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Abstract
As Wi-Fi becomes ubiquitous in public and pri-

vate spaces, it becomes natural to leverage its intrin-
sic ability to sense the surrounding environment to 
implement groundbreaking wireless sensing appli-
cations such as human presence detection, activity 
recognition, and object tracking. For this reason, 
the IEEE 802.11bf Task Group is defining the appro-
priate modifications to existing Wi-Fi standards to 
enhance sensing capabilities through 802.11-com-
pliant devices. However, the new standard is 
expected to leave the specific sensing algorithms 
open to implementation. To fill this gap, this article 
explores the practical implications of integrating 
sensing into Wi-Fi networks. We provide an over-
view of the physical and medium access control lay-
ers sensing enablers, together with the application 
layer perspective. We analyze the impact of com-
munication parameters on sensing performance 
and detail the main research challenges. To make 
our evaluation replicable, we pledge to release all 
of our dataset and code to the community. The 
dataset and code are available at https://github.
com/francescamen/SHARPax.

Introduction
In 1997, the Institute of Electrical and Electron-
ics Engineers (IEEE) released the first 802.11 
standard. The document specified the physical 
(PHY) and medium access control (MAC) layers 
for wireless local area networks operating on the 
unlicensed portion of the radio spectrum. The 
name Wi-Fi was introduced in 1999 by the Wi-Fi 
alliance, which ensures interoperability among 
IEEE 802.11 devices. Today, Wi-Fi networks are 
used to connect hundreds of millions of people 
worldwide. Thus, the research community has 
suggested leveraging their ubiquitousness for 
wireless sensing applications. This entails obtain-
ing information about objects or people in the 
environment as they act as radio signals reflectors, 
diffractors, and/or scatterers, by tracking changes 
in quantities that describe the way radio signals 
propagate in the environment. Such quantities 
are continuously estimated by Wi-Fi devices for 
communication purposes to properly transmit and 
decode data. The main idea behind Wi-Fi sens-
ing} is to use them as sensing primitives. This way, 
Wi-Fi devices can act as sensors, opening up a 

plethora of new applications such as human activ-
ity and pose recognition, person identification, 
and the Metaverse, among others [1, 2].

To make Wi-Fi sensing available to the gen-
eral public, researchers are currently following 
two parallel and equally important directions. 
On the one hand, sensing primitives are being 
made available outside of the communication 
procedure through the definition of the new IEEE 
802.11bf standard, which is expected to be final-
ized by 2024 [3]. On the other hand, researchers 
are developing accurate and robust sensing algo-
rithms that leverage Wi-Fi sensing primitives. This 
article aims to bridge these two research lines, 
providing a vision of the Wi-Fi features — at the 
lower layers of the protocol stack — that are key 
enablers for sensing, and how they can be lev-
eraged to design sensing applications. Practical 
suggestions attained from experimental evalu-
ations with commercial IEEE 802.11ax devices 
and an overview of the research challenges are 
presented. To the best of our knowledge, no 
work in the literature provides a holistic view of 
sensing in Wi-Fi networks. Moreover, this is the 
first time data from commercial 802.11ax-com-
pliant devices is considered for sensing purposes. 
In turn, the analysis later is the first to consider 
the new orthogonal frequency-division multiple 
access (OFDMA) modulation scheme that has 
been introduced with 802.11ax and will be adopt-
ed also in next-generation 802.11be networks [4].

The Integrated Sensing and Communications Paradigm
Sensing operations are set to coexist with data 
transmissions in upcoming Wi-Fi networks [2]. 
This concept is usually referred to as integrated 
sensing and communications (in short, ISAC). 
In addition to Wi-Fi, ISAC is being explored in 
other radio technologies. The main approaches 
are communication-centric and sensing-centric. 
While the focus of the former is on reusing com-
munication signals for sensing, the latter aims to 
transmit information through radar-like waveforms 
[5]. In turn, when accurate sensing measurements 
are needed for, e.g., safety-critical applications, 
sensing-centric approaches should be adopted. 
Instead, when the purpose is to provide sensing 
functionalities without the burden of installing 
additional hardware, communication-centric strat-
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egies are preferred. The choice also depends on 
whether the sensing happens indoor or outdoor. 
In this article, we focus on an indoor communi-
cation-centric scenario, while we refer the reader 
to [2] for an overview of ISAC in next-generation 
cellular networks.

Physical and Medium Access Control Layers: 
Wi-Fi Sensing Enablers

As sensing primitive, most research activities focus 
on the channel state information (CSI), which cap-
tures information about the signal multi-path prop-
agation. Since multi-path is caused by reflections, 
diffraction, and scattering associated with objects 
in the environment, it contains rich information 
for sensing purposes. The CSI usually refers to 
the channel frequency response (CFR), which is 
the frequency representation of channel impulse 
response (CIR) (i.e., the time series containing 
the delay and amplitude of the different paths). 
The CSI is continuously estimated for equalization 
purposes, by leveraging training fields in the data 
packets [1]. However, current Wi-Fi standards are 
designed for communications and do not provide 
the proper support for the integration of sens-
ing functionalities. Moreover, sensing primitives 
are not released by commercial devices. Thus, 
researchers currently leverage ad-hoc procedures 
to extract CSI. This ultimately hinders the devel-
opment and commercialization of sensing sys-
tems. For this reason, a new IEEE Task Group (TG) 
— called 802.11bf — is defining modifications to 
the 802.11 standards at both the MAC and PHY 
layers to support sensing. The amendment will 
define a unified procedure to directly obtain the 
sensing primitives in both the sub-7 GHz and the 
millimeter wave (mmWave) bands. The proce-
dure will involve different devices taking the roles 
of initiator, responder, transmitter, and receiver. 
The sensing can be monostatic, bistatic, or mul-
tistatic based on whether the sensing transmit-
ter and receiver are distinct devices or are the 
same entity. We refer the reader to [3] for a more 
in-depth overview of IEEE 802.11bf. 

Frequency and Spatial Diversity for Sensing
The structure of the CSI depends on the specific 
waveform employed. However, an important ele-
ment to consider is to maximize the diversity that 
the communication system supports. Indeed, con-
currently obtaining data about the propagation 
of radio waves characterized by different carrier 
frequencies (frequency diversity), or captured at 
different points in space (space diversity) is crucial 
to provide good adaptation of the sensing algo-
rithms to changing conditions. 

As a source of frequency diversity, sensing 
algorithms can leverage the orthogonal frequen-
cy-division multiplexing (OFDM) and OFDMA 
modulation schemes adopted by Wi-Fi devices 
(IEEE 802.11n/ac/ax/be/ad/ay). Such schemes 
transmit data over frequency-orthogonal radio 
spectrum sub-channels. Thus, the per sub-channel 
CFR can be used for sensing purposes. By consid-
ering different sub-channels, sensing algorithms 
can obtain more fine-grained ranging information. 
Another source of frequency diversity resides in 
simultaneously obtaining data from multiple trans-
missions in the 2.4–7.125 GHz range, and/or in 

the 57.24–70.20 GHz range. Very recently, the 
Federal Communication Commission (FCC) and 
the European Commission have opened, respec-
tively, the 5.925–7.125 GHz and 5.945–6.425 
MHz spectrum for unlicensed use [6]. Spectrum 
bands above 57 GHz — mmWave, used by IEEE 
802.11ad/ay devices — are more challenging 
from a communication standpoint, yet are appeal-
ing for sensing purposes, as they offer wider band-
widths and, in turn, more sensing granularity. 

Spatial diversity can be obtained by leveraging 
multi-input, multi-output (MIMO) and/or perform-
ing cooperative sensing. As for the former, since 
Wi-Fi devices need to obtain the channel informa-
tion between each pair of transmitter and receiver 
antennas, data associated with different physical 
channels can be obtained for sensing purposes. 
Cooperative sensing is another way to incorpo-
rate spatial diversity into sensing procedures by 
combining the channel information from multiple 
Wi-Fi devices. However, this requires strict coordi-
nation among the sensing devices to obtain syn-
chronized data starting from the device-specific 
transmission and collection schedules [7]. 

We remark that IEEE 802.11bf is not expected 
to specify novel transmission schemes for radio 
signals. Other IEEE TGs such as IEEE 802.11be [4] 
are working on such aspects. 

Application Layer: Wi-Fi Sensing Algorithms
While providing the proper support for sensing 
at the physical and medium access control layers, 
IEEE 802.11bf is not expected to define specific 
sensing algorithms. Conversely, the sensing primi-
tives — collected by leveraging the diversity at the 
PHY and MAC layers — allow designing sensing 
applications [1]. Current approaches can be cat-
egorized into model-based, learning-based, and 
hybrid, as discussed next [8].

Model-Based Approaches
This strategy leverages radio propagation models 
to capture channel variations due to the presence/
movement of objects and individuals. Model-based 
algorithms can be used for example to detect the 
presence of an object or a person by monitoring 
the range, Doppler, and angles spectra [9]. 

The frequency diversity provided by OFDM 
and OFDMA allows computing the distance 
between the device and the obstacle in the envi-
ronment. This is obtained by computing the sig-
nal spectrum over the different OFDM/OFDMA 
sub-channels for each CFR estimate. Depending 
on the length of the propagation path, each copy 
of the transmitted signal is affected by a time 
delay that reflects on a frequency shift on each 
OFDM/OFDMA sub-channel. Therefore, peaks 
on the spectrum reveal the presence of obstacles 
and their range. Notice that the range granularity 
is inversely proportional to the bandwidth. For 
example, with 160 MHz bandwidth (802.11ax), 
the range granularity is about 2 meters. In this 
respect, the newly available 6 GHz and mmWave 
bands will be more beneficial for ranging purpos-
es as they provide higher bandwidths [10]. 

The moving velocity of the sensing target can 
instead be estimated considering the Doppler 
shift induced by the movements. The estimate is 
obtained by computing the spectrum over subse-
quent transmissions with fixed inter-packet time, 

The amendment will define 
a unified procedure to 

directly obtain the sensing 
primitives in both the sub-7 
GHz and the millimeter wave 
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considering one single OFDM/OFDMA sub-chan-
nel. The estimate captures how the frequency 
shifts associated with the path length vary in time, 
and thus, the target moving velocity. The results 
on the available sub-channels can be combined to 
increase the accuracy of the estimate [11].

Spatial diversity allows identifying the angular 
position of the target by analyzing the phase shift 
among the signal copies received at the diff erent 
antennas. The higher the number of antennas is 
the higher the angular shift granularity is [11]. 

leArnIng-bAsed And hybrId APProAches
In general, model-based approaches do not per-
form well when the sensing task requires rec-
ognizing a high number of different situations, 
e.g., human activities/gestures, with a signifi cant 
number of activities, and they do not general-
ize well to multiple subjects and environments. 
Learning-based approaches, instead, allow cap-
turing more fi ne-grained features without requir-
ing manual feature extraction from the CSI [8]. 
Learning-based techniques span from tradition-
al machine learning algorithms, such as cluster-
ing, to advanced deep learning strategies, such 
as residual networks and attention mechanisms. 
Hybrid approaches are currently being investigat-
ed to leverage the advantages of learning-based 
and model-based approaches [12]. We point 
out that training learning-based and hybrid tech-
niques require large datasets featuring signifi cant 
diversity in terms of days of measurements, envi-
ronments, Wi-Fi hardware, and subjects (in the 
case of human sensing). This is key to designing 
algorithms that can generalize well over differ-
ent domains, thus enabling their implementation 
on commercial devices for plug-and-play sensing 
solutions [13]. 

do communIcAtIon PArAmeters mAtter? 
evAluAtIon WIth commercIAl 802.11 devIces

To answer this question, we analyze the impact of 
the sensing bandwidth and the channel sampling 
period on the classification accuracy. We focus 
on the human activity recognition task consid-
ering SHARP, the state-of-the-art algorithm pro-
posed in [13]. We collected a completely novel 
dataset — which we pledge to share with the com-
munity — entailing IEEE 802.11 channel data cap-
tured in an indoor environment (https://github.
com/francescamen/SHARPax). Notice that IEEE 
802.11bf devices are currently unavailable in the 
market as they are expected to be commercial-
ized by 2024. Moreover, as discussed above, the 
main new feature of 802.11bf is to unveil sens-

ing primitives while it is not expected to intro-
duce new transmission schemes that are left to 
other amendments. In turn, we considered IEEE 
802.11ax devices as they implement the latest 
802.11 standard release that is currently replacing 
the majority of Wi-Fi deployments. To the best of 
our knowledge, our dataset represents the first 
collection of 802.11ax CSI data from commercial 
devices. In Fig. 1 we depicted the network setup 
together with a summary of the sensing data col-
lection and processing steps followed for the eval-
uation, as detailed next.

Experimental network setup. We set up an 
IEEE 802.11ax network with two Asus RT-AX86U 
Wi-Fi access points (APs). The network has been 
deployed in a house corridor by placing the rout-
ers along the two long edges, spaced apart by 
4 m. The devices exchanged Wi-Fi data over the 
IEEE 802.11ax channel number 157 using the 
OFDMA resource unit RU1-996, i.e., with a band-
width of 80 MHz and 996 sub-channels.

CFR data collection. We used the AX-CSI tool 
to obtain the CFR for each packet collected by 
the receiver [14]. We considered an inter-packet 
distance of Tc = 7.5 ms, being reasonable for sens-
ing applications. We asked a volunteer to perform 
three activities, i.e., walking and running around 
the room, and staying in place. We also added an 
“empty room” class, for a total of four classes. For 
each class, data from four diff erent campaigns — 
lasting two minutes each — were collected. Note 
that we focus on a limited set of activities and a 
single subject as we are mainly concerned with 
studying how a sensing system behaves when 
changing some communications parameters rath-
er than proposing new sensing strategies. We 
refer the reader to [13] for additional evaluations 
involving more subjects and activities.

CFR data processing. The CFR phase offsets 
associated with hardware imperfections were 
corrected using the approach developed in [13]. 
Hence, Doppler vectors were computed every 
time a new measurement was obtained at the 
receiver considering a channel observation win-
dow of 25 channel readings (the current measure-
ment together with the 24 previous ones), and 
averaging over the available OFDM sub-channels 
(see [13]). The deep neural network (DNN) in 
[13] was trained as a four classes classifier. The 
DNN took as input N = 256 consecutive Doppler 
vectors at a time to estimate whether the person 
was present in the room and, in case, which activ-
ity they performed. Once trained, the DNN was 
used to predict the classes on CFR data never 
considered during training, thus allowing for a fair 
evaluation of the sensing performance.

Performance evaluation. A four-fold cross-val-
idation mechanism has been used, with two cam-
paigns used for training, one for validation, and 
the remainder for testing. Nine diff erent validation 
rounds were performed, for a total of 108 evalua-
tion sets. The statistics of the accuracy and F1-score 
averaged over the 108 tests and the four classes 
are reported in Fig. 2 and Fig. 3. The bars cover the 
25–75 percentile interval, the horizontal line with-
in each bar represents the median value, and the 
whiskers span over the 5–95 percentile interval. 

Figure 2 shows the sensing results considering 
seven diff erent OFDMA RUs as specifi ed by the 
802.11ax standard. This allows evaluating how 

FIGURE 1. Experimental setup for sensing data collection and processing.

of different situations, e.g., human activities/gestures, with
a significant number of activities, and they do not gener-
alize well to multiple subjects and environments. Learning-
based approaches, instead, allow capturing more fine-grained
features without requiring manual feature extraction from
the CSI [8]. Learning-based techniques span from tradi-
tional machine learning algorithms, such as clustering, to
advanced deep learning strategies, such as residual networks
and attention mechanisms. Hybrid approaches are currently
being investigated to leverage the advantages of learning-
based and model-based approaches [12]. We point out that
training learning-based and hybrid techniques require large
datasets featuring significant diversity in terms of days of
measurements, environments, Wi-Fi hardware, and subjects (in
the case of human sensing). This is key to designing algorithms
that can generalize well over different domains, thus enabling
their implementation on commercial devices for plug-and-play
sensing solutions [13].

IV. DO COMMUNICATIONS PARAMETERS MATTER?
EVALUATION WITH COMMERCIAL 802.11 DEVICES

To answer this question, we analyze the impact of the
sensing bandwidth and the channel sampling period on the
classification accuracy. We focus on the human activity recog-
nition task considering SHARP, the state-of-the-art algorithm
proposed in [13]. We collected a completely novel dataset –
which we pledge to share with the community – entailing
IEEE 802.11 channel data captured in an indoor environment.2

Notice that IEEE 802.11bf devices are currently unavailable
in the market as they are expected to be commercialized by
2024. Moreover, as discussed above, the main new feature
of 802.11bf is to unveil sensing primitives while it is not
expected to introduce new transmission schemes that are left
to other amendments. In turn, we considered IEEE 802.11ax
devices as they implement the latest 802.11 standard release
that is currently replacing the majority of Wi-Fi deployments.
To the best of our knowledge, our dataset represents the first
collection of 802.11ax CSI data from commercial devices. In
Fig. 1 we depicted the network setup together with a summary
of the sensing data collection and processing steps followed
for the evaluation, as detailed next.

Experimental network setup. We set up an IEEE 802.11ax
network with two Asus RT-AX86U Wi-Fi access points (APs).
The network has been deployed in a house corridor by placing
the routers along the two long edges, spaced apart by 4 m. The
devices exchanged Wi-Fi data over the IEEE 802.11ax channel
number 157 using the OFDMA resource unit RU1-996, i.e.,
with a bandwidth of 80 MHz and 996 sub-channels.

CFR data collection. We used the AX-CSI tool to obtain
the CFR for each packet collected by the receiver [14]. We
considered an inter-packet distance of 𝑇𝑇𝑐𝑐 = 7.5 ms, being
reasonable for sensing applications. We asked a volunteer to
perform three activities, i.e., walking and running around the
room, and staying in place. We also added an “empty room”
class, for a total of four classes. For each class, data from
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Fig. 2. Average accuracy and F1-score with different OFDMA RUs.

four different campaigns – lasting two minutes each – were
collected. Note that we focus on a limited set of activities and a
single subject as we are mainly concerned with studying how a
sensing system behaves when changing some communications
parameters rather than proposing new sensing strategies. We
refer the reader to [13] for additional evaluations involving
more subjects and activities.

CFR data processing. The CFR phase offsets associated with
hardware imperfections were corrected using the approach
developed in [13]. Hence, Doppler vectors were computed
every time a new measurement was obtained at the receiver
considering a channel observation window of 25 channel read-
ings (the current measurement together with the 24 previous
ones), and averaging over the available OFDM sub-channels
(see [13]). The deep neural network (DNN) in [13] was trained
as a four classes classifier. The DNN took as input 𝑁𝑁 = 256
consecutive Doppler vectors at a time to estimate whether the
person was present in the room and, in case, which activity
they performed. Once trained, the DNN was used to predict
the classes on CFR data never considered during training, thus
allowing for a fair evaluation of the sensing performance.

Performance evaluation. A four-fold cross-validation mech-
anism has been used, with two campaigns used for training,
one for validation, and the remainder for testing. Nine different
validation rounds were performed, for a total of 108 evaluation
sets. The statistics of the accuracy and F1-score averaged over
the 108 tests and the four classes are reported in Figs. 2-3. The
bars cover the 25-75 percentile interval, the horizontal line
within each bar represents the median value, and the whiskers
span over the 5-95 percentile interval.

Fig. 2 shows the sensing results considering seven different
OFDMA RUs as specified by the 802.11ax standard. This
allows evaluating how the sensing performance changes when

Learning-based techniques 
span from traditional 

machine learning algo-
rithms, such as clustering, 
to advanced deep learning 
strategies, such as residual 

networks and attention 
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the sensing performance changes when chang-
ing the number of OFDMA sub-channels, and, in 
turn, the sensing bandwidth. The RUs are iden-
tified by two numbers where the one after the 
dash indicates the number of sub-channels, i.e., 
996, 484, or 242 for respectively 80 MHz, 40 
MHz, and 20 MHz RU bandwidth. The number 
before the dash indicates which of the RUs char-
acterized by the same number of sub-channels is 
considered, i.e., 1, 2, 3, or 4, starting from lower 
frequency sub-channels to higher frequency ones. 
The results indicate that there is not a clear link 
between the number of sub-channels leveraged 
for sensing and the sensing accuracy. This sug-
gests that — more than blindly relying on higher 
bandwidths — the design of sensing applications 
should consider properly selecting the sub-chan-
nels that are the best for sensing purposes based 
on some architecture-defi ned metrics. The higher 
the number of sub-channels, the more choices are 
available for the selection process.

In Fig. 3 we evaluate the impact of the sampling 
period on the sensing performance. Each evalua-
tion has been performed by re-sampling the sens-
ing data at RU1-996 considering sampling periods 
of Tc/2, Tc/3, Tc/4, and Tc/5. We also evaluate the 
impact of changing the number of Doppler vectors 
used as input for the neural network accordingly 
to the sub-sampling operations, i.e., N, N/2, N/3, 
N/4, and N/5. The fi rst group of bars refers to the 
reference metrics, i.e., without sub-sampling. We 
notice that the sensing performance decreases 
when sub-sampling the signal, even if there is not a 
clear trend as Tc/3 off ers better performance than 
Tc/2. Therefore, the sampling period should be 
properly evaluated for each sensing design. 

Is everythIng reAdy? reseArch chAllenges About 
IntegrAtIng sensIng Into WI-FI netWorks

Although the community is actively defining 
proper PHY/MAC layer modifications to enable 
sensing, it is not clear how communications, 
computation and sensing services will be highly 
intertwined. To bridge this gap, we provide an 
overview of the main research challenges to ISAC 
in Wi-Fi networks. 

dAtA collectIon, trAnsmIssIon And ProcessIng
Data collection. Either the Wi-Fi APs or devic-

es such as smartphones, tablets, and laptops, i.e., 
non-AP stations (non-AP STAs), can gather sens-
ing data (Fig. 4 on the left). The device where to 
execute this phase should be selected based on 
the required accuracy and Wi-Fi device manufac-
turers will need to properly consider the sensing 
needs during the design phases. For example, the 
antenna placement should be reconsidered as 
external antennas provide better signal-to-noise 
ratio (SNR), and equally spaced antennas ease 
the computation of the angle of arrival (AoA) to 
estimate the position of targets [2].

Data processing. For this phase, Wi-Fi APs, 
non-AP STAs, and ad-hoc edge devices may serve 
as computing units. Alternatively, the processing 
can be off loaded to cloud services (Fig. 4 on the 
right). The choice should be guided by the need-
ed computing power and the time sensitivity of 
the sensing application. In general, learning-based 
or hybrid approaches require higher computing 

power due to the long training process. In this 
respect, the training is expected to be performed 
either by the application vendors or demanded 
to the final users. In the former case, the data 
is collected, processed, and stored only by the 
application provider thus the user is not required 
to collect data for training. This approach is the 
most convenient from a user privacy perspec-
tive. However, it may lead to decreased sensing 
performance as sensing is actually performed in 
a different scenario than the ones considered at 
training. The latter approach consists in providing 
the user with the sole learning-based architecture 
that will be trained with user-specifi c data collect-
ed on the final deployment. While this strategy 
would be the best in terms of the accuracy of the 
trained algorithm, it may be of diffi  cult applicabili-
ty as the system would not be plug-and-play. As a 
tradeoff  between the two approaches, few shots 
adaptation and continual learning algorithms can 
be considered, and the adaptation can be per-
formed both on the local computing facilities or 
remotely on the cloud managed by the vendor. 
The inference phase requires less computing 
power but still needs memory support to save 
the learned parameters. To this end, strategies for 
resource-constrained devices, such as Wi-Fi APs 
and non-AP STAs, are being developed. Overall, 
we expect that both on-site and remote comput-
ing will be available, and that end users will have 
access to a marketplace where to download sens-
ing applications for their devices. Each application 
will have some requirements in terms of sensing 
data collection and support for computation, and 
diff erent versions would be made available to pro-
vide broad support. Wi-Fi AP will probability be 
provided with some basic sensing features already 
included, with the possibility to install additional 
tools depending on the resource availability.

Data transmission. Depending on where the 
sensing data collection and the processing phases 
are executed, the sensing data may need to be 

FIGURE 2. Average accuracy and F1-score with diff erent OFDMA RUs.

of different situations, e.g., human activities/gestures, with
a significant number of activities, and they do not gener-
alize well to multiple subjects and environments. Learning-
based approaches, instead, allow capturing more fine-grained
features without requiring manual feature extraction from
the CSI [8]. Learning-based techniques span from tradi-
tional machine learning algorithms, such as clustering, to
advanced deep learning strategies, such as residual networks
and attention mechanisms. Hybrid approaches are currently
being investigated to leverage the advantages of learning-
based and model-based approaches [12]. We point out that
training learning-based and hybrid techniques require large
datasets featuring significant diversity in terms of days of
measurements, environments, Wi-Fi hardware, and subjects (in
the case of human sensing). This is key to designing algorithms
that can generalize well over different domains, thus enabling
their implementation on commercial devices for plug-and-play
sensing solutions [13].

IV. DO COMMUNICATIONS PARAMETERS MATTER?
EVALUATION WITH COMMERCIAL 802.11 DEVICES

To answer this question, we analyze the impact of the
sensing bandwidth and the channel sampling period on the
classification accuracy. We focus on the human activity recog-
nition task considering SHARP, the state-of-the-art algorithm
proposed in [13]. We collected a completely novel dataset –
which we pledge to share with the community – entailing
IEEE 802.11 channel data captured in an indoor environment.2

Notice that IEEE 802.11bf devices are currently unavailable
in the market as they are expected to be commercialized by
2024. Moreover, as discussed above, the main new feature
of 802.11bf is to unveil sensing primitives while it is not
expected to introduce new transmission schemes that are left
to other amendments. In turn, we considered IEEE 802.11ax
devices as they implement the latest 802.11 standard release
that is currently replacing the majority of Wi-Fi deployments.
To the best of our knowledge, our dataset represents the first
collection of 802.11ax CSI data from commercial devices. In
Fig. 1 we depicted the network setup together with a summary
of the sensing data collection and processing steps followed
for the evaluation, as detailed next.

Experimental network setup. We set up an IEEE 802.11ax
network with two Asus RT-AX86U Wi-Fi access points (APs).
The network has been deployed in a house corridor by placing
the routers along the two long edges, spaced apart by 4 m. The
devices exchanged Wi-Fi data over the IEEE 802.11ax channel
number 157 using the OFDMA resource unit RU1-996, i.e.,
with a bandwidth of 80 MHz and 996 sub-channels.

CFR data collection. We used the AX-CSI tool to obtain
the CFR for each packet collected by the receiver [14]. We
considered an inter-packet distance of 𝑇𝑇𝑐𝑐 = 7.5 ms, being
reasonable for sensing applications. We asked a volunteer to
perform three activities, i.e., walking and running around the
room, and staying in place. We also added an “empty room”
class, for a total of four classes. For each class, data from

2https://github.com/francescamen/SHARPax
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Fig. 1. Experimental setup for sensing data collection and processing.
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Fig. 2. Average accuracy and F1-score with different OFDMA RUs.

four different campaigns – lasting two minutes each – were
collected. Note that we focus on a limited set of activities and a
single subject as we are mainly concerned with studying how a
sensing system behaves when changing some communications
parameters rather than proposing new sensing strategies. We
refer the reader to [13] for additional evaluations involving
more subjects and activities.

CFR data processing. The CFR phase offsets associated with
hardware imperfections were corrected using the approach
developed in [13]. Hence, Doppler vectors were computed
every time a new measurement was obtained at the receiver
considering a channel observation window of 25 channel read-
ings (the current measurement together with the 24 previous
ones), and averaging over the available OFDM sub-channels
(see [13]). The deep neural network (DNN) in [13] was trained
as a four classes classifier. The DNN took as input 𝑁𝑁 = 256
consecutive Doppler vectors at a time to estimate whether the
person was present in the room and, in case, which activity
they performed. Once trained, the DNN was used to predict
the classes on CFR data never considered during training, thus
allowing for a fair evaluation of the sensing performance.

Performance evaluation. A four-fold cross-validation mech-
anism has been used, with two campaigns used for training,
one for validation, and the remainder for testing. Nine different
validation rounds were performed, for a total of 108 evaluation
sets. The statistics of the accuracy and F1-score averaged over
the 108 tests and the four classes are reported in Figs. 2-3. The
bars cover the 25-75 percentile interval, the horizontal line
within each bar represents the median value, and the whiskers
span over the 5-95 percentile interval.

Fig. 2 shows the sensing results considering seven different
OFDMA RUs as specified by the 802.11ax standard. This
allows evaluating how the sensing performance changes when

FIGURE 3. Average accuracy and F1-score considering diff erent sampling periods and number of Wi-Fi channel read-
ings used as input for the activity classifier.
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Fig. 3. Average accuracy and F1-score considering different sampling periods
and number of Wi-Fi channel readings used as input for the activity classifier.

changing the number of OFDMA sub-channels, and, in turn,
the sensing bandwidth. The RUs are identified by two numbers
where the one after the dash indicates the number of sub-
channels, i.e., 996, 484, or 242 for respectively 80 MHz,
40 MHz, and 20 MHz RU bandwidth. The number before
the dash indicates which of the RUs characterized by the same
number of sub-channels is considered, i.e., 1, 2, 3, or 4, starting
from lower frequency sub-channels to higher frequency ones.
The results indicate that there is not a clear link between the
number of sub-channels leveraged for sensing and the sensing
accuracy. This suggests that – more than blindly relying
on higher bandwidths – the design of sensing applications
should consider properly selecting the sub-channels that are
the best for sensing purposes based on some architecture-
defined metrics. The higher the number of sub-channels, the
more choices are available for the selection process.

In Fig. 3 we evaluate the impact of the sampling period on
the sensing performance. Each evaluation has been performed
by re-sampling the sensing data at RU1-996 considering sam-
pling periods of 𝑇𝑇𝑐𝑐/2, 𝑇𝑇𝑐𝑐/3, 𝑇𝑇𝑐𝑐/4, and 𝑇𝑇𝑐𝑐/5. We also evaluate
the impact of changing the number of Doppler vectors used as
input for the neural network accordingly to the sub-sampling
operations, i.e., 𝑁𝑁 , 𝑁𝑁/2, 𝑁𝑁/3, 𝑁𝑁/4, and 𝑁𝑁/5. The first group of
bars refers to the reference metrics, i.e., without sub-sampling.
We notice that the sensing performance decreases when sub-
sampling the signal, even if there is not a clear trend as 𝑇𝑇𝑐𝑐/3
offers better performance than 𝑇𝑇𝑐𝑐/2. Therefore, the sampling
period should be properly evaluated for each sensing design.

V. IS EVERYTHING READY? RESEARCH CHALLENGES
ABOUT INTEGRATING SENSING INTO WI-FI NETWORKS

Although the community is actively defining proper
PHY/MAC layer modifications to enable sensing, it is not
clear how communications, computation and sensing services
will be highly intertwined. To bridge this gap, we provide an
overview of the main research challenges to ISAC in Wi-Fi
networks.

A. Data Collection, Transmission and Processing

Data collection. Either the Wi-Fi APs or devices such as
smartphones, tablets, and laptops, i.e., non-AP stations (non-
AP STAs), can gather sensing data (see Fig. 4 on the left). The
device where to execute this phase should be selected based
on the required accuracy and Wi-Fi device manufacturers
will need to properly consider the sensing needs during the
design phases. For example, the antenna placement should

be reconsidered as external antennas provide better signal-
to-noise ratio (SNR), and equally spaced antennas ease the
computation of the angle of arrival (AoA) to estimate the
position of targets [2].

Data processing. For this phase, Wi-Fi APs, non-AP STAs,
and ad-hoc edge devices may serve as computing units. Alter-
natively, the processing can be offloaded to cloud services (see
Fig. 4 on the right). The choice should be guided by the needed
computing power and the time sensitivity of the sensing appli-
cation. In general, learning-based or hybrid approaches require
higher computing power due to the long training process. In
this respect, the training is expected to be performed either
by the application vendors or demanded to the final users.
In the former case, the data is collected, processed, and
stored only by the application provider thus the user is not
required to collect data for training. This approach is the most
convenient from a user privacy perspective. However, it may
lead to decreased sensing performance as sensing is actually
performed in a different scenario than the ones considered at
training. The latter approach consists in providing the user with
the sole learning-based architecture that will be trained with
user-specific data collected on the final deployment. While
this strategy would be the best in terms of the accuracy of the
trained algorithm, it may be of difficult applicability as the
system would not be plug-and-play. As a tradeoff between the
two approaches, few shots adaptation and continual learning
algorithms can be considered, and the adaptation can be
performed both on the local computing facilities or remotely
on the cloud managed by the vendor. The inference phase
requires less computing power but still needs memory support
to save the learned parameters. To this end, strategies for
resource-constrained devices, such as Wi-Fi APs and non-AP
STAs, are being developed. Overall, we expect that both on-
site and remote computing will be available, and that end
users will have access to a marketplace where to download
sensing applications for their devices. Each application will
have some requirements in terms of sensing data collection and
support for computation, and different versions would be made
available to provide broad support. Wi-Fi AP will probability
be provided with some basic sensing features already included,
with the possibility to install additional tools depending on the
resource availability.

Data transmission. Depending on where the sensing data
collection and the processing phases are executed, the sensing
data may need to be transmitted from the sensing data collector
to other local or remote entities that manage the processing, as
depicted in Fig. 4. Such data transmission makes it essential
to integrate some data protection and encryption strategies
to prevent adversarial attacks against the sensing service. In
this respect, IEEE 802.11bf introduces the protected manage-
ment frames for the sensing measurement report transmission.
Moreover, when data is transmitted to the cloud, some tech-
niques should be applied to anonymize the information and
prevent possible privacy issues and data leakages.
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transmitted from the sensing data collector to 
other local or remote entities that manage the 
processing, as depicted in Fig. 4. Such data trans-
mission makes it essential to integrate some data 
protection and encryption strategies to prevent 
adversarial attacks against the sensing service. In 
this respect, IEEE 802.11bf introduces the protect-
ed management frames for the sensing measure-
ment report transmission. Moreover, when data is 
transmitted to the cloud, some techniques should 
be applied to anonymize the information and pre-
vent possible privacy issues and data leakages. 

sensIng securIty And PrIvAcy
The pervasiveness of sensing into our everyday 
lives will necessarily elicit security and privacy con-
cerns. Given the broadcast nature of the wireless 
channel, a malicious eavesdropper could easily 
capture the CSI reports and track the user’s activ-
ity without authorization. Worse yet, end-users 
may not even realize they are under attack when 
using radio-frequency-based monitoring solutions. 

In fact, with respect to cameras, wireless sensing 
applications also work in the dark, with smoke 
or dust in the environment, and when obstacles 
— e.g., walls, furniture — are between the sensing 
device and the subject (operating on the sub-7 
GHz bands). However, as yet, research and devel-
opment efforts have been focused on improv-
ing the classifi cation accuracy of the phenomena 
being monitored, with little regard to security and 
privacy issues. To address this point, the first 
important aspect is the development of DNN-
based Wi-Fi sensing systems robust to adversarial 
machine learning techniques. Moreover, individu-
als should be provided the opportunity to opt out
of sensing services, as depicted on the left side of 
Fig. 5. This would require the widespread intro-
duction of reliable sensing algorithms for subject 
identification. Although some techniques have 
been proposed [1], it is unclear whether they 
are resilient to malicious users actively trying to 
impersonate other users, as shown on the right 
side of Fig. 5, or adverse channel conditions, i.e., 
presence of noise and interference from other 
technologies. Identification techniques should 
also be tested against adversaries, either through 
active techniques, i.e., a device carefully jamming 
the sensing activity, or passive techniques, i.e., 
materials shielding and/or deflecting the Wi-Fi 
radiation. Another issue arises when the malicious 
entity estimates the CSI and performs sensing on 
ongoing Wi-Fi traffi  c. Here, a possible solution is 
to encrypt the training fi elds of the data packets 
so that only trusted devices can retrieve them and 
estimate the CSI. This option was already adopted 
in IEEE 802.11az to protect the location/ranging 
information from potential eavesdroppers.

cooPerAtIve And multI-bAnd sensIng
Cooperative and multi-band sensing will provide a 
unique opportunity to not only boost the sensing 
accuracy, but also to leverage the increased loca-
tion awareness of blockages to design intelligent 
sensing-aided Wi-Fi communications that will ame-
liorate the performance of mmWave Wi-Fi links. 
For example, understanding the size and move-
ment of blocking entities through sub-7 CSI reports 
could guide beam selection in the mmWave link, as 
shown in Fig. 6. By the same token, understanding 
the location of a non-AP STA by using sub-7 sens-

FIGURE 6. Multi-band cooperative sensing-aided Wi-Fi systems.

D. Sensing in Spectrum-Sharing Bands

From IEEE 802.11ax onward, Wi-Fi devices will share the
spectrum with incumbents in the 6 GHz band, such as licensed
point-to-point and satellite services, as well as other license-
exempt ultra-wideband systems and 5G NR-Unlicensed. To
protect incumbent services, license-exempt devices operate
under restrictions such as maximum emitted power and indoor-
only operation. Given the intense spectrum sharing in the
6 GHz band, further investigations should address how to make
sensing robust to interference.

opt-in

opt-out

spoofed
sensing data

sensing spoofer

Fig. 6. Sensing security and privacy.

E. Integrating Sensing and Communications

To make communication and sensing services coexist in Wi-
Fi networks, sensing transmissions – i.e., performed to obtain
channel estimates – could be “piggybacked” into data packets
to avoid decreasing the communication throughput. However,
data packets may be subject to significant interference in the
6 GHz band, which may be tolerable for data recovery but
intolerable from a sensing perspective. Therefore, a core issue
is to determine the optimal trade-off between making reserved
use of the spectrum for sensing operations and piggybacking
sensing into data packets. Similar to multi-band sensing, dedi-
cated channels could be used to improve sensing performance
without a significant decrease in system throughput.

VI. CONCLUDING REMARKS

Sensing services are expected to be implemented within
Wi-Fi networks by 2024 through the release of the IEEE
802.11bf standard. Researchers are currently working on two
parallel directions that will enable integrating sensing into
Wi-Fi networks. The Wi-Fi technological peculiarities lever-
aged for sensing purposes are detailed in this article, together
with the approaches to developing Wi-Fi sensing algorithms.
We included practical lessons learned from experimental eval-
uations with commercial devices and an overview of the open
research challenges. Overall, we trust that our contribution will
provide a comprehensive overview of the opportunities and
challenges of Wi-Fi sensing.
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FIGURE 4. Integration of sensing in Wi-Fi networks. Channel data are collected by the sensing units. Hence, the sensing application is executed on the comput-
ing units. Sensing applications can be downloaded from a marketplace.
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Fig. 4. Integration of sensing in Wi-Fi networks. Channel data are collected by the sensing units. Hence, the sensing application is executed on the computing
units. Sensing applications can be downloaded from a marketplace.

B. Sensing Security and Privacy

The pervasiveness of sensing into our everyday lives will
necessarily elicit security and privacy concerns. Given the
broadcast nature of the wireless channel, a malicious eaves-
dropper could easily capture the CSI reports and track the
user’s activity without authorization. Worse yet, end-users may
not even realize they are under attack when using radio-
frequency-based monitoring solutions. In fact, with respect to
cameras, wireless sensing applications also work in the dark,
with smoke or dust in the environment, and when obstacles
– e.g., walls, furniture – are between the sensing device and
the subject (operating on the sub-7 GHz bands). However,
as yet, research and development efforts have been focused
on improving the classification accuracy of the phenomena
being monitored, with little regard to security and privacy
issues. To address this point, the first important aspect is
the development of DNN-based Wi-Fi sensing systems ro-
bust to adversarial machine learning techniques. Moreover,
individuals should be provided the opportunity to opt out
of sensing services, as depicted on the left side of Fig. 6.
This would require the widespread introduction of reliable
sensing algorithms for subject identification. Although some
techniques have been proposed [1], it is unclear whether they
are resilient to malicious users actively trying to impersonate
other users, as shown on the right side of Fig. 6, or adverse
channel conditions, i.e., presence of noise and interference
from other technologies. Identification techniques should also
be tested against adversaries, either through active techniques,
i.e., a device carefully jamming the sensing activity, or passive
techniques, i.e., materials shielding and/or deflecting the Wi-Fi
radiation. Another issue arises when the malicious entity
estimates the CSI and performs sensing on ongoing Wi-Fi
traffic. Here, a possible solution is to encrypt the training fields
of the data packets so that only trusted devices can retrieve
them and estimate the CSI. This option was already adopted
in IEEE 802.11az to protect the location/ranging information
from potential eavesdroppers.

C. Cooperative and Multi-band Sensing
Cooperative and multi-band sensing will provide a unique

opportunity to not only boost the sensing accuracy, but also
to leverage the increased location awareness of blockages
to design intelligent sensing-aided Wi-Fi communications
that will ameliorate the performance of mmWave Wi-Fi
links. For example, understanding the size and movement
of blocking entities through sub-7 CSI reports could guide
beam selection in the mmWave link, as shown in Fig. 5.
By the same token, understanding the location of a non-
AP STA by using sub-7 sensing can help reduce the over-
head associated with beam scanning and alignment. A key
challenge will be to coordinate time-sensitive cooperative
sensing operations among multiple Wi-Fi devices in differ-
ent spectrum bands. Indeed, communication-related sensing
will be extremely time-sensitive for different safety-critical
applications such as autonomous driving and telemedicine,
or for virtual/augmented/mixed reality and holography for
entertainment and remote working. These applications require
the sensing information to be available at the communication
end-point within milliseconds from the acquisition. To this
end, a possible strategy could be to introduce control channels
in the sub-7 band exclusively dedicated to the coordination of
low-latency cooperative sensing operations.

sub-7 sensing
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Fig. 5. Multi-band cooperative sensing-aided Wi-Fi Systems.
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B. Sensing Security and Privacy

The pervasiveness of sensing into our everyday lives will
necessarily elicit security and privacy concerns. Given the
broadcast nature of the wireless channel, a malicious eaves-
dropper could easily capture the CSI reports and track the
user’s activity without authorization. Worse yet, end-users may
not even realize they are under attack when using radio-
frequency-based monitoring solutions. In fact, with respect to
cameras, wireless sensing applications also work in the dark,
with smoke or dust in the environment, and when obstacles
– e.g., walls, furniture – are between the sensing device and
the subject (operating on the sub-7 GHz bands). However,
as yet, research and development efforts have been focused
on improving the classification accuracy of the phenomena
being monitored, with little regard to security and privacy
issues. To address this point, the first important aspect is
the development of DNN-based Wi-Fi sensing systems ro-
bust to adversarial machine learning techniques. Moreover,
individuals should be provided the opportunity to opt out
of sensing services, as depicted on the left side of Fig. 6.
This would require the widespread introduction of reliable
sensing algorithms for subject identification. Although some
techniques have been proposed [1], it is unclear whether they
are resilient to malicious users actively trying to impersonate
other users, as shown on the right side of Fig. 6, or adverse
channel conditions, i.e., presence of noise and interference
from other technologies. Identification techniques should also
be tested against adversaries, either through active techniques,
i.e., a device carefully jamming the sensing activity, or passive
techniques, i.e., materials shielding and/or deflecting the Wi-Fi
radiation. Another issue arises when the malicious entity
estimates the CSI and performs sensing on ongoing Wi-Fi
traffic. Here, a possible solution is to encrypt the training fields
of the data packets so that only trusted devices can retrieve
them and estimate the CSI. This option was already adopted
in IEEE 802.11az to protect the location/ranging information
from potential eavesdroppers.

C. Cooperative and Multi-band Sensing
Cooperative and multi-band sensing will provide a unique

opportunity to not only boost the sensing accuracy, but also
to leverage the increased location awareness of blockages
to design intelligent sensing-aided Wi-Fi communications
that will ameliorate the performance of mmWave Wi-Fi
links. For example, understanding the size and movement
of blocking entities through sub-7 CSI reports could guide
beam selection in the mmWave link, as shown in Fig. 5.
By the same token, understanding the location of a non-
AP STA by using sub-7 sensing can help reduce the over-
head associated with beam scanning and alignment. A key
challenge will be to coordinate time-sensitive cooperative
sensing operations among multiple Wi-Fi devices in differ-
ent spectrum bands. Indeed, communication-related sensing
will be extremely time-sensitive for different safety-critical
applications such as autonomous driving and telemedicine,
or for virtual/augmented/mixed reality and holography for
entertainment and remote working. These applications require
the sensing information to be available at the communication
end-point within milliseconds from the acquisition. To this
end, a possible strategy could be to introduce control channels
in the sub-7 band exclusively dedicated to the coordination of
low-latency cooperative sensing operations.
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ing can help reduce the overhead associated with 
beam scanning and alignment. A key challenge will 
be to coordinate time-sensitive cooperative sensing 
operations among multiple Wi-Fi devices in differ-
ent spectrum bands. Indeed, communication-re-
lated sensing will be extremely time-sensitive for 
different safety-critical applications such as auton-
omous driving and telemedicine, or for virtual/
augmented/mixed reality and holography for enter-
tainment and remote working. These applications 
require the sensing information to be available at 
the communication end-point within milliseconds 
from the acquisition. To this end, a possible strat-
egy could be to introduce control channels in the 
sub-7 band exclusively dedicated to the coordina-
tion of low-latency cooperative sensing operations.

Sensing in Spectrum-Sharing Bands
From IEEE 802.11ax onward, Wi-Fi devices will 
share the spectrum with incumbents in the 6 
GHz band, such as licensed point-to-point and 
satellite services, as well as other license-exempt 
ultra-wideband systems and 5G NR-Unlicensed. 
To protect incumbent services, license-exempt 
devices operate under restrictions such as maxi-
mum emitted power and indoor-only operation. 
Given the intense spectrum sharing in the 6 GHz 
band, further investigations should address how 
to make sensing robust to interference.

Integrating Sensing and Communications
To make communication and sensing services 
coexist in Wi-Fi networks, sensing transmissions 
— i.e., performed to obtain channel estimates 
— could be “piggybacked” into data packets to 
avoid decreasing the communication through-
put. However, data packets may be subject to 
significant interference in the 6 GHz band, which 
may be tolerable for data recovery but intoler-
able from a sensing perspective. Therefore, a 
core issue is to determine the optimal trade-off 
between making reserved use of the spectrum for 
sensing operations and piggybacking sensing into 
data packets. Similar to multi-band sensing, dedi-
cated channels could be used to improve sensing 
performance without a significant decrease in sys-
tem throughput.

Concluding Remarks
Sensing services are expected to be implemented 
within Wi-Fi networks by 2024 through the release 
of the IEEE 802.11bf standard. Researchers are cur-
rently working on two parallel directions that will 
enable integrating sensing into Wi-Fi networks. The 
Wi-Fi technological peculiarities leveraged for sens-
ing purposes are detailed in this article, together 
with the approaches to developing Wi-Fi sensing 
algorithms. We included practical lessons learned 
from experimental evaluations with commercial 
devices and an overview of the open research 
challenges. Overall, we trust that our contribution 
will provide a comprehensive overview of the 
opportunities and challenges of Wi-Fi sensing.
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