion of a security with value process A( · , T )S̃0
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in the financial market considered in Sect. 2.1 does not alter market viability and is
consistent with the numéraire portfolio V ∗. The fact that adding a security whose
(continuous) price process is already a local martingale when denominated in units
of V ∗ leaves invariant the numéraire portfolio goes back to Filipović and Platen [16].
By Assumption 2.7, the process (A(t, T )S̃0

t /V ∗
t )t∈[0,T ] is a nonnegative local mar-

tingale and hence a supermartingale by Fatou’s lemma. Recalling that A(T ,T ) = 1,
it then follows that

A(t, T ) ≥ V ∗
t

S̃0
t

E

[
S̃0

T

V ∗
T

∣
∣
∣
∣Ft

]

, (2.5)

with equality holding if the roll-over-risk-adjusted borrowing account is fairly priced.
The presence of roll-over risk corresponds to the situation where A(t, T ) > 1. In
particular, this is the case if the process S̃0/V ∗ is a submartingale. As shown in
the following lemma, the latter property always holds in a local sense whenever the
funding–liquidity spread is nonnegative.

Lemma 2.8 If ϕ ≥ 0, the process S̃0/V ∗ is a local submartingale. Moreover, S̃0/V ∗
is a local martingale if and only if ϕ = 0 (up to an evanescent set).

Proof The claim follows from the fact that S0/V ∗ is an LMD (see Theorem 2.1) and
therefore a local martingale, together with the fact that the process exp(

∫ ·
0 ϕt dt) is

increasing if ϕ ≥ 0. �

2.3 Spot term rates

In interest rate markets, an investor can avoid funding–liquidity risk by borrow-
ing/lending money at a fixed term rate instead of rolling over the loan until the end
of the term. Therefore, roll-over risk should be implicitly taken into account in the
determination of fair term rates. This perspective underlies the approach of Backwell
et al. [2] which we follow in the present subsection. For 0 ≤ t ≤ T < ∞, we denote
by L(t, T ) the spot term rate, i.e., the rate fixed at time t for borrowing/lending one
unit of money at t with a repayment of 1 + (T − t)L(t, T ) at time T .

Following [2], we determine term rates by comparing two possibilities:

(i) at time t , borrow one unit of money and continuously roll over the loan until T ;
(ii) at time t , borrow one unit of money at the term rate L(t, T ) with repayment at T .

In equilibrium, the two alternatives (i) and (ii) should have the same market value at
time t . Arguing as in [2, Sect. 3.2], this enables us to determine the term rate L(t, T ).
For (i), the market value at t is simply given by A(t, T ), as explained in Sect. 2.2.
For (ii), since L(t, T ) is fixed at t , the market value at t of the repayment at T is given
by (1 + (T − t)L(t, T ))P (t, T ). By equating the two market values, we obtain that

L(t, T ) = 1

T − t

(
A(t, T )

P (t, T )
− 1

)

.
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In the presence of roll-over risk, the quantity A(t, T ) coincides with the multi-
plicative spot spread S(t, T ) between term rates and simple forward rates, defined as

S(t, T ) := 1 + (T − t)L(t, T )

1 + (T − t)F (t, T )
= A(t, T ), (2.6)

where F(t, T ) := (1/P (t, T ) − 1)/(T − t) is the simple risk-free forward rate at t

for the time period [t, T ], for 0 ≤ t ≤ T < ∞. In typical market situations, we expect
that S(t, T ) > 1. In view of (2.6), this happens if and only if A(t, T ) > 1, which is
indicative of the presence of funding–liquidity risk, as explained in Sect. 2.2. The
spot spread can therefore be regarded as a term premium paid by the borrower in
order to hedge against roll-over risk.

Remark 2.9 As mentioned in Sect. 1, interest rate models where term rates L(t, T )

are distinct from risk-free forward rates F(t, T ) are called multi-curve models. In the
present setting, the multi-curve structure arises intrinsically from roll-over risk, since
the latter is responsible for the existence of multiplicative spot spreads.

2.4 Forward term rates

Spot term rates are not directly related to traded securities. In interest rate markets,
the fundamental contract referencing term rates is a single-period swap (SPS), corre-
sponding to the classical forward rate agreement (see e.g. Björk [6, Exercise 19.1]).
An SPS delivers the payoff δ(L(T ,T + δ)−K) at maturity T + δ, where K is a fixed
rate and δ represents a fixed tenor. In particular, SPSs represent the building blocks
of interest rate swaps, which constitute the most important interest rate derivatives
referencing term rates.

We denote by �(t;T , δ,R) the market value at t ∈ [0, T ] of an SPS referenc-
ing L(T ,T + δ), with fixed rate R ∈ R and tenor δ ∈ �, where � is a finite col-
lection of tenors. For each T > 0, δ ∈ � and R ∈ R, we assume that the process
(�(t;T , δ,R))t∈[0,T ] is continuous. Moreover, we assume that market viability holds
when the financial market includes SPSs for all possible maturities, rates and tenors.
This corresponds to requiring the validity of the following assumption.

Assumption 2.10 The process (�(t;T , δ,R)/V ∗
t )t∈[0,T ] is a local martingale for ev-

ery T > 0, R ∈ R and δ ∈ �.

Assumption 2.10 holds if V ∗ is the numéraire portfolio for a financial market that
includes all ZCBs and SPSs, as described in Sect. 2.1. If Assumption 2.10 holds with
true martingales, then SPSs are fairly priced by V ∗ (see Definition 2.4). However, the
local martingale requirement of Assumption 2.10 will suffice for our purposes. We
define forward term rates as follows.

Definition 2.11 For 0 ≤ t ≤ T < ∞ and δ ∈ �, the forward term rate Lt(T ,T + δ)

is defined as the rate R such that �(t;T , δ,R) = 0. In particular, this implies that
LT (T ,T + δ) = L(T ,T + δ).
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We assume that the function R �→ �(t;T , δ,R) is affine for all 0 ≤ t ≤ T < ∞
and δ ∈ �. This assumption is standard in the literature when considering fully col-
lateralised transactions (as in our setting) and is also consistent with the real-world
pricing formula (2.4). This assumption leads to the standard representation of the
market value of an SPS as

�(t;T , δ,R) = δ
(
Lt(T ,T + δ) − R

)
P(t, T + δ). (2.7)

Market viability and Assumption 2.10 lead to the following property of forward
term rates. In the next result, we remark that the true martingale property holds if
ZCBs and SPSs are fairly priced by V ∗.

Lemma 2.12 Suppose that Assumption 2.10 holds. Then for all T > 0, δ ∈ �, the
process

Lt(T ,T + δ)P̂ (t, T + δ), t ∈ [0, T ],
is a local martingale.

Proof As stated in Sect. 2.1, market viability holds for the set of assets S that includes
all ZCBs. Hence, since S0/V ∗ is an LMD, the process (P (t, T + δ)/V ∗

t )t∈[0,T +δ] is
a local martingale. Making use of this fact, the result follows directly from Assump-
tion 2.10 and formula (2.7). �

In post-crisis interest rate markets, it is often useful for modelling purposes to
consider multiplicative forward spreads, rather than modelling directly forward term
rates (see e.g. Cuchiero et al. [13]). For 0 ≤ t ≤ T < ∞ and δ ∈ �, the multiplicative
forward spread St (T ,T + δ) is defined as

St (T ,T + δ) := 1 + δLt (T ,T + δ)

1 + δFt (T ,T + δ)
, (2.8)

where Ft(T ,T +δ) := (P (t, T )/P (t, T +δ)−1)/δ is the simple forward rate at t for
the time period [T ,T + δ]. By definition, it holds that ST (T ,T + δ) = S(T ,T + δ),
where the latter quantity is the multiplicative spot spread introduced in (2.6).

Corollary 2.13 Suppose that Assumption 2.10 holds. Then for all T > 0, δ ∈ �, the
process

St (T ,T + δ)P̂ (t, T ), t ∈ [0, T ],
is a local martingale.

Proof Making use of the definition (2.8) of the multiplicative forward spread, we
have

St (T ,T + δ)P̂ (t, T ) = P̂ (t, T + δ) + δLt (T ,T + δ)P̂ (t, T + δ).

As a consequence of market viability, benchmarked ZCB prices are local martingales.
Therefore the local martingale property of (St (T ,T + δ)P̂ (t, T ))t∈[0,T ] follows from
Lemma 2.12. �
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Remark 2.14 1) In classical interest rate models based on the risk-neutral approach,
the forward term rate (Lt (T ,T +δ))t∈[0,T ] is a martingale under the forward measure
Q

T +δ (see Björk [6, Lemma 23.4]), while (St (T ,T + δ))t∈[0,T ] is a martingale under
the forward measure Q

T (see Cuchiero et al. [13, Lemma 3.11]). Lemma 2.12 and
Corollary 2.13 show that generalised versions of these properties hold in our context.

2) In our setup, even if a risk-neutral probability is not assumed to exist, forward
measures can still be constructed if ZCBs are fairly priced by the GOP (i.e., bench-
marked ZCB prices are true martingales and not only local martingales). In this case,
the forward measure Q

T can be defined by dQT /dP = 1/(V ∗
T P (0, T )) and has the

property that every value process is a Q
T -local martingale on [0, T ] when denomi-

nated in units of P( · , T ), for each T > 0.

3 Stochastic control representations in a Markovian setting

In this section, we specialise the general setting of Sect. 2 to a financial market driven
by a finite-dimensional Markov factor process, with the main goal of representing
spot and forward spreads as value functions of stochastic optimal control problems in
the spirit of Gombani and Runggaldier [23]. In Sect. 3.1, we derive explicit dynam-
ics for the GOP, determined by a Markov factor process. Section 3.2 contains some
preparatory results, including the PDEs that spot and forward spreads must satisfy in
a Markovian setting as a consequence of market viability (more precisely, Assump-
tions 2.7 and 2.10). By relying on these results, stochastic control representations of
spot/forward spreads are derived in Sect. 3.3, where we also discuss their economic
interpretation.

3.1 A Markovian setting

We consider a probability space (�,F ,P), endowed with the right-continuous fil-
tration F = (Ft )t≥0, consisting of the natural filtration of a d-dimensional Brown-
ian motion W = (Wt)t≥0 augmented with P-null sets. We denote by L2

loc the set of

R
d -valued predictable processes h = (ht )t≥0 such that

∫ T

0 |ht |2 dt < ∞ a.s. for all
T > 0. We consider the generic financial market described in Sect. 2.1, assuming that
the family S of assets includes ZCBs and SPSs for all maturities T > 0, together with
possible additional assets.

The standing assumption of market viability in the sense of condition (2.3) is
assumed to be in force, thereby ensuring the existence of the numéraire portfolio
(or equivalently the GOP). As in Sects. 2.2–2.4, we denote by V ∗ the undiscounted
value process of the GOP. By Theorem 2.1, the process Y := S0/V ∗ is an LMD.
Since Y is a strictly positive local martingale with Y0 = 1, martingale representation
ensures the existence of a process θ ∈ L2

loc such that

dYt = −Ytθt dWt, Y0 = 1.

A straightforward application of Itô’s formula yields for the GOP the dynamics

dV ∗
t = V ∗

t (rt + |θt |2)dt + V ∗
t θt dWt, V ∗

0 = 1. (3.1)
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In the following, we call market price of risk the process θ . This is due to the fact
that if one starts by postulating an Itô process model for a finite family of assets and
computes the GOP, then one obtains dynamics of the form (3.1), where the process θ

coincides with the market price of risk for the original family of assets; see e.g. Platen
and Heath [33, Chap. 10] and also Sect. 4.1 below. In that setting, it can also be shown
that market viability holds if and only if θ ∈ L2

loc, with an analogous condition being
true in the infinite-dimensional case (see Kardaras [29, Theorem 3.3]).

Let X be a diffusion process taking values in a state space D ⊆ R
n and satisfying

dXt = f (t,Xt )dt + g(t,Xt )dWt, X0 = x0 ∈ D, (3.2)

where the functions f : R+ × D → R
n and g : R+ × D → R

n×d are sufficiently
smooth to ensure the existence of a unique strong solution to (3.2) with the Markov
property. We furthermore assume that for each t > 0, the distribution of Xt has full
support on D. We interpret the Markov process X as a vector of economic factors
that determine the market environment. In view of this interpretation, we introduce
the following natural assumption.

Assumption 3.1 It holds that

rt = r(t,Xt ), θt = θ(t,Xt ), ϕt = ϕ(t,Xt ) for all t ≥ 0,

where r : R+ × D → R, θ :R+ × D → R
d and ϕ : R+ × D →R.

In the following, we derive several results by exploiting the fact that benchmarked
price processes are local martingales (see Sect. 2.1). However, to obtain a PDE char-
acterisation, we need a Markovian structure of benchmarked prices, and this can only
be true if the GOP itself has a Markovian structure. To this effect, we state the fol-
lowing lemma. For f : R+ × D → R, we denote respectively by ∇xf and Hf the
gradient and Hessian of f with respect to x.

Lemma 3.2 Suppose that Assumption 3.1 holds. Let v∗ : R+ × D → (0,∞) be a
function of class C1,2. Then v∗(t,Xt ) = V ∗

t holds for all t ≥ 0 if and only if the
function v∗ satisfies v∗(0, x0) = 1 and for all (t, x) ∈ R+ × D, we have the two
conditions

g(t, x)�∇xv
∗(t, x) = v∗(t, x)θ(t, x), (3.3)

0 = ∂tv
∗(t, x) + ∇�

x v∗(t, x)
(
f (t, x) − g(t, x)θ(t, x)

)

+ 1

2
Tr

(
g(t, x)�Hv∗(t, x)g(t, x)

) − v∗(t, x)r(t, x). (3.4)

Proof Making use of Assumption 3.1 and applying Itô’s formula to the function v∗,
it can easily be seen that the process (v∗(t,Xt ))t≥0 satisfies (3.1) if and only if condi-
tions (3.3) and (3.4) are satisfied. The result follows from the fact that the SDE (3.1)
admits a unique solution V ∗. �



A stochastic control perspective on roll-over risk 915

Remark 3.3 For simplicity of presentation, we restrict our setup to a d-dimensional
Brownian motion as the driving source of randomness. However, in financial mar-
ket models containing infinitely many assets, infinite-dimensional driving processes
are often considered. The present probabilistic setup can be generalised to a Wiener
process W taking values in a real separable Banach space (see e.g. Carmona and
Tehranchi [9, Chap. 4]) with no significant changes in the results of this section. In
particular, the martingale representation theorem applicable in this case is provided
by [9, Theorem 4.1 and Remark 4.2]. In addition, under suitable conditions on f

and g, a Markov factor process X with values in D ⊆ R
n can be defined as the

unique strong solution to (3.2), generalised to a driving Wiener process W (see e.g.
Gawarecki and Mandrekar [22, Theorems 3.3 and 3.6]). After these preliminaries, the
PDE characterisations stated in Lemmas 3.2, 3.5 and 3.8 can be obtained analogously
to the finite-dimensional case since their proofs are essentially based on applications
of Itô’s formula with respect to the finite-dimensional process X.

3.2 PDE characterisation of spreads

In order to represent spot/forward spreads as solutions to stochastic optimal con-
trol problems in a Markovian setting, we first need to obtain a PDE representation
of spot/forward spreads. In the classical case of ZCB term structures considered in
Gombani and Runggaldier [23], the PDE correspond to the fundamental term struc-
ture equation. In our context, the PDEs for spot/forward spreads will be derived by
relying on the market viability assumptions introduced in Sect. 2, in particular As-
sumptions 2.7 and 2.10.

In the remaining part of this section, we shall work under the following assump-
tion, which ensures that the GOP has a Markovian structure (see Lemma 3.2).

Assumption 3.4 There exists a function v∗ : R+ × D → (0,∞) of class C1,2 with
v∗(0, x0) = 1 such that conditions (3.3) and (3.4) hold.

We start by deriving the PDE associated to spot spreads. We recall from Sect. 2.3
that S(t, T ) = A(t, T ) for every 0 ≤ t ≤ T < ∞, as shown in (2.6).

Lemma 3.5 Suppose that Assumptions 2.7, 3.1 and 3.4 hold. Let sT : R+ × D → R

be a function of class C1,2 for T > 0. If

S(t, T ) = sT (t,Xt ) for all t ∈ [0, T ], (3.5)

then the function sT solves for all (t, x) ∈ [0, T ) × D the PDE

0 = ∂t s
T (t, x) + ∇�

x sT (t, x)

(

f (t, x) − g(t, x)g(t, x)� ∇xv
∗(t, x)

v∗(t, x)

)

+ 1

2
Tr

(
g(t, x)�HsT (t, x)g(t, x)

) + ϕ(t, x)sT (t, x) (3.6)

with terminal condition sT (T , x) = 1 for all x ∈ D.
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Proof An application of the integration-by-parts formula implies that

d

(
S(t, T )S̃0

t

V ∗
t

)

= S̃0
t

V ∗
t

dS(t, T ) + S(t, T )d

(
S̃0

t

V ∗
t

)

+ d

〈

S( · , T ),
S̃0

V ∗

〉

t

= S̃0
t

V ∗
t

dS(t, T ) + S(t, T )S̃0
t

V ∗
t

(ϕt dt − θt dWt)

− S̃0
t

V ∗
t

θt d〈S( · , T ),W 〉t .

By applying Itô’s formula to the function sT and making use of Assumption 3.1, we
then obtain

d

(
S(t, T )S̃0

t

V ∗
t

)

= S̃0
t

V ∗
t

(
∂t s

T (t,Xt ) + ∇�
x sT (t,Xt )f (t,Xt )

)
dt

+ 1

2

S̃0
t

V ∗
t

Tr
(
g(t,Xt )

�HsT (t,Xt )g(t,Xt )
)

dt

+ S̃0
t

V ∗
t

(
ϕ(t,Xt )s

T (t,Xt ) − ∇�
x sT (t,Xt )g(t,Xt )θ(t,Xt )

)
dt

+ (· · · )dWt.

As a consequence of Assumption 2.7, the process (sT (t,Xt )S̃
0
t /V ∗

t )t∈[0,T ] is a local
martingale. This implies that the finite-variation term in the last equation must vanish.
By Assumption 3.4, the market price of risk θ(t,Xt ) satisfies the condition (3.3),
thereby proving that sT solves the PDE (3.6). The terminal condition sT (T , x) = 1
follows from the fact that S(T ,T ) = 1. �

In the present Markovian setup, the PDE (3.6) shows that the dynamics of the spot
spread are dependent on the funding–liquidity spread ϕ. Recalling that the spot spread
can be regarded as a term premium required to avoid roll-over risk, as discussed in
Sects. 2.2 and 2.3, this implies that the term premium is generated by the funding–
liquidity spread.

Remark 3.6 The Markovian structure (3.5) always holds if Assumptions 3.1 and
3.4 are satisfied and spot spreads are fairly priced. Indeed, in that case, the pro-
cess (S(t, T )S̃0

t /V ∗
t )t∈[0,T ] is a true martingale, and therefore S(t, T ) can be rep-

resented as S(t, T ) = v∗(t,Xt )E[exp(
∫ T

t
(r(u,Xu) + ϕ(u,Xu))du)/v∗(T ,XT )|Ft ],

corresponding to the conditional expectation appearing on the right-hand side of
(2.5). By the Markov property of X, this expectation can always be expressed as
a function of (t,Xt ). However, C1,2-regularity is not guaranteed in general and
needs to be checked by using the properties of the specific model under consider-
ation.
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We now derive an analogous PDE representation of forward spreads. For the fol-
lowing lemma, we need an additional assumption on the Markovian structure of
benchmarked ZCB prices.

Assumption 3.7 For every T > 0, there exists a function p̂T : [0, T ] × D → R of
class C1,2 such that P(t, T )/V ∗

t = p̂T (t,Xt ) for all t ∈ [0, T ].

Similarly to Remark 3.6, we point out that in the present Markovian setting,
Assumption 3.7 is always satisfied (apart from the C1,2-regularity requirement) if
Assumption 3.4 holds and if ZCBs are fairly priced by the GOP, meaning that
the ratio P̂ ( · , T ) = P( · , T )/V ∗ is a true martingale for every T > 0. Note also
that if Assumptions 3.4 and 3.7 hold, then the function p̂T introduced in Assump-
tion 3.7 necessarily satisfies the condition p̂T (T , x) = 1/v∗(T , x). The local martin-
gale (and hence supermartingale) property of benchmarked ZCB prices also ensures
that p̂T (t,Xt ) > 0 a.s. for all t ∈ [0, T ] and T > 0.

Lemma 3.8 Suppose that Assumptions 2.10 and 3.7 and those of Lemma 3.5 hold.
For T > 0 and δ ∈ �, let sT ,δ : R+ × D →R be a function of class C1,2. If

St (T ,T + δ) = sT ,δ(t,Xt ) for all t ∈ [0, T ], (3.7)

then the function sT ,δ solves for all (t, x) ∈ [0, T ) × D the PDE

0 = ∂t s
T ,δ(t, x) + ∇�

x sT ,δ(t, x)

(

f (t, x) + g(t, x)g(t, x)� ∇xp̂
T (t, x)

p̂T (t, x)

)

+ 1

2
Tr

(
g(t, x)�HsT,δ(t, x)g(t, x)

)
(3.8)

with terminal condition sT ,δ(T , x) = sT +δ(T , x) for all x ∈ D, where sT +δ is as in
Lemma 3.5.

Proof This is similar to the proof of Lemma 3.5. Applying integration by parts gives

d
(
St (T ,T + δ)P̂ (t, T )

) = St (T ,T + δ)dP̂ (t, T ) + P̂ (t, T )dSt (T ,T + δ)

+ d〈S · (T ,T + δ), P̂ ( · , T )〉t .
Since the first term on the right-hand side is a local martingale (recalling that bench-
marked ZCB prices are local martingales), an application of Itô’s formula yields that

d
(
sT ,δ(t,Xt )p̂

T (t,Xt )
) = p̂T (t,Xt )

(
∂t s

T ,δ(t,Xt ) + ∇�
x sT ,δ(t,Xt )f (t,Xt )

)
dt

+ 1

2
p̂T (t,Xt )Tr

(
g(t,Xt )

�HsT,δ(t,Xt )g(t,Xt )
)

dt

+ ∇�
x sT ,δ(t,Xt )g(t,Xt )g(t,Xt )

�∇xp̂
T (t,Xt )dt

+ (· · · )dWt.
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By Corollary 2.13, the process (St (T ,T + δ)P̂ (t, T ))t∈[0,T ] is a local martingale.
This implies that the finite-variation term in the last equation must vanish, thereby
proving that the function sT ,δ satisfies the PDE (3.8). The Markovian representation
(3.5) implies that

sT ,δ(T ,XT ) = ST (T ,T + δ) = S(T ,T + δ) = sT +δ(T ,XT ),

thus yielding the terminal condition sT ,δ(T , x) = sT +δ(T , x) for all x ∈ D. �

Remark 3.9 A property analogous to Remark 3.6 also applies to Lemma 3.8. More
specifically, under the validity of condition (3.5) and Assumption 3.7, the Markovian
structure (3.7) always holds if SPSs are fairly priced by the GOP (meaning that As-
sumption 2.10 holds in the stronger form of a true martingale). Note again, however,
that C1,2-regularity of the function sT ,δ in (3.7) is not guaranteed in general.

In general, the Cauchy problems associated to the parabolic PDEs (3.6) and (3.8)
admit more than one C1,2 solution. Uniqueness holds when those problems are re-
stricted to a suitably chosen uniqueness class Cun, namely a family of C1,2 functions
in which there exists at most one solution. Typical choices for the uniqueness class are
the family of functions with exponentially quadratic growth or the family of nonneg-
ative functions. Within these two families of functions, under additional assumptions
on the coefficients f and g in (3.2) and on the functions appearing in Assumption 3.1,
classical results ensure the existence of unique solutions to (3.6) and (3.8) (see e.g.
Friedman [19, Chap. 6] or Pascucci [31, Chap. 6]).

In Pavarana [32, Sect. 2.3.1], under the assumption of linear–Gaussian dynamics
for the Markov factor process X and of a quadratic structure of the functions appear-
ing in Assumption 3.1, explicit solutions to the PDEs (3.6) and (3.8) are derived. The
solutions turn out to have an exponential–quadratic form with coefficients determined
by the solutions of suitable ODEs.

3.3 Stochastic control representations of spot and forward spreads

Making use of the results of Sect. 3.2, we proceed to represent spot and forward
spreads as the value functions of suitable stochastic optimal control problems.

For all stochastic optimal control problems considered in the following, we use
the generic notation U to denote the set of admissible controls. More specifically, in
Proposition 3.10 and in Theorems 3.12 and 3.16, the set U contains all Rd -valued pro-
gressively measurable processes u such that the SDE defining the controlled process
admits a unique weak solution and the expectation defining the objective functional
is finite. We use the same notation U even if the specific structure of each problem
under consideration would correspond to different requirements on the controls.

In the following, Cun denotes a generic uniqueness class whose choice depends on
the specific properties of the model under consideration, as explained at the end of
Sect. 3.2. In our context, an especially relevant uniqueness class is given by the family
of functions that correspond to fair prices (see Definition 2.4). The observation that
this family of functions constitutes a uniqueness class is a consequence of the fact that
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a true martingale is entirely determined by its terminal value. However, the results of
this section are stated and valid for a generic uniqueness class Cun.

Before considering spot/forward spreads, we first provide a stochastic control rep-
resentation of benchmarked ZCB prices. As a preliminary to the next proposition, we
derive the associated PDE. We recall that benchmarked ZCB prices are local martin-
gales. Therefore, if Assumptions 3.4 and 3.7 hold, a straightforward application of
Itô’s formula yields the PDE, valid for all (t, x) ∈ [0, T ) × D,

0 = ∂t p̂
T (t, x) + ∇�

x p̂T (t, x)f (t, x) + 1

2
Tr

(
g(t, x)�Hp̂T (t, x)g(t, x)

)
,

p̂T (T , x) = 1

v∗(T , x)
, (3.9)

where the function p̂T is as in Assumption 3.7. We can then state the following result
which can be regarded as a counterpart to Gombani and Runggaldier [23, Sect. 3.1]
under the benchmark approach.

Proposition 3.10 Suppose that Assumptions 3.1, 3.4 and 3.7 hold and there exists
a unique solution p̂T to (3.9) in the class Cun. For T > 0, consider the stochastic
optimal control problem

⎧
⎪⎨

⎪⎩

dXu
t = (

f (t,Xu
t ) + g(t,Xu

t )ut

)
dt + g(t,Xu

t )dWt,

wT (t, x) = min
u∈U

Et,x

[
1

2

∫ T

t

|us |2 ds + logv∗(T ,Xu
T )

]

,
(3.10)

where the function v∗ is as in Assumption 3.4. Suppose that the value function sat-
isfies wT ∈ C1,2 and there exists an optimal control in U . Assume, moreover, that
exp(−wT ) ∈ Cun and that the natural candidate for the optimal control defined by

u∗(t, x) := −g(t, x)�∇xw
T (t, x) for all (t, x) ∈ [0, T ] × D (3.11)

belongs to U . Then we have p̂T (t, x) = exp(−wT (t, x)) for all (t, x) ∈ [0, T ] × D.

Proof By assumption, problem (3.10) admits an optimal control uopt ∈ U . Let us de-
note by Xopt the solution to the SDE in (3.10) for u = uopt, whose existence is guar-
anteed by the definition of U . By the definition of the value function wT , optimality
of uopt implies that the process

wT (t,X
opt
t ) + 1

2

∫ t

0
|uopt

s |2 ds, t ∈ [0, T ],

is a martingale. Thanks to this property, an application of Itô’s formula yields that

0 = ∂tw
T (t, x) + ∇�

x wT (t, x)
(
f (t, x) + g(t, x)uopt(t, x)

)

+ 1

2
Tr

(
g(t, x)�HwT (t, x)g(t, x)

) + 1

2
|uopt(t, x)|2,
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for all (t, x) ∈ [0, T ) × D. Since by assumption the natural candidate u∗ for the opti-
mal control given in (3.11) belongs to U , we can replace uopt in the last equation by
u∗, thus obtaining

0 = ∂tw
T (t, x) + ∇�

x wT (t, x)f (t, x) + 1

2
Tr

(
g(t, x)�HwT (t, x)g(t, x)

)

− 1

2
∇�

x wT (t, x)g(t, x)g(t, x)�∇xw
T (t, x) (3.12)

for all (t, x) ∈ [0, T ) × D, with terminal condition wT (T , x) = logv∗(T , x) for all
x ∈ D. Define the function p′ : [0, T ] × D → (0,∞) by p′(t, x) := exp(−wT (t, x))

for all (t, x) ∈ [0, T ] × D. Applying this transformation to (3.12), we arrive at
the PDE

0 = ∂tp
′(t, x) + ∇�

x p′(t, x)f (t, x) + 1

2
Tr

(
g(t, x)�Hp′(t, x)g(t, x)

)

for all (t, x) ∈ [0, T ) × D, with terminal condition

p′(T , x) = e−wT (T ,x) = 1

v∗(T , x)
for all x ∈ D.

We have therefore shown that the function p′ solves the PDE (3.9). The result of the
proposition follows since by assumption p′ ∈ Cun and there exists a unique solution
to problem (3.9) within the family of functions Cun. �

The stochastic optimal control problem in Proposition 3.10 can be interpreted as
the problem of a representative issuer of a ZCB who aims at minimising the yield
of the benchmarked ZCB (recalling that the benchmarked ZCB satisfies the terminal
condition P̂ (T ,T ) = 1/V ∗

T ) by changing the drift in the dynamics of the factor pro-
cess through a feedback control, being thereby subject to a quadratic cost for her/his
control actions. This corresponds to the analogue under the benchmark approach of
the situation described in Gombani and Runggaldier [23, Remark 3.2].

Remark 3.11 1) In Proposition 3.10, the admissibility of the candidate optimal con-
trol (3.11) is assumed. Similarly as in Gombani and Runggaldier [23], it can be easily
checked that the HJB equation associated to problem (3.10) coincides with the PDE
(3.9) and yields a candidate optimal control u∗ of the form (3.11). Once admissibility
of u∗ is verified, the result of Proposition 3.10 follows. In our context, admissibility
can be proved if suitable conditions are assumed on the coefficients of (3.2) and on
the functions in Assumption 3.1. However, these conditions turn out to be overly re-
strictive if imposed at the level of the general setup of Sect. 3.1. We therefore prefer
to leave admissibility as a property that should be checked on a case-by-case basis,
depending on the specific model under analysis. This remark applies also to Theo-
rems 3.12 and 3.16 below.

2) We point out that the controlled factor process Xu in problem (3.10), and simi-
larly in Theorems 3.12 and 3.16 below, is to be considered as a purely formal process,
unlike the Markov process X introduced in (3.2) that can be given an economic in-
terpretation.
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The stochastic optimal control problem considered in Proposition 3.10 relies on
a logarithmic transformation. In our context, the application of a logarithmic trans-
formation is linked to the fact that ZCB prices are local martingales when bench-
marked with respect to V ∗, which represents the optimal portfolio for logarithmic
utility (see Remark 2.5). Aiming at deriving stochastic control representations for
spot spreads, the relevant local martingale property is given by Assumption 2.7. In
this case, in the presence of a non-null funding–liquidity spread ϕ, benchmarked spot
spreads S( · , T )/V ∗ are not local martingales. This suggests to consider transforma-
tions different from the logarithmic one (compare also with the discussion in Sect. 4.2
below). Inspired by ideas going back to De Francesco and Runggaldier [15], we con-
sider transformations induced by power functions, leading to a parametrised family
of stochastic optimal control problems. Power transformations include both concave
and convex optimisation problems, depending on whether the power is smaller or
greater than one. As discussed in Remark 3.13 below, this enables us to reflect the
perspective of both a representative lender and a representative borrower in the deter-
mination of spot/forward spreads, thereby leading to a game-theoretic interpretation
of spot/forward spreads. Moreover, a power utility function is also adopted in Sect. 4
to relate the funding–liquidity spread to the risk-sensitive problem for a representative
investor. We refer the interested reader to Pavarana [32, Sect. 3.1] for an application
of logarithmic transformations to spot/forward spreads.

Theorem 3.12 Suppose that the assumptions of Lemma 3.5 are satisfied and there
exists a unique solution sT to (3.6) in the class Cun. Let η− ∈ (0,1) and η+ > 1. For
T > 0, consider the two stochastic optimal control problems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
u,−
t =

(

f (t,X
u,−
t ) − g(t,X

u,−
t )g(t,X

u,−
t )� ∇xv

∗(t,Xu,−
t )

v∗(t,Xu,−
t )

+
√

1 − η−
η− g(t,X

u,−
t )ut

)

dt + g(t,X
u,−
t )dWt,

zT−(t, x) = max
u∈U

Et,x

[

exp

(∫ T

t

(
η−ϕ(s,Xu,−

s ) − 1

2
|us |2

)
ds

)]

,

(3.13)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
u,+
t =

(

f (t,X
u,+
t ) − g(t,X

u,+
t )g(t,X

u,+
t )� ∇xv

∗(t,Xu,+
t )

v∗(t,Xu,+
t )

−
√

η+ − 1

η+ g(t,X
u,+
t )ut

)

dt + g(t,X
u,+
t )dWt,

zT+(t, x) = min
u∈U

Et,x

[

exp

(∫ T

t

(
η+ϕ(s,Xu,+

s ) + 1

2
|us |2

)
ds

)]

,

(3.14)

where the function v∗ is as in Assumption 3.4. Suppose that zT± ∈ C1,2 and there
exist optimal controls in U for both (3.13) and (3.14). Assume, moreover, that
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(zT−)1/η− ∈ Cun and (zT+)1/η+ ∈ Cun and that the natural candidates for the optimal
controls defined by

u∗,−(t, x) :=
√

1 − η−
η− g(t, x)�

∇xz
T−(t, x)

zT−(t, x)
,

u∗,+(t, x) :=
√

η+ − 1

η+ g(t, x)�
∇xz

T+(t, x)

zT+(t, x)
(3.15)

belong to U . Then it holds that

(
zT−(t, x)

)1/η− = sT (t, x) = (
zT+(t, x)

)1/η+
for all (t, x) ∈ [0, T ] × D.

Proof Since problems (3.13) and (3.14) can be treated in full analogy, we only give
the proof in the case of problem (3.13). By assumption, the problem admits an
optimal control uopt,− ∈ U . Let us denote by Xopt,− the solution to the SDE in
(3.13) for u = uopt,−, whose existence is guaranteed by the assumption that
uopt,− ∈ U . By the definition of the value function zT−, optimality of uopt,− implies
that the process

zT−(t,X
opt,−
t )e

∫ t
0 (η−ϕ(s,X

opt,−
s )− 1

2 |uopt,−
s |2)ds , t ∈ [0, T ],

is a martingale. Thanks to this property, an application of Itô’s formula yields that

0 = ∂t z
T−(t, x) + η−zT−(t, x)ϕ(t, x)

+ ∇�
x zT−(t, x)

(

f (t, x) − g(t, x)g(t, x)� ∇xv
∗(t, x)

v∗(t, x)

+
√

1 − η−
η− g(t, x)uopt,−(t, x)

)

+ 1

2
Tr

(
g(t, x)�HzT−(t, x)g(t, x)

) − 1

2
zT−(t, x)|uopt,−(t, x)|2

for all (t, x) ∈ [0, T ) × D. Since by assumption, the natural candidate uopt,− for
the optimal control given in (3.15) belongs to U , we can replace uopt,− in the last
equation by u∗,−, thus obtaining

0 = ∂t z
T−(t, x) + η−zT−(t, x)ϕ(t, x)

+ ∇�
x zT−(t, x)

(

f (t, x) − g(t, x)g(t, x)� ∇xv
∗(t, x)

v∗(t, x)

)

+ 1

2
Tr

(
g(t, x)�HzT−(t, x)g(t, x)

)

+ 1

2

1 − η−

η−
∇�

x zT−(t, x)

zT−(t, x)
g(t, x)g(t, x)�∇xz

T−(t, x)
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for all (t, x) ∈ [0, T ) × D, with terminal condition zT−(T , x) = 1 for all x ∈ D.

Define the function s′ : [0, T ] × D → R by s′(t, x) := (zT−(t, x))1/η−
for all

(t, x) ∈ [0, T ] × D. Applying this transformation to the previous PDE, we arrive
at the PDE

0 = ∂t s
′(t, x) + ∇�

x s′(t, x)

(

f (t, x) − g(t, x)g(t, x)� ∇xv
∗(t, x)

v∗(t, x)

)

+ 1

2
Tr

(
g(t, x)�Hs′(t, x)g(t, x)

) + ϕ(t, x)s′(t, x)

for all (t, x) ∈ [0, T ) × D, with terminal condition s′(T , x) = 1 for all x ∈ D. We
have therefore shown that the function s′ solves the PDE (3.6). Since by assump-
tion, there exists a unique solution to (3.6) in the class Cun with terminal condition
sT (T , x) = 1 and (zT−)1/η− ∈ Cun, it follows that (zT−(t, x))1/η− = sT (t, x) for all
(t, x) ∈ [0, T ] × D. �

Problem (3.13) can be regarded as the problem of a representative lender with a
power preference structure who aims at maximising the value of the discounted roll-
over-risk-adjusted borrowing account by affecting the dynamics of the factor pro-
cess through a feedback control, being thereby subject to a quadratic cost for her/his
control actions. Analogously, problem (3.14) can be regarded as the corresponding
problem of a representative borrower who aims at minimising the discounted roll-
over-risk-adjusted borrowing account.

Remark 3.13 As discussed in Sect. 2.3, in the presence of funding–liquidity risk, one
should have sT (t, x) ≥ 1. In this case, under the assumptions of Theorem 3.12, we
have for all η− ∈ (0,1) and η+ > 0 the inequalities

zT−(t, x) ≤ sT (t, x) ≤ zT+(t, x). (3.16)

We have thus obtained lower and upper bounds for the spot spread sT (t, x). Observe
that these bounds can be made as tight as one wishes since

lim
η−→1

zT−(t, x) = lim
η+→1

zT+(t, x) = sT (t, x).

Recalling the lender/borrower interpretation of problems (3.13) and (3.14), the in-
equalities (3.16) suggest a game-theoretic interpretation according to which the spot
spread sT (t, x) represents the value of a game between a lender and a borrower.

Remark 3.14 The result of Theorem 3.12 also holds for η+ < 0. This case leads to a
convex optimisation problem and is fully analogous to problem (3.14), yielding the
same representation of spot spreads. However, the rightmost inequality in (3.16) fails
to hold for η+ < 0.

Remark 3.15 In view of (3.3), the term g(t,X
u,±
t )�∇xv

∗(t,Xu,±
t )/v∗(t,Xu,±

t ) in the
drift of the controlled process Xu,± in problems (3.13) and (3.14) can be more com-
pactly rewritten as θ(t,X

u,±
t ). This term arises because S( · , T )S̃0 is a local martin-

gale when denominated with respect to V ∗, whose volatility is given by the market
price of risk θ .
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We point out that comments analogous to Remark 3.11 apply to the stochastic
optimal control problems considered in Theorem 3.12, as well as to the problems
considered in Theorem 3.16 below. The next theorem provides an analogue to Theo-
rem 3.12 for forward spreads.

Theorem 3.16 Suppose that the assumptions of Lemmas 3.5 and 3.8 are satisfied
and there exists a unique solution sT ,δ to (3.8) in the class Cun. Let η− ∈ (0,1) and
η+ > 1. For T > 0 and δ ∈ �, consider the two stochastic optimal control problems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
u,−
t =

(

f (t,X
u,−
t ) + g(t,X

u,−
t )g(t,X

u,−
t )� ∇xp̂

T (t,X
u,−
t )

p̂T (t,X
u,−
t )

+
√

1 − η−
η− g(t,X

u,−
t )ut

)

dt + g(t,X
u,−
t )dWt,

z
T ,δ
− (t, x) = max

u∈U
Et,x

[

exp

(

η− log sT +δ(T ,X
u,−
T ) − 1

2

∫ T

t

|us |2 ds

)]

,

(3.17)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
u,+
t =

(

f (t,X
u,+
t ) + g(t,X

u,+
t )g(t,X

u,+
t )� ∇xp̂

T (t,X
u,+
t )

p̂T (t,X
u,+
t )

−
√

η+ − 1

η+ g(t,X
u,+
t )ut

)

dt + g(t,X
u,+
t )dWt,

z
T ,δ
+ (t, x) = min

u∈U
Et,x

[

exp

(

η+ log sT +δ(T ,X
u,+
T ) + 1

2

∫ T

t

|us |2 ds

)]

,

(3.18)

where the function p̂T is as in Assumption 3.7. Suppose that z
T ,δ
± ∈ C1,2 and there

exist optimal controls in U for both (3.17) and (3.18). Assume, moreover, that
(z

T ,δ
− )1/η− ∈ Cun and (z

T ,δ
+ )1/η+ ∈ Cun and that the natural candidates for the opti-

mal controls defined by

u∗,−(t, x) :=
√

1 − η−
η− g(t, x)�

∇xz
T ,δ
− (t, x)

z
T ,δ
− (t, x)

,

u∗,+(t, x) :=
√

η+ − 1

η+ g(t, x)�
∇xz

T ,δ
+ (t, x)

z
T ,δ
+ (t, x)

(3.19)

belong to U . Then it holds that

(
z
T ,δ
− (t, x)

)1/η− = sT ,δ(t, x) = (
z
T ,δ
+ (t, x)

)1/η+
for all (t, x) ∈ [0, T ] × D.

Proof The proof is similar to that of Theorem 3.12. Since problems (3.17) and (3.18)
have the same structure, we only consider here (3.17). By assumption, problem (3.17)
admits an optimal control uopt,− ∈ U . We denote by Xopt,− the solution to the SDE
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in (3.17) for u = uopt,−. By the definition of z
T ,δ
− , optimality of uopt,− implies that

the process

z
T ,δ
− (t,X

opt,−
t )e− 1

2

∫ t
0 |uopt,−

s |2 ds , t ∈ [0, T ],
is a martingale. Thanks to this property, an application of Itô’s formula yields that

0 = ∂t z
T ,δ
− (t, x) + ∇�

x z
T ,δ
− (t, x)

(

f (t, x) + g(t, x)g(t, x)� ∇xp̂
T (t, x)

p̂T (t, x)

+
√

1 − η−
η− g(t, x)uopt,−(t, x)

)

+ 1

2
Tr

(
g(t, x)�Hz

T,δ
− (t, x)g(t, x)

) − 1

2
z
T ,δ
− (t, x)|uopt,−(t, x)|2

for all (t, x) ∈ [0, T ) × D. Since by assumption the natural candidate u∗,− for the
optimal control given in (3.19) belongs to U , we can replace uopt,− in the last equation
by u∗,−, thus obtaining

0 = ∂t z
T ,δ
− (t, x) + ∇�

x z
T ,δ
− (t, x)

(

f (t, x) + g(t, x)g(t, x)� ∇xp̂
T (t, x)

p̂T (t, x)

)

+ 1

2
Tr

(
g(t, x)�Hz

T,δ
− (t, x)g(t, x)

)

+ 1

2

1 − η−

η−
∇�

x z
T ,δ
− (t, x)

z
T ,δ
− (t, x)

g(t, x)g(t, x)�∇xz
T ,δ
− (t, x)

for all (t, x) ∈ [0, T ) × D, with terminal condition z
T ,δ
− (T , x) = (sT +δ(T , x))η

−
for

all x ∈ D, where the function sT +δ is given in Lemma 3.5. Let us define the func-
tion s′ : [0, T ] × D → R by s′(t, x) := (z

T ,δ
− (t, x))1/η−

for all (t, x) ∈ [0, T ] × D.
Applying this transformation to the previous PDE, we arrive at the PDE

0 = ∂t s
′(t, x) + ∇�

x s′(t, x)

(

f (t, x) + g(t, x)g(t, x)� ∇xp̂
T (t, x)

p̂T (t, x)

)

+ 1

2
Tr

(
g(t, x)�Hs′(t, x)g(t, x)

)

for all (t, x) ∈ [0, T ) × D, with terminal condition s′(T , x) = sT +δ(T , x) for x ∈ D.
We have therefore shown that the function s′ solves the PDE (3.8). Since by assump-
tion, there exists a unique solution to (3.8) in the class Cun with terminal condition
sT ,δ(T , x) = sT +δ(T , x) and (z

T ,δ
− )1/η− ∈ Cun, it follows for all (t, x) ∈ [0, T ] × D

that z
T ,δ
− (t, x) = (sT ,δ(t, x))η

−
. �

Problems (3.17) and (3.18) can be interpreted similarly to problems (3.13) and
(3.14), in line with the interpretation presented after Theorem 3.12. The main differ-
ence is that while problems (3.13) and (3.14) refer to rolled-over borrowing/lending
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operations, problems (3.17) and (3.18) refer to term borrowing/lending. In this per-
spective, problem (3.17) (resp. problem (3.18)) reflects the viewpoint of a represen-
tative lender (resp. borrower) who aims at maximising (resp. minimising) the term
premium for tenor δ, being subject to a quadratic penalisation. A comment analogous
to Remark 3.13 (as well as Remark 3.14) holds in the case of Theorem 3.16, leading
to a possible game-theoretic interpretation of forward spreads.

Remark 3.17 The term g(t,X
u,±
t )�∇xp̂

T (t,X
u,±
t )/p̂T (t,X

u,±
t ) in the drift of the

controlled process Xu,± in problems (3.17), (3.18) corresponds to the diffusion coef-
ficient of a benchmarked ZCB with maturity T . This term arises because the forward
spread S · (T ,T + δ) is a local martingale when multiplied by P̂ ( · , T ); see Corol-
lary 2.13.

4 Risk-sensitive preferences and the funding–liquidity spread

In the previous sections, we have described a generic interest rate market where ZCBs
and SPSs referencing spot term rates are traded under the weak assumption of mar-
ket viability. We have seen in Sects. 2.2 and 2.3 that the presence of roll-over risk,
encoded in the funding–liquidity spread ϕ, allows an explanation of the multi-curve
phenomenon, i.e., the existence of (spot and forward) spreads between (spot and for-
ward) term rates and simple risk-free forward rates. However, the funding–liquidity
spread ϕ has been considered until now as an exogenous quantity (an exogenously
given function in the Markovian setting of Sect. 3).

In this section, we aim at providing a possible way to determine the funding–
liquidity spread by referring to the preference structure of a representative investor
with risk-sensitive preferences. This approach is related to the stochastic control rep-
resentations of spot and forward spreads obtained in Theorems 3.12 and 3.16, which
provide a link between spot/forward spreads and power-type preferences of a repre-
sentative lender/borrower. As in Theorems 3.12 and 3.16, our representative investor
will have power-type preferences.

To carry out this program, we first consider in Sect. 4.1 the risk-sensitive optimal
investment problem of a representative investor in the context of a finite-dimensional
Markovian model of a financial market, relying on the results of Nagai [30]. By using
these preparatory results, we show in Sect. 4.2 how the funding–liquidity spread can
be endogenously determined and in particular be related to the risk-aversion coeffi-
cient of the representative investor.

4.1 A risk-sensitive optimal investment problem

We consider the Markovian setting introduced in Sect. 3.1, with a factor process X

satisfying (3.2). The risk-free savings account is given by S0 = exp(
∫ ·

0 rt dt), where
rt = r(t,Xt ) as in Assumption 3.1. We restrict our attention to a finite time horizon T .
We further specify the financial market by assuming that the family S of assets con-
sists of a finite set of m assets, for instance composed of ZCBs and SPSs for a finite
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number of maturities. For each i = 1, . . . ,m, the price process Si of the ith asset is
given by

dSi
t = Si

t μ
i(t,Xt )dt + Si

t σ
i(t,Xt )dWt, Si

0 = si
0 > 0, (4.1)

where the functions μi : [0, T ] × R+ → R and σ i : [0, T ] × R+ → R
d are suf-

ficiently smooth to ensure the existence of a unique strong solution to (4.1) for
i = 1, . . . ,m. To exclude the possibility of redundant assets, we assume that the ma-
trix σ(t,Xt ) ∈ R

m×d is of full rank a.s. for all t ∈ [0, T ]. We do not require the finan-
cial market to be complete. Note that there is no loss of generality in assuming that
the SDEs (3.2) and (4.1) are driven by the same d-dimensional Brownian motion W .

If the asset price dynamics are given by (4.1), the market price of risk θ has the
Markovian structure stated in Assumption 3.1. More specifically, it holds that

θt = σ+(t,Xt )
(
μ(t,Xt ) − r(t,Xt )1

) =: θ(t,Xt ) for all t ∈ [0, T ],
where σ+(t,Xt ) denotes the Moore–Penrose pseudoinverse of the matrix σ(t,Xt ),
1 = (1, . . . ,1)� ∈ R

m and μ(t,Xt ) = (μ1(t,Xt ), . . . ,μ
m(t,Xt ))

�. As already men-
tioned in Sect. 3.1, in the present finite-dimensional financial market, the market vi-
ability requirement (2.3) is equivalent to the validity of the condition θ ∈ L2

loc, i.e.,
∫ T

0 |θt |2 dt < ∞ a.s. (see e.g. Fontana and Runggaldier [18, Corollary 4.3.19]). This
condition is assumed to be in force until the end of this section.

We suppose that the representative investor can trade in the m available assets
by means of self-financing strategies described by R

m-valued predictable processes
π = (πt )t∈[0,T ], where πi

t represents the proportion of wealth invested in the ith
risky asset for each i = 1, . . . ,m. The wealth process V π = (V π

t )t∈[0,T ] associated to
a self-financing strategy π satisfies

dV π
t

V π
t

= r(t,Xt )dt + π�
t

(
μ(t,Xt ) − r(t,Xt )1

)
dt + π�

t σ (t,Xt )dWt, (4.2)

with initial wealth conventionally set at V π
0 = 1. The set A of admissible strategies

is defined as

A :=
{

π = (πt )t∈[0,T ] Rm-valued, predictable with
∫ T

0
|π�

t σ (t,Xt )|2 < ∞
}

.

Note that as a consequence of the Cauchy–Schwarz inequality, if market viability
holds, then (4.2) is well posed for every π ∈ A (see e.g. Fontana and Runggaldier
[18, Lemma 4.3.21]).

In this financial market, we consider a representative investor aiming at solving
the optimal investment problem

E[(V π
T )γ ] = min! over all π ∈A such that E[(V π

T )γ ] < ∞. (4.3)

The parameter γ < 0 represents a risk-aversion parameter. Problem (4.3) belongs to
the class of risk-sensitive investment problems (we refer to Davis and Lleo [14] for a
complete overview on the topic).
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In the present Markovian setting, a complete characterisation of the solution to
problem (4.3) has been derived in Nagai [30] under the assumption that the functions
appearing in (3.2) and (4.1) are globally Lipschitz, together with additional technical
assumptions that we implicitly assume here to be verified (see condition (2.4) and the
assumptions of Theorem 2.1 in Nagai [30]). Then [30, Proposition 2.1] shows that
the optimal strategy has the structure

π
γ
t = π(t,Xt )

= 1

1 − γ

(
σ(t,Xt )σ (t,Xt )

�)−1
σ(t,Xt )

(
θ(t,Xt ) + γg(t,Xt )

�(t,Xt )
)

= π∗
t

1 − γ
+ γ

1 − γ

(
σ(t,Xt )σ (t,Xt )

�)−1
σ(t,Xt )g(t,Xt )

�(t,Xt ), (4.4)

where π∗ is the growth-optimal strategy (generating the portfolio process V ∗, see
Platen and Heath [33, Chap. 10]) and (t,Xt ) is the gradient of the solution to the
Bellman equation (2.14) in Nagai [30] with respect to the components of the factor
process X.

For later use, we compute the dynamics of the optimal portfolio process V πγ

associated to the optimal risk-sensitive strategy πγ given in (4.4) as

dV π
t

V π
t

= r(t,Xt )dt + θ(t,Xt )
�

1 − γ

(
θ(t,Xt ) + γg(t,Xt )

�(t,Xt )
)

dt

+ 1

1 − γ

(
θ(t,Xt ) + γ σ+(t,Xt )σ (t,Xt )g(t,Xt )

�(t,Xt )
)

dWt.

Remark 4.1 As can be seen from (4.4), the optimal strategy πγ invests into two mu-
tual funds: the GOP and an additional portfolio that represents an intertemporal hedg-
ing component, which arises due to the randomness generated by the factor process
X. The proportion of wealth allocated to the two funds varies according to the risk-
aversion coefficient γ . In the limit for γ → 0, the optimal strategy πγ reduces to the
growth-optimal strategy π∗, i.e., the optimal strategy for logarithmic preferences.

Remark 4.2 1) Problem (4.3) can also be analysed for γ ∈ (0,1). However, in order
to rely on the results of Nagai [30], we need to restrict our attention to the case γ < 0.
This is also justified by the fact that for γ ∈ (0,1), the risk-sensitive criterion (4.3) is
more prone to risk in comparison to logarithmic preferences, while for the purposes
of Sect. 4.2, we are interested in preference structures that exhibit a greater degree of
risk aversion than logarithmic preferences.

2) As mentioned in Remark 3.14, the control problems considered in Theo-
rems 3.12 and 3.16 can also be solved for η+ < 0, since this choice leads to a
convex optimisation problem with the same structure and solution as in the case
η+ > 1. Choosing η+ < 0 enables us to work with a common risk-aversion param-
eter η+ = γ . This choice corresponds to considering a single representative agent
who is facing two possible control setups: one that concerns the minimisation of the
funding–liquidity spread (problem (3.14)) or the term premium (problem (3.18)), and
one that concerns a risk-sensitive optimal investment as considered in (4.3). In both
cases, the parameter η+ = γ encodes the risk attitude of the representative investor.
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4.2 The funding–liquidity spread

We now rely on the solution of the representative investor’s risk-sensitive problem
(4.3) to determine the funding–liquidity spread ϕ.

We start by observing that, in the presence of roll-over risk (i.e., if ϕ > 0), the
process S̃0/V ∗ fails to be a local martingale, as shown in Lemma 2.8. As discussed
in Remark 2.5, using 1/V ∗ as LMD can be regarded as adopting a marginal util-
ity pricing rule based on a logarithmic utility function U(x) = logx. Indeed, the
numéraire portfolio V ∗ coincides with the log-optimal portfolio (when the latter is
well defined, see Remark 2.5) and U ′(V ∗

t ) = 1/V ∗
t . According to this viewpoint, the

fact that U ′(V ∗)S̃0 fails to be a local martingale can be interpreted as evidence of the
fact that the roll-over-risk-adjusted borrowing account S̃0 is not priced correctly by a
representative investor with logarithmic preferences. One could say that logarithmic
preferences exhibit a “myopia” that does not allow to “see” properly roll-over risk
and hence do not justify the existence of a funding–liquidity spread ϕ.

On the basis of this reasoning, we modify the preference structure of our rep-
resentative investor, replacing logarithmic preferences with power-type preferences
as in (4.3). The underlying idea is that a risk-sensitive representative investor, being
more risk averse than a logarithmic investor, should correctly price funding–liquidity
risk. This leads us to consider a marginal pricing rule associated to a utility function
of the form U(x) = xγ with γ < 0, corresponding to the risk-sensitive preferences
considered in Sect. 4.1. This preference structure yields the marginal utility process

Yt := (V πγ

t )γ−1 for t ∈ [0, T ]. (4.5)

As shown in the next result, the assumption that Y correctly prices the roll-over-risk-
adjusted borrowing account S̃0, in the sense that the product Y S̃0 is a local martin-
gale, leads to an explicit expression for the funding–liquidity spread ϕ in terms of the
risk-aversion parameter γ and of the solution to the risk-sensitive optimal investment
problem. For brevity of notation, we use the shorter notation ϕt to denote ϕ(t,Xt ),
and similarly for all other processes.

Proposition 4.3 Let Y be defined as in (4.5), where V πγ
is the optimal portfolio

process for the risk-sensitive problem (4.3). Then Y S̃0 is a local martingale if and
only if the funding–liquidity spread ϕ satisfies

ϕt = −γ rt + θ�
t (θt + γg�

t t ) − 2 − γ

2(1 − γ )
|θt + γg�

t t |2 for t ∈ [0, T ]. (4.6)

Proof As a first step, we compute the dynamics of Y by Itô’s formula as

dYt

Yt

= (γ − 1)

(

rt + θ�
t

1 − γ
(θt + γg�

t t ) + 1

2

γ − 2

1 − γ
|θt + γg�

t t |2
)

dt

+ 1

1 − γ
(θt + γg�

t t )dWt.
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Then applying integration by parts, we obtain that Y S̃0 is a local martingale if and
only if

rt + ϕt = (1 − γ )rt + θ�
t (θt + γg�

t t ) − 1

2

2 − γ

1 − γ
|θ + γg�

t t |2,

which is equivalent to condition (4.6). �

We can observe that for γ = 0 (corresponding to the limiting case of logarithmic
preferences, see Remark 4.1), the funding–liquidity spread resulting from (4.6) is
null, confirming the interpretation discussed at the beginning of this subsection.

5 Conclusions

In this work, we have proposed a general perspective on interest rate markets af-
fected by roll-over risk. After providing a general view on term structure models
with roll-over risk, in the philosophy of the benchmark approach, we have focused
on representing spot/forward spreads as value functions of suitable stochastic optimal
control problems. The stochastic control formulation enables us to view the values of
the spreads as the result of optimisation problems of representative lenders/borrow-
ers. A key quantity in our approach is represented by the funding–liquidity spread.
We have proposed a way to endogenously determine the latter quantity by relating it
to the risk aversion of a representative investor with risk-sensitive preferences.

Among the possible further developments of our work, we believe that it would be
interesting to formulate an equilibrium model where market participants are subject
to roll-over risk, for instance along the lines of Gârleanu and Pedersen [21]. This
equilibrium framework would be more elaborate than the simple approach outlined
in Sect. 4 and would provide an endogenous explanation for the appearance of a
funding–liquidity spread in interest rate markets.
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16. Filipović, D., Platen, E.: Consistent market extensions under the benchmark approach. Math. Finance
19, 41–52 (2009)
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