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Joint Vision-Based Navigation, Control and Obstacle Avoidance for
UAVs in Dynamic Environments

Ciro Potena1 Daniele Nardi1 Alberto Pretto2

Abstract— This work addresses the problem of coupling
vision-based navigation systems for Unmanned Aerial Vehicles
(UAVs) with robust obstacle avoidance capabilities. The former
problem is solved by maximizing the visibility of the points of
interest, while the latter is modeled by means of ellipsoidal
repulsive areas. The whole problem is transcribed into an
Optimal Control Problem (OCP), and solved in a few millisec-
onds by leveraging state-of-the-art numerical optimization. The
resulting trajectories are well suited for reaching the specified
goal location while avoiding obstacles with a safety margin and
minimizing the probability of losing the route with the target
of interest. Combining this technique with a proper ellipsoid
shaping (i.e., by augmenting the shape proportionally with the
obstacle velocity or with the obstacle detection uncertainties)
results in a robust obstacle avoidance behavior. We validate
our approach within extensive simulated experiments that
show effective capabilities to satisfy all the constraints even
in challenging conditions. We release with this paper the open
source implementation.

I. INTRODUCTION

In recent years, small unmanned aerial vehicles (UAVs)
have increasingly gained popularity in many practical appli-
cations thanks to their effective survey capabilities and lim-
ited cost. For some basic applications, solutions are already
available on the market to localize the drone and provide
some basic navigation and obstacle avoidance capabilities.
However, to safely navigate in the presence of obstacles,
an effective and reactive planning algorithm is an essential
requirement.

On the other hand, thanks to the progress in perception and
control algorithms [8], [17], and to the increased computa-
tional capabilities of embedded computers, vision-based op-
timal control techniques became a standard for UAVs moving
in dynamic environments [3], [25]. They allow to mitigate
some of the vision-based perception limitations (e.g. feature
tracking failures) through an ad-hoc trajectory planning and
have partially solved the vehicle state-estimation problem
that, in the last decades, has been commonly faced with
motion capture systems.

However, the problem of addressing perception and ob-
stacle avoidance together has been rarely investigated [4]. In
this article, we take a small step forward in this direction by
proposing an optimal controller that takes into account in a
joint manner the perception, the dynamic, and the avoidance
constraints (Fig. 1). The proposed system models vehicle
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Fig. 1: An example of application for the proposed system: an UAV
is asked to reach a desired state while constantly framing a specific
target (the red circular target in the picture). The environment is
populated with static obstacles (black and yellow striped objects in
the picture) that should be avoided. Dynamic obstacles (e.g., other
agents, depicted with the red moving box) may suddenly appear and
block the planned trajectory (i.e., the blue dashed line). With the
proposed method, the UAV reacts to the detected object by steering
along a new safe trajectory (i.e., the red line).

dynamics, perception targets and obstacles in terms of Non
Linear Model Predictive Controller (NMPC) constraints:
dynamics are accounted by providing a non-linear dynamic
model of the vehicle, while targets are modeled by targets
visibility constraints in the camera image plane and obstacles
by repulsive ellipsoidal areas, respectively. The proposed
system also allows incorporating estimation uncertainties and
obstacle velocities in the ellipsoids, allowing to deal also with
dynamic obstacles.

The entire problem is then transcribed into an Optimal
Control Problem (OCP) and solved in a receding horizon
fashion: at each control loop, the NMPC provides a feasible
solution to the OCP and only the first input of the provided
optimal trajectory is actually applied to control the robot. By
leveraging state-of-the-art numerical optimization, the OCP
is solved in a few milliseconds making it possible to control
the vehicle in real-time and to guarantee enough reactivity
to re-plan the trajectory when new obstacles are detected.

Moreover, our approach does not depend on a specific
application and can potentially provide benefits to a large
variety of applications, such as vision-based navigation,
target tracking, and visual servoing.

We validate our system through extensive experiments in
a simulated environment. We provide an open source C++
implementation of the proposed solution at:

https://github.com/cirpote/rvb_mpc

Please cite this paper as: C. Potena, D. Nardi, and A. Pretto,
“Joint Vision-Based Navigation, Control and Obstacle Avoidance for UAVs in Dynamic Environments”,

in Proc. of the European Conference on Mobile Robots (ECMR), 2019.
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A. Related Work

A vision-based UAV needs three main components to
effectively navigate in a dynamic environment:

1) A reactive control strategy, to accurately track a desired
trajectory while reducing the motors effort;

2) A reliable collision avoidance module, to safely ex-
plore the environment even in presence of dynamic,
unmodeled obstacles;

3) An adaptive, perception aware, on-line planner, to sup-
port the vision-based state estimation or to constantly
keep the line-of-sight with a possible reference target.

A wide literature addressing individually, or in pairs,
these requirements is available, among others: [22], [12],
[27], [1], [26]. However, they have rarely been addressed
together, in particular when dealing with unexpected and
moving obstacles.
The requirement 1) is an essential capability for highly
dynamic vehicles such as UAVs, hence extensively covered
in literature, and often formulated as an OCP [2]. Model
Predictive Controller (MPCs) is a well-known control
technique capable to deal with OCPs, and have recently
gained great popularity thanks to increased on-board
computational capabilities of embedded computers. In [9]
and [23] ACADO, a framework for fast Nonlinear Model
Predictive Control (NMPC), is presented; [11] and [22]
use ACADO for fast attitude control of UAVs. In our
previous work [21], we proposed a solution to improve the
real-time capabilities of NMPCs. We aided the controller
with a time-mesh strategy that refines the initial part of the
horizon inside a flat output formulation. In [8], the authors
addressed the reactive control problem by building upon
a flatness-based Model Predictive Control: the approach
converts the optimal control problem in a linear convex
quadratic program by accounting for the non-linearity in
the model through the use of an inverse term. Experiments
performed in simulation and real environments demonstrate
improved trajectory tracking performance. In [17], the
authors propose to employ an iterative optimal control
algorithm, called Sequential Linear Quadratic, applied
inside a Model Predictive Control setting to directly control
the UAV actuation system.

The collision-free trajectory generation (requirement 2) is
usually categorized into three main strategies: search-based
approaches [10], [24], optimization-based approaches [27],
[18], path sampling and motion primitives [16], [19].

In [18] the authors propose a motion planning approach
able to run in real-time and to continuously recompute
safe trajectories as the robot perceives the surrounding
environment. Although the proposed method allows to
replan at a high rate and react to previously unknow
obstacles, it might be vulnerable to vision-based perception
limitations.

Steering a robot to its desired state by using visual
feedback obtained from one or more cameras (requirement

3) is formally defined as Visual Servoing (VS), with several
applications within the UAV domain [20], [15], [14],
[4]. Among the others, in Falanga et al. [4], the authors
address the flight through narrow gaps by proposing an
active-vision approach and by relying only on onboard
sensing and computing. The system is capable to provide
an accurate trajectory while simultaneously estimating
the UAV’s position by detecting the gap in the camera
images. Nevertheless, it might fail in presence of unmodeled
obstacles along the path.

A fully autonomous UAV navigating in a cluttered and
dynamic environment should be able to concurrently solve
all the three problems listed above. A solution could be
to combine three of the methods presented above, to deal
with each problem individually. Unfortunately, due to poor
integration between methods and the overall computational
load, this solution is not easily feasible. Jointly addressing a
subset of these problem is a topic that is recently gathering
great attention: in [25], the authors propose to encode in
the NMPC cost function the image feature tracks, implicitly
keeping them in the field of view while reaching the desired
pose. Similarly, in our previous work [22], we propose a
two-steps NMPC. In Falanga et al. [3], the authors propose
a different version of NMPC that also takes into account the
features velocity in the camera image plane. The controller
will eventually steer the vehicle keeping the features as close
as possible to the image plane center, while minimizing
their motion. This mitigates the blur of the image due to the
camera motion, aiding the target detection and the features
tracking. However, the methods presented so far in general
do not guarantee a fully autonomous flight in cluttered
environments or in presence of unmodeled obstacles.

In [7], the authors propose a NMPC which incorporate
obstacles in the cost function. To increase the robustness in
avoiding the obstacles, the UAV trajectories are computed
taking into account the uncertainties of the vehicle state.
Kamel et al. [12] deal with the problem of multi-UAV
reactive collision avoidance. They employ a model-based
controller to simultaneously track a reference trajectory
and avoid collisions. The proposed method also takes into
account the uncertainty of the state estimator and of the
position and velocity of the other agents, achieving a higer
degree of robustness. Both these methods show a reactive
control strategy, but might not allow the vehicle to perform
a vison-based navigation.

B. Contributions

Our contributions are the following: (i) an optimal control
method that incorporates simultaneously both perception and
obstacle avoidance constraints; (ii) a flexible obstacle pa-
rameterization that allows to model different obstacle shapes
and to encode both obstacles’ uncertainty and speed; (iii) an
open-source implementation of our method. Our claims are
backed up through the experimental evaluation.



II. PROBLEM FORMULATION

The goal of the proposed approach is to generate an
optimal trajectory that takes into account perception and
action constraints of a small UAV and, at the same time,
allows to safely fly through the environment by avoiding
all the obstacles that can possibly lie along the planned
trajectory. The need to couple action and perception de-
rives from different factors. On the one hand, there are
the vision based navigation limits where, to guarantee an
accurate and robust state estimation, it is necessary to extract
meaningful information from the image. On the other hand,
in some specific cases (e.g. Visual Servoing) the feedback
information used to control the vehicle is extracted from
a vision sensor, thus the vision target should be kept in
the camera image plane. Similarly, taking into account the
surrounding obstacles is important to ensure a safe flight in
cluttered environments. Considering all those factors together
allows to fully leverage the agility of UAVs and to have a
fully autonomous flight. Therefore, it is essential to jointly
consider all these constraints.

Let l be the state vector of the target object (e.g., the
3D point representing the center of mass of a target object),
while let x and u be the state and the input vectors of a
robot, respectively. Furthermore, let o the state vector of
the obstacles to avoid. Let assume the robot’s dynamic can
be modeled by a general, non linear, differential equations
system ẋ = f(x, u). Finally, given some flight objectives,
we can define an action cost ca(xt, ut), a perception cost
cp(xt, lt, ut), a navigation cost cn(xt, ut), and an avoidance
cost co(xt, ot, ut) We can thus formulate the coupling of
action, perception, and avoidance as an optimization problem
with cost function:

J = cf (xtf ) +

∫ tf

t0

ca(xt, ut) + cp(xt, lt, ut)+

cn(xt, ut) + co(xt, ot, ut)dt

(1)
subject to: ẋ = f(x, u)

h(xt, lt, ot, ut) ≤ 0

where h(xt, lt, ot, ut) stands for the set of inequality con-
straints to satisfy along the trajectory, cf (xtf ) stands for the
cost on the final state, and tf−t0 represents the time horizon
in which we want to find the solution. In the following we
describe how we model all the cost function components.

A. Quadrotor Dynamics

In this work, we make use of five reference frames: (i) the
world reference frame W ; (ii) the body reference frame B
of the UAV; (iii) the camera reference frame C; (iv) the i-th
obstacle reference frame Oi and the target reference frame
L. An overview about the reference systems is illustrated in
Fig. 2. To represent a vector, or a transformation matrix, we
make use of a prefix that indicates the reference frames in
which the quantity is expressed. For example, xWB denotes
the position vector of the body B frame with respect to the
world frame W , expressed in the world frame.

Fig. 2: Overview of the reference systems used in this work: the
world frame W , the body frame B, the camera frame C, the
landmark and obstacles frames L and Oi. TWC and TBC represent
the body pose in the world frame W and the transformation between
the body and the camera frames C, respectively. Finally, s is the
landmark reprojection onto the camera image plane.

According to this representation, let pWB = (px, py, pz)
T

and rWB = (φ, θ, ψ)T be the position and the orientation of
the body frame with respect to the world frame, expressed
in the world frame, respectively. Additionally, let VWB =
(vx, vy, vz)

T be the velocity of the body, expressed in the
world frame. Finally, let u = (T, φcmd, θcmd, ψ̇cmd)

T be
the input vector, where T = (0, 0, t)T is the thrust vector
normalized by the mass of the vehicle, and φcmd, θcmd, ψ̇cmd
are the roll, pitch, and yaw rate commands, respectively.
Thus, the quadrotor dynamic model f(x, u) can be expressed
as:

vWB = ṗWB

v̇WB =gW +RWBT

φ̇ =
1

τφ
(kφφcmd − φ) (2)

θ̇ =
1

τθ
(kθθcmd − θ)

ψ̇ = ψ̇cmd

where RWB is the rotation matrix that maps the mass-
normalized thrust vector T in the world frame, and gW =
(0, 0,−g)T is the gravity vector. For the attitude dynamics
we make use of a low-level controller that maps the high-
level attitude control inputs into propellers velocity. The
τi and ki parameters are obtained through an identification
procedure [13].

B. Perception Objectives
Let pWL = (lx, ly, lz)

T the 3D position of the target
of interest in the world frame W . We assume the UAV
to be equipped with a camera having extrinsic parameters
described by a constant rigid body transformation TBC =
(pBC , RBC), where pBC and RBC are the position and the
orientation, expressed as a rotation matrix, of the camera
frame C with respect to B. The target 3D position in the
camera frame C is given by:

pCL = (RWBRBC)T (pWL − (RWBpBC + pWB)) (3)



The 3D point pCL is then projected onto the image plane
coordinates s = (u, v)T according to the standard pinhole
model:

u = fx
pCLx
pCLz

, v = fy
pCLy
pCLz

(4)

where fx and fy stand for the focal lenghts of the camera. It
is noteworthy to highlight that we are not using the optical
centers parameters cx and cy in projecting the target, since
it is convenient to refer it with respect to the center of the
image plane.

To ensure a robust perception, the projection s of a target
of interest should be kept as close as possible to the center
of the camera image plane. Therefore we formulate the
perception cost cp(xt, lt, ut) as:

cp(xt, lt, ut) = sHsT , H = h

[ 1
fc

0

0 1
fr

]
(5)

where fc and fr represent the number of columns and rows
in the camera image, while h is a weighting factor. With
this choice, we penalize more the reprojection error of s in
the shorter image axis. For instance, if the camera streams
a 16:9 image, the optimal solution will care more to keep s
closer to the center of the image along the v-axis.

C. Avoidance and Navigation Objectives

Let oWOi = (oxi , oyi , ozi)
T be the 3D position of the i-

th obstacle in the world frame W . To enable the UAV to
safely flight, the trajectory has to constantly keep the aerial
vehicle at a safe distance from all the surrounding obstacles.
Moreover, the cost function (1) has to take into account
objects with different shapes and sizes. Thus, we formulate
the avoidance cost co(xt, ot, ut) as:

No∑
i=1

1

diWidTi
, di = PWB − oWOi

(6)

Wi = diag(wxi, wyi,wzi), wi = f(γi, εi, vi)

where No is the number of the obstacles and Wi is the i-
th weighting matrix. The latter weighs the distances along
the 3 main axes, creating an ellipsoidal bounding box. More
specifically, each component wi embeds the obstacle’s size γ,
velocity v, and estimation uncertainties ε (see Fig. 3). Among
the others, this formulation allows to set more conservative
bounding boxes according to the obstacle detection accuracy.
Moreover, to guarantee a robust collision avoidance, we
formulate the minimum acceptable distance as an additional
inequality h(xt, ot, ut) constraint:

No∑
i=1

diWid
T
i >= dmin,i (7)

where dmin,i represents the minimum acceptable distance for
the i-th obstacle.

Fig. 3: Ellipsoidal bounding box concept overview: the light blue
area bounds the obstacle physical dimensions, while the blue area
embeds the uncertainties ε in the obstacle pose estimation and
velocity v. The blue area is stretched along the x axis direction
to take into account the object estimated velocity.

D. Action Objectives

The action objectives act to penalize the amount of control
inputs used to steer the vehicle. Therefore, we formulate the
action cost ca(xt, ut) as:

ca(xt, ut) = ūRūT , ū = u− uref (8)

where R is a weighting matrix, and uref represents the
reference control input vector (e.g. the control commands to
keep the aerial vehicle in hovering). Moreover, to constrain
the control commands to be bounded inside the input range
allowed by the real system, we add an additional inequality
constraint h(xt, ut):

ulb <= u <= uub (9)

The remaining costs cn(xt, ut) and cf (xtf ) penalize the
distance from the goal pose, and are formulated as:

cn(xt, ut) = x̄Qx̄T , x̄ = x− xref
cf (xtf ) = x̄tfQN x̄

T
tf , x̄tf = xtf − xref (10)

III. NON-LINEAR MODEL PREDICTIVE CONTROL

The cost function given in (1) results in a non-linear
optimal control problem. To find a time-varying control law
that minimizes it, we make use of a Non-Linear Model
Predictive Controller, where the cost function (1) is firstly
approximated by a Sequential Quadratic Program (SQP), and
then iteratively solved by a standard Quadratic Programming
(QP) solver.

The whole system works in a reciding horizon fashion,
meaning that at each new measurement, the NMPC provides
a feasible solution and only the first control input of the
provided trajectory is actually applied to control the robot.

To achieve that, we discretize the system dynamics with a
fixed time step dt over a time horizon TH into a set of state
vectors x0:N = {x0, x1, . . . , xN} and a set of inputs controls
u0:N = {u0, u1, . . . , uN−1}, where N = TH/dt. We also
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(a) Target depth color map
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(b) Closest obstacle distance color map
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(c) Desired pose distance color map

Fig. 4: Target reprojection error for 10 hover-to-hover flights. The three different color-maps represent the depth of the point of interest,
the distance from the closest static obstacle, and the distance between the current pose and the desired pose, respectively.

define the state, the final state, and input cost matrices as Q,
QN , and R, respectively. The final cost function will be:

J = x̄tfQN x̄
T
tf +

N−1∑
i=0

(cn + ca + cp + co) (11)

where x̄ represents the difference with respect to the state
reference values, while cn, ca, cp and co refer to the naviga-
tion, action, perception and avoidance objectives introduced
in the previous section.

For NMPC to be effective, the optimization should be
performed in real-time. In this regard, we compute an ap-
proximation of each optimal solution by executing only a
few iterations at each control loop. Moreover, we keep the
previous approximated solution as the initialization for the
next optimization.

IV. EXPERIMENTS

The evaluation presented here is designed to support the
claims made in the introduction. We performed two kinds
of experiments, namely hover-to-hover flight with static
obstacles and hover-to-hover flight with dynamic obstacles.
To demonstrate the real-time capabilities of the proposed
approach we also report a computational time analysis. In all
the reported results, the multirotor is asked to fly multiple
times by randomly changing the obstacles setup and the goal
state.

A. Simulation Setup

We tested the proposed approach in a simulated environ-
ment by using the RotorS UAV simulator [6] and an AscTec
Firefly multirotor. We setup the non-linear control problem
with the ACADO toolbox and used the qpOASES solver [5].
By using the ACADO code generation tool, the problem is
then exported in a highly efficient C code that we integrated
within a ROS (Robot Operating System) node. We set the
discretization step to be dt = 0.2 s with a time horizon
TH = 2 s. To guarantee enough agility to the vehicle,
we run the control loop at 100 Hz. The mapping between
the optimal control inputs and the propeller velocities is
done by a low-level PD controller that aims to resemble
the low-level controller that runs on a real multirotor. To
make the simulation more realistic, we add a further white

Dynamic
Obstacle delay [s] failure

rate [%]
Avg. pixel

error
Max pixel

error Torque [N] Tcmd[g] σ[cm]

0.2 53 98 0.029 1.35 2
X .2 0.4 79 129 0.030 1.39 2
X .4 2.0 84 142 0.031 1.41 2
X .6 10.4 90 151 0.040 1.47 2
X .8 18.9 92 155 0.040 1.50 2
X 1 24.8 98 157 0.041 1.52 2

TABLE I: Trajectory statistics comparison across different simula-
tion setups.
Dyn. obst.

delay
Dyn. obst.

velocity [s] failure
rate [%]

Avg. pix.
error

Max pix.
error Torque [N] Tcmd[g] σ[cm]

.2 .2 1.9 81 101 0.031 1.40 2

.2 .4 3.5 89 111 0.031 1.41 2

.2 .6 4.8 90 113 0.034 1.44 2

.4 .2 3.9 93 140 0.032 1.45 2

.4 .4 7.4 94 147 0.034 1.44 2

.4 .6 11.9 107 151 0.035 1.49 2

TABLE II: Trajectory statistics comparison across different dynamic
obstacle spawning setups.

noise with standard deviation σ on the 3D positions of
the detected obstacles. The code developed in this work is
publicly available as open-source software.

B. Hover-To-Hover Flight with Static Obstacles

In this experiment, we show the capabilities in hover-to-
hover flight maneuvers with static obstacles. More specifi-
cally, the UAV is commanded to reach a set of M randomly
generated desired states Xdes = (xref,0, xref,1, . . . , xref,M ).
Unlike standard controllers, the proposed approach will
generate, at each time step, control inputs that will steer the
vehicle towards the goal state while avoiding obstacles and
keeping the target in the image plane. Fig. 4 depicts the
reprojection error of the point of interest and its correlation
with (i) the depth of the point of interest, (ii) the distance
from the closest obstacle, and (iii) the distance from the
desired state. The largest reprojection errors occur when the
UAV is farther from the desired state, or when the UAV has
to fly closer to the obstacles. In these cases, the reprojection
error is slightly higher since the UAV has to perform more
aggressive maneuvers. However, as reported in Tab. I, the
UAV keeps a success rate of almost 100% while keeping a
low usage of control inputs.
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(a) Target depth color map
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(b) Closest obstacle dist. color map (c) Example trajectory top view
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(d) Desired pose dist. color map
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(e) Dyn. obstacle dist. color map (f) Example trajectory lateral view

Fig. 5: Reprojection error in the hover-to-hover flight with dynamic obstacles (left-side), and an example of planned trajectory (right-side).
The moving, dynamic, obstacle is represented by the red cube where the varying color intensity represents its motion over the time.

Fig. 6: Example of a trajectory generated in our simulated scenario.
The depicted UAVs represent different poses assumed by the aerial
vehicle across the time horizon. The colored objects represent the
static obstacle, while the red box the dynamic one.

C. Hover-To-Hover Flight with Dynamic Obstacles

This experiment shows the capabilities to handle more
challenging flight situations, such as the flight in presence
of dynamic, unmodeled obstacles (see Fig. 6 for an exam-
ple). To demonstrate the performance in such a scenario,
we randomly spawn a dynamic obstacle along the planned
trajectory. Thus, to successfully reach the desired goal, the
UAV has to quickly re-plan a safe trajectory (see Fig. 5d
and Fig. 5f for an example). Moreover, to make experiments
with an increasing level of difficulty, we spawn the dynamic
obstacle with a random delay and with a random non-zero
velocity. The random delay simulates the delay in detecting
the obstacle, or the possibility that the obstacle appears after
the vehicle has already planned the trajectory.

The reprojection error follows a similar trend as the
previous set of experiments (see Fig. 5), being higher when
the vehicle is closer to static obstacles of farther from the
desired state. In Fig. 5e we also report the evolution of the
reprojection error colored according to the distance from the
dynamic obstacle. Since the latter is spawned close to the

Fig. 7: Average computational time plot across the planning phases:
the (i) planning phase in blue, (ii) the steady-planning phase in
green, and (iii) the emergency re-planning phase in red. The shaded
areas represent the variance of the average computational time.

planned trajectory, the UAV has to perform an aggressive
maneuver to keep a safe distance from it. This usually leads
to have a smaller reprojection error when the dynamic obsta-
cle is close (i.e. the object is spawned while the UAV was on
the optimal trajectory), and a bigger error when the obstacle
is farther (i.e. the drone reacted with an aggressive maneuver
to avoid it). Tab. I and Tab. II report some trajectory statistics.
The proposed method keeps a success rate above the 75% in
almost all the conditions, even in presence of large delays. It
is also noteworthy to highlight how the delay turns out to be
more critical than the dynamic obstacle’s velocity. The latter,
indeed, makes the re-planning more challenging only in
specific circumstances (e.g. when the object moves towards
the UAV). Finally, the capability to avoid obstacles comes
with a performance trade-off. The greater the difficulty, the
greater the use of control inputs. This is especially true when
the UAV has to avoid dynamic obstacles with a large delay,
since it involves making expensive control maneuvers.



D. Computational Time
To meet the control loop real-time constraints, the NMPC

computational cost should be as low as possible. Moreover,
the computational cost is not constant, and might vary
according to the similarity between the initial trajectory and
the optimal one. In this regards, we distinguish among three
main flight phases:

1) the planning phase, which occurs when the UAV has
to plan a trajectory to reach xdes;

2) the steady-planning phase, which occurs when the
UAV is already moving toward xdes;

3) the emergency re-planning, which occurs when a dy-
namic obstacle suddenly appears along the optimal
trajectory.

Fig. 7 reports the average computational costs for all those
flight phases. The average computational cost is constantly
lower than 0.01 seconds, meeting the control loop frequency
constraints. The steady-planning phase turns out to be the
cheapest one. Indeed, since the control loop runs 100 times
per second, the neighbour trajectories are quite similar.
Conversely, the emergency re-planning phase is the most
expensive and variable, since the trajectory to re-plan is often
quite different from the previous one, depending on where
the dynamic obstacle is spawned.

V. CONCLUSION

This work proposes an NMPC controller for enhancing
vision-based navigation with static and dynamic obstacle
avoidance capabilities. The proposed method represents the
obstacles with customly shaped constraints by taking into ac-
count their velocity and uncertainties, and making it possible
to adapt the safety of the planned trajectory. The capabilities
of this system have been extensively tested in a simulated
environment, and across different scenarios. The experiments
suggest that the proposed method allows to safely fly even
in challenging situations. We release our C++ open-source
implementation, enabling the research community to test
the proposed algorithm. Future work will investigate the
performance of the proposed system in real-world scenarios.
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