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Abstract
Inter-storey seismic isolation is increasingly gaining attention. One of the main related 
issues is the need to limit the relative displacement between substructure and superstruc-
ture, while maintaining a good seismic performance of the superstructure. As shown in 
some studies, fluid viscous dampers (FVDs) mounted in isolation systems are effective in 
reducing isolator deflection but can be harmful by amplifying inter-storey drifts and floor 
accelerations. Additionally, the effectiveness of FVDs for inter-storey applications was 
investigated only recently, and specific approaches for their optimisation and performance 
evaluation are missing. Therefore, this paper proposes a method for the optimal multi-
objective design of FVDs, based on the definition of appropriate surrogate response mod-
els, which allows for rationally comparing the FVD effects for a wide range of dampers and 
structures. In particular, the optimal FVD parameters are provided in a dimensionless form, 
so that they can be predicted by design equations of general validity within the range of 
the structures analysed. This method is applied to a stock of regular structures with various 
vibration periods of superstructure, isolation and substructure, examining a linear and a 
non-linear isolation system and a set of natural records, in order to comprehensively assess 
the effects of FVDs and their non-linearity on the seismic performance of these structures. 
Finally, prediction models of optimal FVD parameters are provided based on the results 
obtained and are applied to three case studies as an example.
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1  Introduction

Seismic isolation between building storeys is becoming an increasingly attractive con-
cept. First, it allows for greater freedom in the structural conception of skyscrapers and 
multi-purpose buildings, defining two independent structures, i.e., substructure and super-
structure, which may have different forms, materials and uses (Zhang et al. 2017; Liu et al. 
2018; Faiella and Mele 2020). This represents both an advantage for architectural design 
and a sustainable solution for densely populated areas (such as China), as it allows sig-
nificant savings on land use, e.g., by realising residential buildings on top of commercial 
buildings. Additionally, in some cases, the base isolation of buildings encounters economic 
and technical issues that can prevent its application. For example, installing base isolation 
in existing buildings is generally complicated and certainly more expensive than applying 
isolation between storeys (often disruption-free). This technique can also be applied to add 
extra storeys on the top of existing buildings (with appropriate vertical capacity), without 
increasing the base shear forces, which represent an innovative retrofitting approach (Zhou 
2001; Chey et al. 2013; Faiella et al. 2020). Furthermore, the isolation at the base becomes 
less effective than that between storeys for tall buildings, due to their low bending stiffness 
(Ziyaeifar et al. 1998).

Some examples of inter-storey isolation are as follows: the Shiodome Sumitomo Build-
ing (Tasaka et  al. 2008) and the Iidabashi First Building (Zhang et  al. 2017) in Tokyo, 
which are two multipurpose high-rise buildings consisting of a substructure and super-
structure with different structural shapes; a building complex in Beijing (Zhou et al. 2004), 
where 50 base-isolated residential buildings (seven- or nine-storey RC frames) were built 
on top of a two-storey platform, covering a railway area of ∼3 km2; the 185 Berry St. build-
ing in the China Basin area of San Francisco (Dutta et al. 2009), which is the first example 
in the U.S. of an isolated building (two-storey steel structure) built on top of an existing 
building (three-storey RC structure); the nine-storey pre-cast RC building in the National 
Taiwan University campus (Loh et  al. 2013), which has an inter-storey isolation system 
between the second and third floors, also equipped with viscous dampers.

This isolation strategy basically converts the mass of the isolated superstructure into a 
non-conventional tuned mass damper (Reggio and De Angelis 2015); therefore, the super-
structure performs a dynamic control function in addition to the structural one. In general, 
it is possible to identify three behavioural categories—mass damping, intermediate isola-
tion and base isolation—based on the mass ratio between the superstructure and substruc-
ture (Faiella and Mele 2019; Zhou et al. 2016; Tan et al. 2008).

One of the primary issues concerning inter-storey isolation is the need to reduce the P-Δ 
effects, by controlling the drift demand between the substructure and superstructure, while 
maintaining a good seismic performance of the superstructure (low floor accelerations 
and low inter-storey drifts). For this purpose, additional fluid-viscous dampers (FVDs) are 
effective in reducing the isolation drift demand and allow the design of a greater perform-
ing isolation system. Indeed, the isolation components can be designed for low activation 
forces, regardless of the actual expected seismic force, relying on the additional dissipation 
provided by these dampers.

In fact, dampers are often installed in base-isolated structures built near active faults, 
as the large displacement demand would otherwise require isolators of considerable size 
and cost (Koh et al. 1989; Makris 1997). However, studies on the supplemental damping 
in buildings with base isolation (e.g., Kelly 1999; Hall 1999; Alhan et al. 2004; Politopou-
los 2008; Providakis 2008; Fathi et al. 2015) showed that high values of damping, when 
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concentrated only at the isolation level, can be excessive and therefore harmful due to 
amplification of inter-storey drifts and floor accelerations. Both of these, on the other hand, 
can be limited by increasing the damping of the superstructure, which is effective in reduc-
ing the floor response spectra in correspondence with the second vibration mode of iso-
lated structures (Ragni et al. 2020). Although non-linear dampers offer greater dissipation 
per sinusoidal cycle than linear ones (for the same maximum force and stroke) and limit 
the damper force transmission at high velocities (Tubaldi et al. 2015b), experiments car-
ried out by Wolff et al. (2015) proved that these amplifications are smaller in case of linear 
dampers, especially with highly dissipative isolation devices.

The results of these studies are not always easy to compare, as they depend on specific 
assumptions, including FVD properties. Moreover, the effects of additional FVDs for inter-
storey applications were investigated only recently for a case study (Liu et al. 2018; Donà 
et al. 2019); therefore, further investigations are needed and should be addressed through 
a general assessment method, which allows comparing a wide range of linear and non-
linear dampers. Also, general studies on the optimisation of FVDs for such applications, 
addressed to their design, are missing. In fact, relevant studies in the literature mainly deal 
with the optimal arrangement of multiple isolation systems in buildings (Charmpis et al. 
2012; Charmpis et al. 2015) and the optimal values of the isolator parameters (Reggio et al. 
2015; Zhou et al. 2016). As for FVDs, many optimisation strategies are available for tra-
ditional applications in frames (e.g., see De Domenico et  al. 2019), whereas only a few 
studies in the field of bridges deal with the optimisation of FVDs used together with isola-
tors, focussing on linear dampers (Xie et al. 2017). Clearly, the use of FVDs in inter-storey 
isolation applications has some specificities, such as the damping, velocity and stroke val-
ues of the dampers—which are generally higher than in traditional applications—the con-
centration of energy dissipation between two storeys of the structure, and the interaction 
between the non-linear behaviour of the dampers and the isolation system.

Only recently, to assess the FVD effects in inter-storey applications, Liu et al. (2018) 
optimised the damper parameters (damping constant c and linearity degree α) individually 
for various seismic inputs, in the case of a seven-floor reinforced-concrete (RC) structure, 
with lead rubber bearings (LRBs) connecting the second and third floors. In addition to 
proving the effectiveness of FVDs, the authors showed that the optimal value of α is cor-
related with the structural seismic response (problem output) and strongly depends on the 
seismic input (a priori unknown). Therefore, a direct optimisation for each design ground 
motion is not suitable for design purposes, as α values cannot be averaged for determining 
the best FVD solution. In addition, the application of a multi-objective genetic algorithm 
to conduct a direct optimisation (as in Liu et al. 2018), even if based on the average of the 
maximum responses to a set of ground motions, would require the execution of a large 
number of non-linear time-history (TH) analyses, and therefore a high computational cost.

To overcome these issues, this paper proposes a more effective method for the optimisa-
tion and performance evaluation of FVDs for inter-storey applications, which falls within 
the multi-objective evolutionary design approach (De Domenico et al. 2019). This method 
is based on the definition of appropriate surrogate response models, calibrated on the maxi-
mum response (averaged between seismic inputs) of some significant performance param-
eters and their subsequent minimisation through multi-objective genetic algorithms. Such 
models, if conveniently expressed in a dimensionless form, allow obtaining results that can 
be compared between various case studies and predicted by design equations of general 
validity (within the range of structures analysed).

To systematically evaluate the FVD effects on the seismic performance of various 
structures, this method was parametrically applied to a stock of 48 lumped-mass models, 



4590	 Bulletin of Earthquake Engineering (2021) 19:4587–4621

1 3

representative of regular RC structures with various vibration periods of superstructure, 
isolation and substructure, analysing a wide range of damper forces for various α values 
between 0 and 1, two types of isolation systems (linear with fuse behaviour and non-lin-
ear with LRB isolators) and a set of spectrum-compatible natural records. The conflict-
ing objective functions (OFs) chosen for the optimal design are the minimisation of the 
drifts between the substructure and superstructure and the minimisation of the inter-storey 
drifts of the superstructure. In particular, these structural performances were normalised 
to the relevant ones in the case without FVD, to directly evaluate the effects of additional 
damping on the structural response. The multi-objective problem was solved through the 
NSGA-II genetic algorithm (Deb et al. 2002) and the optimisation results, both in terms 
of structural performances and optimal FVD parameters, were compared between various 
structural configurations and isolation systems to draw the relevant considerations. The 
maximum values of the superstructure floor accelerations and substructure inter-storey 
drifts were also evaluated, but as an output of the optimisation process rather than as OFs. 
The proposed method was then reapplied to optimise only linear FVDs (α = 1), allowing 
performance comparisons between optimal linear and non-linear dampers. Finally, to pro-
vide useful design tools, prediction models for the optimal FVD parameters were defined 
and calibrated on the basis of the results obtained; these models were then applied to three 
case study structures, for example and validation purposes.

2 � Multi‑objective optimisation method

2.1 � Solution to the dynamic problem

The equation of the dynamics of inter-storey isolated buildings with FVDs, with t the time 
variable, is:

 �(t) = [x1(t) x2(t) … xn(t)]
T , 𝐱̇(t) , and 𝐱̈(t) are respectively the floor displacements, veloc-

ities and accelerations relative to the building base, and n is the number of degrees of free-
dom (DOF) examined; only translational DOF are taken into account by this modelling. 
üg(t) is the seismic acceleration, and �  is the vector with the unitary rigid displacements 
of the floors, parallel to the seismic direction; in this work, � is the identity vector. M [n x 
n] is the global mass matrix and CST and KST are respectively the damping and stiffness 
matrices, given in Eq. 2, excluding the isolation system. CL and KL are respectively the 
damping and stiffness matrices for the lower structure (with nL DOF), and CU and KU are 
the same matrices for the upper structure (with nU DOF). In this study, the behaviour of the 
substructure and superstructure (and so KST) are modelled as linear, and all non-linearities 
are concentrated at the isolation level.

The structural equivalent viscous damping for such buildings is a ‘non-classical damp-
ing’ (Chen et al. 2017; Chen et al. 2019) and requires to be modelled differently for the two 
structural parts (Liu et al. 2018). The classic Rayleigh’s model (Eq. 3), generally used for 
fixed-base structures, can also be assumed for the substructure; instead, a damping model 

(1)𝐌𝐱̈(t) + 𝐂𝐒𝐓𝐱̇(t) +𝐊𝐒𝐓𝐱(t) + 𝐫𝐅𝐕𝐃FFVD(t) + 𝐫𝐈𝐒FIS(t) = −𝐌𝐈üg(t)

(2)��� =

[
��[nL×nL]

��[nU×nU]

]
; ��� =

[
��[nL×nL]

��[nU×nU]

]
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proportional to stiffness (Eq. 4) is more appropriate for isolated structures, as discussed in 
Ryan et al. (2008) and Pant et al. (2013). In Eq. 3, ML [nL x nL] is the mass matrix of the 
substructure and αL and βL are the Rayleigh coefficients; the latter can be calculated by 
imposing a damping ratio ζ of 5 % (usually assumed for RC buildings) to the modal fre-
quencies ωi and ωj,, which determine the frequency range of interest of the lower structure. 
Regarding the superstructure damping model in Eq. 4, Pant et al. (2013) highlighted that 
such a model could provide excessive damping for higher modes in tall buildings (where 
they are significant). As discussed in Liu et al. (2018), this issue is also relevant for appli-
cations of inter-storey isolation, as the higher mode effects could be important for such 
buildings. Therefore, the proportionality coefficient βU should be calibrated by associat-
ing the desired ζ value (5 %) with a representative frequency ωk for the higher modes to 
balance and limit this structural damping among the main higher modes (as shown in Liu 
et al. 2018). To assess the calibration of the matrix CST, the single modal damping ratios 
ζi can be calculated using Eq. 5, which is valid for classical damping but still allows suf-
ficiently accurate estimates—ϕi and ωi represent the modal shape and pulsatance of the i-th 
mode, respectively. A good calibration should provide ζi of about 5% for the significant 
higher modes, and an almost zero damping for the first mode. As for the latter, the reason is 
that the dissipation contribution by deformation of the structural parts is negligible for this 
mode, with respect to that provided by the separation layer.

The last two addenda of Eq. 1 describe the contribution of the isolation layer. In particu-
lar, FFVD(t) is the damper force, given by Eq. 6, which depends on the damping coefficient c 
and the damping exponent α. FIS(t) is the restoring force developed by the isolation system, 
and it clearly depends on the isolation technology adopted. In general, FIS(t) is the sum of 
two contributions—one linear FIS-l(t), due to a linear or post-yielding stiffness (kIS), and 
one hysteretic FIS-h(t). In recent years, the Bouc–Wen model (Ismail et  al. 2009), shown 
in Eqs. 7 and 8, has often been used for modelling the hysteretic behaviour of isolators, 
thanks to its adaptability to a wide range of hysteretic laws through appropriate calibration 
of its parameters. In Eq. 7, k is the elastic stiffness, r is the stiffness ratio (= kIS/k) and dy is 
the yielding displacement of the isolation system; z(t) is an extra state variable that defines 
the hysteretic loop shape through the dimensionless parameters A, β, γ and n. Lastly, rFVD 
and rIS, provided in Eq. 9, are the vectors necessary to correctly place the contributions of 
damper and isolators in the motion equation. 

(3)�� = �L�� + �L�� → �L = � ⋅

2�i�j

�i + �j

; �L = � ⋅
2

�i + �j

(4)�� = �U�� → �U = � ⋅
2

�k

(5)�i =
�T
i
����i

2�i�
T
i
��i

(6)FFVD(t) = c|ẋ|𝛼 sgn(ẋ)

(7)
FIS(x(t), ẋ(t)) = FIS−l(t) + FIS−h(t) = kISx(t) + (k − kIS)dyz(t) = rkx(t) + (1 − r)kdyz(t)
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According to Eq. 10, the building’s total restoring force FR(t) can be divided into two 
addends: one linear, provided by the elastic stiffness of the structure (KST) and the linear 
component of the isolation force FIS-l(t), and one non-linear, due to FIS-h(t). Using Eq. 10 in 
Eq. 1 and solving for 𝐱̈(t) results in Eqs. 12 and 13.

Finally, the governing equation can be properly rewritten, as in Eq. 14, by means of the 
state space vector 𝐪(t)=[𝐱𝐓(t) 𝐱̇𝐓(t) z(t)]𝐓 , so that it can be solved as a first order differen-
tial equation. The vector f(q(t)) is obtained by deriving q(t), and then using Eqs. 8 and 13; 
B is the position vector for the seismic input.

2.2 � Response surfaces as a function of dimensionless FVD parameters

Following the procedure above, parametric non-linear TH analyses can be performed for each 
structure and set of accelerograms assumed, by varying the FVD parameters (c and α) within 
the relevant range of interest. To examine an appropriate and sufficiently wide range of addi-
tional FVDs, the first-mode damping ratios (ζFVD,l) provided by linear FVDs (α = 1), defined 
as in Eq. 17, can be initially set, from which the associated linear damping coefficients cl can 
be easily derived. CFVD,l is the damping matrix that contains only the damper contribution (cl) 

(8)ż(t) = (Aẋ(t) − 𝛽|ẋ(t) | ⋅ z(t) ⋅ |z(t) |n−1 − 𝛾 ẋ(t) |z(t) |n )/dy

(9)���� = ��� =
[
zeros(nL − 1) −1 1 zeros(nU − 1)

]T
=
[
0 ⋯ 0 −1 1 0 ⋯ 0

]T

(10)
��(t) = ����(t) + ���FIS(t) = (��� + ���kIS)�(t) + ���FIS−h(t)=��(t) + ���(1 − r)kdyz(t)

(11)� =

⎡⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

k1L + k2L −k2L
−k2L ⋱ −knL

−knL knL + kIS

⎤
⎥⎥⎦

0 0

⋱

−kIS 0

0 − kIS
⋱

0 0

⎡⎢⎢⎣

kIS + k1U −k1U
−k1U ⋱ −knU

−knU knU

⎤⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

(12)𝐌𝐱̈(t) + 𝐂𝐒T𝐱̇(t) +𝐊𝐱(t) + 𝐫𝐈𝐒(1 − r)kdyz(t) + 𝐫𝐅𝐕𝐃FVD(t) = −𝐌𝐈üg(t)

(13)𝐱̈(t)= −𝐌−1
(
𝐂𝐒𝐓𝐱̇(t) +𝐊𝐱(t) + 𝐫𝐈𝐒(1 − r)kdyz(t) + 𝐫𝐅𝐕𝐃FFVD(t)

)
− 𝐈üg(t)

(14)𝐪̇(t)=[𝐱̇𝐓(t) 𝐱̈𝐓(t) ż(t)]𝐓 = 𝐟 (𝐪(t)) − 𝐁üg(t)

(15)𝐟 (𝐪(t))=

⎡
⎢⎢⎣

𝐱̇𝐓(t)

−𝐌−1
�
𝐂𝐒𝐓𝐱̇(t) +𝐊𝐱(t) + 𝐫𝐈𝐒(1 − r)kdyz(t) + 𝐫𝐅𝐕𝐃FFVD(t)

�
(Aẋ − 𝛽�ẋ�z�z�n−1 − 𝛾 ẋ�z�n )∕dy

⎤
⎥⎥⎦

(16)�=
[
� � 0

]T
.
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and ϕ1, ω1, M1 and ccr1 are, respectively, mode shape, angular frequency, mass and critical 
damping of the first mode; ψ1,nL and ψ1,nL+1 are the components of ϕ1 at the isolation level.

Then, to define non-linear FVDs (α < 1) comparable with linear ones in terms of maxi-
mum force, Eq. 18 can be used to calculate the relevant damping coefficients cnl. In Eq. 18, 
FFVD,l and vFVD,l are respectively the maximum force and velocity of the reference linear FVD 
obtained from the TH analysis.

Therefore, from a chosen value of ζFVD,l, a linear FVD can be determined by Eq. 17; then, 
from the maximum seismic response of this damper, comparable non-linear FVDs can be 
defined through Eq. 18 by setting various α values (< 1). Actually, with the same structure 
and seismic input, providing damping with different linearity degrees (α) results in different 
velocity responses, and thereby in different damping forces. However, this variation is limited, 
and the proposed procedure solely aims to define an appropriate range of non-linear FVDs on 
a rational basis. The ζFVD,l and α values examined in this study are reported in Table 1 and cor-
respond to 120 case studies, in addition to the reference case without damper (i.e., ζFVD,l = 0).

The maximum values of a structural performance parameter, associated with the various 
accelerograms, can be averaged per storey if the number of accelerograms is code compliant. 
Thus, the peak response surface of that parameter can be obtained by plotting and interpolat-
ing its averaged maximum response versus the FVD parameters, over the entire range of ana-
lysed FVDs.

The parameters generally used to define the FVD are c [N(s/m)α] and α [–]. However, in 
place of c, a more convenient parameter, rF [–], is introduced in Eq. 19 for the purposes of 
this study; rF returns the maximum analysis value of the FVD force (FFVD), normalised to the 
maximum damper force obtained with ζFVD,l = 1 and α = 1, that is Fcr1, which is critical for the 
first vibration mode. For a given structure, each value of ζFVD,l ideally corresponds to a single 
value of rF for all the α examined. Actually, due to the simplification in Eq. 18, rF is very 
similar but not identical. The ratio rF, in addition to providing more regular and appropriate 
response surfaces for subsequent FVD optimisation, is dimensionless, and therefore allows to 
effectively compare the peak responses of various structures as a function of dimensionless 
variables only.

(17)�FVD,l =
�T
1
�FVD,l�1

2�1�
T
1
��1

=
cl(�1,nL − �1,nL+1)

2

2�1M1

=
cl(�1,nL − �1,nL+1)

2

ccr1

(18)cnl =
FFVD,l(
vFVD,l

)�

(19)rF =
FFVD

Fcr1

=
FFVD

FFVD,l(�FVD,l = 1; � = 1)
.

Table 1   Examined values of ζFVD,l (first-mode damping ratio provided by linear FVDs) and α 

ζFVD,l (–) 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1

α (–) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
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2.3 � Dimensionless surrogate response models

For each performance parameter, an appropriate analytical model can be calibrated 
on the related response surface. These models, known as surrogate response models, 
are useful for overcoming the direct optimisation issues discussed in the Introduction. 
Moreover, they allow a graphical representation of the structural performances, which 
is very useful for a full understanding of the effects of the analysed variables that is 
impossible with direct optimisation.

The performance and generality of these models depend on the structural response 
(and therefore on the type of structure and seismic action), on the definition of the opti-
misation variables, and obviously on the analytical law assumed. In the subsequent par-
ametric study, the complete fourth degree polynomial in α and rF was used as the ana-
lytical model, as it proved to be the most suitable in terms of fit and simplicity, among 
those evaluated.

Then, for a more effective assessment of the FVD effects, the structural response can 
be normalised to the maximum response in the case without the damper (ζFVD,L = 0), thus 
deriving surrogate response models that are completely dimensionless (together with the 
variables rF and α). These dimensionless models are also particularly suitable for paramet-
ric analyses that examine various structures and/or seismic inputs, allowing the optimisa-
tion results to be properly compared between various case studies, both in terms of FVD 
parameters and structural performance. Furthermore, surrogate models can be extended to 
include additional variables to those of the FVD, such as structure or earthquake param-
eters. However, the convenience of global models with many variables, compared to the 
many models dependent only on rF and α, specific to a type of structure and/or seismic 
input, should be evaluated on a case-by-case basis, according to the purposes of the study. 
In fact, the greater the number of variables of the models, the lower is their prediction 
capability.

Furthermore, to effectively use the optimisation results for design purposes, in this 
phase, it is necessary to define a prediction model of c as a function of rF and α, which will 
allow to obtain the optimal c values once the optimal rF-α solutions have been calculated, 
because c is not directly related to rF. Then, to represent the results more effectively and 
compare them between various case studies, c can be normalised as in Eq. 20, derived from 
Eq. 17, replacing cl with c.

2.4 � Optimisation of FVDs and prediction of optimal results

To determine the best FVD parameter sets (rF-α and then c-α), some design aims must be 
defined. As already stated, dampers in inter-storey applications aim to reduce P-Δ effects 
and could be harmful to the isolated structure, increasing internal forces. Therefore, this 
optimal design is addressed to the resolution of conflicting objective functions (OFs), cor-
responding to the minimisation of the following surrogate response models:

•	 Drift between the lower and upper structures (OF1).
•	 Maximum inter-storey drift of the upper structure (OF2).

(20)c∗ =
c

ccr1
(�1,nL − �1,nL+1)

2.
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Superstructure floor accelerations can also be amplified by the additional damping, and 
therefore should be assessed, particularly for seismic protection of the structural content. 
These accelerations, as well as the performance of the substructure, were conveniently 
evaluated as an output of the optimisation problem rather than as variables of the optimisa-
tion criteria. In particular, to avoid significant damage to structural contents, a generally 
accepted limit of floor acceleration is about 0.3 g (Charmpis et  al. 2012). Lower values 
may be required for special and fragile contents, for which, however, specific isolation sys-
tems exist (Donà et al. 2017).

Additionally, technical effectiveness is generally not the only decision-making aspect 
for the choice of the dampers, technical issues and costs associated with their implementa-
tion are also significant. Indeed, in seismic retrofit applications, with dampers distributed 
along the building height, the optimisation of the intervention generally aims at minimising 
specific cost functions; these may contain various cost components such as (Pollini et al. 
2017) cost of preparing the structure for the installation of the dampers, manufacturing cost 
of the dampers (depending on their peak stroke and peak force), and additional costs for 
the use of dampers of different sizes due to the greater number of acceptance tests required 
by the standards. Often, especially when using the same type of device, this optimisation 
is performed by directly minimising the sum of the maximum damper forces (Altieri et al. 
2018) or, for simplicity, the sum of the viscous damping constants (Tubaldi et al. 2015a). 
Regarding the inter-storey applications considered in this study, the peak stroke and force 
of the FVDs are both important to define the cost function. Moreover, a cost-effectiveness 
analysis of optimal solutions would also require the evaluation of possible savings on isola-
tors and the substructure, due to the reduction of the isolation drift and the P-Δ effects on 
the substructure. However, since these latter factors significantly depend on a specific case 
study, these analyses can be more conveniently performed a posteriori for the optimal solu-
tions obtained (out of the scope of this paper), in order not to reduce the generality of the 
study.

The solution of a multi-objective optimisation problem requires the determination of 
the Pareto front, i.e., a series of possible optimal solutions in which, generally, there is not 
hierarchy of preference. To date, several multi-objective optimisation algorithms allow to 
calculate the Pareto front, such as the evolutionary algorithms (Coello Coello et al. 2007). 
Among the latter, the fast and élitist non-dominated sorting genetic algorithm NSGA-II 
(Deb et al. 2002) was chosen for this study. In fact, the use of surrogate response models 
makes the choice of the algorithm less important, as the processing time for minimising 
these models is generally low; therefore, a different choice is possible and this would not 
affect the validity of this study.

Finally, with the aim of providing useful design tools, prediction models of the optimal 
FVD parameters can be defined and calibrated based on the results obtained.

3 � Application of the optimisation method to a parametric study

3.1 � Structural models

The optimisation method was parametrically applied to a stock of multi-degrees of free-
dom (MDOF) models, representing a wide range of regular RC frame structures, from low 
to high-rise. These MDOF models were defined on the basis of 3-DOF reference systems 
(Wang et al. 2011), characterised by the vibration period (T) or angular frequency (ω) of 
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the isolated superstructure (which includes the mass mIS of the isolation slab)—TIS or ωIS, 
superstructure—TU or ωU, and substructure—TL or ωL. The values of ωU and ωL were con-
veniently derived from the ratios rωU = ωU/ωIS, for the superstructure and rωL = ωL/ωIS for 
the substructure. The analysed values of TIS were two, three and four seconds and the ratios 
rωU and rωL ranged from three to six.

To define the mass and stiffness matrices of the MDOF models, first the 3-DOF systems 
were calibrated on regular RC frames with inter-storey height (hi) of three meters and sto-
rey mass (mi) of 900 tons (corresponding, e.g., to a floor of 900 m2 with afferent mass of 
1000 kg/m2). In particular, the simplified relation between the building’s height and princi-
pal vibration period provided in Eurocode 8 (EC8) (CEN 2004) for regular RC frames (see 
Fig. 1) was used to calculate the heights of superstructure HU and substructure HL. Then, 
the associated masses MU and ML were derived on the basis of hi and mi and the associated 
stiffnesses KU and KL, as well as the isolation stiffness kIS, were calculated on the basis of 
the periods (or frequencies) of the 3-DOF system, initially assumed.

Subsequently, after defining masses and stiffnesses of the 3-DOF systems, the DOF rep-
resenting the superstructure was replaced by an equivalent MDOF system with uniform 
masses (mi) and stiffnesses (ki,U). The aim is to properly assess the amplification effects of 
the superstructure modes due to the additional damping (in terms of inter-storey drifts and 
floor accelerations), which is not possible by modelling the superstructure as a single DOF.

Figure 1 summarises the parametric analysis data and the procedure used to define the 
MDOF models. The total analysed structures are 48 (for each FVD defined in Table 1), 
corresponding to the combination of three isolation periods (TIS) with four frequency ratios 
both for the superstructure (rωU) and substructure (rωL).

The minimum values of rωU and rωL (equal to three), consistent with the limits on 
the isolation ratio provided by the current seismic codes for base isolation (e.g., MIT 
2018; CEN 2004), are motivated by the need to separate the dynamic behaviour of the 
two structural portions; lower rω values would result in the interaction between the 
deformations of the superstructure and the substructure, reducing the effectiveness 
of the isolation system, and therefore the overall structural performance. Instead, the 

Fig. 1   Parametric analysis data and procedure for defining MDOF models
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maximum values of rωU and rωL (equal to six) have been used to define structures with 
a significant number of storeys, i.e., greater than or equal to two. In fact, as shown in 
Table 2, the number of storeys of the superstructure (and ideally of substructure) ranges 
from two to 15. The range of parameters chosen then allows to avoid the phenome-
non of modal coupling, which is responsible for dynamic amplifications of the struc-
tural response; this phenomenon occurs when the frequency ratio between one mode of 
the substructure and a higher mode of the isolated superstructure approaches one (see 
Faiella and Mele 2019). In addition, the mass ratio between the total isolated mass and 
the mass of the substructure varies from 0.5 to three, covering a fairly wide range of 
cases for this type of application.

Structural damping was defined as described above, using the Rayleigh model (Eq. 3) 
for the substructure and the stiffness-proportional model (Eq. 4) for the superstructure. 
As previously discussed, the latter model tends to overestimate the damping ratios ζi 
for higher modes, and therefore must be carefully calibrated. To this end, and to define 
the damping parametrically and objectively for various case studies, the superstructure 
was provisionally modelled as an equivalent 2-DOF system (derived similarly to the 
MDOF system), thus obtaining a global 4-DOF model where the first mode refers to 
isolation deflection, the second one to substructure deformation and third and fourth 
to superstructure deformation. Therefore, the damping coefficients for the substructure 
were calibrated as in Eq. 21, associating ζ = 5 %  with the frequencies of modes two and 
four of the 4-DOF model, which define a sufficiently wide range of frequencies for the 
substructure of these case studies (even though its modal contribution is given almost 
completely by the second mode). Whereas, the damping coefficient for the superstruc-
ture was calibrated as in Eq. 22, associating ζ = 5 % with the frequency of mode four of 
the 4-DOF model, which is always between the third and fourth mode frequencies of the 
associated MDOF system.

Figure 2 shows the ζi values, obtained with this approach and calculated by Eq. 5, for 
the first four modal frequencies of all the analysed MDOF models. As expected, these 
values are around 5 % for the deformation modes of the substructure (ω2) and super-
structure (ω3-4, from three to six %), whereas they are almost zero for the first mode (ω1, 
the structural deformation being negligible in this mode).

(21)�L = � ⋅

2�i�j

�i + �j

= 0.05 ⋅
2�2�4

�2 + �4

; �L = � ⋅
2

�i + �j

= 0.05 ⋅
2

�2 + �4

(22)�U = � ⋅
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�k
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2

�4

Table 2   Number of storeys of 
superstructure (and ideally of 
substructure) for the various case 
studies

TIS rω = 3 rω = 4 rω = 5 rω = 6

2 6 4 3 2
3 11 7 5 4
4 15 11 8 6
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3.2 � Seismic isolation systems

All previously defined structural models were analysed with two types of isolation systems: 
linear system with fuse behaviour (fuse system) and non-linear system with LRBs (LRB 
system).

As already discussed, the restoring force FIS(t) of the isolation system is given in general 
by two contributions: one linear FIS-l(t), due to a linear or post-yielding stiffness (kIS), and 
one hysteretic FIS-h(t), associated with both elastic (k) and post-yielding (kIS) stiffnesses.

A completely linear system provides the linear contribution FIS-l(t) only, as shown in 
Eq. 23; this system is the simplest one, but it is inadequate to withstand non-seismic lateral 
service loads, and therefore not feasible.

Instead, the fuse system overcomes this problem by adopting mechanical fuse restraints, 
i.e., devices with stiffness and resistance values such as to exclude the operation of the 
isolation system for lateral service loads, and allow it for seismic loads, breaking some 
sacrificial components upon reaching a certain force or displacement (dy) threshold. This 
system also provides a linear restoring force, but changes its stiffness due to the breakage 
of the disposable elements, as Eq. 24 shows:

The LRB system provides both linear and hysteretic contributions. This system was 
chosen among the non-linear ones currently available because it is widespread in China, 
where the interest in inter-storey isolation is high. In this case, the restoring force is mod-
elled using the Bouc-Wen model (Ismail et al. 2009), according to Eqs. 7 and 8, repeated in 
Eqs. 25 and 26 for convenience.

The Q parameter in Eq. 25 represents the characteristic damping force, corresponding 
to the intersection of the generic force-displacement loop with the force axis (at x = 0). In 
general, isolation systems are designed to be activated for forces ranging from five to 15 % 
of the isolated weight; lower values could cause movements for service loads or excessive 

(23)FIS−l(t) = kISx(t)

(24)

{
FIS−l(t) = k x(t) until d < dy

FIS−l(t) = kISx(t) thereafter

(25)FIS(t) = FIS−l(t) + FIS−h(t) = kISx(t) + (k − kIS)dyz(t) = kISx(t) + Qz(t)

(26)ż(t) = (Aẋ(t) − 𝛽|ẋ(t) | ⋅ z(t) ⋅ |z(t) |n−1 − 𝛾 ẋ(t) |z(t) |n )/dy

Fig. 2   Structural damping ratios (ζi) for the first four modal frequencies (ωi) of all the MDOF models
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displacements. In this study, considering also the resistance and dissipation provided by the 
FVDs, Q was set as the lower limit, as shown in Eq. 27 (where g is the gravity constant), as 
this allows the best seismic performance. The linear or post-yielding stiffness kIS depends 
on the isolation period TIS according to Eq. 28, whereas the elastic stiffness k depends on 
Q, kIS and dy, as shown in Eq. 29. The yielding displacement dy was set as 10 mm—a refer-
ence value identified in the catalogues of the main suppliers of LRB devices. This value 
was also used to define the change in stiffness of the fuse system (Eq. 24) to consistently 
compare the isolation technologies. Finally, the dimensionless parameters in Eq. 26 were 
assumed as in Liu et al. (2018), i.e., A = β = γ = 1 and n = 2; these values allow a good fit 
with some experimental force-displacement loops, provided in Kalpakidis and Constanti-
nou (2008, p.132), representative of a fairly wide range of applications.

3.3 � Seismic inputs

The dynamic equation of motion in Eq. 14 was solved for eight natural accelerograms, cho-
sen from among those in the European Strong-Motion Database (ESD, Ambraseys et al. 
2002). They were scaled to be compatible, on average, with the following elastic response 
spectrum of EC8: Type 1, ag = 0.25 g (bedrock acceleration), soil B (i.e., soil factor S = 1.2, 
acceleration plateau between TB = 0.15 s and TC = 0.5 s, and TD = 2.0 s). The peak ground 
acceleration PGA (= ag·S) is 0.3 g. The main details of the assumed natural records and 
their scale factors are reported in Table 3. The associated acceleration and displacement 
spectra are shown in Fig. 3, compared with the EC8 spectrum.

(27)Q = 5% ⋅

(
MU + mIS

)
⋅ g

(28)kIS =
(
MU + mIS

)
⋅

(
2�

TIS

)2

(29)k =
Q

dy
+ kIS.

Table 3   Information on the assumed accelerograms (from ESD database, Ambraseys et al. 2002)

Ref. Earthquake Location Date Mw Fault mecha-
nism

Distance from 
epicentre (km)

Scale factor

Acc.1 Montenegro 
(aftershock)

Montenegro 1979/05/24 6.2 thrust 20 5.42

Acc.2 Campano 
Lucano

Italy 1980/11/23 6.9 normal (y) 33 3.02

Acc.3 Erzincan Turkey 1992/03/13 6.6 strike slip 13 0.59
Acc.4 Ano Liosia Greece 1999/09/07 6.0 normal 18 3.51
Acc.5 Campano 

Lucano
Italy 1980/11/23 6.9 normal (x) 33 3.04

Acc.6 Tabas Iran 1978/09/16 7.3 oblique 57 1.71
Acc.7 Ano Liosia Greece 1999/09/07 6.0 normal 20 0.32
Acc.8 Montenegro Montenegro 1979/04/15 6.9 thrust 25 0.66
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4 � Results of the parametric analysis

4.1 � Structural behaviour with additional FVDs

For preliminary assessments, Fig. 4 shows the TH responses of some performance param-
eters for the case study: TIS = 3 s, rωU = rωL = 3, and Acc.1; this figure compares the cases 
without FVD and with linear (α = 1) and non-linear (α = 0.2) FVDs, with ζFVD,l = 0.3 (i.e., 
rF ≈ 0.5), separately for the two isolation systems. The performance parameters are drift 
of isolation layer, drift of superstructure (i.e., displacement of top floor relative to isolation 
layer), and absolute acceleration of top storey.

The following considerations can be drawn:

•	 As expected, with the same additional damping ratio ζFVD,l (or force ratio rF), the maxi-
mum drift of the isolation layer is greater for the fuse system, especially without FVD.

•	 The use of FVD with the fuse system significantly changes the vibration frequencies, 
which decrease for the isolation layer and increase for the superstructure. Instead, no 
significant variations in frequency are noted for the LRB system, which is less sensitive 
to the use of FVD.

•	 FVD is clearly effective in reducing the isolation drift for both isolation systems, 
whereas its effects on the superstructure are not easily predictable.

•	 The linearity degree of the FVD seems to significantly influence the structural response. 
In case studies of Fig. 4, non-linear FVDs (α = 0.2) are more effective than linear ones 
(α = 1) in reducing the isolation drift, but tend to amplify more the superstructure 
response, particularly for the fuse system.

For the same case studies as in Figs. 4 and 5 shows the force-displacement loops of 
isolators and dampers separately. Thus, the following considerations can be drawn:

•	 With the same additional damping ratio ζFVD,l (or force ratio rF), the response with 
the LRB system is characterised by smaller isolator deflections (as seen in Fig. 4) and 
smaller damper forces, due to the presence of hysteretic damping in addition to the vis-
cous one.

•	 Non-linear FVDs behave more rigidly than linear ones, with high dissipative forces 
even for small velocities (as noted in the range ± 20 mm), as they are associated with 
greater damping coefficients cnl for the same force ratio rF. This different behaviour 

Fig. 3   Acceleration and displacement response spectra compatible with the EC8 spectrum
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influences the structural response, more for the fuse system than the LRB system (as 
seen in Fig. 4).

In general, α seems a significant parameter for structural response optimisation, and 
what has been seen justifies the need for an optimisation study.

Fig. 4   TH responses of structural performance parameters of a case study structure (TIS=3  s, 
rωU = rωL = 3), for both isolation systems and Acc.1: cases without FVD and with linear (α = 1) and non-
linear (α = 0.2) FVDs (rF≈0.5)

Fig. 5   Force-displacement loops of isolators (left) and dampers (right) for the same case studies (with 
FVD) as in Fig. 4
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4.2 � Peak response surfaces with additional FVDs

To globally assess the additional damping effects on the structural response for all the 
examined FVDs, the peak values of the various performance parameters recorded in the 
TH analyses (averaged between the accelerograms) were plotted and linearly interpolated 
against the FVD variables, α and rF, obtaining the corresponding peak response surfaces. 
Figures 6, 7 and 8 show and compare these response surfaces for some case studies, with 
reference to the following performance parameters: drift of isolation layer DIS, maximum 
inter-storey drift of superstructure DU, maximum absolute floor acceleration of superstruc-
ture AU.

In particular, Fig.  6 compares the response surfaces of the structure TIS = 3  s and 
rωU = rωL = 6 between the isolation systems. The main observations are reported below:

•	 DIS is strongly influenced by the maximum damper force (rF), but only slightly by 
α. In particular, DIS is reduced as rF increases, and this reduction is more evident 

Fig. 6   Response surfaces of the structure TIS=3 s, rωU = rωL = 6: comparison between isolation systems

Fig. 7   Response surfaces for TIS=3 s, fuse (above) and LRB (below) isolation systems: various rωU and rωL



4603Bulletin of Earthquake Engineering (2021) 19:4587–4621	

1 3

for the fuse system, which shows a drift at rF = 0 much greater than that of the LRB 
system (as seen in Fig. 4).

•	 DU is generally influenced by both FVD parameters. In particular, the dependence 
on α increases with increasing rF (for highly dissipative solutions) and the greater 
the non-linearity (rigidity) of the FVD, the greater the amplification of DU. For 
small rF values (up to 0.25 for the case studies shown), the increase in damper force 
considerably reduces DU for the fuse system and only slightly influences DU for the 
LRB system, due respectively to the absence and presence of further dissipation pro-
vided by the isolators. Similarly to DIS, the fuse system exhibits a much greater drift 
at rF=0 than that of the LRB system.

•	 The influence of rF and α on the parameter AU is somewhat similar to that observed 
for DU. However, AU seems to be less influenced (flatter trend) than DU for low rF 
values and linear or nearly linear FVDs (more effective in containing accelera-
tions). Also, for such dampers, these accelerations are smaller for the fuse system 
(as expected).

•	 In general, the structural responses with the two isolation systems tend to coincide for 
high rF values and low α values (increasing both the force and rigidity of the FVD).

•	 Although DIS can be similarly minimised for the two isolation systems (with high 
damping values), the superstructure response (DU, AU) can be reduced more in the case 
of the fuse system, providing only a viscous damping. In this situation, however, the 
associated DIS values turn out to be greater than those of the LRB system; hence, it is 
needed to evaluate and compare multiple optimal solutions.

Figure  7 compares the response surfaces of the structures with TIS = 3  s and rωU-
rωL = 6–6, 3–6, 6 − 3, 3–3 (corresponding to structures of 4–4, 11−4, 4–11 and 11–11 sto-
reys respectively, see Table 2), separately for the fuse and LRB systems. Similar colours 
represent cases with the same superstructure (blue for the more rigid one rωU = 6, red for 

Fig. 8   Response surfaces for rωU = rωL = 6, fuse (above) and LRB (below) isolation systems: various TIS
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the more flexible one rωU = 3) and similar intensities represent cases with the same sub-
structure (dark for rωL = 6, light for rωL = 3). The main observations are reported below:

•	 For all these structures, the trend of the surfaces is like that of Fig. 6 for the same isola-
tion system.

•	 For both the systems, DIS increases as rωL decreases (from dark to light surfaces), i.e., 
when the substructure becomes more flexible. Then, with the same substructure, DIS 
increases as rωU increases (from red to blue surfaces), i.e., when the isolated mass 
becomes smaller, the latter being effective in containing the substructure displacements 
(acting as TMD). Therefore, DIS is reduced for low-rise substructures and significant 
isolated masses—solutions that resemble the base isolation.

•	 For both isolation systems, DU and AU increase as rωU decreases (from blue to red sur-
faces), i.e., when the superstructure becomes more flexible. With the same superstruc-
ture, the increase of rωL (darker surfaces) reduces DU for low damping values (espe-
cially for the fuse system), but could increase it for high damping solutions, as the limit 
situation of base isolation (for large rωL and small rF) becomes that of fixed-base super-
structure (for large rωL and large rF); then, the increase of rωL generally amplifies AU, 
especially for high rF and low α values (rigid FVDs).

Figure  8 compares the response surfaces of the structures with rωU = rωL = 6 and TIS 
= 2, 3 and 4 s (corresponding to structures of 2–2, 4–4 and 6–6 storeys respectively, see 
Table 2), separately for the fuse and LRB systems. For all TIS values, the trend of the sur-
faces is like that of Fig. 6 for the same isolation system. In general, as TIS increases, DIS 
increases whereas DU and AU decreases (as expected); furthermore, with increasing TIS, 
the variability of DU and AU on the analysed rF-α range is reduced, especially for the fuse 
system.

Figures  6, 7 and 8 clearly show that the damping solutions that minimise the peak 
response of the various performance parameters are identified in different rF-α ranges; 
hence, a multi-objective design procedure is needed to determine a set of Pareto-optimal 
solutions. Moreover, the trend of DU is quite similar to that of AU for optimisation purposes 
and is generally more sensitive to the additional damping for low to medium rF values, 
where the superstructure peak response is at its minimum. Therefore, to solve the optimisa-
tion problem in a simpler way, without significantly affecting the results, the superstructure 
performance can be effectively represented only by DU for these case studies. Globally, 
linear or quasi-linear FVDs seem more effective in reducing the isolation drift while con-
taining the amplification of the superstructure response.

5 � Optimisation of the structural performance and optimal FVDs

5.1 � Surrogate response models and genetic algorithm

To apply the proposed optimisation method, appropriate surrogate response models 
should be defined and calibrated, based on previously obtained response surfaces. These 
models can be effectively expressed in a totally dimensionless form by normalising 
the structural response to the peak one in the case without damper, thus allowing the 
comparison of the optimisation results between various case studies. The performance 
parameters chosen for optimisation are the relative displacement of the isolation layer 
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(DIS) and maximum inter-storey drift of the superstructure (DU). Defining rDIS and rDU 
as the associated parameters normalised to the case without FVD, the two objective 
functions (OFs) to be minimised simultaneously are as follows:

 where, rDIS (rF, α) and rDU (rF, α) are the surrogate response models of rDIS and rDU, 
obtained by calibrating the complete fourth degree polynomial in rF and α on the response 
surfaces of interest, separately for each case study examined. The polynomial degree was 
chosen based on preliminary assessments of computational time and prediction capabil-
ity, the latter described by the coefficient of determination R2. The values of R2, aver-
aged among the case studies analysed, are shown in Fig. 9 as a function of the polynomial 
degree, separately for the performance parameters (rDIS and rDU) and the two types of 
isolation systems. Ongoing studies by the same authors suggest the appropriateness of this 
polynomial model, even in the case of irregular structures (i.e., with different mass and 
stiffness distribution between substructure and superstructure).

The NSGA-II algorithm (Deb et al. 2002) was used to solve the multi-objective opti-
misation problem and its parameters were set as specified in Table 4, based on computa-
tional cost-effectiveness assessments. The high number of generations and large popula-
tion (number of solutions sought) allow for a refined solution and were possible due to 
the surrogate models. Indeed, the minimisation of analytical functions requires much 
shorter calculation times than the direct optimisation of the structural response, based 
on the TH analysis iteration (as done by Liu et al. 2018).

Given the large population, a filter was then applied to the optimal results for repre-
sentation purposes. This filter returns the mean values of the OFs for regular rF intervals 
and associates them with the central values of these intervals (the optimal rF range was 
divided into 25 intervals).

As an example, for the case study TIS = 4 s, rωU = rωL = 6 and fuse system, Fig. 10a 
shows the rDIS and rDU surrogate response models and Fig.  10b the application of the 

(30)

{
OF1 = min

[
rDIS(rF , �)

]

OF2 = min
[
rDU(rF , �)

]

Fig. 9   Accuracy of polynomial surrogate response models as a function of their degree, in terms of R2 aver-
aged among the case studies

Table 4   Parameters of the NSGA-II algorithm

Number of generations Population size Crossover probability Mutation probability

200 500 0.9 0.1
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NSGA-II algorithm; in particular, in Fig. 10b, the optimal results of OF1 (minimisation of 
rDIS) and OF2 (minimisation of rDU) are superimposed on the surfaces of surrogate models 
(represented in 2D by a colour map), with grey markers representing the entire population 
and white for the filtered results. This representation clearly shows that OF1 and OF2 are 
minimised respectively, for the major and minor rF values, and the intermediate results are 
the best compromise solutions between OFs.

Furthermore, for design purposes, it is essential to determine the c values associated 
with the optimal rF-α solutions; therefore, a 4-degree polynomial function was also cali-
brated to obtain the model of c* (Eq. 20), as a function of rF and α, from which the optimal 
values of c can be derived.

5.2 � Optimisation results

The overall optimisation results are shown in Figs. 11 and 12 for the fuse and LRB systems 
respectively, as optimal values of OFs, α and c* versus rF.

Regarding the OFs, the following considerations can be drawn:

•	 OF1 is only slightly influenced by the type of structure. In particular, with the same 
rF, OF1 slightly increases with increasing TIS, as the DIS values generally increase 
with TIS (see Fig. 8), and so do their ratios with respect to the case without damper 
(i.e., OF1). For the same TIS, the negligible dependence of OF1 on the type of struc-

Fig. 10   a Surrogate response models of rDIS and rDU calibrated for the case: TIS=4 s, rωU=rωL=6, fuse sys-
tem. b Colour maps of the surrogate models and optimisation results (OF1 and OF2) from NSGA-II
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ture indicates the effectiveness of rF in representing a characteristic force ratio for 
the structure (being defined based on the first vibration mode). Indeed, a given rF 
value corresponds to different FVD forces for different structures, but such as to 

Fig. 11   Optimal results of OFs, α and c*, versus rF, for all the case studies with the fuse isolation system

Fig. 12   Optimal results of OFs, α and c*, versus rF, for all the case studies with the LRB isolation system



4608	 Bulletin of Earthquake Engineering (2021) 19:4587–4621

1 3

provide a similar reduction of the first-mode seismic response (and so of DIS and 
OF1).

•	 Regarding OF2, its dependence on the type of structure is more evident. In particu-
lar, when TIS increases, the minimum values of rF (rFmin) associated with the mini-
mum values of OF2 are reduced, and the values of OF2 increase globally as well as 
their dependence on both rF and the type of structure. This is explained by the fact 
that DU (hence OF2) is a parameter influenced by the amplification effects of higher 
modes, which clearly depend on the type of structure and are more important, in 
relative terms, for higher TIS values (see Fig. 8).

Regarding the FVD parameters, the following considerations can be drawn:

•	 The optimal α values are distributed along rF with a quasi-triangular trend—first 
they decrease to a minimum value (αmin) for incremental rF values from low to 
medium, then they rise up to one for higher rF values. This trend seems generally 
correlated with that of OF2, where for rF < rF(αmin), OF2 increases only slightly 
from its minimum value, whereas its increase is significant for larger rF. Consider-
ing that in general, OF1 is already significantly reduced at rF(αmin) and the damper 
cost increases with increasing rF, the optimal solution associated with αmin repre-
sents a significant design reference and convenient lower limit for rF. However, for 
the slenderest structures (minor rωU and rωL and major TIS), and particularly for the 
LRB system, this trend of α is less evident and tends to flatten out on the value of 
α = 1 (linear FVDs).

•	 For the significant rF values i.e., rF ≥ rF(αmin), α is independent of the type of 
structure. This is another advantage of using rF (similar to what observed for OF1). 
Instead, the values of αmin (from about 0.75 to 0.9) and rF(αmin) (from about 0.3 
to 0.6) generally depend on the type of structure as well as the results for rF < 
rF(αmin), because they concern the minimisation of OF2 (which is influenced by the 
type of structure). However, α variability is limited for the regular structures ana-
lysed.

•	 To increase the damper force (rF) between rFmin and rF(αmin), c* increases strongly, 
as the optimal α values are reduced in this range; once rF(αmin) is reached (with 
c* values from about 0.65 to 0.95), the increase of rF continues with only a slight 
increase of c*, and up to one for rF = 1 (for all structures), as it is supported by 
the increase in α. Furthermore, it can be observed that variations in the trend of c* 
clearly reflect those in the trend of α.

The trend of the optimal solutions is similar between the isolation systems, but the 
values of OF1 and OF2 are greater for the LRB system. This is due to the fact that the 
reference values of DIS and DU in the case without damper (the normalisation values for 
OF1 and OF2) are lower for this system, because of the hysteretic damping. Therefore, 
the results in this dimensionless form cannot be used directly to make considerations 
about the convenience of the two systems, which will be discussed in the next section.

As a reference, assuming rF ≈ 0.4 (fairly representative of the solutions with αmin) 
and for TIS from 2 to 4 s, OF1 ranges from 0.3 to 0.5 for the fuse system and from 0.5 to 
0.9 for the LRB system, and OF2 ranges from 0.4 to 0.9 for the fuse system and from 0.9 
to 1.2 for the LRB system.
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5.3 � Global assessment of structural performance with optimal FVDs

This section presents the absolute values of the main performance parameters (DIS, DU 
and AU) for all the optimal solutions obtained, in order to draw some considerations 
about the effectiveness of the additional damping, also in relation to the type of isola-
tion system.

The maximum inter-storey drift ratio of the substructure (δL) was also evaluated. In 
particular, the assumed structural models represent the substructure as an equivalent 
single degree of freedom (ESDOF), and therefore do not allow directly evaluating δL. 
However, based on the ESDOF displacement (DL,ESDOF), and the hypothesis of a linear 
deflection profile along the substructure height (HL, calculated as in Fig. 1), it was pos-
sible to estimate δL through Eq. 31 (which, not considering the modal participation fac-
tor, slightly overestimates δL).

The values of these parameters are plotted in Fig. 13 versus rF for all optimal solu-
tions. For convenience, DU was also shown as a ratio with respect to the storey height 
(hi), i.e., δU = DU/hi. The following considerations can be drawn:

•	 DIS is significantly reduced by increasing rF up to values between four and 12 cm for 
rF = 1 (for all case studies), with an almost asymptotic trend for higher rF values (this 
reduction is consistent with the results in Liu et  al. 2018). For the fuse system, the 
values of DIS are initially higher but decrease more rapidly, tending to the values of the 
LRB system for high rF values.

•	 Although δU increases with increasing rF, its values remain reasonably low for the 
stock of regular structures analysed, i.e., less than 0.2 % for the entire range of rF. These 
values are lower for the fuse system and unlike DIS, this trend is maintained throughout 
the rF range.

•	 The values of AU, not directly optimised in the OFs, show a similar trend to that of δU, 
with values generally lower for the fuse system. Then, the optimal damping solutions 
allow containing these accelerations below 0.3 g in most cases, which is generally an 
acceptable value to avoid significant damage to building contents.

•	 Regarding δL, also not optimised in the OFs, the optimal FVDs allow a good control 
of the substructure response, limiting these drifts to 0.5 % in all cases—a value gener-
ally assumed in the structural codes (e.g., EC8) as damage limit state. Furthermore, 
considering that these drifts are slightly overestimated as well, this result confirms the 
adequacy of linear modelling for these substructures.

Clearly, the structural modelling approach depends on the type of structures examined, 
and the hypothesis of elastic substructure may not be appropriate for some applications. 
For example, when inter-storey isolation is used as a seismic retrofit technique for existing 
buildings, the evaluation of the possible and specific non-linear behaviour of the substruc-
ture is generally necessary.

These results also allow some considerations on the convenience of isolation systems. 
For rF values from low to medium in the analysed range (less than about 0.7), the two sys-
tems can lead to similar structural performances, i.e., similar values of DIS and δU, even if 
with higher rF values for the fuse system. Therefore, the choice of the isolation type could 

(31)�L ≈
3

2

DL,ESDOF

HL
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be based on specific cost assessments (beyond the scope of this paper), considering the dif-
ference in cost between isolators (to the advantage of the fuse system) and dampers (to the 
advantage of the LRB system, requiring a minor rF for the same performance). Instead, for 
higher rF values and particularly for low TIS values, i.e., when the will is to strongly limit 
the inter-storey deflection, the fuse system allows lower δU and AU values for the same DIS 
values, and therefore a better structural performance at a lower cost (due to cheaper isola-
tors with equal dampers).

Finally, these findings acquire further importance if considered as a reference or basis 
of comparison for future studies aimed at examining irregular structures (where the effects 
of additional damping can be much greater), substructures with non-linear behaviour 
(which require specific non-linear modelling) or different seismic inputs (e.g., near-fault 
earthquakes).

5.4 � Optimisation of linear FVDs and comparisons

The optimisation results obtained with αmin ≈ 0.8 indicate that the optimal FVDs for the 
analysed regular structures are slightly non-linear. Therefore, it is interesting to understand 
the extent to which this non-linearity influences the structural performance (OF1, OF2). To 
this end, the proposed optimisation method was reapplied to all case studies, setting α = 1.

The results obtained are interesting, as they show that this non-linearity only slightly 
influences the structural response with respect to the case of optimal linear FVDs. In par-
ticular, as shown in Fig. 14 for both the fuse and LRB systems, the ratios between the val-
ues of OF1 previously obtained and those obtained with linear optimisation (OF1,L) are all 
greater than 0.92, i.e., the structural performance in terms of OF1 is reduced to a maximum 

Fig. 13   Main performance parameters (DIS, δU, AU and δL), versus rF, for all optimal solutions
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of 8 % (in the case of fuse system). Moreover, the same variation for OF2 is negligible, as 
contained in the range ± 4 %.

Figure 15 shows the c* values for optimal linear FVDs and all case studies, separately 
for the fuse and LRB systems. With α = 1, c* (see Eq.  20) corresponds precisely to the 
first-mode damping ratio due to the damper, and its values show approximately the same 
trend for all structures with respect to rF, again highlighting the effectiveness of rF for this 
study. Also, these c* values are very similar between the two isolation systems. In particu-
lar, the increase of c* with respect to rF is more than linear, because with increasing rF, 
the damper velocity is reduced, and therefore to increase the damper force with constant α 
(= 1), c must increase more than proportionally.

6 � Prediction models for the optimal design of FVDs

6.1 � Definition of prediction models

Based on linear optimisation results, the best solution for design purposes would seem to 
be the use of linear FVDs. To this end, Fig. 16a, b show (in red) the prediction models 
assumed for the parameters of linear FVDs; in particular, α is always 1 (Fig. 16a) and c* is 
provided as a function of rF only (Fig. 16b), valid for both isolation systems.

Fig. 14   Ratio between the OF1 values and the associated ones of OF1,L from the optimisation of linear 
FVDs

Fig. 15   Optimal values of c*, versus rF, from the optimisation of linear FVDs
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However, it is also useful to provide the prediction models of α and c* on the basis of 
the general optimisation results, and therefore of the trends and dependencies observed 
in Figs. 11 and 12—these models are also represented in Fig. 16a, b (in blue).

In addition, for the fuse system, Fig. 16c, d show the fit of α and c* models, for both 
linear and non-linear dampers, and associated values of the coefficient of determination 
(R2). The models for non-linear FVDs were represented using both the average value of 
αmin and for a more accurate estimate, the specific αmin value of each structure predicted 
by the equation in Fig. 16c.

The non-linear models, besides predicting the real trend of the optimal FVD parameters 
and being a useful reference for future research work on different case studies, allow to 
identify the rF value associated with the αmin point which, as previously discussed, repre-
sents an optimal compromise solution between OF1 and OF2. These models of α and c* are 
both tri-linear laws defined on three main points, whose rF values are in common for the 
two models. The points are: (A) rF = 1, α = c* = 1; (B) position of αmin; (C) intersection 
of model α with the line for α = 1. The calibration slopes (β1, β2 and β3) and mean values 
of αmin and c*(αmin), necessary to determine the models, are shown in the relevant figures.

For clarity, the steps for applying these non-linear prediction models are listed below.

•	 Calculation of α by simple linear proportion, entering Fig. 16a with the chosen value 
of rF and using the slope β1, if rF ≥ rF(αmin) and β2 vice versa. Based on the values 
of αmin and β1, shown in the same figure, the value of rF(αmin) that identifies the char-
acteristic point B is 0.40 for the fuse system and 0.47 for the LRB system.

Fig. 16   a, b Prediction models of α and c*, for optimal linear (red) and non-linear (blue) FVDs. c, d Fit of 
the models and associated values of R2 for the case of the fuse system
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•	 Calculation of c*, similar to that of α, entering Fig. 16b with the chosen value of rF 
and applying a linear proportion. Point B is defined by the same values of rF(αmin) as 
reported above.

•	 Execution of the undamped modal analysis to determine the necessary information on 
the first vibration mode i.e., the first-mode critical damping (ccr1) and the first-mode 
isolation deflection (ψ1,nL+1 – ψ1,nL).

•	 Calculation of the damping constant c of the FVD using Eq. 20, on the basis of c* and 
the first-mode characteristics previously obtained.

Regarding the choice of rF, which depends on the structural performance sought, this 
can be based on the optimal results obtained for OF1 and OF2, shown in Figs. 11 and 12; in 
particular, as seen above, the globally most effective solutions are those with rF ≈ rF(αmin).

In the following Sect. 6.2, for example and validation purposes, both linear and non-
linear prediction models were applied to three representative structures of the analysed 
stock, evaluating the structural performance with increasing rF and the influence of damper 
non-linearity.

6.2 � Example of application of prediction models

The models for predicting optimal FVDs were applied to the three case study structures 
represented in Fig. 17. These structures have 16 floors, with the isolation system placed 

Fig. 17   Presentation of the case studies (above); modal analysis of the case study 2 (below)
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between the 10th and 11th floors for case study 1, between the eighth and ninth floors for 
case study 2, and between the fifth and sixth floors for case study 3. Both fuse and LRB 
isolation systems were analysed for each case study, with an isolation period TIS = 3 s.

These structures were modelled as 16-DOF linear systems and their main structural 
data, as well as the characteristics of their equivalent 3-DOF systems (showing their repre-
sentativeness with respect to the investigated parametric stock), are shown in Fig. 17. The 
same figure also shows the results of the classical modal analysis, performed on structure 
2, necessary for applying the prediction models.

In particular, for each structure and isolation system, the optimal non-linear FVD 
parameters were calculated for three levels of damper force, i.e., rF = 0.2, rF(αmin) and 0.8, 
following the procedure described above. In the case of rF = rF(αmin), the parameter c of 
the optimal linear FVD was also calculated for comparison purposes. Table 5 reports the 
optimal values of c and α predicted for the various design solutions investigated.

To evaluate the effectiveness of the models, the structural responses without and with 
the identified FVDs were assessed by TH analysis, using the set of natural records and the 
structural damping previously defined. The main results are shown in Figs. 18 and 19. Fig-
ure 18 shows the inter-storey drift and absolute floor acceleration profiles of structure 2 for 
the selected rF values, obtained by averaging the maximum analysis values among the vari-
ous accelerograms. Figure 19, on the other hand, summarises and compares the results of 
all case studies in terms of structural performance normalised to the case without FVD. In 
particular, the parameters evaluated are drift of isolation layer (DIS), maximum inter-storey 
drift of substructure (DL) and superstructure (DU), maximum absolute floor acceleration of 
substructure (AL) and superstructure (AU). These parameters, normalised to the case with-
out FVD, provide rDIS, rDL, rDU, rAL and rAU, which are the parameters shown in Fig. 19.

As can be seen from both Figs. 18 and 19, the effects of the FVDs are clearly greater 
in the case of the fuse system, as it does not provide further dissipation. Then, for all the 
case studies, the FVD associated with rF(αmin) proved to be the best compromise solu-
tion between the performances of the isolation layer and the substructure (both of which 
improve with increasing rF, if not excessive) and that of the superstructure (which worsens 
with medium to high rF values).

In particular, the trends in Fig. 19 show that FVDs with rF > > rF(αmin), compared to the 
case of rF(αmin), may allow a further reduction of rDIS and rDL, however, at the expense of 
a more significant amplification of the superstructure response. Furthermore, very large rF 

Table 5   Optimal FVD parameters for case study structures, for three FVD force ratios (rF = 0.2, rF(αmin), 
0.8)

Isolation system FVD force ratio Case study 1 Case study 2 Case study 3

rF (–) c [N(s/mm)α ] α (–) c [N(s/mm)α] α (–) c [N(s/mm)α] α (–)

Fuse 0.20 4938 0.97 6801 0.97 9535 0.97
0.40 = rF(αmin) 20,531 0.82 28,278 0.82 39,647 0.82
0.40—linear 6029 1 8305 1 11,643 1
0.80 24,169 0.94 33,290 0.94 46,672 0.94

LRB 0.20 2052 1.00 2826 1.00 3962 1.00
0.47 = rF(αmin) 19,274 0.84 26,547 0.84 37,219 0.84
0.47—linear 7683 1 10,582 1 14,836 1
0.80 23,455 0.94 32,305 0.94 45,292 0.94
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values (such as 0.80) were also found to be less effective for the substructure in the case of 
the LRB system and a high isolated mass ratio (e.g., case study 3). Considering that these 
solutions are also the most expensive, they are generally to be avoided.

Figure  19 also shows the comparisons between optimal non-linear and linear FVDs 
for rF = rF(αmin). The related performance variations, in favour of non-linear dampers, are 
rather small for the fuse system and negligible for the LRB system, confirming the previ-
ous results of the parametric analysis.

It is also worth noting that as rF increases, both the inter-storey drift and floor accel-
eration profiles of the substructure are regularised along the building height, with the drift 
values decreasing in the lower part and increasing in the upper part of the substructure, and 
the acceleration values seeing an overall and considerable reduction (see Fig. 18).

Finally, with the aim of providing some preliminary indications on the possible effects 
of structural non-linearity, some TH analyses were carried out by modelling the structure 
of case study 2 with two non-linear models. These models are based on the hysteretic laws 

Fig. 18   Inter-storey drift and absolute floor acceleration profiles of the case study 2
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of Takeda and Bouc-Wen, shown in Fig. 20a, which are often used to describe the behav-
iour of ductile RC frames. Both models were calibrated on the storey elastic stiffness ki 
(see Fig. 17), assuming a ratio r between post-yield and elastic stiffnesses equal to 0.2, and 
an inter-storey drift δy at yield equal to 0.5 %. The Bouc-Wen model, which is based on a 
more complex hysteretic law (the same used to model LRB isolators), requires the calibra-
tion of additional hysteresis parameters, which were defined according to Sues et al. (1988) 
and are shown in Fig. 20a.

For the LRB isolation system, the FVD associated with rF(αmin), and the same set of 
accelerograms but evaluating two PGA values, Fig.  20b shows the inter-storey drift and 
absolute floor acceleration profiles, comparing the linear response of the structure with the 
non-linear ones associated with the two hysteretic models. For the PGA of 0.3 g, the struc-
ture never exceeds δy, thus no significant differences are observed. Instead, for the PGA of 
1 g, the substructure can yield, and therefore considerations on the effects of structural non-
linearity can be drawn. In particular, in the case of non-linear modelling, there is an ampli-
fication of the maximum drift values in the substructure, due to the concentration of plastic 
deformation on the lower storeys of the building, which first reach yield. This increase in 
deformation, and therefore in structural dissipation, then appears beneficial with regards to 
the floor accelerations, which can be significantly reduced. Clearly, the type of hysteretic 
model adopted plays a significant role. In the specific case study, the maximum values of 
drift and acceleration are lower using the Bouc-Wen model compared to the Takeda model, 

Fig. 19   Comparison of optimal structural performance with increasing rF, and for rF = rF(αmin) between 
optimal non-linear and linear FVDs, for case study structures with fuse (a) and LRB (b) isolation systems



4617Bulletin of Earthquake Engineering (2021) 19:4587–4621	

1 3

as the former allows to describe the variation and degradation of the storey stiffness more 
gradually and also provides a slightly greater dissipation per cycle. The same considera-
tions also apply to the fuse isolation system.

7 � Conclusions

This paper aimed to evaluate the effects of optimal additional damping on the seismic per-
formance of structures with inter-storey isolation. To this end, a new method for multi-
objective optimisation and performance evaluation of FVDs was proposed. This method is 
based on the definition of appropriate surrogate response models, calibrated on the maxi-
mum response (averaged between seismic inputs) of some significant performance param-
eters and their subsequent minimisation through multi-objective genetic algorithms. Such 
models, if conveniently normalised, allow rationally comparing the FVD effects for a wide 
range of dampers and structures as well as obtaining optimisation results in a dimension-
less form, suitable for the definition of prediction models.

This method was applied to a stock of 48 regular RC structures, with various vibration 
periods of superstructure, isolation and substructure, analysing a wide range of damping 
forces for both linear and non-linear dampers (with α between 0 and 1), two types of iso-
lation systems (linear with fuse behaviour and non-linear with LRB isolators) and a set 
of spectrum-compatible natural records. The objective functions (OFs) evaluated in this 
optimal design, whose values were conveniently normalised to the case without damper, 
were the minimisation of the isolation drift (OF1) and the minimisation of the maximum 
inter-storey drift of the superstructure (OF2). The maximum values of the superstructure 
floor accelerations and substructure inter-storey drifts were also evaluated as an output of 
the optimisation process. Furthermore, for comparison purposes, the proposed method was 
reapplied to optimise linear FVDs (α = 1) only.

The main considerations on the comparative evaluation of the FVD effects are listed 
below:

•	 The values of OF1 and OF2 associated with optimal FVDs clearly showed a conflicting 
trend, proving the necessity of a multi-objective design to find a set of Pareto-optimal 
solutions.

Fig. 20   a Non-linear structural models. b Performance comparisons between linear and non-linear model-
ling
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•	 For all the case studies, the optimal FVDs allowed significant reductions in isola-
tion drift, with an even improved or only slightly amplified superstructure response 
(depending on the case study) for intermediate FVD force ratios (rF) among those 
analysed, confirming their effectiveness for inter-storey applications. Also, the val-
ues of OF2 were always less than two, with the greatest amplifications due to the 
higher values of rF and the isolation period.

•	 The optimal FVDs were slightly non-linear for the analysed structures, with mini-
mum values of α ranging from about 0.75 to 0.9.

•	 The optimal FVDs also ensured a good structural performance with respect to super-
structure floor accelerations and substructure inter-storey drifts. For the case studies 
analysed, these accelerations were always less than 0.3g and these drifts were always 
less than 0.5 % (value generally assumed in the codes as damage limit state).

•	 The fuse isolation system was found to be slightly more advantageous than the non-
linear one with LRBs, when using very high rF values (greater than about 0.7), as it 
allowed better performance of the superstructure with the same reduction in isola-
tion drift.

In addition, the main results from a design point of view are summarised below:

•	 A prediction model of optimal linear FVDs, calibrated on the results of the entire 
analysis stock, and a prediction model of optimal non-linear FVDs, calibrated sepa-
rately for the fuse and LRB isolation systems, are provided in this paper.

•	 The optimal non-linear FVDs, compared to the linear ones with the same rF value, 
allowed a better structural performance, even if this benefit was rather limited for 
the analysed structures. Therefore, the use of the linear prediction model is the most 
practical solution from a design point of view. However, the non-linear models 
allowed to identify the rF value associated with the αmin point, representing an opti-
mal compromise solution between OF1 and OF2.

•	 For rF ≈ rF(αmin) (i.e., 0.4 to 0.5), and compared to the case without FVD, the reduc-
tions in the isolation drift ranged from 50 to 75 % for the fuse system and from 20 
to 50% for the LRB system, considering all the case studies. On the other hand, the 
amplification of the maximum inter-storey drift of the superstructure (in the case of 
the LRB system) was always less than 20%.

•	 The application of prediction models to specific case study structures confirmed 
their effectiveness and of optimal FVDs for these applications. Furthermore, some 
preliminary assessments on the effects of structural non-linearity showed how the 
latter influences the structural response by amplifying the inter-storey drifts in the 
lower part of the substructure and reducing floor accelerations.

The proposed method, due to its generality, can also be applied to different case stud-
ies from those examined here. For future work, it will be interesting to evaluate the 
effects and optimal parameters of the FVDs for irregular structures in elevation and 
compare them with those obtained in this study for regular structures, as well as exam-
ine different types of seismic input (e.g., near-fault earthquakes) and further investigate 
the effects of structural non-linearity.
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