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Abstract

In recent years, there has been growing interest in the development of reconciliation

techniques for forecasting multiple time series, both in academia and industries. Time

series data are widely employed to predict the future behavior of phenomena such as

retail sales, tourist flows, macroeconomic and climatic trends. However, forecasts of

different series, linked by some constraints and derived from different sources, often

exhibit discrepancies that compromise the reliability of the results. Forecast reconcil-

iation is a post-forecasting process aimed at improving the quality of forecasts for a

system of linearly constrained multiple time series. Despite notable progress, these ap-

proaches encounter various challenges, both methodological and practical. A significant

issue lies in ensuring the non-negativity of reconciled forecasts, a critical consideration

when forecasting variables that cannot assume negative values, such as sales or tourist

flows. Another challenge involves extending reconciliation methods beyond genuine hi-

erarchical/grouped time series, where the roles of variables are uniquely identified. This

also includes more complex scenarios, combining the cross-sectional (involving multiple

time series at the same frequency) and temporal (a single series at multiple frequencies)

frameworks to obtain cross-temporally coherent forecasts. Additionally, dealing with

large volumes of data and selecting efficient algorithms are crucial factors that must be

addressed to ensure the effectiveness of reconciliation processes.

This thesis aims to provide solutions, both from a methodological and computational

point of view. To achieve this goal, each chapter of the thesis will present one or

two specific applications, illustrating the effectiveness of the proposed methodologies in

real-world contexts. Chapter 1 introduces the concept of simultaneous reconciliation of

cross-sectional and temporal forecasts. This chapter presents two novel contributions:

an expression for cross-temporal point forecasts and an iterative procedure that alter-

nates reconciliation along a single dimension until convergence is achieved. Chapter 2

focuses on the application of forecast reconciliation of hierarchical photovoltaic (PV)
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power generation for a simulated PV dataset in California. Various aspects are inves-

tigated, including the non-negativity problem and forecast coherency through cross-

temporal reconciliation approaches. Chapter 3 extends the approach based on fore-

cast combination for reconciling a hierarchy, known as LCC. This method minimizes a

quadratic loss function subject to an exogenous constraint imposed by the base fore-

cast of the higher-level series within the hierarchy, whose value remains unchanged. An

alternative approach is proposed, which modifies this constraint by incorporating en-

dogenous constraints within the same context. Chapter 4 explores the reconciliation of

generally constrained multiple time series, thereby extending the results obtained thus

far, which have been limited to genuine hierarchical structures. Chapter 5 extends the

cross-sectional probabilistic reconciliation approach to the cross-temporal framework.

This chapter introduces both parametric and non-parametric approaches to draw base

forecasts samples. Finally, in Chapter 6, the reconciliation of realized volatility forecasts

using intra-day decompositions is addressed for the first time in a financial framework.
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Sommario

Negli ultimi anni, si è registrato un crescente interesse, sia in ambito accademico che

professionale, per lo sviluppo di tecniche di riconciliazione finalizzate alle previsioni di

serie storiche multiple. Le serie storiche sono ampiamente impiegate per prevedere il

comportamento di fenomeni come le vendite al dettaglio, i flussi turistici, eventi cli-

matici e variabili macroeconomiche ed energetiche. Tuttavia, le previsioni provenienti

da diverse serie, ottenute da fonti o metodi differenti, spesso presentano discrepanze,

compromettendo l’affidabilità complessiva dei risultati. In questo contesto, la ricon-

ciliazione delle previsioni viene definito come un processo di post-previsione mirato a

migliorare la qualità delle previsioni per sistemi di serie multiple linearmente vincola-

te. Nonostante il crescente studio di queste tecniche, molte sfide sia metodologiche che

applicative devono ancora essere affrontate. Un problema chiave è rappresentato dalla

necessità di garantire la non negatività delle previsioni riconciliate, particolarmente

cruciale in contesti pratici come le previsioni di vendite o flussi turistici. Un’altra sfida

è rappresentata dalla generalizzazione a scenari più complessi, non limitati a serie sto-

riche strettamente gerarchiche o raggruppate dove il ruolo delle variabili è univoco. Ciò

implica anche la necessità di unificare l’ambito cross-sezionale (più serie alla stessa fre-

quenza) e temporale (una singola serie a più frequenze) per garantire previsioni coerenti

rispetto ad entrambe le dimensioni (coerenza cross-temporale). Inoltre, l’elaborazione

di grandi volumi di dati e la scelta di algoritmi efficienti sono tutti elementi critici da

prendere in considerazione per assicurare l’efficacia del processo di riconciliazione.

Questa tesi mira a fornire soluzioni a tali problemi, sia dal punto di vista metodologico

che empirico. Per raggiungere questo obiettivo, ogni capitolo della tesi presenterà una

o due applicazioni specifiche, illustrando l’efficacia delle proposte metodologiche in con-

testi reali. Nel Capitolo 1 viene studiato il problema della riconciliazione simultanea

cross-temporale. In particolare vengono forniti due nuovi risultati: un’espressione per

le previsioni riconciliate puntuali, e una procedura iterativa che alterna la riconcilia-

zione lungo una singola dimensione fino alla convergenza. Il Capitolo 2 presenta la
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riconciliazione spazio-temporale delle previsioni dell’energia solare fotovoltaica prodotta

da impianti facenti parte di una gerarchia simulata californiana. Vengono affrontate

varie tematiche tra cui il problema della non negatività e della coerenza delle pre-

visioni utilizzando diversi approcci di riconciliazione cross-temporale. Nel Capitolo 3

il problema della riconciliazione cross-sezionale viene reinterpretato in termini di com-

binazione delle previsioni per la riconciliazione di una gerarchia, dando origine ad un

approccio di Level Coherent Combination (LCC). Questo metodo minimizza una fun-

zione di perdita quadratica, con un vincolo esogeno dato dalla previsione di base della

serie di livello superiore della gerarchia, il cui valore rimane inalterato. Viene inoltre

fornita un’alternativa che nello stesso contesto “aggiusta” tale valore utilizzando vincoli

endogeni. Nel Capitolo 4 viene studiata la riconciliazione delle previsioni per generi-

che serie storiche multiple linearmente vincolate, estendendo tutti i risultati ottenuti

finora per le sole serie strettamente gerarchiche/raggruppate. Il Capitolo 5 estende l’ap-

proccio di riconciliazione probabilistica cross-sezionale al caso cross-temporale, secondo

approcci parametrici e non per ottenere campioni dalla distribuzione delle previsioni di

base. Infine, nel Capitolo 6 viene affrontata per la prima volta la riconciliazione delle

previsioni giornaliere della volatilità realizzata in ambito finanziario, sfruttando varie

decomposizioni intra-giornaliere.

iv



v



vi



Contents

List of Figures xii

List of Tables xix

Introduction 1

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Main contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Publications and Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Software and open data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Optimal and heuristic methods for cross-temporal reconciliation 11

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Optimal point forecast reconciliation . . . . . . . . . . . . . . . . . . . . 13

1.3 Hierarchical and grouped Time Series . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Alternative approximations of the covariance matrix for cross-
sectional point forecast reconciliation . . . . . . . . . . . . . . . . 19

1.3.2 Matrix representation of the cross-sectional constraints . . . . . . 19

1.4 Temporal hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Alternative approximations of the covariance matrix for temporal
point forecast reconciliation . . . . . . . . . . . . . . . . . . . . . 23

1.5 Cross-temporal reconciliation framework . . . . . . . . . . . . . . . . . . 25

1.5.1 Cross-temporal aggregation constraints . . . . . . . . . . . . . . . 25

1.5.2 Cross-temporal forecast reconciliation: introduction . . . . . . . . 27

1.6 Cross-temporal optimal forecast combination . . . . . . . . . . . . . . . . 28

1.6.1 Simple approximations of the covariance matrix for cross-temporal
point forecast reconciliation . . . . . . . . . . . . . . . . . . . . . 29

1.7 Heuristic cross-temporal reconciliation . . . . . . . . . . . . . . . . . . . 32

1.7.1 The KA procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.7.2 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7.3 An iterative heuristic cross-temporal reconciliation . . . . . . . . 34

1.8 Cross-temporal reconciliation of the Australian GDP forecasts . . . . . . 37

1.8.1 Performance measures for multiple comparisons . . . . . . . . . . 38

1.8.2 The considered forecast reconciliation procedures . . . . . . . . . 39

1.8.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



viii Contents

2 Cross-temporal reconciliation of solar forecasts 45

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Cross-temporal point forecast reconciliation: a recap . . . . . . . . . . . 48

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.2 Cross-temporal bottom-up reconciliation . . . . . . . . . . . . . . 53

2.2.3 Regression-based cross-temporal reconciliation . . . . . . . . . . . 54

2.2.4 Heuristic and iterative cross-temporal reconciliation . . . . . . . . 56

2.3 Cross-temporal coherency of sequential approaches . . . . . . . . . . . . 57

2.4 Replication of the forecasting experiment of Yagli et al. (2019) . . . . . . 60

2.4.1 Non-negativity and aggregation consistency issues . . . . . . . . . 62

2.4.2 Forecast evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5 Extended analysis: non-negative cross-temporal reconciliation . . . . . . 68

2.5.1 Non negative forecast reconciliation: sntz . . . . . . . . . . . . . . 68

2.5.2 Forecast accuracy of the selected approaches . . . . . . . . . . . . 72

3 Forecast combination-based forecast reconciliation 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Problem definition and notation . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.2 Level-l Conditional Coherent (LlCC) reconciliation . . . . . . . . 85

3.3 LlCC reconciliation with exogenous constraints . . . . . . . . . . . . . . 86

3.3.1 Combined Conditional Coherent (CCC) reconciliation . . . . . . 88

3.3.2 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 LlCC reconciliation with endogenous constraints . . . . . . . . . . . . . . 91

3.5 Empirical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.1 Monthly Australian Tourism Demand reconciliation . . . . . . . . 94

3.5.2 Reconciliation of quarterly Australian GDP forecasts from In-
come and Expenditure sides . . . . . . . . . . . . . . . . . . . . . 107

4 General linearly constrained multiple time series reconciliation 111

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Reconciliation of a linearly constrained multiple time series . . . . . . . . 114

4.2.1 Point reconciliation of a genuine hierarchical time series . . . . . . 114

4.2.2 Zero-constrained and structural-like representations . . . . . . . . 117

4.2.3 Probabilistic reconciliation for general linearly constrained multi-
ple time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Building the linear combination matrix A . . . . . . . . . . . . . . . . . 121

4.3.1 General (redundant) linear constraints framework . . . . . . . . . 122

4.4 Empirical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.1 Reconciled probabilistic forecasts of the Australian GDP from
income and expenditure sides . . . . . . . . . . . . . . . . . . . . 124

4.4.2 Reconciled probabilistic forecasts of the European Area GDP
from output, income and expenditure sides . . . . . . . . . . . . . 129



ix

5 Cross-temporal probabilistic forecast reconciliation 135

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.1 Optimal point forecast reconciliation . . . . . . . . . . . . . . . . 142

5.2.2 Cross-temporal bottom-up forecast reconciliation . . . . . . . . . 143

5.3 Probabilistic forecast reconciliation . . . . . . . . . . . . . . . . . . . . . 144

5.3.1 Parametric framework: Gaussian reconciliation . . . . . . . . . . . 145

5.3.2 Non-parametric framework: bootstrap reconciliation . . . . . . . . 146

5.4 Cross-temporal covariance matrix estimation . . . . . . . . . . . . . . . . 148

5.4.1 Multi-step residuals . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.2 Overlapping residuals . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5 Forecasting Australian GDP . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.6 Forecasting Australian Tourism Demand . . . . . . . . . . . . . . . . . . 157

5.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 A reconciliation approach for the realized volatility 163

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Forecast reconciliation: a recap . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 RV modeling: a hierarchical perspective . . . . . . . . . . . . . . . . . . 168

6.4 The empirical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4.1 Data description and analysis . . . . . . . . . . . . . . . . . . . . 171

6.4.2 Base forecasts: direct forecasts from benchmark models and in-
traday components’ forecasts . . . . . . . . . . . . . . . . . . . . 173

6.4.3 Out-of-sample forecast evaluation . . . . . . . . . . . . . . . . . . 176

6.5 Does reconciliation help in RV forecasting? . . . . . . . . . . . . . . . . . 177

6.6 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.6.1 Sub-sample analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.6.2 Grouped series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.6.3 An alternative PV decomposition . . . . . . . . . . . . . . . . . . 184

6.6.4 Decomposition optimality . . . . . . . . . . . . . . . . . . . . . . 186

Conclusions 191

A Cross-temporal reconciliation of solar forecasts 199

A.1 Proof of the Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.2 Proof of the Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.3 nMBE and fully coherent forecasts . . . . . . . . . . . . . . . . . . . . . 204

B Forecast combination-based forecast reconciliation 205

B.1 The formulation by Hollyman et al. (2021) . . . . . . . . . . . . . . . . . 205

B.1.1 Level-1 Conditional Coherent forecast reconciliation . . . . . . . . 205

B.1.2 Extension for l > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B.2 Derivation of Level-l reconciled bottom time series . . . . . . . . . . . . . 207

B.3 LlCC with endogenous constraints for the toy example of Figure 3.1 . . . 208



x Contents

C General linearly constrained multiple time series reconciliation 211

C.1 Derivation of equation (4.11) . . . . . . . . . . . . . . . . . . . . . . . . . 211

Bibliography 213







List of Figures

1.1 Two examples of linearly constrained time series. Left: a simple three-
level hierarchical structure. Right: two hierarchies sharing the same top-
level series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Quarterly, semi-annual and annual Australian GDP one-step-ahead rec-
onciled forecasts according to the Kourentzes and Athanasopoulos (2019)
cross-temporal reconciliation approach (t-wlsv for the temporal step, cs-
shr for the cross-sectional step) by alternating the constraint dimensions
to be fulfilled: percentage differences between the reconciled forecasts ob-
tained through (i) temporal-then-cross-sectional reconciliation, and (ii)
cross-sectional-then-temporal reconciliation. The differences between the
two reconciled forecasts are divided by their arithmetic mean. . . . . . . 35

1.3 Quarterly, semi-annual and annual one-step-ahead reconciled forecasts of
79 out of 95 times series of the Australian GDP from Income and Ex-
penditure sides using both the original KA cross-temporal reconciliation
procedure (t-wlsv for the temporal step, and cs-shr for the cross-sectional
one), and its iterative variant: boxplots of the percentage differences be-
tween the reconciled forecasts obtained through (i) temporal-then-cross-
sectional reconciliation, and (ii) cross-sectional-then-temporal reconcilia-
tion. The differences between each pair of reconciled forecasts are divided
by their arithmetic mean. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Incoherence at each iteration step of the iterative cross-temporal forecast
reconciliation procedure (t-wlsv + cs-shr) for the Australian GDP time
series, at the first forecast origin 1994:Q3. . . . . . . . . . . . . . . . . . 37

1.5 Average Relative MSE across all series and forecast horizons, by temporal
aggregation level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.6 MCB Nemenyi test results: average ranks and 95% confidence intervals.
The reconciliation procedures are sorted vertically according to the MSE
mean rank (i) across all time frequencies and forecast horizons (left),
and (ii) for one-step-ahead quarterly forecasts (right). The mean rank
of each method is displayed to the right of their names. If the intervals
of two forecast reconciliation procedures do not overlap, this indicates a
statistically different performance. Thus, methods that do not overlap
with the green interval are considered significantly worse than the best,
and vice-versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Complete (left) and reduced (right) cross-temporal hierarchies for a quar-
terly two-level hierarchical time series. . . . . . . . . . . . . . . . . . . . 48

xiii



xiv List of Figures

2.2 Frobenius norm of the difference between the matrices of the reconciled
forecasts using ite(wlsvte, wlscs) and oct(wlsv), with different tolerance
value δ. 350 replications of the forecasting experiment described in Sec-
tion 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 PV324 hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Base forecasts and sequential TSRL2 (Yagli et al., 2019) reconciled fore-
casts. Boxplots of the distribution in the 350 replications of the fore-
casting experiment of the cross-sectional (in red) and temporal (in blue)
gross discrepancies, as defined in (2.11). For cross-temporal reconciled
forecasts, both discrepancies are expected to be zero. . . . . . . . . . . . 63

2.5 MCB Nemenyi test results: average ranks and 95% confidence intervals.
The unconstrained reconciliation approaches considered by Yagli et al.
(2019) are sorted vertically according to the nRMSE(%) mean rank.
Hourly (top panel) and Daily (bottom panel) forecasts for L0,L1,L2 lev-
els (324 series). Forecast horizon: operating day. The mean rank of each
approach is displayed to the right of their names. If the intervals of two
forecast reconciliation approaches do not overlap, this indicates a statis-
tically different performance. Thus, approaches that do not overlap with
the green interval are considered significantly worse than the best, and
vice-versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6 Comparison of nRMSE(%) between PERSbu and oct(struc) (top panel),
and between 3TIERbu and oct(struc) (bottom panel). The black line rep-
resents the bisector, where the nRMSE’s for both approaches are equal.
On the top-left (bottom-right) corner of each graph, the percentage of
points above (below) the bisector is reported. . . . . . . . . . . . . . . . 69

2.7 One day of hourly reconciled forecasts for two of the 318 bottom variables
(Plants P295 and P315, component of TZ5), and for the six upper time
series (5 Transmission Zones and the Total ISO). For each series, it is
shown the day with the highest number of negative forecasts produced
by the reconciliation approach oct(struc) (in red). The non-negative
forecasts are obtained by oct(struc)osqp (in green) and oct(struc)sntz (in
blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.8 Comparison of nRMSE(%) between sntz and osqp non-negative forecast
reconciliation using the oct(struc) approach. The black line represents
the bisector, where the nRMSE’s for oct(struc)osqp and oct(struc)sntz are
equal. On the top-left (bottom-right) corner of each graph, the percentage
of points above (below) the bisector is reported. . . . . . . . . . . . . . . 75

2.9 MCB-Nemenyi test on selected non-negative cross-temporal reconcilia-
tion approaches with operating day forecast horizon. L0,L1,L2 levels
(324 series). Top panel: hourly forecasts; Bottom panel: daily forecasts.
The mean rank of each approach is displayed to the right of their names.
If the intervals of two forecast reconciliation approaches do not overlap,
this indicates a statistically different performance. Thus, approaches that
do not overlap with the green interval are considered significantly worse
than the best, and vice-versa. . . . . . . . . . . . . . . . . . . . . . . . . 76



List of Figures xv

2.10 Comparison of nRMSE(%) between non-negative reconciliation ap-
proaches: oct(wlsv) and ct(wlsvte, bucs). Forecast horizon: operating day.
The black line represents the bisector, where the nRMSE’s for both ap-
proaches are equal. On the top-left (bottom-right) corner of each graph,
the percentage of points above (below) the bisector is reported. . . . . . 77

2.11 Comparison of nRMSE(%) between non-negative reconciliation ap-
proaches: oct(struc) and ct(wlsvte, bucs) (top), and 3TIERbu and
ct(wlsvte, bucs) (bottom). Forecast horizon: operating day. The black
line represents the bisector, where the nRMSE’s for both approaches are
equal. On the top-left (bottom-right) corner of each graph, the percent-
age of points above (below) the bisector is reported. . . . . . . . . . . . . 78

3.1 A three-level hierarchy (left), and its elementary hierarchies (right) . . . 82

3.2 A simple unbalanced hierarchy (left) and its balanced version (right) . . . 84

3.3 CCC: Combined Conditional Coherent forecast reconciliation procedure
with the same bts base forecasts b̂ . . . . . . . . . . . . . . . . . . . . . . 88

3.4 CCCH : Combined Conditional Coherent forecast reconciliation proce-
dure according to Hollyman et al. (2021). In the Upper Level Conditional

Coherent reconciliation steps the base forecasts b̂SA are used, while in the
bottom-up reconciliation b̂ (automatic ETS) is used. . . . . . . . . . . . 97

3.5 Australian Tourism Demand dataset: AvgRelMSE of Optimal combi-
nation, LCC, and CCC reconciliation approaches, using seasonal aver-
ages and/or automatic ETS as bottom time series base forecasts. The
acronyms for the considered approaches are described in footnote ∗∗ of
Table 3.4. Top panel: forecast horizon h = 1. Bottom panel: forecast
horizon h = 1:12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.6 Australian Tourism Demand dataset: MCB Nemenyi test results: average
ranks and 95% confidence intervals for the 304 bts forecasts. The rec-
onciliation approaches are sorted vertically according to the MSE mean
rank for forecast horizon h = 1 (a), and forecast horizon h = 1:12 (b).
The mean rank of each approach is displayed to the right of their names.
The acronyms for the considered approaches are described in footnote ∗∗

of Table 3.4. If the intervals of two forecast reconciliation procedures do
not overlap, this indicates a statistically different performance. . . . . . 106

3.7 Australian GDP from Income side: balanced hierarchical representations
(duplicated series in black circles). . . . . . . . . . . . . . . . . . . . . . . 107

3.8 Forecast reconciliation of quarterly Australian GDP . AvgRelMSE of
LCC, CCC, and optimal combination reconciliation approaches, using
automatic ARIMA as base forecasts. . . . . . . . . . . . . . . . . . . . . 109

3.9 MCB Nemenyi test results: average ranks and 95% confidence intervals
for 1-step-ahead and 1:4-step-ahead quarterly Australian GDP forecasts.
The reconciliation approaches are sorted vertically according to the MSE
mean rank for Income (a) and Expenditure (b) sides, respectively. The
mean rank of each approach is displayed to the right of their names. If
the intervals of two forecast reconciliation procedures do not overlap, this
indicates a statistically different performance. . . . . . . . . . . . . . . . 110



xvi List of Figures

4.1 A simple three-level hierarchical structure for a linearly constrained mul-
tiple time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 A general linearly constrained structure: two hierarchies sharing only the
same top-level series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Linear combination matrix A for the Australian GDP from income and
expenditure sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4 Australian GDP empirical one-step-ahead forecast distributions for
2018:Q1, shr joint bootstrap-based reconciliation approach. Empirical
Cumulative Distribution Function (left), and Smoothed density (right). . 126

4.5 MCB Nemenyi test for the fully reconciled forecasts of the Australian
QNA variables at any forecast horizon. In each panel, the Friedman test
p-value is reported in the lower right corner. The mean rank of each
approach is shown to the right of its name. Statistical differences in
performance are indicated if the intervals of two forecast reconciliation
approaches do not overlap. Thus, approaches that do not overlap with
the blue interval are considered significantly worse than the best, and
vice-versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.6 Linear combination matrices A for the European Area GDP : output side
in panel (a), income side in panel (b), expenditure side in panel (c). . . . 130

4.7 MCB Nemenyi test for the fully reconciled forecasts of the European Area
QNA variables at any forecast horizon. In each panel, the Friedman test
p-value is reported in the lower right corner. The mean rank of each
approach is shown to the right of its name. Statistical differences in
performance are indicated if the intervals of two forecast reconciliation
approaches do not overlap. Thus, approaches that do not overlap with
the blue interval are considered significantly worse than the best, and
vice-versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8 CRPS-skill scores of the one-step-ahead GDP non-parametric joint boot-
strap probabilistic reconciled (wls) forecasts for the 19 Euro Area countries.134

5.1 (a) A simple two-level cross-sectional hierarchy for 3 time series with
na = 1 and nb = 2. (b) A temporal hierarchy for a quarterly series
(m = 4 and K = {4, 2, 1}). . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Visual representation of the zero constraints cross-temporal matrix Cct

defined in (5.3) for a system of 3 linearly constrained quarterly time se-
ries (see Figure 5.1). The four upper rows describe the cross-sectional
constraints (one for each quarter), the remaining rows the temporal con-
straints (one for each of the three time series). Colours legend: 0s in
white, 1s in black, -1s in red. . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Visual representation of the cross-temporal summation matrix Sct =
Scs ⊗ Ste defined in (5.4) for a system of 3 linearly constrained quar-
terly time series (see Figure 5.1). Colours legend: 0s in white, 1s in
black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



List of Figures xvii

5.4 A visual representation of partly bottom up starting from (5.4a) cross-

sectionally reconciled forecasts for the temporal order 1 (Ũ [1] and B̃[1])
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Introduction

Overview

Forecasting is a fundamental tool for decision-making in many fields (Petropoulos et al.,

2022), including finance, economics, marketing, energy and supply chain management.

Accurate predictions help organizations optimize operations, allocate resources effec-

tively, and make strategic decisions, but it is often challenging due to the complexity

of the data. In such a framework, mostly when we face a prediction problem involving

data that follow some linear constraints (e.g., linearly constrained multiple time series),

forecasting may benefit from the data organization structure. For example, the number

of tourists who visit a particular country is made up of the tourists who visit each state

within that country. This is the simplest structure of a linearly constrained multiple

time series and it is called hierarchical time series. It is also possible to further break

down this hierarchy by grouping tourists according to different variables, such as their

reason for travel (e.g., visiting friends, business, or vacation), which is referred to as

grouped time series.

In general, most approaches involve forecasting the individual components of the

system, often failing to satisfy the constraints observed in the actual data. Forecast

reconciliation is a post-forecasting process intended to improve the quality of (base)

forecasts for a system of linearly constrained multiple time series. Base forecasts may

be produced by separate organizational silos or using distinct models for each variable

(Chase, 2013). Therefore, the reconciliation process involves combining base forecasts for

related variables in a way that satisfies the constraints between them, thereby producing

coherent and (possibly) reliable forecasts for the entire system. This approach has gained

increasing attention in recent years due to its potential to improve forecast accuracy and

reduce inconsistencies in the predictions of related variables, making it a crucial tool for

decision-making. Temporal coherence as well (Athanasopoulos et al., 2017) is another

crucial aspect that may help organizations to align their forecasting efforts effectively.

The temporal approach involves reconciling forecasts that are generated at different

1



2 Overview

time horizons, such as monthly, quarterly, or annually. For instance, a retail company

may need to reconcile monthly sales forecasts with quarterly forecasts to guarantee that

they are consistent.

Classical reconciliation methods aim to resolve the issue of incoherent forecasts in

a cross-sectional hierarchy by forecasting only one level and utilizing these forecasts to

generate predictions for the remaining series. One of the most widely used approaches

is the bottom-up (Dunn et al., 1976), which aggregates the forecasts for the most dis-

aggregated level. On the other hand, the top-down approach (Gross and Sohl, 1990)

forecasts the most aggregated level and disaggregates it. A hybrid approach, known

as middle-out reconciliation (Athanasopoulos et al., 2009), combines both methods by

selecting an intermediate level and using the top-down approach for lower levels and the

bottom-up for higher levels. However, it is worth noting that all these approaches ignore

useful information available at other levels, as highlighted by Pennings and Van Dalen

(2017). To overcome the limitations imposed by these approaches, in recent years the

concept of regression-based reconciliation has been introduced.

Since the 1940s, least squares reconciliation has been implemented in several con-

texts outside of the forecasting domain. Stone et al. (1942) developed a constrained

estimation method for balancing national accounts, which involves a weighted linear

combination of initial estimates. Richard Stone won the 1984 Nobel Prize in Economics

with works related to this result. Byron (1978, 1979) further formalized and extended

Stone’s work by using more computationally efficient techniques. Later, the same idea

was applied in other national statistics offices (Dagum and Cholette, 2006, chp. 11).

For example, dealing with a table of directly seasonally adjusted time series incoherence

is usually observed, so some least squares-based solutions are used to solve this problem

(Di Fonzo and Marini, 2011; Corona et al., 2021; Quenneville and Fortier, 2012; Di Fonzo

and Marini, 2015). Temporal reconciliation is also of interest to national statistics of-

fices using indirect temporal disaggregation techniques to estimate quarterly or monthly

aggregates coherent with their temporally aggregated counterparts (e.g, annual or quar-

terly). In this case, it is wished that monthly or quarterly estimates sum to the annual

estimates (Chow and Lin, 1971; Chen et al., 2018). In this context, Di Fonzo (1990)

(see also Rossi, 1982) introduces simultaneous least squares reconciliation of time series

estimates in both cross-sectional and temporal dimensions. In addition, this concept

has been developed in other domains, e.g. chemical (Romagnoli and Sánchez, 2000) and

engineering (Simon, 2006, 2010; Simon and Tien Li Chia, 2002).

One of the earliest works that applied ordinary least squares (OLS) to forecast rec-

onciliation was the PhD thesis of Ahmed (2009), from which the seminal paper by
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Hyndman et al. (2011) has been derived. However, the OLS approach weights all series

equally, whether they are aggregates or disaggregates, and whether their base forecasts

are “good” or “bad”. To address this issue, Hyndman et al. (2016) propose a weighted

least squares (WLS) solution, where they use the variances of the base forecasts for

each serie as weighting factors. Wickramasuriya et al. (2019) provide theoretical in-

sights into the problem by taking an optimization approach rather than a regression

approach. They formulate the problem as minimizing the trace (MinT) of the covari-

ance matrix of the reconciled forecast errors, and the solution can be seen as a feasible

generalized least squares (GLS) estimation, with WLS and OLS as special cases. van Er-

ven and Cugliari (2015) propose a game-theoretic approach and show that the solution

to their minimax problem is equivalent to the GLS when a L2 loss is used. Moreover,

Panagiotelis et al. (2021) unify these results providing a geometric interpretation of the

main forecast reconciliation results.

Focusing on temporal hierarchies, Kourentzes et al. (2014) propose the Multiple

Aggregation Prediction Algorithm (MAPA), which combines independent models for

a time series at multiple temporal aggregation levels using a state-space model (e.g.,

ETS by Hyndman, 2008). Athanasopoulos et al. (2017) exploit the MAPA’s idea of

multiple temporal aggregation levels and introduce temporal hierarchies. One significant

advantage over MAPA is the absence of model constraints, allowing for the use of

diverse forecasting models/methods at each level. Achieving cross-temporal coherence

in forecasts across both the temporal and cross-sectional dimensions has been a challenge

that has thus far been tackled by sequential approaches that focus on each dimension

independently (Kourentzes and Athanasopoulos, 2019; Yagli et al., 2019; Punia et al.,

2020; Spiliotis et al., 2020).

Probabilistic forecasts differ from point forecasts in their ability to quantify prediction

uncertainty, rendering them a crucial element in making informed decisions (Abramson

and Clemen, 1995; Gneiting and Katzfuss, 2014). Thanks to their nature, they are

widely employed in various fields, including economics (Zarnowitz and Lambros, 1987;

Clements, 2004, 2018; Liu et al., 2021), meteorology (Gneiting et al., 2008; Leutbecher

and Palmer, 2008; Pinson et al., 2009; McLean Sloughter et al., 2013; Scheuerer and

Hamill, 2015; Leutbecher, 2019), energy (Jeon and Taylor, 2012; Wytock and Kolter,

2013; Hong et al., 2016; Ben Taieb et al., 2016), and retail (Kolassa, 2016; Böse et al.,

2017; Berry et al., 2020). Shang and Hyndman (2017) make an initial effort towards

probabilistic forecast by reconciling the quantiles, instead of point forecasts, to generate

prediction intervals. Ben Taieb et al. (2017) present a bottom-up method that incorpo-

rates top-level information into the algorithm to adjust the mean of each series, which
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was later extended in Ben Taieb et al. (2021). However, this method requires the size

of the samples drawn from the forecast distribution and the training data to be equal,

making it unsuitable for limited training data. To overcome this limitation, Panamtash

and Zhou (2018) and Zhao et al. (2019) propose estimating predictive quantiles directly

via quantile regression. Jeon et al. (2019) propose a two-step temporal reconciliation ap-

proach for producing probabilistically coherent forecasts, which involves drawing a sam-

ple from the forecast distribution of each series pre-multiplied by a projection matrix to

obtain a sample from the coherent multivariate distribution. Panagiotelis et al. (2023)

provide formal definitions for coherence and reconciliation in the cross-sectional frame-

work, including parametric and non-parametric approaches. Moreover, Wickramasuriya

(2024) thoroughly examines the assumption of Gaussianity for reconciliation. Corani

et al. (2021) propose a cross-sectional Bayesian algorithm that focuses on probabilistic

forecast reconciliation. Recently, this approach has also been extended to discrete data

by Corani et al. (2023) and Zambon et al. (2024) in the cross-sectional and temporal

framework, respectively.

For a comprehensive and in-depth review of the historical and contemporary devel-

opments in the field of forecast reconciliation, Athanasopoulos et al. (2023) provide a

very recent and valuable resource.

Main contributions of the thesis

This thesis focuses on several aspects of point and probabilistic forecast reconciliation,

filling several previously neglected or minimally explored features of both cross-sectional

and temporal cases. By establishing a unified cross-temporal framework, it aims to

comprehensively encompass and consolidate both aspects, while also standardizing the

notation.The thesis consists of six main chapters.

In Chapter 1, the development of optimal combination cross-temporal forecast rec-

onciliation is proposed as a novel approach. This method extends existing reconciliation

techniques by considering both cross-sectional and temporal dimensions simultaneously.

Moreover, an iterative cross-temporal forecast reconciliation procedure is introduced,

building upon previous heuristic methods (Kourentzes and Athanasopoulos, 2019) to

enhance accuracy and coherency. Finally, the proposed approach is evaluated using a

forecasting experiment with the Australian National Accounts dataset, demonstrating

superior performance compared to other reconciliation procedures in terms of accuracy

and coherency, particularly in improving GDP forecasts.
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Chapter 2 focuses on solar power data and presents several significant contribu-

tions. It introduces the concept of cross-temporal forecast reconciliation, which com-

bines geographical and temporal hierarchies to generate accurate forecasts of photo-

voltaic (PV) generated power. Different reconciliation procedures (e.g., Yagli et al., 2019

and Kourentzes and Athanasopoulos, 2019 among others) are discussed, providing new

methodological and computational insights dealing with non-negativity and coherency

problems. Additionally, a comparative performance analysis of different reconciliation

approaches is conducted, helping practitioners select the most suitable method for their

specific needs. These contributions advance the understanding and application of solar

power forecasting, facilitating the integration of solar energy into electrical power grids

and supporting the transition towards sustainable energy sources.

Chapter 3 provides a detailed mathematical derivation and analysis of the Level-l

Conditional Coherent (LlCC) forecast reconciliation formula proposed by Hollyman

et al. (2021), as linearly constrained minimization of a quadratic loss function, with

an exogenous constraint given by the base forecast of the top level series of the hierar-

chy, which is not revised. Then, the concept of endogenous constraints is introduced,

which enables level conditional reconciliation by coherently revising both the top and

bottom level time series forecasts. Furthermore, the LlCC procedure does not guaran-

tee the non-negativity of the reconciled forecasts, which in many situations is a natural

property that forecasts should satisfy. Therefore, some solutions are proposed to address

this issue in the concluding section. Finally, two forecasting experiments are considered

to evaluate the performance of various cross-sectional forecast combination-based point

forecast reconciliation procedures in a fair setting. In this framework, due to the crucial

role played by the (possibly different) models used to compute the base forecasts, a re-

interpretation of the combined conditional coherent reconciliation procedure (Hollyman

et al., 2021) as a forecast pooling approach is developed.

Chapter 4 presents several key contributions to unify different cross-sectional recon-

ciliation representations. Most of the point and probabilistic regression-based forecast

reconciliation results ground on the so called “structural representation” (Hyndman

et al., 2011; Panagiotelis et al., 2021) and on the related unconstrained GLS recon-

ciliation formula. However, the structural representation naturally applies to genuine

hierarchical/grouped time series, where the top- and bottom-level variables are uniquely

identified. When a general linearly constrained multiple time series is considered, the

forecast reconciliation is naturally expressed according to a projection approach (Stone

et al., 1942; Byron, 1978, 1979; Weale, 1992; Smith et al., 1998). While it is well known

that the classic structural reconciliation formula is equivalent to its projection approach
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counterpart, so far it is not completely understood if and how a structural-like reconcilia-

tion formula may be derived for a general linearly constrained multiple time series. Such

an expression would permit to extend reconciliation definitions, theorems and results

in a straightforward manner. The chapter shows that for general linearly constrained

multiple time series it is possible to express the reconciliation formula according to a

“structural-like” approach that keeps distinct free and constrained variables, instead of

bottom and upper (aggregated), establish the probabilistic forecast reconciliation frame-

work, and obtain fully reconciled point and probabilistic forecasts for the aggregates of

the Australian GDP from income and expenditure sides, and for the European Area

GDP disaggregated by income, expenditure and output sides and by 19 countries.

Chapter 5 extends the concept of cross-sectional probabilistic forecast reconcilia-

tion to the cross-temporal case. It presents a comprehensive framework for handling

both cross-sectional and temporal dimensions simultaneously. Effective methods for

generating samples from the base forecast distribution are proposed, considering both

parametric and non-parametric approaches. The chapter addresses the challenge of cap-

turing cross-temporal relationships by using multi-step residuals, and introduces over-

lapping residuals to handle high-dimensionality issues. New shrinkage procedures are

proposed to identify an appropriate covariance matrix structure, both in the base and

reconciled forecast distributions. Empirical applications demonstrate the effectiveness

of the proposed approaches in improving forecast accuracy and coherence in real-world

datasets. This chapter significantly extends probabilistic forecast reconciliation to the

cross-temporal framework and provides new insights and practical tools for enhanced

forecasting processes and decision-making.

In Chapter 6, the forecast reconciliation approach is applied to a classical finan-

cial forecasting problem, i.e. volatility forecasting. It proposes a method to improve

daily realized volatility (RV) forecasts by utilizing intraday decompositions (Patton

and Sheppard, 2015; Bollerslev et al., 2022). The importance of volatility forecasting

in various financial areas is emphasized, and different models for RV forecasting are re-

viewed. The concept of hierarchical forecasting is introduced (bottom-up and regression-

based), where daily RV is considered as the top-level series with intraday components.

A combined-aggregative forecasting method is presented, which involves segment-level

forecasting and the combination of forecasts to enhance the daily RV. Furthermore,

an extensive out-of-sample forecasting experiment on the Dow Jones Industrial Av-

erage index and 26 stocks demonstrates the improved forecast accuracy achieved by

incorporating intraday RV decompositions through reconciliation. Finally, a robustness
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analysis is conducted, examining different scenarios and variations to validate the relia-

bility and stability of the proposed methodology. Overall, these contributions enhance

the understanding and practice of volatility forecasting in financial econometrics, offer-

ing valuable insights for various financial applications such as risk management, asset

allocation, hedging, and pricing.

Publications and Conferences

The content presented in each chapter has been published or submitted to several aca-

demic journals, as indicated in Table 0.1. In addition, preliminary/complete parts were

presented in various conferences. Chapter 1 was presented at the 2021 ASA Joint Sta-

tistical Meeting, the 50th Meeting of the Italian Statistical Society, and the 40th IIF

International Symposium on Forecasting. Chapters 2 and 3 were presented at the 42nd

and 41st IIF International Symposium on Forecasting, respectively. Chapter 4 was pre-

sented at the 42nd IIF International Symposium on Forecasting, the 8th International

Conference on Time Series and Forecasting, the 51st Meeting of the Italian Statistical

Society (Di Fonzo and Girolimetto, 2022b), and the 16th International Conference on

Computational and Financial Econometrics. Chapter 5 was presented at the 43rd IIF

International Symposium on Forecasting1 , the 9th International Conference on Time

Series and Forecasting, and the 2023 IIF Workshop on Forecast Reconciliation. Finally,

Chapter 6 was presented at the Quantitative Finance and Financial Econometrics 2023

conference.

Software and open data

Dedicated GitHub repositories have been set up to store the code used to produce each

chapter of this thesis. These repositories contain both the necessary functions and

documentation, making it possible to replicate the analyses presented in the thesis. The

primary language used for this work was R (R Core Team, 2022).

All reconciliation methodologies used in this thesis were implemented using the R

package FoReco (Girolimetto and Di Fonzo, 2023a, https://CRAN.R-project.org/

package=FoReco). This package provides both classical (bottom-up and top-down)

and modern (optimal and heuristic approaches) forecast reconciliation procedures

for linearly constrained time series data across temporal, cross-sectional, and cross-

temporal frameworks. The documentation and the manual of the package are available

1Winner of the best student presentation award.
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Chapter Title, Journal, Status and Co-author(s)

Title Cross-temporal forecast reconciliation: Optimal com-
bination method and heuristic alternatives

1 Journal International Journal of Forecasting
Status Published (2023, volume 39, issue 1, p. 39–57)

Co-author Tommaso Di Fonzo
DOI 10.1016/j.ijforecast.2021.08.004

2

Title Spatio-temporal reconciliation of solar forecasts
Journal Solar Energy
Status Published (2023, volume 251, p. 13–29)

Co-author Tommaso Di Fonzo
DOI 10.1016/j.solener.2023.01.003

Title Forecast combination-based forecast reconciliation:
Insights and extensions

3 Journal International Journal of Forecasting
Status Accepted (2022)

Co-author Tommaso Di Fonzo
DOI 10.1016/j.ijforecast.2022.07.001

4

Title Point and probabilistic forecast reconciliation for gen-
eral linearly constrained multiple time series

Journal Statistical Methods & Applications
Status Accepted (2023)

Co-author Tommaso Di Fonzo
DOI 10.1007/s10260-023-00738-6

5

Title Cross-temporal probabilistic forecast reconciliation:
methodological and practical issues

Journal International Journal of Forecasting
Status Accepted (2023)

Co-authors George Athanasopoulos, Tommaso Di Fonzo,
Rob J. Hyndman

DOI 10.1016/j.ijforecast.2023.10.003

6

Title Exploiting intraday decompositions in realized volatil-
ity forecasting: a forecast reconciliation approach

Pre-print arXiv:2306.02952

Status Submitted (2023)
Co-authors Massimiliano Caporin, Tommaso Di Fonzo

Table 0.1: Title, journal/pre-print, status (published, accepted or submitted),
and co-authors of research articles extracted from each chapter.
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at https://danigiro.github.io/FoReco/ and https://cloud.r-project.org/web/

packages/FoReco/FoReco.pdf, respectively.

Publicly available GitHub repositories (https://github.com/danigiro) have been

set up specifically for each chapter, which provide the code and documentation required

to replicate the analyses presented:

• Chapter 1: danigiro/AusGDP IJF

• Chapter 2: danigiro/SE PV324

• Chapter 3: danigiro/IJF VN525 and danigiro/IJF AUSGDP

• Chapter 4: danigiro/mtsreco

• Chapter 5: danigiro/ctprob

In addition, supplementary material (extended tables and figures) are provided for each

chapter in a separate online file (https://github.com/danigiro/phd-thesis):

• Chapter 1: online appendix/oa chp1.pdf

• Chapter 2: online appendix/oa chp2.pdf

• Chapter 3: online appendix/oa chp3.pdf

• Chapter 4: online appendix/oa chp4.pdf

• Chapter 5: online appendix/oa chp5.pdf

• Chapter 6: online appendix/oa chp6.pdf





Chapter 1

Optimal and heuristic methods for

cross-temporal reconciliation

1.1 Introduction

In several operational fields, decisions to be successful require the support of accurate,

detailed but also coherent forecasts. Forecasts are coherent when the predicted values

at the disaggregate and aggregate scales are equal when brought to the same level. For

example, temporally coherent monthly predictions sum up to annual ones and simi-

larly geographically coherent regional predictions add up to country level ones. Such

a coherence is an important qualifier for forecasts, so as to support aligned decision

making across different planning units and horizons, while avoiding that different de-

cision making units plan on different views of the future. For example, Kourentzes

and Athanasopoulos (2019) generate forecasts for Australian domestic tourism that are

coherent across multiple geographical divisions (regions, zones, states, and whole coun-

try), but are also coherent across time (at monthly, bi-monthly, quarterly, 4-monthly,

6-monthly, and annual levels), i.e. for different planning horizons.

As a matter of fact, in the growing literature on hierarchical forecast reconciliation

the cross-sectional (contemporaneous) and temporal coherency dimensions are mostly

considered in separate ways: either ‘time-by-time’ cross-sectional forecast reconciliation

for a n-dimensional time series (Hyndman et al., 2011, 2022), or temporal coherency for

the forecasts of a single variable for different time frequencies (Athanasopoulos et al.,

2017; Hyndman and Kourentzes, 2018). The issue of getting coherent forecasts along

both cross-sectional and temporal dimensions (i.e., cross-temporal coherency) has been

dealt with by Yagli et al. (2019) and Spiliotis et al. (2020). However, as far as we

know, the procedure proposed by Kourentzes and Athanasopoulos (2019) is the only

11
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one able to simultaneously fulfill both cross-sectional and temporal coherency in the

final reconciled point forecasts at any considered aggregation dimension.

Whereas the most recent forecast reconciliation procedures for each single coherence

dimension are based on some optimality criterion (van Erven and Cugliari, 2015; Wick-

ramasuriya et al., 2019), the cross-temporal reconciliation procedure by Kourentzes and

Athanasopoulos (2019) can be considered as an heuristic with a simple and effective

structure, i.e. an approach that employs a practical method that is not guaranteed to

be optimal, but which is nevertheless sufficient for reaching an immediate goal, which in

our case is the coherency along all the considered dimensions of the reconciled forecasts.

This fact is probably because of the consideration that in a cross-temporal forecast rec-

onciliation framework the complexity and dimensions of the problem grow very quickly

along with the requested computational time and memory (Kourentzes and Athana-

sopoulos, 2019; Nystrup et al., 2020). This is certainly true, but appropriate, thorough

use of some well known linear algebra tools, and the expanding computation facilities, in

terms of both calculation power and memory, makes it feasible to look for the optimal

solution (in the least squares sense), expanding the field of application of the ‘fore-

cast reconciliation methodology’ to simultaneously encompass both contemporaneous

(cross-sectional) and temporal coherency dimensions.

Bottom-up and top-down approaches to forecast reconciliation are well known to

both practitioners and researchers. In short, according to the bottom-up approach

(Dunn et al., 1976), the forecasts at the most disaggregated level are summed up to

obtain the aggregates of interest. On the contrary, in the top-down approach (Gross

and Sohl, 1990), the most aggregated series is forecasted first, and then is disaggregated

to provide lower level predictions (Fliedner, 2001; Athanasopoulos et al., 2009, and

the references therein). A combination of these two approaches, known as middle-

out (Athanasopoulos et al., 2009), selects an intermediate level of (dis)aggregation, and

moves downward in a top-down fashion, and onwards according to bottom-up. However,

in the last decade there have been several contributions exploiting a regression based

optimal combination approach (Hyndman et al., 2011). These have proven convincing

from a mathematical-statistical point of view, flexible enough to be adapted to both

cross-sectional and temporal frameworks (Wickramasuriya et al., 2019; Athanasopoulos

et al., 2017), and very effective in improving the base forecasts from many different

application fields (economics, demography, energy, tourism, etc.).

This Chapter considers an optimal combination approach, which takes the base (in-

coherent and however obtained) forecasts of all nodes in the hierarchy and reconciles

them. We show that all the linear constraints induced by the cross-temporal hierarchy
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underlying the time series, may be used to reconcile the base forecasts through a simple

projection in a well chosen linear space. At this end, we extend the optimal (in the least

squares sense) solutions separately proposed for each coherency dimension, developing

the optimal point forecasting procedure which - while exploiting both cross-sectional

and temporal hierarchies - simultaneously fulfills both contemporaneous and temporal

constraints. We refer to this as optimal combination cross-temporal forecast reconcili-

ation. In addition, grounding on the existing literature on this topic (Wickramasuriya

et al., 2019; Athanasopoulos et al., 2017; Nystrup et al., 2020), we discuss some sim-

ple approximations of the covariance matrix to be used in the statistical point forecast

reconciliation, focusing on those making use of the in-sample residuals (when available)

of the models used to get the base forecasts. The strictly, and very important related

issue of probabilistic forecast reconciliation (Panagiotelis et al., 2023; Wickramasuriya,

2024) will be considered in Chapter 5.

The Chapter is organized as follows. We start by presenting the general framework

of point forecast reconciliation according to Byron (1978, 1979) (see also van Erven and

Cugliari, 2015, and Panagiotelis et al., 2021), avoiding reference to cross-sectional or

time indices (Section 1.2). Hierarchical and grouped systems of multivariate time series

are introduced in Section 1.3. The temporal hierarchies which characterize a single time

series are discussed in Section 1.4. The cross-sectional and temporal coherency dimen-

sions are dealt with simultaneously in Section 1.5, and the optimal (in the least squares

sense) solution to the cross-temporal forecast reconciliation problem is then developed in

Section 1.6. An iterative cross-temporal forecast reconciliation procedure which extends

the heuristics proposed by Kourentzes and Athanasopoulos (2019) is described in Sec-

tion 1.7. The feasibility of all the proposed new procedures, along with the evaluation

of their performance when compared to the most performing ‘single dimension’ (either

cross-sectional or temporal) forecast reconciliation procedures, is studied in Section 1.8.

This is completed through a forecasting experiment on the 95 quarterly time series of

the Australian GDP from Income and Expenditure sides considered by Athanasopoulos

et al. (2020) and Bisaglia et al. (2020).

1.2 Optimal point forecast reconciliation

Forecast reconciliation is a post-forecasting process aimed to improve the quality of

the base forecasts for a system of hierarchical/grouped, and more generally linearly

constrained, time series (Hyndman et al., 2011; Panagiotelis et al., 2021) by exploiting

the constraints that the series in the system must fulfill, whereas in general, the base

forecasts do not. Let y be a (s × 1) vector of target point forecasts that is needed to
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Symbols Description

nb, na, n Number of bottom, upper, and total time series (n = na + nb)

m Highest available sampling frequency per seasonal cycle (max. order of tem-
poral aggregation)

h ≥ 1 Forecast horizon for the lowest frequency time series

T Number of high-frequency observations used in the forecasting models

N Number of observations at the lowest frequency: N = T
m

K Set of factors of m in descending order: K = {kp, kp−1, . . . , k2, k1}, kp = m,
k1 = 1

k∗

p∑

j=2

m

kj

Mk

m

k
, k ∈ K

bt ∈ Rnb vector containing the bottom time series (bts) at time t

at ∈ Rna vector containing the upper time series (uts) at time t

yt ∈ Rn vector containing the time series yt = [a′

t b′t]
′

at time t

Y , Ŷ , Ỹ ∈ Rn×h(k∗+m) Matrices of target, base and cross-temporally reconciled forecasts

Y [k], k ∈ K (n× hMk) matrix containing the target forecasts of the level k temporally

aggregated series. Component of matrix Y =
[
Y [m] Y [kp−1] . . . Y [k2] Y [1]

]

Ŷ [k], k ∈ K (n× hMk) matrix containing the base forecasts of the level k temporally ag-

gregated series. Component of matrix Ŷ =
[
Ŷ [m] Ŷ [kp−1] . . . Ŷ [k2] Ŷ [1]

]

Ỹ [k], k ∈ K (n× hMk) matrix containing the cross-temporally reconciled forecasts of

the level k temporally aggregated series. Component of matrix Ỹ =[
Ỹ [m] Ỹ [kp−1] . . . Ỹ [k2] Ỹ [1]

]

A[k], B[k], k ∈ K (na × hMk) and (nb × hMk) components of matrix Y [k] =

[
A[k]

B[k]

]

y, ŷ, ỹ ∈ Rhn(k∗+m) y = vec (Y ′), ŷ = vec
(
Ŷ ′

)
, ỹ = vec

(
Ỹ ′

)

P ∈ Rhn(k∗+m)×hn(k∗+m) Commutation matrix, such that P [vec (Y )] = vec (Y ′)

C ∈ Rna×nb Cross-sectional (contemporaneous) aggregation matrix

S ∈ Rn×nb Cross-sectional (contemporaneous) summing matrix

U ′ ∈ Rna×n Zero-constraints cross-sectional matrix: U ′Y = 0[na×(k∗+m)]

Kh ∈ Rhk∗
×hm Temporal aggregation matrix

Rh ∈ Rh(k∗+m)×hm Temporal summing matrix

Z′

h ∈ Rhk∗
×h(k∗+m) Zero-constraints temporal matrix: Z′

hY
′ = 0[hk∗×n]

H ′ ∈ Rhn∗

a×nh(k∗+m) Zero-constraints full row-rank cross-temporal matrix: H ′y = 0

Table 1.1: Cross-temporal forecast reconciliation: symbols and notation

satisfy the system of linearly independent constraints

H ′y = 0(r×1), (1.1)

where H ′ is a (r× s) matrix, with rank(H ′) = r < s, and 0(r×1) is a (r× 1) null vector.

Let ŷ be a (s× 1) vector of unbiased point forecasts, not fulfilling the linear constraints

(1.1) (i.e., H ′ŷ ̸= 0).



Chapter 1 - Optimal and heuristic methods for cross-temporal reconciliation 15

Drawing upon Stone et al. (1942) and Byron (1978, 1979), we consider a regression-

based reconciliation method assuming that ŷ is related to y by

ŷ = y + ε, (1.2)

where ε is a (s×1) vector of zero mean disturbances, with known p.d. covariance matrix

W . The reconciled forecasts ỹ are found by minimizing the generalized least squares

(GLS) objective function (ŷ − y)′ W−1 (ŷ − y) constrained by (1.1):

ỹ = argmin
y

(y − ŷ)′ W−1 (y − ŷ) , s.t. H ′y = 0.

The solution is given by (Byron, 1978, p. 360):

ỹ = ŷ −WH (H ′WH)
−1

H ′ŷ = Mŷ, (1.3)

where M = Is −WH (H ′WH)−1
H ′ is a (s × s) projection matrix1. Denoting with

dŷ = 0−H ′ŷ the (r×1) vector containing the base forecasts’ ‘coherency’ errors, we can

re-state expression (1.3) as ỹ = ŷ+WH (H ′WH)−1
dŷ, which makes it clear that the

reconciliation formula (1.3) simply ‘adjusts’ the original forecasts vector ŷ with a linear

combination – according to the smoothing matrix WH (H ′WH)−1 – of the coherency

errors in the base forecasts. In addition, if the error term of model (1.2) is Gaussian, the

reconciliation error ε̃ = ỹ − y is a zero-mean Gaussian vector with covariance matrix

E (ỹ − y) (ỹ − y)′ = W −WH (H ′WH)
−1

H ′ = MW .

Hyndman et al. (2011) propose an alternative formulation as for the reconciled esti-

mates, equivalent to expression (1.3) and obtained by GLS estimation of the model

ŷ = Sβ + ε,

where S is a ‘structural summation matrix’ describing the aggregation relationships

operating on y, and β is a subset of y containing the target forecasts of the bottom level

series, such that y = Sβ (see Section 1.3). Since the hypotheses on ε remain unchanged,

it can be shown (Wickramasuriya et al., 2019) that β̃ = (S′W−1S)
−1

S′W−1ŷ is the

best linear unbiased estimate of β, and that the whole reconciled forecasts vector is

given by ỹ = Sβ̃ = SGŷ, where G = (S′W−1S)
−1

S′W−1.

As witnessed by the extensive literature on adjusting preliminary data (as the base

forecasts can be considered) in order to fulfill some externally imposed constraints (Stone

et al., 1942; Byron, 1978, 1979; Weale, 1992), the distinctive feature of the GLS recon-

ciliation approach is that it can take into account the ‘quality’, however measured, of

the preliminary estimates, through an appropriate choice of the covariance matrix W .

1A geometric interpretation of the entire hierarchical forecasting problem is given by Panagiotelis et al.
(2021).
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However, for a long time, these procedures have depended on the assumption that this

matrix (or any other indicators of the estimates’ accuracy) of the figures to be reconciled

was known. In many practical situation W is assumed to be diagonal, and the data

are adjusted in the light of their relative variances to satisfy the linear restrictions. But

another - perhaps more delicate - challenge arises when either any reliability measure is

available, or it can hardly be deduced by the data. The solutions proposed in literature

for this case are basically of two types, both consistent with the least-squares approach

shown so far:

1. mathematical/mechanical solutions: the base forecasts are balanced by minimiz-

ing a penalty criterion which ‘induces’ a covariance matrix (which is simply a

statistical artifact);

2. data-based solutions: the variability of the base forecasts to be reconciled is esti-

mated through the models and the data used to produce the forecasts.

As for point forecast reconciliation, in the following, we will consider both approaches,

with an explicit preference towards approximations of W based on the in-sample resid-

uals (when available), which appear more convincing from a statistical point of view,

and generally well-performing in practical applications. However, this topic deserves

further attention (Jeon et al., 2019, p. 368), and will be considered for future research.

1.3 Hierarchical and grouped Time Series

Following Panagiotelis et al. (2021), we define a linearly constrained time series yt as

a n-dimensional time series such that all observed values y1 . . .yT and all future values

yT+1,yT+2 . . . lie in the coherent linear subspace S ⊂ Rn, that is: yt ∈ S, ∀t. In

many situations, the time series are linked through summation constraints, inducing

a hierarchy. Figure 1.1 (left) gives an example of a hierarchical system with eight

variables and three levels: the top-variable at level 0, two variables (A and B) at level

1, and five variables at level 2 (AA, AB, BA, BB, BC). The temporal observations of

these variables form a hierarchical time series, consisting of five bottom time series (bts)

and three aggregated upper time series (uts).

Assuming that the relationship mapping the lower-level series in the hierarchy of

Figure 1.1 (left) into the higher ones always be a simple summation, the bottom-level

series can be thought of as building blocks that cannot be obtained as sum of other series

in the hierarchy, while all the series at upper levels can be expressed by appropriately

summing part or all of them. For all time periods t = 1, . . . , T , the link between the
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X

Figure 1.1: Two examples of linearly constrained time series. Left: a simple
three-level hierarchical structure. Right: two hierarchies sharing the same top-
level series

top level series yt and the bottom level series is given by:

yt = yAA,t + yAB,t + yBA,t + yBB,t + yBC,t. (1.4)

At the same time, the nodes at the intermediate level of the hierarchy satisfy the aggre-

gation constraints:

yA,t = yAA,t + yAB,t

yB,t = yBA,t + yBB,t + yBC,t

. (1.5)

Consider now the matrices C, S, and U ′, of dimension (3 × 5), (8 × 5), and (3 × 8),

respectively:

C =




1 1 1 1 1

1 1 0 0 0

0 0 1 1 1


 , S =

[
C

I5

]
, U ′ = [I3 −C] ,

where matrix U ′ encodes each summation relationship in a row, with 1 at the associated

node, and -1 at its leaves. Expressions (1.4) and (1.5) can be written in a more compact

way if we define the vectors of bottom level (bt) and upper level (at) time series at

time t as, respectively, bt = [yAA,t yAB,t yBA,t yBB,t yBC,t]
′, at = [yt yA,t yB,t]

′.

Denoting by yt the (8 × 1) vector yt = [a′
t b′t]

′, the relationships linking bottom and

upper time series can be equivalently expressed as:

at = Cbt, yt = Sbt, U ′yt = 0(3×1), t = 1, . . . , T. (1.6)

Thus, for any time index t, yt is in the kernel of U ′, also known as null-space of the

linear transformation induced by matrix U ′, which is given by the set of vectors v ∈ R8,

such that U ′v = 0(3×1) (Harville, 2008, p. 591). We call structural representation of

series yt the formulation yt = Sbt, t = 1, . . . , T , and zero-constrained representation of

series yt the equivalent expression U ′yt = 0, t = 1, . . . , T .
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A linearly constrained time series formed by two or more hierarchical time series

sharing the same top level series, and the same bottom level series, is called grouped

time series (Hyndman et al., 2011; Hyndman and Athanasopoulos, 2021). Provided

matrix C is appropriately designed, the definitions of matrices S and U ′, depending

solely on matrix C, remain unchanged.

It should be noted that we can face linearly constrained time series for which the

structural representation yt = Sbt does not give a straightforward view of the links

between bottom and upper level time series. Figure 1.1 (right) shows two very simple

hierarchies, where the variables of each hierarchy contribute (from different sides) to

the same top level variable X, and the bottom level series of the hierarchy on the left

side (A1,A2,B) are independent of those on the right side (C,D). The aggregation

relationships between the upper variables X and A, and the bottom ones A1, A2, B,

C, and D are given by:

X = A1 + A2 + B

X = C +D

A = A1 + A2

. (1.7)

Expression (1.7) cannot be represented as a mapping from the bottom variables into

(themselves, and) the upper variables. Nevertheless, it is possible to set up the con-

straints valid for all the component series in y = [X A A1 A2 B C D]′ through the

matrix

Ǔ ′ =




1 0 −1 −1 −1 0 0

1 0 0 0 0 −1 −1

0 1 −1 −1 0 0 0


 ,

such that Ǔ ′y = 0(3×1). After simple operations on expression (1.7), it is found:

X = C +D

A = −B + C +D

A1 = −A2− B + C +D

, (1.8)

so we can write U ′y = 0(3×1), with

U ′ =




1 0 0 0 0 −1 −1

0 1 0 0 1 −1 −1

0 0 1 1 1 −1 −1


 = [I3 −C] .

While there is no practical problem in working with such constraints, it is clear that they

do not conform to the visual pattern of the linearly constrained time series in Figure 1.1

(right), where A1 appears as a ‘bottom variable’. However, in (1.8) it is expressed as
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linear combination of series A2, B, C, and D. We will come back on this important

issue, and develop it in Chapter 4.

1.3.1 Alternative approximations of the covariance matrix for

cross-sectional point forecast reconciliation

Suppose we have the (n×1) vector ŷh of unbiased base forecasts for the n variables of the

linearly constrained series yt for the forecast horizon h. If the base forecasts have been

independently computed, generally they do not fulfill the cross-sectional aggregation

constraints, i.e. U ′ŷh ̸= 0(n×1). By adapting the general point forecast reconciliation

formula (1.3), the vector of reconciled forecasts is given by:

ỹh = ŷh −WcsU (U ′WcsU )
−1

U ′ŷh, (1.9)

where Wcs is a (n × n) p.d. matrix, assumed known, and suffix ‘cs’ stands for ‘cross-

sectional’. Alternative choices for Wcs proposed in literature are the following:

• identity (cs-ols): Wcs = In (Hyndman et al., 2011),

• structural (cs-struc): Wcs = diag (S1nb
) (Athanasopoulos et al., 2017),

• series variance (cs-wls): Wcs = Ŵcs-var = In ⊙ Ŵ1 (Hyndman et al., 2016),

• MinT-shr (cs-shr): Wcs = Ŵcs-shr = λ̂Ŵcs-var+(1− λ̂)Ŵ1 (Wickramasuriya et al.,

2019),

• MinT-sam (cs-sam): Wcs = Ŵ1 (Wickramasuriya et al., 2019),

where the symbol ⊙ denotes the Hadamard product, λ̂ is an estimated shrinkage co-

efficient (Ledoit and Wolf, 2004), Ŵ1 is the covariance matrix of the one-step ahead

in-sample forecast errors êt = yt − ŷt, t = 1, . . . , T :

Ŵ1 =
1

T

T∑

t=1

êtê
′
t. (1.10)

The first three matrices are diagonal, and in the first case, the projection is orthogo-

nal. In contrast, the latter two ones (cs-shr and cs-sam) have been proposed within the

minimum-trace point forecast reconciliation approach by Wickramasuriya et al. (2019).

It should be noted that the quality of the estimate Ŵ1 crucially depends on the dimen-

sion of T . In particular, when T < n, matrix Ŵ1 is singular, which prevents the matrix

inversion in expression (1.9). The shrunk version Ŵcs-shr is a feasible alternative, well

performing in many practical situations (Wickramasuriya et al., 2019).

1.3.2 Matrix representation of the cross-sectional constraints

Let us denote with

bt = [b1t . . . bit . . . bnbt]
′ , t = 1, . . . , T, (1.11)
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the T vectors, each of dimension (nb × 1), containing the high-frequency bottom-time

series (hf-bts), that is the bottom series of the hierarchy/group observed at the highest

available temporal frequency. As we shall see in Section 1.5, in cross-temporal hierar-

chies of time series the hf-bts should be considered as the ‘very’ bottom series of the

system, since they cannot be formed as either contemporaneous or temporal sum of

other variables. Likewise, let us denote with

at = [a1t . . . ajt . . . anat]
′ , t = 1, . . . , T, (1.12)

the T vectors, each of dimension (na × 1), containing the high-frequency upper-time

series (hf-uts), which are the cross-sectionally aggregated series of the hierarchy/group,

observed at the highest temporal frequency. At each time t = 1, . . . , T , the cross-

sectional (contemporaneous) aggregation constraints that map the hf-bts into the hf-uts

can be written as:

at = Cbt, t = 1, . . . , T, (1.13)

where C is a (na × nb) contemporaneous aggregation matrix. The structural represen-

tation of the linearly constrained time series yt is in turn given by (Hyndman et al.,

2011)

[
at

bt

]
=

[
C

Inb

]
bt, that is, yt = Sbt, t = 1, . . . , T , where S =

[
C

Inb

]
is a

(n× nb) contemporaneous summing matrix, with n = na + nb. The constraints valid

for yt can be expressed in zero-constrained form through the (na × n) zero-constraints

matrix U ′ = [Ina
−C], that is: U ′yt = 0(na×1), t = 1, . . . , T . Now, denote B the

(nb × T ) matrix containing the T observations of the nb hf-bts of the system:

B =




b11 . . . b1t . . . b1T
...

. . .
...

. . .
...

bi1 . . . bit . . . biT
...

. . .
...

. . .
...

bnb1 . . . bnbt . . . bnbT



=
[
b1 . . . bt . . . bT

]
=




b∗′1
...

b∗′i
...

b∗′nb



,

where bt has been defined by (1.11), and b∗i = [bi1 . . . bit . . . biT ]
′, i = 1, . . . , nb, is the

(T × 1) vector containing all the observations of the i-th univariate hf-bts, where the

asterisk in b∗i is used to distinguish this vector, which combines bit across all times for

one series, from bt, which combines bit across all series for one time. We consider the
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(na × T ) matrix A for the hf-uts as well:

A =




a11 . . . a1t . . . a1T
...

. . .
...

. . .
...

aj1 . . . ajt . . . ajT
...

. . .
...

. . .
...

ana1 . . . anat . . . anaT



=
[
a1 . . . at . . . aT

]
=




a∗′
1
...

a∗′
j

...

a∗′
na



,

where at was defined by (1.12), and a∗
j = [aj1 . . . ajt . . . ajT ]

′, j = 1, . . . , na, is the

(T × 1) vector containing all the observations of the j-th univariate component hf-uts.

The cross-sectional (contemporaneous) aggregation relationships (1.13) linking bottom

and upper time series of yt can thus be expressed in compact form, by simultaneously

encompassing all T time periods, as

A = CB, (1.14)

which is equivalent to

U ′Y = 0(na×T ), (1.15)

where Y = [A′ B′]′ is the (n × T ) matrix containing the observations of all n series.

It is worth noting that the cross-sectional constraints (1.14) and (1.15) hold at any time

observation index of any temporal frequency. This has to be considered when dealing

with cross-temporal hierarchies (see Section 1.5).

Now, let us consider the vectorized forms of matrices B′ and A′, according to which

the data is organized ‘by-variable-first-and-then-by-time’: b = vec (B′), a = vec (A′),

where b =
[
b∗′1 . . . b

∗′
i . . . b

∗′
nb

]′
, and a =

[
a∗′
1 . . .a

∗′
j . . .a

∗′
na

]′
have dimensions (Tnb × 1),

and (Tna×1), respectively. The cross-sectional constraints (1.14) can thus be expressed

as (Harville, 2008, p. 345):

a = (C ⊗ IT ) b, (1.16)

where the symbol ⊗ denotes the Kronecker product. Since y = vec (Y ′) = [a′ b′]′,

expression (1.16) can be also re-stated as:

(U ′ ⊗ IT )y = 0(Tna×1). (1.17)

1.4 Temporal hierarchies

Following Athanasopoulos et al. (2017), we consider a time series {xt}Tt=1 observed at

the highest available sampling frequency per seasonal cycle, say m (e.g., month per

year, m = 12, quarter per year, m = 4, hour per day, m = 24). Given a factor k of
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m,2 we can construct a temporally aggregated version of the time series xt, through the

non-overlapping sums of its k successive values, which has a seasonal period equal to

Mk = m/k. To avoid ragged-edge data, we assume that the total number of observations

of xt involved in the non-overlapping aggregation is a multiple ofm, i.e. T = N ·m, where

N is the length of the most temporally aggregated version of the series, i.e. the series

observed at the lowest available frequency. We denote with K = {kp, kp−1, . . . , k2, k1}
the set of the p factors of m, in descending order, where kp = m and k1 = 1. The

temporally aggregated series of order k can be written as

x
[k]
l =

lk∑

t=(l−1)k+1

xt, l = 1, . . . ,
T

k
, k ∈ K. (1.18)

Expression (1.18) accounts also for the temporal aggregation transforming xt in itself

(i.e., xt ≡ x
[1]
l , l = t). Since the observation index l in (1.18) varies with each aggregation

level k, to express a common index for all levels, we define τ as the observation index

of the most aggregated series, such that l = τ at that level, i.e. x
[m]
τ , τ = 1, . . . , N .

As for the other temporally aggregated series defined in expression (1.18), we stack the

observations for each aggregation level below m in the (Mk × 1) column vectors

x[k]
τ =

[
x
[k]
Mk(τ−1)+1 x

[k]
Mk(τ−1)+2 . . . x

[k]
Mkτ

]′
, (1.19)

with τ = 1, . . . , N and k ∈ {kp−1, . . . , k2, 1}. We may collect x
[m]
τ and the p− 1 vectors

defined by expression (1.19) in a single column vector, by keeping distinct the temporally

aggregated data from the high-frequency one:

xτ =
[
x[m]
τ x[kp−1]

τ

′
. . . x[k2]

τ

′
x[1]
τ

′
]′
=
[
txτ

′ x[1]
τ

′
]′
, τ = 1, . . . , N,

where txτ
=
[
x
[m]
τ x

[kp−1]
τ

′
. . . x

[k2]
τ

′
]′

is a (k∗ × 1) vector, with k∗ =

p∑

j=2

m

kj
, containing

all the temporally aggregated series at the observation index τ , x
[1]
τ is the (m×1) vector

of observations of the time series at the highest available frequency within the complete

τ -th cycle, and thus each xτ has dimension [(k∗ +m)× 1]. The relationships linking

the nodes in the hierarchy can be expressed as we did in (1.6) for the cross-sectional

(contemporaneous) hierarchy case:

txτ
= K1x

[1]
τ , xτ = R1x

[1]
τ , Z ′

1xτ = 0(k∗×1), τ = 1, . . . , N, (1.20)

where K1 =
[
1m I m

kp−1
⊗1kp−1 . . . I m

k2
⊗1k2

]′
is the (k∗ ×m) temporal aggregation

matrix converting the high-frequency observations into lower-frequency (temporally ag-

gregated) ones, R1 = [K ′
1 Im]

′ is the [(k∗ +m)×m] temporal summing matrix, and

2If k is not a factor of m, then the seasonality of the aggregate series is a non-integer, and so forecasts
of the aggregate are more difficult to compute.
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Z ′
1 = [Ik∗ −K1] is the zero-constraints matrix valid for xτ . For example, with quarterly

data it is m = 4, k∗ = 3, and K1 =



1 1 1 1

1 1 0 0

0 0 1 1


.

The temporal aggregation relationships can be extended to the whole time span

covered by series xt. Denoting by x = (x′
1 . . .x

′
τ . . .x

′
N)

′ the [N(k∗ +m)× 1] vector

containing all the data of series X at any observed temporal frequency, the complete

set of temporal aggregation constraints is given by

Z ′
Nx = 0(Nk∗×1), (1.21)

whereZ ′
N = [INk∗ −KN ], andKN =

[
IN ⊗ 1m IN m

kp−1
⊗ 1kp−1 . . . IN m

k2
⊗ 1k2

]′
.

1.4.1 Alternative approximations of the covariance matrix for

temporal point forecast reconciliation

Suppose we have the [(k∗ +m)× 1] vector x̂h of unbiased base forecasts for the p tem-

poral aggregates of a single time series X within a complete time cycle, i.e. at the

forecast horizon h = 1 for the lowest (most aggregated) time frequency. If the base

forecasts have been independently computed, generally they do not fulfill the temporal

aggregation constraints, i.e. Z ′
1x̂h ̸= 0(k∗×1). By adapting the general point forecast

reconciliation formula (1.3), and not considering suffix h to simplify the notation, the

vector of temporally reconciled forecasts is given by:

x̃ = x̂−ΩZ1 (Z
′
1ΩZ1)

−1
Z ′

1x̂, (1.22)

where Ω is a [(k∗ +m)× (k∗ +m)] p.d. matrix, assumed known.

To consider possible residual-based estimates of matrix Ω, denote

ê[k]
τ = x[k]

τ − x̂[k]
τ , τ = 1, . . . , N, k ∈ K, (1.23)

the (Mk × 1) vectors of the in-sample residuals at time index τ for the models used to

generate the base forecasts of the temporally aggregated series of order k. These vectors

can be organized as

Ê[k]
x =

[
ê
[k]
1 . . . ê

[k]
τ . . . ê

[k]
N

]′
, k ∈ K, (1.24)

where each matrix Ê
[k]
x has dimension (N×Mk), and then grouped in the [N × (k∗ +m)]

matrix of in-sample residuals Êx =
[
Ê

[m]
x Ê

[kp−1]
x . . . Ê

[k2]
x Ê

[1]
x

]
. Each column of this

matrix contains the in-sample residuals pertaining to a specific node of the temporal

hierarchy, thus the sample cross-covariance matrix of the k∗ +m nodes of the temporal
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hierarchy is given by:

Ω̂ =
1

N

(
Êx

)′
Êx. (1.25)

This matrix is well defined ifN > (k∗+m), otherwise there might be singularity issues

which would prevent its use in expression (1.22) in place of matrix Ω. Athanasopoulos

et al. (2017) and Hyndman and Kourentzes (2018) consider the following alternative

choices for Ω (the suffix ‘t’ stands for ‘temporal’, to keep the ‘t’-procedures distinct

from the ‘cs’-ones shown in Section 1.3.1):

• identity (t-ols): Ω = Ik∗+m ,

• structural (t-struc): Ω = Ω̂t-struc = diag (R11m)

• hierarchy variance scaling (t-wlsh): Ω = Ω̂t-wlsh = Ik∗+m ⊙ Ω̂

• series variance scaling (t-wlsv): Ω = Ω̂t-wlsv

• MinT-shr (t-shr): Ω = Ω̂t-shr = λ̂Ω̂t-wlsh + (1− λ̂)Ω̂

• MinT-sam (t-sam): Ω = Ω̂

The series variance scaling matrix Ω̂t-wlsv is a diagonal matrix “which contains estimates

of the in-sample one-step-ahead error variances across each level” (Athanasopoulos et al.,

2017, p. 64), that requires a reduced number (p instead of k∗ +m) of variances to be

estimated as compared to the hierarchy variance scaling matrix Ω̂t-wlsh. To include

potential information in the residuals’ autocorrelation, we also consider two matrices

recently proposed by Nystrup et al. (2020):

• auto-covariance scaling (t-acov): Ω = Ω̂t-acov

• series Markov (t-sar1): Ω = Ω̂t-sar1

The auto-covariance scaling makes use of the estimates of the full autocovariance ma-

trices within each aggregation level, while ignoring correlations between aggregation

levels:

Ω̂t-acov =




Ω̂[m] · · · 0
...

. . .
...

0 · · · Ω̂[1]


 ,

where the (Mk ×Mk) matrices Ω̂[k] are given by:

Ω̂[k] =
1

N

N∑

τ=1

ê[k]
τ (ê[k]

τ )′ =
1

N

(
Ê[k]

x

)′
Ê[k]

x , k ∈ K, (1.26)

with vector ê
[k]
τ and matrix Ê

[k]
x given by (1.23) and (1.24), respectively. Because it

is sometimes difficult to estimate the covariance matrix within each aggregation level

without assuming that it has some special form, Nystrup et al. (2020) consider the

Toeplitz matrix for the estimated first-order autocorrelation coefficients of the in-sample
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residuals for the p−1 levels k = k1, . . . , kp−1, of the series’ temporal hierarchy. Denoting

these autocorrelation coefficents with ρ[k], it is Γ
[m] = 1,

Γ[k] =




1 · · · ρMk−1
[k]

...
. . .

...

ρMk−1
[k] · · · 1


 , k = k1, . . . , kp−1,

where each matrix Γ[k], k ∈ K, has dimension (Mk ×Mk). The p matrices are used to

build the [(k∗ +m)× (k∗ +m)] matrix

Γ =




1 0′ · · · 0′

0 Γ[kp−1] · · · 0
...

...
. . .

...

0 0 · · · Γ[1]



,

which can be used to estimate matrix Ω as Ω̂t-sar1 = Ω̂
1
2
t-wlsvΓΩ̂

1
2
t-wlsv.

1.5 Cross-temporal reconciliation framework

1.5.1 Cross-temporal aggregation constraints

The cross sectional aggregation relationships (1.17), linking n series observed at the same

time frequency over a T -length time span, and the equivalent temporal aggregation

relationships (1.20) and (1.21), valid for an individual variable expressed at different

time frequencies, can be simultaneously considered, by extending (i) the cross-sectional

constraints to all observation frequencies, and (ii) the temporal aggregation relationships

to all variables.

Considering contemporaneous and temporal dimensions in the same framework re-

quires extending and adapting the notations used so far. To this end, define the p

matrices Y [k], each of dimension (n × NMk), as Y [k] =
[
A[k]′ B[k]′

]′
, k ∈ K, where

B[k] =
[
b
[k]
1 . . . b

[k]
i . . . b

[k]
nb

]
, and A[k] =

[
a
[k]
1 . . . a

[k]
j . . . a

[k]
na

]
, k ∈ K, are the

matrices containing the k-order temporal aggregates of the bts (B[k]) and uts (A[k]), of

dimension (nb×NMk) and (na×NMk), respectively. To be consistent with the notation

so far, Y [1], B[1], and A[1] denote the matrices containing data at the highest available

sampling frequency, while Y , B, and A are used now to denote the matrices containing

the data at any considered temporal frequency:

Y =

[
A

B

]
=

[
A[m] A[kp−1] · · · A[k2] A[1]

B[m] B[kp−1] · · · B[k2] B[1]

]
,
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where Y , A, and B have n, na and nb rows, respectively, and the same number of

columns, [N(k∗ +m)].

Cross-sectional aggregation constraints

By exploiting the results shown in Section 1.3.2, the cross-sectional aggregation rela-

tionships operating along all the time observation indices can be expressed in compact

form as U ′Y = 0[na×N(k∗+m)], or equivalently in vectorized form as

(
U ′ ⊗ IN(k∗+m)

)
y = 0[naN(k∗+m)×1]. (1.27)

Temporal aggregation constraints

The temporal aggregation relationships (1.20), valid for a single series, can be extended

to each component of the time series yt as follows:


A[m]′ B[m]′

...
...

A[k2]′ B[k2]′


 = KN

[
A[1]′ B[1]′

]
, (1.28)

which can be equivalently written as [INk∗ −KN ]Y
′ = 0(Nk∗×n), that is Z ′

NY
′ =

0(Nk∗×n). This last expression can be re-stated in vectorized form as:

(In ⊗Z ′
N)y = 0(nNk∗×1). (1.29)

In summary, by considering expressions (1.27) and (1.29) together, the cross-temporal

constraints working on the complete set of observations can be expressed as H̆ ′y =

0(n∗×1), where n
∗ = naN(k∗ +m) + nNk∗, and

H̆ ′ =

[
U ′ ⊗ IN(k∗+m)

In ⊗Z ′
N

]

is a [n∗ × nN(k∗ +m)] cross-temporal zero-constraints matrix. Due to the simultaneous

consideration of temporal and cross-sectional relationships linking the various time series

of the system, some rows of H̆ ′ are redundant, and can be eliminated in order to get a

full row-rank zero-constraints matrix. In detail, matrix H̆ ′ consists in:

▶ Nnak
∗ rows defining the cross-sectional constraints operating on the lf-uts;

▶ Nnam rows defining the cross-sectional constraints operating on the hf-bts;

▶ Nna (k
∗ +m) rows defining the temporal constraints operating on both hf- and lf-uts;

▶ Nnb (k
∗ +m) rows defining the temporal constraints operating on both hf- and lf-bts.

Since the first set of Nnak
∗ constraints is linearly dependent from the other rows of

matrix H̆ ′, a full row-rank cross-temporal zero-constraints matrix H ′ can be obtained

by:

1. considering the [Nn(k∗ +m)×Nn(k∗ +m)] commutation matrix (Magnus and

Neudecker, 2019, p. 54) P , such that P [vec (Y )] = vec (Y ′);
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2. defining U ∗ =
[
0(Nnam×Nnk∗) INm ⊗U ′

]
P ′;

3. considering the [N(nam+ nk∗)×Nn(k∗ +m)] matrix:

H ′ =

[
U ∗

In ⊗Z ′
N

]
, (1.30)

which has full row-rank equal to N(nam + nk∗) = n∗ − Nnak
∗, and allows to

re-state the complete cross-temporal constraints as:

H ′y = 0. (1.31)

1.5.2 Cross-temporal forecast reconciliation: introduction

Let us assume to have unbiased base forecasts for all the individual time series of a lin-

early constrained multiple time series, and for all levels of the temporal hierarchies built

from the highest available sampling frequency. In addition, assume that the forecast

horizon for the most temporally aggregated time series be h = 1,3 and that the forecast

horizons for the other temporally aggregated series cover the entire time cycle. This

means that (i) the forecast horizon for the highest frequency time series is equal to m,

and (ii) in general, the forecast horizon for a temporally aggregated time series of order

k spans from 1 to Mk.

The base forecasts for each bottom time series of the system form the vectors b̂
[k]
i ,

i = 1, . . . , nb, k ∈ K, where b̂
[1]
i =

{
b̂
[1]
il

}m

l=1
is the (m × 1) vector containing the base

forecasts for the i-th high-frequency bottom time series (hf-bts), which are the ‘very’

bottom time series in the cross-temporal framework, while the remaining b̂
[k]
i ’s (for

k ̸= 1) contain theMk forecasts for the lower-frequency ones (lf-bts). The base forecasts

for the upper time series can be similarly defined as â
[k]
j , j = 1, . . . , na, k ∈ K, where

â
[1]
j =

{
â
[1]
jl

}m

l=1
is the (m×1) vector containing the base forecasts for the high-frequency

j-th upper time series (hf-uts), and the â
[k]
j ’s (for k ̸= 1) are (Mk × 1) vectors of low-

frequency upper time series (lf-uts) forecasts. Let us collect these base forecasts in the

(nb ×Mk) and (na ×Mk), respectively, matrices (k ∈ K)

B̂[k] =
[
b̂
[k]
1 . . . b̂

[k]
i . . . b̂

[k]
nb

]
, and Â[k] =

[
â
[k]
1 . . . â

[k]
j . . . â

[k]
na

]
. (1.32)

The matrix containing the base bts forecasts is given by B̂ =[
B̂[m] B̂[kp−1] . . . B̂[k2] B̂[1]

]
, where B̂ has dimension [nb × (k∗ +m)].

The base uts forecasts can be similarly arranged in the [na × (k∗ +m)] matrix

Â =
[
Â[m] Â[kp−1] . . . Â[k2] Â[1]

]
. From expression (1.32) we can define the p

matrices Ŷ [k], each of dimension (n×Mk), containing the base forecasts for the temporal

3The general case h ≥ 1 can be dealt with straightforwardly.
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aggregation level k of both uts and bts: Ŷ [k] =
[
Â[k]′ B̂[k]′

]′
, k ∈ K. Finally, denoting

with Ŷ the [n× (k∗ +m)] matrix containing the base forecasts of all series and for all

temporal aggregation levels, it is Ŷ =
[
Ŷ [m] Ŷ [kp−1] . . . Ŷ [k2] Ŷ [1]

]
=
[
Â′ B̂′

]′
. In

general, the base forecasts fulfill neither cross-sectional (contemporaneous) nor temporal

aggregation constraints (i.e., respectively, U ′Ŷ ̸= 0[na×(k∗+m)], and Z ′
1Ŷ

′ ̸= 0(k∗×n)).

The cross-temporal point forecast reconciliation problem can thus be stated as follows.

We are looking for a reconciled point forecast matrix, say Ỹ , which is ‘as-close-as-

possible’ (according to a pre-specified metric) to the base forecast matrix Ŷ , and

simultaneously in line with the cross-sectional and temporal aggregation constraints:

U ′Ỹ = 0na×(k∗+m) and Z ′
1Ỹ

′ = 0(k∗×n). (1.33)

As we have previously shown, the relationships (1.33) can be expressed in vectorized

form as H ′ỹ = 0, where ỹ = vec
(
Ỹ ′
)
and, since h = 1, the full row-rank matrix H ′

in (1.30) becomes

H ′ =

[
U ∗

In ⊗Z ′
1

]
, (1.34)

with U ∗ =
[
0(nam×nk∗) Im ⊗U ′

]
P ′, P being the [n(k∗ +m)× n(k∗ +m)] commuta-

tion matrix defined above.

1.6 Cross-temporal optimal forecast combination

Let us consider the multivariate regression model

Ŷ = Y +E, (1.35)

where the involved matrices have each dimension [n× (k∗ +m)] and contain, respec-

tively, the base (Ŷ ) and the target forecasts (Y ), and the coherency errors (E) for

the n component variables of the linearly constrained time series of interest. For each

variable, k∗ +m base forecasts are available, pertaining to all aggregation levels of the

temporal hierarchy for a complete cycle of high-frequency observation, m. Consider now

two vectorized versions of model (1.35), by transforming the matrices either in original

form or in transposed form, respectively:

vec
(
Ŷ
)
= vec (Y ) + vec (E) ⇔ Ŷ = Y + ε, (1.36)

vec
(
Ŷ ′
)
= vec (Y ′) + vec (E′) ⇔ ŷ = y + η. (1.37)

The target forecasts must fulfill both the cross-sectional (contemporaneous) constraints

U ′Y = 0[na×(k∗+m)], and the temporal aggregation constraints Z ′
1Y

′ = 0(k∗×n). That is,
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in vectorized form:

(Ik∗+m ⊗U ′)Y = 0[na(k∗+m)×1] ⇔ (U ′ ⊗ Ik∗+m)y = 0[na(k∗+m)×1], (1.38)

(Z ′
1 ⊗ In)Y = 0(k∗n×1) ⇔ (In ⊗Z ′

1)y = 0(k∗n×1). (1.39)

Denote with P the [n(k∗ +m)× n(k∗ +m)] commutation matrix such that

P vec (Y ) = vec (Y ′) (i.e. PY = y). As a consequence, using the full row-rank matrix

H ′ defined by expression (1.34), the constraints (1.38) and (1.39) can be re-stated as

either H ′y = 0, or H ′PY = 0. Now, denote W = E [εε′], and Ω = E [ηη′]. W

and Ω are different parameterizations of the same statistical object, the covariance ma-

trix of the random disturbances in the multivariate regression model (1.35), for which

the following relationships hold: Ω = PWP ′, and W = P ′ΩP . Thus, to apply the

general point forecast reconciliation formula (1.3) to a cross-temporal forecast reconcili-

ation problem, we may consider either the expression ỹ = ŷ−ΩH (H ′ΩH)−1
H ′ŷ, or

equivalently re-state it as Ỹ = Ŷ −WP ′H (H ′PWP ′H)−1
H ′P Ŷ .

1.6.1 Simple approximations of the covariance matrix for

cross-temporal point forecast reconciliation

Consider the column vectorized form of the multivariate regression (1.36), whose ran-

dom disturbances can be written as ε =

[
ε
[m]
1 ε

[kp−1]
1 . . . ε

[kp−1]
m

kp−1

. . . ε
[1]
1 . . . ε

[1]
m

]′
, where

each (n × 1) vector ε
[k]
l , k ∈ K, l = 1, . . . ,Mk, contains contemporaneous random dis-

turbances, i.e. at the same observation index for a given temporal aggregation order. A

simple generalization to the cross-temporal framework of the cross-sectional approach

(see Section 1.3.1) consists of assuming that only the disturbances at the same time

index of the same temporal aggregation level are correlated. No temporal dependence

(either within the same series at different times, or between the n series) is admitted:

E

[
ε[ki]r

(
ε
[kj ]
s

)′]
=

{
W

[k]
l if ki = kj = k, r = s = l

0 otherwise
,
k ∈ K,
l = 1, . . . ,Mk.

Furthermore, if it is assumed that within each temporal aggregation level the random

disturbances follow a multivariate white noise, which means that the contemporaneous

covariance matrices are constant in time (i.e., W
[k]
l = W [k], k ∈ K, l = 1, . . . ,Mk), the

matrix W has the following block-diagonal pattern:

W =




W [m] 0 · · · 0

0
(
I m

kp−1
⊗W [kp−1]

)
· · · 0

...
...

. . .
...

0 0 · · ·
(
Im ⊗W [1]

)



. (1.40)
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From a practical point of view, each (n×n) matrix W [k], k ∈ K, may be approximated

like in the cross-sectional forecast reconciliation case, possibly using the in-sample resid-

uals (see Section 1.3.1). Expression (1.40) can thus be seen as a simple extension to the

cross-temporal case of the approach developed in the cross-sectional framework, where

no temporal dependence is accounted for both within and between the n series. We may

similarly propose a simplified pattern of the disturbances covariance matrix of the multi-

variate regression model (1.35) by considering the row vectorization form (1.37). In this

case, the random disturbances vector η can be written as η =
[
η′
1 . . . η

′
i . . .η

′
n

]′
, where

each [(k∗ +m)× 1] vector ηi, i = 1, . . . , n, contains the random disturbances at different

observation indices of the various temporal aggregation levels for the same series i. If

we assume that the n series are uncorrelated at any observation index for any temporal

aggregation level (i.e. neither contemporaneous nor temporal correlation is admitted be-

tween the series) denoting with Ωii = E
(
ηiη

′
i

)
, i = 1, . . . , n, the [(k∗ +m)× (k∗ +m)]

covariance matrix of the coherency errors of the temporal hierarchies of series i, the

complete matrix Ω can be written as follows:

Ω =




Ω11 · · · 0
...

. . .
...

0 · · · Ωnn


 , (1.41)

where each matrix Ωii, i = 1, . . . , n, may be approximated as in the temporal fore-

cast reconciliation case, possibly using the in-sample residuals (see Section 1.4.1). Thus

expression (1.41) can be seen as a simple extension to the cross-temporal case of the

approach developed in the temporal hierarchies framework, where no correlation is ad-

mitted between the random errors of the n series. The covariance patterns (1.40) and

(1.41) (i) are placed at opposite ends of possible ways of dealing with cross-temporal

variables, and (ii) should be considered as the first practical devices to make the optimal

combination forecast approach feasible for the cross-temporal framework as well.

Residual-based estimates of the covariance matrixW (and its re-parameterized coun-

terpart Ω) use of the in-sample residuals of the models used to forecast the n time series

considered at any temporal aggregation level. Denote by Ê
[k]
l ,k ∈ K, l = 1, . . . ,Mk, the

(n×N) matrix containing the in-sample residuals for a single node of the cross-temporal

hierarchy (i.e., the i-th row contains the residuals for the N sub-periods l of the model

used to forecast the temporal aggregate of order k of series i). For each temporal ag-

gregation level k ∈ K, the Mk matrices Ê
[k]
l can be grouped into the (n×NMk) matrix

Ê[k] =
[
Ê

[k]
1 . . . Ê

[k]
l . . . Ê

[k]
Mk

]
, k ∈ K. The (n(k∗ +m)×N) matrix containing

all the residuals at any time observation index and any temporal aggregation level can,

in turn, be written as: Ê =
[
Ê

[m]′
1 Ê

[kp−1]′
1 . . . Ê

[kp−1]′
m

kp−1

. . . Ê
[1]′
1 . . . Ê

[1]′
m

]′
=
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[
ê1 . . . êτ . . . êN

]
, where each [n(k∗ +m)× 1] vector êτ , τ = 1, . . . , N , is given by

êτ =
[
ê
[m]
1,τ . . . ê

[1]′
1,τ︸ ︷︷ ︸

k∗+m

· · · ê[m]
n,τ . . . ê[1]′

n,τ︸ ︷︷ ︸
k∗+m

]′
.

The sample residual covariance matrix can be calculated according to both parame-

terization as either Ω̂sam =
1

N

N∑

τ=1

êτ (êτ )
′ =

1

N
ÊÊ′, or Ŵsam = P ′Ω̂samP . However,

in many practical situations matrix Ê has a number of rows - which is equal to the

number of nodes in the cross-temporal hierarchy - much larger than the number of

columns, which is equal to N =
T

m
. Thus matrices Ω̂sam and Ŵsam might not have good

properties (in particular, they are not p.d. if N ≤ n(k∗+m)), and simplified approxima-

tions must be found. Two feasible alternatives are given by either the diagonalization

or the shrinkage of matrix Ŵsam, that is, respectively, Ŵwlsh = In(k∗+m) ⊙ Ŵsam, and

Ŵshr = λ̂Ŵwlsh + (1 − λ̂)Ŵsam, where Ŵwlsh is a diagonal matrix containing the esti-

mates of the ‘hierarchy variances’ for each node of the cross-temporal hierarchy, Ŵshr

is the matrix obtained by shrinkage of Ŵsam with target Ŵwlsh, and λ̂ is an estimate

of the coefficient of shrinkage intensity λ, 0 ≤ λ ≤ 1. Both Ŵsam and Ŵshr refer to all

the n(k∗ +m) hierarchy nodes simultaneously taken, but unlike the former matrix, the

latter should not suffer from possible singularity problems. An alternative choice is the

block-diagonal matrix (1.40). Following Wickramasuriya et al. (2019), full and shrunk

estimates of matrices W [k], k ∈ K, forming the blocks on the diagonal of this matrix,

may be computed as:

Ŵ [k]
sam =

1

NMk

Ê[k](Ê[k])′, (1.42)

Ŵ
[k]
shr = λ̂k

(
In ⊙ Ŵ [k]

sam

)
+ (1− λ̂k)Ŵ

[k]
sam, k ∈ K, (1.43)

and used to approximate W as follows (‘BD’ stands for ‘Block-Diagonal’):

ŴBD
sam =




Ŵ
[m]
sam . . . 0
...

. . .
...

0 . . . Im ⊗ Ŵ
[1]
sam


 , ŴBD

shr =




Ŵ
[m]
shr . . . 0
...

. . .
...

0 . . . Im ⊗ Ŵ
[1]
shr


 .

Most of the choices for W (or Ω) shown so far are simple extensions to the cross-

temporal framework of the approximations for W (or Ω) considered either in cross-

sectional or in temporal forecast reconciliation. We consider the following approxima-

tions (‘oct’ stands for ‘optimal cross-temporal’):

• identity (oct-ols): W = Ω = In(k∗+m)

• hierarchy variance scaling (oct-wlsh): W = Ŵwlsh
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• series variance scaling (oct-wlsv): W = Ŵwlsv = P ′Ω̂wlsvP , where Ω̂wlsv is a

straightforward extension of Ω̂t-wlsv (see Section 1.4.1)

• block-diagonal shrunk cross-covariance scaling (oct-bdshr): W = ŴBD
shr

• block-diagonal cross-covariance scaling (oct-bdsam): W = ŴBD
sam

• auto-covariance scaling (acov): W = Ŵacov = P ′Ω̂acovP , where Ω̂acov is a

straightforward extension of Ω̂t-acov (see Section 1.4.1)

• MinT-shr (oct-shr): W = Ŵshr

• MinT-sam (oct-sam): W = Ŵsam

1.7 Heuristic cross-temporal reconciliation

1.7.1 The KA procedure

Kourentzes and Athanasopoulos (2019), henceforth KA, have proposed a cross-temporal

reconciliation method that can be viewed as an ensemble forecasting procedure that ex-

ploits the simple averaging of different forecasts. The procedure consists of the following

steps (it is assumed h = 1):

Step 1 - For each individual variable, compute the temporally reconciled forecasts and

collect them in the [n× (k∗ +m)] matrix

̂
Y . This result can be obtained by applying

the point forecast reconciliation formula (1.22) to each column of matrix

Ŷ ′ =




t̂a1 · · · t̂ana
t̂b1 · · · t̂bnb

â
[1]
1 · · · â

[1]
na b̂

[1]
1 · · · b̂

[1]
nb


 .

These reconciled forecasts are in line with the temporal aggregation constraints, i.e.

Z ′
1

̂
Y

′
= 0(k∗×n), but in general they are not in line with the cross-sectional constraints,

that is: U ′

̂
Y ̸= 0[na×(k∗+m)].

Step 2 - Transform

̂
Y by computing time-by-time cross-sectional reconciled forecasts

for all the temporal aggregation levels, and collect them in the [n× (k∗ +m)] matrix̂
Y =

[ ̂
Y

[m]
̂
Y

[kp−1]
. . .

̂
Y

[k2]
̂
Y

[1]
]
, where

̂
Y

[k]
, k ∈ K, has dimension (n×Mk). Thus,

the cross-sectionally reconciled forecasts can be computed by transforming each

̂
Y

[k]

as

(

Y [k] = M [k]

̂
Y

[k]
, k ∈ K, where M [k] = In − W [k]U

(
U ′W [k]U

)−1
U ′ denotes the

(n × n) projection matrix used to reconcile forecasts of k-level temporally aggregated

time series, and W [k] is a (n × n) known p.d. matrix. Since it is U ′M [k] = 0(na×n),

k ∈ K, the reconciled forecasts are cross-sectionally coherent, i.e. U ′

(

Y = 0[na×(k∗+m)],

but not temporally: Z ′
1

(

Y ′ ̸= 0(k∗×n).

Step 3 - Transform again the step 1 forecasts

̂
Y , by computing time-by-time cross-

sectional reconciled forecasts for all the temporal aggregation levels using the (n × n)
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matrix M , given by the average of the matrices M [k] obtained at step 2. Matrix M

can be expressed as M =
1

p

∑

k∈K

M [k], and the final cross-temporal reconciled forecasts

are given by:

Ỹ KA = M

̂
Y . (1.44)

Since U ′M =
1

p

∑

k∈K

U ′M [k] = 0(na×n), and Z ′
1

̂
Y

′
= 0(k∗×n), the reconciled forecasts

(1.44) fulfill both cross-sectional and temporal aggregation constraints: U ′Ỹ KA =

U ′M

(

Y = 0[na×(k∗+m)], and Z ′
1

(
Ỹ KA

)′
= Z ′

1

(

Y ′M
′
= 0(k∗×n).

1.7.2 Some remarks

To perform step 1, KA consider either t-struc or t-wlsv (see Section 1.4.1) as forecast

reconciliation procedures through temporal hierarchies, while in step 2 either cs-wls or

cs-shr are used (see Section 1.3.1).

Remark 1 - These two steps can be seen as the successive applications of two distinct

multivariate reconciliation procedures: in the first step it is solved a linearly constrained

quadratic minimization problem, where only temporal aggregation constraints are con-

sidered:

y̌ = argmin
y

(y − ŷ)′ Ω−1 (y − ŷ) , s.t. (In ⊗Z ′
1)y = 0,

where Ω is the block-diagonal matrix in (1.41). The second step consists of another

quadratic minimization problem, where only cross-sectional (contemporaneous) con-

straints are considered:

(

Y = argmin
Y

(
Y −

̂
Y

)′
W−1

(
Y −

̂
Y

)
, s.t. (Ik∗+m ⊗U ′)Y = 0,

where W is the block-diagonal matrix in (1.40). It is worth noting that one may switch

between the two data representations using the permutation matrix P , that is y̆ = P ′Y̆ .

Remark 2 - In general the final result of the reconciliation procedure would change if the

user inverts the order of application of the two reconciliation steps. Since the differences

between the reconciled point forecasts according to these two approaches could be not

negligible (see Section 1.7.3), this seems to be a weakness of the procedure, and calls for

a decision rule about the final reconciled forecasts to retain. A practical way of doing

this could be choosing the reconciled forecasts, which are the ‘closest’ (according to a

given metric) to the base forecasts.

Remark 3 - The calculation of the average matrix M in the final step of the procedure,

needed to recover the cross-temporal coherency across the point forecasts, requires the

availability of the projection matrices used in the second step. This poses no problem
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when closed form reconciliation formulae can be used. Unfortunately, this is not the case

when non-negativity of the final reconciled estimates is desired, calling for appropriate

numerical procedures (Wickramasuriya et al., 2020; Kourentzes and Athanasopoulos,

2021).

1.7.3 An iterative heuristic cross-temporal reconciliation

Taking inspiration from the KA reconciliation procedure, we consider an iterative proce-

dure that produces cross-temporal reconciled forecasts by alternating forecast reconcil-

iation along one single dimension (cross-sectional or temporal). Each iteration consists

of the first two steps of the KA procedure, so the forecasts are reconciled by alternat-

ing reconciliation through temporal hierarchies and cross-sectional reconciliation in a

cyclic fashion. Starting from the base forecasts Ŷ , denote with dcs and dte, respectively,

the cross-sectional and the temporal gross discrepancies, given by dcs = ∥U ′Ŷ ∥1, and
dte = ∥Z ′

1Ŷ
′∥1, where ∥X∥1 =

∑
i,j |xi,j|. Since the base forecasts are not in line with

either type of constraints, in general both dcs and dte are greater than zero. The iterative

procedure can be described as follows:

1. Start the iterations by calculating the temporally reconciled forecasts Ỹ (1), such

that Z ′
1

(
Ỹ (1)

)′
= 0, and d

(1)
cs = ∥U ′Ỹ (1)∥1 ≥ 0.

2. The point forecasts in matrix Ỹ (1) are then cross-sectionally reconciled, obtaining

Ỹ (2), which is such that U ′Ỹ (2) = 0, and d
(1)
te = ∥Z ′

1Ỹ
(2)′∥1 ≥ 0.

3. The updates in steps 1. and 2. are performed at each iteration j, j = 1, 2, . . ., until

a convergence criterion is met, that is d
(j)
te < δ, where δ is a positive tolerance value

(e.g., δ = 10−6), and matrix Ỹ (2j) contains the final cross-temporal reconciled

forecasts.

The above procedure can be seen as an extension of the well known iterative propor-

tional fitting procedure (Deming and Stephan, 1940), also known as the RAS method

(Miller and Blair, 2009), to adjust the internal cell values of a two-dimensional matrix

iteratively until they sum to some predetermined row and column totals. In that case,

the adjustment follows a proportional adjustment scheme. In contrast, each adjustment

step is made in the cross-temporal reconciliation framework according to the penalty

function associated to the single-dimension reconciliation procedure adopted.

Indeed, the choice of dimension along which the first reconciliation step in each

iteration is performed is up to the user. There is no particular reason to perform the

temporal reconciliation first and the cross-sectional reconciliation second. Figure 1.2

shows the percentage discrepancies in the Australian GDP at current prices one-step-

ahead forecasts for any temporal aggregation level (quarterly, semi-annual, annual, see
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Figure 1.2: Quarterly, semi-annual and annual Australian GDP one-step-
ahead reconciled forecasts according to the Kourentzes and Athanasopoulos
(2019) cross-temporal reconciliation approach (t-wlsv for the temporal step, cs-
shr for the cross-sectional step) by alternating the constraint dimensions to be
fulfilled: percentage differences between the reconciled forecasts obtained through
(i) temporal-then-cross-sectional reconciliation, and (ii) cross-sectional-then-
temporal reconciliation. The differences between the two reconciled forecasts are
divided by their arithmetic mean.

Section 1.8), when the cross-temporal reconciliation is performed according to either

the KA approach, or to the analogous procedure where the cross-sectional constraints

are considered first, and then the temporal dimension is accounted for (see Section G in

the online appendix). Percentage differences in the reconciled forecasts for this single,

important variable, are visually evident, though bounded within (-0.3% – +0.4%).

Figure 1.3 completes the results shown so far by considering the forecasts of the

strictly positive 79 (out of 95) variables from both Income and Expenditure sides, cross-

temporally reconciled according to the KA procedure and its iterative variant. The

boxplots show the distributions of the percentage discrepancies between the reconciled

forecasts obtained using temporal reconciliation first, and cross-sectional reconciliation

then, vis-à-vis the results obtained by inverting the order of application of the two rec-

onciliation procedures. It appears that the iterative variant of the original KA proposal

produces less pronounced discrepancies.
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Figure 1.3: Quarterly, semi-annual and annual one-step-ahead reconciled fore-
casts of 79 out of 95 times series of the Australian GDP from Income and
Expenditure sides using both the original KA cross-temporal reconciliation pro-
cedure (t-wlsv for the temporal step, and cs-shr for the cross-sectional one), and
its iterative variant: boxplots of the percentage differences between the reconciled
forecasts obtained through (i) temporal-then-cross-sectional reconciliation, and
(ii) cross-sectional-then-temporal reconciliation. The differences between each
pair of reconciled forecasts are divided by their arithmetic mean.

It must be said that the convergence speed of the iterative procedure does not seem

to be affected by the choice of the first dimension to be fulfilled when the iteration starts.

Figure 1.4 shows an example of the convergence speed of the iterative procedure either

starting with the cross-sectional (right panel) or temporal (left panel) reconciliation

procedure for the Australian GDP forecasts. In both cases, the convergence is achieved

very quickly: fixing δ = 10−6, 15 (14) iterates are needed when starting from the tem-

poral (cross-sectional) dimension. Furthermore, from the fourth iteration onwards the

constraints are practically fulfilled in both cases. Nevertheless, since the final reconciled

values depend on this choice, it would be useful having an ex-ante ‘choice rule’ between

the two alternatives. For ease of presentation, in the following we maintain the original

choice made by KA, performing temporal forecast reconciliation first and cross-sectional

reconciliation then.
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Figure 1.4: Incoherence at each iteration step of the iterative cross-temporal
forecast reconciliation procedure (t-wlsv + cs-shr) for the Australian GDP time
series, at the first forecast origin 1994:Q3.

1.8 Cross-temporal reconciliation of the Australian

GDP forecasts

In a recent paper, Athanasopoulos et al. (2020) propose “the application of state-of-the-

art forecast reconciliation methods to macroeconomic forecasting” to perform aligned

decision making and to improve forecast accuracy. In their empirical study, they con-

sider the cross-sectional forecast reconciliation for 95 Australian Quarterly National

Accounts time series, describing the Gross Domestic Product (GDP ) at current prices

from Income and Expenditure sides, interpreted as two distinct hierarchical structures.

In the former case (Income), GDP is on the top of 15 lower level aggregates, while in

the latter (Expenditure), GDP is the top level aggregate of a hierarchy of 79 time series

(for details, refer to Athanasopoulos et al., 2020, pp. 702-705, and to figures 21.4-21.7

therein). By managing the complete set of 95 time series following the approach de-

scribed in Section 1.3, Bisaglia et al. (2020) have extended the results of Athanasopoulos

et al. (2020), showing that fully cross-sectional reconciled quarterly GDP forecasts, co-

herent with all the reconciled forecasts from both Expenditure and Income sides can be

obtained through the general reconciliation approach described in Section 1.2. Accord-

ing to the notation adopted so far, the (33× 95) zero-constraints matrix accounting for

the cross-sectional constraints is given by:

U ′ =




1 0′
(5×1) −1′

(10×1) 0′
(26×1) 0′

(53×1)

1 0′
(5×1) 0′

(10×1) 0′
(26×1) −1′

(53×1)

0(5×1) I5 −CI 0(5×26) 0(5×53)

0(26×1) 0(26×5) 0(26×10) I26 −CE



,

where CI and CE are the contemporaneous aggregation matrix mapping the bts into

the uts for the Income and the Expenditure sides, respectively (Bisaglia et al., 2020).
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By exploiting this result, cross-temporal forecast reconciliation is now applied within

the same forecasting experiment designed by Athanasopoulos et al. (2020)4 extended to

consider semi-annual and annual forecasts as well. For the available time series span

(1984:Q4 - 2018:Q1), quarterly base forecasts from 1 up to 4 quarters ahead have been

obtained for the n = 95 separate time series through simple univariate ARIMA models

selected using the auto.arima function of the R-package forecast (Hyndman et al.,

2023). The forecasting experiment uses a recursive training sample with expanding

window length. The first training sample is set from 1984:Q4 to 1994:Q3, and the last

ends on 2017:Q1, for a total of 91 forecast origins. Similarly, in the same automatic

fashion, we have computed (i) one and two-step ahead forecasts for the time series

obtained by temporal aggregation of two successive quarters, and (ii) one-step-ahead

forecasts for the time series obtained by temporal aggregation of four successive quarters.

All the base forecasts have been reconciled using the R-package FoReco (Girolimetto and

Di Fonzo, 2023a).

1.8.1 Performance measures for multiple comparisons

We evaluate the performance of multiple (say, J > 1) forecast reconciliation procedures

through forecast accuracy indices calculated on the forecast error

ê
[k],h
i,j,t = y

[k]
i,t+h − ŷ

[k],h
i,j,t ,

i = 1, . . . , 95,

j = 0, . . . , J,
t = 1, . . . , 91,

k ∈ K,
h = 1, . . . , hk,

where y and ŷ are the observed and forecasted values, respectively, i denotes the series

(i = 1, . . . , 32, for the uts, i = 33, . . . , 95, for the bts), j = 0 denotes the base forecasts,

t is the forecast origin (t = 1 corresponds to 1994:Q3), K = {4, 2, 1}, and h4 = 1,

h2 = 2, h1 = 4, are the forecast horizons for annual, semi-annual, and quarterly time

series, respectively. The accuracy is evaluated using the Average Relative Mean Square

Error (AvgRelMSE, Davydenko and Fildes, 2013; Kourentzes and Athanasopoulos, 2019;

Athanasopoulos and Kourentzes, 2022), obtained by transforming the MSE index, given

by the average across all 91 forecasts origins of the squared forecast errors:

MSE
[k],h
i,j =

1

91

91∑

t=1

(
ê
[k],h
i,j,t

)2
,

i = 1, . . . , 95,

j = 0, . . . , J,

k ∈ K,
h = 1, . . . , hk.

(1.45)

The AvgRelMSE is the geometric mean across all 95 series of the MSE ratio5 of a

forecast over a benchmark given by the base, incoherent ARIMA forecasts, across all

4We did not change this first, crucial step in the forecast reconciliation workflow, since the focus is on
the potential of cross-temporal forecast reconciliation.

5Davydenko and Fildes (2013) develop the Average Relative MAE, based on the Mean Absolute Er-
ror, and suggest that this formulation ‘can also be extended to other measures of dispersion or loss
functions’, as the AvgRelMSE in (1.46).
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evaluation samples, for a given horizon h:

AvgRelMSE
[k],h
j =

(
95∏

i=1

rMSE
[k],h
i,j

) 1
95

,

j = 0, . . . , J,

k ∈ K,
h = 1, . . . , hk,

(1.46)

where rMSE
[k],h
i,j =

MSE
[k],h
i,j

MSE
[k],h
i,0

is the relative MSE. If a forecast outperforms the

base forecasts, then the AvgRelMSE becomes smaller than one and vice-versa, and

the percentage improvement in accuracy over the benchmark can be calculated as(
1− AvgRelMSE

[k],h
j

)
× 100. Expression (1.46), which refers to all 95 time series, can

be re-stated for (i) groups of variables (e.g., bts and uts), (ii) multiple forecast horizons

(e.g., h = 1 − 4 for quarterly forecasts, k = 1; h = 1 − 2 for semi-annual forecasts,

k = 2), (iii) different temporal aggregation levels over the whole forecast horizon (e.g.,

accuracy indices for the whole temporal hierarchy of each series). To give a complete

picture of the evaluation results, in the following subsection, we show and discuss the

MSE-based accuracy indices, at multiple timescales and forecast horizons, for a set of

selected forecast reconciliation procedures. Furthermore, we use the non-parametric

Friedman and the post-hoc ‘Multiple Comparison with the Best’ (MCB) Nemenyi tests

(Koning et al., 2005; Kourentzes and Athanasopoulos, 2019; Makridakis et al., 2022) to

establish if the forecasting performances of the considered techniques are significantly

different.

1.8.2 The considered forecast reconciliation procedures

The empirical application mainly aims to evaluate the performance of the most convinc-

ing new cross-temporal reconciliation procedures, which are those using residual-based

approximations of the covariance matrix, compared to the state-of-the-art point fore-

cast reconciliation procedures. At this end, we consider five selected procedures recently

proposed in the hierarchical forecasting literature, five (two-step and iterative) variants

of the KA approach, and three optimal combination forecast procedures:

• cs-shr (Wickramasuriya et al., 2019),

• t-wlsv (Athanasopoulos et al., 2017),

• t-acov (Nystrup et al., 2020),

• t-sar1 (Nystrup et al., 2020),

• kah-wlsv-shr (Kourentzes and Athanasopoulos, 2019),

• tcs-acov-shr, i.e. two-step t-acov + cs-shr,

• tcs-sar1-shr, i.e. two-step t-sar1 + cs-shr,

• ite-wlsv-shr, i.e. iterative t-wlsv + cs-shr,
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• ite-acov-shr, i.e. iterative t-acov + cs-shr,

• ite-sar1-shr, i.e. iterative t-sar1 + cs-shr,

• oct-wlsv, i.e. W = Ŵwlsv,

• oct-bdshr, i.e. W = ŴBD
shr ,

• oct-acov, i.e. W = Ŵacov.

The first five procedures have proven well performing in several empirical applications

(Athanasopoulos et al., 2020, 2017; Bisaglia et al., 2020; Nystrup et al., 2020). The one-

dimension reconciliation procedures (cs-shr, t-wlsv, t-acov, and t-sar1) do not give fully

coherent forecasts. Rather, as far as they are expected to improve the base forecasts,

the best-practice one-dimension procedures should be viewed as stricter benchmarks for

the cross-temporal forecast reconciliation techniques. These are requested to give accu-

rate one-number-forecasts as well. The forecasting experiment was designed to evaluate

the capability of the cross-temporal forecast reconciliation procedures to improve the

forecast accuracy as compared to (i) the base forecasts and (ii) the most performing one-

dimension forecast reconciliation methods. In addition, the experiment should help in

assessing (iii) the performance of both KA-variants (two-step and iterative procedures)

and optimal combination forecasts as compared to the original proposal by KA, and

(iv) the feasibility and the accuracy of the optimal combination cross-temporal recon-

ciliation procedures, which for the time being - even when they are computed using the

in-sample residuals - are based on rather simple/unrealistic approximations of the co-

variance matrix (see Section 1.6.1). As for this last point, we investigate any significant

difference between the reconciled forecasts produced by the most performing heuristic

and optimal combination procedures.

1.8.3 Main results

Table 1.2 presents the AvgRelMSE’s obtained for the forecasting techniques (base +

13 reconciliation procedures) listed in the previous sub-section. We provide results for

all 95 component time series, and for the 32 upper-level and the 63 bottom-level time

series separately. The results are shown by the level of temporal aggregation and forecast

horizon. The lowest error is highlighted in red boldface at each column, while values

greater than one, which mean that the reconciled forecasts are worse than the base ones,

are highlighted in black boldface.

Most of the data in the table are represented in Figure 1.5, containing the graphs of

the AvgRelMSE’s for the considered procedures, across all forecast horizons, by tempo-

ral aggregation level of the forecasted series. The procedures have been put in the order

given by the overall AvgRelMSE. This seems a good compromise to represent such a

multiple comparison. Figure 1.6 shows the Multiple Comparison with the Best (MCB)
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Reconciliation Quarterly Semi-annual Annual All
procedure 1 2 3 4 1-4 1 2 1-2 1

all 95 series
base 1 1 1 1 1 1 1 1 1 1
cs-shr 0.958 0.970 0.976 0.982 0.972 0.953 0.978 0.965 0.966 0.969
t-wlsv 1.002 0.999 0.988 0.985 0.993 0.844 0.932 0.887 0.773 0.928
t-acov 0.978 0.991 0.999 0.989 0.989 0.825 0.935 0.879 0.769 0.923
t-sar1 1.002 0.999 0.988 0.985 0.994 0.845 0.932 0.887 0.773 0.928

kah-wlsv-shr 0.968 0.970 0.960 0.960 0.965 0.818 0.909 0.862 0.752 0.901
tcs-acov-shr 0.945 0.958 0.971 0.963 0.959 0.798 0.912 0.853 0.748 0.895
tcs-sar1-shr 0.968 0.970 0.960 0.960 0.965 0.818 0.909 0.862 0.752 0.901
ite-wlsv-shr 0.961 0.968 0.959 0.960 0.962 0.815 0.909 0.861 0.751 0.900
ite-acov-shr 0.940 0.958 0.971 0.965 0.959 0.796 0.913 0.852 0.748 0.895
ite-sar1-shr 0.961 0.968 0.959 0.961 0.962 0.815 0.909 0.861 0.751 0.900
oct-wlsv 0.969 0.972 0.962 0.963 0.967 0.820 0.913 0.865 0.756 0.904
oct-bdshr 0.984 0.980 0.962 0.967 0.973 0.830 0.914 0.871 0.757 0.910
oct-acov 0.955 0.965 0.977 0.971 0.967 0.801 0.919 0.858 0.753 0.902

32 upper series
base 1 1 1 1 1 1 1 1 1 1
cs-shr 0.916 0.927 0.930 0.932 0.926 0.917 0.939 0.928 0.923 0.926
t-wlsv 1.006 1.009 0.991 0.992 1.000 0.856 0.939 0.896 0.768 0.933
t-acov 1.002 1.015 0.992 0.993 1.000 0.854 0.938 0.895 0.768 0.9332
t-sar1 1.007 1.009 0.991 0.992 1.000 0.856 0.939 0.896 0.768 0.933

kah-wlsv-shr 0.940 0.947 0.928 0.930 0.936 0.800 0.877 0.837 0.715 0.873
tcs-acov-shr 0.941 0.944 0.931 0.933 0.937 0.796 0.878 0.836 0.715 0.873
tcs-sar1-shr 0.940 0.946 0.928 0.930 0.936 0.800 0.877 0.837 0.715 0.873
ite-wlsv-shr 0.925 0.942 0.922 0.927 0.929 0.793 0.874 0.833 0.711 0.867
ite-acov-shr 0.928 0.940 0.926 0.931 0.931 0.789 0.875 0.831 0.711 0.868
ite-sar1-shr 0.926 0.942 0.922 0.927 0.929 0.794 0.874 0.833 0.711 0.867
oct-wlsv 0.941 0.951 0.932 0.933 0.939 0.803 0.881 0.841 0.720 0.876
oct-bdshr 0.945 0.956 0.925 0.934 0.940 0.809 0.879 0.843 0.717 0.877
oct-acov 0.939 0.950 0.935 0.937 0.940 0.798 0.884 0.840 0.719 0.876

63 bottom series
base 1 1 1 1 1 1 1 1 1 1
cs-shr 0.981 0.993 1.000 1.009 0.996 0.971 0.999 0.985 0.988 0.991
t-wlsv 0.999 0.995 0.986 0.982 0.990 0.839 0.928 0.882 0.775 0.925
t-acov 0.966 0.980 1.002 0.986 0.983 0.811 0.934 0.870 0.770 0.917
t-sar1 0.999 0.994 0.986 0.982 0.990 0.839 0.928 0.882 0.775 0.925

kah-wlsv-shr 0.983 0.982 0.976 0.976 0.979 0.827 0.925 0.875 0.771 0.916
tcs-acov-shr 0.947 0.966 0.992 0.978 0.971 0.799 0.929 0.862 0.766 0.907
tcs-sar1-shr 0.983 0.982 0.976 0.976 0.979 0.827 0.925 0.875 0.771 0.916
ite-wlsv-shr 0.980 0.981 0.978 0.978 0.979 0.826 0.928 0.875 0.772 0.917
ite-acov-shr 0.946 0.968 0.995 0.983 0.973 0.799 0.932 0.863 0.767 0.909
ite-sar1-shr 0.980 0.982 0.978 0.978 0.979 0.826 0.928 0.876 0.773 0.917
oct-wlsv 0.984 0.983 0.978 0.979 0.981 0.829 0.929 0.878 0.775 0.919
oct-bdshr 1.004 0.992 0.981 0.984 0.990 0.840 0.933 0.885 0.778 0.927
oct-acov 0.964 0.973 0.998 0.988 0.981 0.803 0.936 0.867 0.771 0.915

Table 1.2: AvgRelMSE at any temporal aggregation level and any forecast hori-
zon. Bold entries identify the best performing approaches. Red entries identify
the approaches worsening the automatic ETS base forecasts’ accuracy.
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Figure 1.5: Average Relative MSE across all series and forecast horizons, by
temporal aggregation level.

Nemenyi test. The Friedman test has shown that the forecasts given by the considered

procedures are different both when all temporal aggregation levels and forecast hori-

zons (left panel), and when only one-step-ahead quarterly forecasts (right panel), are

considered. The main results found on this dataset can be summarized as follows:

• the cross-temporal reconciliation reduces the AvgRelMSE for the uts (the most im-

portant variables for the decision maker, e.g. GDP ) at any temporal aggregation

level and any forecast horizon;

• this accuracy improvement is less marked, though yet visually evident, for the

bottom level series, as compared to the reconciled forecasts through temporal

hierarchies alone, which however are cross-sectionally incoherent;

• each iterative procedure performs better than its two-step counterpart;

• within the cross-temporal procedures, the heuristic procedures provide better re-

sults than the optimal combination ones.

Looking at the performances of each procedure, it is worth noting that cs-shr scores

first as for the quarterly forecasts of the uts, and almost always improves on the base

forecasts’ accuracy, regardless of series’ group, temporal aggregation level and forecast

horizon. The only exception is an AvgRelMSE greater than 1 (1.009) for the bts quar-

terly forecasts at horizon 4. In addition, from the right panel of Figure 1.6 we observe
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Figure 1.6: MCB Nemenyi test results: average ranks and 95% confidence in-
tervals. The reconciliation procedures are sorted vertically according to the MSE
mean rank (i) across all time frequencies and forecast horizons (left), and (ii) for
one-step-ahead quarterly forecasts (right). The mean rank of each method is dis-
played to the right of their names. If the intervals of two forecast reconciliation
procedures do not overlap, this indicates a statistically different performance.
Thus, methods that do not overlap with the green interval are considered signif-
icantly worse than the best, and vice-versa.
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that, when considered only on quarterly basis, the one-step-ahead forecasts for all se-

ries provided by cs-shr are (temporally incoherent and) not significantly different from

those provided by the best procedure (which in this case is ite-acov-shr). However, since

this reconciliation procedure does not account for the temporal dimension, its relative

performance worsens (i.e., the cross-temporal procedures improve on the base forecasts

more than cs-shr, as shown in the top panels in Figure 1.5) as the temporal aggregation

level increases. Overall, ite-acov-shr always scores best for all series and all forecast

horizons, and second-best for the bts series and all forecast horizons, while tcs-acov-

shr scores second and first, in turn. However, ite-acov-shr shows good results for the

uts forecasts as well. In this case, the best performances are given by ite-sar1-shr and

ite-wlsv-shr. The differences in the forecasts produced by all the considered heuristic

procedures are not statistically significant at any temporal aggregation level and fore-

cast horizon. Furthermore, two optimal combination procedures (oct-acov and oct-wlsv)

produce reconciled forecasts not significantly different from the best procedure accord-

ing to the Nemenyi test, while oct-bdshr is significantly (worse and) different from the

best forecast reconciliation procedure.

To conclude, the general improvement registered on average (last column of Table 1.2)

by the cross-temporal reconciliation procedures may be considered a positive outcome.

They combine an acceptable forecasting performance at the quarterly level with a good

performance at the semi-annual and annual-levels, with the additional feature that the

complete system of forecasts is internally and temporally coherent.
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Cross-temporal reconciliation of

solar forecasts

2.1 Introduction

Traditional electricity relies heavily on fossil fuels such as coal and natural gas. Not

only are they bad for the environment, but they are also limited resources. Net-zero

emissions by 2050 are crucial to achieve the core Paris Agreement1 goals of a global

average temperature rise of 1.5 degrees Celsius (United Nations, 2015), and this in turn

can only be achieved if global greenhouse gas emissions are halved by the end of this

decade (European Commission, 2019; United Nations, 2022). Solar power is one of the

crucial production methods in the move to clean energy, and as economies of scale drive

prices down, its importance will undoubtedly increase. The deployment of solar-power

generation is causing total installed capacity to increase at a very high pace. Eurostat

reports that the European Union added 18,224.8 MW of net capacity in 2020, compared

to its 16,146.9 MW increase in 2019, registering a growth of 12.9%. At the end of 2020,

the EU’s photovoltaic base stood at 136,136.6 MW, which is a 15% year-on-year increase

(EurObserv’ER, 2022, p. 14).

Using solar resource as a stable source of energy is not an easy task. Estimating

the solar energy potential is a key target to ensure its management in a reliable and

efficient way for its integration into an electrical power grid (Sengupta et al., 2017).

The prediction of solar irradiation despite its variability is particularly important as it

1The Paris Agreement is a legally binding international treaty on climate change. Its goal is to limit
global warming to well below 2, preferably to 1.5 degrees Celsius, compared to pre-industrial levels.
To achieve this long-term temperature goal, countries aim to reach global peaking of greenhouse gas
emissions as soon as possible to achieve a climate neutral world (i.e., with net-zero greenhouse gas
emissions) by mid-century.

45
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is a precondition for (i) the management of the solar photovoltaic production through

storage systems to reduce the impact of the intermittent nature of the solar resource,

and (ii) the integration of the solar resource into a power grid in order to meet the

local energy needs and to cope with the load fluctuations (Antonanzas et al., 2016).

Understanding of the need for short, mid or long term prediction (e.g., 1h, 6h or a

day ahead forecasting) is growing as utilities and grid operators gain experience in

dealing with solar-power sources. Increasing cross-sectional and temporal resolution of

the available forecasting models (Benavides Cesar et al., 2022, and references therein)

would enable grid operators to better forecast how much solar energy will be added to

the grid. These efforts will improve the management of solar power’s variability and

uncertainty, enabling its more reliable and cost-effective integration onto the grid.

Solar forecasting is a fast-growing sub-domain of energy forecasting (Yang et al.,

2020, p. 20). We agree with the claim of Yang et al. (2022), p. 7, that a “common

misconception is that the novelty in solar forecasting should be solely revolved around

forecasting methodology. Indeed, forecasting methodology is an important aspect, but

it is never the only one”. Nevertheless, we think that a clear assessment of the available

forecasting procedures may help in moving forward the fronteer of knowledge of this

fundamental topic, generating beneficial effects on the activities of practitioners.

A major goal for solar forecasting is to provide information on future photovoltaic

(PV) power generation at different locations, time scales, and horizons to power system

operators (Yang et al., 2022). In recent works by Yang et al. (2017a,b), and Yagli et al.

(2019), geographical, temporal, and sequential deterministic reconciliation of hierarchi-

cal PV power generation have been considered for a simulated PV dataset in California.

In the first two cases, the reconciliations were carried out in cross-sectional and temporal

domains separately. To further improve prediction accuracy, in the third case these two

reconciliation approaches were sequentially applied. During the replication of the fore-

casting experiment2, some issues emerged about non-negativity and coherency (in space

and/or in time) of the sequentially reconciled forecasts. Furthermore, while the accuracy

improvement of the considered approaches over the benchmark persistence forecasts is

clearly visible at any data granularity, we think that an even better performance may

be obtained by a thorough exploitation of both geographical (i.e., cross-sectional) and

temporal hierarchies.

At a given time point, a cross-sectional hierarchy describes the accounting relation-

ships linking the series of different levels of contemporaneous aggregation (in the simplest

2The forecasting experiment grounds on the documentation files and data made available by Yang et al.
(2017b).
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case, the total variable is equal to the sum of its most disaggregated component series).

A temporal hierarchy describes the temporal aggregated time series of a single variable

originally defined at a specific time frequency, obtained by non-overlapping sums of the

high-frequency observations (e.g., a daily time series may be obtained as the sum of the

twentyfour values in each single day of an hourly time series). The idea of exploiting

the aggregation relationships valid both in space (cross-sectional coherency), and for

different time granularities (temporal coherency) to improve the forecast accuracy of

base forecasts for a hierarchical time series, was discussed by Kourentzes and Athana-

sopoulos (2019), Yagli et al. (2019), Spiliotis et al. (2020), and Punia et al. (2020). In

Chapter 1, we have shown the potentiality of a number of new cross-temporal recon-

ciliation approaches, and discussed fundamental feasibility issues, offering insights to

the practitioner wishing to evaluate the effort-to-benefit ratio of using this forecasting

device3.

In this chapter, cross-temporal point forecast reconciliation is applied to generate

non-negative, fully coherent (both in space and time) forecasts of PV generated power.

In particular, (i) some useful relationships between two-step, iterative and simultane-

ous cross-temporal reconciliation procedures are for the first time established, (ii) non-

negativity issues of the final reconciled forecasts are discussed and correctly dealt with

in a simple and effective way, and (iii) the most recent cross-temporal reconciliation ap-

proaches proposed in literature are adopted. The iterative and simultaneous approaches

in Chapter 1, and the heuristic cross-temporal procedure proposed by Kourentzes and

Athanasopoulos (2019) are applied to the base forecasts with forecast horizon of 1 day,

of PV generated power at different time granularities (1 hour to 1 day), of a hierarchy

consisting of 324 series along 3 levels. The normalized Root Mean Square Error and the

normalized Mean Bias Error are used to measure forecasting accuracy, and a statistical

multiple comparison procedure is performed to rank the approaches.

The chapter is organized as follows. The deterministic (point) cross-temporal fore-

cast reconciliation framework is described in Section 2.2, and in Section 2.3 some useful

connections between apparently different approaches are shown. The forecasting experi-

ment of Yagli et al. (2019) is replicated and discussed in Section 2.4, and the performance

of the proposed forecasting approaches is presented in Section 2.5.

3All the forecast reconciliation procedures considered in Chapter 1, and in this chapter, are available
in the R package FoReco (Girolimetto and Di Fonzo, 2023a).



48 Section 2.2 - Cross-temporal point forecast reconciliation: a recap

w
[1]
1 w

[1]
2 w

[1]
3 w

[1]
4

w
[2]
1 w

[2]
2

w
[4]
1W

z
[1]
1 z

[1]
2 z

[1]
3 z

[1]
4

z
[2]
1 z

[2]
2

z
[4]
1Z

x
[1]
1 x

[1]
2 x

[1]
3 x

[1]
4

x
[2]
1 x

[2]
2

x
[4]
1X

w
[1]
1 w

[1]
2 w

[1]
3 w

[1]
4

w
[4]
1W

z
[1]
1 z

[1]
2 z

[1]
3 z

[1]
4

z
[4]
1Z

x
[1]
1 x

[1]
2 x

[1]
3 x

[1]
4

x
[4]
1X

Figure 2.1: Complete (left) and reduced (right) cross-temporal hierarchies for
a quarterly two-level hierarchical time series.

2.2 Cross-temporal point forecast reconciliation: a recap

To begin with, consider the very simple example of a two-level cross-sectional hierarchy,

where the top variable X is equal to the sum of two bottom series4, W and Z. Further,

assume that the highest time frequency the variables are observed at is quarterly, which

means that by simple non-overlapping temporal aggregation of quarterly time series,

semi-annual and annual time series may be obtained as well.

Figure 2.1 gives a visual representation of such cross-temporal hierarchy for a time

cycle of 1 year. While the left panel of Figure 2.1 shows the complete cross-temporal hier-

archy, consisting of all aggregated temporal granularities which may be defined starting

from quarterly data (i.e, semi-annual, and annual), in the right panel is represented its

reduced version, where only the highest (quarterly) and the lowest (annual) time gran-

ularities are respectively considered. The square boxes in the figure denote the nodes

of a two-level cross-sectional (contemporaneous) hierarchy, while the circles denote the

nodes of the temporal hierarchies. In agreement with a standard notation in the tem-

poral forecast reconciliation literature (Athanasopoulos et al., 2017; Yang et al., 2017b),

the superscript [k] denotes the temporal aggregation order for each time granularity,

i.e. annual (k = 4), semi-annual (k = 2), and quarterly (k = 1). The cross-sectional

hierarchy is described by the aggregation relationship X = W + Z, which is valid for

any temporal aggregation order k ∈ K = {4, 2, 1} (i.e., x
[k]
τ = w

[k]
τ +z

[k]
τ , τ = 1, . . . , 4/k).

Assuming v alternatively equal to x, w, z, the temporal hierarchies describing the rela-

tionships between different time granularities of a single time series, may be expressed

4In this chapter, we consider only genuine hierarchical/grouped time series, that share the same top-
and bottom-level variables. The treatment of a general linearly constrained multiple time series is
introduced in Chapter 1 and discussed in Chapter 4.
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as

v
[4]
1 = v

[2]
1 + v

[2]
2 the annual value is the sum of the two semi-annual values,

v
[2]
1 = v

[1]
1 + v

[1]
2 the first half-year value is the sum of the first two quarters’ values,

v
[2]
2 = v

[1]
3 + v

[1]
4 the second half-year value is the sum of the last two quarters’ values,

and thus

v
[4]
1 = v

[1]
1 + v

[1]
2 + v

[1]
3 + v

[1]
4 the annual value is the sum of the four quarterly values.

All the relationships so far can be expressed in more compact form, using matrix

notation. Denote by y
[k]
τ =

[
x
[k]
τ w

[k]
τ z

[k]
τ

]′
the (3 × 1) vector of the observations for

temporal granularity k ∈ K of the variables forming the cross-sectional hierarchy at

time τ = 1, . . . , 4/k. The cross-sectional aggregation relationships can be described as

follows:

x[k]τ = C

[
w

[k]
τ

z
[k]
τ

]
, y[k]

τ = S

[
w

[k]
τ

z
[k]
τ

]
, U ′y[k]

τ = 0, τ = 1, . . . ,
4

k
, k ∈ K,

where C is the cross-sectional aggregation matrix, S is the cross-sectional summing

matrix, and U ′ is the zero-constraints matrix expressing the cross-sectional constraints

in homogeneous form, respectively given by:

C =
[
1 1

]
, S =

[
C

I2

]
=



1 1

1 0

0 1


 , U ′ =

[
I1 −C

]
=
[
1 −1 −1

]
,

with Il denoting the identity matrix of order l. The complete temporal aggregation

relationships linking the values of a single variable (say V ) at different time granularities,

may in turn be expressed through matrices

K =



1 1 1 1

1 1 0 0

0 0 1 1


 , R =

[
K

I4

]
and Z ′ =

[
I3 −K

]

where K is the temporal aggregation matrix, R is the temporal summing matrix, and

Z ′ is the temporal zero-constraints matrix expressing the temporal constraints in ho-

mogeneous form. It follows that:



v
[4]
1

v
[2]
1

v
[2]
2


 = K




v
[1]
1

v
[1]
2

v
[1]
3

v
[1]
4



= Kv[1], v =




v
[4]
1

v
[2]
1

v
[2]
2

v
[1]
1
...

v
[1]
4




= Rv[1], Z ′v = 0(3×1).
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Reduced temporal hierarchies can be obtained by simply eliminating the appropriate

rows5 from matrix K.

To simultaneously consider cross-sectional and temporal aggregation relationships,

all the nodes of the complete cross-temporal hierarchy in Figure 2.1 can be expressed in

terms of the quarterly time series w
[1]
τ and z

[1]
τ , τ = 1, . . . , 4, according to the structural

representation:

y = Fb[1], (2.1)

that is 
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︸ ︷︷ ︸
y

=




1 1 1 1 1 1 1 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




︸ ︷︷ ︸
F
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︸ ︷︷ ︸
b[1]

,

where y =
[
x′ w′ z′

]′
is the vector containing the data for all variables at any temporal

granularity, b[1] =
[
w[1]′ z[1]′

]′
is the vector of the high-frequency bottom time series,

and F is the cross-temporal summing matrix mapping b[1] into y. Expression (2.1) is

the natural extension of the cross-sectional structural representation firstly shown by

5This option is available in the R package FoReco (Girolimetto and Di Fonzo, 2023a).
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Athanasopoulos et al. (2009). It relates the observations at the upper levels of both

cross-sectional and temporal hierarchies, to the high-frequency bottom time series of

the cross-sectional hierarchy, which are the ‘very’ bottom time series in a cross-temporal

hierarchy (see Chapter 1).

Besides the number of variables forming the cross sectional hierarchy (n = 3 in the

above example), two crucial aspects affecting the dimension of matrix F are (i) the

temporal frequency of the highest-frequency granularity (k = 1), and (ii) the amount

of temporal granularities taken into account in the temporal hierarchy. For example,

if one is interested in coherently forecasting hourly time series within a day-cycle, the

complete cross-temporal summing matrixR defining all infra-day temporal granularities

(K = {24, 12, 8, 6, 4, 3, 2, 1}) has dimension (60× 24), and is equal to

R =
[
124 I2 ⊗ 112 I3 ⊗ 18 I4 ⊗ 16 I6 ⊗ 14 I8 ⊗ 13 I12 ⊗ 12 I24

]′
.

Matrix F is thus a large and sparse matrix6 of dimension (60n × 24nb), where n is

the total number of series, and nb is the number of bottom time series in the cross-

sectional hierarchy, respectively (in the above example, n = 3 and nb = 2). Just to

give an idea, the total number of variables in the dataset analyzed in this chapter (see

Section 2.4) is n = 324, with nb = 318 bottom time series, thus matrix F has dimension

(19,440× 7,632). However, if the interest in forecasting at certain time granularities is

low, this dimensonality issue may be mitigated by considering only part of the temporal

granularities between the highest and lowest temporal frequencies7. For example, if one

considers only hourly and daily forecasts, the reduced F is a (8,100×7,632) matrix, with

a decrease of about 58% in the amount of matrix entries wrt its complete counterpart.

In this framework, by extending the seminal idea by Hyndman et al. (2011), a forecast

reconciliation problem arises when, for the nodes of a cross-temporal hierarchy, a set of

base forecasts - however obtained, and usually not aggregate consistent either in space

and/or in time - are wished to be revised to fulfill the coherency relationships in space

and time valid for the target data. The purpose is to improve the accuracy of the

initial forecasts by combining forecasts at different aggregation levels in space and time,

and by incorporating in the final forecasts the information given by cross-sectional and

temporal constraints.

6Sparse matrices require less memory than dense matrices, and allow some computations to be more
efficient (Paige and Saunders, 1982; Davis, 2006; Bates et al., 2023).

7Possible losses in the forecasting accuracy of the reconciled forecasts according to reduced temporal
hierarchies should however be evaluated. This issue is currently under study.
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2.2.1 Notation

Suppose we want to forecast a n-variate high-frequency hierarchical time series
{
y
[1]
t

}T

t=1
,

with forecast horizon equal to the seasonal cycle m, (e.g., month per year, m = 12,

quarter per year, m = 4, hour per day, m = 24), or a multiple thereof. Given a factor k

of m, we may consider a number of temporally aggregated versions of each component

of y
[1]
t , given by the non-overlapping sums of k successive values, each having seasonal

period equal toMk = m/k. To avoid ragged-edge data, we assume that the total number

of observations involved in the non-overlaping aggregation is a multiple of m, and define

N the number of the lowest-frequency series observations, i.e. N = T/m. Let K be the

set of p factors of m, in descending order, K = {kp, kp−1, . . . , k2, k1}, where kp = m and

k1 = 1, and define k∗ =

p∑

j=2

kj.

Following Chapter 1, denote YN+h ≡ Y the [n× (k∗ +m)] matrix of the target

forecasts for any temporal granularity, with low-frequency temporal horizon h, given

by:

Y =
[
Y [m] Y [kp−1] . . .Y [k2] Y [1]

]

=

[
A

B

]
=

[
A[m] A[kp−1] . . . A[k2] A[1]

B[m] B[kp−1] . . . B[k2] B[1]

]
,

where m is the highest available sampling frequency per seasonal cycle (i.e., max. order

of temporal aggregation). Each matrix Y [k] =

[
A[k]

B[k]

]
, k ∈ K, contains the order-k

temporal aggregates of the na cross-sectional upper time series (A[k]), and of the nb

cross-sectional bottom time series (B[k]), respectively, with n = na + nb. Accordingly,

we define the matrix of base forecasts Ŷ as:

Ŷ =
[
Ŷ [m] Ŷ [kp−1] . . . Ŷ [k2] Ŷ [1]

]

=

[
Â[m] Â[kp−1] . . . Â[k2] Â[1]

B̂[m] B̂[kp−1] . . . B̂[k2] B̂[1]

]
.

While the target forecasts are expected to be aggregate-consistent both in time and

space, the base forecasts are in general cross-sectionally and/or temporally incoherent,

that is:

U ′Y = 0[na×(k∗+m)] and Z ′Y ′ = 0[k∗×n],

while

U ′Ŷ ̸= 0[na×(k∗+m)] and/or Z ′Ŷ ′ ̸= 0[k∗×n],
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where U ′ =
[
Ina

−C

]
and Z ′ =

[
Ik∗ −K

]
are zero-constraints matrices associated

to the cross-sectional and temporal constraints, respectively. Working with a single di-

mension (either sectional, or temporal), we may consider the multivariate generalization

of the structural representations for cross-sectional (Athanasopoulos et al., 2009), and

temporal (Athanasopoulos et al., 2017), hierarchies, respectively:

Cross-sectional structural representation of k∗ +m hierarchical time series

y[k]
τ = Sb[k]τ , τ = 1, . . . ,

m

k
, → Y [k] = SB[k] k ∈ K,

that is, in compact form

Y = SB → y = (S ⊗ Ik∗+m) b,

where y = vec (Y ′), and b = vec (B′).

Temporal hierarchies structural representation for n individual time series

ai = Ra
[1]
i , i = 1, . . . , na

bj = Rb
[1]
j , j = 1, . . . , nb

→ A = RA[1]′

B = RB[1]′
,

that is

Y ′ = RY [1]′ → y = (In ⊗R)y[1],

where y[1] = vec
(
Y [1]′

)
, and R is the temporal summing matrix (see Chapter 1).

2.2.2 Cross-temporal bottom-up reconciliation

Bottom-up is an old and classic approach in the forecast reconciliation literature

(Dunn et al., 1976; Dangerfield and Morris, 1992). This approach simply consists in ob-

taining the upper-level series’ forecasts by summing-up the base forecasts of the bottom

level series in the hierarchy. The cross-temporal bottom-up (ct(bu)) reconciliation of

k∗ +m hierarchical time series’ base forecasts at different time granularities, may thus

be represented as follows:

vec
(
Ỹ ′

ct(bu)

)
= F vec

(
B̂[1]′

)
↔ ỹct(bu) = F b̂[1], (2.2)

where F = (S ⊗R) is the cross-temporal summing matrix, with ⊗ denoting the Kro-

necker product, and b̂[1] = vec
(
B̂[1]′

)
is the vector containing the base forecasts of

the high-frequency bottom time series. The cross-temporal bottom-up reconciliation

can be tought of as a two-step sequential reconciliation approach, where either cross-

sectional reconciliation of the high-frequency bottom time series base forecasts is fol-

lowed by temporal reconciliation, or vice-versa. This observation opens the way to

‘partly bottom-up’ cross-temporal reconciliation approaches, where forecasts of the n

time series for different time granularities, are aggregation coherent only along a single
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dimension, are subsequently cross-temporally reconciled via simple bottom-up according

to the other dimension. We call these cross-temporal forecast reconciliation approaches

either ct(recte, bucs), or ct(reccs, bute), where ‘recte’ and ‘reccs’ denote a generic forecast

reconciliation approach in time and in space, respectively.

2.2.3 Regression-based cross-temporal reconciliation

Let us consider the multivariate regression model

Ŷ = Y +E,

where the involved matrices have each dimension [n × (k∗ + m)] and contain, respec-

tively, the base (Ŷ ) and the target forecasts (Y ), and the coherency errors (E) for

the n component variables of the hierarchical time series of interest. Consider now the

vectorized version of the model, that is

vec
(
Ŷ ′
)
= vec (Y ′) + vec (E′) ⇔ ŷ = y + η, (2.3)

where η = vec (E′) is the cross-temporal reconciliation error with zero mean and p.d.

covariance matrix Ωct. Assuming Ωct known, the optimal combination reconciled fore-

casts ỹoct = vec
(
Ỹ ′

oct

)
are found by linearly constrained minimization of the generalized

least squares (GLS) objective function

(y − ŷ)′ Ω−1
ct (y − ŷ) s.t.H ′y = 0, (2.4)

where

H ′y =

[
U ∗

In ⊗Z

]
y = 0[n(k∗+m)×1]

is a full row-rank cross-temporal zero-constraint matrix, with U ∗ =[
0(nam×nk∗) Im ⊗U ′

]
P , and P is the [n(k∗ + m) × n(k∗ + m)] commutation ma-

trix, such that P vec(Y ) = y (see Chapter 1).

The cross-temporally reconciled forecasts according to the projection approach solu-

tion (Byron, 1978, 1979; see also van Erven and Cugliari, 2015; Wickramasuriya et al.,

2019; Panagiotelis et al., 2021 and Chapter 1) are given by

ỹoct =
[
In(k∗+m) −ΩctH (H ′ΩctH)

−1
H ′
]
ŷ = Mctŷ. (2.5)

Alternatively, they may be obtained according to the structural approach developed by

Hyndman et al. (2011) for the cross-sectional framework:

ŷ = Fβ + η,

where β = E[b[1]|IT ] is the mean of the high-frequency bottom-level values conditional

to IT , the available information up to time T , b[1] = vec
(
B[1]′

)
. The structural approach



Chapter 2 - Cross-temporal reconciliation of solar forecasts 55

forecast reconciliation formula is

ỹoct = F
(
F ′Ω−1

ct F
)−1

F ′Ω−1
ct ŷ = FGctŷ, (2.6)

with Gct =
(
F ′Ω−1

ct F
)−1

F ′Ω−1
ct . In Chapter 1, we considered the following approxima-

tions for the cross-temporal covariance matrix (‘oct’ stands for ‘optimal cross-temporal’):

oct(ols) - identity: Ωct = In(k∗+m)

oct(struc) - structural: Ωct = diag(F1mnb
)

oct(wlsv) - series variance scaling: Ωct = Ω̂ct,wlsv, that is a straightforward extension

of the series variance scaling matrix presented by Athanasopoulos et al.

(2017) in the temporal framework

oct(bdshr) - block-diagonal shrunk cross-covariance scaling: Ωct = PŴBD
ct,shrP

′

oct(bdsam) - block-diagonal cross-covariance scaling: Ωct = PŴBD
ct,samP

′

oct(shr) - MinT-shr: Ωct = λ̂Ω̂ct,D + (1− λ̂)Ω̂ct

oct(sam) - MinT-sam: Ωct = Ω̂ct

where the symbol ⊙ denotes the Hadamard product, λ̂ is an estimated shrinkage coeffi-

cient (Ledoit and Wolf, 2004), Ω̂ct,D = In(k∗+m) ⊙ Ω̂ct, and Ω̂ct is the covariance matrix

of the cross-temporal one-step ahead in-sample forecast errors. The cross-sectional point

forecast reconciliation formula is obtained by assuming m = 1 (which implies k∗ = 0,

and Ωct = W is an (n× n) p.d. matrix):

ỹ =
[
In −WU (U ′WU )

−1
U ′
]
ŷ = Mcsŷ,

or, equivalently (Hyndman et al., 2011, 2016; Wickramasuriya et al., 2019),

ỹ = S
(
S′W−1S

)−1
S′W−1ŷ = SGcsŷ,

withGcs = (S′W−1S)
−1

S′W−1. The reconciled forecasts through temporal hierarchies

for a single time series (Athanasopoulos et al., 2017) are in turn obtained by setting n = 1

(i.e., na = 0 and nb = 1, and Ωct = Ω is a (k∗ +m× k∗ +m) p.d. matrix):

ỹ =
[
I(k∗+m) −ΩZ (Z ′ΩZ)

−1
Z ′
]
ŷ = Mteŷ,

or, equivalently,

ỹ = R
(
R′Ω−1R

)−1
R′Ω−1ŷ = RGteŷ,

with Gte = (R′Ω−1R)
−1

R′Ω−1. Table 2.1 presents some approximations for the cross-

sectional and the temporal covariance matrices. Other alternatives for temporal recon-

ciliation, exploiting possible information in the residuals’ autocorrelation, can be found

in Nystrup et al. (2020) and Chapter 1.
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Cross-sectional framework Temporal framework

identity cs(ols): W = In te(ols): Ω = Ik∗+m

structural cs(struc): W = diag(S1nb) te(struc): Ω = diag(R1m)

series variance cs(wls): W = ŴD = In ⊙ Ŵ te(wlsv): Ω = Ω̂wlsv

MinT-shr cs(shr): W = λ̂ŴD + (1− λ̂)Ŵ te(shr): Ω = λ̂Ω̂D + (1− λ̂)Ω̂

MinT-sam cs(sam): W = Ŵ te(sam): Ω = Ω̂

Table 2.1: Approximations for the cross-sectional (Hyndman et al., 2011, 2016;
Wickramasuriya et al., 2019; Chapter 1) and temporal (Athanasopoulos et al.,

2017; Chapter 1) covariance matrix to be used in a reconciliation approach. Ŵ

(Ω̂) is the covariance matrix of the cross-sectional (temporal) one-step ahead in-

sample forecast errors, Ω̂wlsv is a diagonal matrix “which contains estimates of
the in-sample one-step-ahead error variances across each level” (Athanasopoulos

et al., 2017, p. 64), and Ω̂D = Ik∗+m ⊙ Ω̂.

2.2.4 Heuristic and iterative cross-temporal reconciliation

Kourentzes and Athanasopoulos (2019) proposed an ensemble forecasting procedure

(denoted KA), that exploits the simple averaging of different forecasts. It consists in

the following steps (for further details, see Chapter 1):

KA-Step 1 compute the temporally reconciled forecasts for each variable i ∈
{1, . . . , n}, and arrange them in the [n× (k +m)] matrix Ỹte;

KA-Step 2 starting from Ỹte, compute the time-by-time cross-sectionally reconciled

forecasts for all the temporal aggregation levels (Ỹcs), and collect all the (n × n)

projection matrices used to reconcile forecasts of k-level temporally aggregated

time series, M
[k]
cs , k ∈ K;

KA-Step 3 transform the step 1 forecasts once more, by computing time-by-time cross-

sectionally reconciled forecasts for all temporal aggregation levels using the (n×n)
matrix M , given by the average of the matrices M

[k]
cs :

ỸKA =

(
1

p

∑

k∈K

M [k]
cs

)
Ỹte = MỸte. (2.7)

In Chapter 1 we presented an iterative approach, that produces cross-temporal recon-

ciled forecasts by alternating forecast reconciliation along one dimension (cross-sectional

or temporal), based on the first two steps of the KA approach. The iteration j ≥ 1 can

be described as follows:

Step 1 compute the temporally reconciled forecasts (Ỹ
(j)
te ) for each variable i ∈

{1, . . . , n} of Ỹ
(j−1)
cs ;

Step 2 compute the time-by-time cross-sectionally reconciled forecasts (Ỹ
(j)
cs ) for all

the temporal aggregation levels of Ỹ
(j)
te .
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At j = 0, the starting values are given by Ỹ
(0)
cs = Ŷ , and the iterates end when the entries

of matrix Dte = Z ′Ỹ
(j)′
cs , containing all the temporal discrepancies, are small enough

according to a suitable convergence criterion (Chapter 1). In the description above,

temporal-then-cross-sectional reconciliation is iteratively performed (ite(recte, reccs)),

otherwise the order may be reversed, thus generating cross-sectional-then-temporal rec-

onciliation (ite(reccs, recte)).

2.3 Cross-temporal coherency of sequential ap-

proaches and some remarkable equivalences

In order to exploit both cross-sectional and temporal hierarchies, Yagli et al. (2019) con-

sider two sequential reconciliation approaches: Spatial-then-Temporal-Reconciliation

(STR), and Temporal-then-Spatial-Reconciliation (TSR). In the former case, cross-

sectional reconciliation of the base forecasts is performed first for any temporal gran-

ularity, followed by the temporal reconciliation of the individual series’ forecasts. In

the latter case, the order of application of the two reconciliation approaches is reversed,

temporal reconciliation being performed first, followed by cross-sectional reconciliation.

In general, one would expect that the forecasts obtained this way are different (i.e.,

ỸTSR ̸= ỸTSR), and either cross-sectionally (TSR) or temporally (STR), but not cross-

temporally, reconciled:

U ′ỸTSR = 0[na×(k∗+m)],

Z ′ỸTSR ̸= 0(k∗×n),

and

U ′ỸSTR ̸= 0[na×(k∗+m)],

Z ′ỸSTR = 0(k∗×n).

At this regard, we have found an interesting result, here shown as Theorem 2.1, ac-

cording to which, if both covariance matrices used in either steps are constant across

levels and time granularities, the final result (i) does not depend on the order of applica-

tion of the uni-dimensional reconciliation phases, and (ii) is equivalent to that obtained

through an optimal combination approach using a separable covariance matrix, i.e. with

a Kronecker product structure (Genton, 2007; Werner et al., 2008; Velu and Herman,

2017).



58 Section 2.3 - Cross-temporal coherency of sequential approaches

Theorem 2.1. Let W
[k]
j , k ∈ K, j = 1, . . . ,m/k, be the (n × n) cross-sectional hier-

archy error covariance matrix, and Ωi, i = 1, . . . , n, the [(k∗ + m) × (k∗ + m)] error

covariance matrix for the i-th series temporal hierarchy. If W
[k]
j = W , ∀k ∈ K and

∀j = 1, . . . ,m/k, and Ωi = Ω, ∀i = 1, . . . , n, then:

1. the iterative procedure reduces to a single (two-step) iteration to obtain cross-

temporal reconciled forecasts. Furthermore,

Ỹtcs = Ỹcst = Ỹseq,

where Ỹtcs (Ỹcst) is the [n× (k∗ +m)] matrix of the temporal-then-cross-sectional

(cross-sectional-then-temporal) reconciled forecasts;

2. Denoting Ỹoct the optimal (in least squares sense) combination cross-temporal rec-

onciliation approach with cross-temporal covariance matrix Ωct = W ⊗Ω, it is:

Ỹseq = Ỹoct.

Proof. See Appendix A.1.

It is worth noting that, when only constant error covariance matrices are involved

in both unidimensional steps, the iterative cross-temporal reconciliation approach pro-

posed in Chapter 1 reduces to the sequential procedure proposed by Yagli et al. (2019),

and gives a unique result, Ỹseq, which does not depend on the order of application of

the reconciliation phases8. In addition, it does exist a simple simultaneous, optimal (in

least-squares sense) reconciliation approach equivalent to the above sequential forecast

reconciliation procedure. Finally, it should be noted that under the constant covari-

ance matrices assumption of the theorem, the heuristic cross-temporal reconciliation

approach by Kourentzes and Athanasopoulos (2019) is equivalent to a sequential ap-

proach, since in this case the final averaging phase is not needed (more details can be

found in A.1, after the proof of the theorem). All these results can be summarized as

follows:

W [k] = W , ∀k ∈ K
Ωi = Ω, i = 1, . . . , n

Ωct = W ⊗Ω

→ ỸKA(tcs) = ỸKA(cst)︸ ︷︷ ︸
Kourentzes and

Athanasopoulos (2019)

= Ỹseq︸︷︷︸
Yagli et al.

(2019)

= Ỹite(tcs) = Ỹite(cst) = Ỹoct︸ ︷︷ ︸
Chapter 1

8It is therefore surprising that in Yagli et al. (2019), where only constant matrices are used in the
reconciliation approaches, the results for the STR procedures are different from those for the TSR
counterparts. We guess this depends on the way the unidimensional reconciled forecasts are computed,
as we deduced from the R scripts made available by Yang et al. (2017b).
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Using the covariance matrices in Table 2.1, we may thus establish some useful equiv-

alences between the cross-temporal reconciliation approaches considered in Chapter 1,

and identify new ones:

1. oct(ols) equivalent to seq/KA/ite(olste, olscs), and seq/KA/ite(olscs, olste), with

W = In, Ω = Ik∗+m and Ωct = In(k∗+m).

2. oct(struc) equivalent to seq/KA/ite(structe, struccs), and seq/KA/ite(struccs, structe),

with W = diag (S1nb
), Ω = diag (R1m) and Ωct = diag (F1mnb

).

3. oct(olscs, structe) equivalent to seq/KA/ite(olscs, structe), with W = In, Ω =

diag (R1m) and Ωct = diag [(In ⊗R)1mnb
].

4. oct(struccs, olste) equivalent to seq/KA/ite(struccs, olste), with W = diag (S1nb
),

Ω = Ik∗+m and Ωct = diag [(S ⊗ Ik∗+m)1mnb
].

It is worth noting that all the procedures considered so far make use of very simple

covariance matrices, not using the information coming from the in-sample forecast errors.

Another interesting result is that the iterative reconciliation procedure where both

cross-sectional and temporal reconciliation are performed using diagonal covariance ma-

trices, computed using the one-step-ahead in-sample forecast errors (i.e., cs(wls) and

te(wlsv)), ‘converges’ to the optimal combination reconciliation approach oct(wlsv)

(Chapter 1), regardless of unidimensional reconciliation steps’ orders. In other terms,

Ỹite(wlsvte,wlscs) ≃ Ỹite(wlscs,wlsvte) ≃ Ỹoct(wlsv),

where the quality of the approximation solely depends on the convergence criterion: the

lower the tolerance value δ (see Section 2.2.4), the better the approximation will be.

A visual, empirical support to this result is given by Figure 2.2, showing the Frobe-

nius norm9 of the difference between the matrices of the reconciled forecasts using

ite(wlsvte, wlscs) with decreasing tolerance values δ, and oct(wlsv), in the 350 repli-

cations of the forecasting experiment described in Section 2.4. We generalise this result

in Theorem 2.2.

Theorem 2.2. Let W [k], k ∈ K, be the cross-sectional error covariance matrix with

Wct = diag(W [m], . . . ,W [1]), and Ωi, i = 1, . . . , n, the i-th series temporal error co-

variance matrix with Ωct = diag(Ω1, . . . ,Ωn). If Wct = P ′ΩctP , then the iterative

reconciled forecasts converge in norm to the optimal (in least squares sense) combina-

tion cross-temporal reconciled forecasts with cross-temporal covariance matrix Ωct.

Proof. See Appendix A.2.

9The Frobenius norm of a real-valued matrix X is defined as the square root of the sum of the squares

of its elements (Golub and Van Loan, 1996): ||X||F =

√∑

i,j

x2
i,j .
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Figure 2.2: Frobenius norm of the difference between the matrices of the rec-
onciled forecasts using ite(wlsvte, wlscs) and oct(wlsv), with different tolerance
value δ. 350 replications of the forecasting experiment described in Section 2.4.

In summary, when the considered diagonal covariance matrices are used in cross-

sectional and temporal reconciliation phases, the iterative cross-temporal reconciliation

approach is equivalent to a specific optimal combination cross-temporal approach. We

argue that in practical application it is convenient to adopt the optimal combination

version of a cross-temporal procedure, rather than its iterative counterpart, because the

numerical results have better accuracy, and the computing time is often lower, mostly

if the programming codes exploit sparse matrices tools (Davis, 2006).

2.4 Replication of the forecasting experiment of

Yagli et al. (2019)

The dataset used in this study, called PV324, is the same used by Yang et al. (2017a,b),

and Yagli et al. (2019). It refers to 318 simulated PV plants in California, whose hourly

irradiation data are organized in three levels (Figure 2.3):

• L0: 1 time series for the Independent System Operator (ISO), given by the sum

of the 318 plant series;

• L1: 5 time series for the Transmission Zones (TZ), each given by the sum of 27,

73, 101, 86, and 31 plants, respectively;

• L2: 318 bottom time series at plant level (P).
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P1
... P27

TZ1

P28
... P100

TZ2

P101
... P201

TZ3

P202
... P287

TZ4

P288
... P318

TZ5

ISO L0

L1

L2

27 ts 73 ts 101 ts 86 ts 31 ts

Figure 2.3: PV324 hierarchy

Following Yang et al. (2017b) and Yagli et al. (2019), we perform a forecasting ex-

periment with fixed length window of 14 days (i.e., 336 hours), forecast horizon of two

days, and forecasting evaluation taking into account only the day-2 forecasts. These

settings are coherent with the forecast operational submission requirements of CAISO,

the public corporation managing power grid operations in California (Makarov et al.,

2011; Kleissl, 2013). For the 318 hourly time series at plant level, numerical weather

prediction (NWP) forecasts generated by 3TIER (3TIER, 2010) are used as base fore-

casts. All the remaining base forecasts, for the six L0 and L1 time series at any time

granularity k ∈ K, and for the L2 2-3-4-6-8-12-24 hours time series, are computed using

the automatic ETS forecasting procedure of the R-package forecast (Hyndman et al.,

2023), not controlling for possible negative forecasts. Furthermore, following Yagli et al.

(2019), day-ahead persistence is used as the reference model (PERS)10:

ŷ
[1]
T+h|T, PERS

= y
[1]
T+h−48. (2.8)

Given the lead time of 48h, the day-ahead persistence takes the measurements made at

day -2 as the forecasts for the operating day (Yagli et al., 2019, p. 394). Benchmark

forecasts at any level of the cross-sectional hierarchy and for any temporal granularity

are obtained through cross-temporal bottom-up of the 318 hourly bottom time series,

that is:

ỹPERSbu
= Fb̂

[1]

PERS = vec
(
Ỹ

′

PERSbu

)
. (2.9)

It is worth noting that the benchmark forecasts are always non-negative, and both

cross-sectionally and temporally coherent. These important properties are valid also for

the forecasts obtained by xcross-temporal bottom-up reconciliation of the 318 hourly

bottom time series’ NWP forecasts 3TIER:

ỹ3TIERbu
= F b̂

[1]

3TIER = vec
(
Ỹ

′

3TIERbu

)
. (2.10)

10On the choice of the standard reference forecasting method, see Yang (2019).
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Approach
# rep # series values # rep # series values
(350) min max min max (350) min max min max

Hourly forecasts Daily forecasts
base+ 350 4 6 -15.617 -0.000 11 0 35 -51.205 -0.006
oct(ols) 350 109 324 -69.165 -0.000 11 0 60 -29.615 -0.001
oct(olscs, structe) 350 91 324 -17.961 -0.000 6 0 28 -8.915 -0.008
oct(struccs, olste) 350 137 324 -20.739 -0.000 11 0 33 -10.363 -0.000
oct(struc) 350 89 324 -14.292 -0.000 4 0 11 -1.020 -0.026
te(ols2)+cs(ols)∗ 350 42 324 -12.993 -0.000 10 0 72 -15.037 -0.018
te(struc2)+cs(ols)∗ 350 36 324 -12.994 -0.000 10 0 71 -14.791 -0.005
te(ols2)+cs(struc)∗ 350 144 324 -7.526 -0.000 10 0 43 -12.969 -0.005
te(struc2)+cs(struc)∗ 350 124 324 -7.642 -0.000 5 0 31 -7.042 -0.002
+ The approach produces cross-sectional and temporal incoherent forecasts.
∗ The approach produces temporal incoherent forecasts.

Table 2.2: Summary informations on the negative forecasts produced by the
procedures considered by Yagli et al. (2019) in the forecasting experiment. Repli-
cations with at least a negative forecast (# rep), number of series out of 324 (#
series) with at least a negative forecast in a single replication (min and max),
and min and max negative values found in all replications (values). Hourly and
daily forecasts, forecast horizon: operating day.

According to Theorem 2.1, the STR and TSR sequential reconciliations proposed

by Yagli et al. (2019) reduce to the following approaches: oct(ols), oct(olscs, structe),

oct(struccs, olste), oct(struc). In addition, Yagli et al. (2019) consider other four

Temporal-then-Spatial-Reconciliation approaches, called TSRL2 , where the temporal

reconciliation is applied only to the 318 plant level series’ base forecasts. In this case,

although constant matrices are used in either reconciliation steps, the theorem so far

no longer holds, so the obtained forecasts are temporally incoherent, as we show in

the following. In order to distinguish these approaches from the conventional sequen-

tial techniques, we call them te(ols2)+cs(ols), te(struc2)+cs(ols),te(ols2)+cs(struc),

te(struc2)+cs(struc), respectively.

2.4.1 Non-negativity and aggregation consistency issues

Standard forecast reconciliation, both in space and/or in time, may produce negative

revised forecasts (Yang et al., 2017a,b; Yagli et al., 2019), unless specific non-negative

reconciliation approaches are applied (Wickramasuriya et al., 2020; Girolimetto and

Di Fonzo, 2023a). Thus it is not surprising that, with the exception of PERSbu and

3TIERbu, the other approaches considered by Yagli et al. (2019) produce some negative

reconciled forecasts. Details on this issue are shown in Table 2.2.

Negative hourly forecasts are obtained in all 350 replications of the forecasting ex-

periment, and there are some cases (in a range within 4 and 11 replications out of 350)



Chapter 2 - Cross-temporal reconciliation of solar forecasts 63
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Figure 2.4: Base forecasts and sequential TSRL2 (Yagli et al., 2019) reconciled
forecasts. Boxplots of the distribution in the 350 replications of the forecasting
experiment of the cross-sectional (in red) and temporal (in blue) gross discrep-
ancies, as defined in (2.11). For cross-temporal reconciled forecasts, both dis-
crepancies are expected to be zero.

where negative daily forecasts are produced as well11. Furthermore, the base forecasts

are incoherent both in space and time, and the sequential TSRL2 approaches proposed

by Yagli et al. (2019) are temporally incoherent. This can be visually appreciated from

Figure 2.4, showing the boxplots from the distribution of the cross-sectional and tempo-

ral gross discrepancies registered in the 350 replications of the forecasting experiment,

computed as (Chapter 1):

Cross-sectional gross discrepancy: dcs = ||U ′Ŷ ||1
Temporal gross discrepancy: dte = ||Z ′Ŷ ′||1

, (2.11)

where ||X||1 =
∑

i,j |xi,j|. For truly cross-temporally reconciled forecasts, neither cross-

sectional nor temporal discrepancies are present, that is dcs = dte = 0.

In this case, forecast reconciliation may thus generate physically unreasonable val-

ues. Furthermore, if coherency is desired, the apparently innocuous practice of setting

possible negative forecasts to zero is not advisable, since incoherence in sectional and/or

time dimensions would be produced. To overcome the above limitations, in Section 2.5

we propose a simple operational strategy, able to generate fully reconciled non-negative

forecasts.

11The relatively low number of negative hourly base forecasts is explained by the fact that the hourly
base forecasts of the 318 bottom time series are NWP 3TIER forecasts, that are always non-negative.
Negative values are instead present in the ETS base forecasts for the aggregated series. Details can
be found in the online appendix.
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2.4.2 Forecast evaluation

Following Yagli et al. (2019), the accuracy of the considered approaches is measured in

terms of normalized Root Mean Square Error (nRMSE), normalized Mean Bias Error

(nMBE), and Forecast Skill score (FS):

nRMSE
[k]
i,j =

√√√√ 1

L

L∑

l=1

(
ỹ
[k]
i,j,l − y

[k]
i,l

)2

1

L

L∑

l=1

y
[k]
i,l

, nMBE
[k]
i,j =

1

L

L∑

l=1

(
ỹ
[k]
i,j,l − y

[k]
i,l

)

1

L

L∑

l=1

y
[k]
i,l

,

and FS
[k]
i,j =1−

nRMSE
[k]
i,j

nRMSE
[k]
i,0

,

(2.12)

where i = 1, . . . , n, denotes the series, k ∈ K, j = 0, . . . , J , denotes the forecasting

approach (j = 0 for the reference model PERS), and L = nrep ·m
k
, where nrep = 350 is

the number of the forecasting experiment replications. Whereas nRMSE penalizes large

errors, nMBE reveals over- and under-prediction through the sign of the metric (Yagli

et al., 2019, p. 394). Forecast Skill can be either negative (approach is worse than the

reference model) or positive (approach is better than the reference model).

It should be noted that for cross-temporal coherent forecasts the index nMBE
[k]
i,j does

not depend on the temporal aggregation order k ∈ K (see Appendix A.3). This means

that, if j denotes a fully coherent cross-temporal forecast reconciliation approach, the

following identities hold:

nMBE
[m]
i,j = nMBE

[kp−1]
i,j = . . . = nMBE

[k2]
i,j = nMBE

[1]
i,j, i = 1, . . . , n. (2.13)

From Table 2.3 it appears that on average all the considered forecasting approaches

improve on the benchmark PERSbu, in a range between 9.2% (oct(ols) for the 5 L1

series’ hourly forecasts) and 38.3% (3TIERbu for the L0 total series’ daily forecasts)12.

The forecasting accuracy indices for each Transmission Zone forecasts are reported

in Table 2.4. We observe that:

• 3TIERbu is the best for the total series (L0) at any temporal granularity, the

second best being te(struc2)+cs(struc).

• The approach te(struc2)+cs(struc) ranks first for 4 out of the 5 hourly upper

series at level L1, whereas at daily level 3TIERbu ‘wins’ again. The performance

of oct(struc) appears very close to that of te(struc2)+cs(struc).

12The results for all temporal aggregation orders, k ∈ {24, 12, 8, 6, 4, 3, 2, 1}, are available in the online
appendix.
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Approach
L0 L1 L2

H D H D H D

nRMSE(%)
PERSbu 34.62 20.23 43.15 24.57 59.75 30.65
3TIERbu 26.03 12.48 33.95 16.75 53.46 25.19
base+ 27.85 18.17 34.24 20.94 53.46 25.82
oct(ols) 30.69 17.91 39.17 21.74 51.54 26.73
oct(olscs, structe) 28.26 16.96 35.19 20.61 48.20 25.46
oct(struccs, olste) 28.74 17.33 35.48 20.82 49.32 26.14
oct(struc) 26.71 16.24 33.11 19.64 46.74 24.73
te(ols2)+cs(ols)∗ 27.80 17.96 34.36 21.80 48.52 26.71
te(struc2)+cs(ols)∗ 27.80 17.95 34.34 21.79 47.77 26.36
te(ols2)+cs(struc)∗ 27.02 17.24 33.40 20.62 47.76 25.98
te(struc2)+cs(struc)∗ 26.17 16.68 32.44 19.96 46.25 25.03

nMBE(%)
PERSbu 0.075 0.075 0.058 0.058 0.075 0.075
3TIERbu -4.213 -4.213 -3.745 -3.745 -4.362 -4.362
base+ -0.394 0.725 -0.131 1.000 -4.362 0.902
oct(ols) 0.593 0.593 0.557 0.557 0.590 0.590
oct(olscs, structe) 0.359 0.359 0.339 0.339 0.354 0.354
oct(struccs, olste) 0.735 0.735 0.744 0.744 0.733 0.733
oct(struc) 0.385 0.385 0.426 0.426 0.374 0.374
te(ols2)+cs(ols)∗ -0.353 0.769 -0.369 0.718 -0.352 0.754
te(struc2)+cs(ols)∗ -0.355 0.768 -0.369 0.718 -0.360 0.747
te(ols2)+cs(struc)∗ 0.100 0.858 0.119 0.863 0.099 0.850
te(struc2)+cs(struc)∗ -0.093 0.666 -0.048 0.695 -0.104 0.647

forecast skill
3TIERbu 0.248 0.383 0.213 0.318 0.105 0.178
base+ 0.196 0.102 0.206 0.148 0.105 0.158
oct(ols) 0.113 0.115 0.092 0.115 0.137 0.128
oct(olscs, structe) 0.184 0.162 0.184 0.161 0.193 0.169
oct(struccs, olste) 0.170 0.143 0.178 0.152 0.175 0.147
oct(struc) 0.228 0.197 0.233 0.201 0.218 0.193
te(ols2)+cs(ols)∗ 0.197 0.112 0.204 0.113 0.188 0.129
te(struc2)+cs(ols)∗ 0.197 0.113 0.204 0.113 0.201 0.140
te(ols2)+cs(struc)∗ 0.219 0.148 0.226 0.161 0.201 0.152
te(struc2)+cs(struc)∗ 0.244 0.176 0.248 0.188 0.226 0.183
+ The approach produces cross-sectional and temporal incoherent forecasts.
∗ The approach produces temporal incoherent forecasts.

Table 2.3: Forecast accuracies in terms of nRMSE(%), nMBE(%), and forecast
skill over the PERSbu benchmark of base forecasts and sequential reconciliation
approaches. Unconstrained reconciliation procedures considered by Yagli et al.
(2019), Tables 2, 3, p. 395. Hourly (H) and Daily (D) forecasts, forecast hori-
zon: operating day. Bold entries and italic entries identify the best and the
second best performing approaches, respectively.
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Approach
TZ1 TZ2 TZ3 TZ4 TZ5

H D H D H D H D H D

nRMSE(%)
PERSbu 28.72 16.12 40.27 22.40 46.48 26.96 52.82 29.75 47.44 27.62
3TIERbu 22.81 10.43 33.34 16.72 34.01 17.06 46.40 22.80 33.16 16.75
base+ 22.41 13.55 32.05 18.70 35.14 21.95 44.94 26.89 36.67 23.58
oct(ols) 29.27 14.89 34.58 19.25 39.55 22.91 47.30 26.50 45.16 25.15
oct(olscs, structe) 24.26 13.93 32.32 18.47 36.69 21.78 43.89 25.30 38.81 23.59
oct(struccs, olste) 23.44 13.50 32.89 18.83 37.42 22.33 44.76 25.97 38.90 23.49
oct(struc) 22.00 12.81 30.92 17.82 34.79 20.94 42.02 24.50 35.83 22.12
te(ols2)+cs(ols)∗ 22.95 15.46 32.06 19.23 35.12 22.38 44.93 26.91 36.73 25.02
te(struc2)+cs(ols)∗ 22.93 15.46 32.05 19.22 35.11 22.37 44.92 26.90 36.70 25.00
te(ols2)+cs(struc)∗ 22.11 13.36 31.40 18.70 34.70 21.93 42.97 26.06 35.82 23.06
te(struc2)+cs(struc)∗ 21.58 13.00 30.48 18.09 33.58 21.18 41.86 25.21 34.69 22.32

nMBE(%)
PERSbu -0.013 -0.013 0.099 0.099 0.127 0.127 0.030 0.030 0.050 0.050
3TIERbu -1.967 -1.967 -3.215 -3.215 -3.636 -3.636 -7.364 -7.364 -2.542 -2.542
base+ -0.101 0.889 -0.419 0.842 -0.134 1.613 -0.119 0.159 0.118 1.499
oct(ols) 0.250 0.250 0.307 0.307 1.006 1.006 0.345 0.345 0.876 0.876
oct(olscs, structe) 0.078 0.078 0.091 0.091 0.577 0.577 0.326 0.326 0.625 0.625
oct(struccs, olste) 0.660 0.660 0.478 0.478 0.968 0.968 0.591 0.591 1.026 1.026
oct(struc) 0.442 0.442 0.203 0.203 0.541 0.541 0.185 0.185 0.759 0.759
te(ols2)+cs(ols)∗ -0.492 0.428 -0.577 0.653 -0.248 1.471 -0.268 -0.007 -0.258 1.047
te(struc2)+cs(ols)∗ -0.490 0.429 -0.578 0.653 -0.249 1.470 -0.273 -0.012 -0.256 1.049
te(ols2)+cs(struc)∗ 0.135 0.794 -0.123 0.685 0.182 1.233 0.114 0.446 0.289 1.157
te(struc2)+cs(struc)∗ 0.047 0.706 -0.249 0.559 0.009 1.060 -0.242 0.090 0.194 1.063

forecast skill
3TIERbu 0.206 0.353 0.172 0.254 0.268 0.367 0.121 0.234 0.301 0.394
base+ 0.220 0.159 0.204 0.165 0.244 0.186 0.149 0.096 0.227 0.146
oct(ols) -0.019 0.076 0.141 0.141 0.149 0.150 0.104 0.109 0.048 0.089
oct(olscs, structe) 0.155 0.136 0.197 0.176 0.211 0.192 0.169 0.150 0.182 0.146
oct(struccs, olste) 0.184 0.163 0.183 0.159 0.195 0.172 0.153 0.127 0.180 0.149
oct(struc) 0.234 0.205 0.232 0.205 0.251 0.223 0.204 0.177 0.245 0.199
te(ols2)+cs(ols)∗ 0.201 0.041 0.204 0.141 0.244 0.170 0.149 0.095 0.226 0.094
te(struc2)+cs(ols)∗ 0.202 0.041 0.204 0.142 0.245 0.170 0.150 0.096 0.227 0.095
te(ols2)+cs(struc)∗ 0.230 0.171 0.220 0.165 0.253 0.187 0.187 0.124 0.245 0.165
te(struc2)+cs(struc)∗ 0.249 0.194 0.243 0.192 0.277 0.215 0.208 0.153 0.269 0.192
+ The approach produces cross-sectional and temporal incoherent forecasts.
∗ The approach produces temporal incoherent forecasts.

Table 2.4: Forecast accuracies in terms of nRMSE(%), nMBE(%), and forecast
skill over the PERSbu benchmark of base forecasts and sequential reconciliation
approaches for the series at L1 level (Transmission Zones). Unconstrained recon-
ciliation procedures considered by Yagli et al. (2019), Tables 2, 3, p. 395. Hourly
(H) and Daily (D) forecasts, forecast horizon: operating day. Bold entries and
italic entries identify the best and the second best performing approaches, respec-
tively.
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te(struc2) + cs(struc)  1.37 

oct(struc)  2.3 

te(ols2) + cs(struc)  4.15 

te(struc2) + cs(ols)  4.32 

ct(olscs, structe)  5.49 

te(ols2) + cs(ols)  6.16 

ct(struccs, olste)  7.12 

3TIERbu  7.76 

base  7.79 

oct(ols)  8.9 

PERSbu  10.63 

3 6 9
Mean ranks

Hourly − operating day − critical distance: 0.84 − Friedman: 0 (Ha: Different)

oct(struc)  1.66 

te(struc2) + cs(struc)  2.8 

ct(olscs, structe)  4.35 

3TIERbu  4.65 

base  5.19 
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Mean ranks

Daily − operating day − critical distance: 0.84 − Friedman: 0 (Ha: Different)

Figure 2.5: MCB Nemenyi test results: average ranks and 95% confidence in-
tervals. The unconstrained reconciliation approaches considered by Yagli et al.
(2019) are sorted vertically according to the nRMSE(%) mean rank. Hourly (top
panel) and Daily (bottom panel) forecasts for L0,L1,L2 levels (324 series). Fore-
cast horizon: operating day. The mean rank of each approach is displayed to the
right of their names. If the intervals of two forecast reconciliation approaches
do not overlap, this indicates a statistically different performance. Thus, ap-
proaches that do not overlap with the green interval are considered significantly
worse than the best, and vice-versa.

• te(struc2)+cs(struc) and oct(struc) show the best performance for the 318 bottom

time series at any temporal granularity, with a slight prevalence of oct(struc) (for

k ≥ 3). It should be noted that, unlike te(struc2)+cs(struc), oct(struc) forecasts

are cross-temporally coherent.

• Unlike te(struc2)+cs(struc), 3TIERbu forecasts are always non-negative, and co-

herent both in space and time at any granularity.

• For these reasons, 3TIERbu should be considered as a challenging competitor in

the evaluation of the new proposed procedures (Section 2.5).

To give a complete picture of the evaluation results for hourly and daily forecasts,

in Figure 2.5 the Multiple Comparison with the Best (MCB) Nemenyi tests are shown

(Koning et al., 2005; Kourentzes and Athanasopoulos, 2019; Makridakis et al., 2022).

This allows to establish if the forecasting performances of the considered techniques

are significantly different. At daily level, oct(struc) ranks first, and is significantly
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better than the other forecasting approaches, with te(struc2)+cs(struc) at the second

place. This result is reversed at hourly level: te(struc2)+cs(struc) ranks first and is

significantly better than all the other approaches, with oct(struc) at the second place.

However, it should be recalled that the forecasts produced by te(struc2)+cs(struc) are

not temporally coherent, which means that the sum of the hourly forecasts does not

match with the daily forecast.

Limiting ourselves to consider fully coherent reconciled forecasts, the scatter plots

of the 324 couples of nRMSE(%) for oct(struc) vs., respectively, PERSbu and 3TIERbu

(Figure 2.6), show that the most performing regression-based cross-temporal reconcili-

ation approach improves uniformly on the benchmark, and in the majority of cases on

3TIERbu, particularly at hourly level (k = 1), where 89% of the variables are observed

to show an improved nRMSE. However, it is worth noting that at daily level, this value

decreases to 49%, which means that the NWP forecasts may still play a role at lower

time granularity.

2.5 Extended analysis: non-negative cross-temporal

reconciliation

In this section, we explore the performance of forecast reconciliation approaches able

to produce non-negative PV forecasts, both temporally and cross-sectionally coherent.

For this reason, among the approaches proposed by Yagli et al. (2019), we consider

the reference benchmark PERSbu, the NWP base forecasts 3TIERbu, and oct(struc).

These approaches are then compared with the following 7 cross-temporal forecasting

procedures:

• KA(wlsvte, wlscs): the heuristic approach by Kourentzes and Athanasopoulos

(2019), using te(wlsv) in the first step, and cs(wls) in the second, respectively;

• ct(wlsvte, bucs), ct(structe, bucs), ct(wlscs, bute), and ct(struccs, bute): partly

bottom-up cross-temporal reconciliation (see Section 2.2.2) according to, respec-

tively, te(wlsv), te(struc), cs(wls), and cs(struc);

• oct(wlsv) and oct(bdshr): optimal (in least squares sense) cross-temporal forecast

reconciliation approaches using the in-sample forecast errors (Chapter 1).

2.5.1 Non negative forecast reconciliation: sntz

Each approach, when used in its ‘free’ version, i.e., without considering non-negative

constraints in the linearly constrained quadratic program (2.4), is not guaranteed to

always produce non-negative reconciled forecasts. This fact may be an issue for the an-

alyst, since in many practical situations negative forecasts could have no meaning, thus
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Figure 2.6: Comparison of nRMSE(%) between PERSbu and oct(struc) (top
panel), and between 3TIERbu and oct(struc) (bottom panel). The black line
represents the bisector, where the nRMSE’s for both approaches are equal. On
the top-left (bottom-right) corner of each graph, the percentage of points above
(below) the bisector is reported.
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undermining the quality of the results found and the conclusions thereof. In what fol-

lows, we consider a simple heuristic strategy to avoid negative reconciled forecasts, with-

out using any sophisticated, and time consuming, numerical optimization procedure13.

More precisely, possible negative values of the unconstrained reconciled high-frequency

bottom time series forecasts are set to zero. Denote B̃
[1]
0 the matrix containing the

non-negative reconciled forecasts produced by a ‘free’ approach, and the ‘zeroed’ ones.

The complete vector of non-negative cross-temporal reconciled forecasts is computed as

the cross-temporal bottom-up aggregation of b̃
[1]
0 = vec

(
B̃

[1]′

0

)
, that is, according to

expression (2.2):

ỹ0 = F b̃
[1]
0 . (2.14)

We call set-negative-to-zero (sntz) this simple, and quick device to obtain non neg-

ative reconciled forecasts. While it certainly increases the forecasting accuracy of the

high-frequency bottom time series forecasts wrt the ‘free’ counterparts, this does not

hold true in general for the upper level series forecasts. In addition, even if the originally

reconciled forecasts are obtained according to an unbiased approach, the sntz-reconciled

forecasts are no more unbiased, like the non-negative forecasts obtained through nu-

merical optimization procedures (Wickramasuriya et al., 2020). However, in practical

situations the differences between the results produced by the sntz heuristic, and those

obtained through a state-of-the-art numerical optimization procedure like osqp (Stel-

lato et al., 2020) implemented in FoReco (Girolimetto and Di Fonzo, 2023a), could be

negligible.

For example, Figure 2.7 shows the graphs of one day of hourly forecasts computed by

unconstrained oct(struc), oct(struc)osqp and oct(struc)sntz, respectively, for the aggre-

gated series (ISO and five Transmission Zones), and for two bottom variables at plant

level (P295 and P315) with a large number of negative reconciled forecasts. For each vari-

able we consider the day with the highest number of negative forecasts. It appears that

the physically feasible forecasts produced by the non-negative reconciliation approaches

are about the same at the aggregate levels, whereas some difference is visible at Plant

level.

Table 2.5 shows the indices nRMSE(%) of the reconciled forecasts produced by the

oct(struc) approach according to unconstrained and non-negative (both sntz and osqp)

variants. It is worth noting that the sntz heuristic always gives the lowest nRMSE(%),

independently of the temporal granularity of the forecasts14. This result is visually

13Recent contributions on this topic in the hierarchical forecasting field are Wickramasuriya et al.
(2020), Girolimetto and Di Fonzo (2023a).

14Similar results were found for all the considered reconciliation approaches.
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Figure 2.7: One day of hourly reconciled forecasts for two of the 318 bottom
variables (Plants P295 and P315, component of TZ5), and for the six upper time
series (5 Transmission Zones and the Total ISO). For each series, it is shown
the day with the highest number of negative forecasts produced by the reconcili-
ation approach oct(struc) (in red). The non-negative forecasts are obtained by
oct(struc)osqp (in green) and oct(struc)sntz (in blue).
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Level
(series)

Non-neg.
reconciliation

nRMSE(%) nMBE(%)

1 2 3 4 6 8 12 24 1-24

L0

(1)

free 26.71 26.35 25.67 25.57 23.03 24.80 16.74 16.24 0.385
sntz 26.64 26.27 25.56 25.48 22.86 24.71 16.25 15.73 -1.079
osqp 26.74 26.36 25.67 25.55 23.01 24.77 16.36 15.85 -0.398

L1

(5)

free 33.11 32.54 31.60 31.37 28.19 30.06 20.49 19.64 0.426
sntz 32.99 32.41 31.45 31.23 27.96 29.91 19.88 19.00 -0.973
osqp 33.11 32.52 31.58 31.32 28.15 29.99 20.01 19.14 -0.311

L2

(318)

free 46.74 44.02 42.05 41.07 36.67 38.16 26.56 24.73 0.374
sntz 46.51 43.80 41.80 40.83 36.34 37.90 25.85 23.97 -1.109
osqp 46.63 43.93 41.94 40.93 36.53 37.99 25.97 24.10 -0.422

Table 2.5: Forecast accuracy in terms of nRMSE(%) and nMBE(%) of un-
constrained and non-negative reconciled forecasts using the oct(struc) approach.
All temporal aggregation orders are considered, from hourly (k = 1) to daily
(k = 24). Forecast horizon: operating day. Bold entries identify the best ap-
proach.

confirmed by the graphs in Figure 2.8, showing the scatter plots of the 324 couples of

nRMSE(%) for oct(struc)osqp vs. oct(struc)sntz. For this dataset, oct(struc)sntz beats

oct(struc)osqp in no less than 94% of the 324 series for any temporal granularity. How-

ever, looking at indices nMBE(%) in Table 2.5, it emerges also that the bias of the

oct(struc)sntz forecasts is more pronounced than oct(struc)osqp. This seems to be a

price to pay for using such a simple heuristic.

2.5.2 Forecast accuracy of the selected approaches

Table 2.6 shows the indices nRMSE(%) and nMBE(%) of the considered non-negative

cross-temporal forecast reconciliation approaches, using the sntz heuristic, and the cor-

responding forecast skills over the benchmark forecasts PERSbu. Overall, the accuracy

improvements of the new proposed approaches over the persistence model are in the

range 16.5%-46.5%, whereas 3TIERbu improvements are in the range 10.5%-38.3%.

Partly bottom-up approaches, with cross-sectional reconciliation at the first step (i.e.,

ct(wlscs, bute) and ct(struccs, bute)) show a good performance for the six series at lev-

els L0 and L1. For the 318 disaggregated series at the Plant level, ct(wlsvte, bucs) and

oct(wlsv) rank first and second, respectively, and their accuracy indices are very close

each other, whereas the nMBE(%) of oct(wlsv) is lower than ct(wlsvte, bucs). In addi-

tion, all the considered non-negative forecast reconciliation approaches, even using the

sntz heuristic (see Section 2.5.1), have smaller bias than the NWP forecasts 3TIER.

From Table 2.7 it emerges that even for distinct L1 series (Transmission Zones), the

new approaches perform better than all the approaches considered by Yagli et al. (2019),
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Approach
L0 L1 L2

H D H D H D

nRMSE(%)
PERSbu 34.62 20.23 43.15 24.57 59.75 30.65
3TIERbu 26.03 12.48 33.95 16.75 53.46 25.19
oct(struc) 26.64 15.73 32.99 19.00 46.51 23.97

KA(wlsvte, wlscs) 23.59 13.55 30.23 16.91 44.48 22.21
ct(struccs, bute) 21.99 12.38 28.80 15.82 49.76 24.33
ct(wlscs, bute) 21.23 10.82 28.97 15.01 49.88 23.66
ct(structe, bucs) 24.81 14.43 31.41 17.80 45.30 22.93
ct(wlsvte, bucs) 23.50 13.42 30.13 16.78 44.42 22.12
oct(wlsv) 23.63 13.64 30.21 17.01 44.44 22.27
oct(bdshr) 24.13 13.92 30.45 17.12 45.24 22.54

nMBE(%)
PERSbu 0.075 0.058 0.075
3TIERbu -4.213 -3.745 -4.362
oct(struc) -1.079 -0.973 -1.109

KA(wlsvte, wlscs) -0.691 -0.823 -1.399
ct(struccs, bute) -1.834 -1.593 -1.935
ct(wlscs, bute) -2.810 -2.418 -2.910
ct(structe, bucs) -1.435 -1.308 -1.473
ct(wlsvte, bucs) -1.429 -1.320 -1.454
oct(wlsv) -1.312 -1.195 -1.335
oct(bdshr) -0.734 -0.734 -0.728

forecast skill
3TIERbu 0.248 0.383 0.213 0.318 0.105 0.178
oct(struc) 0.231 0.222 0.235 0.227 0.222 0.218

KA(wlsvte, wlscs) 0.319 0.330 0.299 0.312 0.256 0.275
ct(struccs, bute) 0.365 0.388 0.333 0.356 0.167 0.206
ct(wlscs, bute) 0.387 0.465 0.329 0.389 0.165 0.228
ct(structe, bucs) 0.283 0.287 0.272 0.276 0.242 0.252
ct(wlsvte, bucs) 0.321 0.337 0.302 0.317 0.257 0.278
oct(wlsv) 0.317 0.326 0.300 0.308 0.256 0.273
oct(bdshr) 0.303 0.312 0.294 0.303 0.243 0.265

Table 2.6: Forecast accuracy of selected non-negative cross-temporal reconcil-
iation approaches and base forecasts in terms of nRMSE(%), nMBE(%), and
forecast skill over the PERSbu benchmark. Hourly and daily forecasts, forecast
horizon: operating day. Bold entries and italic entries identify the best and the
second best performing approaches, respectively.
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Approach
TZ1 TZ2 TZ3 TZ4 TZ5

H D H D H D H D H D

nRMSE(%)
PERSbu 28.72 16.12 40.27 22.40 46.48 26.96 52.82 29.75 47.44 27.62
3TIERbu 22.81 10.43 33.34 16.72 34.01 17.06 46.40 22.80 33.16 16.75
oct(struc) 21.92 12.41 30.84 17.30 34.67 20.21 41.84 23.84 35.66 21.23

KA(wlsvte, wlscs) 20.23 11.10 28.57 15.43 30.98 17.45 39.72 22.09 31.64 18.51
ct(struccs, bute) 20.15 10.92 27.01 14.37 28.74 15.74 38.12 20.89 29.99 17.17
ct(wlscs, bute) 19.33 9.72 28.11 14.18 29.55 15.10 39.20 20.17 28.68 15.88
ct(structe, bucs) 21.04 11.63 29.55 16.24 32.57 18.73 40.51 22.67 33.37 19.75
ct(wlsvte, bucs) 20.20 10.98 28.53 15.35 30.89 17.37 39.69 22.01 31.32 18.19
oct(wlsv) 20.18 11.18 28.53 15.50 30.97 17.53 39.56 22.16 31.84 18.69
oct(bdshr) 21.00 11.74 29.25 16.02 31.63 17.85 39.73 22.27 30.65 17.74

nMBE(%)
PERSbu -0.013 -0.099 0.127 0.030 0.050
3TIERbu -1.967 -3.215 -3.636 -7.364 -2.542
oct(struc) -0.422 -1.082 -0.864 -1.707 -0.790

KA(wlsvte, wlscs) -0.575 -0.959 -0.814 -1.348 -0.417
ct(struccs, bute) -0.702 -1.434 -1.514 -3.390 -0.926
ct(wlscs, bute) -1.437 -2.237 -2.530 -4.937 -0.949
ct(structe, bucs) -0.620 -1.300 -1.224 -2.243 -1.153
ct(wlsvte, bucs) -0.890 -1.417 -1.246 -2.039 -1.011
oct(wlsv) -0.768 -1.330 -1.169 -1.865 -0.843
oct(bdshr) -0.652 -0.727 -0.676 -0.828 -0.778

forecast skill
3TIERbu 0.206 0.353 0.172 0.254 0.268 0.367 0.121 0.234 0.301 0.394
oct(struc) 0.237 0.230 0.234 0.228 0.254 0.250 0.208 0.199 0.248 0.231

KA(wlsvte, wlscs) 0.296 0.312 0.291 0.311 0.334 0.353 0.248 0.258 0.333 0.330
ct(struccs, bute) 0.299 0.323 0.329 0.359 0.382 0.416 0.278 0.298 0.368 0.378
ct(wlscs, bute) 0.327 0.397 0.302 0.367 0.364 0.440 0.258 0.322 0.396 0.425
ct(structe, bucs) 0.268 0.279 0.266 0.275 0.299 0.305 0.233 0.238 0.297 0.285
ct(wlsvte, bucs) 0.297 0.319 0.292 0.315 0.335 0.356 0.249 0.260 0.340 0.341
oct(wlsv) 0.297 0.307 0.292 0.308 0.334 0.350 0.251 0.255 0.329 0.323
oct(bdshr) 0.269 0.272 0.274 0.285 0.320 0.338 0.248 0.251 0.354 0.358

Table 2.7: Forecast accuracy of selected non-negative cross-temporal reconcil-
iation approaches and base forecasts in terms of nRMSE(%), nMBE(%), and
forecast skill over the PERSbu benchmark, for the series at L1 level (Transmis-
sion Zones). Hourly and daily forecasts, forecast horizon: operating day. Bold
entries and italic entries identify the best and the second best performing ap-
proaches, respectively.
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Figure 2.8: Comparison of nRMSE(%) between sntz and osqp non-negative
forecast reconciliation using the oct(struc) approach. The black line represents
the bisector, where the nRMSE’s for oct(struc)osqp and oct(struc)sntz are equal.
On the top-left (bottom-right) corner of each graph, the percentage of points
above (below) the bisector is reported.

reported in Table 2.4. Furthermore, almost all the new approaches significantly outper-

form PERSbu, 3TIERbu, and oct(struc) for both hourly and daily forecasts (Figure 2.9).

For a more compelling comparison of different forecasting methods, in Table 2.8 are

shown the forecast skills in terms of nRMSE of the new cross-temporal reconciliation

approaches over the more challenging NWP 3TIERbu forecasts. All the forecasts skills

are positive, and in a range between 0.047 and 0.184, for the hourly PV generated power

forecasts at any cross-sectional level. In this case it turns out that the new forecast

reconciliation approaches, in addition to assuring full coherence and non-negativity of

the revised forecasts, have a better forecasting accuracy. For daily forecasts, however,

the picture is less clear-cut. The new forecasting approaches always improve for the 318

disaggregate series at the Plant level (L2), whereas for ISO and Transmission Zones this

happens only for two partly bottom-up approaches.

Finally, focusing on the two best performing approaches of the forecasting experiment

(ct(wlsvte, bucs) and oct(wlsv)), and looking at the nRMSEs of the individual series, it

is worth noting that:

• ct(wlsvte, bucs) always produces more accurate forecasts than oct(struc), for any

series and granularity (Figure 2.11);
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Daily − operating day − critical distance: 0.75 − Friedman: 0 (Ha: Different)

Figure 2.9: MCB-Nemenyi test on selected non-negative cross-temporal recon-
ciliation approaches with operating day forecast horizon. L0,L1,L2 levels (324
series). Top panel: hourly forecasts; Bottom panel: daily forecasts. The mean
rank of each approach is displayed to the right of their names. If the intervals
of two forecast reconciliation approaches do not overlap, this indicates a statisti-
cally different performance. Thus, approaches that do not overlap with the green
interval are considered significantly worse than the best, and vice-versa.

Approach
Hourly forecasts Daily forecasts
L0 L1 L2 L0 L1 L2

oct(struc) -0.023 0.028 0.130 -0.260 -0.134 0.048

KA(wlsvte, wlscs) 0.094 0.110 0.168 -0.085 -0.010 0.118
ct(struccs, bute) 0.155 0.152 0.069 0.008 0.056 0.034
ct(wlscs, bute) 0.184 0.147 0.067 0.133 0.104 0.061
ct(structe, bucs) 0.047 0.075 0.153 -0.156 -0.063 0.089
ct(wlsvte, bucs) 0.097 0.113 0.169 -0.075 -0.002 0.122
oct(wlsv) 0.092 0.110 0.169 -0.093 -0.016 0.116
oct(bdshr) 0.073 0.103 0.154 -0.115 -0.022 0.105

Table 2.8: Forecast skills over the NWP 3TIERbu forecasts of oct(struc) and of
the new cross-temporal forecast reconciliation approaches. Red entries identify
negative skills.
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Figure 2.10: Comparison of nRMSE(%) between non-negative reconciliation
approaches: oct(wlsv) and ct(wlsvte, bucs). Forecast horizon: operating day.
The black line represents the bisector, where the nRMSE’s for both approaches
are equal. On the top-left (bottom-right) corner of each graph, the percentage of
points above (below) the bisector is reported.

• the accuracy of ct(wlsvte, bucs) is practically indistinguishable from that of

oct(wlsv) (Figure 2.10);

• the accuracy increases of ct(wlsvte, bucs) over the NWP approach 3TIERbu are still

clear (Figure 2.11), even though for daily forecasts 3TIERbu performs better in

about 1 case out 4.

We may thus conclude that, for the PV324 dataset considered in this work, a thorough

exploitation of cross-temporal hierarchies significantly improves the forecasting accuracy

over the approaches considered in Yagli et al. (2019). In particular, the use of the in-

sample base forecast errors, even in the simple diagonal versions of te(wlsv) (first step

of cs(wlsvte, bucs)), and oct(wlsv), increases the forecasting accuracy at different time

granularities.
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Figure 2.11: Comparison of nRMSE(%) between non-negative reconcili-
ation approaches: oct(struc) and ct(wlsvte, bucs) (top), and 3TIERbu and
ct(wlsvte, bucs) (bottom). Forecast horizon: operating day. The black line rep-
resents the bisector, where the nRMSE’s for both approaches are equal. On the
top-left (bottom-right) corner of each graph, the percentage of points above (be-
low) the bisector is reported.



Chapter 3

Forecast combination-based forecast

reconciliation

3.1 Introduction

A hierarchical/grouped time series is a linearly constrained multiple time series con-

sisting of a collection of time series that follows an aggregation structure (Panagiotelis

et al., 2021). As an example, sales data can be disaggregated by product categories,

and then by product subcategories, down to Stock Keeping Unit (SKU). The use of hi-

erarchical forecasting is rising in order to deliver relevant demand forecast information

given various managerial levels within organizations, with the goal of providing coherent

forecasts while enhancing their accuracy (Fliedner, 2001).

More generally, forecasting hierarchical/grouped time series is the process of generat-

ing coherent forecasts (or reconciling incoherent forecasts), preserving the relationships

within the hierarchy/group (Hyndman and Athanasopoulos, 2021, ch. 11). It can be

seen as a statistical device that can improve forecast accuracy through the use of fore-

cast combinations, whose main motivation is to provide coherent forecasts for decisions

at different levels of the hierarchy.

Classical approaches to hierarchical forecasting are bottom-up, top-down, and

middle-out (Athanasopoulos et al., 2009). Bottom-up forecasting (Dunn et al., 1976)

involves forecasting the most granular level of the hierarchy, then aggregating up to cre-

ate estimates for the higher levels. The main advantage of this method is that, because

forecasts are obtained at the lowest level of the hierarchy, no information is lost due

to aggregation. However, it ignores the relationships between the series, and usually

performs poorly on highly aggregated data. Furthermore, information at lower levels of

79
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the hierarchy tends to be noisier, potentially resulting in a reduced overall forecast ac-

curacy. In the top-down approach (Gross and Sohl, 1990), the top level of the hierarchy

is first forecast, and then this forecast is split up to get estimates for the lower levels,

typically using historical or forecasted proportions (Athanasopoulos et al., 2009). The

middle-out approach is a combination of the bottom-up and top-down approaches: the

middle level (neither the most granular nor the most aggregated) variables are forecast.

These values are then used to compute the higher levels’ forecasts using the bottom-up

approach, and the forecasts for lower levels with the top-down approach.

Modern least squares-based reconciliation techniques emerged in the cross-sectional

framework (optimal combination approach, Hyndman et al., 2011), and have then been

extended both in temporal (Athanasopoulos et al., 2017; Nystrup et al., 2020), and

cross-temporal (Kourentzes and Athanasopoulos, 2019, see also Chapter 1) frameworks,

designed to align short- and long-term forecasts for consistency of different planning

and budgeting purposes. This class of techniques is usually associated to a forecasting

scheme where all the time series are independently forecast at all levels (cross-sectional

and/or temporal), producing incoherent base forecasts, that are then transformed using

all the information and relationships a hierarchy can offer in order to be coherent along

the chosen dimensions (cross-sectional, temporal, or both). This result is obtained us-

ing a linear regression model, and the newly coherent forecasts are a weighted sum of

the forecasts from all levels, with the weights found by solving a system of equations

ensuring the natural relationships between the different levels of the hierarchy are sat-

isfied. If the base forecasts are unbiased, Hyndman et al. (2011) show that the optimal

combination approach provides unbiased reconciled forecasts at all levels with minimal

loss of information, taking advantage of the relationships between time series to find

patterns.

Hollyman et al. (2021) were the first to examine the forecast reconciliation problem

from a forecast combination perspective (Bates and Granger, 1969; Timmermann, 2006).

They have proposed a forecast combination based approach to the reconciliation of a

simple hierarchy (called Level-l Conditional Coherent, LlCC), showing how to generate

unbiased top-down and middle-out forecasts for a hierarchy. In addition, it was shown

that the simple average of a set of LlCC and bottom-up reconciled forecasts results

in good performance as compared to those obtained through the state-of-the-art cross-

sectional reconciliation procedures (Wickramasuriya et al., 2019). In this chapter, we

build upon and extend this proposal along some new directions.

1. We shed light on the nature and the mathematical derivation of the LlCC rec-

onciliation formula for an elementary two-level hierarchy, showing that it is the
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result of a constrained minimization of a quadratic loss function in the differences

between the target and the base forecasts, with a diagonal associated matrix and

exact linear inhomogeneous constraints. The constant part of the constraints is

exogenously given by the base forecasts of the upper time series at the generic

level l of the hierarchy, which is thus not revised, as it happens for the top-down

approach (Athanasopoulos et al., 2009).

2. In the same framework, exact linear homogeneous constraints may be considered as

well, where no exogenous value is imposed, resulting in level conditional reconciled

forecasts of all the involved series, where both the top and the bottom level time

series are coherently revised. Similar to the previous case, we qualify this approach

as endogenous, in the sense that no external value (i.e., base forecast) is part of

the constraints. We show that the reconciled forecasts can be interpreted as the

combination of direct (base) and indirect forecasts, the latter ones depending on

the accounting relationships linking upper and bottom series.

3. We show that the LlCC approach (i.e., with exogenous constraints, but the result

holds in the endogenous case as well) does not guarantee the non-negativity of

the reconciled forecasts, that can be an issue in cases where non-negativity is a

natural attribute of the variables to be forecast (e.g., sales, tourism flows, etc.).

4. The new procedures, available in the R package FoReco (Girolimetto and Di Fonzo,

2023a), are used in two forecasting experiments on hierarchical datasets already

used in the forecasting literature (Wickramasuriya et al., 2019; Athanasopoulos

et al., 2020). In particular, the original results found by Hollyman et al. (2021) on

the classical Australian Tourism Demand (Visitor Nights) dataset are re-assessed

(i) using the relative accuracy indices for multiple comparisons recommended by

Davydenko and Fildes (2013), and (ii) taking into account the non-negativity

issues posed by the dataset at hand.

5. Finally, due to the crucial role played by the (possibly different) models used to

compute the base forecasts, the CCC reconciliation approach proposed by Holly-

man et al. (2021) (called CCCH in this chapter) is interpreted as a forecast pool-

ing strategy (Hendry and Clements, 2004; Marcellino, 2004; Geweke and Amisano,

2011; Kourentzes et al., 2019), and we show that the intuition behind the CCCH

strategy can be further improved by adopting a somehow less arbitrary simple

forecast averaging strategy.

The chapter is organized as follows. In Section 3.2 we set the notation, define the

forecast reconciliation problem, and show the Level-l Conditional Coherent forecast rec-

onciliation approach proposed by Hollyman et al. (2021). We re-interpret this procedure
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A B C D E

X Y

T

A B C D E

X Y

A B C D E

T

Figure 3.1: A three-level hierarchy (left), and its elementary hierarchies (right)

in terms of an optimization problem, with either exogenous (Section 3.3), or endogenous

(Section 3.4) constraints, which encompasses the forecast reconciliation procedure so far

as a particular case.

3.2 Problem definition and notation

Let us consider a linearly constrained multiple time series with a genuine hierarchical/-

grouped structure consisting of L > 0 levels above the bottom level. When L = 1 we

face an elementary hierarchy, formed by one top-level series and nb component bottom

time series (bts). In general, denote na the number of the upper time series (uts) in

a hierarchy, and nl the number of knots (series) of the generic level l of the series,

l = 1, . . . , L, with n1 = 1, and
L∑

l=1

nl = na.

Consider now the L hierarchical structures simply formed by the nb bts and the nl

upper time series (uts) of level l, l = 1, . . . , L. For example, the hierarchical series in

the left panel of Figure 3.1 (see Appendix 1 in Hollyman et al., 2021) consists of three

levels: the total series T at level 1, series X and Y at the intermediate level 2, and

the five bottom time series A,B,C,D,E, at the bottom level 3, with T = X + Y =

A+B+C+D+E, X = A+B, and Y = C+D+E. Such a series may be represented

in structural form as y = Sb, where

S =




1 1 1 1 1

1 1 0 0 0

0 0 1 1 1

I5




is a (8 × 5) cross-sectional summing matrix, y =
[
T X Y A B C D E

]′
, and b =

[
A B C D E

]′
.
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The main series y contains other two linearly constrained multiple time series, sharing

the same bts: y1 = S1b and y2 = S2b, with, respectively,

S1 =

[
1 1 1 1 1

I5

]
, y1 =

[
T A B C D E

]′

and

S2 =



1 1 0 0 0

0 0 1 1 1

I5


 , y2 =

[
X Y A B C D E

]′
.

Notice that the matrix S1 describes the elementary hierarchy formed by the top-level

and the bottom series, not considering the intermediate level l = 2, whereas S2 does not

correspond to a summing matrix of a standard structural representation of a hierarchi-

cal/grouped series, because a unique top level series is not present. In this latter case,

we may recognize two distinct elementary hierarchies (right panel of Figure 3.1): the

former valid for series X, re-interpreted as a ‘top level series’, and the latter for series

Y as well, respectively given by:



X

A

B


 =

[
1 1

I2

][
A

B

]
,




Y

C

D

E



=

[
1 1 1

I3

]


C

D

E


 .

Let C be the (3 × 5) cross-sectional (contemporaneous) aggregation matrix mapping

the five bts into the three uts of the multiple series, which is linked to the summing

matrix S by the relationship S =
[
C ′ I5

]′
. Matrix C consists of two sub-matrices Cl,

l = 1, 2:

C =



1 1 1 1 1

1 1 0 0 0

0 0 1 1 1


 C1 =

[
1 1 1 1 1

]
C2 =

[
1 1 0 0 0

0 0 1 1 1

]
.

The level-l constrained multiple time series may be thus represented as yl = Slb, l = 1, 2,

where the vector yl =

[
al

b

]
has dimension [(nl + nb)× 1], nl being the number of knots

(series) in the (nl × 1) vector of the level-l time series al (i.e., n1 = 1, and n2 = 2), and

Sl =
[
C ′

l Inb

]′
, l = 1, 2, has dimension [(nl + 5)× 5].

It should be added that, in order to develop the results that follow, the hierarchy has

to be balanced, that is, each ‘knot’ (series) at an upper level wrt the bottom one, must

have at least a ‘child’ series. A simple unbalanced three-level hierarchy is shown in the

left panel of Figure 3.2, where variable C has no ‘children’, and thus is considered as
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A B
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AA AB BA BB CA
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Figure 3.2: A simple unbalanced hierarchy (left) and its balanced version (right)

a bottom variable, at level three of the hierarchy. The right panel shows the ‘balanced

version’ of the same hierarchy, where CA = C, and thus variable C is (duplicated and)

present at both levels two and three. Possible duplication of some variables should be

conveniently accounted for, e.g. when evaluating the reconciled forecasts’ accuracy for

all the series in the hierarchy.

3.2.1 Notation

Let l, l = 1, . . . , L, the index associated to a generic level - above the bts level - of the

hierarchy/grouping which characterizes the multiple time series whose base forecasts

are wished to be reconciled, and assume that l = 1 denotes the top-level, consisting of

the total of the whole hierarchical/grouped system. Let y =
[
a′ b′

]′
be the (n × 1)

vector of target forecasts, formed by the (na × 1) vector a of upper time series (uts),

and by the (nb × 1) vector b of bottom time series (bts). Denote the base forecasts

vector ŷ =
[
â′ b̂′

]′
. In addition, decompose vector â into the sub-vectors forming each

of the upper L levels of the hierarchy/grouping: â =
[
â1 â′

2 . . . â′
L

]′
, where âl,

l = 1, . . . , L, has dimension (nl × 1).

Denote Cl the (nl × nb) matrix mapping the bts into the level-l uts (i.e., al = Clb).

The complete aggregation matrix C, mapping all the bts into the uts of all levels

l = 1, . . . , L, may be written as

C =




C1

C2

...

CL



, (3.1)

where the generic matrix Cl is (nl × nb), l = 1, . . . , L, and C1 = 1′
nb

is a (1 × nb) row

vector of ones (sum vector).



Chapter 3 - Forecast combination-based forecast reconciliation 85

3.2.2 Level-l Conditional Coherent (LlCC) reconciliation

The central core of the proposal by Hollyman et al. (2021) is a level conditional coherent

forecast reconciliation procedure which, for any level l of the hierarchy, transforms the

vector b̂ of unbiased base forecasts of the bts in unbiased reconciled forecasts b̃(l) coherent

with the base forecasts of the series at that specific level of the hierarchy. The exponent
(l) highlights that the base forecasts of the bts are transformed in such a way that

they are coherent with the base forecasts of the series at level l (or, equivalently, that

the reconciled forecasts are coherent conditional to the base forecasts of the series at

level l). A set of L reconciled forecasts, each conditional to the nl base forecasts of a

specific level-l, may thus be computed. When l = 1, i.e. the only upper level series

is the total aggregate at the top of the hierarchy, Hollyman et al. (2021) interpret this

procedure as a top down forecast reconciliation, as the conditioning top-level forecast

remains unchanged, just as it happens with the classical top-down reconciliation (Gross

and Sohl, 1990; Athanasopoulos et al., 2009). In the remaining cases (1 < l ≤ L), in

order to coherently adjust the whole vector of forecasts, the level conditional reconciled

forecasts are transformed through a middle-out reconciliation procedure, by simply pre-

multiplying the bts reconciled forecasts vector by the summing matrix S.

More precisely, denoting â1 and b̂ the base forecasts of, respectively, the total (top

level) and the nb bottom time series for a fixed forecast horizon, for a given (nb × 1)

vector p of combination weights, i.e. 0 < pi < 1,

nb∑

i=1

pi = 1, Hollyman et al. (2021)

show that the Level-1 Conditional Coherent (L1CC) bts reconciled forecasts are given

by

b̃
(1)
i = b̂i + pi

(
â1 −

nb∑

j=1

b̂j

)
, i = 1, . . . , nb, (3.2)

and the complete reconciled forecasts vector is given by ỹ(1) = Sb̃(1). Furthermore, by

re-stating expression (3.2) as

b̃
(1)
i = (1− pi)̂bi + pi

(
â1 −

nb∑

j=1, j ̸=i

b̂j

)
, i = 1, . . . , nb, (3.3)

the L1CC reconciled forecast (3.3) can be seen as the forecast combination of the direct

(base) forecast b̂i and of its indirect counterpart

(
â1 −

nb∑

j=1, j ̸=i

b̂j

)
, which is coherent

with the accounting constraint linking the total and the bottom time series, with weights

given by (1− pi) and pi, respectively.
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Expression (3.2) may be extended to any level l, 1 ≤ l ≤ L, as

b̃(l) = b̂+ Pl

(
âl −Clb̂

)
, l = 1, . . . , L, (3.4)

where Pl is the (nb × nl) matrix containing the combination weights of each forecast in

the nl elementary hierarchies linking each of the nl level-l series to their ‘afferent’ bts.

More precisely,

Pl =




pl,1 · · · 0
...

. . .
...

0 · · · pl,nl


 , l = 1, . . . , L, (3.5)

where each pl,j, l = 1, . . . , L, j = 1, . . . , nl, is a vector of weights between zero and one,

which sum up to one, with a number of elements equal to the bts contributing to the

upper level’s counterparts. For l = 1 Pl reduces to vector p, and it is easy to check that

ClPl = Inl
, l = 1, . . . , L. The algebra behind these results found by Hollyman et al.

(2021) is shown in detail in Appendix B.1. In addition, Hollyman et al. (2021) show

that, if the base forecasts are unbiased, the reconciled forecasts this way are unbiased

as well.

It should be noted that expression (3.2) is not guaranteed to produce non-negative

b̃
(1)
i : if the quantity (discrepancy)

(
â1 −

nb∑

j=1

b̂j

)
< 0, it may happen that the correction

to b̂i, equal to a share 0 < pi < 1 of the discrepancy, be larger in absolute value than the

base forecast to be adjusted, thus producing a negative reconciled forecast. In particular,

when the discrepancy is negative and b̂i ≤ 0, it is always b̃
(1)
i < 0. This could be

(counter-intuitive, and) ‘annoying’ when the variables of the hierarchy are intrinsically

non-negative (e.g., sales, tourism flows, etc.), and should be kept in mind by the analyst.

In the next two sections we provide a different, meaningful interpretation of expression

(3.2), by finding the general solution to the problem of deriving reconciled forecasts

according to a level conditional coherent procedure, with either exogenous or endogenous

constraints, which contains the forecast reconciliation procedure by Hollyman et al.

(2021) as a particular case.

3.3 LlCC reconciliation with exogenous constraints

Given a generic level l, reconciled forecasts coherent with the base forecasts of that level

can be obtained by solving the following linearly constrained quadratic minimization

problem:

b̃
(l)
LlCC = argmin

b

(
b− b̂

)′
W−1

b

(
b− b̂

)
s.t. Clb = âl, l = 1, . . . , L, (3.6)
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where Wb is a (nb × nb) p.d. matrix, and vector âl defines the known constant part

of the exact linear inhomogeneous constraints Clb = âl, exogenously given by the the

base forecasts of the upper time series at level l of the hierarchy. The solution is given

by (Appendix B.2):

b̃
(l)
LlCC = b̂+WbC

′
l (ClWbC

′
l)

−1
(
âl −Clb̂

)
, l = 1, . . . , L, (3.7)

that is b̃
(l)
LlCC = Llâl + (ClWbC

′
l)

−1
b̂, with Ll = WbC

′
l (ClWbC

′
l)

−1.

It is worth noting that formula (3.7) is a well known expression in the field of the least

squares adjustment of noisy data while fulfilling an aggregation - either cross-sectional

or temporal - constraint (Stone et al., 1942; Denton, 1971; Chow and Lin, 1971; Byron,

1978). Put simply, the reconciliation formula (3.7) ‘adjusts’ the bts base forecasts with

a linear combination - according to the smoothing matrix Ll - of the level-l coherency

errors
(
âl −Clb̂

)
.

Matrix Wb plays a crucial role in the LlCC reconciliation formula. From a mathe-

matical point of view, it is the associated matrix in the quadratic objective function of

problem (3.6). From a statistical point of view, Wb is usually seen as the forecast error

covariance matrix, whose evaluation/approximation is based either on simple assump-

tions of independence between different forecasts, which results in a diagonalWb matrix,

or on using the in-sample errors of the models used to compute the base forecasts (see

Wickramasuriya et al., 2019; Nystrup et al., 2020 and Chapter 1, for alternative choices,

respectively, in the cross-sectional, temporal, and cross-temporal forecast reconciliation

frameworks).

Expression (3.7) is equivalent to formula (3.4) when we assume a diagonal bts forecast

error covariance matrix, where the variances on the diagonal are equal to the reciprocal

of the combination weights:

Wb =




σ2
1 · · · 0
...

. . .
...

0 · · · σ2
nb


 =




1

p1
· · · 0

...
. . .

...

0 · · · 1

pnb



= [diag (p)]−1 . (3.8)

In other terms, the LlCC reconciliation formula (3.4) by Hollyman et al. (2021) may

be interpreted as the solution to a linearly constrained minimization of a quadratic

form with the associated diagonal matrix (3.8). Hollyman et al. (2021) show that

the diagonal pattern of matrix Wb is consistent with the usual practice in forecast

combination of discarding possible covariances between the forecasts to be combined

(Bates and Granger, 1969). It should be noted that nothing prevents us to consider a

full, instead of diagonal, Wb matrix. Obviously, this would pose non trivial estimation
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RECONCILIATION STEPS

Upper Level Conditional Coherent reconciliation Bottom up

â1
↓ · · · âl

↓ · · · âL

↓
b̂ → L1CC

↓ · · · b̂ → LlCC

↓ · · · b̂ → LLCC

↓[
â1
b̃(1)

]

↓
· · ·

[
âl

b̃(l)

]

↓
· · ·

[
âL

b̃(L)

]

↓
ỹ(1) = Sb̃(1) · · · ỹ(l) = Sb̃(l) · · · ỹ(L) = Sb̃(L) ỹ(L+1) = Sb̂

⇓

ỹCCC =
1

L+ 1

L+1∑

l=1

ỹ(l)

Figure 3.3: CCC: Combined Conditional Coherent forecast reconciliation pro-
cedure with the same bts base forecasts b̂

issues, which may benefit of possibly available forecast error estimates, either from in-

sample residuals or out-of-sample forecast errors in validation sets. In this chapter

we adopt the choice by Hollyman et al. (2021) of using a simple formulation of Wb,

consisting of the diagonal matrix of the observed variability of the bottom time series

in the training set used to estimate the base forecasts, but we think that this issue is

worth considering in future research on this topic.

3.3.1 Combined Conditional Coherent (CCC) reconciliation

For any fixed level l, the complete vector of LlCC reconciled forecasts may be computed

as

ỹ(l) = Sb̃(l), l = 1, . . . , L. (3.9)

For l = 1, expression (3.9) returns reconciled forecasts obtained by summing-up the

L1CC bts reconciled forecasts b̃(1). In the remaining cases (1 < l ≤ L), each complete

vector of LlCC reconciled forecasts is the result of a middle-out reconciliation procedure

applied to the LlCC bts reconciled forecasts. Finally, taking inspiration from Hollyman

et al. (2021), the bottom-up reconciled forecasts may be considered as the reconciled

forecasts coherent with the bottom level of the hierarchy (l = L + 1)1: ỹ(L+1) = Sb̂.

These L + 1 vectors contain different and coherent forecasts, so that any convex linear

1As we will discuss in Section 3.5.1, the empirical application of Hollyman et al. (2021) makes use
of two different base forecasts when performing the LlCC and the bottom-up reconciliation steps,
respectively.
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combination of the form

ỹω =
L+1∑

l=1

ωlỹ
(l) = S

L+1∑

l=1

ωlb̃
(l) = Sb̃ω,

where b̃ω =
L+1∑

l=1

ωlb̃
(l), with 0 ≤ ωl ≤ 1,

L+1∑

l=1

ωl = 1, is coherent as well. Combined Con-

ditional Coherent (CCC) forecasts are calculated by using equal weights, which means

to combine the L+ 1 reconciled forecasts through the simple average (see Figure 3.3)

ỹCCC =
1

L+ 1

L+1∑

l=1

ỹ(l). (3.10)

From the scheme in Figure 3.3 it appears that the LlCC steps are logically different

from the bottom-up one. In the former case, base forecasts of both upper series (part of

them at each step) and bottom series, are combined through the optimization mechanism

described above, while in the latter no upper time series base forecasts are used. Thus,

it seems rather sensible also considering a variant of the CCC procedure, called LCC,

which discards the bottom-up forecasts from the average:

ỹLCC =
1

L

L∑

l=1

ỹ(l). (3.11)

3.3.2 Some examples

Level 1 Conditional Coherent (L1CC) reconciliation

Consider l = 1, and let Wb be defined as in (3.8). Since C1 = 1′
nb
, it is immediately

recognized thatWbC
′
1 =

[
σ2
1 . . . σ

2
i . . . σ

2
nb

]′
, and C1WbC

′
1 =

nb∑

j=1

σ2
j . The generic item

of the vector obtained through the reconciliation formula (3.7) is thus given by:

b̃
(1)
i = b̂i +

σ2
i

nb∑

j=1

σ2
j

(
â1 −

nb∑

j=1

b̂j

)
, i = 1, . . . , nb,

that is

b̃
(1)
i =




nb∑

j=1, j ̸=i

σ2
j

nb∑

j=1

σ2
j



b̂i +

σ2
i

nb∑

j=1

σ2
j

(
â1 −

nb∑

j=1, j ̸=i

b̂j

)
, i = 1, . . . , nb,

which corresponds to equation (3.3).
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CCC reconciliation in a three-level hierarchy

When a level l > 1 is considered, again with a diagonal Wb, the scalar expressions of

the LlCC reconciled forecasts are more complex. Nevertheless, starting from the simple

hierarchy in Figure 3.1 (which corresponds to the example 2 in Hollyman et al., 2021),

we can easily interpret the final result. In this case it is easy to check that

WbC
′
2 =




σ2
A 0

σ2
B 0

0 σ2
C

0 σ2
D

0 σ2
E




and C2WbC
′
2 =

[
σ2
A + σ2

B 0

0 σ2
C + σ2

D + σ2
E

]
,

from which we obtain

b̃
(2)
i =





b̂i +
σ2
i

σ2
A + σ2

B

(
âX − b̂A − b̂B

)
i = A,B

b̂i +
σ2
i

σ2
C + σ2

D + σ2
E

(
âY − b̂C − b̂D − b̂E

)
i = C,D,E

,

where âX and âY denote the base forecasts of X and Y , respectively. In other words,

level 2, consisting of series X and Y , is ‘decomposed’ in two elementary hierarchies, each

consisting in a single aggregated series belonging to that level, and in the corresponding

bts. Then, a L1CC forecast reconciliation procedure is applied to each elementary

hierarchy.

The whole reconciliation is obtained by summing-up the reconciled forecasts of the

bts (and thus the final result should be viewed as a middle-out forecast reconciliation):

ã
(2)
T = âX + âY = b̃

(2)
A + b̃

(2)
B + b̃

(2)
C + b̃

(2)
D + b̃

(2)
E .

Notice that in general ã
(2)
T ̸= âT , and likewise all the reconciled forecasts this way are

different from those obtained if we consider the reconciliation conditional to level 1 (that

is, to the base forecast of the top-level series, âT ). As for the CCC reconciled forecasts,

by using expression (3.10) we get:

ãT,CCC =
1

3

(
ã
(1)
T + ã

(2)
T + ã

(3)
T

)
=

1

3

(
âT + âX + âY︸ ︷︷ ︸

ã
(2)
T

+ b̂A + b̂B + b̂C + b̂D + b̂E︸ ︷︷ ︸
ã
(3)
T

)

ãX,CCC =
1

3

(
ã
(1)
X + ã

(2)
X + ã

(3)
X

)
=

1

3

(
b̃
(1)
A + b̃

(1)
B︸ ︷︷ ︸

ã
(1)
X

+âX + b̂A + b̂B︸ ︷︷ ︸
ã
(3)
X

)

ãY,CCC =
1

3

(
ã
(1)
Y + ã

(2)
Y + ã

(3)
Y

)
=

1

3

(
b̃
(1)
C + b̃

(1)
D + b̃

(1)
E︸ ︷︷ ︸

ã
(1)
Y

+âY + b̂C + b̂D + b̂E︸ ︷︷ ︸
ã
(3)
Y

)

b̃A,CCC =
1

3

(
b̃
(1)
A + b̃

(2)
A + b̂A

)
, b̃B,CCC =

1

3

(
b̃
(1)
B + b̃

(2)
B + b̂B

)
,
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b̃C,CCC =
1

3

(
b̃
(1)
C + b̃

(2)
C + b̂C

)
, b̃D,CCC =

1

3

(
b̃
(1)
D + b̃

(2)
D + b̂D

)
,

b̃E,CCC =
1

3

(
b̃
(1)
E + b̃

(2)
E + b̂E

)
.

It is worth noting that the top-level CCC reconciled forecast, ãT,CCC , is given by the

simple average of the direct base forecast âT , and of the two indirect forecasts obtained

by summing the base forecasts at the intermediate (ã
(2)
T = âX + âY ), and at the bottom

(ã
(3)
T = b̂A + b̂B + b̂C + b̂D + b̂E) levels, respectively, without any use of the uncertainty

associated to the bts base forecasts. This information is instead taken into account

when computing the CCC reconciled forecasts of variables X and Y , through the L1CC

reconciled forecasts b̃(1) =
[
b̃
(1)
A b̃

(1)
B b̃

(1)
C b̃

(1)
D b̃

(1)
E

]′
.

3.4 LlCC reconciliation with endogenous constraints

In summary, the approach by Hollyman et al. (2021) consists in (i) decomposing the

hierarchical/grouped structure in a sequence of elementary hierarchies, and (ii) for each

elementary hierarchy, the bts base forecasts are reconciled according to a level condi-

tional coherent procedure with exogenous constraints. Furthermore, in the approach

suggested by Hollyman et al. (2021), only weights given by the variances of the base

forecasts are considered, discarding - as it is often found in the forecast combination

literature (Bates and Granger, 1969) - the covariances between couples of forecasts.

In the following we broaden the perspective, by relaxing the assumption of exoge-

nous constraints in the optimization program (3.6). We consider a level conditional

reconciliation procedure with exact linear homogeneous constraints, which means that

level-l reconciled forecasts are computed by transforming the base forecasts looking for

internal coherency of the targets al and b, without imposing the external constraint of

the uts base forecasts, as in the approach described in Section 3.3. We thus qualify this

approach as endogenous.

Denote with yl =
[
a′
l b′

]′
the [(nb + nl)× 1] vector of the target forecasts of the

level-l series, al, and of the bts, b. The corresponding base forecasts form the vector

ŷl =
[
âl b̂

]′
. Let Ul = [Inl

−Cl] be the [nl × (nb + nl)] matrix of the homogeneous

constraints valid for the level-l series:

U ′
lyl = 0nl

, l = 1, . . . , L.

Notice that in this case, unlike the procedure by Hollyman et al. (2021), the uts forecasts

al are themselves object of the reconciliation process. In order for this may to happen,

we need to have weights for the base forecasts of the aggregated series. Thus, let Wl

be the [(nl + nb)× (nl + nb))] matrix (assumed diagonal) containing the variances of
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the nl + nb base forecasts to be reconciled in coherence with the linear aggregation

relationships between the bts and the level-l aggregated series. In this case the nl + nb

level-l reconciled forecasts are given by (Chapter 1):

ỹl = Mlŷ, with Ml = Inl+nb
−WlUl (U

′
lWlUl)

−1
U ′

l , l = 1, . . . , L. (3.12)

In order to express the complete (n × 1) vector of reconciled forecasts ỹ
(l)
en , where the

superscript (l) stands for the level at which the reconciliation is performed, and the

subscript ‘en’ stands for ‘endogenously constrained’, it is sufficient to apply the structural

sum matrix S to the vector formed by the bottom nb items of vector ỹl, that is the

vector b̃
(l)
en of the bts reconciled forecasts2: ỹ

(l)
en = Sb̃

(l)
en , l = 1, . . . , L. The CCC and

LCC approaches with endogenous constraints can thus be expressed as with formulae

(3.10) and (3.11), respectively:

ỹCCCen
=

1

L+ 1

L+1∑

l=1

ỹ(l)
en , ỹLCCen

=
1

L

L∑

l=1

ỹ(l)
en , (3.13)

where ỹ
(L+1)
en = Sb̂ is the vector of the bottom-up forecasts3.

It is instructive to consider what happens when reconciliating a very simple hierarchy

of 3 series, with T = X + Y . In this case l = 1, nl = 1, nb = 2,

W1 =



σ2
T 0 0

0 σ2
X 0

0 0 σ2
Y


 , U ′

1 =
[
1 −1 −1

]
, W1U1 =



σ2
T

−σ2
X

−σ2
Y


 ,

and U ′
1W1U1 = σ2

T + σ2
X + σ2

Y . After a bit of algebra, it is found that the reconciled

forecasts are given by:

T̃en = T̂ − σ2
T

σ2
T + σ2

X + σ2
Y

(
T̂ − X̂ − Ŷ

)
,

X̃en = X̂ +
σ2
X

σ2
T + σ2

X + σ2
Y

(
T̂ − X̂ − Ŷ

)
,

Ỹen = Ŷ +
σ2
Y

σ2
T + σ2

X + σ2
Y

(
T̂ − X̂ − Ŷ

)
.

This result has the usual ‘linearly constrained least squares adjustment of noisy data’

interpretation (Stone et al., 1942; Byron, 1978), where the reconciled forecast is given

by the algebraic sum of the base forecast and of a share of the discrepancy observed

2Formally, let J ′

l =
[
0nb×nl

Inb

]
be the [nb × (nl + nb)] matrix that ‘extracts’ the last nb rows from

a [(nl + nb)× 1] vector, it is b̃
(l)
en = J ′

l ỹl, l = 1, . . . , L.
3We thank a reviewer for having pointed out that, in an elementary hierarchy, L1CCen and the optimal
combination forecast reconciliation approach coincide, provided the same error covariance matrix is
used. However, in a generic hierarchy, with intermediate levels between the top and bottom ones,
optimal combination forecast reconciliation approaches give in general different reconciled forecasts
from LCCen and CCCen.
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in the base forecasts, where the share is proportional to the variance (uncertainty) of

the forecast. Furthermore, in this case too it is possible to give the expressions above

a forecast combination interpretation. For, each reconciled forecast, at both upper and

bottom level, can be written as the combination of the ‘direct’ (i.e., base) forecast, and

the ‘indirect’ (i.e., implicitly obtained using the accounting relationships) one:

T̃en =

(
σ2
X + σ2

Y

σ2
T + σ2

X + σ2
Y

)
T̂ +

(
σ2
T

σ2
T + σ2

X + σ2
Y

)(
X̂ + Ŷ

)
,

X̃en =

(
σ2
T + σ2

Y

σ2
T + σ2

X + σ2
Y

)
X̂ +

(
σ2
X

σ2
T + σ2

X + σ2
Y

)(
T̂ − Ŷ

)
,

Ỹen =

(
σ2
T + σ2

X

σ2
T + σ2

X + σ2
Y

)
Ŷ +

(
σ2
Y

σ2
T + σ2

X + σ2
Y

)(
T̂ − X̂

)
.

However, unlike what happens in the LlCC forecast reconciliation with exogenous con-

straints, in this case all the base forecasts are ‘revised’ in view of all the variances, not

only the bts ones. This can be appreciated by looking at the reconciliation formulae in

the exogenous (L1CC) case - that can be obtained also by rearranging expression (16)

in Hollyman et al. (2021, p. 154) -, where σ2
T is not involved, and the top-level series

base forecast T̂ is not adjusted:

T̃L1CC = T̂ ,

X̃L1CC =
σ2
Y

σ2
X + σ2

Y

X̂ +
σ2
X

σ2
X + σ2

Y

(
T̂ − Ŷ

)
,

ỸL1CC =
σ2
X

σ2
X + σ2

Y

Ŷ +
σ2
Y

σ2
X + σ2

Y

(
T̂ − X̂

)
.

The development of an analogous result for the toy example considered in Figure 3.1,

can be found in Appendix B.3 .

3.5 Empirical applications

To evaluate in a fair setting the performance of various cross-sectional forecast combina-

tion based point forecast reconciliation approaches vis-à-vis the state-of-the-art proce-

dures, in this section we consider two forecasting experiments on datasets already used

in the hierarchical forecasting literature:

• the monthly time series of the Australian Tourism Flows disaggregated by geo-

graphic divisions and purpose of travel, firstly studied by Wickramasuriya et al.

(2019), and used by Hollyman et al. (2021) to evaluate their forecast combination

based forecast reconciliation approaches;

• the quarterly time series of the Australian Gross Domestic Product (GDP ) from

Income and Expenditure sides (Athanasopoulos et al., 2020).
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Thanks to the data and codes made available by the previously cited authors, in both

cases we have successfully replicated their results, and then we have re-analyzed the

datasets using our newly proposed methods, in line with the need for reproducibility

and replicability in forecasting research (Hyndman, 2010; Boylan et al., 2015; Makridakis

et al., 2018) to ensure good science based on truthful claims, and as a driver of further

discovery and innovation (Baker et al., 2020).

3.5.1 Monthly Australian Tourism Demand reconciliation

We reprise and extend the forecasting experiment performed by Hollyman et al. (2021)

on the Australian Tourism Demand dataset. We start by (i) re-assessing the results

found by Hollyman et al. (2021) using the forecast accuracy evaluation approach rec-

ommended by Davydenko and Fildes (2013), and (ii) considering some non-negativity

issues that emerge during both the base forecasting and the reconciliation phases of the

analysis. On this latter point we note that, with the notable exceptions of Wickrama-

suriya et al. (2020) and Kourentzes and Athanasopoulos (2021), this issue is generally

overlooked in the forecast reconciliation literature, even though it has not irrelevant

implications as for the interpretation of the results (e.g., a negative forecast for tourism

demand makes no sense). Possible, though not fully convincing, motivations for this

are that, on the practical side, adopting non-negative forecast reconciliation procedures

is perceived as computation burdensome, and on the theoretical side, assuring non-

negativity does not preserve unbiasedness in the final non-negative reconciled forecasts

(Ben Taieb and Koo, 2019; Wickramasuriya et al., 2020; Wickramasuriya, 2021).

Performance measures for multiple comparisons

We evaluate the performance of multiple (say, J > 1) forecast reconciliation approaches

through accuracy indices calculated on the forecast error

êji,h,t = yi,t+h − ŷji,h,t, i = 1, . . . , 525, h = 1, . . . , 12, j = 0, . . . , J, t = 1, . . . , qh,

where y and ŷ are the observed and forecast values, respectively, i denotes the series

(i = 1, . . . , 221, for the uts, i = 222, . . . , 525, for the bts), h denotes the forecast

horizon, t is the forecast origin (t = 1 corresponds to 2005:12, q1 = 132, . . . , q12 = 121),

and j = 0 denotes the automatic ETS base forecasts. The accuracy across multiple

series and forecast horizons is evaluated following Davydenko and Fildes (2013) (see

also Athanasopoulos and Kourentzes, 2022), who recommend the use of a metric based

on aggregating performance ratios across time series using the weighted geometric mean.

We consider both the Average Relative Mean Absolute Error (AvgRelMAE), and the

Average Relative Mean Square Error (AvgRelMSE), obtained by transforming MAE and

MSE index, respectively. As the conclusions drawn from both indices are basically the
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same, for space reason in the rest of the chapter we comment only on the AvgRelMSE

index4.

For a fixed series i, forecast origin h, and approach j, the MSE index is given by the

average across all qh forecast origins of the squared forecast errors:

MSEj
i,h =

1

qh

qh∑

t=1

(
êji,h,t

)2
, i = 1, . . . , 525, h = 1, . . . , 12, j = 0, . . . , J. (3.14)

The AvgRelMSE of a forecasting approach for a given horizon is the geometric mean

across all 525 series of the MSE ratio over a benchmark given by the base, incoherent

ETS forecasts:

AvgRelMSEj
h =

(
525∏

i=1

rMSEj
i,h

) 1
525

, h = 1, . . . , 12, j = 0, . . . , J, (3.15)

where rMSEj
i,h =

MSEj
i,h

MSE0
i,h

is the relative MSE. If a forecast outperforms the base fore-

casts, then the AvgRelMSE becomes smaller than one and vice-versa, and the percentage

improvement in accuracy over the benchmark can be calculated as
(
1− AvgRelMSEj

h

)
×

100. Expression (3.15), which refers to all 525 time series, can be re-stated for (i) groups

of variables (e.g., bts and uts), and (ii) multiple forecast horizons (e.g., h = 1:6, h =

1:12).

Furthermore, we use the non-parametric Friedman and the post-hoc ‘Multiple Com-

parison with the Best’ (MCB) Nemenyi tests (Koning et al., 2005; Kourentzes and

Athanasopoulos, 2019; Makridakis et al., 2022) to establish if the forecasting perfor-

mances of the considered approaches are significantly different.

The data and the original forecasting experiment of Hollyman et al. (2021)

We consider 228 monthly observations (Jan 1998 - Dec 2016) of the Australian touris-

tic flows (Visitor Nights) measured by the public project “National Visitor Survey”

(Wickramasuriya et al., 2019). The time series dataset, called VN525, consists in a

grouped time series obtained by combination of a hierarchy by geographical division

(destination) with a classification by Purpose of Travel (PoT). The Australian total is

thus disaggregated by States (7), Zones (27), and Regions (76). Nominally, the geo-

graphic hierarchy comprises 111 destinations. However, since 6 Zones consist of a single

Region, the non-redundant knots of the hierarchy are 105 instead of 111. Thus, we

face an ‘unbalanced hierarchy’ (see sec. 3.2). As PoT can assume 4 different values:

holiday (Hol), visiting friends and relatives (Vis), business (Bus), and other (Oth), in

the grouped series obtained by crossing geographic divisions and PoT, 24 knots (6 Zones

4The interested reader may find all the tables and graphs based on the AvgRelMAE index in the online
appendix.
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with a single region by each PoT category) are redundant. The 304 most disaggregated

variables, when combined according to the considered classifications, and discarding the

duplications, produce 221 upper time series. In summary, the dataset comprises 8 levels,

with 304 bottom time series, and 221 upper time series (525 unique time series in all)5.

Hollyman et al. (2021) have performed a rolling forecast experiment with fixed length

(96 months) window, producing base forecasts with forecast horizons varying from 1 to

12 months. Exponential Smoothing models (ETS, Hyndman, 2008) have been used to

compute the base forecasts of the 525 series according to the automatic default of the

R package forecast (Hyndman et al., 2023)6. Hollyman et al. (2021) claim that, in

agreement with Wickramasuriya et al. (2019), ETS models produce “substantially more

accurate base forecasts than ARIMA based models in this setting, therefore presenting

a more challenging environment for forecast combination techniques we consider”. We

basically agree on this point, stressing however that the intrinsic non-negative nature

of the variables under analysis would have been better taken into account by modeling

the log-transformed data, possibly adopting the same strategy as in Wickramasuriya

et al. (2020) for dealing with the null values present in the observations. Anyway, the

focus of the chapter being on the insights of the proposal by Hollyman et al. (2021),

and the potential of the new reconciliation approach, we decided to continue using base

forecasts obtained by ETS models in the level of the variables, limiting ourselves to

recognize and quantitatively assess the problem during the base forecasting phase of

the experiment, postponing the non-negativity issues to the reconciliation phase, where

possibly negative base forecasts will be reconciled through effective non-negative linearly

constrained least squares procedures (Stellato et al., 2023, 2020; Wickramasuriya et al.,

2020; Hyndman et al., 2022; Girolimetto and Di Fonzo, 2023a).

Besides the (incoherent) base forecasts, Hollyman et al. (2021) have considered the

reconciled forecasts produced by the following approaches7:

• Bottom Up (BU): forecasts obtained by simple summation of the automatic ETS

base forecasts for the 304 most disaggregate series.

• Level 1 Coherent Combination (L1CC): coherent forecasts with the base forecast

of the top-level of the hierarchy (Total Australia), computed using expression (3.2).

5Details can be found in the online appendix.
6We acknowledge Ross Hollyman, who kindly made us available the Python scripts used in Holly-
man et al. (2021), thus allowing us to fully reproduce their results through the R package FoReco

(Girolimetto and Di Fonzo, 2023a).
7For homogeneity, we use the labels of the reconciliation approaches adopted in the rest of the chapter.
The correspondence with those originally used by Hollyman et al. (2021) is as follows: L1CC ≡ TD,
wls ≡ WLSv, shr ≡ MinTShrink, and CCCH ≡ CCC.
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RECONCILIATION STEPS

Upper Level Conditional Coherent reconciliation Bottom up

â1
↓ · · · âl

↓ · · · âL

↓
b̂SA → L1CC

↓ · · · b̂SA → LlCC

↓ · · · b̂SA → LLCC

↓[
â1
b̃
(1)
SA

]

↓
· · ·

[
âl

b̃
(l)
SA

]

↓
· · ·

[
âL

b̃
(L)
SA

]

↓
ỹ
(1)
SA = Sb̃

(1)
SA · · · ỹ

(l)
SA = Sb̃

(l)
SA · · · ỹ

(L)
SA = Sb̃

(L)
SA ỹ(L+1) = Sb̂

⇓

ỹCCCH
=

1

L+ 1

(
L∑

l=1

ỹ
(l)
SA + ỹ(L+1)

)

Figure 3.4: CCCH : Combined Conditional Coherent forecast reconciliation
procedure according to Hollyman et al. (2021). In the Upper Level Conditional

Coherent reconciliation steps the base forecasts b̂SA are used, while in the bottom-
up reconciliation b̂ (automatic ETS) is used.

• Top Down Historical Proportions (TDHP): forecasts obtained through a top-

down reconciliation procedure using the “HP2” approach of Athanasopoulos et al.

(2009), where the historical proportions disaggregation coefficients are computed

on monthly basis.

• OLS: the original forecast reconciliation model of Hyndman et al. (2011), which

assumes that the base forecasts are uncorrelated and identically distributed. It

can be seen as a particular case of the Minimum Trace reconciliation approach of

Wickramasuriya et al. (2019).

• wls: like OLS, with the error variances of each series taken into account; the

forecast errors are assumed to be uncorrelated but heteroskedastic (Hyndman

et al., 2016).

• shr: the Minimum Trace optimal approach of Wickramasuriya et al. (2019) based

on a shrinkage estimator of the covariance matrix of forecast errors.

• CCCH : an equally weighted average of the reconciled forecasts derived from the 8

levels of the VN525 hierarchy. Unlike the CCC approach described in Figure 3.3,

Hollyman et al. (2021) use different bottom time series base forecasts. The ETS

forecasts (b̂) are used in the bottom-up step, while seasonal averages of the obser-

vations (b̂SA) are used in the other reconciliation steps (see Figure 3.4, details in

Hollyman et al., 2021). A comment on this approach can be found in Section 3.5.1.
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In most replications of both base forecasting and reconciliation phases of the exper-

iment, negative forecasts have been produced. In 114 out of 132 replications of the

experiment, and for a maximum of 8 series in the same replication, at least one au-

tomatic ETS base forecast was negative. The reconciliation phase seems to somehow

worsen this issue: the OLS approach always produces a few negative reconciled forecasts

(ranging from 15 to 119 series at each replication), while this phenomenon, though still

not negligible, is less present in the remaining cases. It is worth noting that the L1CC

approach gives negative forecasts in more than 63% of the replications (84 out of 132),

up to a maximum of about 9% of series (47 out of 525). As expected, negative forecasts

are mostly present at the most disaggregate level (L8: Regions by PoT), with a less

pronounced intensity of the phenomenon for the upper levels of the hierarchy (details

can be found in the online appendix). In order to guarantee comparability with the

results of Hollyman et al. (2021), Table 3.1 shows the AvgRelMSE’s for the approaches

considered in their paper, without any treatment of the negative values produced by

the forecasting experiment.

Rather than considering all the 8 levels of the hierarchy8, we present a more aggre-

gated articulation of the results, by keeping distinct only all, upper, and bottom time

series. The AvgRelMSE accuracy indices confirm the good performance of the CCCH

approach, as stated by Hollyman et al. (2021). However, it should be noted that CCCH

makes use of two different bts base forecasts (automatic ETS and Seasonal Averages),

with the risk of an unfair comparison with wls and shr: we will come back on this

point later. We add that the overview of the accuracy results does not change when

non-negative reconciliation is performed. In fact, the results obtained by using the non-

negative reconciliation facilities of the R package FoReco (Girolimetto and Di Fonzo,

2023a; see also Wickramasuriya et al., 2020, and Hyndman et al., 2022), not reported

for space reasons but available in the online appendix, show that the overall accuracy

slightly improves, mainly due to the benefit gained by the forecasts of the many in-

termittent series at the most disaggregated level, whose unconstrained forecasts often

presented negative values. For this reason, and to deal with a more realistic operational

context, the extended analysis in the following subsection will be performed by always

considering the non-negative variant of the considered forecast reconciliation procedures.

In addition, due to their poor performance, and in order to set a more challenging

empirical comparison, in the following we will not consider OLS and TDHP approaches

8The detailed results for all levels, here not presented for space reasons, are available in the online
appendix.
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Forecast horizon
Approach 1 2 3 6 12 1:6 1:12

all (525 series)
BU 0.9974 0.99342 0.9924 0.9976 1.0010 0.9956 0.9985
L1CC 1.0032 1.0041 1.0031 0.9966 0.9797 1.0004 0.9935
TDHP 1.0055 1.0070 1.0059 0.9980 0.9785 1.0027 0.9944
OLS 1.0740 1.0748 1.0781 1.0730 1.0991 1.0757 1.0790
wls 0.9806 0.9805 0.9809 0.9816 0.9837 0.9809 0.9818
shr 0.9745 0.9761 0.9760 0.9758 0.9783 0.9757 0.9763
CCCH 0.9764 0.9765 0.9759 0.9726 0.9664 0.9743 0.9713

upper time series (221 series)
BU 0.9939 0.9863 0.9821 0.9943 1.0024 0.9897 0.9965
L1CC 0.9769 0.9790 0.9782 0.9753 0.9548 0.9765 0.9705
TDHP 0.9801 0.9826 0.9815 0.9768 0.9529 0.9792 0.9714
OLS 0.9997 0.9984 1.0025 0.9986 1.0141 1.0000 1.0015
wls 0.9614 0.9595 0.9595 0.9626 0.9676 0.9609 0.9633
shr 0.9537 0.9542 0.9534 0.9554 0.9609 0.9545 0.9563
CCCH 0.9476 0.9476 0.9470 0.9486 0.9451 0.9471 0.9468

bottom time series (304 series)
BU 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
L1CC 1.0227 1.0227 1.0217 1.0124 0.9982 1.0181 1.0105
TDHP 1.0244 1.0251 1.0240 1.0138 0.9976 1.0201 1.0115
OLS 1.1315 1.1339 1.1366 1.1306 1.1653 1.1343 1.1390
wls 0.9948 0.9960 0.9966 0.9956 0.9955 0.9957 0.9955
shr 0.9899 0.9923 0.9927 0.9909 0.9912 0.9914 0.9910
CCCH 0.9978 0.9981 0.9974 0.9905 0.9821 0.9946 0.9896

Table 3.1: Monthly forecasts reconciliation in the forecasting experiment on
the Australian tourism dataset: AvgRelMSE of the approaches considered by
Hollyman et al. (2021). Approach TDHP apart, some reconciled forecasts are
negative. Bold entries identify the best performing approaches. Approaches per-
forming worse than base forecasts are highlighted in red.

any more, while the L1CC approach will be only considered as one of the constituent

parts of LCC and CCC approaches.

Forecast combination based forecast reconciliation using the same bts base

forecasts

From Figure 3.4, which simply adapts the LCC and CCC reconciliation scheme in

Figure 3.3, it appears that CCCH approach is using two different bts base forecasts:

in the Upper Level Conditional Coherent reconciliation steps, b̂SA is used, while in the

bottom-up reconciliation b̂ (more precisely, b̂ETS) is used. It must be added that no

particular saving of time is obtained by proceeding this way, since ETS base forecasts

of all time series (both upper and bottom) are however calculated (and used). Rather,

according to CCCH the base forecasts to be used in each step are de-facto appropriately

chosen.

In the light of above, we think that if one wishes to exploit both type of bts base

forecasts, a sensible starting point would be considering the ‘Seasonal-Averages-based’



100 Section 3.5 - Empirical applications

LCC and CCC reconciled forecasts as well, obtained by simply substituting b̂ with b̂SA

in the scheme of Figure 3.3. Denoting with ỹ
(l)
SA = Sb̃

(l)
SA, l = 1, . . . , L, the LlCC recon-

ciled forecasts using the seasonal averages as bts base forecasts, and with ỹ
(L+1)
SA = Sb̂SA

the corresponding bottom-up reconciled forecasts9, we obtain the ‘SA’ counterparts of

the ‘ETS-base-forecasts-based’ reconciliation approaches described in Figure 3.3:

ỹLCCSA
=

1

L

L∑

l=1

ỹ
(l)
SA, ỹCCCSA

=
1

L+ 1

L+1∑

l=1

ỹ
(l)
SA. (3.16)

In both cases, the benefit of the forecast combination based forecast reconciliation ap-

proaches LCC and CCC is clearly visible: on average across series and forecast horizons,

LCCSA reconciled forecasts are always the best performing ones when the seasonal av-

erages are used as bts base forecasts (Table 3.2), while when using automatic ETS base

forecasts, LCCETS scores best for all and uts series, while CCCETS ‘wins’ at the most

disaggregated level (Table 3.3).

It must be added that overall the ETS-based LCCETS and CCCETS reconciliation

perform better than using SA, particularly at the most disaggregated level (Region by

PoT, i.e. bts), where the AvgRelMSE’s are always less than one, unlike what happens

for their SA-based counterparts, which show a stable decrease (AvgRelMSE > 1) of the

forecast accuracy as compared to the benchmark.

To conclude on this point, we think that a ‘fair’ comparison of the LCCSA/LCCETS

and CCCSA/CCCETS approaches with the optimal combination forecast reconciliation

procedures wls and shr, may be established by considering the latter procedures when

using either ‘SA’ or ‘ETS’ bts base forecasts. We call these specifications wlsSA/wlsETS,

and shrSA/shrETS, respectively, which will be considered in the next sub-section.

Forecast averaging vs. pooling of reconciled forecasts

A simple, natural way to exploit the features of different bts base forecasts consists in

considering a reconciled vector of forecasts obtained by averaging each approach using

the bts base forecasts from both models (SA and ETS). This means to consider the

vector of averaged forecasts (Abouarghoub et al., 2018; Spiliotis et al., 2019)

ỹrec =
ỹrecSA

+ ỹrecETS

2
, rec = wls, shr, CCC,LCC,CCCen, LCCen. (3.17)

Coherently with this framework, the CCCH approach can be seen as the forecast com-

bination of the 2(L+1) forecasts ỹ
(l)
ETS and ỹ

(l)
SA, l = 1, . . . , L+1, where the L forecasts’

9When the seasonal averages of the training dataset are used as bts base forecasts, the bottom-up
reconciled uts forecasts are equal to the seasonal averages of the uts in the training datasets. Put
in other words, unlike the automatic ETS base forecasts, the SA base forecasts of all 525 series are
trivially coherent, and need not to be reconciled.
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Forecast horizon
Approach 1 2 3 6 12 1:6 1:12

all (525 series)
BU 1.0341 1.0345 1.0323 1.0249 1.0029 1.0295 1.0205

. . . . . . LlCC, LCC and CCC with exogenous constraints . . . . . .
L1CC 1.0025 1.0035 1.0026 0.9962 0.9791 0.9998 0.9930
L2CC 1.0040 1.0021 1.0007 0.9922 0.9797 0.9982 0.9911
L3CC 1.0145 1.0136 1.0132 1.0072 0.9958 1.0103 1.0047
L4CC 1.0275 1.0296 1.0277 1.0259 1.0121 1.0270 1.0227
L5CC 0.9931 0.9939 0.9932 0.9890 0.9769 0.9912 0.9865
L6CC 1.0010 1.0017 1.0035 0.9976 1.0012 1.0003 0.9986
L7CC 1.0097 1.0055 1.0063 1.0012 0.9946 1.0052 1.0017
LCC 0.9857 0.9865 0.9861 0.9818 0.9736 0.9839 0.9801
CCC 0.9881 0.9889 0.9884 0.9842 0.9753 0.9862 0.9823

. . . . . . . . LCC and CCC with endogenous constraints . . . . . . . .
LCCen 1.0094 1.0101 1.0088 1.0033 0.9882 1.0064 1.0001
CCCen 1.0121 1.0127 1.0114 1.0057 0.9898 1.0089 1.0024

upper time series (221 series)
BU 1.0349 1.0365 1.0331 1.0283 0.9980 1.0311 1.0213

. . . . . . LlCC, LCC and CCC with exogenous constraints . . . . . .
L1CC 0.9761 0.9783 0.9775 0.9749 0.9540 0.9758 0.9699
L2CC 0.9794 0.9761 0.9741 0.9676 0.9561 0.9730 0.9668
L3CC 0.9957 0.9934 0.9934 0.9923 0.9819 0.9917 0.9881
L4CC 1.0085 1.0108 1.0091 1.0137 0.9988 1.0104 1.0085
L5CC 0.9599 0.9616 0.9609 0.9621 0.9504 0.9607 0.9584
L6CC 0.9742 0.9748 0.9782 0.9754 0.9928 0.9756 0.9783
L7CC 0.9930 0.9857 0.9878 0.9865 0.9818 0.9884 0.9871
LCC 0.9525 0.9535 0.9535 0.9539 0.9487 0.9527 0.9516
CCC 0.9564 0.9577 0.9575 0.9581 0.9515 0.9567 0.9554

. . . . . . . . LCC and CCC with endogenous constraints . . . . . . . .
LCCen 0.9931 0.9946 0.9929 0.9913 0.9734 0.9916 0.9864
CCCen 0.9976 0.9992 0.9973 0.9954 0.9760 0.9959 0.9902

bottom time series (304 series)
BU 1.0335 1.0330 1.0318 1.0224 1.0065 1.0283 1.0200

. . . . . . LlCC, LCC and CCC with exogenous constraints . . . . . .
L1CC 1.0221 1.0223 1.0212 1.0120 0.9977 1.0177 1.0101
L2CC 1.0223 1.0214 1.0205 1.0105 0.9972 1.0170 1.0092
L3CC 1.0283 1.0286 1.0279 1.0181 1.0060 1.0240 1.0169
L4CC 1.0416 1.0435 1.0414 1.0350 1.0218 1.0391 1.0331
L5CC 1.0180 1.0181 1.0174 1.0090 0.9966 1.0140 1.0074
L6CC 1.0209 1.0217 1.0223 1.0141 1.0074 1.0187 1.0137
L7CC 1.0219 1.0202 1.0200 1.0120 1.0040 1.0176 1.0125
LCC 1.0106 1.0112 1.0105 1.0026 0.9922 1.0072 1.0013
CCC 1.0117 1.0122 1.0115 1.0036 0.9930 1.0083 1.0023

. . . . . . . . LCC and CCC with endogenous constraints . . . . . . . .
LCCen 1.0215 1.0215 1.0206 1.0121 0.9991 1.0172 1.0102
CCCen 1.0227 1.0227 1.0218 1.0132 0.9999 1.0184 1.0113

Table 3.2: AvgRelMSE of LCC and CCC monthly forecast reconciliation
approaches in the forecasting experiment on the Australian Tourism Demand
dataset. LCC and CCC are defined by expressions (3.11) and (3.10), respec-
tively. LCCen and CCCen are defined by expression (3.13). Seasonal averages
of the training sets are used as bts base forecasts. BU identifies the bottom-up
approach. Bold entries identify the best performing approaches. Approaches per-
forming worse than base forecasts are highlighted in red.
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Forecast horizon
Approach 1 2 3 6 12 1:6 1:12

all (525 series)
BU 0.9972 0.9940 0.9923 0.9974 1.0008 0.9955 0.9983

. . . . . . LlCC, LCC and CCC with exogenous constraints . . . . . .
L1CC 0.9924 0.9910 0.9902 0.9939 0.9944 0.9922 0.9940
L2CC 0.9920 0.9896 0.9885 0.9890 0.9934 0.9901 0.9912
L3CC 0.9973 0.9950 0.9951 0.9958 0.9944 0.9954 0.9960
L4CC 1.0107 1.0113 1.0112 1.0103 1.0048 1.0109 1.0095
L5CC 0.9876 0.9877 0.9866 0.9908 0.9917 0.9886 0.9907
L6CC 0.9957 0.9959 0.9984 0.9996 1.0084 0.9980 1.0004
L7CC 0.9994 0.9951 0.9971 0.9953 0.9895 0.9967 0.9950
LCC 0.9780 0.9772 0.9771 0.9785 0.9791 0.9777 0.9786
CCC 0.9792 0.9781 0.9778 0.9797 0.9808 0.9787 0.9799

. . . . . . . . LCC and CCC with endogenous constraints . . . . . . . .
LCCen 0.9868 0.9846 0.9835 0.9874 0.9905 0.9857 0.9880
CCCen 0.9879 0.9855 0.9844 0.9884 0.9916 0.9866 0.9890

upper time series (221 series)
BU 0.9937 0.9861 0.9819 0.9941 1.0021 0.9894 0.9963

. . . . . . LlCC, LCC and CCC with exogenous constraints . . . . . .
L1CC 0.9823 0.9802 0.9783 0.9880 0.9911 0.9831 0.9883
L2CC 0.9834 0.9787 0.9761 0.9794 0.9902 0.9802 0.9840
L3CC 0.9900 0.9848 0.9848 0.9894 0.9912 0.9869 0.9897
L4CC 1.0010 1.0012 1.0003 1.0033 0.9992 1.0019 1.0025
L5CC 0.9738 0.9733 0.9707 0.9816 0.9859 0.9759 0.9817
L6CC 0.9864 0.9860 0.9888 0.9930 1.0145 0.9895 0.9960
L7CC 0.9947 0.9867 0.9893 0.9914 0.9866 0.9911 0.9912
LCC 0.9605 0.9585 0.9579 0.9633 0.9684 0.9604 0.9640
CCC 0.9626 0.9599 0.9590 0.9652 0.9708 0.9620 0.9661

. . . . . . . . LCC and CCC with endogenous constraints . . . . . . . .
LCCen 0.9758 0.9703 0.9678 0.9771 0.9853 0.9731 0.9789
CCCen 0.9777 0.9719 0.9692 0.9788 0.9871 0.9747 0.9807

bottom time series (304 series)
BU 0.9998 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998

. . . . . . LlCC, LCC and CCC with exogenous constraints . . . . . .
L1CC 0.9998 0.9989 0.9989 0.9983 0.9967 0.9988 0.9981
L2CC 0.9983 0.9975 0.9976 0.9961 0.9957 0.9973 0.9965
L3CC 1.0026 1.0025 1.0026 1.0004 0.9968 1.0016 1.0005
L4CC 1.0178 1.0187 1.0192 1.0154 1.0089 1.0175 1.0146
L5CC 0.9978 0.9983 0.9983 0.9976 0.9960 0.9979 0.9973
L6CC 1.0026 1.0032 1.0055 1.0045 1.0040 1.0043 1.0037
L7CC 1.0028 1.0012 1.0029 0.9982 0.9916 1.0008 0.9977
LCC 0.9910 0.9910 0.9913 0.9898 0.9871 0.9905 0.9893
CCC 0.9915 0.9914 0.9917 0.9904 0.9881 0.9910 0.9900

. . . . . . . . LCC and CCC with endogenous constraints . . . . . . . .
LCCen 0.9949 0.9951 0.9952 0.9949 0.9942 0.9949 0.9946
CCCen 0.9954 0.9955 0.9956 0.9954 0.9948 0.9954 0.9951

Table 3.3: AvgRelMSE of LCC and CCC monthly forecast reconciliation
approaches in the forecasting experiment on the Australian Tourism Demand
dataset. LCC and CCC are defined by expressions (3.11) and (3.10), respec-
tively. LCCen and CCCen are defined by expression (3.13). Automatic ETS are
used as bts base forecasts. BU identifies the bottom-up approach. Bold entries
identify the best performing approaches. Approaches performing worse than base
forecasts are highlighted in red.
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vectors ỹ
(l)
ETS, l = 1, . . . , L, and the single forecast vector ỹL+1

SA , are given zero weights,

while the remaining forecasts are equally weighted by
1

L+ 1
.

This choice may be seen as a forecast pooling (Hendry and Clements, 2004; Mar-

cellino, 2004; Geweke and Amisano, 2011), a forecast combination procedure according

to which from the complete set of forecasts, only a subset is deemed relevant to be com-

bined. Kourentzes et al. (2019) investigate pooling for business forecasting, claiming

“that the forecast selection criteria and the different approaches that are used to com-

bine forecasts, can be considered as two independent types of operations, that follow

pooling”. In particular, “forecast selection and forecast combinations can be seen as

two extremes of a spectrum that is defined by forecast pooling, combined with some

selection/weighting operator”10. Aiolfi and Timmermann (2006) state that pooling can

be beneficial, but recognise that the methods proposed depend on multiple subjective

choices. We think that this is just the case of the CCCH approach, which is grounded

on a forecast pooling whose motivation might appear somehow subjective, therefore not

immediately generalizable to different forecasting situations. Rather, simple complete

combinations like either CCC or LCC seem to be very simple as well, able to exploit the

diversity of forecasts coming from different models, and less prone to subjective choices.

In addition, the comparison with the forecasting accuracy of wls and shr approaches

seems to be logically well founded.

Table 3.4 sets out the AvgRelMSE for the reconciliation approaches described so far,

distinct by all, upper and bottom variables, and grouped in such a way to highlight

the common background in terms of the bts base forecasts used. For completeness, in

Table 3.4 we consider the forecast accuracy (relative to the ETS base forecasts) of the

seasonal averages as well, as these simple forecasts are at the same time cross-sectionally

coherent, and part of the ‘SA-based’ forecast reconciliation approaches.

In summary, we find that:

• Forecast averaging of the LCC reconciled forecasts (i.e., LCC) gives the best

results for most forecast horizons: in 7 cases out 7 across all 525 series, and 3 out

7 across the 304 bottom series. In this last case, CCC ranks first, the differences

with LCC being at the fourth decimal point.

• Forecast averaging of the optimal combination forecasts approaches (shr and shr)

always performs better than CCCH at the most disaggregate level (304 bts series).

10An interesting Machine Learning approach to model selection in hierarchical forecasting has been
recently proposed by Abolghasemi et al. (2022).
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Base forecasts∗ Forecast horizon
Approach∗∗ uts bts 1 2 3 6 12 1:6 1:12

all (525 series)
SA SA SA 1.0341 1.0345 1.0323 1.0249 1.0029 1.0295 1.0205

wlsSA ETS SA 0.9892 0.9904 0.9902 0.9867 0.9809 0.9883 0.9853
shrSA ETS SA 0.9833 0.9855 0.9851 0.9812 0.9754 0.9831 0.9800
CCCSA ETS SA 0.9881 0.9889 0.9884 0.9842 0.9753 0.9862 0.9823
LCCSA ETS SA 0.9857 0.9865 0.9861 0.9818 0.9736 0.9839 0.9801

CCCen,SA ETS SA 1.0121 1.0127 1.0114 1.0057 0.9898 1.0089 1.0024
LCCen,SA ETS SA 1.0094 1.0101 1.0088 1.0033 0.9882 1.0064 1.0001

wlsETS ETS ETS 0.9801 0.9801 0.9802 0.9806 0.9816 0.9802 0.9806
shrETS ETS ETS 0.9739 0.9757 0.9754 0.9748 0.9768 0.9750 0.9752
CCCETS ETS ETS 0.9792 0.9781 0.9778 0.9797 0.9808 0.9787 0.9799
LCCETS ETS ETS 0.9780 0.9772 0.9771 0.9785 0.9791 0.9777 0.9786

CCCen,ETS ETS ETS 0.9879 0.9855 0.9844 0.9884 0.9916 0.9866 0.9890
LCCen,ETS ETS ETS 0.9868 0.9846 0.9835 0.9874 0.9905 0.9857 0.9880

wls ETS SA & ETS 0.9715 0.9719 0.9719 0.9703 0.9685 0.9709 0.9697

shr ETS SA & ETS 0.9698 0.9716 0.9711 0.9686 0.9671 0.9699 0.9684
CCCH ETS SA & ETS 0.9757 0.9759 0.9753 0.9721 0.9659 0.9737 0.9708

CCC ETS SA & ETS 0.9623 0.9622 0.9617 0.9608 0.9583 0.9612 0.9602

LCC ETS SA & ETS 0.9618 0.9618 0.9615 0.9602 0.9577 0.9608 0.9596

CCCen ETS SA & ETS 0.9709 0.9702 0.9688 0.9688 0.9651 0.9690 0.9679

LCCen ETS SA & ETS 0.9700 0.9694 0.9681 0.9680 0.9646 0.9682 0.9671

bottom time series (304 series)
SA SA SA 1.0335 1.0330 1.0318 1.0224 1.0065 1.0283 1.0200

wlsSA ETS SA 1.0122 1.0128 1.0121 1.0049 0.9961 1.0093 1.0040
shrSA ETS SA 1.0094 1.0109 1.0105 1.0034 0.9944 1.0075 1.0024
CCCSA ETS SA 1.0117 1.0122 1.0115 1.0036 0.9930 1.0083 1.0023
LCCSA ETS SA 1.0106 1.0112 1.0105 1.0026 0.9922 1.0072 1.0013

CCCen,SA ETS SA 1.0227 1.0227 1.0218 1.0132 0.9999 1.0184 1.0113
LCCen,SA ETS SA 1.0215 1.0215 1.0206 1.0121 0.9991 1.0172 1.0102

wlsETS ETS ETS 0.9941 0.9953 0.9956 0.9937 0.9911 0.9945 0.9931
shrETS ETS ETS 0.9892 0.9917 0.9917 0.9890 0.9873 0.9903 0.9889
CCCETS ETS ETS 0.9915 0.9914 0.9917 0.9904 0.9881 0.9910 0.9900
LCCETS ETS ETS 0.9910 0.9910 0.9913 0.9898 0.9871 0.9905 0.9893

CCCen,ETS ETS ETS 0.9954 0.9955 0.9956 0.9954 0.9948 0.9954 0.9951
LCCen,ETS ETS ETS 0.9949 0.9951 0.9952 0.9949 0.9942 0.9949 0.9946

wls ETS SA & ETS 0.9839 0.9845 0.9843 0.9797 0.9752 0.9824 0.9793

shr ETS SA & ETS 0.9865 0.9880 0.9878 0.9827 0.9780 0.9856 0.9824
CCCH ETS SA & ETS 0.9969 0.9972 0.9965 0.9897 0.9814 0.9938 0.9887

CCC ETS SA & ETS 0.9759 0.9761 0.9757 0.9717 0.9669 0.9740 0.9711

LCC ETS SA & ETS 0.9761 0.9762 0.9759 0.9716 0.9667 0.9741 0.9710

CCCen ETS SA & ETS 0.9784 0.9785 0.9777 0.9744 0.9701 0.9764 0.9737

LCCen ETS SA & ETS 0.9782 0.9782 0.9775 0.9741 0.9700 0.9762 0.9735

∗ SA: seasonal averages; ETS: automatic ETS forecasts.
∗∗ LCC and CCC are defined by expressions (3.11) and (3.10), respectively. LCCen and CCCen are defined
by expression (3.13). wls, shr, CCC, LCC, CCCen, and LCCen are defined according to expression (3.17).
CCCH : base forecasts as in Hollyman et al. (2021), see Figure 3.4.

Table 3.4: AvgRelMSE of monthly reconciled forecasts in the forecasting ex-
periment on the Australian Tourism Demand dataset. Optimal combination,
LCC, and CCC reconciliation approaches, using seasonal averages and/or au-
tomatic ETS as bts base forecasts. Bold entries identify the best performing
approaches independently of the base forecasts used. Italic entries identify the
best performing approach using the same base forecasts (either SA or automatic
ETS). Approaches performing worse than base forecasts are highlighted in red.
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Figure 3.5: Australian Tourism Demand dataset: AvgRelMSE of Optimal com-
bination, LCC, and CCC reconciliation approaches, using seasonal averages
and/or automatic ETS as bottom time series base forecasts. The acronyms for
the considered approaches are described in footnote ∗∗ of Table 3.4. Top panel:
forecast horizon h = 1. Bottom panel: forecast horizon h = 1:12.

• When bts base forecasts from a single model (either SA or ETS) are used, shr

performs on average best across all series. This result comes from a clear supe-

riority for the most aggregated series in the upper levels of the hierarchy (details

are reported in the online appendix), while at the bottom level the shr and LCC

AvgRelMSE’s look very similar.

Figure 3.5 gives an interesting visual summary of the results for two forecast horizons:

h = 1 and h = 1:12. The ‘SA-based’ reconciliation approaches are located to the left

part of the graphs, due to the low quality of the bts base forecasts. They are followed

by the ‘ETS-based’ reconciled forecasts, which benefit from the higher quality of the

bts base forecasts. The CCCH approach clearly separates the single-model bts base

forecasts from the multiple base forecasts combination based reconciliation, where the
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Figure 3.6: Australian Tourism Demand dataset: MCB Nemenyi test results:
average ranks and 95% confidence intervals for the 304 bts forecasts. The rec-
onciliation approaches are sorted vertically according to the MSE mean rank for
forecast horizon h = 1 (a), and forecast horizon h = 1:12 (b). The mean rank
of each approach is displayed to the right of their names. The acronyms for the
considered approaches are described in footnote ∗∗ of Table 3.4. If the intervals
of two forecast reconciliation procedures do not overlap, this indicates a statisti-
cally different performance.

forecast combination device of LCC and CCC approaches gives better results than the

average of a couple of optimal combination reconciled forecasts.

Furthermore, it is confirmed and somehow reinforced the observation of Hollyman

et al. (2021) that the gains from combination are particularly valuable when existing

forecasts are of poor quality. Figure 3.6 shows the Multiple Comparison with the Best

(MCB) Nemenyi test for the 304 bts, which form the noisiest section of the hierarchy.

After that the Friedman test has shown that the considered forecasting approaches are

different, LCC, CCC, LCCen, and CCCen look (better than, and) significantly different

from the other reconciliation forecasts at forecast horizon h = 1. These approaches still

rank best for h = 1:12, with CCCH forecasts resulting not significantly different from

them.
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Figure 3.7: Australian GDP from Income side: balanced hierarchical repre-
sentations (duplicated series in black circles).

3.5.2 Reconciliation of quarterly Australian GDP forecasts

from Income and Expenditure sides

Athanasopoulos et al. (2020) consider 95 Australian Quarterly National Accounts time

series, describing the Gross Domestic Product (GDP ) - at current prices and not sea-

sonally adjusted - from Income and Expenditure sides, interpreted as two distinct hi-

erarchical structures. In the former case (Income), GDP is on the top of 15 lower

level aggregates, while in the latter (Expenditure), GDP is the top level aggregate of

a hierarchy of 79 time series (see figures 21.4-21.7 in Athanasopoulos et al. (2020), pp.

702-705). The available time series span over the period 1984:Q4 - 2018:Q1.

Our analysis is performed within the same forecasting experiment designed by

Athanasopoulos et al. (2020). Base forecasts for the 95 separate time series have been

obtained through simple univariate ARIMA models11, selected using the auto.arima

function of the R-package forecast (Hyndman et al., 2023)12. Forecasts from h = 1

quarter ahead up to h = 4 quarters ahead are computed, using an expanding window,

where the first training sample is set from 1984:Q4 to 1994:Q3, and forecasts are pro-

duced for 1994:Q4 to 1995:Q3. Then the training window is expanded by one quarter

at a time, i.e. from 1984:Q4 to 2017:Q4, with the final forecasts produced by the last

available observation in 2018:Q1. This leads to 94 1-step-ahead, 93 2-step-ahead, 92

3-step-ahead and 91 4-step-ahead forecasts available for evaluation.

11The R scripts, the data and the results of the paper by Athanasopoulos et al. (2020) are available in
the github repository located at https://github.com/PuwasalaG/Hierarchical-Book-Chapter.

12Athanasopoulos et al. (2020) point out that this fast and flexible approach performs well in forecasting
Australian GDP aggregates, even compared to other more complex methods.
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Income side (16 series) Expenditure side (80 series)
Forecast horizon Forecast horizon

Approach 1 2 3 4 1:4 1 2 3 4 1:4

Level-l Conditional Coherent reconciliation with exogenous constraints
L1CC 1.0532 1.0336 1.0396 1.0375 1.0409 1.0256 1.0270 1.0146 1.0223 1.0224
L2CC 1.0681 1.0418 1.0596 1.0735 1.0607 1.0439 1.0307 1.0233 1.0228 1.0301
L3CC 1.0323 1.0178 1.0040 1.0048 1.0146 1.0389 1.0051 0.9978 0.9969 1.0095
L4CC 1.0263 0.9921 0.9614 0.9511 0.9823 1.0336 1.0194 0.9998 0.9973 1.0124
L5CC 0.9651 0.9794 0.9836 0.9852 0.9783 1.0507 1.0253 1.0190 1.0109 1.0264
L6CC 1.0166 1.0097 1.0069 1.0047 1.0095
L7CC 1.0592 1.0356 1.0171 1.0106 1.0304

BU 1.0025 0.9796 0.9908 0.9769 0.9874 1.0187 1.0111 1.0097 1.0055 1.0112
LCC 0.9866 0.9799 0.9822 0.9853 0.9835 0.9838 0.9737 0.9648 0.9667 0.9722
CCC 0.9853 0.9767 0.9810 0.9817 0.9812 0.9832 0.9743 0.9664 0.9686 0.9731
LCCen 0.9904 0.9743 0.9815 0.9740 0.9800 0.9977 0.9923 0.9900 0.9898 0.9924
CCCen 0.9920 0.9748 0.9828 0.9742 0.9809 0.9999 0.9943 0.9921 0.9915 0.9944
wls 0.9699 0.9811 0.9883 0.9927 0.9830 0.9606 0.9691 0.9735 0.9798 0.9707
shr 0.9613 0.9832 1.0049 1.0005 0.9873 0.9552 0.9672 0.9715 0.9814 0.9668

Table 3.5: AvgRelMSE of forecast combination based (LCC and CCC) and
optimal combination (wls and shr) forecast reconciliation approaches in the fore-
casting experiment on the Australian GDP dataset. LCC and CCC are defined
by expressions (3.11) and (3.10), respectively. LCCen and CCCen are defined
by expression (3.13). Automatic ARIMA are used as bts base forecasts. BU
identifies the bottom-up approach. Bold entries identify the best performing ap-
proaches within BU , LCC, CCC, LCCen, CCCen, wls and shr. Approaches
performing worse than base forecasts are highlighted in red.

The dataset and the forecasting experiment present some noteworthy features:

• the dataset consists of two distinct hierarchies, sharing only the top level series

(GDP ). The forecast combination based forecast reconciliation approach proposed

by Hollyman et al. (2021) will thus produce two different reconciled forecasts of

GDP , from Income and Expenditure sides, respectively13;

• both Income and Expenditure hierarchies are unbalanced. To appropriately use

LCC and CCC approaches, the two unbalanced hierarchies are transformed in

a 6-level (Income, see Figure 3.7), and 8-level (Expenditure) balanced hierarchy,

respectively;

• some of the 95 variables may take negative values (e.g., Statistical discrepancy),

thus non-negativity of the reconciled forecasts is not a concern in this case;

• naive forecasts as seasonal averages or seasonal random walk have a very bad

forecasting accuracy, that negatively affects the CCCH results as well (details

may be found in the online appendix). Thus in the following we focus only on the

LCC and CCC approaches, with exogenous and endogenous constraints.

13Bisaglia et al. (2020) show how to obtain reconciled forecasts of GDP simultaneously coherent with all
reconciled forecasts from both Expenditure and Income sides, by re-interpreting the two hierarchies
as a more general linearly constrained multiple time series (Panagiotelis et al., 2021).
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Figure 3.8: Forecast reconciliation of quarterly Australian GDP . AvgRelMSE
of LCC, CCC, and optimal combination reconciliation approaches, using auto-
matic ARIMA as base forecasts.

The base forecasts are reconciled using BU , LCC, CCC, LCCen, CCCen, wls and

shr approaches. As already done in the previous empirical application, the forecasting

accuracy is measured by the Average Relative Mean Squared Error (AvgRelMSE). The

top panel of Table 3.5 reports also the AvgRelMSEs of the LlCC reconciled forecasts, to

evaluate the effect of forecast averaging on the quality of the LCC and CCC reconciled

forecasts. The main findings can be summarized as follows:

• the accuracy gain of LCC and CCC over the level-l conditional reconciled forecasts

is clearly visible for the Expenditure side series: 36 out of 40 AvgRelMSEs for

LlCC and BU are larger than 1, while their simple averages LCC and CCC

always give accuracy indices less than 1. A less marked, however still evident,

overall improvement of LCC and CCC over LlCC and BU is registered for the

Income side series as well. Similar results have been found for LCCen and CCCen

approaches (see the online appendix);

• for both Income and Expenditure sides series, LCC, CCC, LCCen, and CCCen

always improve the accuracy of the base forecasts (all AvgRelMSE < 1);
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Figure 3.9: MCB Nemenyi test results: average ranks and 95% confidence in-
tervals for 1-step-ahead and 1:4-step-ahead quarterly Australian GDP forecasts.
The reconciliation approaches are sorted vertically according to the MSE mean
rank for Income (a) and Expenditure (b) sides, respectively. The mean rank of
each approach is displayed to the right of their names. If the intervals of two
forecast reconciliation procedures do not overlap, this indicates a statistically dif-
ferent performance.

• the optimal combination reconciliation approach shr produces the smallest Av-

gRelMSEs at forecast horizon 1 for both Income and Expenditure sides series.

However, in two cases (Income side, forecasting horizons 3 and 4), the shr recon-

ciliation worsens the base forecasts’ accuracy.

A visual appreciation of these results is given by Figure 3.8, where the forecasting

accuracy indices (at forecast horizons 1 and 1:4) are distinct by all, upper and bottom

time series, respectively. These findings are finally confirmed by the MCB Nemeny

test (Figure 3.9). Despite the simplicity of the reconciliation formulae, LCC and CCC

always show a forecasting accuracy not significantly different from the state-of-the-art

forecast reconciliation approaches wls and shr.



Chapter 4

General linearly constrained

multiple time series reconciliation

4.1 Introduction

Starting from Hyndman et al. (2011), regression-based forecast reconciliation has be-

come an hot topic in the forecasting literature (van Erven and Cugliari, 2015; Wick-

ramasuriya et al., 2019; Wickramasuriya, 2021; Panagiotelis et al., 2021; Jeon et al.,

2019; Ben Taieb and Koo, 2019; Ben Taieb et al., 2021; Panagiotelis et al., 2023; Wick-

ramasuriya, 2024). By forecast reconciliation, we mean a post-forecasting procedure in

which previously (and however) generated incoherent predictions (called base forecasts)

for all the components of a multiple time series are adjusted in order to fulfill some

externally given linear constraints. These reconciled forecasts are said to be coherent.

In many real world applications, forecasts of a large collection of time series have a

natural organization according to a hierarchical structure. More precisely, a system is

classified as hierarchical when series are created by aggregating others in a tree shape.

When the system is formed by a unique tree, then the collection is called “hierarchical

time series” (Hyndman et al., 2011). On the other side, when various hierarchies share

the same series at both the most aggregated and disaggregated levels (top and bottom

level, respectively), we face a “grouped time series” (Hyndman et al., 2016).

In the field of forecast reconciliation, the bottom-up and top-down approaches are

among the earliest and best known ones. Bottom-up forecasting (Dunn et al., 1976)

uses only forecasts at the bottom level to obtain all the reconciled forecasts. In con-

trast, top-down forecasting (Gross and Sohl, 1990) uses only the forecasts at the highest

aggregated level. Having observed that neither forecasting approach uses all the avail-

able information, Hyndman et al. (2011) developed a regression-based reconciliation

111
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approach consisting in (i) forecasting all the series with no regard for the constraints,

and (ii) using then a regression model to optimally combining these (base) forecasts in

order to produce coherent forecasts. This approach has witnessed a continuous growth

of the related literature (Hyndman et al., 2016; Athanasopoulos et al., 2020; Wickra-

masuriya, 2021; Panagiotelis et al., 2023), that in most cases grounds on the so-called

structural representation of a hierarchical/grouped time series (Athanasopoulos et al.,

2009), in which the variables are classified either bottom if they belong to the most

disaggregated level, or upper if they are obtained by summing the lower levels’ vari-

ables. In mathematical terms, upper and bottom variables are linked by an aggregation

matrix, which describes how the upper series are obtained from the bottom ones (Hyn-

dman et al., 2011). This representation is directly related to the hierarchical structure,

where the series are naturally classifiable and an aggregation matrix may be obtained

with little effort. Theoretical aspects for point and probabilistic forecast reconciliation

have been developed using a structural representation by Panagiotelis et al. (2021) and

Panagiotelis et al. (2023), respectively (see also Wickramasuriya, 2021, 2024).

However, it can be shown (van Erven and Cugliari, 2015; Wickramasuriya et al.,

2019; Bisaglia et al., 2020, and Chapter 1) that reconciled forecasts may be obtained as

the solution to a linearly constrained quadratic optimization problem1, that does not

require any “upper and bottom” classification of the involved variables. This approach

grounds on a zero-constrained representation of the linearly constrained multiple time

series (Chapter 1) describing the relationships linking all the individual series in the

system. For a genuine hierarchical/grouped time series, where the top and bottom level

variables are uniquely identified, it is easy to express the relationship between structural

and zero-constrained representations. Wickramasuriya et al. (2019) show that the struc-

tural and the corresponding projection reconciliation approaches produce the same final

reconciled forecasts. Unfortunately, given a zero-constrained representation of a linearly

constrained multiple time series, finding the corresponding structural representation is

not trivial, and one objective of this chapter is to fill this gap.

Most of the forecast reconciliation approaches proposed in the literature refer to gen-

uine hierarchical/grouped time series, that do not take into account the full spectrum of

possible cases encountered in real-life situations. As pointed out by Panagiotelis et al.

(2021), “concepts such as coherence and reconciliation (...) require the data to have

only two important characteristics: the first is that they are multivariate, and the sec-

ond is that they adhere to linear constraints”. Using a novel geometric interpretation,

1This approach dates back to the seminal paper by Stone et al. (1942) on the least squares adjustment of
noisy data with accounting constraints (Byron, 1978, 1979). Recent applications to the reconciliation
of systems of seasonally adjusted time series are provided by Di Fonzo and Marini (2011, 2015).
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Panagiotelis et al. (2021) develop definitions and a formulation for linearly constrained

multiple time series within a general framework and not just for simple summation

hierarchical relationships. However, their results still ground on the structural repre-

sentation valid only for genuine hierarchical/grouped time series, and this also holds

for the probabilistic forecast reconciliation approach developed by Panagiotelis et al.

(2023). Nevertheless, the point we wish to stress here is that when working with gen-

eral linear constraints and many variables, the interchangeability between structural and

zero-constrained representations, easy to recover for a genuine hierarchical/grouped time

series, is no more always straightforward.

In this chapter we address a number of open issues in point and probabilistic cross-

sectional forecast reconciliation for general linearly constrained multiple time series.

First, we introduce a general linearly constrained multiple time series by exploiting

its analogies with an homogeneous linear system. Second, we show that the classical

hierarchical representation for a multiple time series is a simple special case of the

general representation. Third, we show that if it is possible to express a general linearly

constrained multiple time series according to a “structural-like” representation, we can

easily achieve the formulation for point and probabilistic regression-based reconciled

forecasts using a linear combination matrix, with elements in R, that is the natural

extension of the aggregation matrix used in the structural reconciliation approach, with

elements only in {0, 1}. When the distinction between bottom and upper variables is

no longer meaningful, we adopt a classification involving free and constrained variables,

respectively, and show how to obtain a structural-like representation, possibly using well

known linear algebra techniques, such as the Reduced Row Echelon Form and the QR

decomposition (Golub and Van Loan, 1996, Meyer, 2000).

The remainder of the chapter is structured as follows. In Section 4.2, we present

the notation and the main results about the point forecast reconciliation for a genuine

hierarchical/grouped time series and in the general case. We define the structural-like

representation for a general linearly constrained multiple time series by distinguishing

between free and constrained variables, instead of bottom and upper, and use this re-

sult in the probabilistic forecast reconciliation framework set out by Panagiotelis et al.

(2023). In Section 4.3, we show how to obtain the linear combination matrix for the

structural-like representation in a computationally efficient way2. Two empirical appli-

cations are presented in Section 4.4. First, we extend the forecast reconciliation experi-

ment for the Australian GDP originally developed by Athanasopoulos et al. (2020) and

2The procedures used in this chapter are implemented in the R package FoReco (Girolimetto and
Di Fonzo, 2023a).
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Bisaglia et al. (2020), to obtain both point and probabilistic GDP forecasts simultane-

ously coherent with their disaggregate counterpart forecasts from income and expendi-

ture sides. Second, point and probabilistic forecasts are obtained for the European Area

GDP from income, expenditure and output sides, geographically disaggregated by 19

component countries, where the large number of series and constraints makes a full row

rank zero-constraints matrix difficult to build.

4.2 Reconciliation of a linearly constrained multiple

time series

Let xt be a n-dimensional linearly constrained multiple time series such that all the

values for t = 1, ... (either observed or not) lie in the coherent linear subspace S ∈ Rn,

xt ∈ S ∀t > 0 (Panagiotelis et al., 2021), which means that all linear constraints are

satisfied at time t. These constraints can be represented through linear equations and

grouped as a (rectangular) linear system. Following Meyer (2000) and Leon (2015), let

x1,t, . . . , xn,t be the observations of n individual time series at a given time t = 1, ..., T .

An homogeneous linear system of p equations in the n variables present in xt can be

written as 



γ1,1 x1,t + γ1,2 x2,t + . . . + γ1,n xn,t = 0
...

...
...

...
...

...
...

...

γp,1 x1,t + γp,2 x2,t + . . . + γp,n xn,t = 0

,

where the γij’s are real-valued coefficients. This system can be expressed in matrix form

as

Γxt = 0(p×1), (4.1)

where Γ ∈ R(p×n) is the coefficient matrix

Γ =




γ1,1 γ1,2 . . . γ1,n
...

...
. . .

...

γp,1 γp,2 . . . γp,n


 .

Expression (4.1) is called “zero-constrained representation” of a linearly constrained

multiple time series (see Chapter 1).

4.2.1 Point reconciliation of a genuine hierarchical time series

In Figure 4.1 it is shown a simple, genuine hierarchical time series (Athanasopoulos et al.,

2009; Hyndman et al., 2011; Athanasopoulos et al., 2020; Hyndman and Athanasopoulos,

2021), that can be seen as a particular case of a linearly constrained multiple time series.
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Figure 4.1: A simple three-level hierarchical structure for a linearly constrained
multiple time series

This hierarchical structure is defined only by simple summation constraints,

a1 = b1 + b2 + b3 + b4 + b5

a2 = b1 + b2

a3 = b3 + b4 + b5

, (4.2)

that can be easily transformed into a zero-constrained representation Γx = 0(8×1), with

x = [a1 a2 a3 b1 b2 b3 b4 b5 ]
′ = [a′ b′]′, and

Γ =




1 0 0 −1 −1 −1 −1 −1

0 1 0 −1 −1 0 0 0

0 0 1 0 0 −1 −1 −1


 = [I3 −A] ,

such as the γi,j’s coefficients are only -1, 0 and 1, and a = Ab.

In general, let bt =
[
b1,t . . . bnb,t

]′
∈ R(nb×1) and at =

[
a1,t . . . ana,t

]′
∈ R(na×1),

t = 1, ..., T , with n = na+nb, be the T vectors containing the bottom and the aggregated

series, respectively, of a hierarchy. All series can be collected in the T vectors

yt = Pxt =

[
at

bt

]
∈ R(n×1),

where P ∈ {0, 1}(n×n) is a permutation matrix used to appropriately re-order the original

vector xt. If the classification as upper or bottom of the single time series in xt is

known in advance, we assume xt = yt = [a′
t b′t]

′, i.e. P = In (no permutation of the

original vector is needed). Moreover, also the linear combination (aggregation) matrix

A ∈ {0, 1}(na×nb) describing the summation constraints linking the upper time series

to the bottom ones, at = Abt, is assumed known in advance. Thus the “structural
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representation” is simply given by (Athanasopoulos et al., 2009)

yt = Sbt with S =

[
A

Inb

]
, (4.3)

where S ∈ {0, 1}(n×na) is the structural (summation) matrix.

Suppose now we have the vector ŷh =
[
â′
h b̂′h

]′
∈ R(n×1) of unbiased and incoherent

(i.e., ŷh ̸= Sb̂h) base forecasts for the n variables of the linearly constrained series yt for

the forecast horizon h. Hyndman et al. (2011) use the structural representation (4.3) to

obtain the reconciled forecasts ỹh as

ỹh = SGŷh, G =
(
S′W−1S

)−1
S′W−1, (4.4)

where W is a (n× n) p.d. matrix assumed known and ŷh (ỹh) is the vector containing

the base (reconciled) forecasts at forecast horizon h. Some alternative matrices W have

been proposed in the literature for the cross-sectional forecast reconciliation case:

• identity (ols): Ŵols = In (Hyndman et al., 2011),

• series variance (wls): Ŵwls = In ⊙ Ŵsam (Hyndman et al., 2016),

• MinT-shr (shr): Ŵshr = λ̂Ŵwls + (1− λ̂)Ŵsam (Wickramasuriya et al., 2019),

• MinT-sam (sam): Ŵsam = 1
T

∑T

t=1 êtê
′
t is the covariance matrix of the one-step

ahead in-sample forecast errors êt (Wickramasuriya et al., 2019),

where the symbol ⊙ denotes the Hadamard product, and λ̂ is an estimated shrinkage

coefficient (Ledoit and Wolf, 2004).

The structural representation (4.3) may be transformed into the equivalent zero-

constrained representation at −Abt = 0(na×1), that is (Wickramasuriya et al., 2019)

Cyt = 0(na×1) with C =
[
Ina

−A

]
. (4.5)

C ∈ {−1, 0, 1}(na×n) is a full row-rank zero constraints matrix used to obtain the point

reconciled forecasts according to the projection approach (van Erven and Cugliari, 2015;

Wickramasuriya et al., 2019, and see Chapter 1):

ỹh = Mŷh, M = In −WC ′ (CWC ′)
−1

C. (4.6)

Structural and zero-constrained representations can be interchangeable depending on

which of the two is more convenient to use, allowing for greater flexibility in the calcu-

lation of the reconciled forecasts. For, the zero-constrained representation appears to

be less computational intensive: in equation (4.4) two matrices must be inverted, one of

size (n× n) and the other (nb × nb), whereas only the inversion of an (na × na) matrix

is required in formula (4.6).
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4.2.2 Zero-constrained and structural-like representations

In the hierarchical/grouped cross-sectional forecast reconciliation there is a natural dis-

tinction between upper and bottom time series that leads to the construction of the

matrix C as in (4.5), where the first na columns refer to the upper and the remain-

ing nb (= n − na) to the bottom variables, respectively. The time series in these two

sets are categorized logically: all those related to the last level belong to the second

group, the rest to the first. Most of the forecast reconciliation approaches proposed

in the literature refer to genuine hierarchical/grouped time series and its structural

representation. However, these do not take into account the full spectrum of possible

cases encountered in real life situations. For a general linearly constrained multiple time

series (xt, t = 1, . . . , T ), the classification between upper and bottom variables might

not be meaningful, prompting us rather to look for two new sets: the constrained

variables, denoted as ct ∈ R(nc×1), and the free (unconstrained) variables, denoted as

ut ∈ R(nu×1), with n = nc + nu, such that yt = Pxt = [c′t u′
t]
′, and

ct = Aut. (4.7)

In this general framework, A ∈ R(nc×nu) is the linear combination matrix associated to

the linearly constrained multiple time series xt = P ′yt, that can be thus expressed via

the “structural-like representation”

yt = Pxt =

[
ct

ut

]
= Sut with S =

[
A

Inu

]
, (4.8)

where S ∈ R(nc×nu) is the structural-like matrix3. It is worth noting that a full-rank zero-

constraints matrix C ∈ R(nc×n) like in (4.5) may be easily obtained by (4.8) and used for

the full-rank zero constrained representation Cyt = CPxt = 0(nc×1). Therefore, even

for a general, possibly not genuine hierarchical/grouped, linearly constrained multiple

time series, either the structural (4.4) or the projection (4.6) approaches may be used

to perform the point forecast reconciliation of incoherent base forecasts.

A simple example of a linearly constrained multiple time series that cannot be ex-

pressed as a genuine hierarchical/grouped structure is shown in Figure 4.2. In this case

the variable X is at the top of two distinct hierarchies, that do not share the same

bottom-level variables.

3Unlike the structural (summation) matrix in (4.3), that describes the simple summation relationships
valid for genuine hierarchical/grouped time series, and has only elements in {0, 1}, in (4.8) S consists of
real coefficients, appropriately organized to highlight the links between constrained and free variables.
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A1 A2 B
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X

⋃

C D

X

−→

A1

A2

B

C

D

A

X

Figure 4.2: A general linearly constrained structure: two hierarchies sharing
only the same top-level series.

The aggregation relationships between the upper variables X and A, and the bottom

ones A1, A2, B, C, and D are given by:

X = A1 + A2 + B

X = C +D

A = A1 + A2

. (4.9)

In this case, both the zero-constrained and the structural-like representations are

found in a rather straightforward manner. We consider {A2, B, C,D} as free vari-

ables, such that yt = xt (i.e., P = I4), with ct =
[
xX,t xA,t xA1,t

]′
and ut =

[
xA2,t xB,t xC,t xD,t

]′
. Thus, the coefficient matrix of the zero-constrained repre-

sentation (4.1) is

Γ =



1 0 −1 −1 −1 0 0

1 0 0 0 0 −1 −1

0 1 −1 −1 0 0 0


 .

It is immediate to check that the system of linear constraints (4.9) may be re-written as

X = C +D

A = −B + C +D

A1 = −A2− B + C +D

that is Cxt = 0(3×1), where

C =
[
I3 −A

]
=



1 0 0 0 0 −1 −1

0 1 0 0 1 −1 −1

0 0 1 1 1 −1 −1


 and A =




0 0 1 1

0 −1 1 1

−1 −1 1 1


 .

The structural-like representation of the general linearly constrained multiple time series

in Figure 4.2 is then yt = Sut, with S = [A′ I3]
′.
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It should be mentioned, however, that for medium/large systems (with many

constraints and/or variables), manually operating on the constraints could be time-

consuming and challenging. In Section 4.3 we will show a general technique to derive

the linear combination matrix A from a general zero-constraints matrix Γ.

4.2.3 Probabilistic reconciliation for general linearly con-

strained multiple time series

So far we have dealt with only point forecasting, but if one wishes to account for fore-

cast uncertainty, probabilistic forecasts should be considered, as they - in the form of

probability distributions over future quantities or events - measure the uncertainty in

forecasts and are an important component of optimal decision making (Gneiting and

Katzfuss, 2014).

Representation (4.8) states that yt lies in an n-dimensional subspace of Rn spanned

by the columns of S, called “coherent subspace” and denoted by S (Panagiotelis et al.,

2023). Now, let FRnu be the Borel σ-algebra on Rnu , (Rnu ,FRnu , ν) a probability space

for the free variables, and s : Rnu → Rn a continuous mapping matrix. Then a σ-algebra

FS can be constructed from the collection of sets s(B) for all B ∈ FRn .

Definition 4.1 (Coherent probabilistic forecast for a linearly constrained multiple time

series). Given the triple (Rnu ,FRnu , ν), we define a coherent probability triple (S,FS , ν̆)

such that ν̆(s(B)) = ν(B), ∀B ∈ FRnu .

In order to extend forecast reconciliation to the probabilistic setting, let (Rn,FRn , ν̂)

be a probability triple characterizing base (incoherent) probabilistic forecasts for all n

series, and let ψ : Rnu → Rn be a continuous mapping function defined by Panagiotelis

et al. (2023) as the composition of two transformations, s ◦ g, where g : Rn → Rnu is a

continuous function corresponding to matrix G in equation (4.4).

Definition 4.2 (Probabilistic forecast reconciliation for a linearly constrained multiple

time series). The reconciled probability measure of ν̂ with respect to ψ is a probability

measure ν̃ on S with σ-algebra FS such that

ν̃(A) = ν̂
(
ψ−1(A)

)
, ∀A ∈ FS , (4.10)

where ψ−1(A) = {x ∈ Rn : ψ(x) ∈ A} is the pre-image of A.

We consider two alternative approaches to deal with probabilistic forecast reconcil-

iation according to the above definitions: a parametric framework, where probabilistic

forecasts are produced under the assumption that the density function of the forecast

errors is known, and a non-parametric framework, where no distributional assumption

is made.
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Parametric framework: Gaussian reconciliation

A reconciled probabilistic forecast may be obtained analytically for some parametric

distributions, such as the multivariate normal (Yagli et al., 2020; Corani et al., 2021;

Eckert et al., 2021; Panagiotelis et al., 2023; Wickramasuriya, 2024). In particular, if

the base forecasts distribution is N (ŷh,Wh), then the reconciled forecasts distribution

is N (ỹh, W̃h), with

ỹh = SGŷh and W̃h = SGWhG
′ S′.

The covariance matrix W̃h deserves special attention. In the simple case assumed by

Wickramasuriya et al. (2019), Wh = khW , where kh is a proportionality constant, and

the reconciled covariance matrix reduces to (see Appendix C.1):

W̃h = khSGW . (4.11)

However, the proportionality assumption along the forecast horizons h may be too re-

strictive, and computing kh cannot be an easy task. Thus, three alternative formulations

of Wh, already shown in Section 4.2.1, have been proposed in the forecast reconciliation

literature:

• Wh = Ŵwls (Corani et al., 2021; Panagiotelis et al., 2023);

• Wh = Ŵsam (Panagiotelis et al., 2023);

• Wh = Ŵshr (Athanasopoulos et al., 2020).

Non-parametric framework: joint bootstrap-based reconciliation

When an analytical expression of the forecast distribution is either unavailable, or re-

lies on unrealistic parametric assumptions, the empirical evaluation of the results may be

grounded on reconciled samples (Jeon et al., 2019; Yang, 2020; Panagiotelis et al., 2023).

At this end, we extend theorem 4.5 in Panagiotelis et al. (2023), originally formulated

for genuine hierarchical/grouped time series, to the case of a general linearly constrained

multiple time series. This theorem states that, if
(
ŷ[1], . . . , ŷ[L]

)
is a sample drawn from

an incoherent probability measure ν̂, then
(
ỹ[1], . . . , ỹ[L]

)
, where ỹ[ℓ] := ψ

(
ŷ[ℓ]
)
for ℓ =

1, . . . , L , is a sample drawn from the reconciled probability measure ν̃ as defined in

(4.10). According to this result, reconciling each member of a sample obtained from

an incoherent distribution yields a sample from the reconciled distribution. As a con-

sequence, coherent probabilistic forecasts may be developed through a post-forecasting

mechanism analogous to the point forecast reconciliation setting. For this purpose, the

bootstrap procedure by Athanasopoulos et al. (2020) is applied:
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1. appropriate univariate models Mi for each series in the system are fitted based on

the training data {yi,t}Tt=1, i = 1, . . . , n, and the one-step-ahead in-sample forecast

errors are stacked in an (n× T ) matrix, Ê = {êi,t};
2. ŷ

[l]
i,h = fi

(
Mi, ê

[l]
i,h

)
is computed for h = 1, . . . , H and l = 1, . . . , L, where f(·) is a

function of the fitted univariate model and its associated error, ŷ
[l]
i,h is a sample path

simulated for the i-th series, and ê
[l]
i,h is the (i, h)-th element of an (n ×H) block

bootstrap matrix containing H consecutive columns randomly drawn from Ê;

3. the optimal reconciliation formula, either according to the structural approach

(4.4) or the projection approach (4.6), is applied to each ŷ
[l]
h .

4.3 Building the linear combination matrix A

In the previous section, we limited ourselves to introduce the linear combination matrix

A in (4.7), in line with the novel classification distinguishing between free (uncon-

strained) and constrained variables. In this section we propose two ways of building

such a matrix in practice.

First, consider the simple case where there are no redundant constraints (nc = p)

and the first nc columns of Γ are linearly independent, so that yt = xt =
[
c′t u′

t

]′
and

Γyt = 0(nc×1). This homogeneous linear system can be written as

Γyt = 0(nc×1) ⇐⇒
[
Γc Γu

] [ct
ut

]
= 0(nc×1),

where Γc ∈ R(nc×nc) contains the coefficients for the constrained variables, and Γu ∈
R(nc×nu) those for the free ones. Thanks to its non-singularity, Γc can be used to derive

the equivalent zero-constrained representation:

[
Inc

(Γc)
−1 Γu

] [ct
ut

]
= Cyt = 0(nc×1), (4.12)

where

C =
[
Inc

−A

]
and A = − (Γc)

−1 Γu. (4.13)

In practical situations, mostly if many variables and/or constraints are involved, cate-

gorizing variables as either constrained or free may be a challenging task4: the goal is

to identify a valid set of free variables with invertible coefficient matrix Γc.

4The issue of defining a valid set of free variables is studied by Zhang et al. (2023) in the framework of
hierarchical/grouped reconciliation with immutable forecasts.
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4.3.1 General (redundant) linear constraints framework

When n is large, it is not always immediate to find a set of non-redundant constraints,

so the method shown in (4.12) may be hardly applied in several real-life situations. We

propose to overcome these issues by employing standard linear algebra tools, like the

Reduced Row Echelon Form or the QR decomposition (Golub and Van Loan, 1996,

Meyer, 2000), that are able to deal with redundant constraints and do not request any

a priori classification of the single variables entering the multiple time series.

Reduced Row Echelon Form (rref)

A matrix is said to be in rref (Meyer, 2000) if and only if the following three conditions

hold:

• it is in row echelon form;

• the pivot in each row is 1;

• all entries above each pivot are 0.

The idea is then very simple: classify as constrained the variables corresponding to the

pivot positions of the rref representation coefficient matrix, while the remaining columns

form the linear combination matrix A. Usually a rref form is obtained through a Gauss-

Jordan elimination (more details in Meyer, 2000). So, let Z ∈ R(nc×n) be the rref of

Γ deprived of any possible null rows, then a permutation matrix P can be obtained

starting from the pivot columns of Z, such that

yt = Pxt =
[
xπc(1),t . . . xπc(nc),t xπu(1),t . . . xπu(nu),t

]
,

where πc(i), i = 1, ..., nc, is the position of the i-th pivot column (i.e., one of the columuns

that identify the constrained variables) and πu(j), j = 1, ..., nu, is the position of the

j-th no-pivot column (i.e., one of the columns associated to the free variables). Then,

the linear combination matrix A can be extracted from the expression

C = ZP ′ =
[
Inc

−A

]
.

Additional examples can be found in the online appendix.

QR decomposition

Given the (p × n) coefficient matrix Γ of the zero-constrained representation (4.1),

Γ = QRP is a QR decomposition with column pivoting (Lyche, 2020), where Q ∈
R(p×p) is a square and orthonormal matrix (Q′Q = QQ′ = Ip), P ∈ {0, 1}(n×n) is a

permutation matrix, and R ∈ R(p×n) is an upper trapezoidal matrix (Anderson et al.,
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1992, 1999) such that

R =





[
Rc Ru

]
if Γ is full-rank


 Rc Ru

0[(p−nc)×nc] 0[(p−nc)×nu]


 if Γ is not full-rank

,

where Rc ∈ R(nc×nc) is upper triangular, and Ru ∈ R(nc×nu) is nonsingular (Golub and

Van Loan, 1996). Applying this decomposition to the homogenous system (4.1), we

obtain

Γxt = QRPxt = QRyt = 0(p×1),

that is equivalent to (Meyer, 2000)



Qz = 0(p×1)

Ryt = z = 0(p×1)

.

Due to the non-singularity of Q, z = 0(p×1) is the unique solution to the homogenous

system Qx = 0(p×1) (Lyche, 2020). Then, the homogeneous system (4.1) representing

a general linearly constrained time series may be re-written as5
[
Rc Ru

]
yt = 0(nc×1).

Finally, from (4.12) we obtain

C =
[
Inc

−A
]

and A = −R−1
c Ru,

where Rc is invertible by construction (Golub and Van Loan, 1996). It is worth noting

that the Pivoted QR decomposition generates a permutation matrix P that “moves”

the free variables in xt to the bottom part of the re-ordered vector yt, that is Pxt =

yt =
[
c′t u′

t

]′
.

It should be noted that in both cases (QR and rref), P = In if the first nc columns

of Γ are linearly independent. This means that both algorithms start by assuming as

constrained and free the variables as they appear in x, whose ordering is then changed

only if it is not feasible for the constraints operating on the multivariate time series in

equation (4.1).

4.4 Empirical applications

In this section we present two macroeconomics applications involving general linearly

constrained multiple time series which do not have a genuine hierarchical/grouped struc-

ture. In the first case, in the wake of Athanasopoulos et al. (2020), we forecast the

Australian GDP from income and expenditure sides, for which Bisaglia et al. (2020)

5Possible null rows, present if Γ is not full-rank, are removed.
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already provided a full row-rank C matrix. The second application concerns the Eu-

ropean GDP disaggregated by three sides (income, expenditure and output) and 19

member countries. In this case, building a full row-rank zero constraints matrix is not

an easy task, so we use a QR decomposition (Section 4.3.1). Detailed informations on

the variables in either dataset are reported in the online appendix.

4.4.1 Reconciled probabilistic forecasts of the Australian GDP

from income and expenditure sides

Athanasopoulos et al. (2020) first considered the reconciliation of point and probabilis-

tic forecasts of the 95 Australian Quarterly National Accounts (QNA) variables that

describe the Gross Domestic Product (GDP ) at current prices from the income and

expenditure sides, interpreted as two distinct hierarchies. In the former case (income),

GDP is the top level aggregate of a hierarchy of 15 lower level aggregates with nI
a = 6

and nI
b = 10, whereas in the latter (expenditure), GDP is the top level aggregate of

a hierarchy of 79 time series, with nE
a = 27 and nE

b = 53 (for details, Athanasopoulos

et al., 2020; Bisaglia et al., 2020; Di Fonzo and Girolimetto, 2022b, and Chapter 1).

Considering these two hierarchies as distinct yields different GDP forecasts depend-

ing on the considered disaggregation (either by income or expenditure). The fact that

the two hierarchical structures describing the National Accounts share only the same

top-level series (GDP ), prevents the adoption for the whole set of n = 95 distinct

variables of the original structural reconciliation approach proposed by Hyndman et al.

(2011). However, it is possible to use the results shown so far for a general linearly

constrained multiple time series. The homogeneous constraints valid for the variables

are described by the following (33× 95) matrix Γ (Bisaglia et al., 2020):

Γ =




1 0′
5 −1′

10 0′
26 0′

53

1 0′
5 0′

10 0′
26 −1′

53

05 I5 −AI 05×26 05×53

026 026×5 026×10 I26 −AE



, (4.14)

where AI ∈ {0, 1}(5×10) and AE ∈ {0, 1}(26×53) are the aggregation matrices for the

income and the expenditure sides, respectively, and Γ has already full row-rank. A

structural-like representation of the multiple time series that incorporates both sides’

accounting constraints may be obtained by transforming Γ through, for example, the

QR technique described in Section 4.3.1. This operation results in a (33 × 95) matrix

C = [I33 −A], where A is the (33×62) linear combination matrix shown in Figure 4.3,

and S = [A′ I62]
′ is the structural-like matrix (see Section 4.2.2).
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−1 0 1

Figure 4.3: Linear combination matrix A for the Australian GDP from income
and expenditure sides.

We perform a forecasting experiment as the one designed by Athanasopoulos et al.

(2020). Base forecasts from h = 1 quarter ahead up to h = 4 quarters ahead for

all the 95 separate time series have been obtained through simple univariate ARIMA

models selected using the auto.arima function of the R-package forecast (Hyndman

and Khandakar, 2008). The first training sample is set from 1984:Q4 to 1994:Q3, and

a recursive training sample with expanding window length is used, for a total of 94

forecast origins. Finally the reconciled forecasts are obtained using three reconcilia-

tion approaches (ols, wls and shr, see Section 4.2.1) through the R package Foreco

(Girolimetto and Di Fonzo, 2023a).

In Athanasopoulos et al. (2020) the probabilistic forecasts of the Australian quar-

terly GDP aggregates are separately reconciled from income
(
X̃I

GDP

)
and expenditure(

X̃E
GDP

)
sides. This means that the empirical forecast distributions X̃I

GDP and X̃E
GDP

are each coherent (see Section 4.2.3) within its own pertaining side with the other empir-

ical forecast distributions, but in general X̃I
GDP ̸= X̃E

GDP at any forecast horizon. This

circumstance could confuse the user, mostly when the difference between the empirical

forecast distributions is not negligible, as shown in Figure 4.4, where the GDP empiri-

cal forecast distributions from income and expenditure sides for 2018:Q1 are presented
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Figure 4.4: Australian GDP empirical one-step-ahead forecast distributions
for 2018:Q1, shr joint bootstrap-based reconciliation approach. Empirical Cu-
mulative Distribution Function (left), and Smoothed density (right).

along with their fully reconciled counterparts through the shr joint bootstrap-based

reconciliation approach (see Section 4.2.3)6.

Point and probabilistic forecasting accuracy

To evaluate the accuracy of the point forecasts we use the Mean Square Error (MSE)7:

MSEj,h =
1

nTh

n∑

i=1

Th∑

t=1

ẽ 2
i,j,t+h,

where ẽi,j,t+h = (ỹi,j,t+h − yi,j,t+h) is the the h-step-ahead forecast error using the ap-

proach j to forecast the i-th series, j = 0 denotes the base forecast (i.e., ỹi,0,t+h = ŷi,t+h),

and t is the forecast origin. To assess any improvement in the reconciled forecasts com-

pared to the base ones, we use the MSE-skill score:
(
1− MSEj,h

MSE0,h

)
× 100.

The accuracy of the probabilistic forecasts is evaluated using the Cumulative Rank

Probability Score (CRPS, Gneiting and Katzfuss, 2014):

CRPS(P̂i, zi) =
1

L

L∑

l=1

|xi,l − zi| −
1

2L2

L∑

l=1

L∑

j=1

|xi,l − xi,j| , i = 1, . . . , n,

6Note that the naive practice of averaging GDP forecasts from different sides yields a single forecast,
that is though inconsistent with the component variables from both sides.

7The Mean Absolute Scaled Error (MASE) leads to the same conclusions (see the online appendix).
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Point forecasts Probabilistic forecasts - CRPS(%)
MSE (%) Bootstrap Gaussian

h ols wls shr ols wls shr ols wls shr

Income
1 1.63 1.07 5.41 0.57 -1.26 0.52 0.13 -1.87 -0.45
2 2.54 5.68 6.10 1.46 0.68 -0.50 1.11 1.26 -0.34
3 2.28 7.81 4.56 0.18 -0.64 -1.93 0.14 -0.24 -1.69
4 1.98 9.33 7.04 -0.08 -1.12 -1.35 -0.23 -1.00 -1.39

Expenditure
1 4.53 0.07 2.48 1.10 0.78 0.08 0.64 -0.83 -0.70
2 5.09 3.90 1.72 2.34 1.25 -1.07 1.68 0.58 -1.95
3 6.96 9.18 6.24 2.42 1.50 -0.38 1.69 1.00 -1.02
4 8.01 11.76 8.34 3.73 2.73 0.72 3.18 2.49 0.20

Fully reconciled
1 4.59 1.14 4.77 1.13 -0.75 -0.20 -0.59 -3.46 -2.85
2 5.76 6.24 4.76 2.81 1.07 -1.27 1.30 -0.33 -3.02
3 7.31 10.94 8.21 1.99 0.26 -1.46 0.91 -0.62 -2.80
4 7.90 13.24 10.81 2.83 0.75 -0.63 1.86 -0.43 -2.05

Table 4.1: MSE and CRPS-skill scores (relative to base forecasts) for the point
and probabilistic Australian GDP forecasts from alternative reconciliation ap-
proaches. Negative values are highlighted in red, the best for each row is marked
in bold.

where P̂i(ω) =
1

L

L∑

l=1

1 (xi,l ≤ ω), x1,x2, . . . ,xL ∈ Rn is a collection of L random draws

taken from the predictive distribution and z ∈ Rn is the observation vector. In addition,

to evaluate the forecasting accuracy for the whole system, we employ the Energy Score

(ES), that is the CRPS extension to the multivariate case8:

ES(P̂ , z) =
1

L

L∑

l=1

∥xl − z∥2 −
1

2(L− 1)

L−1∑

i=1

∥xl − xl+1∥2 .

Results

Table 4.1 shows the MSE and CRPS-skill scores for the GDP point and probabilistic

reconciled forecasts. Table 4.2 presents the MSE and ES-skill scores for all 95 Australian

QNA variables from both income and expenditure sides. The ‘Income’ and ‘Expendi-

ture’ panels, respectively, reproduce the results found by Athanasopoulos et al. (2020).

The ‘Fully reconciled’ panels show the skill scores for the simultaneously reconciled

forecasts. For the point forecasts, all the reconciliation approaches improve forecast

accuracy compared to the base forecasts. In detail, shr is almost always the best ap-

proach for the one-step-ahead forecasts, whereas wls is competitive for h ≥ 2. Looking

at the probabilistic reconciliation results in Table 4.1, it is worth noting that for GDP

ols outperforms both wls and shr, whatever side and framework (parametric or not)

8An alternative to the Energy Score is the Variogram Score (Scheuerer and Hamill, 2015), considered
in the online appendix, that leads to similar conclusions.
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Point forecasts Probabilistic forecasts - ES(%)
MSE (%) Bootstrap Gaussian

h ols wls shr ols wls shr ols wls shr

Income
1 3.16 6.32 10.55 2.30 4.24 6.15 1.87 3.47 5.15
2 2.58 6.07 8.18 2.14 4.08 4.08 1.62 3.41 3.08
3 2.18 5.81 4.09 1.78 3.29 3.19 1.28 2.67 2.35
4 2.18 6.78 5.51 1.86 3.73 4.42 1.42 3.10 3.67

Income - Fully reconciled
1 3.78 7.57 8.85 2.77 4.58 4.87 1.30 1.94 2.25
2 2.91 6.12 6.92 2.59 3.95 3.40 1.20 1.59 0.87
3 2.67 6.23 5.57 2.24 3.70 3.17 0.92 1.60 0.79
4 2.87 7.21 6.07 2.65 4.40 3.95 1.44 2.34 1.59

Expenditure
1 6.50 6.75 8.78 3.71 4.54 4.94 2.20 1.92 2.58
2 4.90 5.50 5.52 2.88 3.04 2.68 1.28 0.67 0.32
3 4.27 6.08 5.65 2.57 2.94 2.29 0.88 0.71 0.09
4 4.01 6.69 5.20 2.43 2.65 1.63 0.77 0.44 -0.65

Expenditure - Fully reconciled
1 6.51 6.82 9.08 3.76 4.57 4.99 2.19 1.79 2.44
2 5.09 6.24 6.54 3.03 3.48 3.14 1.18 0.82 0.57
3 4.38 6.75 5.94 2.58 3.11 2.29 0.81 0.69 -0.12
4 3.98 7.33 5.82 2.36 2.82 1.81 0.60 0.32 -0.70

Table 4.2: MSE and ES-skill scores (relative to base forecasts) for the point and
probabilistic forecasts from alternative reconciliation approaches (all Australian
QNA variables). Negative values are highlighted in red, the best for each row is
marked in bold.

is considered. However, when all 95 variables are considered (Table 4.2), shr and wls

approaches almost always show the best performance. In the Gaussian framework, these

results are confirmed for the income side, whereas shr performs poorly when we look at

the expenditure side (either fully reconciled or not).

In Figure 4.5 are shown the results obtained by the non-parametric Friedman test and

the post hoc “Multiple Comparison with the Best” (MCB) Nemenyi test (Koning et al.,

2005; Kourentzes and Athanasopoulos, 2019; Makridakis et al., 2022) to determine if the

forecasting performances of the different techniques are significantly different from one

another. In general, wls always falls in the set of the best performing approaches. For

the bootstrap-based probabilistic reconciled forecasts of the expenditure side variables,

wls and shr significantly improves in terms of MSE and CRPS compared to the base

forecasts. This result is confirmed in the remaining cases as well.

In conclusion, when income and expenditure sides are simultaneously considered for

both point and probabilistic forecasts, forecast reconciliation succeeds in improving the

base forecasts of GDP and its component aggregates, while preserving the full coherence

with the National Accounts constraints.
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Figure 4.5: MCB Nemenyi test for the fully reconciled forecasts of the Aus-
tralian QNA variables at any forecast horizon. In each panel, the Friedman test
p-value is reported in the lower right corner. The mean rank of each approach
is shown to the right of its name. Statistical differences in performance are in-
dicated if the intervals of two forecast reconciliation approaches do not overlap.
Thus, approaches that do not overlap with the blue interval are considered sig-
nificantly worse than the best, and vice-versa.

4.4.2 Reconciled probabilistic forecasts of the European Area

GDP from output, income and expenditure sides

In this section, we consider the system of European QNA for the GDP at current prices

(in euro), with time series spanning the period 2000:Q1-2019:Q4. This system has many

variables linked by several, possibly redundant, accounting constraints, such that it is

difficult to manually build a system of non-redundant constraints.

The National Accounts are a coherent and consistent set of macroeconomic indi-

cators that are used mostly for economic research and forecasting, policy design, and

coordination mechanisms. In this dataset, GDP is a key macroeconomic quantity that

is measured using three main approaches, namely output (or production), income and

expenditure. These parallel systems internally present a well-defined hierarchical struc-

ture of variables with relevant economic significance, such as Final consumption, on the
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Figure 4.6: Linear combination matrices A for the European Area GDP : out-
put side in panel (a), income side in panel (b), expenditure side in panel (c).

expenditure side, Gross operating surplus and mixed income on the income side, and

Total gross value added on the output side. In the EU countries, the data is processed on

the basis of the ESA 2010 classification and are released by Eurostat9. We consider the

19 Euro Area member countries (Austria, Belgium, Finland, France, Germany, Ireland,

Italy, Luxembourg, Netherlands, Portugal, Spain, Greece, Slovenia, Cyprus, Malta, Slo-

vakia, Estonia, Latvia, and Lithuania) that have been using the euro since 2015. In

Figure 4.6 we have represented the aggregation matrices describing output, income, and

expenditure constraints, respectively: in panel (a), matrix AO for the output side, in

panel (b) matrix AI for the income side, and in panel (c) matrix AE for the expenditure

side. The zero-constraints coefficient matrix describing the QNA variables for a single

country can thus be written as

ΓGDP =



KE −AE 0(13×6) 0(13×3)

KI 0(3×12) −AI 0(3×3)

KO 0(1×12) 0(1×6) −AO


 ,

where KE, KI and KO, respectively, are the following (13× 15), (3× 15) and (1× 15)

matrices:

KE =

[
1 0′

(1×12) 0′
(1×2)

0(12×1) I12 0(12×2)

]
,

9Further information can be found at https://ec.europa.eu/eurostat/esa2010/ and https://ec.

europa.eu/eurostat/web/national-accounts/data/database.
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KI =

[
1 0′

(1×12) 0′
(1×2)

0(2×1) 0(2×12) I2

]
, and KO =

[
1 0′

(1×14)

]
.

This disaggregation is common for almost all European countries, the only differences

being related to the presence/absence of an aggregate measuring the statistical dis-

crepancy in each accounting side10. The (361 × 720) matrix describing the accounting

relationships for the whole EA19 QNA by countries and accounting sides can be written

as follows:

Γ =




ΓGDP 0(17×684)[
0(21×15) I21

]
−1′

19 ⊗
[
0(21×15) I21

]

0(323×36) I19 ⊗ ΓGDP


 ,

where ⊗ is the Kronecker product, and the top-left portion of Γ refers to the European

Area aggregates as a whole. In order to proceed with the calculations, it is necessary

to eliminate the columns related to null variables (e.g., the statistical discrepancy ag-

gregate for the countries/sides where it is not contemplated, see footnote 10). Then,

to eliminate possible remaining redundant constraints, we apply the QR decomposi-

tion (Section 4.3.1). Finally, we obtain the linear combination matrix A, which refers

to 311 free and 358 constrained time series, and the full rank zero-constraints matrix

C =
[
I358 −A

]
.

A rolling forecast experiment with expanding window is performed using ARIMA

models to produce the individual series’ base forecasts. The first training set is set from

2000:Q1 to 2009:Q4, which gives 40 one-step-ahead, 39 two-step-ahead, 38 three-step-

ahead and 37 four-step-ahead ARIMA forecasts, respectively. The used reconciliation

approaches are ols, wls and shr, and the forecast accuracy is evaluated through MSE,

CRPS and ES indices, as described in Section 4.4.1.

Results

Table 4.3 shows the MSE indices for point forecasts, and the ES indices for probabilistic

nonparametric (bootstrap) and parametric (Gaussian) forecasts. The rows of the table

are divided into three parts: the first row shows the results forGDP , the second to fourth

rows the National Accounts’ divisions (income, expenditure, or output sides), while the

10For 14 countries (Belgium, France, Germany, Italy, Luxembourg, Netherlands, Spain, Greece, Slove-
nia, Cyprus, Malta, Slovakia, Latvia, and Lithuania), the expenditure, income and output statistical
discrepancies are not present. A statistical discrepancy aggregate is present in the output QNA of
Portugal and in the expenditure QNA of Finland, Estonia and Austria. Ireland is the only country
where a statistical discrepancy aggregate is present in all accounting sides.
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Point forecasts Probabilistic forecasts - ES(%)
MSE (%) Bootstrap Gaussian

ols wls shr ols wls shr ols wls shr

GDP 14.0 41.1 21.6 9.7 25.8 15.7 3.4 20.8 3.7

Sides
Expenditure 15.8 31.0 28.3 9.1 20.2 16.3 6.8 15.7 8.7
Income -2.2 27.3 9.2 -0.3 15.3 5.6 -2.7 11.6 -3.2
Output 0.3 35.0 15.0 1.2 21.6 12.9 -1.5 17.1 1.3

Countries
EA19 17.6 37.1 31.6 10.1 23.5 18.1 7.8 19.3 10.0
Austria <-30 18.5 21.5 -26.8 12.1 10.0 -21.6 9.1 5.4
Belgium -5.9 13.5 21.0 -2.7 10.7 10.8 -3.1 8.3 5.9
Cyprus <-30 11.7 8.6 <-30 7.1 1.7 <-30 3.6 -2.8
Estonia <-30 20.9 26.8 <-30 12.7 11.2 <-30 9.7 6.7
Finland <-30 24.8 14.7 <-30 15.3 9.5 <-30 13.2 3.4
France 4.4 19.1 -0.1 3.2 11.7 3.8 0.3 7.9 -6.8
Germany 15.0 20.6 25.0 13.5 21.6 18.6 7.5 11.1 6.8
Greece <-30 1.5 <-30 -12.9 3.9 -7.1 -15.1 0.8 -14.1
Ireland 4.1 6.6 3.7 2.1 5.9 3.0 0.5 2.9 -0.7
Italy 9.8 12.6 24.0 8.4 10.8 17.1 4.4 4.9 7.8
Latvia <-30 26.2 18.3 <-30 13.0 8.7 <-30 13.7 5.6
Lithuania <-30 27.3 28.5 <-30 15.0 12.8 <-30 12.1 8.4
Luxembourg <-30 6.6 -10.3 <-30 6.1 -3.0 <-30 2.0 -10.0
Malta <-30 5.4 -9.9 <-30 4.9 -7.4 <-30 0.8 -12.0
Netherlands 7.4 16.9 11.9 6.1 14.1 7.3 3.5 11.7 4.4
Portugal <-30 11.4 -8.1 <-30 7.4 -3.4 <-30 4.1 -10.1
Slovakia <-30 21.5 16.4 <-30 10.0 6.9 <-30 9.2 2.0
Slovenia <-30 24.1 15.5 <-30 13.5 8.3 <-30 11.1 1.8
Spain 6.5 17.7 0.9 5.3 9.2 1.4 1.7 6.4 -7.3

Table 4.3: MSE and ES-skill scores (relative to base forecasts) for the point and
probabilistic forecasts from alternative reconciliation approaches (European Area
QNA). Negative values are highlighted in red, the best for each row is marked in
bold.

remaining rows correspond to the 19 countries and EA19. All forecast horizons are

considered11.

When only GDP is considered, any reconciliation approach consistently outperforms

the base forecasts, both in the point and probabilistic cases. The wls approach confirms

a good performance when we look at the income, expenditure, and output sides (second

panel), while ols shows the worst performance. When the parametric framework is con-

sidered, shr is worse than the base forecast for the income side. At country level, ols is

the approach that overall shows the worst performance, with many relative losses in the

accuracy indices higher than 30%. It is worth noting that all reconciliation approaches

always perform well for the whole Euro Area (EA19). Overall, in this forecasting ex-

periment wls appears to be the most performing reconciliation approach, showing no

negative skill score, and improvements higher than 20% and 10% for nonparametric and

parametric probabilistic frameworks, respectively.

11A disaggregated analysis by forecast horizon is reported in the online appendix.
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(b) Non parametric joint bootstrap probabilistic forecasts
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Figure 4.7: MCB Nemenyi test for the fully reconciled forecasts of the European
Area QNA variables at any forecast horizon. In each panel, the Friedman test
p-value is reported in the lower right corner. The mean rank of each approach
is shown to the right of its name. Statistical differences in performance are in-
dicated if the intervals of two forecast reconciliation approaches do not overlap.
Thus, approaches that do not overlap with the blue interval are considered sig-
nificantly worse than the best, and vice-versa.

Figure 4.7 shows the MCB Nemenyi test at any forecast horizon, distinct by expen-

diture side and income and output sides, respectively. The results just seen are further

confirmed by this alternative forecast assessment tool: it clearly appears that the wls

approach almost always significantly improves compared to the base forecast, in terms

of both point and probabilistic forecasts.

Finally, a visual evaluation of the accuracy improvement obtained through wls fore-

cast reconciliation, although limited to a single forecast horizon, is offered by Figure 4.8,

showing the European map with the CRPS skill scores for the one-step-ahead GDP

non-parametric probabilistic reconciled forecasts. It is worth noting that only for two

countries (Greece and Portugal) a decrease is registered (−3.3% and −4.9%, respec-

tively). In all other cases, improvements in the forecasting accuracy are obtained, with
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Figure 4.8: CRPS-skill scores of the one-step-ahead GDP non-parametric joint
bootstrap probabilistic reconciled (wls) forecasts for the 19 Euro Area countries.

Germany and Lithuania leading the way with about 18%. Furthermore, the improve-

ment in the forecasting accuracy for the EA19−GDP is 24.2%, the highest throughout

the whole Euro Area.



Chapter 5

Cross-temporal probabilistic

forecast reconciliation

5.1 Introduction

Forecast reconciliation is a post-forecasting process intended to improve the quality of

forecasts for a system of linearly constrained multiple time series (Hyndman et al., 2011;

Panagiotelis et al., 2021). There are many fields where forecast reconciliation is useful,

such as when forecasting demand in supply chains with product categories (Punia et al.,

2020; Kourentzes and Athanasopoulos, 2021), electricity demand and power generation

(Spiliotis et al., 2020; Ben Taieb et al., 2021), GDP and its components (Athanasopoulos

et al., 2020), tourist flows across geographic regions and travel purpose (Kourentzes and

Athanasopoulos, 2019), and more. Moreover, effective decision-making depends on the

support of accurate and coherent forecasts, making the use of forecast reconciliation

methods increasingly popular in recent years (Athanasopoulos et al., 2023).

Temporal reconciliation is another important aspect of forecast reconciliation that

can help organizations to better align their forecasting efforts. This approach consists

in reconciling forecasts that are generated at different time horizons, such monthly,

quarterly or annual. For example, a retail company may need to reconcile monthly

forecasts of sales with quarterly forecasts of revenue to ensure that they are aligned and

consistent.

Classical reconciliation approaches (bottom-up, top-down, middle-out, see Dunn

et al., 1976, Gross and Sohl, 1990, Athanasopoulos et al., 2009, respectively) addressed

the issue of incoherent forecasts in a cross-sectional hierarchy by forecasting only one

level and using these to generate forecasts for the remaining series. All of these ap-

proaches ignore useful information available at other levels (Pennings and Van Dalen,

135
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2017). Recently, hierarchical forecasting (Fliedner, 2001) has significantly evolved to in-

clude modern least squares-based reconciliation techniques in the cross-sectional frame-

work (Hyndman et al., 2011; Wickramasuriya et al., 2019; Panagiotelis et al., 2021), later

extended to temporal hierarchies (Athanasopoulos et al., 2017; Nystrup et al., 2020).

Obtaining coherent forecasts across both the cross-sectional and temporal dimensions

(known as cross-temporal coherence) has been limited to sequential approaches that

address each dimension separately (Kourentzes and Athanasopoulos, 2019; Yagli et al.,

2019; Punia et al., 2020; Spiliotis et al., 2020). In Chapter 1, we suggested a unified

reconciliation step that takes into account both the cross-sectional and temporal di-

mensions, instead of dealing with them separately, utilizing the entire cross-temporal

hierarchy.

However, these cross-temporal works focus on point forecasting, and do not con-

sider distributional or probabilistic forecasts (Gneiting and Katzfuss, 2014). In the

cross-sectional and temporal frameworks, there have been some developments towards

probabilistic forecasting including Ben Taieb et al. (2017), Panamtash and Zhou (2018),

Jeon et al. (2019), Yang (2020), Yagli et al. (2020), Ben Taieb et al. (2021), Corani

et al. (2021), Zambon et al. (2024), Corani et al. (2023), and Wickramasuriya (2024).

Panagiotelis et al. (2023) made a significant contribution by formalizing cross-sectional

probabilistic reconciliation using the geometric framework for point forecast reconcili-

ation of Panagiotelis et al. (2021). They show how a reconciled forecast can be con-

structed from an arbitrary base forecast when its density is available and when only a

sample can be drawn. They also show that in the case of elliptical distributions, the

correct predictive distribution can be recovered via linear reconciliation, regardless of

the base forecast location and scale parameters, and derive conditions for this to hold

in the special case of reconciliation via projection.

In this chapter, we extend cross-sectional probabilistic reconciliation to the cross-

temporal case, working on issues related to the two-fold nature of this framework. First,

we revise and develop the notation proposed in Chapter 1 to generalize the work of

Panagiotelis et al. (2023). This allows us to move from cross-temporal point recon-

ciliation to a probabilistic setting through the generalization of definitions and theo-

rems well-established in the cross-sectional framework. Second, we propose solutions

to draw a sample from the base forecast distribution according to either a parametric

approach that assumes Gaussianity or a non-parametric approach that bootstraps the

base model residuals. Third, we propose some solutions to specific problems that arise

when combining the cross-sectional and temporal dimensions. We propose using multi-

step residuals to estimate the relationships between different forecast horizons when we



Chapter 5 - Cross-temporal probabilistic forecast reconciliation 137

deal with temporal levels, since one-step residuals are not suitable for this purpose. To

solve high-dimensionality issues we introduce the idea of overlapping residuals and con-

sider alternative forms for constructing the covariance matrix. Fourth, we propose new

shrinkage procedures for reconciliation that aim to identify a feasible cross-temporal

structure. The algorithms described in this chapter are implemented in the FoReco

package (Girolimetto and Di Fonzo, 2023a) for R (R Core Team, 2022). Furthermore,

the online appendix contains complementary materials on methodological and practical

issues, and supplementary tables and graphs related to the empirical applications.

The remainder of the chapter is structured as follows. In Section 5.2, we provide

a unified notation for the cross-sectional, temporal and cross-temporal point reconcil-

iation. We generalize the cross-sectional definitions and theorems developed by Pana-

giotelis et al. (2023) in Section 5.3, and propose both a parametric Gaussian and a

non-parametric bootstrap approach to draw a sample from the base forecast distribu-

tion. In Section 5.4, we analyze the structure of the cross-temporal covariance matrix,

proposing four alternative forms, and propose shrinkage approaches for reconciliation.

In addition, we explore cross-temporal residuals (overlapping and multi-step) looking

at their advantages and limitations. Two empirical applications using the Australian

GDP and the Australian Tourism Demand datasets are considered in Sections 5.5 and

5.6, respectively.

5.2 Notation and definitions

Let yt = [y1,t, . . . , yi,t, . . . , yn,t]
′ be an n-variate linearly constrained time series observed

at the most temporally disaggregated level, with a seasonality of period m (e.g., m = 12

for monthly data, m = 4 for quarterly data, m = 24 for hourly data). Suppose that the

constraints are expressed by linear equations such that (see Chapter 1)

Ccsyt = 0(na×1), t = 1, . . . , T, (5.1)

where Ccs is the (na × n) zero constraints cross-sectional matrix, that can be seen as

the coefficient matrix of a linear system with na equations and n variables1.

An example is a hierarchical time series where series at upper levels can be expressed

by appropriately summing part or all of the series at the bottom level. Figure 5.1(a)

shows the two-level hierarchical structure for three linearly constrained time series such

that yT,t = yX,t + yY,t, ∀t = 1, ..., T . Now let yt = [u′
t b′t]

′, where ut = [y1,t, . . . , yna,t]
′

1Hyndman (2022) and Chapter 4 show that this “zero-contrained representation” is more general and
computationally efficient.
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yX,t yY,t

yT,t

yi,4τ−3 yi,4τ−2 yi,4τ−1 yi,4τ

x
[2]
i,2τ−1 x

[2]
i,2τ

x
[4]
i,τ

(a) (b)

Figure 5.1: (a) A simple two-level cross-sectional hierarchy for 3 time series
with na = 1 and nb = 2. (b) A temporal hierarchy for a quarterly series (m = 4
and K = {4, 2, 1}).

is the na-vector of upper levels time series and bt =
[
y(na+1),t . . . yn,t

]′
is the nb-

vector of bottom level time series with n = na + nb. The upper and lower level time

series are connected by the cross-sectional aggregation matrix Acs such that ut = Acsbt.

Following Chapter 4, we can always construct a zero-constraints cross-sectional matrix

from the aggregation matrix, Ccs = [Ina
−Acs], where Ina

is an identity matrix of

dimension na. Finally, the cross-sectional structural matrix is given by Scs =

[
Acs

Inb

]
,

providing the structural representation (Hyndman et al., 2011) yt = Scsbt. Considering

the hierarchical example in Figure 5.1(a), we have

Acs =
[
1 1

]
, Ccs =

[
1 −1 −1

]
and Scs =



1 1

1 0

0 1


 .

In general there is no reason for ut to be restricted to simple sums of bt; therefore

Acs ∈ Rna×nb may contain any real values, and not only 0s and 1s.

Considering now the temporal framework, we denote as K = {kp, kp−1, . . . , k2, k1}
the set of p factors of m, in descending order, where k1 = 1 and kp = m (Athana-

sopoulos et al., 2017). For example, for quarterly time series m = 4, p = 3, and

K = {4, 2, 1}. Given a factor k of m, and assuming that T = Nm (where N is the

length of the most temporally aggregated version of the series), we can construct a tem-

porally aggregated version of the time series of a single variable {yi,t}t=1,...,T , through

the non-overlapping sums of its k successive values, which has a seasonal period equal

to Mk =
m

k
: x

[k]
i,j =

jk∑

t=(j−1)k+1

yi,t, where j = 1, . . . , Nk, i = 1, . . . , n, Nk =
T

k
and

x
[1]
i,j = yi,t. Define τ as the observation index of the most aggregate level kp. For

a fixed temporal aggregation order k ∈ K, we stack the observations in the column

vector x
[k]
i,τ =

[
x
[k]
i,Mk(τ−1)+1 x

[k]
i,Mk(τ−1)+2 . . . x

[k]
i,Mkτ

]′
, and obtain the vector for all
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the temporal aggregation orders xi,τ =
[
x
[kp]
i,τ x

[kp−1]′
i,τ . . . x

[1]′
i,τ

]′
, τ = 1, . . . , N . The

structural representation of the temporal hierarchy (Athanasopoulos et al., 2017) is then

xi,τ = Stex
[1]
i,τ , where Ste =

[
Ate

Im

]
is the [(m + k∗) ×m] temporal structural matrix,

Ate =
[
1kp I m

kp−1
⊗ 1kp−1 . . . I m

k2
⊗ 1k2

]′
is the (k∗ ×m) temporal aggregation ma-

trix with k∗ =
∑

k∈K\{k1}

Mk, the number of upper time series of the temporal hierarchy,

1kp is a (kp × 1) vector of all ones, and ⊗ is the Kronecker product. For each series xi,τ ,

i = 1, . . . , n, we have also the zero-constrained representation

Ctexi,τ = 0[k∗×(m+k∗)], τ = 1, . . . , N, i = 1, . . . , n (5.2)

where Cte = [Ik∗ −Ate] is the [k∗ × (m + k∗)] zero constraints temporal matrix. Fig-

ure 5.1(b) shows the hierarchical representation of a quarterly time series, for which

m = 4, K = {4, 2, 1} and

Ate =



1 1 1 1

1 1 0 0

0 0 1 1


 , Cte =



1 0 0 −1 −1 −1 −1

0 1 0 −1 −1 0 0

0 0 1 0 0 −1 −1


 and Ste =

[
Ate

I4

]
.

When we temporally aggregate each series, the cross-sectional constraints for the most

temporally disaggregated series (5.1) hold for all the temporal aggregation orders such

that Ccsx
[k]
j = 0(na×1), for k ∈ K and j = 1, . . . , Nk, where x

[k]
j =

[
u

[k]′
j b

[k]′
j

]′

with u
[k]
j =

[
x
[k]
1, j . . . x

[k]
na, j

]′
is the na-vector of upper time series and b

[k]
j =

[
x
[k]
(na+1), j . . . x

[k]
n, j

]′
is the nb-vector of bottom time series in the temporal hierarchy.

To include both cross-sectional and temporal constraints at the same time in a unified

framework, we stack the series into a [n× (m+ k∗)] matrix Xτ , where we recall that n,

m, and k∗ represent respectively the total number of time series, the seasonal period,

and the number of upper time series of the temporal hierarchy. The rows and columns

represent, respectively, the cross-sectional and the temporal dimension:

Xτ =



x′
1,τ
...

x′
n,τ


 =



U

[kp]
τ U

[kp−1]
τ . . . U

[1]
τ

B
[kp]
τ B

[kp−1]
τ . . . B

[1]
τ


 ,

where for any fixed k, U
[k]
τ is the (na × Nk) matrix grouping the upper time series,

B
[k]
τ is the (nb × Nk) matrix grouping the bottom time series. For example, for the
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Cct =

 xτ−ordered column

Figure 5.2: Visual representation of the zero constraints cross-temporal matrix
Cct defined in (5.3) for a system of 3 linearly constrained quarterly time series
(see Figure 5.1). The four upper rows describe the cross-sectional constraints
(one for each quarter), the remaining rows the temporal constraints (one for
each of the three time series). Colours legend: 0s in white, 1s in black, -1s in
red.

cross-temporal structure of Figure 5.1, we have

Xτ =




x
[4]
T,τ x

[2]
T,2τ−1 x

[2]
T,2τ yT,4τ−3 yT,4τ−2 yT,4τ−1 yT,4τ

x
[4]
X,τ x

[2]
X,2τ−1 x

[2]
X,2τ yX,4τ−3 yX,4τ−2 yX,4τ−1 yX,4τ

x
[4]
Y,τ x

[2]
Y,2τ−1 x

[2]
Y,2τ yY,4τ−3 yY,4τ−2 yY,4τ−1 yY,4τ


 .

Further, CcsXτ = 0[na×(m+k∗)] and CteX
′
τ = 0(k∗×n). We can consider the cross-

temporal framework as a generalization of the cross-sectional and temporal frameworks,

that simultaneously takes into account both types of constraints. The cross-sectional

reconciliation approach proposed by Hyndman et al. (2011) can be obtained by assum-

ing m = 1, while the temporal one (Athanasopoulos et al., 2017) is obtained when n = 1

(with na = 0 and nb = 1).

Chapter 1 shows that the cross-temporal constraints working on the complete set

of observations corresponding to time period τ can be expressed in a zero-constrained

representation through the full rank [(nam+ nk∗)× n(m+ k∗)] zero constraints cross-

temporal matrix Cct such that

Cct =

[
C∗

In ⊗Cte

]
=⇒ Cctxτ = 0[(nam+nk∗)×1] for τ = 1, . . . , N, (5.3)

where xτ = vec(X ′
τ ) = [x′

1,τ , . . . , x
′
n,τ ]

′, C∗ = [0(nam×nk∗) Im ⊗Ccs]P
′, P is the com-

mutation matrix (Magnus and Neudecker, 2019, p. 54) such that P vec(Xτ ) = vec(X ′
τ ),
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Figure 5.3: Visual representation of the cross-temporal summation matrix
Sct = Scs ⊗ Ste defined in (5.4) for a system of 3 linearly constrained quar-
terly time series (see Figure 5.1). Colours legend: 0s in white, 1s in black.

and the operator vec(·) converts a matrix into a vector. Figure 5.2 shows a visual ex-

ample for the zero constraints cross-temporal matrix. A structural representation can

be considered as well: xτ = Sctb
[1]
τ = s(b

[1]
τ ), where

Sct = Scs ⊗ Ste (5.4)

is the [n(k∗ +m)× nbm] cross-temporal summation matrix, s : Rnbm → Rn(m+k∗) is the

operator describing the pre-multiplication by Sct, and b
[1]
τ = vec(B

[1]′
τ ). In Figure 5.3,

we have represented Sct for a system of 3 linearly constrained quarterly time series

(see Figure 5.1). In agreement with Panagiotelis et al. (2021), xτ lies in an (nbm)-

dimensional subspace sct of R
n(k∗+m), which we refer to as the cross-temporal coherent

subspace, spanned by the columns of Sct.
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5.2.1 Optimal point forecast reconciliation

For h = 1, . . . , H, let

X̂h =



x̂′
1,h
...

x̂′
n,h


 =



Û

[m]
h . . . Û

[k]
h . . . Û

[1]
h

B̂
[m]
h . . . B̂

[k]
h . . . B̂

[1]
h


 ,

be the h-step ahead base forecasts, where Û
[k]
h is the (na ×Mk) matrix grouping the

upper time series, B̂
[k]
h is the (nb ×Mk) matrix grouping the bottom time series for a

given temporal aggregation order k andH is the forecast horizon for the most temporally

aggregated time series. Based on the example in Figure 5.1 for H = 1, we have that

X̂1 =




x̂
[4]
T,1 x̂

[2]
T,1 x̂

[2]
T,2 ŷT,1 ŷT,2 ŷT,3 ŷT,4

x̂
[4]
X,1 x̂

[2]
X,1 x̂

[2]
X,2 ŷX,1 ŷX,2 ŷX,3 ŷX,4

x̂
[4]
Y,1 x̂

[2]
Y,1 x̂

[2]
Y,2 ŷY,1 ŷY,2 ŷY,3 ŷY,4


 .

The matrix X̂h, contains incoherent forecasts, such as Cctx̂h ̸= 0[(nam+nk∗)×1] with h =

1, . . . , H and x̂h = vec(X̂ ′
h). In this framework, the definition for forecast reconciliation

in the cross-sectional framework given by Panagiotelis et al. (2021) can be generalized

as follows.

Definition 5.1. Forecast reconciliation adjusts the base forecast x̂h by finding a map-

ping ψ : Rn(m+k∗) → s such that x̃h = ψ (x̂h), where x̃h ∈ s is the vector of the

reconciled forecasts.

For a given forecast horizon h = 1, . . . , H, the mapping ψ may be defined as a

projection onto s given by (Panagiotelis et al., 2021, and see also Chapter 1)

x̃h = ψ (x̂h) = Mx̂h, (5.5)

where M = In(m+k∗) −ΩctC
′
ct (CctΩctC

′
ct)

−1
Cct, for a positive definite matrix Ωct, and

x̃h = vec(X̃ ′
h). Wickramasuriya et al. (2019) showed that the minimum variance linear

unbiased reconciled forecasts, satisfying the unbiasedness condition E(x̃h−xh) = 0, has

solution (5.5) when Ωct = Var(x̂h − xh).

Alternatively, the cross-temporal reconciled forecasts X̃h may be found according

to the structural approach proposed by Hyndman et al. (2011) for the cross-sectional

framework, yielding x̃h = SctGx̂h for some matrix G. Wickramasuriya et al. (2019)

showed that this leads to a solution equivalent to the cross-temporally reconciled fore-

casts in (5.5), given by

x̃h = ψ (x̂h) = (s ◦ g) (x̂h) = SctGx̂h, (5.6)
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[k2]
cs(bu) Ũ
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Figure 5.4: A visual representation of partly bottom up starting from (5.4a)

cross-sectionally reconciled forecasts for the temporal order 1 (Ũ [1] and B̃[1])
followed by temporal bottom-up, and (5.4b) temporally reconciled forecasts of

the cross-sectional bottom time series (B̃[k], k ∈ K) followed by cross-sectional
bottom-up. The blue background indicates generating reconciled forecasts along
one dimension, while the pink background indicates the forecasts obtained using
bottom-up along the other.

where G = (S′
ctΩ

−1
ct Sct)

−1S′
ctΩ

−1
ct , and M = SctG. In this case, ψ is the composition

of two transformations, say s ◦ g, where g : Rn(m+k∗) → Rnbm is a continuous function.

In the online appendix A we report some cross-sectional, temporal and cross-temporal

approximations for the covariance matrix to be used in (5.5) and (5.6).

5.2.2 Cross-temporal bottom-up forecast reconciliation

The classic bottom-up approach (Dunn et al., 1976; Dangerfield and Morris, 1992) sim-

ply consists in summing-up the base forecasts of the most disaggregated level in the

hierarchy to obtain forecasts of the upper-level series. To reduce the computational cost

involved in optimal cross-temporal reconciliation, we may be interested in applying a

reconciliation along only one dimension (cross-sectional or temporal) and reconstructing

the cross-temporal structure using a partly bottom-up approach (Sanguri et al., 2022,

see also Chapter 2).

Figure 5.4 provides a visual representation of partly bottom-up in a two-step cross-

temporal reconciliation approach. On the left (Figure 5.4a), we first compute the

cross-sectionally reconciled forecasts at the highest frequency (k = 1), and then apply

temporal bottom-up to obtain coherent cross-temporal forecasts. On the right (Fig-

ure 5.4b), we first compute temporally reconciled forecasts for the most disaggregated

cross-sectional level, and then apply the cross-sectional bottom-up. We denote these

two-step reconciliation approaches, respectively, as ct(recte, bucs), and ct(reccs, bute),

where ‘recte’ and ‘reccs’ denote a forecast reconciliation approach in the temporal and
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cross-sectional dimensions and, ‘bucs’ and ‘bute’ denote using bottom-up in the cross-

sectional and temporal dimensions, respectively. It is worth noting that the simple cross-

temporal bottom-up approach corresponds to ct(bucs, bute) = ct(bute, bucs) = ct(bu).

5.3 Probabilistic forecast reconciliation

To introduce the idea of coherence and probabilistic forecast reconciliation, we adapt the

notations and the formal definitions introduced in Wickramasuriya (2024) and Pana-

giotelis et al. (2023) for the cross-sectional probabilistic case. These definitions can also

be generalized to the cross-temporal framework by following the approach developed

by Corani et al. (2023) for count data. However, in this chapter we only focus on the

continuous case.

Our aim is to extend these definitions to cross-temporal coherent probabilistic fore-

casts and cross-temporal probabilistic forecast reconciliation. Let (Rnbm,FRnbm , ν) be a

probability space for the bottom time series b
[1]
τ , where FRnbm is the Borel σ-algebra on

Rnbm. Then a σ-algebra Fs can be constructed from the collection of sets s(B) for all
B ∈ FRnbm .

Definition 5.2 (Cross-temporal coherent probabilistic forecasts). Given the probability

space (Rnbm,FRnbm , ν), we define the coherent probability space as the triple (s,Fs, ν̆)

satisfying the following property: ν̆(s(B)) = ν(B), ∀B ∈ FRnbm .

Let (Rn(m+k∗),FRn(m+k∗) , ν̂) be a probability space referring to the incoherent proba-

bilistic forecast (x̂h) for all the n series in the system at any temporal aggregation order

k ∈ K.

Definition 5.3 (Cross-temporal probabilistic forecast reconciliation). The reconciled

probability measure of ν̂ with respect to ψ is a probability measure ν̃ on s with σ-algebra

Fs satisfying

ν̃(A) = ν̂(ψ−1(A)), ∀A ∈ Fs, (5.7)

where ψ−1(A) = {x ∈ Rn(m+k∗) : ψ(x) ∈ A} denotes the pre-image of A.

The map ψ may be obtained as the composition s◦g, as for the cross-temporal point

reconciliation (5.6).

Theorem 5.4 (Cross-temporal reconciled samples). Suppose that (x̂1, . . . , x̂L) is a sam-

ple drawn from a (cross-temporal) incoherent probability measure ν̂. Then (x̃1, . . . , x̃L),

where x̃ℓ = ψ(x̂ℓ) and ℓ = 1, . . . , L, is a sample drawn from the (cross-temporal) recon-

ciled probability measure ν̃ defined in (5.7).
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Proof. See Theorem 4.5 in Panagiotelis et al. (2023) using Definition 5.3.

Theorem 5.4 is the cross-temporal extension of Theorem 4.5 in Panagiotelis et al.

(2023), valid only for the cross-sectional case. It means that a sample from the reconciled

distribution can be obtained by reconciling each member of a sample from the incoherent

distribution. With this result, we can separate the mechanism used to generate the base

forecasts samples from the reconciliation phase.

5.3.1 Parametric framework: Gaussian reconciliation

It is possible to obtain a reconciled probabilistic forecast analytically for some parametric

distributions, such as the multivariate normal (Corani et al., 2021; Eckert et al., 2021;

Panagiotelis et al., 2023; Wickramasuriya, 2024). In the cross-sectional framework,

Panagiotelis et al. (2023) show that, starting from an elliptical distribution for the

base forecasts, the reconciled forecast distribution is also elliptical. Using the results

shown in Section 5.2, we extend2 this results to the cross-temporal case. To obtain

a reconciled forecast using the multivariate normal distribution, we start with a base

forecast distributed as N (x̂,Ω), where x̂ is the mean vector and Ω is the covariance

matrix of the base forecasts. Using standard results for the Gaussian case, the reconciled

forecast distribution is given by N (x̃, Ω̃), where

x̃ = Mx̂ and Ω̃ = MΩM ′, (5.8)

where M is the projection matrix defined in (5.5). Note that if we assume that Ω = Ωct

(see the projection matrices in (5.5) and (5.6)), then the covariance matrix in (5.8)

simplifies to Ω̃ = MΩct. In the cross-temporal case, sensibly estimating the covariance

matrix Ω can be difficult because we need to simultaneously consider both the temporal

and cross-sectional structures. This requires many parameters to be estimated, which

can be challenging in practice. Additionally, naively using one-step residuals to estimate

the cross-temporal correlation structure can lead to an inappropriate estimate of the

covariance matrix3. These challenges will be explored in more depth in the following

sections.

Focusing on the computational aspect4, we can take several steps to reduce the time

required to obtain simulations from the reconciled forecast distribution. For example

when dealing with a genuine hierarchical structure, it is not necessary to simulate from

a normal distribution with a defined covariance matrix for the entire structure. Instead,

2We assume H = 1 and simplify the notation by removing the h suffix without loss of generality
3In particular, some temporal covariances are fixed to zero (see the online appendix C for more details).
4We use two R packages to sample from a the base forecast Gaussian distribution: MASS (Venables and
Ripley, 2002) and Rfast (Papadakis et al., 2022) in Sections 5.5 and 5.6, respectively.
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Figure 5.5: Overview of cross-temporal forecast reconciliation in the Gaussian
framework: two different but equivalent ways of obtaining reconciled forecast
samples, as described in Section 5.3.1. The acronyms R.F and B.F. stand for
Reconciled and Base Forecasts, respectively. HF-BTS stands for High Frequency
Bottom Time Series.

we can utilize the properties of elliptical distributions to simulate from the high fre-

quency bottom time series and then obtain the complete simulation through the Sct

matrix. Furthermore, we do not need to calculate the reconciled mean and variance and

generate a new sample if we already have a sample from the normal distribution of the

base forecasts; we can simply apply the point forecast reconciliation (5.5) as outlined

in Theorem 5.4. Figure 5.5 shows two different but equivalent ways of obtaining recon-

ciled forecast samples: the former from the base distribution through the Theorem 5.4,

and the latter from the reconciled distribution through the high frequency bottom time

series forecasts b̃[1] only. The two rectangles represent the base and reconciled forecast

distributions, respectively. Enclosed within circles are the distribution parameters in-

volved in the point forecast reconciliation process, transforming x̂ into x̃ and Ω into Ω̃.

The wave-like arrows represent the simulation processes, generating both base and rec-

onciled forecast samples. Finally, the bold double arrow “⇒” illustrates the generation

of the reconciled forecast distributions as described in Theorem 5.4.

5.3.2 Non-parametric framework: bootstrap reconciliation

Analytical expressions for the base and reconciled forecast distributions are sometimes

challenging to obtain. Furthermore parametric assumptions can be restrictive and un-

realistic. We propose a procedure called cross-temporal joint (block) bootstrap (ctjb)

to generate samples from the base forecast distributions that preserve cross-temporal

relationships. This approach involves drawing samples of all series simultaneously from
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Figure 5.6: Example of bootstrapped residuals for 3 linearly constrained quar-
terly time series (see Figure 5.1). On the left there are the residual matrices
with 4 years of data (N = 4): the green, blue, red and black colors correspond,
respectively, to years 1, 2, 3 and 4. On the right the bootstrapped residuals are
represented.

the most temporally aggregated level, and using the most temporally aggregated level

to determine the corresponding time indices for the other levels.

Let Ê[k] be the (n × Nk) matrix of the residuals for k ∈ K. Figure 5.6 (on the left)

provides a visualization of these matrices and how they are related to each other for

the example in Figure 5.1. It is assumed that the residuals cover four years (N = 4):

the green color corresponds to the first year, the blue to the second year, and so on.

Further, let Mi be the model used to calculate the base forecasts and residuals for the

ith series. Assuming H = 1, τ is a random draw with replacement from 1, . . . , N and

the ℓth bootstrap incoherent sample is x̂
[k]
i,ℓ = fi(Mi, ê

[k]
i ), where fi(·) depends on the

fitted model Mi. That is, x̂
[k]
i,l is a sample path simulated for the ith series with error

approximated by the corresponding block bootstrapped sample residual ê
[k]
i , the ith row

of

Ê[k]
τ =




ê
[k]
1,Mk(τ−1)+1 . . . ê

[k]
1,Mkτ

...
. . .

...

ê
[k]
n,Mk(τ−1)+1 . . . ê

[k]
n,Mkτ


 k ∈ K.

Figure 5.6 (on the right) shows Ê
[k]
τ for the quarterly cross-temporal hierarchy in Fig-

ure 5.1.

One of the main advantages of the cross-temporal joint bootstrap is that it allows

us to accurately account for the dependence between the different levels of temporal

aggregation and not only the cross-sectional dependencies. By sampling residuals from

the most temporally aggregated level and using it to determine the indices for the other
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levels, we can ensure that the bootstrap sample reflects the underlying data distribu-

tion. Additionally, the cross-temporal joint bootstrap is easy to implement for many

forecasting models, making it a practical and efficient tool. Furthermore, this approach

is easily scalable in order to utilize multiple computing power simultaneously for each

individual series. This can be especially useful when dealing with large datasets or when

trying to speed up the analysis process.

5.4 Cross-temporal covariance matrix estimation

As the covariance matrix Ω is unknown in practice, a natural estimate is the empirical

sample covariance matrix of the base forecasts Ω̂. In this section, our focus will be

exclusively on the cross-temporal framework., this means that we have to estimate

r = n(k∗ +m)[n(k∗ +m)− 1]/2 different parameters. A possible solution to estimating

many parameters when we have fewer observations than r, is to construct a shrinkage

estimator (Efron, 1975; Efron and Morris, 1975, 1977), using a convex combination of Ω̂

and a diagonal target matrix Ω̂D = Ω̂⊙In(k∗+m), such that Ω̂G = λΩ̂D+(1−λ)Ω̂, where

λ ∈ [0, 1] is the shrinkage intensity parameter that can be estimate using the unbiased

estimator proposed by Ledoit and Wolf (2004) (see Schäfer and Strimmer, 2005). The

linear combination involving these two matrices is referred to as Global shrinkage (G),

where all off-diagonal elements are shrunk towards zero. Ω̂G corresponds to the matrix

used by the reconciliation approach oct(shr) (see Chapter 1). However, shrinking all

off-diagonal elements to zero, when we know that the covariance matrix has a cross-

sectional and/or temporal structure, results in information loss. Therefore, we propose

to estimate a smaller matrix, and to use the cross-sectional and/or temporal structure

to obtain a better estimator for the covariance matrix of the entire system. Given that

Sct = Scs ⊗ Ste, it is possible to express the actual covariance matrix in terms of three

smaller matrices such that

Ω̃ = SctΩhf-btsS
′
ct

= (In ⊗ Ste)Ωhf (In ⊗ Ste)
′

= (Scs ⊗ Im+k∗)Ωbts (Scs ⊗ Im+k∗)
′ ,

(5.9)

whereΩhf-bts is the (nbm×nbm) covariance matrix for the bottom time series at temporal

aggregation level k = 1 (highest frequency bottom time series), Ωhf is the (nm × nm)

covariance matrix related to all the high frequency time series and Ωbts is the [nb(k
∗ +

m) × nb(k
∗ + m)] covariance matrix related to bottom time series at any temporal

aggregation. Equation (5.9) offers three decompositions of the covariance matrix Ω̃,

each characterized by well-defined structures: Sct capturing cross-temporal, In ⊗ Ste
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Method # of different parameters GDP Tourism

G r =
n(k∗ +m)[n(k∗ +m)− 1]

2
221 445 108 052 350

B rHB <
nb(k

∗ +m)[nb(k
∗ +m)− 1]

2
< r 94 395

(57%)
36 231 328

(66%)

H rHB <
nm[nm− 1]

2
< r 72 390

(67%)
19 848 150

(82%)

HB rHB =
nbm[nbm− 1]

2
< r 30 876

(86%)
6 655 776
(94%)

Table 5.1: Number of different parameters that need to be estimated for the
Australian GDP (see Section 5.5) and the Australian Tourism Demand (see
Section 5.6) forecasting experiments. The percentage reductions in the number
of parameters compared to the global approach G are reported in parentheses.

temporal, and Scs⊗Im+k∗ cross-sectional relationships. At the same time, each involves

smaller covariance matrices asΩhf-bts, Ωhf, andΩbts. Starting from these representations,

we propose three different approaches (HB, H, and B, respectively) to approximate Ω̃.

Therefore, we can apply the idea of “Stein-type shrinkage” (Efron and Morris, 1977)

to Ωhf-bts, Ωhf and Ωbts by using the corresponding empirical base forecasts residuals

estimation. We obtain the following expressions (see the online appendix B for details):

• High frequency Bottom time series shrinkage matrix (HB):

Ω̂HB = λSctΩ̂hf-bts,DS
′
ct + (1− λ)SctΩ̂hf-btsS

′
ct;

• High frequency shrinkage matrix (H ):

Ω̂H = λ(In ⊗ Ste)Ω̂hf,D(In ⊗ Ste)
′ + (1− λ)(In ⊗ Ste)Ω̂hf(In ⊗ Ste)

′;

• Bottom time series shrinkage matrix (B):

Ω̂B = λ (Scs ⊗ Im+k∗) Ω̂bts,D (Scs ⊗ Im+k∗)
′+(1−λ) (Scs ⊗ Im+k∗) Ω̂bts (Scs ⊗ Im+k∗)

′,

where Ω̂l,D = Inbm ⊙ Ω̂j, l = {hf-bts, hf, bts}, and λ is the shrinkage parameter. These

matrices are not full rank, meaning their inverses, needed to compute the projection to

the coherent subspace, do not exist. To address this, a ridge regularization of the form

Ω̂ + ωI was used (Marquardt, 1970), where ω is chosen to make the matrix invertible

without introducing excessive bias. Figure 5.7 gives some visual insights on the covari-

ance matrices obtainable with λ = 0 and λ = 1, respectively, for a simple cross-temporal

hierarchical structure with 3 time series and K = {4, 2, 1} (see Figure 5.1).

Another important aspect is the number of parameters to be estimated through the

residuals of the base forecasts. In Table 5.1 we report the number of different parameters

for the two forecasting experiment: Australian GDP (see Section 5.5) and Australian
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Global (G)
High frequency bottom

time series (HB)
High frequency (H) Bottom time series (B)

λ
=

0
λ

=
1

Figure 5.7: Representation of four types of covariance matrices that can be
obtained from the cross-temporal hierarchical structure (example based on the
quarterly series of Figure 1) for two different values of λ ∈ {0, 1}, the shrinkage
parameter. The entries in black are not modified by shrinkage, the entries in light
blue are those actively involved in the shrinkage phase, while the entries in darker
blue are derived directly from the cross-sectional and/or temporal structure and
hence not estimated. For λ = 1, the white entries correspond to a zero value.

Tourism Demand (see Section 5.6). In addition, we also calculate the percentage reduc-

tions in the number of parameters compared to the global approach. As we can see, G

involves a considerably large number of parameters compared to other estimators. HB

leads to the largest decrease of around 85%, whereas approaches H and B lie somewhere

between G and HB. In general, as m and n increase, using H requires the estimation of

less parameters than B.

It is worth noting that when using the HB covariance matrix, we make the as-

sumption that the base error covariance matrix is coherent. This assumption is valid

provided the base forecasts also approximately fulfil constraints (5.3), which is expected

for any reasonable set of forecasts. In addition, with this covariance matrix, the com-

putational complexity of the reconciliation phase is reduced. Specifically, Theorem 5.5

extends Theorem 1 in Hyndman et al. (2011), showing that reconciling using a coherent

covariance matrix simplifies to the ols approach.

Theorem 5.5. Let Ω̂hf−bts be a [(nbm) × (nbm)] positive-definite matrix. Then, using

Ωct = SctΩ̂hfbtsS
′
ct in the reconciliation formulae (5.5) and (5.6) is equivalent to using

Ωct = In(m+k∗) (ols approach).

Proof. See the online appendix B.
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In the forecasting experiments that follow (and in the simulation in the online ap-

pendix C), we closely analyze these different constructions with a dual purpose. In

particular, we use the full covariance matrix (λ = 0) of the base forecasts to obtain

base forecast samples of the linearly constrained time series under Gaussianity. We also

use the shrinkage versions as approximations of the covariance matrix to be used for

reconciliation (excluding HB, see Theorem 5.5). This will allow us to better understand

the properties and abilities of each parameterization.

5.4.1 Multi-step residuals

Model residuals may be used to estimate the covariance matrix in cross-temporal forecast

reconciliation. In time series analysis, it is common to use residuals corresponding

to one-step ahead forecasts. However, due to the temporal dimension in our setting,

residuals corresponding to different forecast horizons are required. Thus, we define

multi-step residuals as e
[k]
i,h,j = x

[k]
i,j+h − x̂

[k]
i,j+h|j, where i = 1, . . . , n, j = 1, . . . , Nk and

x̂
[k]
i,j+h|t is the h-step fitted value, calculated as the h-step-ahead forecast using data up

to time j. In general, these residuals will be autocorrelated except when h = 1.

Following Chapter 1, we use a matrix organization of the residuals similar to

the one for the base forecasts in Section 5.2.1. Specifically, let N be the total

number of observations for the most temporally aggregate time series. Then, the

Nk-vectors of multi-step residuals for the temporal aggregation k and the series i,

e
[k]
i,h =

[
e
[k]
i,h,1 e

[k]
i,h,2 . . . e

[k]
i,h,Nk

]′
with h = 1, . . . ,Mk, can be organized in matrix

form as

E
[k]
i =




e
[k]
i,1,1 e

[k]
i,2,2 . . . e

[k]
i,Mk,Mk

...
...

...

e
[k]
i,1,Nk−Mk+1 e

[k]
i,2,Nk−Mk+2 . . . e

[k]
i,Mk,Nk


 .

Let Ei =
[
E

[m]
i E

[kp−1]
i . . . E

[1]
i

]
. Then the [N×n(m+k∗)] cross-temporal residual

matrix is given by E =
[
E1 E2 . . . En

]
.

To better understand the properties of the proposed alternatives, a simulation study

was performed (the results are shown in the online appendix C). We have studied the

effect of combining cross-sectional and temporal aggregations using a simple hierarchy,

where the small size and nature of the data generating process make it possible to

exactly calculate the true cross-temporal covariance structure, thus providing insights

into the nature of the time series data involved in the forecast reconciliation process. We

find that simulating base forecasts from multi-step residuals allows for a more accurate

estimation of the covariance matrix and that reconciliation further improves the forecast

accuracy.
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5.4.2 Overlapping residuals

Another issue that arises in the case of cross-temporal reconciliation is the low number of

available residuals, especially for the higher orders of temporal aggregation. A possible

solution is to use residuals calculated using overlapping series by allowing the year to

have a varying starting time. To better explain how to calculate overlapping residuals,

assume we have a single series y = [y1 y2 y3 . . . yT−1 yT ]
′. We can construct k non

overlapping series such that x[k],s =
{
x
[k],s
j

}Nk−s

j=1
where

x
[k],s
j =

jk−s∑

t=(j−1)k+s+1

yt,

with s = 0, . . . , (k − 1). For example, suppose we have a biannual series with k = 2

and T = 6, then we can construct two annual time series depending on which time is

deemed the start of the year:

x[2],0 =
[
x
[2],0
1 x

[2],0
2 x

[2],0
3

]′
=
[
y1 + y2 y3 + y4 y5 + y6

]′
and

x[2],1 =
[
x
[2],1
1 x

[2],1
2

]′
=
[
y2 + y3 y4 + y5

]′
.

To calculate overlapping residuals, we propose the following steps:

1. Fit a model to x[k],0 (i.e., select an appropriate model and estimate the model

parameters using the available data) and calculate the residuals.

2. Apply the same model in step 1 to x[k],s for s = 1, . . . , k−1, without re-estimating

the parameters, and calculate the residuals.

The resulting residuals can be used to estimate the covariance matrix in cross-

temporal forecast reconciliation. This increases the number of available residuals, par-

ticularly when working with higher frequency observations such as monthly or daily

data. It is important to note that this approach assumes that the model used in step 1

is appropriate for all the different series x[k],s. Some seasonal models will not be appro-

priate as the seasonal pattern will be shifted for different values of s. However, this will

not affect seasonal ARIMA models as the seasonality is defined in terms of lags which

are unaffected by the value of s.

5.5 Forecasting Australian GDP

The Australian Quarterly National Accounts (QNA) dataset has been widely studied

in the literature on forecast reconciliation (Athanasopoulos et al., 2020; Bisaglia et al.,

2020). Building on these results, we now consider cross-temporally reconciled proba-

bilistic forecasts.
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Label Description

ct(shrcs, bute)
Partly bottom-up (Section 5.2.2) starting from cross-sectional
reconciled forecasts using the shr approach.

oct( · )
Optimal cross-temporal reconciliation for the struc, wlsv and
bdshr approaches. One-step residuals were used with wlsv and
bdshr.

octh( · )
Optimal cross-temporal reconciliation with multi-step residuals
(see Section 5.4.1) for the approaches presented in Section 5.4:
hshr for High frequency shrinkage, and bshr for bottom time
series shrinkage.

octo( · ) Optimal cross-temporal reconciliation with overlapping residuals
(see Section 5.4.2) for the wlsv and bdshr approaches.

octoh(hshr)
Optimal cross-temporal reconciliation with overlapping and
multi-step residuals (see Section 5.4.1 and 5.4.2) for the hshr
(High frequency shrinkage) approach presented in Section 5.4.

Table 5.2: Cross-temporal reconciliation approaches for the Australian GDP
(see Section 5.5) and the Australian Tourism Demand (see Section 5.6) fore-
casting experiments. All the reconciliation procedures are available in FoReco

(Girolimetto and Di Fonzo, 2023a).

We use univariate ARIMA models5 to obtain quarterly base forecasts for the n = 95

QNA time series, spanning the period 1984:Q4 – 2018:Q1, defining GDP from both

the Income and Expenditure sides. We perform a rolling forecast experiment with an

expanding window: the first training sample spans the period 1984:Q4 to 1994:Q3, and

the last ends in 2017:Q1, for a total of 91 forecast origins. For the temporal aggregation

dimension we aggregate the quarterly data to both semi-annual and annual. We obtain

4-step, 2-step and 1-step ahead base forecasts respectively from the quarterly, semi-

annual and annual frequencies, i.e., K = {4, 2, 1}.
The base forecast samples in the Gaussian case are obtained using the sample co-

variance matrices with the Global (G) and High frequency (H) parameterization (Sec-

tion 5.4), since it is not possible to identify a unique representation for the other cases6.

We compare the results obtained using multi-step residuals with and without over-

lapping, in order to measure the benefit of obtaining overlapping residuals. In the

5We use the auto.arima function from the R package forecast (Hyndman et al., 2023).
6When simultaneously considering Income and Expenditure sides hierarchies, the result is a general
linearly constrained time series, where bottom and upper time series are not uniquely defined, making
unfeasible the cross-sectional bottom-up reconciliation approach (see Chapter 4).
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Reconciliation
approach

ctjb Gh Hh Goh Hoh

base 29.01 2.21 2.17 2.14 2.18

ct(shrcs, bute) + 0.19 + 0.13 + 0.12 + 0.30 + 0.30
ct(wlscs, bute) + 0.21 + 0.31 + 0.31 + 0.33 + 0.35
octo(wlsv) + 0.25 + 0.24 + 0.22 + 0.22 + 0.22
octo(bdshr) + 0.48 + 0.44 + 0.45 + 0.45 + 0.45
octoh(hshr) + 0.64 + 0.65 + 0.64 + 0.65 + 0.64

Table 5.3: Computational time (in seconds) for the first iteration of the Aus-
tralian QNA forecasting experiment. The first row (base) reports the time to
simulate 1000 samples, and the remaining rows the additional time to reconcile
them with different approaches.

non-parametric case, we use the cross-temporal joint bootstrap (ctjb) presented in Sec-

tion 5.3.2. Finally, to reconcile the resulting (1000) base forecasts samples, we have ap-

plied the following techniques7 (see Table 5.2): ct(shrcs, bute), ct(wlscs, bute), octo(wlsv),

octo(bdshr), and octoh(hshr).

The accuracy of the probabilistic forecasts is evaluated using the Continuous Ranked

Probability Score (CRPS, Matheson and Winkler, 1976; Gneiting and Katzfuss, 2014),

which is an index that considers the single series and provides us a marginal evaluation

of the approaches. In addition, we employ the Energy Score (ES, Gneiting and Katzfuss,

2014), that is the CRPS extension to the multivariate case, to evaluate the forecasting

accuracy for the whole system (Panagiotelis et al., 2023; Wickramasuriya, 2024). In

particular, we consider the geometric mean of the relative CRPS (Fleming and Wallace,

1986), and the relative ES:

RelCRPS
[k]

j,s =

(
n∏

i=1

CRPS
[k]
i,j,s

CRPS
[k]
i,0,0

) 1
n

and RelES
[k]
j,s =

ES
[k]
j,s

ES
[k]
0,0

, (5.10)

where j denotes the reconciliation approach and s indicates the approach used to sim-

ulate the base forecasts. As a reference approach (s = 0 and j = 0), we consider the

base forecasts produced by the Bootstrap approach. If we consider all the temporal

aggregation orders (i.e. ∀k ∈ K), the overall accuracy indices are given by, respectively,

RelCRPSj,s =



∏

i=1,...,n
k∈K

CRPS
[k]
i,j,s

CRPS
[k]
i,0,0




1
n(k∗+m)

and RelESj,s =

(∏

k∈K

ES
[k]
j,s

ES
[k]
0,0

) 1
(k∗+m)

. (5.11)

Tables 5.3 shows the runtime (in seconds) required for simulating 1000 samples (first

row, base) and the additional time needed for reconciliation with various approaches in

7The results with shrunk covariance matrices are available in the online appendix D.2, where we also
report the results obtained using other reconciliation approaches.
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Base forecasts’ sample approach

Reconciliation
approach

ctjb Gaussian approach* ctjb Gaussian approach*

Gh Hh Goh Hoh Gh Hh Goh Hoh

RelCRPS

∀k ∈ {4, 2, 1} k = 1
base 1.000 0.979 0.995 0.968 0.976 1.000 0.988 0.988 0.971 0.971
ct(shrcs, bute) 0.937 0.956 0.956 0.976 0.976 0.992 1.008 1.008 1.029 1.029
ct(wlscs, bute) 0.930 0.917 0.917 0.898 0.898 0.986 0.974 0.975 0.956 0.956
octo(wlsv) 0.926 0.911 0.912 0.896 0.895 0.984 0.971 0.970 0.954 0.954
octo(bdshr) 0.978 0.964 0.946 0.952 0.930 1.034 1.016 1.003 1.005 0.989
octoh(hshr) 1.006 0.983 1.009 0.974 1.001 1.068 1.046 1.059 1.034 1.061

k = 2 k = 4
base 1.000 0.984 0.993 0.968 0.976 1.000 0.966 1.004 0.964 0.981
ct(shrcs, bute) 0.949 0.966 0.966 0.987 0.987 0.874 0.896 0.896 0.914 0.914
ct(wlscs, bute) 0.942 0.928 0.928 0.909 0.909 0.866 0.853 0.853 0.834 0.834
octo(wlsv) 0.938 0.921 0.923 0.907 0.906 0.860 0.847 0.848 0.832 0.830
octo(bdshr) 0.991 0.974 0.957 0.964 0.942 0.914 0.905 0.883 0.892 0.865
octoh(hshr) 1.021 0.996 1.021 0.987 1.016 0.934 0.912 0.951 0.904 0.931

ES ratio indices
∀k ∈ {4, 2, 1} k = 1

base 1.000 0.970 0.988 0.960 0.970 1.000 0.977 0.977 0.965 0.965
ct(shrcs, bute) 0.897 0.944 0.944 0.973 0.973 0.964 1.001 1.001 1.033 1.033
ct(wlscs, bute) 0.886 0.880 0.880 0.860 0.860 0.954 0.944 0.945 0.928 0.928
octo(wlsv) 0.891 0.879 0.881 0.864 0.864 0.958 0.945 0.945 0.931 0.931
octo(bdshr) 0.940 0.928 0.910 0.918 0.895 1.004 0.986 0.971 0.980 0.961
octoh(hshr) 0.986 0.968 0.999 0.959 0.992 1.053 1.034 1.049 1.024 1.055

k = 2 k = 4
base 1.000 0.972 0.985 0.959 0.969 1.000 0.959 1.000 0.957 0.976
ct(shrcs, bute) 0.915 0.961 0.960 0.991 0.991 0.818 0.874 0.874 0.899 0.900
ct(wlscs, bute) 0.904 0.896 0.896 0.877 0.877 0.807 0.805 0.805 0.782 0.783
octo(wlsv) 0.908 0.895 0.898 0.881 0.882 0.812 0.802 0.806 0.786 0.786
octo(bdshr) 0.960 0.947 0.929 0.938 0.915 0.860 0.856 0.836 0.841 0.816
octoh(hshr) 1.007 0.988 1.017 0.979 1.014 0.904 0.888 0.934 0.881 0.913

∗The Gaussian method employs a sample covariance matrix:
Gh and Hh use multi-step residuals and Goh and Hoh use overlapping and multi-step residuals.

Table 5.4: RelCRPS and ES ratio indices defined in (5.10) and (5.11) for
the Australian QNA dataset. Approaches performing worse than the benchmark
(bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is
marked in bold, and the overall lowest value is highlighted in blue. The reconcil-
iation approaches are described in Table 5.2.

the first iteration of the Australian QNA forecasting experiment. The system’s hardware

and software specifications are as follows:

• CPU: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz 2.90 GHz

• RAM size: 64 GB

• R version: R-4.2.1 2022-06-23 ucrt

5.5.1 Results

Forecasting accuracy indices based on CRPS and ES are presented in Table 5.4. As a

benchmark approach, we use the base forecasts calculated using the bootstrap method.
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Figure 5.8: MCB Nemenyi test for the Australian QNA dataset using CRPS
at different temporal aggregation levels for the Gaussian (using overlapping and
multi-step residuals, H) and the non-parametric bootstrap approaches. In each
panel, the Friedman test p-value is reported in the lower right corner. The
mean rank of each approach is shown to the right of its name. Statistically
significant differences in performance are indicated if the intervals of two forecast
reconciliation procedures do not overlap. Thus, approaches that do not overlap
with the blue interval are considered significantly worse than the best, and vice-
versa.

For base forecasts, we find that using a parametric approach with the normal distribu-

tion performs better than the non-parametric bootstrap approach. This is likely due

to the limited number of residuals available for bootstrapping, which does not allow

for sufficient exploration of the data. Directly specifying diagonal covariance matrices

seems to be more effective than shrinking to a target covariance matrix. Among all the

procedures, ct(wlscs, bute) and octo(wlsv) show the greatest relative gains. In contrast,

octoh(hshr) does not show much improvement. Furthermore, the greatest improvements

are observed for higher temporal aggregation levels.
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We utilize the non-parametric Friedman test and the post hoc “Multiple Compari-

son with the Best” (MCB) Nemenyi test (Koning et al., 2005; Kourentzes and Athana-

sopoulos, 2019; Makridakis et al., 2022; Kourentzes, 2022) to determine if the fore-

casting performances of the different techniques are significantly different from one an-

other. Figure 5.8 presents the MCB using the CRPS. The probabilistic forecasts from

ct(wlscs, bute) and octo(wlsv) are significantly better than the base forecasts at any

level of aggregation. Unlike the application on the Australian Tourism Demand (see

Section 5.6), in this case one of the partly bottom-up approaches is not significantly

worse than the most performing optimal approach.

Overall, we find that using overlapping residuals almost always leads to a greater

improvement in terms of both ES and CRPS. Forecasts at the most aggregated level

(year) seem to benefit the most from reconciliation, and using one-step overlapping

residuals appears to be sufficient to improve forecasts if the generation of the base

forecasts sample paths takes into account the multi-step structure.

5.6 Forecasting Australian Tourism Demand

The Australian Tourism Demand dataset (Wickramasuriya et al., 2019) measures the

number of nights Australians spent away from home. It includes 228 monthly ob-

servations of Visitor Nights (VN) from January 1998 to December 2016, and has a

cross-sectional grouped structure based on a geographic hierarchy crossed by purpose of

travel. The geographic hierarchy comprises seven states, 27 zones, and 76 regions, for a

total of 111 nested geographic divisions. Six of these zones are each formed by a single

region, resulting in a total of 105 unique nodes in the hierarchy. The purpose of travel

comprises four categories: holiday, visiting friends and relatives, business, and other.

To avoid redundancies (Di Fonzo and Girolimetto, 2022a), 24 nodes are not considered,

resulting in an unbalanced hierarchy of 525 unique nodes instead of the theoretical 555

with duplicated nodes. The dataset includes the 304 bottom series, which are aggre-

gated into 221 upper time series. Table 5.5 omits duplicated entries and updates the

information in Table 7 from Wickramasuriya et al. (2019). This data can be temporally

aggregated into 2, 3, 4, 6, or 12 months (K = {12, 4, 3, 2, 1}).
We perform a rolling forecast experiment with an expanding window. The process

begins by using the first 10 years, from January 1998 to December 2008, to generate

forecasts for the entire following year (2009). Then, the training set is increased by

one month. This process is repeated until the last training set is used (January 1998

to December 2015) with a total of 85 different test sets. For the temporal aggregation

dimension we aggregate the monthly data up to annual data. We obtain 12-step, 6-step,
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Number of series
GD PT Tot.

Australia 1 4 5
States 7 28 35
Zones∗ 21 84 105
Regions 76 304 380

Total 105 420 525

Table 5.5: Grouped time series for the Australian Tourism Demand dataset. 6
Zones with only one Region are included in Regions. GD: Geographic Division;
PT: Purpose of Travel.

4-step, 3-step, 2-step and 1-step ahead base forecasts respectively from the monthly data

and the aggregation over 2, 3, 4, 6, and 12 months. ETS models selected by minimizing

the AICc criterion (Hyndman et al., 2023) are fitted to the log-transformed data, with

the resulting base forecasts being back-transformed to produce non-negative forecasts

(Wickramasuriya et al., 2020).

The (1000) base forecast samples are obtained using the Gaussian approach with

sample8 covariance matrices (Section 5.4) using multi-step residuals9 and the boot-

strap approach (Section 5.3.2). For reconciliation, 6 different approaches have been

adopted (see Table 5.2): ct(shrcs, bute), oct(struc), oct(wlsv), oct(bdshr), octh(bshr),

and octh(hshr).

Negative forecasts may be produced during the reconciliation phase (Wickramasuriya

et al., 2020, see also Chapters 2 and 3) thus generating unreasonable values (e.g., a

negative forecast for tourism demand makes no sense). To overcome this limitation, we

applied the simple heuristic proposed in Chapters 2 and 3. Following Theorem 5.4, we

are thus able to obtain reconciled samples respecting non-negativity constraints starting

from an incoherent sample simulated from a Gaussian distribution. Finally, to evaluate

the performance, we employ the Continuous Ranked Probability Score (CRPS), the

Energy Score (ES), and the “Multiple Comparison with the Best” (MCB) Nemenyi

test, introduced in Sections 5.5 and 5.5.1.

Tables 5.6 shows the runtime (in seconds) required for simulating 1000 samples (first

row, base) and the additional time needed for reconciliation with various approaches

in the first iteration of the Australian Tourism Demand forecasting experiment. The

system’s hardware and software specifications are the same as the first experiment.

8The results with shrunk covariance matrices are available in the online appendix E.2, where we also
report the results obtained using other reconciliation approaches.

9We do not include overlapping, as we are unable to correctly determine the residuals for the overlapping
series using ETS models (see Section 5.4.2).
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Reconciliation
approach

ctjb G B H HB

base 61.21 660.43 643.54 641.40 692.63

ct(shrcs, bute) + 3.79 + 4.02 + 3.79 + 3.54 + 4.18
oct(struc) + 7.73 + 7.10 + 7.19 + 7.11 + 6.56
oct(wlsv) + 8.24 + 6.97 + 6.99 + 7.04 + 6.46
oct(bdshr) + 60.27 + 52.65 + 52.13 + 51.92 + 49.51
octh(bshr) + 503.52 + 426.20 + 419.99 + 418.94 + 422.94
octh(hshr) + 485.66 + 482.13 + 418.64 + 418.82 + 463.18

Table 5.6: Computational time (in seconds) for the first iteration of the Aus-
tralian Tourism Demand forecasting experiment. The first row (base) reports
the time to simulate 1000 samples, and the remaining rows the additional time
to reconcile them with different approaches.

5.6.1 Results

The CRPS and ES indices are shown, respectively, in Table 5.7 for monthly, quarterly

and annual forecasts. These tables are divided by different temporal levels and each

column uses a different approach to calculate the base forecasts, referred to as “base”.

The bootstrap method is used as a benchmark to calculate the accuracy indices.

Base forecasts using a Gaussian approach are better in terms of both CRPS and

ES compared to the bootstrap approach (the benchmark). Assumptions of truncated

Gaussianity (Gaussian with negative values set to zero) may seem strict, but given the

limited number of residuals, it can lead to improved forecasts in terms of CRPS and

ES. Bootstrap forecasts suffer from the limited number of available residuals, leading

in general to lower forecast accuracy. The Gaussian approach overcomes this limitation

and provides better results. Regarding the different covariance matrix estimates for

Gaussian base forecasts, there are no big differences. For this reason, using only the

high frequency bottom time series can be useful to estimate fewer parameters and reduce

the initial high dimensionality.

In the Gaussian case, partly bottom-up techniques like ct(shrcs, bute) lead to bet-

ter results than the benchmark (bootstrap base forecasts). However, it is not always

guaranteed that the improvement is higher than the starting base forecasts (by com-

paring the value of each column). This is particularly true for higher levels of temporal

aggregation. Overall, oct(bdshr) in terms of CRPS is almost always the best. The

shrinkage approach octh(hshr) performs well in the bootstrap case: it is competitive

with oct(bdshr) at lower temporal frequency (k ∈ {2, 1}) and it is able to improve for

k ≥ 3. In terms of ES, oct(bdshr) is still competitive, although it does not always show

the best relative performance, like octh(bshr). It is also worth noting that oct(struc),
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Base forecasts’ sample approach

Reconciliation
approach

ctjb Gaussian approach* ctjb Gaussian approach*

G B H HB G B H HB

RelCRPS

∀k ∈ {12, 6, 4, 3, 2, 1} k = 1
base 1.000 0.971 0.971 0.973 0.973 1.000 0.972 0.972 0.972 0.972
ct(shrcs, bute) 1.057 0.974 0.969 0.974 0.969 0.976 0.963 0.962 0.963 0.962
oct(struc) 0.982 0.962 0.961 0.961 0.959 0.970 0.963 0.963 0.963 0.963
oct(wlsv) 0.987 0.959 0.959 0.958 0.957 0.952 0.957 0.957 0.957 0.957
oct(bdshr) 0.975 0.956 0.953 0.952 0.951 0.949 0.955 0.953 0.954 0.954
octh(bshr) 0.994 1.018 1.020 1.016 1.019 0.988 1.007 1.013 1.006 1.012
octh(hshr) 0.969 0.993 0.993 0.990 0.991 0.953 0.977 0.977 0.979 0.979

k = 3 k = 12
base 1.000 0.971 0.971 0.972 0.973 1.000 0.968 0.967 0.969 0.969
ct(shrcs, bute) 1.041 0.977 0.974 0.977 0.974 1.163 0.977 0.965 0.977 0.965
oct(struc) 0.986 0.967 0.966 0.966 0.965 0.982 0.951 0.949 0.947 0.943
oct(wlsv) 0.983 0.963 0.962 0.962 0.962 1.025 0.954 0.953 0.949 0.947
oct(bdshr) 0.972 0.960 0.958 0.957 0.957 1.002 0.950 0.944 0.939 0.935
octh(bshr) 0.999 1.021 1.022 1.018 1.022 0.987 1.024 1.021 1.021 1.019
octh(hshr) 0.971 0.994 0.994 0.992 0.993 0.978 1.003 1.005 0.996 0.997

ES ratio indices
∀k ∈ {12, 6, 4, 3, 2, 1} k = 1

base 1.000 0.956 0.955 0.958 0.951 1.000 0.952 0.950 0.952 0.950
ct(shrcs, bute) 1.243 0.886 0.879 0.886 0.879 1.098 0.929 0.928 0.930 0.927
oct(struc) 1.085 0.917 0.915 0.916 0.912 1.027 0.943 0.942 0.943 0.942
oct(wlsv) 1.132 0.933 0.929 0.931 0.927 1.050 0.951 0.949 0.950 0.949
oct(bdshr) 1.047 0.904 0.897 0.897 0.891 1.009 0.936 0.933 0.934 0.931
octh(bshr) 0.931 0.867 0.866 0.863 0.860 0.965 0.927 0.927 0.925 0.923
octh(hshr) 1.081 0.935 0.931 0.935 0.927 1.028 0.952 0.951 0.952 0.950

k = 3 k = 12
base 1.000 0.961 0.958 0.960 0.955 1.000 0.942 0.947 0.951 0.937
ct(shrcs, bute) 1.245 0.911 0.904 0.911 0.904 1.326 0.779 0.767 0.777 0.766
oct(struc) 1.096 0.939 0.936 0.938 0.933 1.077 0.826 0.822 0.823 0.818
oct(wlsv) 1.142 0.953 0.949 0.951 0.946 1.149 0.851 0.845 0.847 0.840
oct(bdshr) 1.060 0.926 0.920 0.921 0.915 1.021 0.808 0.796 0.796 0.787
octh(bshr) 0.954 0.895 0.895 0.892 0.887 0.833 0.741 0.741 0.737 0.735
octh(hshr) 1.093 0.955 0.951 0.956 0.949 1.066 0.851 0.846 0.848 0.838

∗The Gaussian method employs a sample covariance matrix and includes four techniques
(G, B, H, HB) with multi-step residuals..

Table 5.7: RelCRPS and ES ratio indices defined in (5.10) and (5.11) for
the Australian Tourism Demand dataset. Approaches performing worse than
the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for
each column is marked in bold, and the overall lowest value is highlighted in blue.
The reconciliation approaches are described in Table 5.2.

which does not make use of residuals, proves to be competitive by consistently improving

on the base forecasts in terms of both CRPS and ES.

Figure 5.9 shows the MCB using the CRPS for the Gaussian approach using multi-

step residuals (HB) and the non-parametric bootstrap approach. In general, the partly

bottom-up procedure improves with respect to base forecasts at monthly level, but

optimal cross-temporal procedures are always better. In the bootstrap framework, we
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Figure 5.9: MCB Nemenyi test for the Australian Tourism Demand dataset
using CRPS at different temporal aggregation levels for the Gaussian (multi-step
residuals, HB) and the non-parametric bootstrap approaches. In each panel, the
Friedman test p-value is reported in the lower right corner. The mean rank of
each approach is shown to the right of its name. Statistically significant differ-
ences in performance are indicated if the intervals of two forecast reconciliation
procedures do not overlap. Thus, approaches that do not overlap with the blue
interval are considered significantly worse than the best, and vice-versa.

can identify a group of three procedures, oct(bdshr), oct(hshr) and oct(struc) that

are almost always in the group of the best approaches (denoted by the blue dot). In

the Gaussian framework, oct(wlsv), oct(struc), and oct(bdshr) are always significantly

better than base forecasts and equivalent in terms of results for temporal aggregation

orders greater than 2. For monthly series, oct(bdshr) is always significantly better than

all other approaches.





Chapter 6

A reconciliation approach for the

realized volatility

6.1 Introduction

Volatility forecasting has attracted a relevant amount of interest in the financial econo-

metrics literature since the seminal contribution of Engle (1982). The reasons are well-

known and ground on the importance of volatility in several areas, from risk management

to asset allocation, from hedging to pricing. In the last two decades the interest has

shifted from conditional variance models to the modeling and forecasting of Realized

Variances, RV (Andersen et al., 2001a,b, 2003). In this case, starting from the work of

Corsi (2009), based on the introduction of a simple specification capable of capturing

the strong serial correlation of RV sequences, several additional specifications have been

introduced. These include models with price jumps in the variance dynamic (Andersen

et al., 2007a), controlling for residual heteroskedasticity (Corsi and Renò, 2012), dealing

with measurement errors (Bollerslev et al., 2016), disentangling the role of positive and

negative returns (Patton and Sheppard, 2015), and considering a quantile-based intra-

day decomposition of RV (Bollerslev et al., 2022). From a pure forecasting perspective,

although all models might provide statistical and/or economic advantages compared to

simpler specifications, there is no clear evidence that a model clearly superior to all

competitors exists (Caporin, 2022).

A few contributions share a common feature from the modeling perspective: to pre-

dict the RV they extract information from a decomposition of lagged RV . This holds,

in particular, when separating the continuous and discontinuous variance components,

as in Andersen et al. (2007a), or when ‘Good and Bad’ volatilities are used, as in Pat-

ton and Sheppard (2015), or when the two approaches are combined (Caporin, 2022),
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or finally when a more flexible decomposition according to conditional and time-varying

intraday returns quantiles is considered (Bollerslev et al., 2022). In all of these cases,

the decomposition provides what is known as a hierarchy in the hierarchical forecast-

ing literature (Hyndman et al., 2011), that is a structure in which an aggregate series

(e.g., daily RV ) can be seen at the top over its constituents series (e.g., intraday RV

decompositions).

Therefore, when dealing with intraday data, sometimes the observed returns may be

grouped based on some criterion of similarity, such as the sign, or the occurrence in

portions of the intraday returns density support. This decomposition may be employed

in forecasting the daily RV , through segment-level forecasting within each segment.

Challenges associated with successfully applying intraday decompositions include how

to create segments and how to combine the segment-level RV forecasts to recover a daily

RV forecast. The current paper proposes a method to exploit existing and to create new

decompositions of the daily RV based on high-frequency intraday data, create segment-

level forecasts, and then combine these forecasts to improve the daily RV forecasts.

We present a combined-aggregative forecasting method for daily RV that allows to

obtain a global prognosis by summing up/combining the forecasts of the compounding

individual components. We detail a bottom-up (indirect) and a regression-based forecast

reconciliation (Hyndman et al., 2011, Wickramasuriya et al., 2019) approach, and study

their forecasting performance vis-à-vis the daily direct RV forecasts produced by the

classic HAR model (Corsi, 2009), and two variants that take into account intraday

RV decompositions (Patton and Sheppard, 2015, Bollerslev et al., 2022). At this end,

we have devised a forecasting experiment to evaluate the new proposed forecasting

approaches on the high-frequency data of a few assets. The proposed method utilizes

standard forecasting tools, but applies them in a unique combination that results in a

higher level of daily RV forecast accuracy than other traditional methods.

A common technique used to forecast an aggregate involves bottom-up method. This

procedure starts from forecasting all bottom-level components and then obtaining the

top-level forecast by simply summing these bottom-level forecasts. By contrast, the di-

rect approach simply produces forecasts at the top level. Nevertheless, realized volatility

in different segments of the day usually have quite different patterns, hence the trivial

approach of only forecasting the bottom-level series is unlikely to provide very accurate

forecasts for the top-level series. In addition, the different behaviour of RV at differ-

ent time periods, suggests to group the observed volatility according to different time

intervals. This may be considered either alone or in conjunction with other grouping

schemes related to the nature of the volatility itself (i.e., ‘Good & Bad’ volatility, Patton
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and Sheppard, 2015). This gives raise to a hierarchical/grouped time series, where daily

RV may be seen as the top-level series of a hierarchy, whose bottom level consists of

the components obtained by crossing time periods and volatility decompositions. In

this case, besides bottom-up, another (hopefully) more accurate method for hierarchi-

cal forecasting is to independently generate RV forecasts at all levels of the hierarchy.

The advantage of independently generating the forecasts at each level is that each level

can customize its forecasting model according to the varying characteristic of the RV

at its own level. Thus, such approach could provide more accurate top-level forecasts

than traditional direct or bottom-up approaches. However, these independently-made

forecasts have the undesirable consequence that the lower-level forecasts cannot add up

exactly to the higher-level forecasts. Thus, it is necessary to carry out some adjustments

to ensure that hierarchical forecasts meet the constraints introduced by the hierarchical

structure in the same way as their measurement data, i.e., in each day the sum of the

lower-level intraday RV components forecasts should be equal to the higher-level daily

RV forecast.

The methodology we put forward comprises two steps:

1. Independent forecasting of daily RV and its components, generating the so called

“base forecasts”. For the daily RV series and for all its intraday components from

a specific decomposition we issue a forecast as accurate as possible, using three

different HAR-based forecasting models proposed in the literature. In general, the

base forecasts are not coherent with the additive decomposition law linking the

observed daily RV s to its observed intraday components.

2. Aggregation post-process. We then combine these forecasting results to forecast the

h-day-ahead RV , where h ≥ 1 is the forecast horizon. In this paper, we consider

a postprocess aggregation method suggested in the vast literature on regression-

based cross-sectional and temporal forecast reconciliation (Hyndman et al., 2011;

Athanasopoulos et al., 2017; Wickramasuriya et al., 2019).

We compare the accuracy of the aggregate (direct) forecasting with the disaggregate

(indirect) bottom-up and the regression-based forecast-reconciliation approach for the

daily RV of the Dow Jones Industrial Average index and 26 of its constituents assets.

Most of the existing studies on forecasting daily RV did not consider possible hierarchi-

cal structures deriving from intraday decompositions of the RV , and often missed the

coherent relationships between individual components. An exception is Sohn and Lim

(2007), who evaluated aggregate vs. disaggregate forecasting of 30 simulated coherent

components of the DJIA index based on the AR(2)-GARCH(1,1) model. However, the

results of this experiment were quite inconclusive, as it was found that the accuracy
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Figure 6.1: A simple three-level hierarchical structure.

of the indirect forecasting method varied depending on the correlation degree of the

coherent components. Instead, and contrary to Sévi (2014), our results indicate that

considering the various components of the realized variance do represent a significant

improvement in an out-of-sample forecast evaluation framework.

The chapter proceeds as follows. The forecast reconciliation methodology is reviewed

in Section 6.2. Section 6.3 briefly describes the volatility modeling and introduces the

hierarchies. The empirical setup of the out-of-sample forecasting experiment is described

in Section 6.4, and Section 6.5 shows the results. A robustness analysis is performed in

Section 6.6.

6.2 Forecast reconciliation: a recap

Forecast reconciliation is a post-forecasting process aimed to improve the quality of

the base forecasts for a system of hierarchical/grouped, and more generally linearly

constrained, time series by exploiting the constraints that the series in the system must

fulfil, whereas in general the base forecasts do not; see, among others, Hyndman et al.

(2011), Chapter 3, and Chapter 4. Following Panagiotelis et al. (2021), a linearly

constrained time series yt is defined as a n-dimensional time series such that all observed

values y1, . . . ,yT and all future values yT+1,yT+2, . . . lie in the coherent linear subspace

S ⊂ Rn, that is: yt ∈ S, ∀t. In many cases, the linear constraints can be represented as

a hierarchy, where the time series are linked through summation constraints. Figure 6.1

shows an example of a hierarchical time series with eight variables and three levels: the

top-variable at level 0, two variables (A and B) at level 1, and five variables at level

2 (AA, AB, BA, BB, BB, BC). The 3 aggregated upper time series are linked to the
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Figure 6.2: A simple grouped structure.

bottom-level variables through summation:

yTot,t = yA,t + yB,t

yA,t = yAA,t + yAB,t

yB,t = yBA,t + yBB,t + yBC,t

∀t = 1, . . . , T.

The bottom-level series can be thought of as building blocks that cannot be obtained

as sum of other series in the hierarchy, while all the series at upper levels can be expressed

by appropriately summing part or all of them. In details, let bt and at be the vectors

of bottom level and upper level time series at time t, respectively. For example, bt =

[yAA,t yAB,t yBA,t yBB,t yBC,t]
′ , at = [yTot,t yA,t yB,t]

′. Denoting by yt the vector

yt = [a′
t b′t]

′, the relationships linking bottom and upper time series can be equivalently

expressed as:

at = Abt, yt = Sbt, Cyt = 0(na×1), t = 1, . . . , T, (6.1)

where A is the (na × nb) aggregation matrix, S =

[
A

Inb

]
is the (n × nb) structural

matrix and C = [Ina
−A] is the (na × n) zero constraints matrix. We call structural

representation of series yt the formulation yt = Sbt, t = 1, . . . , T , and zero-constrained

representation of series yt the equivalent expression Cyt = 0, t = 1, . . . , T .

A linearly constrained time series formed by two or more hierarchical time series

sharing the same top level series, and the same bottom level series, is called grouped

time series (Hyndman et al., 2011). An example is shown in Figure 6.2, where the

Total variable can be described as two different hierarchies with intermediate vari-

ables (X, Y ) and (A,B), respectively, which share the same four bottom-level variables

(AX,BX,AY,BY ). Provided matrix A is appropriately designed, the definitions of

matrices S and C remain unchanged.
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Now, suppose we have the (n × 1) vector ŷh of unbiased base forecasts for the n

variables of the linearly constrained series yt for the forecast horizon h. If the base fore-

casts have been independently computed, generally, they do not fulfil the cross-sectional

aggregation constraints, that is, Cŷh ̸= 0(na×1). The aim of forecast reconciliation is

to adjust the base forecast ŷh by using a mapping ψ : Rn → S to obtain the recon-

ciled forecast vector ỹh = ψ (ŷh), where ỹh ∈ S. The mapping ψ can be defined as a

projection onto S (van Erven and Cugliari, 2015; Panagiotelis et al., 2021):

ỹh = Mŷh, (6.2)

where M = In − WC ′ (CWC ′)−1
C, with W error covariance matrix of the base

forecasts ŷh. Another way to obtain the reconciled forecasts is through the structural

approach proposed by Hyndman et al. (2011), such that

ỹh = SGŷh, (6.3)

where G = (S′W−1S)−1S′W−1, and it can be shown that M = SG (Wickramasuriya

et al., 2019). Several alternatives have been provided in the literature to approximate

the covariance matrix W (Hyndman et al., 2011, 2016; Wickramasuriya et al., 2019).

In this work, we consider the state of the art shrinkage covariance matrix approximation

proposed by Wickramasuriya et al. (2019),

W = λ̂ŴD + (1− λ̂)Ŵ , (6.4)

where Ŵ is the covariance matrix of the in-sample errors, and ŴD = In⊙Ŵ , where ⊙

denotes the Hadamard product. Usually, Ŵ =
1

T

T∑

t=1

êtê
′
t, that is the covariance matrix

of the one-step ahead in-sample forecast errors êt = yt − ŷt, t = 1, . . . , T . However,

to address potential issues arising from the possible presence of heteroscedasticity and

autocorrelation in the residuals, we employ also the Heteroscedasticity and Autocorre-

lation Consistent (HAC) covariance matrix proposed by Andrews (1991).

In the next section, after briefly reviewing the estimation of RV , we link the hierar-

chical forecasting literature to the RV modeling one.

6.3 RV modeling: a hierarchical perspective

The measurement of daily RV builds on the availability of data at a frequency higher

than the day. If we denote by t = 1, . . . , T , the daily time index, and by i = 1, 2, . . . N ,

the intraday time index, the prices of a financial instrument observed in high frequency

are denoted by Pi,t. From the prices we move to log-returns ri,t and to the estimation



Chapter 6 - A reconciliation approach for the realized volatility 169

of RV in a given day as follows:

RVt =
N∑

i=1

[log (Pi,t)− log (Pi−1,t)]
2 =

N∑

i=1

r2i,t, (6.5)

where prices at the intraday level are assumed to be observed on an equally spaced time

grid (e.g., every minute), and for i = 1 the lagged price corresponds to the opening

price of the day, thus excluding the overnight return from the evaluation. The financial

econometrics literature has extensively discussed the issue of estimation of RV in the

presence of microstructure noise and of price jumps; see, among many others, Aı̈t-Sahalia

and Jacod (2014) and therein cited references. In this work, we refer to the simplest

approach reported above. Moreover, as our final purpose is to adopt hierarchical forecast

reconciliation approaches starting from the forecast of bottom time series, we do not

consider the decomposition of RV into its continuous and discontinuous component,

since it is known that the discontinuous component is not predictable by means of

relatively simple linear models; among the possible approaches, see Andersen et al.

(2011) and Aı̈t-Sahalia et al. (2015).

As mentioned in the introduction, several authors have focused on decompositions

of RV . The most known example is given by the use of signed variations, as in Patton

and Sheppard (2015), such that RVt = SV +
t + SV −

t , with

SV +
t =

N∑

i=1

r2i,tI (ri,t ≥ 0) and SV −
t =

N∑

i=1

r2i,tI (ri,t < 0) ,

where I (a) is an indicator function taking unit value when condition a is true and zero

otherwise. The signed variations are also known as Semi-Variances (Barndorff-Nielsen

et al., 2010), or as Good (SV +
t ) and Bad (SV −

t ) volatility, respectively, and separate

the contribution to RV coming from upside and downside price movements.

More recently, Bollerslev et al. (2022) introduced a quantile-based decomposition,

generalizing the signed variation approach, RVt =

p∑

l=1

PV
(l)
t , with

PV
(l)
t =

N∑

i=1

r2i,tI (Qr,t (αl−1) < ri,t ≤ Qr,t (αl)) ,

whereQr,t (τ) =
√
N−1RVtQz,t (τ), zi,t =

ri,t√
N−1RVt

is the standardized intraday return,

Qz,t (τ) is the empirical τ -quantile of the intraday standardized returns distribution in

day t, Qr,t (α0) = −∞ and Qr,t (αp) = +∞, and 0 < α1 < . . . < αp−1 < 1 is a

sequence of probabilities, with α0 = 0 and α1 = 1. The PV
(l)
t components, also called

Partial Variances, allow separating the contribution to RV coming from intraday returns

according to both their sign and size.
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SV − SV +

RV

PV (1) PV (2) PV (3)

RV

Figure 6.3: Hierarchical representations of the Bad and Good (left, Patton and
Sheppard, 2015) and PV (3) (right, Bollerslev, 2022) decompositions of daily RV.

The concept of hierarchical time series in the framework of forecasting daily RV

using its intraday decompositions may be illustrated by considering the two simple

hierarchies deriving from the intraday RV decompositions reported above, i.e. Patton

and Sheppard (2015) and Bollerslev et al. (2022), the last in the simple case with p = 2.

Figure 6.3 provides a graphical representation of the two hierarchies.

To illustrate the advantage and flexibility of forecast reconciliation approaches in the

RV context, we provide a more general form of temporal and threshold-based decompo-

sition of daily RV . The use of quantiles computed from intraday returns is, in practice,

a special case of a grouping of returns according to pre-defined, possibly time-varying

thresholds, with general representation given by:

zl,t =
N∑

t=1

r2i,tI (ct,l−1 < ri,t ≤ ct,l) , l = 1, . . . , p, (6.6)

where ct,0 = −∞ and ct,p = +∞.

Differently, by exploiting the availability of information distributed over a range of

minutes within a given day, we might group the intraday returns according to a temporal

scheme:

wk,t =
mk∑

i=m(k−1)+1

r2i,t, k = 1, . . . ,
N

m
, (6.7)

which is equivalent to

wk,t =
N∑

t=1

r2i,tI (m(k − 1) < i ≤ mk) , k = 1, . . . ,
N

m
. (6.8)

The threshold- and time-based decompositions might be combined giving rise to the

most disaggregated (bottom level) time series, defined as

xl,k,t =
N∑

t=1

r2i,tI [(ct,l−1 < ri,t ≤ ct,l) ∩ (m(k − 1) < i ≤ mk)] ,
l = 1, . . . , p

k = 1, . . . , N
m

, (6.9)

or

xl,k,t =
mk∑

i=m(k−1)+1

r2i,tI (ct,l−1 < ri,t ≤ ct,l) ,
l = 1, . . . , p

k = 1, . . . , N
m

. (6.10)
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Semi-Variances Quantile-based decomposition
Temporal rt,i < 0 rt,i ≥ 0 rt,i ≤ Q(τ1) Q(τ1) < rt,i ≤ Q(τ2) rt,i > Q(τ2)

decomposition SV − SV + PV (1) PV (2) PV (3)

T1: minutes 1-78 T1SV − T1SV + T1PV (1) T1PV (2) T1PV (3)

T2: minutes 79-156 T2SV − T2SV + T2PV (1) T2PV (2) T2PV (3)

T3: minutes 157-234 T3SV − T3SV + T3PV (1) T3PV (2) T3PV (3)

T4: minutes 235-312 T4SV − T4SV + T4PV (1) T4PV (2) T4PV (3)

T5: minutes 313-390 T5SV − T5SV + T5PV (1) T5PV (2) T5PV (3)

Table 6.1: Left panel: The ten bottom variables from the time-by-‘Good &
Bad’ volatility decompositions. Right panel: The fifteen bottom variables from
the time-by-quantile daily decompositions according to PV (3).

For example, assuming a day consisting of 6.5 hours, with data available at the 1-minute

frequency (N = 390), setting p = 3 and m = 78, we have the following decompositions

of RV :

RV w1 w2 w3 w4 w5

z1 x1,1 x1,2 x1,3 x1,4 x1,5

z2 x2,1 x2,2 x2,3 x2,4 x2,5

z3 x3,1 x3,2 x3,3 x3,4 x3,5

where the threshold-based zl =
5∑

k=1

xl,k, l = 1, . . . , 3, and temporal-based wk =
3∑

l=1

xl,k,

k = 1, . . . , 5, decompositions represent the marginals of a combined and richer decom-

position. We also note that RV =
5∑

k=1

wk =
3∑

l=1

zl =
3∑

l=1

5∑

k=1

xl,k.

In the following empirical analyses, we will make use of the hierarchies/groupings

generated by crossing a temporal decomposition in five non-overlapping intervals of 78

minutes each, with either (ii) the dichotomous intraday decomposition in ‘Good and

Bad’ volatility (Patton and Sheppard, 2015, see Table 6.1), or (ii) a quantile-based

decomposition with p = 3, with quantiles set to τ1 and τ2, respectively (see Table

6.1). The online appendix reports the graphical and structural representations of the

hierarchies.

6.4 The empirical setup

6.4.1 Data description and analysis

We evaluate the impact of forecast reconciliation in forecasting daily RV of individual

stocks included in the Dow Jones Industrial Average (DJIA) index, from the beginning

of January 2003 to the end of June 2022. We use price data at the 1-minute frequency,

adjusted for splits and dividends. We consider prices recorded from 9:00 AM to 3:59 PM
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(time identifies the start of each intraday interval), obtaining 390 observations per day.

Our dataset includes 4,908 full days excluding weekends, holidays and closed market

days. The data have been recovered from Kibot.com.1 We consider the 26 stocks whose

data are available to us for the entire sample, denoted by the following tickers:2 AAPL,

AMGN, AXP, BA, CAT, CSCO, CVX, DIS, GS, HD, HON, IBM, INTC, JNJ, JPM,

KO, MCD, MMM, MRK, MSFT, NKE, PG, UNH, VZ, WBA, and WMT. The use of

DJIA constituents is in line with the choice made by Bollerslev et al. (2022) and allows

dealing with the possible presence of large amount of zeros at the intraday level. In fact,

for those highly liquid stocks, the presence of zeros is extremely limited.

Starting from the 1-minute data, we estimate the daily RV , and the decompositions

(hierarchies) we previously mentioned. First of all, we decompose the RV into the Good

and the Bad components, following Patton and Sheppard (2015); this gives a hierarchy

with two bottom series. Second, following Bollerslev et al. (2022), we decomposeRV into

the Partial Variances PV (g). Differently from the authors, we do not optimally select the

quantiles used for the decomposition, nor we allow for a time-change in the quantile. On

the contrary, building on the evidence in Bollerslev et al. (2022), and in particular on the

values in Table 2 of their paper, we select the PV (3) decomposition with fixed quantiles

set at the 10% and 75% thresholds.3 This gives a hierarchy with three bottom series,

and allows us to simplify the treatment and the following analyses. Third, we apply

both the Good and Bad and PV (3) decompositions on sub-samples of the day. We first

divide the entire day in 5 sub-intervals of length equal to 78 observations (minutes), and

in each sub-sample we apply either the Good and Bad or the PV (3) decompositions. We

note that this gives, overall, 10 bottom series in the former case, and 15 in the latter. In

addition, we do have two possible intermediate aggregations, by temporal sub-sample,

or by volatility (either SV or PV (3)) components. The hierarchies/groupings in this

case are thus much richer than if only volatility-based decompositions are used (see the

online appendix for additional details and results).

1The quality of data from Kibot.com is comparable to that of NYSE TAQ data. A comparison on a
selected equity is available from authors upon request.

2The online appendix contains a summary description of the data used in the forecasting experiment.
3Bollerslev et al. (2022) optimally select both the number of partial variances as well as the quantiles.
Their results show evidence of heterogeneity across the analyzed stocks the DJIA constituents. The
quantiles we select correspond to the median values in the cross-section of stocks reported in their
Table 2.
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6.4.2 Base forecasts: direct forecasts from benchmark models

and intraday components’ forecasts

In the past years, the subject of the comparison of the forecast accuracy of aggregating

disaggregate forecasts versus forecasts based on aggregated data has received attention

in different fields, such as macro-economic (Marcellino et al., 2003, Frale et al., 2011,

Poncela and Garćıa-Ferrer, 2014, Grassi et al., 2015), demand (Petropoulos et al., 2014,

Mircetic et al., 2022), and energy (Silva et al., 2018, Wang et al., 2021) forecasting.

However, as far as we know, a detailed comparison of direct, indirect (bottom-up) and

combination (forecast reconciliation) procedures for daily RV forecasting has not been

provided yet.

At this end, we conduct an out-of-sample forecasting experiment where we compare

direct daily-RV forecasts with three reference models proposed, respectively, by Corsi

(2009), Patton and Sheppard (2015), and Bollerslev et al. (2022), two indirect fore-

casts obtained through simple bottom-up of the HAR forecasts of either semi-variances

(Barndorff-Nielsen et al., 2010) or partial-variances (Bollerslev et al., 2022) components,

and finally the daily forecasts of RV obtained through forecast reconciliation of both

the aggregate (daily RV ) and disaggregate (corresponding components of the daily RV )

forecasts.

The modeling strategy we adopt for each of the bottom and top time series, and

that we use to produce direct and base forecasts, is very simple. As our purpose is to

introduce the use of forecast reconciliation tools in the prediction of RV , and not to

identify the best forecasting univariate model, we fit on all (possibly disaggregate) time

series the HAR model of Corsi (2009). Let xt be a generic time series, that is, either RVt

or one of the bottom series according to one of the hierarchies previously introduced.

We model xt as follows:

xt = β0 + βDxt−1 + βWxt−1:t−5 + βMxt−1:t−22 + εt, (6.11)

where xt−1:t−m =
1

m

m∑

j=1

xt−m, and εt is an innovation term. Parameters refer to the

intercept (β0) and to the daily, weekly and monthly effects (βD, βW , and βM , respec-

tively). Parameter estimation is based on least squares and we adopt robust standard

errors to to be coherent with the volatility-of-volatility effect (Corsi et al., 2008). Fur-

ther, we do not consider the modelling of logarithms of RVt, leaving to future researches

the generalization of our approach along this line.4

4We stress the use of the logarithmic transformation of RV sensibly impacts on the aggregation con-
straints, with the need of moving toward probabilistic hierarchical forecasting approaches (Panagiotelis
et al., 2023).
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For the top-level variable (i.e., daily RV ) forecasts, we consider other two reference

models proposed by Patton and Sheppard (2015) and Bollerslev et al. (2022) to account

for, respectively, Good and Bad volatility and Partial Variances. In this last case, for

simplicity, we consider an ex-ante choice of the two quantiles defining the three partial-

variances decomposition (see Table 6.2).

We obtain daily forecasts for the time series of the daily semi-variances according to

the ‘Good & Bad’ (Barndorff-Nielsen et al., 2010, Patton and Sheppard, 2015) and to the

PV (3) decompositions (Bollerslev et al., 2022), then we apply a simple bottom-up proce-

dure to compute indirect forecasts of the daily RV . Finally, the forecasts obtained in the

two previous steps are combined through the forecast reconciliation approach proposed

by Wickramasuriya et al. (2019) (see also Hyndman et al., 2011), which is a regression-

based forecast combination approach exploiting the simple hierarchical structure of the

two considered decomposition settings. The competing forecasting approaches, and

the corresponding acronyms, are the following ones (reported for a one-period forecast

horizon):

Direct forecasting procedures

- HAR: R̂V
HAR

t+1 (Corsi, 2009);

- SV : R̂V
SV

t+1 (Patton and Sheppard, 2015);

- PV (3): R̂V
PV (3)

t+1 (Bollerslev et al., 2022);

Indirect forecasting procedures (bottom-up)

- SVbu: R̂V
SVbu

t+1 = ŜV
+

t+1 + ŜV
−

t+1;

- PV (3)bu: R̂V
PV (3)bu

t+1 = P̂ V
(1)

t+1 + P̂ V
(2)

t+1 + P̂ V
(3)

t+1;

Forecast reconciliation procedures

- SVshr/SVhac: R̂V
SVshr

t+1 = f(R̂V
SV

t+1, ŜV
+

t+1, ŜV
−

t+1);

- PV (3)shr/PV (3)hac: R̂V
PV (3)shr

t+1 = f(R̂V
PV3

t+1 , P̂ V
(1)

t+1, P̂ V (2)
t+1, P̂ V (3)

t+1);

where Ŵ in (6.4) is the in-sample residuals (Wickramasuriya et al., 2019) and the HAC

(Andrews, 1991) covariance matrix for shr and hac, respectively.

We will always use the above-reported acronyms independently from the forecast

horizon we consider. Coherently with the common practice, see, for instance, (Patton

and Sheppard, 2015), when the forecast horizon differs from 1 and becomes h, we set

the dependent variable of our model to the h−period average cumulative value.5

5In this case, equation 6.11 becomes xt+h−1:t = β0 + βDxt−1 + βWxt−1:t−5 + βMxt−1:t−22 + εt, with
xt+h−1:t being the average of xt+i for i = 0, 1, . . . h− 1.
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HAR: Heterogeneous AutoRegressive model

RVt =α0 + αDRVt−1 + αWRVt−1:t−5 + αMRVt−1:t−22 + εHAR
t

SV : Semi-Variances Heterogeneous AutoRegressive model

RVt = β0 + β+
DSV

+
t−1 + β−

DSV
−
t−1 + βWRVt−1:t−5 + βMRVt−1:t−22 + εSHAR

t

PV (3): Partial-Variances Heterogeneous AutoRegressive model

RVt = γ0 +
3∑

l=1

γ
(j)
D PV

(l)
t−1 + γWRVt−1:t−5 + γMRVt−1:t−22 + εPV3

t

Semi-variances decomposition

SV +
t = δ+0 + δ+DSV

+
t−1 + δ+WSV

+
t−1:t−5 + δ+MSV

+
t−1:t−22 + εSHAR+

t

SV −
t = δ−0 + δ−DSV

−
t−1 + δ−WSV

−
t−1:t−5 + δ−MSV

−
t−1:t−22 + εSHAR−

t

Partial-variances decomposition (l = 1, 2, 3)

PV
(l)
t = θ

(l)
0 + θ

(l)
D PV

(1)
t−1 + θ

(l)
WPV

(l)
t−1:t−5 + θ

(l)
MPV

(l)
t−1:t−22 + ε

PV (l)
t

Time-variances decomposition (j = 1, 2, 3, 4, 5)

Tj,t = ηj0 + ηj1Tj,t−1 + ηj2Tj,t−1:t−5 + ηj3Tj,t−1:t−22 + ε
T (j)
t

Time- and semi-variances decomposition (j = 1, 2, 3, 4, 5)

TjSV
−
t =λj−0 + λj−1 TjSV

−
t−1 + λj−2 TjSV

−
t−1:t−5 + λj−3 TjSV

−
t−1:t−22 + ε

T (j)SV −

t

TjSV
+
t =λj+0 + λj+1 TjSV

+
t−1 + λj+2 TjSV

+
t−1:t−5 + λj+3 TjSV

+
t−1:t−22 + ε

T (j)SV +

t

Time- and partial-variances decomposition (j = 1, 2, 3, 4, 5, l = 1, 2, 3)

TjPV
(l)
t = ηj,l0 + ηj,l1 TjPV

(l)
t−1 + ηj,l2 TjPV

(l)
t−1:t−5 + ηj,l3 TjPV

(l)
t−1:t−22 + ε

T (j)PV (l)

t

Table 6.2: Models used to produce daily forecasts for RV and its components:
the first panel includes models for direct and base forecasts of RV while the
second panel includes the specifications adopted for the intraday RV decompo-
sitions according to either semi-variances or partial-variances, alone or with
time-groupings of non-overlapping 78 consecutive minutes intervals. See Table
1 for the definitions of the various quantities used as dependent variables. All
equations take a HAR-type dynamic including as explanatory variables weekly
and monthly moving averages (see equation 6.11). Error terms superscripts are
set coherently with the dependent variable.
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6.4.3 Out-of-sample forecast evaluation

We perform a fixed length rolling window forecasting experiment on the DJIA series

and 26 individual stocks previously mentioned. The first training set spans the period

January 2, 2003 - December 29, 2006 (1,007 days). From each training set three direct

multistep forecasts for, respectively, one-, five- and twenty-two-steps (day) ahead are

computed, and this is done for all the time series components of the various hierarchies

defined by the time-and/or-quantile-based RVt intraday decompositions.

The base forecasts of the top-level series in each hierarchy (RVt) are obtained accord-

ing to the HAR, SV and PV (3) models, respectively. The base forecasts of either the

semi- or partial-variances series forming each hierarchy are obtained using appropriately

adapted HAR models. The base forecasts are then reconciled through the MinT-shr

approach (Wickramasuriya et al., 2019) using the R package FoReco (Girolimetto and

Di Fonzo, 2023a). The point forecast accuracy of daily RVt is evaluated using the Mean

Square Error (MSE), and the QLIKE index (Patton, 2011b):6

MSE =
1

|S|

|S|∑

t=1

(
R̂V t −RVt

)2
and QLIKE =

1

|S|

|S|∑

t=1

(
RVt

R̂V t

− logRVt

log R̂V t

− 1

)
,

where R̂V t and |S| denote the one-step-ahead forecast and the number of days in the

test set, respectively. Both MSE and QLIKE belong to the family of loss functions

of Patton (2011b), that are robust to the noise in the volatility proxy. We consider the

MSE and QLIKE ratios, defined respectively as

rMSE =
MSEi

MSEHAR

rQLIKE =
QLIKEi

QLIKEHAR

, (6.12)

where MSEi (QLIKEi) is defined as the forecast MSE (QLIKE) over the out-of-

sample period of any our competing models, andMSEHAR (QLIKEHAR) is the respec-

tive value of the HAR benchmark model. The values less than 1 are associated with

the superior forecast ability of the proposed model, and vice versa.

In order to examine the advantages of the individual HAR models and the HAR

models with forecast reconciliation methods over the HAR benchmark model, we then

employ the Diebold and Mariano (1995) test (DM test) to investigate the null hypothesis

of equal predictive accuracy (EPA) where the HAR model is used as a benchmark.

6The QLIKE index is computed as average of a simple modification of the familiar Gaussian log-
likelihood loss function, which belongs to the family of robust and homogeneous loss functions defined
by Patton (2011b), with parameter b = −2. The modification is such that the index amounts to zero

when R̂V t = RVt, that is, the daily observed RV is forecast without error (Patton and Sheppard,
2009, Patton, 2011a). It gives asymmetric weights to the forecast errors, so that underestimating the
RV is more important than overestimating.
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Finally, we utilize the Model Confidence Set (MCS) approach developed by Hansen

et al. (2011) to compare the point forecast accuracy between the direct daily forecasts

and the reconciliation-based forecasts using intraday decompositions of RV .

6.5 Does reconciliation help in RV forecasting?

Our final purpose is to answer the following question: when ‘volatility-based’ decompo-

sitions of the daily realized volatility are available, does considering forecast reconcilia-

tion significantly improve the forecast accuracy of daily RV compared to the benchmark

HAR-type models by Corsi (2009), Patton and Sheppard (2015) and Bollerslev et al.

(2022)?

We start by evaluating the direct forecasts accuracy for the DJIA using the MSE

and QLIKE ratios (Table 6.3, Panel A). First of all, it appears that the benchmark

HAR model is almost always outperformed by both SV and PV (3) in terms of QLIKE,

the only exception being for h = 1. On the contrary, h = 1 and PV (3) model is the

only combination forecast horizon/model at which the HAR model is outperformed

in terms of MSE. Second, the QLIKE indices of the forecast reconciliation-based

approaches, either indirect (bu) or regression-based (shr and hac), improve on both the

HAR benchmark model (apart SVbu at h = 1) and their direct counterparts. Again,

this picture is not confirmed by the MSE indices, because of the different view at the

forecasting accuracy offered by these two indices.

The individual stocks’ forecast performance analysis (Table 6.3, Panel B) provides

more compelling findings. We note that considering very simple intraday decomposi-

tions of RVt in a forecast-reconciliation framework, either indirect, or regression-based,

always improves on the forecasting accuracy of the HAR benchmark model: bothMSE

and QLIKE are less than one at any forecast horizon. In addition, regression-based

approaches always improve on their direct forecasting approaches counterparts, at any

forecast horizon and in terms of bothMSE and QLIKE indices, with the most notable

results being offered by PV (3)shr and PV (3)hac, which stably give the best accuracy

indices (highlighted in bold in Table 6.3, Panel B).

Following Hansen et al. (2011), we implement the MCS procedure using the block

bootstrap of Politis and Romano (1994) (see Hansen, 2005), in which blocks have length

of 22 days, and results are based on 10,000 resamples. We choose both the MSE and

the QLIKE loss functions, and use the test statistic Tmax to test the null hypothesis

of no difference between the forecast accuracy of the considered model. The results for

the forecast horizons h = 1, 5, 22 are shown in Tables 6.4, 6.5 and 6.6, respectively.
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rMSE rQLIKE
h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

Panel A: DJIA index
SV 1.028 1.017 1.003 0.973 0.997 0.928
SVbu 0.960 0.972 1.005 1.010 0.237 0.748
SVshr 0.976 0.991 1.002 0.983 0.233 0.728
SVhac 0.976 0.979 1.002 0.969 0.231 0.719
PV (3) 0.816 1.077 1.025 2.272 0.977 0.962
PV (3)bu 0.924 0.957 1.009 1.001 0.235 0.596
PV (3)shr 0.833 1.015 1.015 0.945 0.225 0.596
PV (3)hac 0.796 0.975 1.012 0.940 0.225 0.590

Panel B: Individual stocks
SV 1.016 1.008 1.001 1.092 0.998 0.993
SVbu 0.964 0.992 0.998 0.921 0.977 0.971
SVshr 0.980 0.996 0.998 0.899 0.947 0.960
SVhac 0.979 0.995 0.998 0.898 0.951 0.961
PV (3) 0.899 0.976 1.010 1.364 1.025 1.055
PV (3)bu 0.943 0.982 0.995 0.900 0.895 0.945
PV (3)shr 0.896 0.964 0.994 0.833 0.824 0.916
PV (3)hac 0.899 0.966 0.990 0.842 0.840 0.930

Table 6.3: Forecast accuracy at forecast horizons h = 1, 5, 22. rMSE and
rQLIKE indices defined in (6.12) for the DJIA index (panel A), and geometric
means of rMSE and rQLIKE for individual stocks (panel B). Values larger
than one are highlighted in red. The best index value in each column is highlighted
in bold.

For the DJIA index, PV (3)hac is the best model at h = 1 and h = 5, even if almost

all models are equivalent according to the threshold 0.2. For the Diebold-Mariano

test, under MSE only few cases lead to a rejection of the null hypothesis, while with

QLIKE for h = 5 and h = 22 the models with forecast reconciliation improves over

the benchmark models in a statistically significant way in most cases. Moving to the

individual stocks, we stress that Tables 6.4, 6.5 and 6.6 report aggregated results, thus

providing an overall evaluation in the cross-section of the 26 stocks. We highlight

that even in this case performances differ between MSE and QLIKE: for the former,

improvements are limited and only in few cases we do have rejections of the null for the

Diebold-Mariano test, or models excluded from the confidence set; for the latter, the

use of forecast reconciliation leads to a clear improvement, with PV (3)shr and PV (3)hac

providing, overall, better performances.

These evidences are confirmed and enriched by Figure 6.4, which shows the results of

the Multiple Comparison with the Best (MCB) Nemenyi test, a non-parametric multiple

comparison procedure frequently adopted in the forecasting literature (see ?, ?, and ?,

among others). In particular, the single model PV (3) does not significantly improve

on the benchmark HAR (the corresponding lines in the ‘Multiple Comparison with

the Best’ graphs for both MSE and QLIKE are overlapping). Further, the forecasts



Chapter 6 - A reconciliation approach for the realized volatility 179

RV SV PV (3) SVbu PV (3)bu SVshr PV (3)shr SVhac PV (3)hac

Panel A: DJIA index
MSE 6.352 6.527 5.184 6.099 5.867 6.202 5.293 6.200 5.057
p-value dmRV − 0.785 0.168 0.142 0.075 0.119 0.066 0.108 0.073
p-value dmSV − − 0.131 0.148 0.079 0.115 0.044 0.111 0.051
p-value dmPV − − − 0.800 0.759 0.821 0.579 0.820 0.374
p-value MCS 0.241 0.199 0.717 0.354 0.472 0.278 0.717 0.297 1.000

QLIKE 0.216 0.210 0.491 0.218 0.217 0.212 0.204 0.210 0.203
p-value dmRV − 0.004 0.908 0.692 0.528 0.176 0.008 0.058 0.006
p-value dmSV − − 0.911 0.988 0.956 0.796 0.031 0.358 0.020
p-value dmPV − − − 0.098 0.097 0.093 0.087 0.091 0.086
p-value MCS 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 1.000

Panel B: Individual stocks

MSE 39.595 40.993 36.374 37.805 36.947 38.970 35.553 38.765 35.815
p-value dmRV − 0 0 1 2 1 2 1 1
p-value dmSV − − 0 0 1 5 2 3 2
p-value dmPV − − − 1 1 2 1 0 2
p-value MCS 23 21 26 24 26 25 26 24 26

QLIKE 0.185 0.214 0.269 0.170 0.165 0.165 0.151 0.165 0.152
p-value dmRV − 2 1 2 4 7 19 8 15
p-value dmSV − − 1 6 7 10 20 10 15
p-value dmPV − − − 7 8 8 10 8 10
p-value MCS 19 21 18 20 21 21 26 21 26

Table 6.4: One-day-ahead forecasting performance: 2007-2022 (3,880 days)

Note: The table reports the 1-step ahead forecasting performance of the different models.

The top panel shows the results for the DJIA index, while the bottom panel refers to individual

stocks. MSE and QLIKE refer to the loss function value for a given model (top panel) or

average loss function across individual stocks (bottom panel). The one-sided tests between

each forecasting model against HAR, SV , and PV (3) are denoted by dmHAR, dmSV , and

dmPV (3), respectively. The top panel includes p-values while the bottom panel reports 5%

rejection frequencies. MCS denotes the p-value of that model being in the Model Confidence

Set (top panel), or the number of times that model is in the 80% Model Confidence Set (lower

panel). PV (3) uses three intraday decompositions defined by two thresholds at 10% and 75%.

In the upper panel we highlight in bold p-values < 0.05 for Diebold-Mariano and p-values

> 0.2 for MCS. In both panels, we highlight in italic the minimum (average) loss function.
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RV SV PV (3) SVbu PV (3)bu SVshr PV (3)shr SVhac PV (3)hac

Panel A: DJIA index
MSE 5.109 5.195 5.503 4.966 4.888 5.064 5.185 4.999 4.982
p-value dmRV − 0.774 0.833 0.021 0.007 0.235 0.613 0.029 0.227
p-value dmSV − − 0.783 0.054 0.023 0.049 0.485 0.017 0.110
p-value dmPV − − − 0.105 0.077 0.139 0.027 0.110 0.026
p-value MCS 0.403 0.403 0.403 0.646 1.000 0.470 0.470 0.470 0.646

QLIKE 0.930 0.927 0.908 0.220 0.219 0.217 0.209 0.214 0.209
p-value dmRV − 0.000 0.441 0.008 0.008 0.008 0.007 0.007 0.007
p-value dmSV − − 0.449 0.008 0.008 0.008 0.007 0.008 0.007
p-value dmPV − − − 0.007 0.007 0.007 0.006 0.007 0.006
p-value MCS 0.429 0.484 0.140 0.484 0.484 0.484 0.717 0.484 1.000

Panel B: Individual stocks

MSE 25.109 25.371 22.936 24.804 24.433 24.923 22.753 24.813 23.551
p-value dmRV − 0 1 2 9 4 2 4 5
p-value dmSV − − 1 2 4 4 3 3 4
p-value dmPV − − − 0 0 0 0 0 0
p-value MCS 26 22 26 26 26 25 26 24 26

QLIKE 0.186 0.187 0.201 0.181 0.161 0.174 0.147 0.174 0.149
p-value dmRV − 6 7 4 8 9 24 6 20
p-value dmSV − − 7 2 4 3 21 1 18
p-value dmPV − − − 2 4 2 8 2 7
p-value MCS 15 19 23 14 18 19 25 18 22

Table 6.5: Five-day-ahead forecasting performance: 2007-2022 (3,880 days)

Note: The table reports the 5-step ahead forecasting performance of the different models.

The top panel shows the results for the DJIA index, while the bottom panel refers to individual

stocks. MSE and QLIKE refer to the loss function value for a given model (top panel) or

average loss function across individual stocks (bottom panel). The one-sided tests between

each forecasting model against HAR, SV , and PV (3) are denoted by dmHAR, dmSV , and

dmPV (3), respectively. The top panel includes p-values while the bottom panel reports 5%

rejection frequencies. MCS denotes the p-value of that model being in the Model Confidence

Set (top panel), or the number of times that model is in the 80% Model Confidence Set (lower

panel). PV (3) uses three intraday decompositions defined by two thresholds at 10% and 75%.

In the upper panel we highlight in bold p-values < 0.05 for Diebold-Mariano and p-values

> 0.2 for MCS. In both panels, we highlight in italic the minimum (average) loss function.
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RV SV PV (3) SVbu PV (3)bu SVshr PV (3)shr SVhac PV (3)hac

Panel A: DJIA index
MSE 4.424 4.436 4.533 4.448 4.463 4.434 4.488 4.431 4.475
p-value dmRV − 0.613 0.851 0.631 0.683 0.569 0.780 0.555 0.774
p-value dmSV − − 0.843 0.575 0.646 0.478 0.765 0.456 0.750
p-value dmPV − − − 0.209 0.257 0.158 0.225 0.148 0.190
p-value MCS 1.000 0.903 0.743 0.842 0.842 0.903 0.809 0.903 0.842

QLIKE 0.973 0.902 0.936 0.727 0.580 0.708 0.580 0.699 0.574
p-value dmRV − 0.160 0.150 0.027 0.002 0.016 0.002 0.014 0.002
p-value dmSV − − 0.830 0.049 0.004 0.028 0.003 0.023 0.003
p-value dmPV − − − 0.031 0.002 0.017 0.002 0.014 0.002
p-value MCS 0.265 0.314 0.314 0.314 0.555 0.314 0.555 0.373 1.000

Panel B: Individual stocks

MSE 14.243 14.277 14.316 14.205 14.231 14.207 14.122 14.242 14.166
p-value dmRV − 1 2 2 4 3 3 4 6
p-value dmSV − − 2 1 2 2 2 1 5
p-value dmPV − − − 3 2 3 6 3 7
p-value MCS 24 24 25 24 25 24 24 24 24

QLIKE 0.269 0.268 0.292 0.262 0.255 0.259 0.247 0.259 0.250
p-value dmRV − 5 6 4 10 6 22 6 19
p-value dmSV − − 5 3 6 4 17 5 16
p-value dmPV − − − 8 10 9 14 9 13
p-value MCS 20 22 24 19 20 21 24 19 24

Table 6.6: Twenty-two-day-ahead forecasting performance: 2007-2022 (3,880
days)

Note: The table reports the 22-step ahead forecasting performance of the different models.

The top panel shows the results for the DJIA index, while the bottom panel refers to individual

stocks. MSE and QLIKE refer to the loss function value for a given model (top panel) or

average loss function across individual stocks (bottom panel). The one-sided tests between

each forecasting model against HAR, SV , and PV (3) are denoted by dmHAR, dmSV , and

dmPV (3), respectively. The top panel includes p-values while the bottom panel reports 5%

rejection frequencies. MCS denotes the p-value of that model being in the Model Confidence

Set (top panel), or the number of times that model is in the 80% Model Confidence Set (lower

panel). PV (3) uses three intraday decompositions defined by two thresholds at 10% and 75%.

In the upper panel we highlight in bold p-values < 0.05 for Diebold-Mariano and p-values

> 0.2 for MCS. In both panels, we highlight in italic the minimum (average) loss function.
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Figure 6.4: MCB Nemenyi test results: average ranks and 95% confidence
intervals for the one-step ahead RV forecasts of the DJIA index and 26 in-
dividual stocks. Direct daily RV forecasts from HAR, SV and PV (3) models,
and from their extensions with the bottom-up (bu) and the MinT-shr (shr) fore-
cast reconciliation-based approaches according to the corresponding intraday RV
decomposition. The forecasting approaches are sorted vertically according to the
MSE mean rank (left panel) and the QLIKE mean rank (right panel). The
mean rank of each method is displayed to the right of their names. If the in-
tervals of two forecasting models do not overlap, this indicates a statistically
different performance. Thus, methods that do not overlap with the light blue
interval are considered significantly worse than the best and vice versa.

produced by PV (3)shr and PV (3)hac are significantly better than the benchmarks HAR

and SV , both in terms of MSE and QLIKE, while direct PV (3) forecasts appear

significantly worse if the QLIKE loss function is used to evaluate the forecast accuracy.

Finally, overall PV (3)shr shows the best forecast accuracy: it is not significantly worse

than PV (3)bu, the most performing approach in terms of MSE, and ranks first in

terms of QLIKE, while PV (3)hac is the only approach with a statistically equivalent

forecasting accuracy.

Further insights are offered in a simple, but effective descriptive view, by Figure 6.5,

where the scatter plots of the 27 couples of, respectively, MSE and QLIKE indices

obtained using the benchmark HAR model and PV (3)shr are represented. It emerges

that PV (3)shr outperforms the benchmark HAR in the majority of cases (23 out of 27)

in terms of MSE, and always if QLIKE is used to evaluate the forecasting accuracy.

This consideration is somehow extended, and further supported, by the results shown

in Figure 6.6, which contains a summary view of the number of times each forecasting

approach provided better forecasting accuracy than the other procedures considered in

the comparison. Summarizing, PV (3)shr registers a better prediction performance than

all other approaches, with success rates in terms of QLIKE ranging from 96.3% (26 of

27) to 100% (27 of 27), and from 55.6% (15 of 27) to 88.9% (24 of 27) if MSE is used.
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Figure 6.5: Accuracy of the one-step ahead daily RV forecasts for the
DJIA index (triangle) and 26 individual stocks (circle) in terms of MSE (left
panel) and QLIKE (right panel) indices. Comparison between HAR direct and
PV (3)shr reconciliation-based forecasts. The black line represents the bisector,
where either MSE’s or QLIKE’s for both approaches are equal. On the top-left
(bottom-right) corner of each graph, the number of points above (below) the bi-
sector is reported.

6.6 Additional results

6.6.1 Sub-sample analysis

The interpretation of the results so far can be further detailed and specified by consid-

ering 4 different time windows of the complete 2007-2022 interval previously analysed,

namely: 2006-2010, 2011-2014, 2015-2019, 2020-2022 (see the online appendix). We

observe that the predictive performance of models that make use of intraday decom-

positions in a reconciliation framework is constantly better in periods of high market

volatility (2007-2010 and 2020-2022), while they do not worsen the predictive accuracy

of the benchmark in the period 2015-2019, which is characterized by lower variances.

The remaining period 2011-2014 offers different indications depending on whether one

considers QLIKE or MSE. In the latter case, the PV (3) model, both in the single ver-

sion and in the version that makes use of forecast reconciliation, shows a better overall

accuracy, although not significantly to the HAR benchmark.

6.6.2 Grouped series

Here we consider the forecasting performance of reconciliation approaches applied to

grouped time series defined by intraday RV decompositions based on time and returns’

characteristics:
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Figure 6.6: Qualitative evaluation of the one-step ahead forecasting accu-
racy. Each cell reports the number of times the forecasting model in the row
outperforms the model in the column.

• TSVbu: indirect (bottom-up) daily RV forecasts from ten bottom time series cross-

classified by time interval and semi-variances;

• TSVshr: two hierarchies sharing the ten bottom variables above, with eight upper

variables;

• TPV (3)bu: indirect (bottom-up) dailyRV forecasts from fifteen bottom time series

cross-classified by time interval and partial variances;

• TPVshr: two hierarchies sharing the fifteen bottom variables above, with nine

upper variables.

From Table 6.7 it appears that the regression-based reconciliation approach

TPV (3)shr largely benefits from the adoption of a time decomposition (all indices are

less than one). However, looking at Figure 6.7, TPV (3)shr gives results largely similar

to those of the simpler PV (3)shr approach, that does not make use of any temporal

decomposition.

6.6.3 An alternative PV decomposition

In the PV (3) decomposition, the use of RVt in the standardization of intraday returns

exposes the estimators of standardized returns quantile to the influence of price jumps

(i.e., extreme positive or negative returns) and of the intraday volatility pattern.

We consider here a slight modification in the construction of the decomposition by

employing the contribution of Boudt et al. (2011) and exploiting a result of Andersen

et al. (2007b). The former provide a methodology for estimating and filtering out the

intraday variance pattern while the latter shows that, in large sample, the intraday
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rMSE rQLIKE
h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

Panel A: DJIA index
TSVbu 0.824 0.801 1.099 1.085 0.249 0.385
TSVshr 0.869 0.878 0.965 1.011 0.236 0.379
TPV (3)bu 0.822 0.795 1.103 1.090 0.250 0.386
TPV (3)shr 0.808 0.925 0.939 0.971 0.227 0.374

Panel B: Individual stocks
TSVbu 0.991 1.054 1.019 0.893 0.908 0.875
TSVshr 0.987 1.007 0.984 0.850 0.861 0.853
TPV (3)bu 0.982 1.039 1.012 0.894 0.902 0.868
TPV (3)shr 0.924 0.967 0.965 0.805 0.793 0.824

Table 6.7: Forecast accuracy at forecast horizons h = 1, 5, 22. MSE and
QLIKE ratios over the benchmark HAR model for the DJIA index (panel
A), and geometric means of the MSE and QLIKE ratios for individual stocks
(panel B). Values larger than one are highlighted in red. The best index value in
each column is highlighted in bold.

returns standardized by the Bi-power variation follow an asymptotically normal distri-

bution. We combine these two elements as follows. First, we compute returns filtered

from the intraday volatility pattern by adopting the WDS approach of Boudt et al.

(2011). The filtered returns are defined as r⋆i,t =
ri,t
σi

where σi is the intraday volatil-

ity at interval i, estimated with the WDS approach. Then, we evaluate the Bi-power

variation, a jump-robust estimator of the integrated volatility, on the filtered returns:

B̃PVt =
π

2

N

N − 1

M∑

i=2

|r⋆i,t||r⋆i,t|. Finally, we assume the following distribution, for the

filtered and standardized returns

ri,t

σi

√
N−1B̃PVt

∼ N (0, 1) , (6.13)

This quantity has already been used in Boudt et al. (2011) for jump detection. Going

back to the PV framework, the empirical quantiles of standardized returns might be

replaced by theoretical quantiles of the asymptotic distribution leading to

c̃i,t,j = σi

√
N−1B̃PVtΦ

−1 (τj) , j = 1, 2, . . . p− 1. (6.14)

Finally, we note that thresholds are both day-specific and intra-day-interval-specific.

Similarly to the PV (3), we now define a PV (3)⋆ decomposition where we employ the

previously defined quantiles with τ1 = 0.1 and τ2 = 0.75.

In Figure 6.8 the MSE and QLIKE indices for the bottom-up reconciliations in the

two cases are shown. It clearly appears that no meaningful accuracy improvement is

obtained for the considered assets, and this turns out to be confirmed by Figure 6.9,

where the regression-based reconciliation approaches in the two cases are considered.
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Figure 6.7: Accuracy of the one-step ahead daily RV forecasts for the
DJIA index (triangle) and 26 individual stocks (circle) in terms of MSE (left
panel) and QLIKE (right panel) indices. Comparison between HAR direct and
PV (3)shr reconciliation-based forecasts. The black line represents the bisector,
where either MSE’s or QLIKE’s for both approaches are equal. On the top-left
(bottom-right) corner of each graph, the number of points above (below) the bi-
sector is reported.

6.6.4 Decomposition optimality

We close this section by focusing on an issue intimately related to our approach: when

is forecast reconciliation optimal? Or, in other words, can we identify an optimal RV

decomposition? Bollerslev et al. (2022) provide an extensive analysis on the choice of the

number of thresholds and of the thresholds value when focusing on partial variances.

They show heterogeneity in the outcome across stocks, with PV (3) being the best

choice, with median threshold values at 0.1 and 0.75, the values we used in our empirical

analysis. We try here to complement their findings with two examples based on a single

series, the DJIA index.

In the first example, we focus on the optimal choice of quantiles. We compare

the performances of HAR, PV (3) and two alternative prediction approaches based on

forecast reconciliation using PV (3) components: one adopting the shrinkage approach,

and the other one using the HAC forecast error covariance. We report results in terms

of MSE ratios taking the HAR as the benchmark. We set the PV (3) thresholds at two

quantiles, q1 and q2 = 1−q1, with q1 varying from 0.01 to 0.49. In Figure 6.10 we report

the results. Notably, all approaches provide a reduction in MSE compared to HAR: for

PV (3), this is coherent with the evidence in Bollerslev et al. (2022), while for the forecast

reconciliation cases, results are in line with the evidence in our work. In addition, the

use of robust covariance is always improving the forecasts. We also note that, for the

best model, the selected quantiles are 0.45 and 0.55, thus separating the central part
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Figure 6.8: Accuracy of the one-step ahead daily RV forecasts for the
DJIA index (triangle) and 26 individual stocks (circle) in terms of MSE (left
panel) and QLIKE (right panel) indices. Comparison between HAR direct and
PV (3)shr reconciliation-based forecasts. The black line represents the bisector,
where either MSE’s or QLIKE’s for both approaches are equal. On the top-left
(bottom-right) corner of each graph, the number of points above (below) the bi-
sector is reported.
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Figure 6.9: Accuracy of the one-step ahead daily RV forecasts for the
DJIA index (triangle) and 26 individual stocks (circle) in terms of MSE (left
panel) and QLIKE (right panel) indices. Comparison between HAR direct and
PV (3)shr reconciliation-based forecasts. The black line represents the bisector,
where either MSE’s or QLIKE’s for both approaches are equal. On the top-left
(bottom-right) corner of each graph, the number of points above (below) the bi-
sector is reported.
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Figure 6.10: Relative MSE with respect to the HAR model as benchmark (lower
is better); the PV (3) model is based on the q1 and q2 = 1 − q1 quantiles; shr
denotes shrinkage and hac the robust covariance approach; the minimum value
is q1 = 0.45 for hac, and q1 = 0.44 for PV (3) and shr.

of the returns distribution (where returns are really close to zero), from the positive

and negative returns (above a relatively small threshold). These quantiles cannot be

generalized to all series due to the heterogeneity already noticed by Bollerslev et al.

(2022). Nevertheless, such an approach might be used to identify optimal thresholds in

a forecast reconciliation framework.

In the second example, we focus again on the HAR model as benchmark, but now

we change the number of components in the alternative specifications, that is, we move

to PV (g), with g = 2, 3, . . . 15. Quantiles are here chosen to create an equally sized

decomposition, that is, for g = 2 we set q1 = 0.5, for g = 3 we use q1 = 1
3
and q2 = 2

3
,

and so on. This allows us to verify if there is an optimal number of components to

include in the forecast reconciliation procedure. Results for the DJIA index are reported

in Figure 6.11.

We observe that the minimum is at g = 8 for the best performing approach, the use

of forecast reconciliation with a robust forecast errors covariance estimator. All models

improve over the HAR for 2 < g < 10. Across models, the introduction of a robust

covariance improves results for g < 11. We believe these results are reasonable as by

increasing the number of quantiles we identify decompositions being based on smaller

number of data points, and most likely some partial variances will have a value close

to zero (i.e., for the components around the center of the returns distribution, where

returns are almost equal to zero) and likely add just noise to the entire procedure. Of
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Figure 6.11: Relative MSE with the HAR model as benchmark (lower is bet-
ter); the 390 observations are splitted according to equally spaced quantiles; shr
denotes shrinkage and hac the robust covariance approach; the minimum value
is g = 8 for hac and shr, and g = 7 for PV .

course, improvements can be made by an optimal selection of quantiles, combining them

with an optimal temporal decomposition. In addition, the choice of the optimal decom-

position might also be affected by assets liquidity. In fact, we might expect that less

liquid assets would be associated with a smaller number of components in the optimal

specification. Again, by contrasting results across competing RV decompositions, we

show that improvements are clearly present and an optimal number of components can

be identified on an asset-specific case.





Conclusions

Discussion and future research directions

This thesis has focused on various themes related to cross-sectional, temporal, and cross-

temporal forecast reconciliation of time series. Methodological, computational, and ap-

plicative aspects have been explored, aiming to find solutions that are both statistically

well-grounded and effective in achieving improved forecasts with real data. The results

obtained demonstrate promising outcomes, indicating the potential for advancing the

field of forecast reconciliation.

Optimal and heuristic methods for cross-temporal reconciliation

The hierarchical framework is currently considered an effective way to improve the ac-

curacy of forecasts in many different fields of application. In this Chapter, we give

contributions and extensions to a topic that has been widely studied in the last decade

by connecting it to the widespread literature on least-squares adjustment of prelimi-

nary data (Stone et al., 1942; Byron, 1978), with a focus on a projection approach for

linearly constrained multiple time series. This de facto encompasses and extends the

modeling framework by Hyndman et al. (2011) (see also Panagiotelis et al., 2021, and

Wickramasuriya et al., 2019). However, we do agree with Jeon et al. (2019), p. 368,

that a “shortcoming of many of the approaches above (...) is that the weights (...) are

a function of in-sample errors and are not directly determined with reference to an ob-

jective function ultimately used to assess forecast quality”. This problem, yet present

for cross-temporal hierarchies, is added to the dimensionality issues that characterize

these structures. The number of nodes is considerably larger than the relevant single-

dimension hierarchies and calls for alternative estimation strategies, based for example,

on cross validation, as proposed by Jeon et al. (2019), or - when enough data is available

- on Machine Learning techniques (Mancuso et al., 2021; Spiliotis et al., 2021).

Nevertheless, cross-temporal point forecast reconciliation seems to be a promising

theme worth considering for future research. Some topics in this field are (i) simulation

experiments to better understand behavior, potentiality, and possible shortcomings of

191
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the proposed procedures, (ii) more realistic (and hopefully effective) approximations

of the covariance matrices for cross-temporal reconciliation; (iii) extending the cross-

temporal framework to the reconciliation of probabilistic forecasts (Jeon et al., 2019;

Ben Taieb et al., 2021; Panagiotelis et al., 2023), and for Bayesian (Eckert et al., 2021;

Corani et al., 2021) and fast (Ashouri et al., 2022) forecast reconciliation procedures; (iv)

extending the cross-temporal optimal combination approach to the case of intermittent

demand forecasts (Petropoulos and Kourentzes, 2015), with the related non-negativity

issues (Wickramasuriya et al., 2020; Kourentzes and Athanasopoulos, 2021), and possi-

ble consideration of ‘soft’ constraints (Danilov and Magnus, 2008).

Cross-temporal reconciliation of solar forecasts

Renewable energy is providing increasingly more energy to the grid all over the world.

But grid operators must carefully manage the balance between the generation and con-

sumption of energy to make the best use of abundant renewable energy. For an ISO, this

provides greater grid stability, higher revenue and better use of what sun is available at

any one time. Better short-term solar energy forecasts mean lower-emissions, cheaper

energy and a more stable electricity grid. Solar forecasting is thus a key tool to achieve

these results.

In this chapter, cross-temporal point forecast reconciliation has been applied to gen-

erate non-negative, fully coherent (both in space and time) forecasts of PV generated

power. Both methodological and practical issues have been tackled, in order to develop

effective and easy-to-handle cross-temporal forecasting approaches. In addition to as-

suring both cross-sectional and temporal coherence, and non-negativity of the reconciled

forecasts, the results show that for the considered dataset, cross-temporal forecast rec-

onciliation significantly improves on the sequential procedures proposed by Yagli et al.

(2019), at any geographical level of the hierarchy and for any temporal aggregation or-

der. It is worth noting that for the hourly PV generated power at any cross-sectional

level, all forecasts skills are positive and range between 4.7% and 18.4% when the NWP

3TIER is used as reference model.

However, these findings should be considered neither conclusive, nor valid in general.

Other forecasting experiments, through simulations and using other datasets, as well

as in solar forecasting and in other application fields, should be performed to empiri-

cally robustify the results shown so far. In addition, other research queries could raise

in the field of cross-temporal PV forecast reconciliation, like using reduced temporal

hierarchies, as well as forecasting through appropriate Machine Learning end-to-end

approaches (Stratigakos et al., 2022), and probabilistic instead of deterministic (point)
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forecasting (Panamtash and Zhou, 2018; Jeon et al., 2019; Yang, 2020; Yagli et al., 2020;

Ben Taieb et al., 2021; Panagiotelis et al., 2023).

Forecast combination-based forecast reconciliation

The Level-l Conditional Coherent cross-sectional forecast reconciliation approach re-

cently proposed by Hollyman et al. (2021) has been re-visited and extended, showing

that it grounds on the solution to a quadratic minimization problem with exact linear

inhomogeneous constraints, whose known constant part is exogenously given by the up-

per time series base forecasts. We have also provided the expressions valid for a level

conditional coherent reconciliation with endogenous constraints, where the upper time

series forecasts are no longer considered as binding constraints, but are admitted to be

revised in view of their variability.

The forecasting experiment on the Australian Tourism Demand dataset by Holly-

man et al. (2021) has been extended accordingly, in order to compare the accuracy

performance of the state-of-the-art optimal combination forecast reconciliation proce-

dures (Wickramasuriya et al., 2019) with those offered by simple averaging of the LlCC

reconciled forecasts. Results have been found (i) considering the non-negativity issues

posed by the data, (ii) using the relative accuracy metrics recommended by Davydenko

and Fildes (2013), and (iii) taking into account the role played by the bts base forecasts

in the LCC and CCC forecast combination, which allows to establish a ‘fair’ compari-

son with the optimal combination forecasts reconciliation procedure. The learned lesson

from this dataset is that pooling reconciled forecasts may play a positive and impor-

tant role in forecast reconciliation. Applying simple pooling techniques, while fulfilling

all the aggregation constraints, improves the quality of the single constituent forecasts

(Abouarghoub et al., 2018), in agreement with the vast amount of empirical evidence

of the last five decades in the field of forecast combination (Bates and Granger, 1969;

Clemen, 1989; Timmermann, 2006). Furthermore, the original intuition by Hollyman

et al. (2021) of combining bottom time series base forecasts from different models (e.g.,

seasonal averages and automatic ETS) has been conveniently re-stated (and reinforced)

by considering a forecast averaging strategy involving all the available forecasts.

The empirical application has considered another dataset (quarterly Australian GDP

from both Income and Expenditure sides), already used in the hierarchical forecast-

ing literature (Athanasopoulos et al., 2020). Rather interesting, unlike the Australian

Tourism dataset, in this case the CCCH approach proposed by Hollyman et al. (2021),

adopted by considering either seasonal averages or seasonal random walk as naive bottom

time series base forecasts, does not perform well. It is confirmed that LCC and CCC,

both the exogenous and the endogenous variants, improve on the base forecasts, and
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have good forecasting accuracy, though not superior to the state-of-the-art approaches

wls and shr. These findings suggest that LCC and CCC approaches are useful forecast-

ing tools, simple to design and easy to implement and use, worth to be considered by the

practitioners along with the standard reconciliation approaches available in literature.

In this chapter, only simple forecast averaging has been considered, in line with

the idea that it is generally not worse (and often it is better) than more sophisticated

weighting schemes (Genre et al., 2013). Nevertheless, we think it would be interesting,

and potentially fruitful, to consider alternative forecast pooling methods (Kourentzes

et al., 2019; Lichtendahl and Winkler, 2020). In addition, in order to exploit informa-

tion differences and mitigate model uncertainty, the LCC approach could be easily ex-

tended to combine forecasts from multiple temporal aggregation levels (Athanasopoulos

et al., 2017), provided a sensible forecast error covariance matrix be considered (Nys-

trup et al., 2020, 2021). By continuing on this path, since leveraging both cross-sectional

and temporal hierarchies using cross-temporal reconciliation approaches has shown to

be effective in order to forecast a linearly constrained multiple time series as shown

in Chapter 1, forecast combination based forecast reconciliation could be adapted to

this challenging framework as well, in order to gain predictive accuracy. Finally, as in

practical applications a thorough forecast accuracy evaluation needs to deal with pre-

dictive distributions rather than point forecasts, the forecast combination approach to

probabilistic forecast reconciliation (Jeon et al., 2019; Panagiotelis et al., 2023; Yang,

2020; Yagli et al., 2020; Ben Taieb et al., 2021; Wickramasuriya, 2024) is a valuable

topic worth considering for future research.

General linearly constrained multiple time series reconciliation

Producing and using coherent information, disaggregated by different characteristics

useful for different decision levels, is an important task for any practitioner and

quantitative-based decision process. At this end, in this article we aimed to gener-

alize the results valid for the forecast reconciliation of a genuine hierarchical/grouped

time series to the case of a general linearly constrained time series, where the distinction

between upper and bottom variables, which is typical in the hierarchical setting, is no

longer meaningful.

Two motivating examples have been considered, both coming from the National

Accounts field, namely the forecast reconciliation of quarterly GDP of (i) Australia,

disaggregated by income and expenditure variables, and (ii) Euro Area 19, disaggre-

gated by the income, output and expenditure side variables of 19 component countries.

In both cases, the structure of the time series involved cannot be represented according
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to a genuinely hierarchical/grouped scheme, so the standard forecast reconciliation tech-

niques fail in producing a “unique” GDP forecast, either point or probabilistic, making

it necessary to solve this annoying issue.

We have shown that using well known linear algebra tools, it is always possible to es-

tablish a formal connection between the unconstrained least squares structural approach

originally developed by Hyndman et al. (2011), and the projection approach dating back

to the work by Stone et al. (1942), and then applied to solve different reconciliation prob-

lems (Di Fonzo and Marini, 2011; van Erven and Cugliari, 2015; Wickramasuriya et al.,

2019, see also Chapter 1). We propose a new classification of the variables forming the

multiple time series as free and constrained, respectively, that can be seen as a gener-

alization of the standard bottom/upper variables classification used in the hierarchical

setting. Furthermore, we show techniques for deriving a linear combination matrix de-

scribing the relationships between these variables, starting from the coefficient matrix

summarizing the (possible redundant) constraints linking the series.

The application of these findings to both point and probabilistic reconciliation tech-

niques proved to be easy to implement and powerful, resulting in significant improve-

ments in the forecasting accuracy of GDP and its components in both forecasting ex-

periments.

Cross-temporal probabilistic forecast reconciliation

In this chapter, we extend the probabilistic reconciliation setting developed by Pana-

giotelis et al. (2023) for the cross-sectional case to the cross-temporal framework.

Through appropriate notation, we show how theorems and definitions valid for the

cross-sectional case can be reinterpreted and extended. The general notation proposed

can help investigate extensions following different probabilistic approaches, such as those

in Jeon et al. (2019), Ben Taieb et al. (2021) and Corani et al. (2023). We propose a

Gaussian and a bootstrap approach to simulate the base forecasts able to take into ac-

count both cross-sectional and temporal relationships simultaneously, opening the way

for further research into cross-temporal probabilistic forecasting.

Moreover, we analyze the use of residuals, showing that one-step residuals fail to

capture the temporal structure, and propose multi-step residuals that can fully capture

the cross-temporal relationships. Due to the high-dimensionality of the cross-temporal

setting when dealing with covariance matrices, we propose four alternative forms to

reduce the number of parameters to be estimated, showing that the overlapping resid-

uals may reduce the high-dimensionality burden by increasing the number of available

residuals. These ideas are worth requiring further investigation in future works.
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Finally, we perform empirical applications on two datasets commonly used in fore-

cast reconciliation research: Australian GDP from Income and Expenditure sides and

Australian Tourism Demand. We find that in both cases optimal cross-temporal rec-

onciliation approaches significantly improve on base forecasts. We also compare these

with partly bottom-up techniques that use uni-dimensional reconciliation (either cross-

sectional or temporal) and confirm that simultaneously exploiting both dimensions in

reconciliation produces better results, especially at higher levels of temporal aggrega-

tion. This is more evident in the Australian Tourism Demand application, where the

involved temporal hierarchies are richer, allowing the regression-based forecast reconcil-

iation approaches to capture and exploit more features of the data through the avail-

able temporal aggregation levels (Kourentzes et al., 2014; Kourentzes and Petropoulos,

2016; Kourentzes et al., 2017) compared to partly bottom-up. In these two datasets,

oct(wlsv) and oct(bdshr) appear as the two best performing approaches, both in terms

of improving forecast accuracy and computational efficiency (see the online appendix),

thus corroborating the results of Chapter 1 for point forecast reconciliation.

In conclusion, cross-temporal forecast reconciliation is an important tool to improve

the accuracy of forecasts while simultaneously ensuring their coherency both in space

and time. Furthermore, these techniques can also be customized to suit the specific needs

of an organization, allowing for the incorporation of relevant domain-specific knowledge

(e.g., non negative constraints) and expertise, ensuring that the resulting forecasts are

not only accurate but also coherent and more reliable for decision-making purposes.

Further developments will focus on the generalization of other cross-sectional and

temporal probabilistic approaches (Jeon and Taylor, 2012; Ben Taieb et al., 2021; Zam-

bon et al., 2024; Corani et al., 2023). In addition, the exploration of machine learning

techniques holds significant promise for future advancements in this field. Approaches

proposed by Olivares et al. (2023b, 2022, 2023a) present exciting opportunities to intro-

duce machine learning algorithms in cross-temporal probabilistic forecast reconciliation.

A reconciliation approach for the realized volatility

In this chapter, we address whether using the disaggregate components of the daily re-

alized volatility or combining them with the daily realized volatility forecasts improves

the forecasting accuracy compared to using the daily realized volatility series alone.

To this end, we investigate alternative ways of leveraging intraday RV decompositions

in forecasting daily RV . The key question of this study is whether it is beneficial to

model and forecast daily RV at the sub-component level, thus exploiting the informative

content (from a forecasting point of view) of bottom time series, or whether a direct
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strategy should be preferred. The latter refers to the prediction of RV by directly mod-

eling it, even when the explanatory variables include a decomposition of the RV itself.

Differently, indirect (bottom-up) forecasting is based on the aggregation of models fit on

the bottom series, whose forecasts are then aggregated to recover the prediction of the

top series. Forecast reconciliation adds a further element, by restoring the aggregation

constraints linking the bottom, possibly the intermediate, and the top-level time series.

The idea is that an appropriate ‘imposition’ to the forecasts of the same constraints

valid for the observed data should improve the overall forecasting accuracy. We obtain

a forecast of different sub-components individually, and then combine them to estimate

the forecast of the aggregated series in an indirect (bottom-up) and a reconciliation

forecasting framework.

Our main results can be summarized as follows. Through a simple out-of-sample

forecasting experiment, we show that both bottom-up and regression-based reconcilia-

tion procedures (Wickramasuriya et al., 2019) perform relatively well compared to the

benchmark direct forecasting models by Corsi (2009), Patton and Sheppard (2015), and

Bollerslev et al. (2022), mostly when the PV (3) model by Bollerslev et al. (2022) is

used to produce base forecasts of the daily RV top-level series. We find substantial

and significant reductions in forecast errors when using the new proposed indirect/rec-

onciliation approaches. The disaggregated procedures do quite well in forecasting RV ,

and the reconciliation approach is generally more promising. For the HAR model, the

differences between the bottom-up and the direct approach are clearly visible, and the

regression-based reconciliation approach offers some additional improvements. This is

somehow confirmed for both SV and PV (3) forecasts, where generally the combina-

tion scheme of single component models provides smaller forecast errors than both the

indirect and direct forecasting approaches.





Appendix A

Cross-temporal reconciliation of

solar forecasts

A.1 Proof of the Theorem 2.1

1. Let U ′
na×n and Z ′

m×(k∗+m) be the cross-sectional and temporal, respectively, zero

constraints matrix. Let

M
[k]
cs,j = Mcs =

[
In −WU (U ′WU )

−1
U ′
]
, k ∈ K, j = 1, ...

m

k
,

and

Mte,i = Mte =
[
Ik∗+m −ΩZ (Z ′ΩZ)

−1
Z ′
]
, i = 1, . . . , n,

be the cross-sectional and temporal projection matrices, respectively, such that:

Ỹ
[k]
cs = McsŶ

[k], k ∈ K,
ỹte,i = Mteŷi, i = 1, . . . , n,

where Ŷ [k] and Ỹ
[k]
cs are the

(
n× m

k

)
matrices with, respectively, the base and the

cross-sectional reconciled forecasts of the n series at time granularity k, and ŷi and

ỹte,i are the [(k∗ +m)× 1] vectors with, respectively, the base and the temporal

reconciled forecasts at all time granularities for the i-th series. In compact matrix

form we get:

Ỹcs =
[
Ỹ [m]

cs Ỹ [kp−1]
cs . . . Ỹ [k2]

cs Ỹ [1]
cs

]

= Mcs

[
Ŷ [m] Ŷ [kp−1] . . . Ŷ [k2] Ŷ [1]

]

= McsŶ ,

Ỹte = {Mte [ŷ1 . . . ŷi . . . ŷn]}′

=
{
MteŶ

′
}′

= Ŷ M ′
te.
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Then, Ỹcst is obtained by first operating a cross-sectional reconciliation (step 1,

Ỹcs), and then reconciling via temporal hierarchies the forecasts obtained in the

previous step (step 2, Ỹcst). In matrix terms:

step 1 Ỹcs = McsŶ

step 2 Ỹcst = ỸcsM
′
te = McsŶ M ′

te

where Ŷ is the (n×(k∗+m)) base forecasts matrix. Vice versa, Ỹtcs is obtained by

first operating a temporal reconciliation (step 1, Ỹte), and finally a cross-sectional

reconciliation is applied (step 2):

step 1 Ỹte = Ŷ M ′
te

step 2 Ỹtcs = McsỸte = McsŶ M ′
te = Ỹcst.

The forecasts Ỹtcs (and Ỹcst) resulting from a single two-step iteration, are cross-

temporally reconciled because:

U ′Ỹtcs = U ′McsŶ M ′
te

=
[
U ′ −U ′WU (U ′WU )

−1
U ′
]
Ŷ M ′

te

= [U ′ −U ′] Ŷ M ′
te

= 0na×(k∗+m)

and

Z ′Ỹ ′
tcs = Z ′MteŶ

′Ŷ ′M ′
cs

=
[
Z ′ −Z ′ΩZ (Z ′ΩZ)

−1
Z ′
]
M ′

cs

= [Z ′ −Z ′] Ŷ ′M ′
cs

= 0m×n.

2. Using matrix vectorization and structural representation for the cross-temporal

reconciliation problem we have:

ỹoct = F
(
F ′Ω−1

ct F
)−1

F ′Ω−1
ct ŷ,

where ỹoct = vec
(
Ỹ ′

oct

)
, ŷ = vec

(
Ŷ ′
)
, and F = S ⊗R is the [n(k∗ +m)×mnb]

cross-temporal summing matrix. Let

Ωct = W ⊗Ω
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be the cross-temporal error covariance matrix, by exploiting the properties of the

Kronecker product (Henderson and Searle, 1981; Harville, 2008), we obtain:

ỹoct = F
(
F ′Ω−1

ct F
)−1

F ′Ω−1
ct ŷ

= (S ⊗R)
[
(S ⊗R)′(W ⊗Ω)−1(S ⊗R)

]−1
(S ⊗R)′(W ⊗Ω)−1ŷ

= (S ⊗R)
[
(S′ ⊗R′)(W−1 ⊗Ω−1)(S ⊗R)

]−1
(S′ ⊗R′)(W−1 ⊗Ω−1)ŷ

= (S ⊗R)
(
S′W−1S ⊗R′Ω−1R

)−1
(S′W−1 ⊗R′Ω−1)ŷ

=
[
S
(
S′W−1S

)−1
S′W−1 ⊗R

(
R′Ω−1R

)−1
R′Ω−1

]
ŷ.

Exploiting the structural notation also in the temporal then cross-sectional itera-

tive procedure and the vectorization ỹtcs = vec
(
Ỹ ′

tcs

)
, we obtain:

ỹtcs = P
[
Ik∗+m ⊗ S

(
S′W−1S

)−1
S′W−1

]
P ′
[
In ⊗R

(
R′Ω−1R

)−1
R′Ω−1

]
ŷ

=
[
S
(
S′W−1S

)−1
S′W−1 ⊗ Ik∗+m

] [
In ⊗R

(
R′Ω−1R

)−1
R′Ω−1

]
ŷ

=
[
S
(
S′W−1S

)−1
S′W−1 ⊗R

(
R′Ω−1R

)−1
R′Ω−1

]
ŷ = ỹoct.

Finally, Ỹtcs = Ỹoct and, following from point 1,

Ỹtcs = Ỹcst = Ỹoct.

□

KA with constant cross-sectional and temporal covariance matrices

In the Kourentzes and Athanasopoulos (2019) approach (Section 2.2.4), the temporally

reconciled predictions at step 1, Ŷ M ′
te, are cross-sectionally reconciled via premultipli-

cation by the matrix M = 1
p

∑
k∈K M

[k]
cs . As W [k] = W , k ∈ K, M

[k]
cs = Mcs, and

M = Mcs. Then,

ỸKA = MŶ M ′
te = McsŶ M ′

te = Ỹcst = Ỹtcs.

A.2 Proof of the Theorem 2.2

Let Ỹtcs and Ỹcst be the [n× (k∗ +m)] matrix of the temporal-then-cross-sectional and

cross-sectional-then-temporal iterative reconciled forecasts using W [k] (k ∈ K) and Ωi

(i = 1, . . . , n) as the cross-sectional and temporal covariance matrices, respectively. The

iterative solution obtained at a given complete recursion J ≥ 1, may be written as the

result of alternating oblique projections, obtained through generalized least squares,

such that

ỹtcs = (McsMte)
J ŷ,
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with

Mcs = Kcs

[
K ′

cs(PWP ′)−1Kcs

]−1
K ′

cs(PWP ′)−1

Mte = Kte

[
K ′

teΩ
−1Kte

]−1
K ′

teΩ
−1

, (A.1)

where ỹtcs = vec
(
Ỹ ′

tcs

)
, Ŷ is the [n × (k∗ +m)] base forecast matrix, ŷ = vec

(
Ŷ ′
)
,

P is the commutation matrix operating on matrices of dimension [n × (k∗ +m)] (e.g.,

Y , Ŷ , Ỹ ), such that P vec
(
Ŷ
)

= vec
(
Ŷ ′
)

(see Chapter 1), and Kcs and Kte are

extensions of, respectively, the cross-sectional summing matrix S and the temporal

summing matrix R:

Kcs = S ⊗ I(k∗+m) and Kte = In ⊗R.

More precisely, the cross-sectional structural representation valid for all the k∗+m time

periods of all the temporal aggregates of the n variables, can be written as

vec (Y ′) = Kcsvec (B
′) ,

whereas the temporal structural representation valid for all the n variables, can be

expressed as

vec (Y ′) = Ktevec
(
Y [1]′

)
.

In addition, the cross-temporal optimal (in least squares sense) combination solution,

which satisfies both cross-sectional and temporal constraints, can be written as ỹoct =

Mctŷ, with

Mct = F
[
F ′Ω−1F

]−1
F ′Ω−1, (A.2)

where

F = S ⊗R = KcsKte (A.3)

is the cross-temporal summing matrix, such that the cross-temporal structural repre-

sentation can be expressed as

vec (Y ′) = F vec
(
B[1]′

)
.

In other terms, ỹcs, ỹte, and ỹct are obtained through oblique (i.e., non-orthogonal)

projections of the base forecasts ŷ onto the linear sub-spaces spanned by the columns

of, respectively, S ⊗ I(k∗+m), In ⊗R, and S ⊗R. It is worth noting that, according to

expression (A.3), the sub-space spanned by the columns of S ⊗R is the intersection of

the sub-spaces spanned by the columns of S ⊗ I(k∗+m) and In ⊗R, respectively.

We want to prove

∥ỹtcs − ỹoct∥ = ∥(McsMte)
J ŷ −Mctŷ∥ J→+∞−−−−→ 0.
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Since Ω is p.d., we can use the Cholesky decomposition (Harville, 2008, p. 232) to

express its inverse as Ω−1 = Q′Q, where Q is a (unique) upper triangular matrix with

positive diagonal elements. Thus, denoting y = Qŷ, it can be shown that

ỹcs = Q−1M csy, ỹte = Q−1M tey, ỹoct = Q−1M cty,

where M rec = Krec

(
K

′

recKrec

)−1

K
′

rec, with Krec = QKrec, rec ∈ {cs, te}, and

M ct = F
(
F

′
F
)−1

F
′
, with F = QF , are orthogonal projection matrices onto the

linear sub-spaces spanned by the columns of, respectively, QF , QKcs, and QKte.

The oblique projection matrices (A.1) can thus be written using the orthogonal pro-

jection matrices M rec such that Mrec = Q−1M rec., rec ∈ {cs, te}. Then,

(McsMte)
J ŷ = McsMte . . .McsMteŷ

= Q−1QMcsMte . . .McsMteŷ

= Q−1QKcs

[
K ′

csΩ
−1Kcs

]−1
K ′

csΩ
−1Kte

[
K ′

teΩ
−1Kte

]−1
K ′

teΩ
−1 . . .

. . .Kcs

[
K ′

csΩ
−1Kcs

]−1
K ′

csΩ
−1Kte

[
K ′

teΩ
−1Kte

]−1
K ′

teΩ
−1ŷ

= Q−1 QKcs [K
′
csQQ′Kcs]

−1
K ′

csQ︸ ︷︷ ︸
Mcs

Q′Kte [K
′
teQQ′Kte]

−1
K ′

teQ︸ ︷︷ ︸
M te

Q′ . . .

. . .QKcs [K
′
csQQ′Kcs]

−1
K ′

csQ︸ ︷︷ ︸
Mcs

Q′Kte [K
′
teQQ′Kte]

−1
K ′

teQ︸ ︷︷ ︸
M te

Q′ŷ

= Q−1(M csM te)
Jy.

Therefore,

ỹtcs − ỹoct = Q−1(M csM te)
Jy −Q−1M cty

= Q−1
[
(M csM te)

J −M ct

]
Qŷ.

According to Von Neumann (1949) and Ginat (2018), the orthogonal alternating pro-

jection onto two subspaces converges in norm to the projection onto the intersection of

the two subspaces1, that is

∥(M csM te)
J −M ct∥Qŷ

J→+∞−−−−→ 0

and, finally,

∥ỹtcs − ỹoct∥ J→+∞−−−−→ 0.

The convergence of ỹcst to ỹoct is easily obtained by inverting the order in which matrices

Mcs and Mte are applied in the previous proof. □

1Thanks to Prof. Tommaso Proietti for suggesting considering alternating projections for this proof.
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A.3 nMBE and fully coherent forecasts

Let ỹ
[k]
t , t = 1, . . . , Nk, k ∈ K, be the cross-temporal reconciled forecasts for a single

time series in a complete time cycle (see Section 2.2). The temporal coherency implies

that

ỹ
[k]
t =

kt∑

j=k(t−1)+1

ỹ
[1]
j , ∀k ∈ K,

where ỹ
[1]
j , j = 1, . . . , N1, denotes the forecasts for the series observed at the highest time

frequency. As the realizations of the time series are by definition temporally coherent

(i.e., y
[k]
t =

kt∑

j=k(t−1)+1

y
[1]
j ), the normalized Mean Bias Error defined in (2.12) can be

written as

nMBE[k] =

1

Nk

Nk∑

t=1

(
ỹ
[k]
t − y

[k]
t

)

1

Nk

N∑

t=1

y
[k]
t

=

Nk∑

t=1




kt∑

j=k(t−1)+1

ỹ
[1]
j −

kt∑

j=k(t−1)+1

y
[1]
j




Nk∑

t=1

kt∑

j=k(t−1)+1

y
[1]
j

=

N1∑

j=1

(
ỹ
[1]
t − y

[1]
t

)

N1∑

j=1

y
[1]
j

= nMBE[1], k ∈ {m, kp−1, . . . , k2}.
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Forecast combination-based forecast

reconciliation

B.1 The formulation by Hollyman et al. (2021)

B.1.1 Level-1 Conditional Coherent forecast reconciliation

For l = 1, in order to transform the bts base forecasts b̂ in reconciled forecasts b̃(1)

conditional to ŷ1, Hollyman et al. (2021) consider the [(nb + 1)× (nb + 1)] matrix A1:

A1 =

[
0 1′

nb

p Inb

]
,

where p is a (nb×1) vector of combination weights pi, i = 1, . . . , nb, 0 < pi < 1,

nb∑

i=1

pi =

1. As it is immediately recognized, such a matrix may be obtained by ‘augmenting’ the

level-1 structural summation matrix S1, putting the vector [0 p′]′ on its left side. Let

Ḡ1 be a [(nb + 1)× (nb + 1)] matrix linked to A1 by the relationship

Ḡ1A1 = I(nb+1).

By solving the previous relationship wrt Ḡ1, i.e. Ḡ1 = A−1
1 , it is possible to get the

weights to be used to combine the base forecasts of the bts, and the nb lower rows of

matrix Ḡ1 compose the [nb × (nb + 1)] matrix G1, transforming the bts base forecasts

in coherent forecasts. It can be easily checked that

Ḡ1 = A−1
1 =

[
−1 1′

nb

p
(
Inb

− p1′
nb

)
]
,

and thus we can write b̃(1) = G1ŷ1, where G1 =
[
p
(
Inb

− p1′
nb

)]
is a [nb × (nb + 1)]

matrix obtained by removing the first row of Ḡ1.
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All the reconciled forecasts are thus given by ỹ(1) = Sb̃(1) = SG1ŷ1. In order to

express the vector ỹ(1) as a transformation of all the base forecasts, not only the ones

for the top-level series and the bts, na − 1 zero columns have to be inserted between

the first and the second column of matrix G1, thus obtaining the (nb × n) matrix G(1),

such that:

ỹ(1) = G(1)ŷ.

For the simple hierarchical time series considered as an example in Figure 3.1, we would

have the (5× 8) matrix

G(1) = [p 05×2 (I5 − p1′
5)] .

It is worth noting that, sinceG(1)S = I5, this matrix satisfies the unbiasedness condition

for the reconciled forecasts (Athanasopoulos et al., 2009).

B.1.2 Extension for l > 1

Let’s focus now on a generic level l, l = 1, . . . L, of the hierarchical/grouped time

series, and denote with ỹl the [(nl + nb)× 1] vector containing the reconciled forecasts

conditional to the level-l uts base forecasts. In other words, the uts reconciled forecasts

in ỹl are equal to the base forecasts of the corresponding uts in ŷl (i.e., ãl = âl). Then,

denote b̃(l), l = 1, . . . , L, the bts reconciled forecasts conditional to the base forecasts

of the level-l series. In analogy to the case l = 1, Hollyman et al. (2021) propose to

compute

b̃(l) = Glŷl,

where Gl is a [nb × (nl + nb)] matrix built as follows.

Let Pl be the (nb × nl) matrix (3.5) containing the weights of each forecasts in the

nl elementary hierarchies linking each of the nl level-l series to their ‘afferent’ bts, and

define the [(nl + nb)× (nl + nb)] matrix Al as:

Al =

[
0nl×nl

Cl

Pl Inb

]
,

where Cl is the cross-sectional (contemporaneous) aggregation matrix, with dimension

(nl×nb), mapping the nb bts into the nl level-l aggregated series, such that ClPl = Inl
.

Al is a 2 × 2 block-partitioned matrix, with a null upper-left block, whose inverse is

given by (Lu and Shiou, 2002):

A−1
l =

[
− (ClPl)

−1 (ClPl)
−1

Cl

Pl (ClPl)
−1 [

Inb
− Pl (ClPl)

−1
Cl

]
]
=

[
−Inl

Cl

Pl (Inb
− PlCl)

]
,

a very simple expression to compute, which does not need any matrix inversion.
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The desired transformation matrixGl, which has dimension [nb × (nb + nl)], allowing

to calculate bts reconciled forecasts in line with the nl base forecasts of the level-l

series, can be obtained by simply discarding the top nl rows of matrix A−1
l : Gl =[

Pl (Inb
− PlCl)

]
. The level-l conditional bts reconciled forecasts are thus given by:

b̃(l) = Plâl + (Inb
− PlCl) b̂

= b̂+ Pl

(
âl −Clb̂

) , l = 1, . . . , L,

and the vector ỹ(l) of all the reconciled forecasts conditional to the level-l base forecasts

is easily obtained as:

ỹ(l) = Sb̃(l), l = 1, . . . , L.

B.2 Derivation of b̃
(l)
LCC

Consider the lagrangean function

L (b,λ) = b′W−1
b b− 2b̂′W−1

b b+ b̂′W−1
b b̂+ 2λ′ (Clb− al) .

The first order conditions are given by:

∂L

∂b
= W−1

b b− 2W−1
b b̂+ 2C ′

lλ = 0,

∂L

∂λ
= Clb− al = 0.

After simplification and re-arrangement of the known terms on the right side of the

expression, it is:

W−1
b b+C ′

lλ = W−1
b b̂

Clb = al

−→
[
W−1

b C ′
l

Cl 0

][
b

λ

]
=

[
W−1

b b̂

al

]
.

The solution to the system is thus given by
[
b

λ

]
=

[
W−1

b C ′
l

Cl 0

]−1 [
W−1

b b̂

al

]
.

The inverse matrix is given by (Lu and Shiou, 2002):
[
W−1

b C ′
l

Cl 0

]−1

=

[(
Wb −WbC

′
l (ClWbC

′
l)

−1
ClWb

)
WbC

′
l (ClWbC

′
l)

−1

(ClWbC
′
l)

−1
ClWb − (ClWbC

′
l)

−1

]
,

and after some algebra we obtain that

b̃
(l)
LCC = b̂+WbC

′
l (ClWbC

′
l)

−1
(
âl −Clb̂

)
, l = 1, . . . , L.

The previous expression can be re-stated as follows:

b̃
(l)
LCC = Llâl +Mlb̂,
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with

Ll = WbC
′
l (ClWbC

′
l)

−1

e

Ml =
[
Inb

−WbC
′
l (ClWbC

′
l)

−1
Cl

]
= (Inb

−LlCl) .

It is thus:[
âl

b̃
(l)
LCC

]
=

[
Inl

0nl×nb

Ll Ml

][
âl

b̂

]
→ ỹl,LCC = M lŷl, with M l =

[
Inl

0nl×nb

Ll Ml

]
.

Since, as can be easily checked, it is MlLl = 0nb×nb
, the matrix M l is idempotent

(M lM l = M l). For, it is a projection matrix in a linear sub-space of Rnl+nb spanned

by the relationship
[
Inl

0nl×nb

Inl
−Cl

][
al

b

]
=

[
âl

0nb

]
.

B.3 LlCC with endogenous constraints for the toy

example of Figure 3.1

In this case the relationships linking the variable forming the hierarchy are:

T = X + Y = A+B + C +D + E

X = A+B

Y = C +D + E

Thus, there are two upper levels (L = 2) for which it is possible to apply the LlCC

reconciliation procedure with endogenous constraints:

• l = 1 (n1 = 1, nb = 5)

W1 = diag
(
σ2
T , σ

2
A, σ

2
B , σ

2
C , σ

2
D, σ2

E

)
, U ′

1 =
[
1 −1 −1 −1 −1 −1

]

⇒ W1U1 =




σ2
T

−σ2
A

−σ2
B

−σ2
C

−σ2
D

−σ2
E




, U ′

1W1U1 = σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E .

After a bit of algebra, it is found that the reconciled forecasts are given by:

T̃ (1)
en = T̂ − σ2

T

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

(
T̂ − Â− B̂ − Ĉ − D̂ − Ê

)
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Ã(1)
en = Â+

σ2
A

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

(
T̂ − Â− B̂ − Ĉ − D̂ − Ê

)

B̃(1)
en = B̂ +

σ2
B

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

(
T̂ − Â− B̂ − Ĉ − D̂ − Ê

)

C̃(1)
en = Ĉ +

σ2
C

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

(
T̂ − Â− B̂ − Ĉ − D̂ − Ê

)

D̃(1)
en = D̂ +

σ2
D

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

(
T̂ − Â− B̂ − Ĉ − D̂ − Ê

)

Ẽ(1)
en = Ê +

σ2
E

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

(
T̂ − Â− B̂ − Ĉ − D̂ − Ê

)
.

Expressing each reconciled forecasts as a combination of the ‘direct’ (base) fore-

cast, and of the ‘implicit’ forecast, obtained by applying the constraints to the

base forecasts, gives:

T̃ (1)
en =

(
σ2
A + σ2

B + σ2
C + σ2

D + σ2
E

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)
T̂+

(
σ2
T

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)(
Â+ B̂ + Ĉ + D̂ + Ê

)

Ã(1)
en =

(
σ2
T + σ2

B + σ2
C + σ2

D + σ2
E

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)
Â+

(
σ2
A

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)(
T̂ − B̂ − Ĉ − D̂ − Ê

)

B̃(1)
en =

(
σ2
T + σ2

A + σ2
C + σ2

D + σ2
E

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)
B̂+

(
σ2
B

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)(
T̂ − Â− Ĉ − D̂ − Ê

)

C̃(1)
en =

(
σ2
T + σ2

A + σ2
B + σ2

D + σ2
E

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)
Ĉ+

(
σ2
C

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)(
T̂ − Â− B̂ − D̂ − Ê

)

D̃(1)
en =

(
σ2
T + σ2

A + σ2
B + σ2

C + σ2
E

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)
D̂+

(
σ2
D

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)(
T̂ − Â− B̂ − Ĉ − Ê

)

Ẽ(1)
en =

(
σ2
T + σ2

A + σ2
B + σ2

C + σ2
D

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)
Ê+

(
σ2
E

σ2
T + σ2

A + σ2
B + σ2

C + σ2
D + σ2

E

)(
T̂ − Â− B̂ − Ĉ − D̂

)

• l = 2 (n2 = 2, nb = 5)

W2 = diag
(
σ2
X , σ2

Y , σ
2
A, σ

2
B , σ

2
C , σ

2
D, σ2

E

)
, U ′

2 =

[
1 0 −1 −1 0 0 0

0 1 0 0 −1 −1 −1

]
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⇒ W2U2 =




σ2
X 0

0 σ2
Y

−σ2
A 0

−σ2
B 0

0 −σ2
C

0 −σ2
D

0 −σ2
E




, U ′

2W2U2 =

[
σ2
X + σ2

A + σ2
B 0

0 σ2
Y + σ2

C + σ2
D + σ2

E

]
.

After a bit of algebra, we find that the reconciled forecasts are equal to

X̃(2)
en = X̂ − σ2

X

σ2
X + σ2

A + σ2
B

(
X̂ − Â− B̂

)

Ỹ (2)
en = Ŷ − σ2

Y

σ2
Y + σ2

C + σ2
D + σ2

E

(
Ŷ − Ĉ − D̂ − Ê

)

Ã(2)
en = Â+

σ2
X

σ2
X + σ2

A + σ2
B

(
X̂ − B̂

)

B̃(2)
en = B̂ +

σ2
X

σ2
X + σ2

A + σ2
B

(
X̂ − Â

)

C̃(2)
en = Ĉ +

σ2
Y

σ2
Y + σ2

C + σ2
D + σ2

E

(
Ŷ − D̂ − Ê

)

D̃(2)
en = D̂ +

σ2
Y

σ2
Y + σ2

C + σ2
D + σ2

E

(
Ŷ − Ĉ − Ê

)

Ẽ(2)
en = Ê +

σ2
Y

σ2
Y + σ2

C + σ2
D + σ2

E

(
Ŷ − Ĉ − D̂

)

or equivalently:

X̃(2)
en =

(
σ2
A + σ2

B

σ2
X + σ2

A + σ2
B

)
X̂ +

(
σ2
X

σ2
X + σ2

A + σ2
B

)(
Â+ B̂

)

Ỹ (2)
en =

(
σ2
C + σ2

D + σ2
E

σ2
Y + σ2

C + σ2
D + σ2

E

)
Ŷ +

(
σ2
Y

σ2
Y + σ2

C + σ2
D + σ2

E

)(
Ĉ + D̂ + Ê

)

Ã(2)
en =

(
σ2
X + σ2

B

σ2
X + σ2

A + σ2
B

)
Â+

(
σ2
A

σ2
X + σ2

A + σ2
B

)(
X̂ − B̂

)

B̃(2)
en =

(
σ2
X + σ2

A

σ2
X + σ2

A + σ2
B

)
B̂ +

(
σ2
B

σ2
X + σ2

A + σ2
B

)(
X̂ − Â

)

C̃(2)
en =

(
σ2
Y + σ2

D + σ2
E

σ2
Y + σ2

C + σ2
D + σ2

E

)
Ĉ +

(
σ2
C

σ2
Y + σ2

C + σ2
D + σ2

E

)(
Ŷ − D̂ − Ê

)

D̃(2)
en =

(
σ2
Y + σ2

C + σ2
E

σ2
Y + σ2

C + σ2
D + σ2

E

)
D̂ +

(
σ2
D

σ2
Y + σ2

C + σ2
D + σ2

E

)(
Ŷ − Ĉ − Ê

)

Ẽ(2)
en =

(
σ2
Y + σ2

C + σ2
D

σ2
Y + σ2

C + σ2
D + σ2

E

)
Ê +

(
σ2
E

σ2
Y + σ2

C + σ2
D + σ2

E

)(
Ŷ − Ĉ − D̂

)
.
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General linearly constrained

multiple time series reconciliation

C.1 Derivation of equation (4.11)

DenoteWh = khW , where kh is a proportionality constant andW is the p.d. covariance

matrix used in the point forecast reconciliation formula (4.4). Then:

W̃h = SGWhG
′S′

= khSGWG′S′

= khS (S′W−1S)
−1

S′W−1WW−1S
(
S′W−1S

)−1

︸ ︷︷ ︸
In

S′

= khS (S′W−1S)
−1

S′

= khS
(
S′W−1S

)−1
S′W−1

︸ ︷︷ ︸
G

W = khSGW .

211





Bibliography

3TIER (2010) Development of Regional Wind Resource and Wind Plant Output

Datasets: Final Subcontract Report. Electricity generation, Energy storage, Fore-

casting wind, Solar energy, Wind energy, Wind farms, Wind modeling . (visited on

September 8, 2022) URL: https://digitalscholarship.unlv.edu/renew_pubs/4

Abolghasemi, M., Hyndman, R. J., Spiliotis, E. and Bergmeir, C. (2022) Model selection

in reconciling hierarchical time series. Machine Learning 111(2), 739–789. DOI:

10.1007/s10994-021-06126-z

Abouarghoub, W., Nomikos, N. K. and Petropoulos, F. (2018) On reconciling macro and

micro energy transport forecasts for strategic decision making in the tanker industry.

Transportation Research Part E: Logistics and Transportation Review 113, 225–238.

DOI: 10.1016/j.tre.2017.10.012

Abramson, B. and Clemen, R. (1995) Probability forecasting. International Journal of

Forecasting 11(1), 1–4. DOI: 10.1016/0169-2070(94)02000-F

Ahmed, R. A. (2009) Forecasting Hierarchical Time Series. Ph.D. thesis, Monash Uni-

versity

Aiolfi, M. and Timmermann, A. (2006) Persistence in forecasting performance and con-

ditional combination strategies. Journal of Econometrics 135(1-2), 31–53. DOI:

10.1016/j.jeconom.2005.07.015

Aı̈t-Sahalia, Y., Cacho-Diaz, J. and Laeven, R. J. (2015) Modeling financial contagion

using mutually exciting jump processes. Journal of Financial Economics 117(3),

585–606. DOI: 10.1016/j.jfineco.2015.03.002

Aı̈t-Sahalia, Y. and Jacod, J. (2014) High-frequency financial econometrics. Princeton:

Princeton University Press. ISBN 9780691161433

Andersen, T., Bollerslev, T., Diebold, F. and Ebens, H. (2001a) The distribution of

realized stock return volatility. Journal of Financial Economics 61(1), 43–76. DOI:

10.1016/S0304-405X(01)00055-1

Andersen, T. G., Bollerslev, T. and Diebold, F. (2007a) Roughing it up: Including

jump components in the measurement, modeling, and forecasting of return volatility.

213



214 Bibliography

Review of Economics and Statistics 89(4), 701–720. DOI: 10.1162/rest.89.4.701

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. (2001b) The distribution

of realized exchange rate volatility. Journal of the American Statistical Association

96(453), 42–55. DOI: 10.1198/016214501750332965

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. (2003) Modeling and fore-

casting realized volatility. Econometrica 71(2), 579–625. DOI: 10.1111/1468-0262.

00418

Andersen, T. G., Bollerslev, T. and Dobrev, D. (2007b) No-arbitrage semi-martingale

restrictions for continuous-time volatility models subject to leverage effects, jumps and

i.i.d. noise: Theory and testable distributional implications. Journal of Econometrics

138(1), 125–180. DOI: 10.1016/j.jeconom.2006.05.018

Andersen, T. G., Bollerslev, T. and Huang, X. (2011) A reduced form framework for

modeling volatility of speculative prices based on realized variation measures. Journal

of Econometrics 160(1), 176–189. DOI: 10.1016/j.jeconom.2010.03.029

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,

Greenbaum, A., Hammerling, S., McKenney, A. and Sorensen, D. (1999) LAPACK

users’ guide: Third Edition. Software, Environments, and Tools. Society for Industrial

and Applied Mathematics. ISBN 978-0-89871-447-0

Anderson, E., Bai, Z. and Dongarra, J. (1992) Generalized QR factorization and its

applications. Linear Algebra and its Applications 162–164, 243–271. DOI: 10.

1016/0024-3795(92)90379-O

Andrews, D. W. K. (1991) Heteroskedasticity and autocorrelation consistent covariance

matrix estimation. Econometrica 59(3), 817–858. DOI: 10.2307/2938229

Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F. and

Antonanzas-Torres, F. (2016) Review of photovoltaic power forecasting. Solar Energy

136, 78–111. DOI: 10.1016/j.solener.2016.06.069

Ashouri, M., Hyndman, R. J. and Shmueli, G. (2022) Fast forecast reconciliation using

linear models. Journal of Computational and Graphical Statistics 31(1), 263–282.

DOI: 10.1080/10618600.2021.1939038

Athanasopoulos, G., Ahmed, R. A. and Hyndman, R. J. (2009) Hierarchical forecasts

for Australian domestic tourism. International Journal of Forecasting 25(1), 146–166.

DOI: 10.1016/j.ijforecast.2008.07.004

Athanasopoulos, G., Gamakumara, P., Panagiotelis, A., Hyndman, R. J. and Affan, M.

(2020) Hierarchical forecasting. In Macroeconomic forecasting in the era of big data,

ed. P. Fuleky, volume 52, pp. 689–719. Cham: Springer International Publishing.

DOI: 10.1007/978-3-030-31150-6_21



Bibliography 215

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N. and Panagiotelis, A. (2023)

Forecast reconciliation: A review. International Journal of Forecasting (in

press). URL: https://www.monash.edu/business/ebs/research/publications/

ebs/2023/wp08-2023.pdf

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N. and Petropoulos, F. (2017) Fore-

casting with temporal hierarchies. European Journal of Operational Research 262(1),

60–74. DOI: 10.1016/j.ejor.2017.02.046

Athanasopoulos, G. and Kourentzes, N. (2022) On the evaluation of hierarchical fore-

casts. International Journal of Forecasting 39(4), 1502–1511. DOI: 10.1016/j.

ijforecast.2022.08.003
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view on spatio-temporal solar forecasting methods driven by in situ measurements or

their combination with satellite and numerical weather prediction (NWP) estimates.

Energies 15(12), 4341. DOI: 10.3390/en15124341

Berry, L. R., Helman, P. and West, M. (2020) Probabilistic forecasting of heterogeneous

consumer transaction–sales time series. International Journal of Forecasting 36(2),

552–569. DOI: 10.1016/j.ijforecast.2019.07.007

Bisaglia, L., Fonzo, T. D. and Girolimetto, D. (2020) Fully reconciled GDP forecasts

from Income and Expenditure sides. In Book of short papers SIS 2020, eds A. Pollice,

N. Salvati and F. Schirripa Spagnolo, pp. 951–956. Pearson. ISBN 978-88-919-1077-6

Bollerslev, T. (2022) Realized semi(co)variation: Signs that all volatilities are not cre-

ated equal. Journal of Financial Econometrics 20(2), 219–252. DOI: 10.1093/

jjfinec/nbab025

Bollerslev, T., Medeiros, M. C., Patton, A. J. and Quaedvlieg, R. (2022) From zero

to hero: Realized partial (co)variances. Journal of Econometrics 231(2), 348–360.

DOI: 10.1016/j.jeconom.2021.04.013

Bollerslev, T., Patton, A. J. and Quaedvlieg, R. (2016) Exploiting the errors: A simple

approach for improved volatility forecasting. Journal of Econometrics 192(1), 1–18.

DOI: 10.1016/j.jeconom.2015.10.007
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Â., Gueymard, C. A., Hong, T., Kay, M. J., Killinger, S., Kleissl, J., Lauret, P.,

Lorenz, E., van der Meer, D., Paulescu, M., Perez, R., Perpiñán-Lamigueiro, O.,

Peters, I. M., Reikard, G., Renné, D., Saint-Drenan, Y.-M., Shuai, Y., Urraca, R.,

Verbois, H., Vignola, F., Voyant, C. and Zhang, J. (2020) Verification of deterministic

solar forecasts. Solar Energy 210, 20–37. DOI: 10.1016/j.solener.2020.04.019

Yang, D., Quan, H., Disfani, V. R. and Liu, L. (2017a) Reconciling solar forecasts:

Geographical hierarchy. Solar Energy 146, 276–286. DOI: 10.1016/j.solener.

2017.02.010

Yang, D., Quan, H., Disfani, V. R. and Rodŕıguez-Gallegos, C. D. (2017b) Reconciling
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