
Mathematical Programming Computation
https://doi.org/10.1007/s12532-022-00224-2

FULL LENGTH PAPER

An integrated local-search/set-partitioning refinement
heuristic for the Capacitated Vehicle Routing Problem

Francesco Cavaliere1 · Emilio Bendotti2 ·Matteo Fischetti3

Received: 27 March 2021 / Accepted: 13 June 2022
© The Author(s) 2022

Abstract
In this paper, an effective heuristic algorithm for large-scale instances of the Capaci-
tated Vehicle Routing Problem is proposed. The technique consists in a local search
method entangled with a restricted Set Partitioning problem optimization. Helsgaun’s
LKH-3 algorithmhas been used for the local search phase,with a number of implemen-
tation improvements. The restricted Set Partitioning formulation is solved by means
of an exact commercial Integer Liner Programming solver. The resulting algorithm is
able to consistently improve the solutions obtained by a state-of-the-art heuristic from
the literature, as well as some of the best-know solutions maintained by the CVRPLIB
website.
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1 Introduction

Firstly introduced by Dantzig and Ramser [11], Vehicle Routing Problems (VRPs) are
a class of problems calling for a minimum-cost set of vehicle routes to serve a given
set of customers with known demands.

The Capacitated Vehicle Routing Problem (CVRP) is one of the most studied VRP
versions, in which the transportation request consists of the distribution of goods
from a single depot to a set of customers using homogeneous vehicles with a limited
capacity. In the symmetric case, it can be defined on a complete undirected graph
G = (V , E) with edge costs ce’s and a special depot node d. Each customer node
i ∈ N = V \ {d} is characterized by its demand qi ≥ 0 which represents the amount
of goods requested, while each vehicle route must start and finish at d and has to visit a
set of customers whose total demand does not exceed a given capacity C . The overall
number of vehicles to be used is often fixed in advance.

Historically, many mathematical formulations have been proposed for this problem
[27, 42]. Particularly relevant for our work is the so-called Set-Partitioning (SP) for-
mulation, common to many other VRP variants. In the SP formulation, the objective
is to find the best combination of feasible routes that partitions the customer nodes of
the graph, minimizing the overall cost, i.e.:

min
∑

p∈Ω

cpθp (1a)

∑

p∈Ω

θp = k (1b)

∑

p∈Ωi

θp = 1, ∀i ∈ N (1c)

θp ∈ {0, 1}, p ∈ Ω (1d)

where Ω is the set of feasible routes for the CVRP, cp is the cost associated to each
route p ∈ Ω , Ωi ⊂ Ω is the subset of routes that visit the customer i ∈ N , k is the
required number of routes, and θp is a binary variable which is 1 if the route p is in
the optimal solution, 0 otherwise.

An important aspect of the SP formulation is its generality, as it easily extends to all
VRP variants where the additional constraints only affect the feasibility of the routes,
hence they are implicitly represented by the route set Ω . However, a main drawback
is represented by the cardinality of Ω , which grows exponentially with the number of
customers. To tackle this issue, only a subset of potentially-relevant routes is explicitly
generated, and optimization techniques like Column Generation [12, 15] or Branch
and Price [18, 32] are used. Within these schemes, a Restricted SP (RSP) formulation
is iteratively solved, containing only a subset of routes.

Although several advanced mathematical programming decomposition algorithms
have beenproposed in the last fewdecades, only relatively small instances—containing
only few hundred customers—have been solved to optimality [42]. Problems encoun-
tered in real-life scenarios are often substantially larger, thus efficient heuristic
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algorithms are the only option available to obtain good-quality solutionswithin accept-
able computing times.

The aim of our paper is to design a powerful (yet time consuming) refinement
heuristic which is able to improve top-quality solutions. Thus, our method is meant to
be used on top of a state-of-the-art heuristic, more than to replace it. This is very much
is the spirit of other refinement heuristics from the literature, whose quality is certified
by the capability of improving state-of-the-art solutions in a final post-processing step.

The paper is organized as follows. Previous literature on CVRP heuristics is
sketched in Sect. 2. In Sect. 3, the comprehensive strategy of our algorithm is described,
along with the modifications and improvements applied. Extensive computational
results are reported in Sect. 4, showing that our method is able to consistently improve
the solutions obtained by a state-of-the-art heuristic from the literature, as well as
some of the best-know solutions maintained in the CVRPLIB website [31]. Some
conclusions are finally drawn is Sect. 5.

2 Previous work

A brief outline of the CVRP heuristics that are most relevant for our work follows.
Helsgaun’s [21, 22] heuristic, LKH-3 (whose code can be found in the dedicated

website [19]), is a penalty-based extension of the famous Lin and Kerninghan [28]
heuristic (LK), able to tackle many VRP variants. Although less efficient with respect
to other state-of-the-art CVRP heuristics, LKH-3 (from now on, just LKH) plays a
prominent role in our work in that it is the building block of our local-search phase,
so we next give a brief description of this method.

Originally designed for the Traveling Salesperson Problem (TSP), the LKH algo-
rithm is based on the concept of r -Opt moves and r -optimality. In a r -Opt move, r
edges from the current solution are replaced by other r edges in such away that another
solution is obtained [21]. A solution is said to be r -optimal if it is impossible to obtain
a shorter tour by means of any r -Opt move [21]. It is also intuitive that, for 0 ≤ r ′ ≤ r ,
an r -optimal tour is also r ′-optimal, and for a tour of n city to be optimal, it must
also be n-optimal. Furthermore, is also reasonable that the probability for a r -optimal
tour to be optimal grows with r [21]. However, the number of possible r -Opt moves
grows rapidly with the number of nodes of the graph, making it impossible to fully
explore the available moves for large values of r . For this reason, r is usually set to
2 or 3, as the algorithm rapidly loses efficiency for larger numbers. To overcome this
limit, the LK heuristic introduces a scheme where the r value is decided at run-time,
iteration after iteration. Initially, r is set to 2, its minimal value, and then it is gradu-
ally increased searching for new potential pairs with the following rationale: starting
from the most “out-of-place” pair, the algorithm iterates searching for the new most
“out-of-place” pairs of the remaining set, repeating the search multiple times [28]. If
an improvement is found, the search restarts from scratch, while it stops otherwise.
For further information, the reader can refer to [21] for a brief explanation, or to the
original Lin and Kernighan’s paper [28].

123



F. Cavaliere et al.

Vidal et al. [44] propose HGS, a hybrid genetic algorithm combining the effec-
tiveness of their population based method with the Local-Search exploration of
neighborhoods defined from a set of operators.

Arnold and Sörensen’s [5] knowledge-guided local search (KGLS) is an effective
Local–Search heuristic which adopts three different neighborhood-defining operators
along with a knowledge based penalization to avoid local optima.

Christiaens and Vanden Berghe [9] develop a simple yet effective algorithm named
Slack Induction by String Removals (SISR), consisting in a ruin-and-recreate local
search heuristic.

In their recent work, Accorsi and Vigo [2] propose FILO, a very efficient and
effective iterated local search heuristic, which through the combination of acceleration
and localization techniques is able to find state-of-the-art solutions for very large scale
CVRP instances in a short computing time. The algorithm adopts a large number
of operator-defined neighborhoods and a combination of a ruin-and-recreate scheme
coupled with simulated annealing.

Sharing some similaritieswith theworkpresented in the present paper, Subramanian
et al. [40] propose Iterated Local Search with Set Partitioning (ILS–SP), a hybrid
algorithm merging the effectiveness of a competitive iterated local search heuristic
along with the optimization a SP formulation that tries to heuristically find the best
combination of the explored routes. The adoption of a SP optimization phase has been
also studied for many other heuristic techniques, as in the works of Foster et al. [16],
Ryan et al. [39], Rochat et al. [37], Kelly et al. [25], De Franceschi et al. [13], or
Monaci and Toth [30] for the Bin–Packing Problem.

Finally, Queiroga et al. [36] propose a heuristic working as a refinement technique
to improve the solution obtained by other heuristics. Exploring a large solution neigh-
borhood, their algorithm is able to consistently improve near-optimal solutions. The
adopted technique is POPMUSIC [41], a matheuristic [14] based on the VRPSolver
[33, 34] exact solver for VRPs.

3 AlgorithmOutline

The overall scheme of our approach can be subdivided into three main phases.

1. The LKH heuristic is executed, in parallel; from the solutions generated at the end
of each “trial” of the core LK algorithm, routes are extracted to populate a pool
(called the “route pool”).

2. Considering the Linear Programming (LP) relaxation of the SP formulation, a
column-generation pricing procedure is applied to “filter” the most meaningful
routes from the pool.

3. The RSP formulation, considering only the selected routes, is solved with a given
time limit.

The three phases above are iterated until a global time limit expires—or a maximum
number of repetitions is reached.
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The described algorithm has been called Local Search–ColumnGenerationHeuris-
tic (LS–CGH) since it uses the LKH heuristic to generate good candidate routes that
are then fed to the RSP optimization.

To better differentiate between the different types of iterations (one nested into the
other), the following terms will be used:

– in accordance with the naming adopted by the LKH algorithm, the term “trial”
refers to a single pass of the core Lin–Kerninghan algorithm, ending when nomore
improving r -Opt moves can be found.

– A “run” is a set of successive “trials”, each starting from the perturbed solution of
the previous one.

– The sequence of a single execution of LKH, followed by Column Generation
filtering and the RSP optimization, has been named “round”.

Our LS–CGH algorithm then consists in a number of “rounds”, repeating the three-
phase scheme multiple times. Each round is linked to the next one as it exploits the
best solution found as its initial solution, and also because the route pool is maintained
between rounds.

A high-level representation of the three main phases of the algorithm is given in
Algorithm 1. In the pseudocode, the following functions are used:

– LKH: Calls the LKH-based heuristic described in Sect. 3.1 and in Algorithm 2.
Returns the best solution found by the algorithm (S), along with a populated route
pool (P).

– CGFilter:Applies the column-generation inspiredfiltering (described inSect. 3.2)
to the route pool.

– SolveRSP: Solves the restricted Set Partitioning formulation with a black-box
Integer Linear Programming (ILP) solver; see Sect. 3.3.

Algorithm 1: High-level pseudocode for the LS–CGH algorithm.
Input : Initial solution S.
Output: The best solution found.

1 function LS- - CGH(S)

2 begin
3 for Round ← 1 to n_Rounds do
4 S, P ←LKH(S);
5 P ′ ← CGFilter(P);
6 S ← SolveRSP(P ′, S)

7 end
8 return S;
9 end

3.1 Phase 1: Lin, Kernighan and Helsgaun Heuristic

To integrate the LKH algorithm with our LS–CGH scheme—which has been imple-
mented as multi-thread C++ project—and also to improve its efficiency, a number of
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customizations have been applied to the original Helsgaun’s code available at [19]. A
summary of the most relevant changes are reported next.

– Due to the extensive use of global variables and non-reentrant primitives in the C
code, the algorithmwas not “out-of-the-box” ready to be encapsulates into amulti-
thread scheme. Therefore we have systematically modified all global variables
storage making them “thread local”, and we have substituted all the non-reentrant
C primitives with their corresponding reentrant versions. After these changes, we
were able to synchronize the code by means of a step-by-step execution imple-
mented upon pthread barrier.

– An improved synchronization has been implemented to equalize the duration of
parallel “runs”.

– The Jonker and Volgenant’s [24] mTSP-to-TSP transformation has been imple-
mented to adapt solutions generated by the RSP optimisation and make them
compatible with the current LKH instance.

– A basic control interface has been added to control the execution of the LKH
algorithm and to let successive LKHcalls execute one after the otherwith a reduced
overhead.

– A route extraction function has been implemented to obtain a suitable amount of
diversified routes to fill the route pool.

– The caching system already adopted within the algorithm has been extended and
slightly improved.

– The CVRP penalty function has been redesigned, improving its speed while main-
taining the exact same behaviour as the original one.

– ASimulatedAnnealing (SA) scheme has been added on top of the original solution
acceptance test, to improve the performance of the original algorithmand to perturb
the initial solution in the attempt of escaping from local optima.

For the sake of clarity, in what follows wewill call “newLKH” our modified version
of the LKH. To give a clearer idea of the structure of the newLKH algorithm and of
the introduced changes, a sketch of this variant is given in Algorithm 2. The overall
scheme resembles the original LKH, since most of its logic is not affected by our
changes. The twomain additions are the route-extraction step (ExtractRoutes), and
the Simulated Annealing acceptance test (SATest) called on every solution returned
by the LinKernighan function. To be more specific, the following functions appear
in the pseudocode:

– Cost: Returns the cost of the input solution.
– Kick: Perturbs the input solution; see Sect. 3.1.3.
– LinKernighan: Calls Helsgaun’s implementation of the Lin–Kernighan heuristic
on the input solution, possibly refining it; seeAlgorithm3 for a simplified overview
of the main steps of this phase.

– ExtractRoutes: Given a (possibly infeasible) tour, returns all its feasible routes.
– SATest: Manages the current solution update according to the Simulated Anneal-
ing metaheuristic approach described in Sect. 3.1.3.

– TimeLimitReached: Simple test that returns true if the given time limit for the
phase 1 of the LS–CGH has been reached, false otherwise.
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An overview of the LinKernighan function is provided in Algorithm 3, high-
lighting the positions of the “Penalty” and “Flip” functions (to be described in Sect.
3.1.2 and Sect. 3.4.1, respectively). The functions that appear in the pseudocode are
as follows.

Algorithm 2: High-level pseudocode for the LKH algorithm.
Input : Initial solution Sinit .
Output: The populated route pool P and the best solution found S∗.

1 function LKH(Sinit )
2 begin
3 for Run ← 1 to n_Runs do
4 S∗ ← S ← Sinit ;
5 for Trial ← 1 to n_Trials do
6 S ← Kick(S);
7 S ← LinKernighan(S);
8 P ← ExtractRoutes(S);
9 if Cost(S) < Cost(S∗) then

10 S∗ ← S
11 end
12 S ← SATest(S∗, S);
13 if TimeLimitReached() then
14 return S∗, P
15 end
16 end
17 end
18 return S∗, P
19 end

– BestSpecialOptMove: Original LKH function which, given a solution, searches
for a r -Opt move that improves it, considering a restrict set of moves specialized
for routing problems. An array MrOpt [1..r ] of 2-Opt moves and its size r are
returned. The proposed move is thus represented as a sequence of r 2-Opt moves
to be applied, in sequence, to produce the final r -Opt move; see Sects. 3.1.2 and
3.4.1 for further details.

– Flip: Original (for CVRP) or modified (for asymmetric problems) function that
applies a single 2-Opt move to a solution; see Sect. 3.4.1 for details.

– Penalty: Modified version of the original “Penalty” function that, given a solu-
tion, returns its infeasibility level; see Sect. 3.1.2 for details.
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Algorithm 3: Simplified representation of the LinKernighan function inside
the LKH algorithm
Input : Initial solution S.
Output: The refined solution S.

1 function LinKernighan(S)

2 begin
3 P ← Penalty(S);
4 C ← Cost(S);
5 MrOpt , r ←BestSpecialOptMove(S);
6 do
7 Improved ← f alse;
8 for t ← 1 to r do
9 S ← Flip (S, MrOpt [t])

10 end
11 P ′ ←Penalty(S);
12 C ′ ← Cost(S);
13 if (P ′ < P) OR (P ′ = P AND C ′ < C) then
14 P ← P ′;
15 C ← C ′;
16 Improved ← true
17 else
18 for t ← r downto 1 do
19 S ←Flip(S, MrOpt [t])
20 end
21 end
22 while Improved;
23 return S
24 end

Our newLKH version containing all the speed-related optimizations (namely: the
newPenalty function, the caching system and the newFlip function) is freely available,
for research purposes [8].

3.1.1 Speed improvements

Some of the most relevant changes aimed at speeding up the execution of the original
LKH code are outlined next.

Cost function: To reduce the overhead related to the computation of distances between
vertices, the LKH algorithm uses, since its first version, a clever caching system
proposed by Bentley [6]. This caching system works with two arrays of the same size:
one array is used to save the used distances, while in the other one the smaller of the
two node indices is saved as a signature. The position of each distance-signature pair
in their respective arrays is chosen with a fast hash function. Thanks to this simple
mechanism, both Helsgaun and Bentley report that the time with TSP problems can
be halved or more [6, 21].

In the LKH original cost function, several checks are performed before calling the
computationally expensive distance function. Indeed, depending on the VRP version
and other internal parameters, the required distance might have already been stored

123



An integrated local-search/set-partitioning refinement heuristic for CVRP

by previous operations. Thus, before calling the distance function, all these fields are
checked. The cache is checked as a last step, only if none of the fields contains the
required value. Even though the performed checks are usually less expensive than a
call to the distance function, searching all the places where the distance could have
been stored (which are not located adjacently in memory) can be slower than a direct
check of the cache which, very often, already contains the actual value required.
For this reason, we have modified the original cost function moving the cache check
ahead, in a small prologue (often inlined by the compiler even without linking time
optimization, since it is defined in a shared header file) that first checks if the requested
cost is already stored inside the cache. Only when this step fails, it proceeds by calling
the remaining part of the cost function, performing all the field checks and, eventually,
the final call to the distance function. Furthermore, since distance and signature are
always accessed together, the subdivision into two distinct array have been modified
into a single array containing the signature and its distance adjacent in memory, to
improve the cache-locality of this system.

Forbidden function: The “Forbidden” function tells if a given edge is part or not of
the given instance. A simple example of forbidden edges is the set of edges between
depot copies—note that, in the Jonker and Volgenan’s mTSP-to-TSP transformation
[24], multiple copies of the depot are introduced. This function is heavily used by the
algorithm, as shown by our profiling. Since the caching mechanism proved to be a
really effective improvement for the cost function, we have implemented an analogous
mechanism for the Forbidden function, using again a small prologue to possibly skip
not only all the checks made by the original one, but also the function-call overhead.

Balanced workload: As previously described, we have modified the original LKH
source code to make it reentrant. The reason for this extensive modification has been
the need of enabling a parallel execution of multiple instances of the LKH algorithm.
However, running different threads in parallel, synchronized only at the beginning
and at the end of each LKH call, often leads to an unbalanced situation where some
threads take less time than others. This difference varies randomly with the status of
the algorithm. To avoid the waste of potential computational resources, all the threads
are synchronized such that each parallel run ends onlywhen the slowest one has ended.
In this way, fast runs (which sometimes are even twice as fast as the slowest one), can
carry on with their “trials”, avoiding to reach the phtread barrier early and then wait
for the others to finish.

Some utility procedures have also been implemented to connect LKH with the
remaining part of our LS–CGH scheme. We next describe two main components of
such an interface: the route pool and the Jonker and Volgenant’s solution transforma-
tion.

Route Pool: To store the routes extracted by the solutions generated by the LKH we
have implemented a simple route pool.We have decided to use a data structure built on
top of C++ STL std::unordered_set to avoid duplicates while keeping the best version
of each route within the same group of nodes. Every route is distinguished from the
others by the set of visited customers (which are saved as a sorted list), while the

123



F. Cavaliere et al.

actual customer sequence and the length of the routes are updated every time a better
“duplicate” is found.

Jonker and Volgenant’s solution transformation: An important transformation, pro-
posed by Jonker and Volgenant [24] and applied in LKH, is the mTSP-to-TSP
conversion which transforms an instance with m salespersons into a TSP instance
withm−1 copies of the depot. This transformation is used to reduce the search space,
decreasing the symmetry of mTSP and other problems with multiple routes (e.g.,
CVRP). It is easy to see that when m − 1 identical copies of the depot are introduced
into the graph, for each tour there exists m! equivalent tours which only differ by the
order of the depot copies. This transformation deletes part of the edge of the graph,
by assigning to some selected nodes two depot copies to which they are allowed to be
connected with, and by forbidding the edges to the other depot copies—thus reducing
the number of possible route permutations.

A problem we encountered interfacing the RSP phase with the LKH one, concerns
the compatibility of the CVRP solutions produced. Indeed, the combination of routes
with the Set–Partitioning ILP optimization does not consider the Jonker and Vol-
genant’s mTSP-to-TSP transformation [24] applied within the LKH algorithm. When
the ILP optimization generates CVRP solutions, the transformation is applied to avoid
the use of the forbidden edges. Our algorithm follows the general directives advised
in the original Jonker and Volgenant’s paper [24], namely:

1. Starting from a general CVRP solution, the routes are extracted and the depot is
removed, obtaining a list of chains of customers.

2. The depot is copied, obtaining a number of depots equal to the number of vehicles.
3. All the chain endpoints (two for each chain) are considered. Accordingly to the

transformation already in place within the current LKH instance, for each endpoint
that results to be a special customer (in the sense of the Jonker and Volgenant’s
paper: a customer forwhich the transformation has assigned only two depot copies)
the required depots are assigned.

4. Then the main cycle of the transformation begins. Starting from one, all the chains
are concatenated one after the other, ensuring that all the special customers are
not linked with forbidden depot copies.

3.1.2 New penalty function

Although quite effective in practice, the above improvements are of aminor theoretical
relevance since they simply accelerate the algorithm without modifying its original
scheme—or provide an interface for other modules to interact with it more freely. On
the other hand, the Penalty function modification has been characterized by a more
prominent re-design of one of the main bottleneck functions. LKH is characterized by
a hard division between the penalty value of a solution, which correlates to a measure
of the “amount of constraint violation”, and the actual cost of the objective function. At
run-time, LKH gives higher priority to the improvement (i.e., decrease) of the penalty,
considering the edge-cost gain achieved by the proposed r -Opt move only when the
penalty variation is zero.
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For any given solution, the Penalty function computes the penalty value with a
computational complexity linear in the size of the CVRP solution. Inside LKH, such
a solution is represented by a TSP tour containing a number of depot copies equal to
the number of vehicles (following the Jonker and Volgenant [24] symmetry-breaking
transformation). In what follows, the term “tour” will refer to this internal representa-
tion and it will not be a synonym for “route”, which instead refers to the cycle covered
by a singe vehicle.

The Penalty function is called inside the LKH to check a new proposed solution in
the following way:

1. A new r -Opt move is found and stored (decomposed as a series of 2-Opt moves)
within the LK function.

2. The move is applied to the best tour found in the current “trial”, named current
tour, obtaining a new proposed tour.

3. The penalty function is called to check the proposed tour.
4. If the proposed tour improves the penalty of the current tour, or keeps the penalty

unchanged while improving its cost, it becomes the new current tour, otherwise
the saved r -Opt move is reversed to obtain the original current tour.

Notice that, at any given time, the proposed and current tours are abstract concepts
used to explain their role, while the tour stored in memory is actually one which is
first modified and then eventually restored if it does not improve the previous one.

However, due to its strict policy requiring that the infeasibility level can never
increase, the Penalty function frequently rejects new candidates solutions. As a matter
of fact, in almost all our tests the function rejects the proposed tour more than 95%
of the times, thus representing one of the main bottlenecks for the entire algorithm.
This observation enabled us to optimize the original LKH scheme by speeding-up the
frequent “rejecting” case, introducing a rarely executed “update” step, thus resulting
in a significant performance improvement. Indeed, the main change to the original
penalty function has been the restriction of the penalty checks to only the routes
“touched” by the proposed r -Opt move. Since the penalty function is called at every
new potential change of the tour, these are the only routesmodified between successive
calls of the penalty function.

As in the original code there is no route-related data structure, a basic one has
been implemented to store the route penalty for the current tour. Then, for each node,
a reference to its route-data is stored, in accordance to the current CVRP solution.
Thanks to this additional information, one can efficiently retrieve the current penalties
of the routes touched by the proposed r -Opt move, as they appear in the current tour.

As a further optimization, we observe that route penalties need to be stored only
if the current tour penalty is not yet zero. Indeed, when a feasible CVRP solution has
been found (and the current penalty is, therefore, zero), then the previous cumulative
penalty of any subset of routes is also zero. Therefore the previously described step
can be completely avoided to further speed up the function.

Finally, when a proposed tour is accepted, an update procedure needs to be executed
to restore route-data consistency.
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3.1.3 Simulated annealing

Toavoid to get stuck in local optima, the originalLKHalgorithmuses a so-called “kick”
strategy, i.e., every time a “trial” of the core LK procedure cannot find any other move
that improves the current solution, a random r -Opt move (usually a double bridge
4-Opt move [3, 4, 20, 29]) is applied to the current solution and the LK procedure
is called again. As previously explained, a single iteration of such scheme is named
“trial” in the LKH context. This technique has however two shortcomings:

– When LK is applied over a TSP instance that maps the VRP one, the additional
constraints applied through the penaltiesmake the search space very sparse. There-
fore, although effective with true TSP instances, it can result to be not powerful
enough to perturb the solution and move from the current VRP local-optima.

– When a warmstart is provided to the algorithm, LKH starts from a potentially
very good local optimum from which it is not able to move (especially if such a
warmstart has been produced by previous iterations of the LKH algorithm itself).
Therefore, a perturbing strategy able to lead the search trajectory away from this
starting point and to explore new solution neighborhoods is needed.

As in the recent FILO heuristic [2], we decided to integrate a Simulated Annealing
(SA) [26] scheme intoLKH,motivated alsoby the compatibility of the original penalty-
based scheme with such a technique.

Two overlapping SA schemes have been implemented, one based on the number of
“trials”, and one based on the LKH time limit. During the execution, the temperature
is decreased for both the SAs and the smaller one is considered for the actual SA
acceptance test. In this way, when both the trial and the time limits are given, the
algorithm can automatically adapt to fit the tighter of the two.

Inspired again by the SA implementation in FILO [2], we have set up our SA
scheme as follows:

– The ratio between the initial temperature and the final one has been fixed to 100.
– Adopting the terminology introduced in Sect. 3.1, let z be the cost of the proposed
solution, z′ be the cost of the current solution used as a starting point, and T t be
the temperature at the “trial” t of the algorithm. The solution z is accepted as new
current solution if

z − z′ < T t · ln(U[0, 1])

where U[0, 1] is a uniform random variable in the [0, 1] range.
– Two distinct temperatures are maintained during the execution, namely: T t

trial
which represents the trial-based SA temperature, and T t

time which is the tempera-
ture of the time-based one. The actual temperature T t is computed as theminimum
of the two. Therefore, the update formulas are:

T t+1
tr ial = 0.011/MT RI AL · T t

trial

T t+1
time = 0.01Δt/T MAX · T t

time

T t+1 = min{ T t+1
tr ial , T

t+1
time }
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where MT RI AL is the maximum number of “trials”, Δt is the time lasted from
“trial” t and “trial” t + 1, and T MAX is the time limit for the “run”.

– Finally, the initial temperature is computed as the value of the best solution obtained
after 50 “trials”, multiplied by a factor c (say) defined as follows. As we aim
for long runs, we have distinguished the initial part of the algorithm (where the
objective is to find a good solution without getting stuck into local optima) from
the second one (which tries to find improvements to the given initial solution).
For the first part a factor cz (say) has been used to scale the initial temperature
when no initial solution is provided to the algorithm, while cw (say) is the same
factor when an initial solution is present—because provided externally or from
previous rounds of the algorithm. After some preliminary computational tests, we
have fixed cz = 2.5 · 10−3 and cw = 5 · 10−4.

3.2 Phase 2: column generation filtering

The number of routes generated during the LKH execution is typically exceedingly
large, hence a technique to select the best routes is essential for the efficiency of the
whole algorithm.

Considering our heuristic context, we need to balance two aspects: efficiency of the
column generation phase, and RSP optimization speed. To achieve the former, a set
of policies built around the common objective of finding a good and relatively small
subset of routes has been defined, from which the RSP optimization could start. The
initial core set of candidate routes consists in the selection of the “best” 8, 000 routes
from the ordered list of all routes, sorted by non-decreasing solution costs. (Indeed,
in our computational tests we have seen that values between 5, 000 and 10, 000 are
adequate for fast runs where the Set–Partitioning phase needs to be fast to avoid
introducing large slow-down for the whole LS–CGH algorithm.)

Starting from this core set, the following filtering techniques are applied:

1. The LP relaxation of the RSP containing only the initial set of route is iteratively
solved using the dual simplex algorithm. At each iteration, the reduced costs of the
routes still in the route pool are computed, saving the value of the most negative
one, say cmin < 0. At this point, the routes with a reduced cost less than 0.8 · cmin

are added to the RSP, therefore inserting a number of potentially useful columns at
each iteration. This pricing procedure stopswhen all reduced costs are nonnegative,
or when a time limit is reached.

2. Since the previous policy often does not select enough routes, we also use a filtering
criterion akin to the one proposed by Caprara et al. [7] for the solution of large-
scale set covering problems. At every pricing iteration we also select, for each
customer, the ten routeswith smallest (possibly positive) reduced costs. The pricing
procedure stops when the time limit is reached or when the cumulative sum of the
reduced costs added during the previous iteration, becomes nonnegative.

To handle the case in which the pricing procedure selects too many routes, we have
set as a hard bound value equal to 16, 000, i.e., twice the initial set size.
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3.3 Phase 3: restricted set partitioning problem optimization

The final step of our scheme consists in the solution of the RSP formulation. For this
task we used a state-of-the-art commercial MIP solver (IBM ILOG CPLEX 12.10).
Although this is an exact algorithm, it has been successfully integrated in our heuristic
scheme by setting an aggressive time limit and by an early activation of its “polishing
procedure” [38].

It is worth observing that, as an alternative to the SP formulation, a Set Covering
formulation might be used, that would allow for route overlaps. (Note that multiple
customer visits can be removed by a short-cut post-processing procedure, that for
instances with costs satisfying the triangle property would even reduce the final solu-
tion cost.) However, as reported by Rochat and Taillard [37], and confirmed by our
own computational tests, the Set Covering formulation is significantly slower to solve
by our MIP solver, so we preferred to stay with the SP formulation.

3.4 VRP taxonomy

To position our technique within the VRP scientific literature and to give a clearer
idea of its applicability to other VRP variants, we make use of the Pillac et al. [35]
VRP taxonomy. Broadly speaking, VRPs can be classified by the point of view of
the instance data evolution, in this sense we have static problems where all the infor-
mation is known beforehand, vs. dynamic problems where the information regarding
the instance is known only during the optimization. Then, we have deterministic vs.
stochastic problems: in the former, all information is known exactly, while in the latter
the input data is modelled in the form of random variables. From the product of this
two classifications, one obtains four different classes:

– static and deterministic;
– dynamic and deterministic;
– static and stochastic;
– dynamic and stochastic.

The technique proposed in the present work specifically aims at problems of the first
category: static and deterministic, as this is the nature of our local search and set
partitioning phases.

More precisely, our scheme can readily be extended to all the VRP variants char-
acterized by solutions with independent routes (i.e., variants that can be represented
through the SP formulation, needed for the SP-phase of our algorithm) and supported
by LKH. Here is a brief list of possible candidates:

– Multiple Travelling Salesman Problem (m-TSP)
– Capacitated Vehicle Routing Problem (CVRP)
– Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)
– Vehicle routing problem with backhauls (VRPB)
– Vehicle routing problem with backhauls and Time Windows (VRPBTW)
– Vehicle routing problem with mixed pickup and delivery (VRPMPD)
– Vehicle routing problem with simultaneous pickup and delivery (VRPSPD)
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– Vehicle routing problem with mixed pickup and delivery and time windows
(VRPMPDTW)

– Vehicle routing problemwith simultaneous pickup and delivery and time windows
(VRPSPDTW)

Of course, for any such VRP variant one needs to implement a specialized feasibility
check for the routes found in the LKH solutions, to ensure that only feasible routes
are inserted into the route pool.

One could also extend our technique to other variants which are compatible with
the TSP-tour representation and the LKH penalty system. In this case, the implemen-
tation would be more involved than in the previously cited variants (which are already
supported by Helsgaun’s algorithm) since, along with the definition of the Penalty
function, also the internal data structure should be modified and extended. Similarly,
all prepossessing steps (including the instance file parsing, the application of potential
reductions or other preprocessing operations that can simplify the search) should be
revised to account for the new variant.

3.4.1 New flip function

Within LKH, most VRP variants undergo an ATSP-to-TSP transformation [23], hence
in what follows we will use the symmetric and asymmetric terms not to refer to the
cost of the arcs in the original problem formulation, but to the cost of the arcs of
the LKH internal representation of the problem. For instance, a symmetric CVRPTW
instance is converted to an asymmetric one so as to remove all the finite-cost arcs
which are not feasible due to the time-window constraints. In this sense, among the
above-mentioned variants, only the “m-TSP” and the “CVRP” variants are viewed as
symmetric problems, while all the others are asymmetric.

Within the LKH algorithm, whenever a 2-Opt move is applied, a function named
Flip is called to copy a portion (segment) of the TSP tour representation in its reversed
order. The operation is part of every 2-Opt move, although sometimes it could be
avoided by applying more complex r -Opt moves that maintain the orientation of
every part of the solution. Within LKH, every r -Opt move is decomposed into a
sequence of 2-Opt moves, hence every r -Opt move must go through different “flips”.
If naively implemented, each flip operation has a O(n) complexity, and is often the
main bottleneck of any r -Opt move-based algorithm.

To improve its overall performance, LKH exploits a clever data structure due to
Fredman et al. [17]. Three versions of the Flip function are implemented, with com-
plexity O(n) (naive doubled-linked list version), O(

√
n) (two-level tree), and O( 3

√
n)

(three-levels tree), respectively. In particular, the second one is usually adopted since
it is able to maintain a good trade-off with the size of common instances.

We observed that most of the proposed r -Opt are rejected by the Penalty function.
As the Flip function is called every time an r -Opt move is applied, in the very likely
“rejection” case the solution undergoes two “flip” operations: one to produce a pro-
posed tour, and another to restore the current tour. As a result, this function can be
optimized by introducing an “update” step when a better solution is found, with a
significant speedup for the most-common “rejection” case.

123



F. Cavaliere et al.

4 Computational results

In the present section, we address the following questions:

– How effective are our improvements to the original LKH implementation, in par-
ticular in terms of speed?

– Is our overall refinement heuristic able to improve the solutions found, in long
computing times, by a state-of-the-art CVRP heuristic such as FILO?

– Are we able to improve some best-known solutions from CVRPLIB library, thus
providing an implicit comparison will the best methods from the literature—that
arguably have been applied to the instances of this well-known library?

In the computational tests that follow, the Uchoa et al. [43] X dataset has been used.
Following Queiroga et al. [36], this dataset was restricted to its largest 57 instances
(called 57-X in what follows).

For speedup evaluation and for the final tests with the FILO heuristic, we also
considered theXXLset [5]which contains 10 instances of size up to 30, 000 customers.

All the tests have been performed on Intel Xeon E3-1220 V2 CPUs, using up to
4 threads. We will refer to the Gap of a solution with respect to the currently Best–
Known Solution (BKS), defined as:

Gap := Solution_value − BK S_value

BK S_value
.

When not available, an initial solution can be obtained by using one of several
constructive methods that LKH provides. In its default setting, a pseudo-random pro-
cedure is selected that takes into account the possible presence of some restrictions on
the edges of the graph, like the presence of “fixed” edges. Another useful constructive
CVRP algorithm implemented within LKH is the Clarke and Wright (CW) saving
algorithm [10]. Our computational experience shows that, for the X dataset, the final
solution quality does not depend too much on the selected constructive heuristic. For
the bigger XXL instances, instead, CW is often superior to the pseudo-random one,
as it starts from a solution that, even when infeasible, is of better quality. Thus, for
the single-thread speedup tests described in Sect. 4.1 we use CW for the initialization.
For the comparison with the original LKH in Sect. 4.2, instead, we use CW for the
first thread, while for the remaining threads we use the pseudo-random one to help
increasing route pool variability. Notice that, for both newLKH and LS–CGH, only
the very first round makes use of such an initialization, while the best solution found
is used in the other rounds.

4.1 Original LKH vs new LKH

In this section, the original LKH is compared with our modified version. The compari-
son only addresses theLKHphase of LS–CGH(i.e., withoutRSP and route extraction),
both run in single-thread for the same number of “trials”. As the implemented LKH
changes do not alter the search trajectory between the original version and the new
one (when run in single-thread mode and when the same random seed is used), the two
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versions visit the same solutions sequence and perform the same algorithmic steps,
hence producing the same final solution.

In Table 1 the speedup achieved by the new version is reported along with the size
of the instance. (Since inside the LKH each solution in represented by a TSP tour of
length equal to the number of customers plus the number of vehicles, we report this
figure as the size of the instance.) Along with the 57-X test-bed, the 10 XXL instances
of the Belgium data-set has been considered in order to evaluate the behaviour of the
algorithm for a broader range of sizes.

For each test a single “run” of the LKH was executed, starting from a near-optimal
warmstart. The number of “trials” has been set to 10, 000 and 5 random seeds where
tried for each instance. The reported speedup is the average of the 5 speedups obtained
by each seed.

Figure 1 (left) shows how the speedup scales with the size of the instance of the
57-X set. The linear increase of the speedup with the size of the instances is further
confirmed in Fig. 1 (right) where also the very large XXL instances are considered.

4.2 Original LKH vs new LKH vs LS–CGH

In order to asses the effectiveness of the proposed scheme, three different variants
have been compared. All the tests have been executed with the same time limit of 200
minutes, using 4 threads for both the LKH “runs” and the CPLEX solver (when used).

In Table 2 we compare the original LKH, the new LKH and our LS–CGH meth-
ods, and report the best gap reached (w.r.t the BKS) after 200 minutes. The “LKH”
columns give the performance of the original LKH algorithm, without the proposed
improvements and executed without the “round” subdivision adopted in our scheme.
Four parallel threads with “runs” of 10, 000 “trials” have been executed, until the time
limit was reached. The “newLKH” columns give instead the solutions obtained by our
new LKH scheme, without the SP phase. All the improvements applied to the original
algorithm have been activated and the LKH “runs” (with 50, 000 “trials” each, and
a time limit of 2000 seconds for each “run”) have been subdivided into “round’s” of
4 parallel “runs”, providing each round with the best solution found by the previous
one. Finally, in the “LS–CGH” columns the results for our complete LS–CGH algo-
rithm are reported, thus including the same setup as in the newLKH columns with the
addition of the SP phase.

Both newLKH and LS–CGH show a significant decrease in the average gap, as
well as a consistently lower gap for each instance in the 57-X set.

It is worth noting that the LKH algorithm involves a large number of parameters
to tune: in our tests, we used the default values provided in the scripts available in
Helsgaun’s website. In Table 2, a significant improvement is shown already by our
own version of LKH (namely, newLKH). This is due to three main factors.

– The improved time performance of the algorithm allowed for the exploration of a
larger number of r -Opt moves with respect to the original LKH.

– The SA in the first round, applied with a high initial temperature, takes better
advantage of a large number of “trials”. The search descent is therefore less steep
(w.r.t. the number of “trials”), and also less prone to get stuck into local optima.
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Table 1 Speedups of themodified LKH (newLKH)with respect to the original one. The size of the instances
is computed as the number of customers plus the number of vehicles. Results are for the 57-X and XXL
sets. (*) For the Flanders2 instance, the number of “trials” has been halved, since in the original algorithm
10, 000 “trials” would have been computationally too expensive

Instance Size LKH Time newLKH Time SpeedUp

X-n303-k21 323 86 49 1.78

X-n308-k13 320 69 40 1.73

X-n313-k71 384 732 335 2.19

X-n317-k53 369 165 87 1.89

X-n322-k28 349 166 89 1.87

X-n327-k20 346 73 41 1.78

X-n331-k15 345 51 29 1.76

X-n336-k84 421 788 330 2.39

X-n344-k43 386 163 84 1.94

X-n351-k40 390 377 180 2.09

X-n359-k29 387 153 77 1.98

X-n367-k17 383 91 48 1.92

X-n376-k94 469 210 96 2.19

X-n384-k52 436 606 263 2.31

X-n393-k38 430 146 70 2.08

X-n401-k29 429 231 108 2.13

X-n411-k19 429 109 55 1.99

X-n420-k130 549 262 94 2.79

X-n429-k61 490 398 166 2.39

X-n439-k37 475 64 32 2.02

X-n449-k29 477 400 170 2.36

X-n459-k26 484 182 82 2.21

X-n469-k138 607 894 270 3.31

X-n480-k70 549 275 103 2.66

X-n491-k59 549 518 190 2.72

X-n502-k39 540 108 47 2.32

X-n513-k21 533 60 27 2.22

X-n524-k153 678 812 206 3.94

X-n536-k96 631 1145 353 3.25

X-n548-k50 597 185 69 2.68

X-n561-k42 602 130 50 2.59

X-n573-k30 602 248 87 2.83

X-n586-k159 744 571 149 3.82

X-n599-k92 691 2184 611 3.57

X-n613-k62 674 397 127 3.12

X-n627-k43 669 322 102 3.16
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Table 1 continued

Instance Size LKH Time newLKH Time SpeedUp

X-n641-k35 675 398 131 3.04

X-n655-k131 785 211 66 3.20

X-n670-k130 802 944 231 4.08

X-n685-k75 759 499 141 3.53

X-n701-k44 744 328 96 3.41

X-n716-k35 750 417 128 3.25

X-n733-k159 892 343 83 4.13

X-n749-k98 846 845 211 4.01

X-n766-k71 836 863 207 4.17

X-n783-k48 830 528 144 3.67

X-n801-k40 840 234 68 3.45

X-n819-k171 990 1791 373 4.81

X-n837-k142 978 582 129 4.50

X-n856-k95 950 186 53 3.52

X-n876-k59 934 760 182 4.16

X-n895-k37 932 950 235 4.04

X-n916-k207 1122 811 150 5.41

X-n936-k151 1092 884 172 5.13

X-n957-k87 1043 239 60 4.00

X-n979-k58 1036 919 209 4.39

X-n1001-k43 1043 434 101 4.32

Antwerp1 6342 1052 77 13.62

Antwerp2 7119 1992 129 15.43

Brussels1 15511 4287 157 27.34

Brussels2 16181 7660 240 31.98

Flanders1 20683 7037 215 32.80

Flanders2 30255 17166 306 56.01

Ghent1 10484 2028 106 19.07

Ghent2 11109 4469 226 19.75

Leuven1 3202 670 69 9.77

Leuven2 4045 710 102 6.94

– The adopted “round” subdivision, in which the best solution obtained is used as
warmstart for the next “round”, greatly improves the efficacy of the algorithm to
refine the solutions in long runs.

Finally, with the addition of CG filtering and RSP optimization, further improve-
ments have been obtained.
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Table 2 Comparison between the solution obtained in 200-minute runs by: the original LKH algorithm,
Helsgaun’s LKHwith our changes and inserted in our scheme (newLKH), and our final LS–CGH algorithm
(i.e., newLKH followed by RSP optimization). The best result for each instance is highlighted in boldface

Instance LKH newLKH LS–CGH

Sol Gap (%) Sol Gap (%) Sol Gap (%)

X-n303-k21 21,877 0.65 21,803 0.31 21,805 0.32

X-n308-k13 25,995 0.53 25,900 0.16 25,919 0.23

X-n313-k71 96,097 2.18 95,330 1.37 94,604 0.60

X-n317-k53 78,409 0.07 78,361 0.01 78,355 0.00

X-n322-k28 30,061 0.76 29,968 0.45 29,850 0.05

X-n327-k20 27,800 0.97 27,640 0.39 27,619 0.32

X-n331-k15 31,289 0.60 31,103 0.00 31,103 0.00

X-n336-k84 143,175 2.92 142,122 2.16 141,194 1.50

X-n344-k43 42,417 0.87 42,201 0.36 42,156 0.25

X-n351-k40 26,343 1.73 26,133 0.92 26,016 0.46

X-n359-k29 51,807 0.59 51,652 0.29 51,579 0.14

X-n367-k17 22,955 0.62 22,824 0.04 22,814 0.00

X-n376-k94 147,807 0.06 147,720 0.00 147,713 0.00

X-n384-k52 67,082 1.73 66,403 0.71 66,389 0.68

X-n393-k38 38,519 0.68 38,335 0.20 38,260 0.00

X-n401-k29 66,485 0.50 66,481 0.49 66,373 0.33

X-n411-k19 19,890 0.90 19,780 0.34 19,756 0.22

X-n420-k130 108,247 0.42 107,946 0.14 107,798 0.00

X-n429-k61 66,135 1.05 65,742 0.45 65,460 0.02

X-n439-k37 36,559 0.46 36,402 0.03 36,422 0.09

X-n449-k29 56,118 1.60 55,569 0.61 55,363 0.24

X-n459-k26 24,508 1.53 24,226 0.36 24,176 0.15

X-n469-k138 223,542 0.77 222,320 0.22 222,021 0.09

X-n480-k70 90,031 0.65 89,698 0.28 89,566 0.13

X-n491-k59 67,355 1.31 66,739 0.39 66,894 0.62

X-n502-k39 69,317 0.13 69,254 0.04 69,226 0.00

X-n513-k21 24,428 0.94 24,268 0.28 24,275 0.31

X-n524-k153 154,662 0.04 154,616 0.01 154,605 0.01

X-n536-k96 95,924 1.14 95,224 0.40 95,032 0.20

X-n548-k50 87,031 0.38 86,836 0.16 86,762 0.07

X-n561-k42 42,998 0.66 42,854 0.32 42,794 0.18

X-n573-k30 51,053 0.75 50,835 0.32 50,799 0.25

X-n586-k159 191,487 0.62 190,593 0.15 190,482 0.09

X-n599-k92 115,113 6.14 111,324 2.65 110,475 1.87

X-n613-k62 60,467 1.57 60,136 1.01 59,736 0.34

X-n627-k43 63,000 1.34 62,395 0.37 62,356 0.31

X-n641-k35 64,551 1.36 64,205 0.82 64,109 0.67

123



An integrated local-search/set-partitioning refinement heuristic for CVRP

Table 2 continued

Instance LKH newLKH LS–CGH

Sol Gap (%) Sol Gap (%) Sol Gap (%)

X-n655-k131 106,943 0.15 106,857 0.07 106,780 0.00

X-n670-k130 147,052 0.49 146,812 0.33 146,407 0.05

X-n685-k75 69,310 1.62 68,554 0.51 68,474 0.39

X-n701-k44 82,933 1.23 82,521 0.73 82,344 0.51

X-n716-k35 44,186 1.87 43,637 0.61 43,603 0.53

X-n733-k159 137,622 1.05 136,477 0.21 136,359 0.13

X-n749-k98 78,682 1.83 77,863 0.77 77,738 0.61

X-n766-k71 115,728 1.15 114,910 0.43 114,776 0.31

X-n783-k48 73,497 1.53 72,822 0.60 72,704 0.44

X-n801-k40 73,976 0.92 73,469 0.22 73,484 0.24

X-n819-k171 161,871 2.37 159,287 0.74 159,101 0.62

X-n837-k142 195,666 1.00 194,453 0.37 194,269 0.27

X-n856-k95 89,473 0.57 89,036 0.08 89,102 0.15

X-n876-k59 100,297 1.01 99,930 0.64 99,986 0.69

X-n895-k37 56,497 4.90 54,827 1.80 54,575 1.33

X-n916-k207 331,620 0.74 330,093 0.28 329,643 0.14

X-n936-k151 134,163 1.09 133,169 0.34 133,146 0.32

X-n957-k87 86,197 0.86 85,606 0.16 85,526 0.07

X-n979-k58 120,354 1.16 119,977 0.84 119,685 0.60

X-n1001-k43 74,142 2.47 72,820 0.64 72,966 0.84

Average 1.16 0.48 0.32

4.3 Statistical analysis of LS–CGH

A statistical analysis of percentage gaps obtained for multiple runs on a representative
subset of the studied instances has been carried out. From the 57-X dataset, we have
chosen seven representative instances selected as suggested by Queiroga et al. [36]
so as to cover all the different characteristics considered during the generation of the
whole X dataset. As to the Belgium dataset, two (Antwerp1 and Flanders1) out of the
ten instances have been randomly chosen. For these two instances, simulated annealing
has been disabled because, for these sizes, the time limit is not enough to get stuck
into local optima. Thus, the use of simulated annealing would only make local search
slower without the benefit of the broader exploration that would happen with a much
longer time limit. For each instance, ten runs with different random seeds have been
executed, and the corresponding box-plots are reported in Fig. 2.

According to the plot, a low variation is experienced for the Belgium instances.
This can be explained by the fact that, for these very large problems, the 200-minute
time limit is quite restrictive, hence the algorithm had less time to find local optima
in which getting stuck. For the seven instances from the 57-X dataset, instead, the
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Fig. 1 On the left, the average speedup of the “New” LKHwith respect to the original version for 5 random
seeds on the 57-X set. On the right the same chart including the 10 XXL instances

Fig. 2 Statistical analysis of percentage gap w.r.t. the best-known solution, on a representative subset of the
57-X and Belgium datasets

computing time allowed let the algorithm reach several local optima, hence the higher
variance due to implemented diversification mechanisms—exceptional cases being
the X-n469-k138 and X-n979-k58 instances with their outliers.

Figures 3 and 4 report a similar analysis for the ten instances in Table 2 for which
LS–CGH got the best and worst relative gaps, respectively.
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Fig. 3 Statistical analysis of percentage gap w.r.t. the best-known solution, on the ten instances of Table 2
where LS–CGH performed best in terms of relative gap

Fig. 4 Statistical analysis of percentage gap w.r.t. the best-known solution, on the ten instances of Table 2
where LS–CGH performed worst in terms of relative gap
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4.4 LS–CGH as a refinement tool for FILO

To asses the ability of improving the solution obtained by state-of-the-art heuris-
tic algorithms, our proposed scheme has been tested starting from the best solution
obtained by FILO [2]. As previously described, FILO is a recent, fast and effective
heuristic, especially designed for instances of very large size as those in the XXL
dataset. The solutions obtained by FILO on a very large number of instances from the
literature are available online [1].

Our test consisted in a long run (200minutes) of our algorithm starting from the best
solutions obtained by the 10M-iteration runs of FILO. For each instance, we selected
the best solution among those produced by FILO in 10 runs with different random
seeds.

As shown in Tables 3 and 4, our LS–CGH algorithm is consistently able to improve
many of the solution produced by FILO, lowering the average gap to 0.076% for the
largest 57 instances of the X data-set, and to 0.079% for the XXL data-set.

4.5 CVRPLIB best-known solution improvements

During the months preceding the writing of the paper, our LS–CGH algorithm was
consistently and repeatedly able to improve the best-known solutions (BKSs) for
a number of instances from the literature, competing with many other algorithms
developed by different groups around the world. The current BKSs are maintained
in the CVRPLIB website [31], where the history of the obtained improvements is
also reported. As stated in the website, everyone can submit new BKSs, without a
description of the applied techniques. This fact has enabled a number of different
“competitors” to submit many improvements, especially for the difficult instances of
the X and XXL datasets. Different techniques have been applied to these instances,
both refining heuristic starting from the previous BKS, and “standalone” ones starting
from scratch.

In our case, for 30 large-scale well-studied instances from the CVRPLIB, we have
been able to improve the BKSs from literature several times, providing a total of 105
improved BKSs. At the time of writing (March 2021), 14 BKSs produced by our
LS–CGH heuristic are still unbeaten; see Table 5. After an initial testing phase where
the ensemble of proposed techniques was still incomplete, all the new BKS have been
obtained using the same parameter setting, with the only exception of the overall time
limit which was set to infinity. Thus, for each instance we “manually” monitored the
time lasted from the last improvement, and aborted the code when no improvement
was found in the least 24 hours.

5 Conclusions

In this work a new CVRP refining heuristic, LS–CGH, has been proposed. We use a
custom parallel and optimized version of the Lin–Kerninghan–Helsgaun heuristic to
generate a large pool of feasible CVRP routes, and exploit an LP-based pricing proce-
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Table 3 Best result for 10 runs
of FILO with 10 million
iterations for the largest 57
instances of the X data-set along
with the improvement obtained
after 200 minutes by our
LS–CGH algorithm. For the
XXL instances, SA was disabled
due to their extremely large size.
Entries in boldface highlight the
cases where LS–CGH was able
to improve the FILO solution

Instance FILO-10M LS–CGH

Sol Gap (%) Sol Gap (%)

X-n303-k21 21,744 0.037 21,744 0.037

X-n308-k13 25,862 0.012 25,862 0.012

X-n313-k71 94,084 0.044 94,084 0.044

X-n317-k53 78,355 0.000 78,355 0.000

X-n322-k28 29,854 0.067 29,854 0.067

X-n327-k20 27,556 0.087 27,556 0.087

X-n331-k15 31,103 0.003 31,103 0.003

X-n336-k84 139,249 0.099 139,195 0.060

X-n344-k43 42,064 0.033 42,064 0.033

X-n351-k40 25,936 0.154 25,922 0.100

X-n359-k29 51,507 0.004 51,505 0.000

X-n367-k17 22,814 0.000 22,814 0.000

X-n376-k94 147,713 0.000 147,713 0.000

X-n384-k52 66,024 0.130 65,996 0.088

X-n393-k38 38,287 0.071 38,269 0.024

X-n401-k29 66,187 0.050 66,187 0.050

X-n411-k19 19,756 0.223 19,755 0.218

X-n420-k130 107,825 0.025 107,798 0.000

X-n429-k61 65,502 0.081 65,455 0.009

X-n439-k37 36,395 0.011 36,395 0.011

X-n449-k29 55,312 0.143 55,280 0.085

X-n459-k26 24,141 0.008 24,140 0.004

X-n469-k138 222,363 0.243 222,038 0.096

X-n480-k70 89,471 0.025 89,457 0.009

X-n491-k59 66,529 0.069 66,491 0.012

X-n502-k39 69,227 0.001 69,226 0.000

X-n513-k21 24,201 0.000 24,201 0.000

X-n524-k153 154,607 0.009 154,605 0.008

X-n536-k96 95,343 0.524 95,278 0.453

X-n548-k50 86,707 0.008 86,704 0.005

X-n561-k42 42,751 0.080 42,751 0.080

X-n573-k30 50,736 0.124 50,736 0.124

X-n586-k159 190,694 0.199 190,686 0.194

X-n599-k92 108,612 0.148 108,609 0.145

X-n613-k62 59,618 0.139 59,572 0.062

X-n627-k43 62,189 0.040 62,184 0.032

X-n641-k35 63,740 0.088 63,735 0.080
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Table 3 continued Instance FILO-10M LS–CGH

Sol Gap (%) Sol Gap (%)

X-n655-k131 106,780 0.000 106,780 0.000

X-n670-k130 147,066 0.502 146,481 0.102

X-n685-k75 68,339 0.196 68,318 0.165

X-n701-k44 81,951 0.034 81,950 0.033

X-n716-k35 43,424 0.118 43,417 0.101

X-n733-k159 136,274 0.064 136,265 0.057

X-n749-k98 77,430 0.208 77,399 0.168

X-n766-k71 114,638 0.193 114,638 0.193

X-n783-k48 72,464 0.108 72,457 0.098

X-n801-k40 73,311 0.008 73,307 0.003

X-n819-k171 158,734 0.388 158,703 0.367

X-n837-k142 193,967 0.119 193,948 0.109

X-n856-k95 89,001 0.040 88,966 0.001

X-n876-k59 99,412 0.114 99,412 0.114

X-n895-k37 53,906 0.085 53,898 0.071

X-n916-k207 329,789 0.185 329,660 0.146

X-n936-k151 133,019 0.229 132,999 0.214

X-n957-k87 85,467 0.002 85,467 0.002

X-n979-k58 119,043 0.056 119,043 0.056

X-n1001-k43 72,414 0.082 72,405 0.069

Average 0.101 0.076

Table 4 Best result for 10 runs
of FILO with 10 million
iterations for the XXL dataset
along with the improvement
obtained after 200 minutes by
our LS–CGH algorithm

Inst FILO-10M LS–CGH

Sol Gap (%) Sol Gap (%)

Antwerp1 477,619 0.072 477,598 0.067

Antwerp2 291,528 0.054 291,493 0.042

Brussels1 502,278 0.102 502,217 0.090

Brussels2 345,747 0.056 345,706 0.044

Flanders1 7,248,491 0.106 7,246,624 0.080

Flanders2 4,382,341 0.163 4,380,571 0.122

Ghent1 469,894 0.077 469,860 0.070

Ghent2 258,118 0.122 258,090 0.111

Leuven1 192,915 0.035 192,909 0.032

Leuven2 111,544 0.130 111,541 0.127

Average 0.092 0.079
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dure to “filter” the most meaningful ones to feed a Set Partitioning model producing
the final CVRP solution. Our optimized version of the LKH heuristic is available, for
research purposes, at https://github.com/c4v4/LKH3.

The LS–CGH algorithm succeeded in improving several of the best solutions
obtained by a recent state-of-the-art heuristic (FILO) in 10M iterations. In addition,
a log of the best-known solutions obtained in the past months by our method is pub-
licly available on the CVRPLIB website [31], witnessing its ability to improve 105
solutions obtained by the best CVRP heuristics internationally competing on the same
testbed.

In future work, our proposed method can be adapted to other routing problems,
including the Capacitated Vehicle Routing Problem with TimeWindows (CVRPTW),
the Capacitated Arc Routing Problem (CARP), the Vehicle Routing Problem with
Backhauls (VRPB), and many others. Since LKH itself is able to address some of
these VRP variants, it can be used as route generator as suggested in the present work.
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