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ABSTRACT
In Graph Convolutional Neural Networks, the capability of learn-
ing the representation of graph nodes comes at hand when dealing
with graph analysis tasks, such as predicting node properties. Fur-
thermore, node-level representations can be aggregated to obtain a
single graph-level representation and predictor. This work explores
an alternative route for defining the aggregation function compared
to existing approaches. We propose a graph aggregator that exploits
Generative Topographic Mapping (GTM) to transform a set of node-
level representations into a single graph-level one. The integration
of GTM in a GCNN pipeline allows to estimate node representa-
tion probability densities and projects them in a low-dimensional
space, while retaining the information about their mutual similarity
and topology. A novel dedicated training procedure is specifically
designed to learn from these reduced representations instead of
the complete initial data. Experimental results on several graph
classification datasets show that this approach achieves competitive
predictive performances with respect to the commonly adopted
aggregation architectures present in the literature while holding a
well-grounded theoretical framework.
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1 INTRODUCTION
Graphs are an effective tool for representing entities and relations
thereof for data from many application domains (e.g., chemistry,
bioinformatics, social sciences). Many deep-learning models for
graphs have been developed in recent years. Actually, the first
definition of neural networks for graphs was proposed several
years ago [20], while more recently, Micheli [12] proposed a model
exploiting an idea that has been re-branded later as graph convolu-
tion. Several different definitions of graph convolution have been
proposed in the literature [8]. The core property of graph convolu-
tions is that isomorphic graphs (i.e., graphs representing the same
relationship among nodes) should produce the same node represen-
tations. To date, no polynomial-time algorithms can decide if two
graphs are isomorphic. Thus, this property has to be verified by
design. In the setting where the graph representation is exploited
to represent samples (abstracted as nodes) that are not i.i.d., i.e.,
that are in relation one with each other (abstracted as edges), graph
convolution is a powerful tool to generate node representations
and node-level predictions. However, in the alternative, but not less
common, setting in which each training example is represented as
a distinct graph and the prediction has to be performed at the graph
level (e.g., predicting properties of chemical compounds, each one
represented as a different graph), another non-trivial representa-
tion issue arises: it is necessary to define an aggregation operator
associating a single representation for the whole graph.

The definition of the aggregation function is not trivial for three
main reasons: first, it has to map a variable number of node rep-
resentations into a single (preferably fixed-size) graph-level one;
second, it should be independent of the node ordering, that is it
should be a graph invariant (isomorphic graphs should produce the
same representation), and third, we would like the representations
of similar graphs (e.g., a graph 𝐺 (1) that is a subgraph of another
graph 𝐺 (2) ) to be similar.
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The simplest approach that is commonly adopted in literature is
to consider commutative global aggregation functions such as the
element-wise sum, mean, or maximum. However, it has been shown
in [13] that using such simple aggregations inevitably results in a
loss of information, possibly impacting the predictive performance
of the Graph Neural Network (GNN) architecture. More complex,
non-linear aggregations have thus been proposed in literature [26].

Another approach consists in treating the node representations
as elements belonging to an unordered set [21] and producing an
order-invariant representation from them. In this setting, Deep
Sets [25] is a general framework to define a universal approxima-
tor of functions over sets that has been adopted as graph aggre-
gation [13]. It has been proved that under some hypothesis, any
function 𝑓 (𝑋 ) over a set 𝑋 = {𝑥1, . . . , 𝑥𝑀 }, 𝑥𝑚 ∈ 𝔛 can be decom-
posed as 𝑓 (𝑋 ) = 𝜌 (∑𝑥∈𝑋 𝜙 (𝑥)) for suitable transformations 𝜌 (·)
and 𝜙 (·). Implementing these functions as neural networks and
learning them via backpropagation is a viable approach but may
lead to overfitting.

The SOM-based aggregator [17] implements the 𝜙 (·) function
of Deep Sets exploiting a self-organizing map (SOM) [9] to map the
node representations in the space defined by the activations of the
SOM neurons. The resulting representation embeds information
about the similarity between the various inputs. In fact, similar
input structures will be mapped in similar output representations
(i.e., node embeddings). The SOM is then followed by a Graph Con-
volution layer to partially incorporate the task supervision in the
𝜙 (·) function. However, SOMs suffer from some relevant draw-
backs, such as lacking an associated cost function and general proof
of convergence. Because of that, it is also difficult to control the
outcome of the learning process, which is driven by many heuris-
tics requiring a careful setting of the hyperparameters, such as the
shape of the function governing the width of the neighborhood
used during training. While in general this may not be a practi-
cal issue, we show that in some cases the SOM-based aggregation
scheme exhibits performances that are below state of the art.

In this paper, we address these issues by developing an alternative
aggregation function 𝜙 (·) that is based on a principled probabilistic
model, namely the Generative Topographic Mapping (GTM) [1].
Specifically, by adopting this approach, we are able to have bet-
ter control of the hyperparameters defining the projection of the
node representations on the 2-dimensional GTM probabilistic la-
tent space. This should make the training procedure more effective,
leading to better identification of the node representations manifold
and consequently to more expressive graph-level hidden represen-
tations. In fact, contrarily to the SOM where only one winning
neuron gets activated for the whole map for each input node (yield-
ing to a global smoothing), the GTM grid of normal distributions
enables a coarser transformation that preserves local structures
of the representation. These transformed representations are then
exploited with a dedicated training procedure, on which various
pooling techniques can be applied [10]. An additional feature of
the proposed aggregation function is the amenability to a direct
inspection of the internal representations of the model that are
used to produce the output: the GTM latent space is organized in
a 2-dimensional grid that can be easily plotted and whose corre-
sponding values have a precise probabilistic meaning. Moreover,
the model uses the internal representations directly to produce the

output, and they are not obtained a posteriori like other dimen-
sionality reduction method that inevitably produces artifacts. This
constitutes an interesting base for developing GNN models that are
interpretable by design.

We experimentally evaluate the GTM-based aggregation on
seven graph classification tasks, comparing it with other well-
established models and aggregation functions in the literature.

2 BACKGROUND
Throughout this work, we use italic letters to refer to variables,
bold lowercase to refer to vectors, bold uppercase letters to refer
to matrices, and uppercase letters to refer to sets or tuples. Let
𝐺 = (𝑉 , 𝐸,X) be a graph, where 𝑉 = {𝑣0, . . . , 𝑣𝑛−1} denotes the
set of 𝑛 nodes (or vertices), 𝐸 ⊆ 𝑉 × 𝑉 denotes the set of edges,
and X ∈ R𝑛×𝑠 encodes the node attributes, namely its 𝑖𝑡ℎ row
represents the features of node 𝑣𝑖 . The set of nodes linked to node
𝑣𝑖 , also known as neighborhood, is denoted as N(𝑣𝑖 ).

2.1 Generative Topographic Mapping
The GTM algorithm [1] is a form of non-linear latent variable model
which is based on a constrainedmixture of Gaussians, whose param-
eters can be optimized using the EM (expectation-maximization)
procedure [5].

Let us now provide a brief description of the GTM: given a dataset
X of 𝑁 data points x𝑖 ∈ R𝐷 , the goal of a latent variable model
is to find a representation for the distribution 𝑝 (x) of data in a 𝐷-
dimensional space with respect to latent variables u embedded in a
𝐿-dimensional latent space, where 𝐿 ≪ 𝐷 . A schematic illustration
of a GTM’s workings is provided in Fig 1The GTM is built by first
introducing a regular grid of 𝐾 nodes u𝑖 in the latent space, labeled
by the index 𝑖 = 1, 2, . . . , 𝐾 , and a set of 𝑀 fixed non-linear radial
basis functions (RBF) 𝝓 (u) =

{
𝜙 𝑗 (u)

}
, with 𝑗 = 1, 2, . . . , 𝑀 . Using

the RBFs (the combination of RBFs is a good universal function
approximator [16]), it is possible to define a generalized linear
regression model from the latent space to the data space, such that
each point u in latent space is mapped to a corresponding point
y in the 𝐷-dimensional data space y(u,W) = W𝝓 (u), whereW is
a 𝐷 × 𝑀 matrix of learnable weight parameters. In this fashion,
each node u𝑖 is projected to a 𝐷-dimensional reference vectorm𝑖 =
W𝝓 (u), and if we set a prior distribution on the latent space nodes
𝑝 (u) this mapping will also induce a corresponding distribution
in the data space 𝑝 (y|W) confined in a 𝐿-dimensional manifold.
Since in reality the dataset X will only approximately lay on a
lower-dimensional manifold, it is appropriate to include a noise
model for the x vectors. Therefore, we assume that x, for a given u
and W, is distributed as a radially-symmetric Gaussian centred on
y(u,W) and having variance 𝛽−1:

𝑝 (x|u,W, 𝛽) =
(
𝛽

2𝜋

)𝐷/2
exp

{
− 𝛽

2
∥y(u,W) − x∥2

}
. (1)

By marginalizing over 𝑝 (u)

𝑝 (x|W, 𝛽) =
∫

𝑝 (x|u,W, 𝛽)𝑝 (u)𝑑u

and by choosing the prior distribution 𝑝 (u) to be a superposition
of delta functions located at the 𝐾 nodes of the regular grid in
latent space (which is equivalent to say that the prior probabilities
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of each of the components are assumed to be constant and equal
to 1/𝐾), the distribution in the data space can be expressed as
𝑝 (x|W, 𝛽) = 1

𝐾

∑𝐾
𝑖=1 𝑝 (x|u𝑖 ,W, 𝛽). The posterior probabilities of

the latent variables (or responsibilities 𝑅𝑖 ) given an input x can be
computed by applying Bayes’ theorem:

𝑅𝑖 (x;W, 𝛽) = 𝑝 (u𝑖 |x,W, 𝛽) =
exp

{
− 𝛽2 ∥m𝑖 − x∥

2
}

∑𝐾
𝑗=1 exp

{
− 𝛽2



m𝑗 − x


2} (2)

and the final response as 𝑅(x;W, 𝛽) = ∑
𝑖 𝑝 (u𝑖 |x,W, 𝛽).

Since the GTM represents a parametric probability densitymodel,
it can be fitted to the dataset X by computing the optimal param-
etersW and 𝛽−1 via likelihood maximization. The log-likelihood
function is given by

L(W, 𝛽) =
𝑁∑︁
𝑛=1

ln(𝑝 (x𝑛 |W, 𝛽)) =
𝑁∑︁
𝑛=1

ln
{
1
𝐾

𝐾∑︁
𝑖=1

𝑝 (x𝑛 |u𝑖 ,W, 𝛽)
}
,

(3)
to which a regularization term can be added to reduce overfitting
and improve convergence, e.g. by choosing a Gaussian prior over
the weights governed by a hyperparameter 𝜆 ∈ R. Standard opti-
mization techniques can carry out the maximization of the resulting
loss function. Still, since we are dealing with a latent variable model,
a viable approach is to employ the well-established Expectation-
Maximization algorithm [5]. Significant performance improvements
in training can be achieved by updating the parameters incremen-
tally using data in smaller batches [2], which is particularly suited
for deep-learning applications and thus adopted in this paper.

Notice that for the particular noise model given by Eq. 1, the
distribution 𝑝 (x|W, 𝛽) indeed corresponds to a constrained Gauss-
ian mixture model since the centers of the Gaussians, i.e., y(ui,W),
cannot move independently but instead are adjusted indirectly
through changes to the weight matrix W. Besides, the projected
points m𝑖 will necessarily have a topographic ordering in the sense
that any two points u𝐴 and u𝐵 which are close in the latent space
are mapped to points mA and mB which are also close in the data
space.

Figure 1: The GTM first considers a distribution of superposi-
tion of delta functions centered at 𝐾 nodes of a regular array
(left). Each node u𝑖 is projected into the data space, where it
becomes the center of a Gaussian distribution. Then, these
projections are fitted to the data manifold X (center), and
thanks to Bayes’ Theorem, the posterior distribution in the
latent space is retrieved (right).

3 GTM-BASED AGGREGATION FUNCTION
The Generative Topographic Mapping can be employed to effec-
tively transform data from a high-dimensional space into a low-
dimensional latent space while retaining the intrinsic properties of

the dataset probability distribution 𝑝 (x). Additionally, the fact that
GTM preserves the topological ordering guarantees that similar
node representations are mapped into similar distributions in the
lower-dimensional space. This method of feature extraction can
be integrated into a GCNN pipeline since the GTM can be well
exerted as unsupervised dimensionality reduction of the graph’s
node representations h𝑣 before being aggregated.

In this section, we describe an implementation of a GTM-based
aggregation function for a GCNN, or briefly GTM-GCNN. Firstly
we will focus on its architecture and components, and then we will
describe the dedicated training procedure to learn from labeled
data.

3.1 Architecture
The proposed architecture of the GTM-GNN is made of three main
components: a Graph Convolutional part, the GTM-based aggrega-
tor, and a Readout module for the final graph classification task,
based on the work of [17]. A graphical rendering of the architec-
ture is reported in Figure 2. Let us now illustrate in detail each

Figure 2: Graphical representation of the GTM-based GNN
architecture.

component of the model. First, an amount 𝑑 of stacked graphs
convolutional layers learn stable node representations from the
input dataset X. For this implementation, we opted for GraphConv
[4], due to its wide adoption and convincing performances, and
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we chose the LeakyReLU as activation function 𝜎 . All the 𝑑 con-
volutional layers are followed by a batch normalization layer. We
dubbed to output of the 𝑖𝑡ℎ graph convolutional layer as:

h𝐺𝐶 (𝑖 )
𝑣 = 𝜎

(
GraphConv

(
h𝐺𝐶 (𝑖−1)
𝑣 ,

{
h𝐺𝐶 (𝑖−1)
𝑢 | 𝑢 ∈ N(𝑣)

}))
for 1 < 𝑖 ≤ 𝑑 , while the first layer directly acts on the input data. We
refer to the learnable parameters of this initial Graph Convolutional
module as 𝜽𝐺𝐶 .

The enriched node embeddings h𝐺𝐶 (𝑖 )𝑣 for each layer are the
one-to-one input of 𝑑 independent GTMs, that constitute the ag-
gregator module. Recall that the representations h𝐺𝐶 (𝑖 )𝑣 are vectors
in a high-dimensional space, whose size is governed by the num-
ber of neurons of each GraphConv layer. Additionally, to improve
numerical stability, these representations are mapped in [−1, 1]
by applying the hyperbolic tangent, ĥ𝐺𝐶 (𝑖 )𝑣 = 𝑡𝑎𝑛ℎ(h𝐺𝐶 (𝑖 )𝑣 ). The
GTM parameters 𝜽𝐺𝑇𝑀 (𝑖 ) = {W𝑖 , 𝛽𝑖 } are optimized via the EM
algorithm and, once convergence has been reached, the GTMs are
exploited to project the input vectors ĥ𝐺𝐶 (𝑖 )𝑣 into the 𝐿-dimensional
latent lattice, returning the posterior distribution ∀𝑣 ∈ 𝑉𝐺 :

h𝐺𝑇𝑀 (𝑖 )𝑣 = GTM (𝑖 )
(
ĥ𝐺𝐶 (𝑖 )𝑣

)
= 𝑝 (u|ĥ𝐺𝐶 (𝑖 )𝑣 ,W𝑖 , 𝛽𝑖 ).

The components of h𝐺𝑇𝑀 (𝑖 )𝑣 are then normalized to reduce the
variability of node representations in the same graph, ĥ𝐺𝑇𝑀 (𝑖 )𝑣 =

h𝐺𝑇𝑀 (𝑖 )𝑣 /𝜉𝐺𝑇𝑀 (𝑖 )𝑣 , where 𝜉𝐺𝑇𝑀 (𝑖 )𝑣 is the maximum value among
the components of h𝐺𝑇𝑀 (𝑖 )𝑣 . In the third module, called Readout and
defined by the parameters 𝜽𝑅𝑒𝑎𝑑𝑜𝑢𝑡 , each ĥ𝐺𝑇𝑀 (𝑖 )𝑣 is fed through
another GraphConv layer so that the graph topology is brought
back:

h(𝑖 )
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

= 𝜎

(
GraphConv

(
ĥ𝐺𝑇𝑀 (𝑖 )
𝑣 ,

{
ĥ𝐺𝑇𝑀 (𝑖 )
𝑢 | 𝑢 ∈ N(𝑣)

}))
.

Then, these transformed representations are aggregated by tak-
ing the concatenation of their average, sum, and component-wise
maximum (this idea was introduced by [24]):

h′ (𝑖 )
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

=

[
avg

(
h(𝑖 )
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

)
, sum

(
h(𝑖 )
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

)
,max

(
h(𝑖 )
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

)]
. (4)

All 𝑑 feature maps are concatenated to obtain one single graph-
level representation h𝐺 . Additionally, in h𝐺 we included the ag-
gregation via average, sum, and component-wise maximum of the
features of the input nodes X, so as to fully exploit the information
associated with each node of the graph:

h𝐺 =

[
avg(X), sum(X),max(X), h′ (1)

𝑟𝑒𝑎𝑑𝑜𝑢𝑡
, . . . , h′ (𝑑 )

𝑟𝑒𝑎𝑑𝑜𝑢𝑡

]
.

Eventually, this graph-level representation is ready for the output
layer and the supervised learning task, achieved by means of an
MLP with an output function:

o𝑟𝑒𝑎𝑑𝑜𝑢𝑡 = 𝐿𝑜𝑔𝑆𝑜𝑓 𝑡𝑀𝑎𝑥 (𝑀𝐿𝑃 (h𝐺 ) ) .

3.2 Training Procedure
To conciliate the unsupervised framework of the GTMs with the
supervised task of graph classification, the training of the GTM-
based GNN takes four steps that are carried out one after the other,
optimizing in each turn different sets of learnable parameters.

Pre-training The first training step consists in optimizing the
parameters 𝜽𝐺𝐶 by adding an ad-hoc readout layer, which we indi-
cate as pre-training readout, to perform supervised learning with
standard backpropagation. This pre-training readout layer further

aggregates the node representations h𝐺𝐶 (𝑖 )𝑣 by concatenating their
average, sum, and component-wise maximum (as in Eq. (4)). Then,
it stacks these vectors for all the 𝑑 layers, applies a linear transfor-
mation, and the LogSoftmax activation function in the end. This
permits the training of the graph convolutional module separately
from the rest of the network, which learns stable node represen-
tations h𝐺𝐶 (𝑖 )𝑣 that are later fed to the GTM module. Finally, the
pre-training readout layer is discarded and thus will not make part
of the final model.

GTM Training The parameters 𝜽𝐺𝑇𝑀 of the GTMs are initial-
ized using the first two principal components of the node represen-
tations PCA [1]. Then, they are optimized via the EM algorithm
with respect to the likelihood of Eq. (3).

Readout Training Next, the parameters 𝜽𝑅𝑒𝑎𝑑𝑜𝑢𝑡 are trained
via backpropagation with reference to the negative log-likelihood
loss on o𝑟𝑒𝑎𝑑𝑜𝑢𝑡 for the 𝑐-class graph classification.

Fine-Tuning Finally, the last training step consists of a fine-
tuning phase. The purpose of this step is to tune the model param-
eters 𝜽𝐺𝐶 and 𝜽𝑅𝑒𝑎𝑑𝑜𝑢𝑡 while maintaining the 𝜽𝐺𝑇𝑀 fixed. The
pseudo-code that summarizes the training procedure is reported in
Algorithm 1.

Algorithm 1 GTM-based GNN Training Procedure
Input: Graphs Dataset X with associated labels 𝑦
1: 𝜽𝐺𝐶 , o𝑝𝑟𝑒 ← Pretraining (X, 𝑦) ⊲ Pre-training of GraphConv Module

2: ∀ stacked layer 𝑖 : h𝐺𝐶 (𝑖 ) ← 𝜎

(
GraphConv

(
h𝐺𝐶 (𝑖−1)
𝑣

))
⊲ Get stable

representations from pre-training module
3: 𝜽𝐺𝑇𝑀 (𝑖 ) ← GTM_training

(
𝑡𝑎𝑛ℎ

(
h𝐺𝐶 (𝑖 )

))
⊲ Expectation Maximization

4: h𝐺𝑇𝑀 (𝑖 ) ← GTM
(
𝑡𝑎𝑛ℎ

(
h𝐺𝐶 (𝑖 )

)
, 𝜽𝐺𝑇𝑀

)
⊲ Projected representations

5: ∀𝑣 : ĥ𝐺𝑇𝑀 (𝑖 )
𝑣 ← h𝐺𝑇𝑀 (𝑖 )

𝑣

𝜉
𝐺𝑇𝑀 (𝑖 )
𝑣

, where 𝜉𝐺𝑇𝑀 (𝑖 )
𝑣 is the maximum of h𝐺𝑇𝑀 (𝑖 )

𝑣 com-

ponents
6: ∀𝑖 : h(𝑖 )

𝑟𝑒𝑎𝑑𝑜𝑢𝑡
← 𝜎

(
GraphConv

(
ĥ𝐺𝑇𝑀 (𝑖 )
𝑣

))
⊲ Readout Module

7: ∀𝑖 : h′ (𝑖 )
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

← aggr
({
h(𝑖 )
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

| 𝑣 ∈ 𝑉𝐺
})

⊲ Aggregation

8: h𝐺 ←
[
avg(X), sum(X),max(X), h′ (1)

𝑟𝑒𝑎𝑑𝑜𝑢𝑡
, . . . , h′ (𝑑 )

𝑟𝑒𝑎𝑑𝑜𝑢𝑡

]
⊲ Concatenation

9: o𝑟𝑒𝑎𝑑𝑜𝑢𝑡 ← LogSoftMax (MLP (h𝐺 ) )
10: 𝜽𝑟𝑒𝑎𝑑𝑜𝑢𝑡 ← Backprop (X, 𝑦; o𝑟𝑒𝑎𝑑𝑜𝑢𝑡 ) ⊲ Readout training
11: 𝜽𝐺𝐶 , 𝜽𝑟𝑒𝑎𝑑𝑜𝑢𝑡 ← FineTuning

(
X, 𝑦;𝜽𝐺𝐶 , 𝜽𝑟𝑒𝑎𝑑𝑜𝑢𝑡

)
⊲ Fine-Tuning training

Output: GTM-based GNN
(
𝜽𝐺𝐶 , 𝜽𝐺𝑇𝑀 , 𝜽𝑟𝑒𝑎𝑑𝑜𝑢𝑡

)

4 EXPERIMENTAL RESULTS
In this section, we present our model setup and we discuss the
results obtained by the GNN that exploits the proposed GTM-based
aggregation.

4.1 Setup and Hyperparameters
As already mentioned, the GTM-GNN is made of three main parts,
i.e the Graph Convolutional section, the GTM-based aggregator, and
the Readout module. For what concerns the first Graph Convolu-
tionalmodule, we set at𝑑 = 3 the number of hidden layers and select
GraphConv as the convolutional operator. In relation to the relative
size of these layers, we opted for a “funnel” architecture [14] in the
sense that the GraphConv layers have an increasing number of neu-
rons, namely h𝐺𝐶 (1) ∈ R𝑙 , h𝐺𝐶 (2) ∈ R2𝑙 and h𝐺𝐶 (3) ∈ R3𝑙 , where
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the size 𝑙 is a hyperparameter. This architecture has been proven
to improve performance, and therefore it is adopted in the GTM-
GCNN. Both the Graph Convolutional and the Readout module are
trained via backpropagation using the AdamW optimizer [11].

The goal of this work is to evaluate the benefit of using the
GTM-based aggregation; therefore, we focused our attention on the
behavior of the GTM parameters. For all GTMs, we set the latent
variable dimension to 𝐿 = 2, so that the 𝐾 latent variables u𝑖 lay
in a bi-dimensional plane. Both their amount in the width and the
height dimensions of the regular grid are hyperparameters (in this
way 𝐾 = height × width), and the grid itself is built accordingly
within a bounded [−1, 1]× [−1, 1] plane when the GTMs are initial-
ized. Other two relevant hyperparameters concern the Radial Basis
Functions 𝝓 (u), namely their amount𝑀 and variance 𝜎 . The former
forms a𝑀 ×𝑀 regular grid of RBF center points that is overlayed
to the latent variables grid in the [−1, 1]2 plane. On the other hand,
the variance 𝜎 can be tested for any value or can be computed as the
average minimum distance among the aforementioned RBF centers.
Finally, as soon as the latent nodes grid and RBF function are set,
the matrix 𝚽𝑖 𝑗 = 𝜙 𝑗 (u𝑖 ) is computed, and we pad a bias column
of 1 to it. Notice that this step is done only once at initialization.
The parameters W and 𝛽 can be either initially set at random from
the standard normal distribution N(𝜇 = 0, 𝜎 = 1), or as explained
beforehand, they are computed as to mimic the PCA applied to
the whole training set. To do this, before the first epoch of the EM
algorithm, the whole dataset is loaded into memory, and the PCA
is performed. We avoided the random initialization since it can
be numerically unstable and it takes longer for convergence. This
step is also needed to determine the right size of the responsibility
matrix 𝑅𝑖𝑛 that is updated from the first epoch with incremental
learning. The last hyperparameter is the regularization constant 𝜆,
which can take any fixed value or be equal to 𝛽−1.

After the EM optimization, the posterior distribution of the in-
put data is estimated. It is scaled by its maximum value 𝜉𝐺𝑇𝑀 (𝑖 )𝑣

before being fed to the next GraphConv layer, so that the values are
bounded in [0, 1], restricting the learning of their relative scale on
the lattice grid rather than absolute magnitude (being unnormal-
ized probabilities). Eventually, the Readout module concatenates
the three GraphConv outputs of the same fixed size 𝑙 and supplies
them to an MLP, whose depth 𝑞 is also a hyperparameter.

TheGTM-basedGNNhas been implementedwith Python 3.8.8,
and PyTorch 1.8.1 [18], an open-source and multi-purpose ma-
chine learning framework. We adopted two types of machines,
respectively equipped with: 2 x Intel(R) Xeon(R) CPU E5-2630L v3,
192GB of RAM, an Nvidia Tesla V100, and 2 x Intel(R) Xeon(R) CPU
E5-2650 v3, 160 GB of RAM, Nvidia T4. For all the other hyper-
parameters and implementation details, please check the publicly
available code (https://github.com/paolofraz/).

4.2 Model Selection
We run a 10-fold cross-validation for each dataset to select the best
hyperparameter combination. Due to the long time requirements
of performing an extensive grid search, we decided to limit the
number of values taken into account for each hyperparameter, and
we performed a random search over the grid of their combination.

Table 1 gives an overview of the arbitrarily chosen values of the
GTM hyperparameters grid. Each one of the four training phases
runs for 500 epochs. Moreover, to reduce overfitting on the training
set, we adopted a validation-based early stopping regularization
that chooses the epoch of the best performing model on the valida-
tion set, stopping the training if after 25 epochs no better result is
achieved. For what concerns the GTMs, we use the complete-data
log-likelihood to monitor the convergence and early stopping.

Hyperparameter List of values
Latent variables grid (10 × 15), (11 × 16), (13 × 18),

(15 × 20), (20 × 25)
Amount of RBF𝑀 8, 12, 18
Variance of RBF 𝜎 𝑠, 2𝑠, 1
GTM Reg. 𝜆 10, 1, 0, 0.1, 0.01, 𝛽−1
MLP depth 𝑞 1, 3, 5
Hidden neurons 𝑙 20, 30, 50

Table 1: Hyperparameter grid for the random search cross-
validations. Recall that 𝑠 is the average spacing among RBF
centers, e.g., 𝜎 = 0.167 for the (15 × 10) grid.

4.3 GNN Models Employed as Baselines
We compare the GTM-GCNNwith several GNN architectures which
achieved state-of-the-art results on the used datasets. In the fol-
lowing, we describe the models considered for the experimental
comparison. The first model we consider in our experimental com-
parison is the PSCN proposed by Niepert et al. [15]. PSCN follows a
straightforward approach to define convolutions on graphs, which
is conceptually closer to convolutions defined over images. First,
it selects a fixed number of vertices from each graph, exploiting
a canonical ordering on graph vertices. Then, for each vertex, it
defines a fixed-size neighborhood (of vertices possibly at distance
greater than one), exploiting the same ordering. This approach
requires computing a canonical ordering over the vertices of each
input graph, which is a problem as complex as graph isomorphism
(no polynomial-time algorithm is known).
GraphSage [7] does modify the standard definition of graph con-
volution empowering the aggregation over the neighborhoods by
using sum, mean or max-pooling operators, and then performs a
linear projection in order to update the node representations. In
addition to that, it exploits a particular neighbor’s sampling scheme.
The convolution proposed in [7] has been extended by GIN [22],
which introduces a more expressive aggregation function on multi-
sets with the aim to overtake the limitation introduced by Graph-
SAGE using sum, mean or max-pooling operators.
DGCNN [26] extends the GCN proposed by Kipf et al. [8] intro-
ducing a slightly different propagation scheme for vertices’ repre-
sentations based on random walks on the graph, and exploiting
SortPooling as aggregation function. An extension of this model
that exploits the DeepSet (DGCNN-DeepSet) was proposed by Tran
et al. in 2019 [13].
DiffPool [24] is a pooling operator that leverages on hierarchical
properties of the graph structure by learning a clustering module
that makes the graph more and more coarse at every layer. In
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particular, it learns a new adjacency matrix for each layer where
single nodes can be substituted by clusters (thus the size of the
matrix becomes smaller at deeper layers).
The Funnel GCNN (FGCNN) model [14] relies on the similarity of
the adopted graph convolutional operator to the way the features of
theWeisfeiler-Lehman (WL) Subtree Kernel [19] is computed. Based
on this observation, a novel WL-based loss term for the output of
each convolutional layer is introduced to guide the network to
reconstruct the corresponding explicit WL features. FGCNN also
adopts a number of filters at each convolutional layer determined
by a measure of the WL-kernel complexity.

4.4 Discussion
In Table 2, we report the results achieved by the GNNs when the
comparison among them is fair, i.e., the same validation strategy
and the common settings for the input datasets are employed. The
issue of experimental reproducibility and replicability in the field of
GNN is crucial; therefore, we hold as baseline only the fair results
that are reported in the literature [6]. The results reported in Table 2
were obtained by performing 5 runs of 10-fold cross-validation. The
results reported in [3, 22, 23] are not considered in our comparison
since the model selection strategy is different from the one we
adopted, which makes the results not comparable.

The results reported in Table 2 show that the GTM-GCNNachieved
highly competitive performance in all considered datasets. In par-
ticular, on PTC, D&D, and IMDB-B the proposed method obtained
higher results than the state-of-the-art, while in NCI1, PROTEINS,
ENZYMES, and IMDB-M the accuracy results are higher than the
ones achieved by most of the models considered in the compar-
ison. On NCI1 and IMDB-M the GTM-GCNN shows the second-
best performance, and only the SOM-GCNN performs better than
our proposed model. On PROTEINS, the accuracy reached by the
GTM-GCNN is lower than the ones obtained by many of the other
considered models. The hyperparameter values selected in this case
are very different than those selected on the other datasets. Indeed,
the selected model is the simpler considered in our experimental
assessment (𝑙 = 20, 𝑞 = 1). Specifically, 20 is the smallest value
for 𝑙 we considered during the validation process. It is likely that
by using smaller values for 𝑙 , the GTM-GCNN could reach better
performances and avoid overfitting. Additionally, this dataset has
a higher average degree (3.73, see Table 3) compared with NCI1
(2.16) and PTC (2.06); we argue that, compared with the other two
datasets that have graphs sizes of the same magnitude, it could be
more difficult to grasp the local features that differentiate between
the two classes. Overall, the GTM-CGNN exhibits higher accuracy
variances due to varying performances on each CV split. We also
argue that being a probabilistic model, randomness plays a major
role in the GTM component. Nevertheless, we recall that this proba-
bilistic framework is theoretically well-founded, and more research
can be done to exploit its characteristics.

4.5 Ablation Study
To investigate further the benefits of the GTM aggregation, we
analyzed the case of the removal of the GraphConv layer after
the aggregation that was originally inserted to restore the graph
topology. The results of this ablation study are reported in Table

2. We can see that albeit the dismissal of a layer, the predictive
performances do not show any significant difference compared
to the full GTM-GCNN architecture. Therefore, removing the last
graph convolutional layer will be helpful in reducing the complexity
of the GTMmodule. Moreover, it reduces the number of parameters
and hyper-parameters that must be optimized.

5 SOM VS. GTM
The similarity between the GTM-GCNN and SOM-GCNN makes
the comparison between these two models interesting in evaluating
the impact of the proposed GTM-based graph aggregator. From this
perspective, it is worth noticing that the drop in accuracy on NCI1,
PROTEINS, and IMDB-M is limited, while in ENZYMES the differ-
ence between SOM-GCNN and GTM-GCNNmodels is considerable.
Indeed, GTM-GCNN improves the SOM-GCNN performance by
almost nine percentage points.

We argue that the higher GTM results may be explained by: (i) its
training being more theoretically grounded than the one exploited
by the SOM—GTM optimization is based on the maximization of a
likelihood function that can be carried out by standard optimization
techniques such as the well-established Expectation-Maximization
algorithm [5]; (ii) being able to represent more complex manifolds;
its results are more suitable in managing multi-class classification
tasks because it may be easier for the GTM to encode the differences
in the data distributions of the various classes compared to SOM
(see Section 5.1); (iii) the model is easier to set up since it does
not require to define a neighborhood function with its respective
hyper-parameters [17].

5.1 Lattice representations
In order to investigate the reason for the GTM performance im-
provement compared to SOM on the ENZYMES dataset, in Figure 3,
we plot the heatmaps of the respective lattice representations. The
heatmaps were computed following the same procedure proposed
in [17]. Each heatmap shows the average value of each neuron in
the lattice (either SOM or GTM) computed over the set of graphs
belonging to the same class. Thus, each heatmap represents, for
each class, the average level of utilization of the different parts
of the lattice, meaning that parts that are used by a single class
represent discriminative areas for that class. The comparison shows
that the GTM tends to create a more distributed pattern of specific
areas.

Given the higher accuracy obtained by the GTM, it is clear that
the learned node representations benefit from the greater expres-
siveness and local discriminative power of the GTM in comparison
with the SOM. The better representations obtained by the GTM
are also due to the lower sensibility of the GTM to the values of
the hyperparameters compared with SOM. Indeed, as reported in
Table 2, the selected latent space dimensions are similar regardless
of the considered dataset/task complexity. These interesting fea-
tures, related to the probabilistic definition of the GTMs, also help
in having an effective training phase.

5.2 End-to-end Fine Tuning
Arguably, one of the biggest downsides of having a layer trained in
an unsupervised way for a supervised task, such as the SOM-GCNN,
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Model/Dataset PTC NCI1 PROTEINS D&D ENZYMES IMDB-B IMDB-M

PSCN [15] 60.00±4.82 76.34±1.68 75.00±2.51 76.27±2.64 - 71±2.29 45±2.84
FGCNN [13] 58.82±1.80 81.50±0.39 74.57±0.80 77.47±0.86 - - -
DGCNN [13] 57.14±2.19 72.97±0.87 73.96±0.41 78.09±0.72 - - -
DGCNN [6] - 76.4±1.7 72.9±3.5 76.6±4.3 38.9±5.7 53.3±5.0 38.6±2.2
GIN [6] - 80.0±1.4 73.3±4.0 75.3±2.9 59.6±4.5 66.8±3.9 42.2±4.6
DIFFPOOL [6] - 76.9±1.9 73.7±3.5 75.0±3.5 59.5±5.6 69.3±6.1 45.1±3.2
GraphSAGE [6] - 76.0±1.8 73.0±4.5 72.9±2.0 58.2±6.0 69.9±4.6 47.2±3.6
DGCNN-DeepSets [13] 58.16±1.05 74.19±0.59 75.11±0.28 77.86±0.27 - - -
SOM-GCNN [17] 62.24±1.7 83.30±0.45 75.22±0.61 78.10±0.60 50.01±2.92 67.65±1.99 48.68±3.46

GTM-GCNN 62.49±9.60 82.48±1.33 72.88±4.82 78.27±3.63 59.03±5.92 72.33±3.89 47.69±4.44
GTM-GCNN w/ Ablation 61.95±8.27 82.28±2.12 73.86±4.74 76.70±3.47 58.72±7.02 71.67±3.56 47.78±3.9

GTM-GCNN
Hyperparameters

(15 × 20)
𝑞 = 1
𝜆 = 0.01
𝑙 = 30
𝑀 = 12

(15 × 20)
𝑞 = 5
𝜆 = 0.1
𝑙 = 50
𝑀 = 12

(11 × 16)
𝑞 = 1
𝜆 = 0.01
𝑙 = 20
𝑀 = 12

(12 × 17)
𝑞 = 3
𝜆 = 0.1
𝑙 = 50
𝑀 = 12

(15 × 20)
𝑞 = 3
𝜆 = 0.1
𝑙 = 50
𝑀 = 12

(11 × 10)
𝑞 = 1
𝜆 = 0.1
𝑙 = 20
𝑀 = 12

(15 × 20)
𝑞 = 1
𝜆 = 0.1
𝑙 = 30
𝑀 = 12

Table 2: Accuracies of GTM-GCNN and state-of-the-art models on the seven used datasets. Values for the selected latent variable
grid size, depth of the readout MLP 𝑞, regularization parameter 𝜆, amount of hidden neurons 𝑙 , and number of RBF 𝑀 are
reported.

Figure 3: Heatmaps of first-level SOM (top row) and GTM (bottom row) projected representations for the multi-class dataset
ENZYMES. Heatmaps at higher levels are similar. Each heatmap is obtained by averaging the contribution of several graphs
belonging to the corresponding class.

Dataset #Graphs #Node #Edge Avg. #Nodes Avg. #Edges Avg. Degree #Classes
PTC 344 4915 10108 14.29 14.69 2.06 2
NCI1 4110 122747 265506 29.87 32.30 2.16 2

PROTEINS 1113 43471 162088 39.06 72.82 3.73 2
D&D 1178 334925 1686092 284.32 715.66 5.03 2

ENZYMES 600 19580 74564 32.63 124.27 3.81 6
IMDB-B 1000 19773 193062 19.773 193.06 9.76 2
IMDB-M 600 19502 197806 13.00 131.87 10.14 3

Table 3: Datasets statistics.

is that it is impossible to train the overall network using end-to-end
backpropagation.

In this section, we show that the proposed GTM-based aggre-
gation can also be trained end-to-end. While the aforementioned

training procedure is reasonable—given the unsupervised nature
of the SOM and GTM maps—thanks to the specific formulation of
the GTM, it is also possible to train the map using the gradient
provided by the subsequent layers.

We thus propose to add a further step in the training procedure,
where we fine-tune all the parameters of the network using stan-
dard backpropagation. The only modification we need to introduce
for GTM is well-known when training probabilistic models using
stochastic gradient descent—we have to be careful in re-normalizing
the output of the GTM to ensure it remains a probability distribu-
tion. Notice that it is not possible to pursue this approach with the
SOM-based formulation since it relies on an argmax operation that
is not differentiable. Therefore, modifying the SOM formulation
to exploit only differentiable operations would require defining a
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novel optimization algorithm since the original one is not based on
the optimization of a likelihood function.

We applied this end-to-end fine-tuning on the ENZYMES dataset
to see if it could improve the performances of our proposed model
even more. With no additional hyper-parameter exploration, we
started the fine-tuning process from the “optimal” hyper-parameters,
obtaining an accuracy on the ENZYMES dataset of 60.9±6.7, where
the results before end-to-end fine-tuning as reported in Table 2
are 59.03±5.92. Even though such improvement is not statistically
significant, we can see a slight increase in accuracy in all five runs
thanks to the class-based supervision that is provided in this last
step to the GTM representations, which are not fully unsupervised
anymore.

This preliminary result suggests that a viable alternative strategy
for training the GTM-based architecture can include the GTM like-
lihood directly in the loss function and perform a single end-to-end
training phase. We will explore this strategy for future work.

6 CONCLUSIONS AND FUTUREWORKS
In this paper, we addressed the problem of defining a more effective
node aggregation function for Graph Neural Networks. Specifically,
inspired by the work proposed in [17], where the authors intro-
duced a SOM-based graph aggregator, we developed a novel node
aggregation function based on a principled probabilistic model,
i.e., Generative Topographic Mapping [1], that owns several nice
advantages over SOM: i) training optimizes a well-defined cost
function; ii) a smaller hyperparameter space to explore for model
selection; iii) experimentally showed to return richer dimensional-
ity reduction mappings, thus increasing the expressiveness of the
node aggregation function that can be obtained in practice. In addi-
tion to the above advantages, the proposed approach opens the door
to more interpretable GNNs since the internal 2-dimensional repre-
sentations used to generate the output can be directly visualized
for inspection in 2-D heatmaps. This comes without compromising
the model’s performance, as clearly shown by the reported state-of-
the-art empirical results on seven graph-level classification tasks
by a GNN exploiting the GTM-based aggregation function.

Interestingly, the GTM-based aggregation operator shows a sig-
nificant improvement in performance on multi-class problems, in
comparison to the closest competitor, the SOM-GCNN. Finally, we
show how adopting the GTM aggregator enables the possibility of
training the whole model in an end-to-end fashion. We exploited
this option as a final fine-tuning step, but this approach will be
further investigated by obtaining an aggregation layer that does
not require any specific training procedure.

In the future, we plan to study how to exploit further the prob-
abilistic representation computed by the GTM, with the aim of
improving the interpretability of the model, and we plan to test its
performances on other multi-class datasets present in the literature.
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