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Appendix 1. Proof. Let z(t) = z1(t) + z2(t) denote the sum of the
cumulative sales of the two products and z′(t) the total instantaneous sales.
If we sum the equations of system (3.1), we obtain

z′(t) = z′1(t) + z′2(t)

= m(t)

[
(p1 + p2) + (q1 + q2)

z1(t)

m(t)
+ (q1 + q2)

z2(t)

m(t)

] [
1− z(t)

m(t)

]
+[z1(t) + z2(t)]

m′(t)

m(t)

= m(t)

[
(p1 + p2) + (q1 + q2)

z(t)

m(t)

] [
1− z(t)

m(t)

]
+ z(t)

m′(t)

m(t)
.(A1.1)

Equation (A1.1) defines a coevolutive model (Guseo and Guidolin, 2009)
with unspecified market potential m(t) and adoption parameters ps = p1+p2
and qs = q1 + q2. Thus, the solution of the differential equation (A1.1), with
initial condition z(0) = 0, is given below:

(A1.2)
z(t)

m(t)
= w(t) =

1− e−(ps+qs)t

1 + qs
ps
e−(ps+qs)t

.

In order to find a solution for z1(t), the first equation in system (3.1)
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should be rearranged in the following manner:

z′1(t)− z1(t)
m′(t)

m(t)
= m(t)

[
p1 + (q1 + δ)

z1(t)

m(t)
+ q1

z2(t)

m(t)

] [
1− z(t)

m(t)

]
z′1(t)m(t)− z1(t)m′(t)

m2(t)
=

[
p1 + q1

z(t)

m(t)
+ δ

z1(t)

m(t)

] [
1− z(t)

m(t)

]
[
z1(t)

m(t)

]′
=

[
p1 + q1

z(t)

m(t)
+ δ

z1(t)

m(t)

] [
1− z(t)

m(t)

]
[
z1(t)

m(t)

]′
=

[
p1 + q1w(t; ps, qs) + δ

z1(t)

m(t)

]
[1− w(t; ps, qs)] .(A1.3)

Equation (A1.3) perfectly matches the differential equation in Guseo and
Mortarino (2014, p. 308, between (A.1) and (A.2)), where mc is replaced by
m(t) and the condition zs = 0 is added in the expression for w(t; ps, qs). In
our case, unlike in Guseo and Mortarino (2014), we are examining competi-
tion between two products that enter the market simultaneously. If we add
these two conditions to the solution of the differential equation, we obtain
exactly (3.3), (3.4), and (3.5).

Appendix 2. Regression model with instantaneous sales. Esti-
mation of the parameters involved in diffusion models is usually performed
through cumulative data, as described at the end of Section 3. The main
reason is that the solution of the differential equations describing the mean
evolutionary trajectory refers to z(t) in the univariate case (or zi(t), i = 1, 2,
in the competitive setup). Thus, the corresponding observed data are the
cumulative sales.

As an alternative approach, instantaneous data could be used as depen-
dent variables in a regression model, provided that the specification is mod-
ified in the following manner with respect to (3.6):

si(t) = zi(t+ 0.5;β)− zi(t− 0.5;β) + ξi(t), i = 1, 2,(A2.4)

where si(t) = vi(t+ 1)− vi(t) represents observed instantaneous sales (here,
monthly sales) and zi(t) = zi(t;β) is defined as in (3.6).

The reason for using the difference zi(t+0.5)−zi(t−0.5) in (A2.4) instead
of the more intuitive zi(t+ 1)− zi(t) is the known symmetric approximation
of a function F (x),

F ′(x) =
F (x+ h)− F (x− h)

2h
+O(h2),

which cancels out the second-order derivative, F ′′(x). This approximation
has a simple form for h = 0.5.
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Table A2.1
Estimation results for model (A2.4).

Estimate Standard Error 95% Confidence Interval

K 4.9794∗107 7.9471∗105 (4.8231∗107, 5.1357∗107 )
pc 2.2006∗10−3 1.9303∗10−4 (1.8210∗10−3, 2.5801∗10−3)
qc 4.4731∗10−2 1.5710∗10−3 (4.1641∗10−2, 4.7820∗10−2)
p1 3.4950∗10−3 2.4323∗10−4 (3.0167∗10−3, 3.9733∗10−3)
q1 1.4902∗10−2 1.3948∗10−3 (1.2160∗10−2, 1.7645∗10−2)
p2 -9.3386∗10−4 1.8066∗10−4 (-1.2891∗10−3, -5.7859∗10−4)
q2 -6.2316∗10−4 1.8463∗10−3 (-4.2537∗10−3, 3.0074∗10−3)
δ -2.5405∗10−2 3.5526∗10−3 (-3.2391∗10−2, -1.8419∗10−2)

R2 = 0.96777

Table A2.2
Comparison between model (A2.4) and Guseo and Mortarino’s (2014) model estimated

with instantaneous sales.

R2 ρ2

model (A2.4) 0.9678 0.9678
Guseo and Mortarino’s (2014) model 0.8920 0.8937

R̃2 = 0.7016 F = 432.57

If we use model (A2.4), we obtain the parameter estimates shown in
Table A2.1. A comparison with results shown in Table 1 highlights that the
procedure relying on cumulative data leads uniformly to smaller standard
errors for all the parameters.

From Figure A2.1, comparing the estimated mean trajectory with model
(3.6) (already shown in Figure 2) and with model (A2.4), we see that the
two methods give rise to almost overlapping paths, even if the squared corre-
lation coefficient between observed and fitted values is slightly higher when
instantaneous data are used (0.9678 vs. 0.9672). Further, the estimate of
the dynamic market potential structure, m̂(t), is fully coherent with the one
obtained from model (3.6) (see Figure A2.2).

In Section 5, the comparison between the CDMP model, (3.6), and the
simpler model of Guseo and Mortarino (2014) was conducted through a test
statistic based upon the respective R2 values. Of course, if we use model
(A2.4) for the comparison, we should estimate Guseo and Mortarino’s (2014)
model with the same approach (using instantaneous sales as response vari-
ables). Table A2.2 shows the comparison. The change in the estimation
method does not modify the conclusions regarding the superiority of a dy-
namic market potential structure.

Appendix 3. Predictive confidence bands. Starting from Srini-
vasan and Mason (1986) and, more recently, Boswijk and Franses (2005), we
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Fig A2.1. Comparison of the observed and fitted values, instantaneous sales, model (A2.4)
(the fitted values with the CDMP model, (3.6), are also shown).
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Fig A2.2. Comparison of the estimated market potential function m̂(t) with the CDMP,
(3.6), and (A2.4) models.
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Fig A3.3. Histograms of the estimates ûi(t), i = 1, 2, t = 49, . . . , 188, based on the CDMP
model, (3.6).

know that—for the models under study—estimators do not have standard
asymptotic properties and the parameters cannot be estimated consistently
even as the sample period increases. Intuitively, since we describe finite diffu-
sion processes, an increase in sample size with observations for t values after
the end of the process does not correspond to an increase in information.

The procedure used to estimate the parameters using cumulative data
(model (3.6)) with a nonlinear least squares algorithm (NLS) does not at first
require detailed assumptions about the structure of εi(t). Following Boswijk
and Franses (2005), it is, however, important to allow for heteroscedasticity
in εi(t). Alternative model specifications may be appropriate, but a sensible
assumption is

(A3.5) vi(t) = zi(t;β) + εi(t) = zi(t;β) + z′i(t;β)ui(t),

where ui(t) are supposed to be normally distributed, with zero mean and
constant variance, uσ

2
i , for i = 1, 2. The structure (A3.5) takes into account

the specific heterogeneity issue typical of saturating diffusion models (low
variability around the mean trajectory both at the beginning and at the end
of the diffusion cycle, with higher variability when the diffusion peaks).

The data described in this paper support the structure (A3.5), as is
evident from Figure A3.3, representing the histograms of the estimates
ûi(t), i = 1, 2, t = 49, . . . , 188, obtained through the residuals of model
(3.6). An examination of Figure 2 reveals that for both series, the fit in the
first part of the series is worse and the estimate of the stochastic component,
based upon residuals inflated by a partial lack-of-fit, is biased. To avoid that
effect, since the purpose is to build plausible confidence bands for the future
evolution of the series, we have excluded the first 48 residuals (4 years) of
both series. The normality assumption is confirmed, and the corresponding
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Fig A3.4. Histograms of the estimates ω̂i(t), i = 1, 2 based on model (A2.4).

variance estimates are uσ̂
2
1 = 0.0231 and uσ̂

2
2 = 0.1436. Thus, we can use the

following values as confidence bands for the predictions ẑi(t) = zi(t; β̂), i.e.,

ẑi(t)± 2 uσ̂i ẑ
′
i(t), t = 189, . . .

When the fitted values are represented in terms of instantaneous data (as
in Figure A2.1), the prediction confidence bands have to be modified in the
following manner. Beginning from instantaneous observed data,

si(t) = vi(t+ 1)− vi(t)
(A3.5)

= zi(t+ 1) + z′i(t+ 1)ui(t+ 1)− zi(t)− z′i(t)ui(t)
= zi(t+ 1)− zi(t) + z′i(t+ 1)ui(t+ 1)− z′i(t)ui(t),

and thus the amplitude of the confidence bands around the estimated tra-
jectory,

ẑi(t+ 1)− ẑi(t),

should be proportional to the standard error of

z′i(t+ 1)ui(t+ 1)− z′i(t)ui(t),

given by

[ẑ′i(t+ 1)]2 + [ẑ′i(t)]
2 − 2ẑ′i(t+ 1)ẑ′i(t))Ĉov[ui(t+ 1), ui(t)].

Note that the last term of the previous expression must not be neglected
and equals 0.0207 for i = 1 and 0.1419 for i = 2. The resulting confidence
bands are plotted in Figure 5.

When we turn to the regression model (A2.4), an analogous argument
leads to
(A3.6)
si(t) = zi(t+ 0.5)− zi(t− 0.5) + ξi(t) = zi(t+ 0.5)− zi(t− 0.5) + z′i(t)ωi(t),
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Fig A3.5. Forecasted mean sales trajectory and confidence bands, model (A2.4).

where ωi(t) are supposed to be normally distributed, with zero mean and
constant variance, ωσ

2
i , i = 1, 2.

The data described in this paper support the structure (A3.5), as is
evident from Figure A3.4, representing the histograms of the estimates
ω̂i(t), i = 1, 2, obtained through the residuals of model (A2.4). The first
48 residuals of both series were excluded for the same reason described
for the residuals of model (3.6). The normality assumption is confirmed
and the corresponding variance estimates are ωσ̂

2
1 = 0.0045 and ωσ̂

2
2 =

0.0056. Thus, we can use the following confidence bands for the predictions
ẑi(t+ 0.5)− ẑi(t− 0.5), i.e.,

ẑi(t+ 0.5)− ẑi(t− 0.5)± 2 ωσ̂i ẑ
′
i(t), t = 189, . . .

The resulting confidence bands are plotted in Figure A3.5 together with
the confidence bands obtained through model (3.6). Again, we observe that
model (3.6) leads to greater precision: We obtained narrower bands for Solosa
and very similar bands for Amaryl.

Appendix 4. SARMAX refinement. As mentioned in Section 4, for
short-term prediction, we use a two-step procedure. First, we apply a robust
NLS algorithm to model (3.6), which ignores the stochastic structure of εi(t),
under the well-known Levenberg-Marquardt correction of the Gauss-Newton
recursive procedure (see, e.g., Seber and Wild, 2003). Second, the prediction
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Fig A4.6. Comparison of the fitted values using the CDMP model, (3.6), and the SARMAX
refinement.

zi(t; β̂), based on an NLS solution, β̂, may be used, as an input X, in a model
based on a seasonal, autoregressive, moving average process (SARMAX) to
improve short-term prediction, which is relevant for managerial applications.
This second step is implemented if the residuals of the first stage do not
follow a standard white noise pattern. The Durbin-Watson statistic may be
used as an exploratory test to diagnose whether this second step is necessary.
In this case, the Durbin-Watson statistic equals 0.0847, distinctly detecting
a positive autocorrelation.

The SARMAX improvement for short-term predictions rests on the fol-
lowing equation based on a polynomial function of backward operators,
namely,
(A4.7)

Ψ(B)Φ(Bs)
{
si(t)− ci[zi(t+ 0.5; β̂)− zi(t− 0.5; β̂)]

}
= Ω(B)Θ(Bs)ai(t)

with ai(t) a White Noise process; B and Bs the standard and seasonal
backward operators; and Ψ(B), Φ(Bs), Ω(B), and Θ(Bs) the usual backward
polynomials of order g,G, h, and H, respectively. The calibration parameters
ci allow a global assessment of the stability of the predicted regressive values
stemming from the estimated models zi(t; β̂).

As above, since the first part of the series produced higher residuals and
since SARMAX is meant as an improvement for predictive purposes, we
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Table A4.3
Parameter estimates for the SARMAX refinement. [ ] t statistic. ∗: significant, 95%. ∗∗:
strongly significant, 99%. prM denotes the fitted values with the CDMP model, (3.6). The
subscripts of R̃2 and F define the involved nested models; in particular, M |S denotes the

comparison between the CDMP model and the SARMAX model.

Model Parameter Amaryl Solosa

AR1 -0.9096** 0.1372
AR2 0.0446 1.0304**
AR3 0.6661** 0.7554
AR4 0.2504 -0.4155
AR5 -0.4528** -0.7863**
AR6 – 0.2391
MA1 -0.6233** 0.2806
MA2 0.2330* 0.8279**
MA3 0.4287** 0.4580
MA4 -0.3284** -0.5807

SARMAX MA5 -0.7675** -0.3927*
+ MA6 – 0.3771

prM SAR1 0.6777** 1.0623**
SAR2 -0.7824** -0.0361
SAR3 1.0223** -0.8886**
SAR4 – 1.8993**
SAR5 – -0.7673**
SMA1 0.1788 0.6459**
SMA2 -0.8049** 0.2042*
SMA3 0.6395** -0.8361**
SMA4 – 1.5490**
SMA5 – -0.0185

prM c 0.9885** 1.0067**
[tM ] [32.4488] [16.2051]

RSS 2.3043∗109 9.0195∗109

RSSM 8.3637∗109 1.5361∗1010

R̃2
M|S 0.7245 0.4128

FM|S 17.8228 3.3985
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chose to apply it only to the second part of the series (t > 48), whose data
are more relevant for future evolution.

The estimates of the parameters involved in Equation (A4.7) applied to
instantaneous data are proposed in Table A4.3. The agreement between the
observed data and the fitted values with the SARMAX refinement is almost
perfect (see Figure A4.6). This confirms that the discrepancies between the
observed data and the fitted values with the CDMP model were essentially
due only to autoregressive/moving average components and seasonal effects.

Further, the overlapping of the fitted trajectory on the observed data
strongly supports the choice of model (3.6) for the description of the mean
trajectories of the sales data for both drugs.

Appendix 5. Simulation study.

A5.1. Correct specification. In order to assess the performance of the
proposed CDMP model for different fluctuation levels around the mean tra-
jectory, a simulation study has been performed as follows. We started from
a fixed parameter configuration,

β0 = {10000, 0.07, 0.04, 0.02, 0.03, 0.005, 0.1, 0.05}.

We simulated 1000 instantaneous datasets as

si(t) = z′i(t;β0) + z′i(t;β0)ωi(t), i = 1, 2, t = 1, . . . , 50,

where (ω1(t), ω2(t)) ∼ N2(ωσ
2
1, ωσ

2
2,−0.1ωσ1ωσ2). The correlation value has

been fixed at −0.1 to represent a substitution effect between the sales of the
two products.

The ωσi were allowed to vary in the set {0.05, 0.10, 0.15, 0.20, 0.25}. As
an example, Figure A5.7 shows the plot of the first simulated dataset in
the case ωσi = 0.05 (a) and ωσi = 0.25 (b). The latter case corresponds
to a situation with a very high noise–to–signal ratio. For each simulated
dataset, the corresponding cumulative data have been used to fit the CDMP
model, (3.6). Notice that this situation corresponds to a correct specification,
because, for data simulation, we used the mean instantaneous trajectories,
zi(t), with m(t) specified as in (2.4).

Table A5.4 shows the mean squared error (MSE) of the parameter esti-
mates

MSE(β̂j) =
1

1000

1000∑
k=1

(β̂jk − βj0)2,

where β̂jk denotes the estimate of the j-th parameter obtained with the k-th
simulated dataset.
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Fig A5.7. First simulated instantaneous dataset for ωσi = 0.05 (a) and ωσi = 0.25 (b).

Table A5.4
MSE of the parameter estimates

parameter K pc qc p1
(βj0) (10000) (0.007) (0.04) (0.02)

ωσi = 0.05 7.0655*105 1.5130*10−7 9.1726*10−5 1.1897*10−5

ωσi = 0.10 7.7058*105 3.8166*10−7 1.3603*10−4 2.5986*10−5

ωσi = 0.15 1.2554*106 8.3944*10−7 2.3944*10−4 5.5103*10−5

ωσi = 0.20 4.6040*107 4.2749*10−6 5.0578*10−4 6.7359*10−5

ωσi = 0.25 5.4571*108 7.7279*10−6 8.2287*10−4 3.4129*10−4

parameter q1 p2 q2 δ
(βj0) (0.03) (0.005) (0.1) (0.05)

ωσi = 0.05 2.7558*10−3 1.4823*10−6 3.5251*10−3 8.9532*10−3

ωσi = 0.10 8.3951*10−3 6.5940*10−6 9.1042*10−3 2.4722*10−2

ωσi = 0.15 3.1755*10−2 2.1710*10−5 3.2648*10−2 9.0742*10−2

ωσi = 0.20 6.7459*10−2 3.1218*10−5 6.9825*10−2 1.8678*10−1

ωσi = 0.25 9.3869*10−1 2.7502*10−4 9.4350*10−1 2.6786
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Table A5.5
MISE for the market potential function, m(t)

T = 50 T = 60 T = 70 T = 88 T = 114

ωσi = 0.05 7.9842*105 8.4136*105 9.5680*105 1.8808*106 6.7524*106

ωσi = 0.10 1.0264*106 1.1166*106 1.3408*106 2.8253*106 9.2680*106

ωσi = 0.15 1.6529*106 1.8306*106 2.2428*106 4.7968*106 1.5172*107

ωσi = 0.20 3.8034*106 4.1396*106 4.8721*106 9.0723*106 2.7517*107

ωσi = 0.25 6.3988*107 6.9203*107 8.0086*107 1.3918*107 3.8715*107

For ωσi ≤ 0.20, we observe a gradual deterioration in the accuracy of the
estimates of the evolutionary parameters (p1, q1, p2, q2, and δ). The estimates
are quite unstable in the case ωσi = 0.25, corresponding to an extreme
value of the noise–to–signal ratio. Notice that the MSE, as an average, may
be heavily affected by some odd convergence points for a few simulated
datasets. Due to the high number of datasets, the estimation procedure is
unsupervised and common initial values have been used for all of them.

One interesting issue is to see whether the model allows for good estimates
of the market potential component, m(t). Thus the mean integrated squared
error (MISE) has been evaluated as follows:

MISE(m̂(t)) =
1

1000

1000∑
k=1

∫ T

t=0
[m̂k(t)−m0(t)]

2dt,

where m̂k(t) denotes the estimate of m(t) obtained with the k-th simulated
dataset, m0(t) denotes the true function m(t) used to generate the data,
and T = 50, 60, 70, 88, 114. The two final values represent, respectively, the
95-th and 99-th quantiles of zi(t;β0). In other words, after 114, the prod-
ucts’ lifecycle is essentially concluded and the estimation issue is no longer
interesting (firms usually stop offering a product when sales levels are negli-
gible). Because a product’s exit from the market is often anticipated due to
high commercialization costs, the 95-th quantile, 88, is also an interesting
endpoint to consider. Notice that the simulated data used to fit the model
cover the first 50 time points. This is why the first T value has been set at
50. The values 60 and 70 represent, for forecasting purposes, a medium term
and a long term. Table A5.5 shows the MISE values. Unlike the MSE values,
the MISE results do not highlight a sudden jump for high ωσi values, but
they smoothly increase with ωσi values.

The left side of Figures A5.8-A5.12 shows the plots of m0(t), m̂k(t),
m(t) = 1

1000

∑1000
k=1 m̂k(t), the median trajectory, and the quantile trajec-

tories (0.05 and 0.95). Because our main interest is in the global model
function, however, the right side of Figures A5.8-A5.12 shows the plots
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Fig A5.8. Case ωσi = 0.05. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
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ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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Fig A5.10. Case ωσi = 0.15. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
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ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
1000

∑1000
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Fig A5.11. Case ωσi = 0.20. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
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Fig A5.12. Case ωσi = 0.25. Left side: m̂k(t) (yellow trajectories), true m0(t), m(t) =
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of the true zi(t) functions, the estimated mean trajectories ẑik(t), zi(t) =
1

1000

∑1000
k=1 ẑik(t), the median trajectory, and the quantile trajectories (0.05

and 0.95). For ωσi values up to 0.15, all the estimated trajectories are very
close to the true one even for long-term forecasting (t ≤ 75). For ωσi = 0.20,
uncertainty is moderate for medium-term forecasting (t ≤ 60), while fluc-
tuations around the true trajectories make forecasts less reliable for ωσi ex-
ceeding 0.20. It is notable, however, that the average trajectories, m(t) and
zi(t), are essentially coincident with the respective true functions, m0(t) and
z0i(t).

A5.2. Alternative market potential structures. The simulations shed light
on one further key point. The described results were obtained with a “cor-
rectly specified” m(t) function, function (2.4). To determine whether the
proposed model could also adequately describe data generated with a more
complex dynamic than (2.4)—and what implications such a misspecification
in the market potential dynamics would have for evolutionary parameters p1,
q1, p2, q2, and δ—we examined alternative m(t) functions for data genera-
tion. The structure (2.4) represents a communication network’s size growing
according to a simple Bass model. Pertaining sensible assumptions about
knowledge spread may lead to heterogeneous behavior of involved agents.
In the literature, this effect has been modeled through more complex dif-
fusion of innovation models either with a continuous approach (see, e.g.,
Bemmaor, 1994; Bemmaor and Lee, 2002) or with a discrete approach (see,
e.g., Karmeshu and Goswami, 2001). The former leads to the alternative
specification

(A5.8) m(t) = K
[1− e−(pc+qc)t]β

[1 + qc
pc
e−(pc+qc)t]α

, K, pc, qc, α, β > 0, t > 0,

while the latter gives rise to a two-wave model,

(A5.9) m(t) = K1
1− e−(p1c+q1c)t

1 + q1c
p1c

e−(p1c+q1c)t
+K2

1− e−(p2c+q2c)(t−tc)

1 + q2c
p2c

e−(p2c+q2c)(t−tc)
It≥tc,

where Ki, pic, qic, tc > 0, t > 0.
Specifically, we present the results obtained for

• a Bemmaor model (A5.8) with α = 0.25 and β = 0.5 (BE(0.25,0.5)),
• a Bemmaor model (A5.8) with α = 1 and β = 0.5 (BE(1,0.5)),
• a two–wave model (A5.9) with changepoint in tcc = 20 (TW(20)).

Notice that function (2.4) can be represented as BE(0.5,0.5), as it is obvi-
ously a special case of (A5.8).
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Fig A5.13. Alternative m(t) dynamics used in simulations: a Bemmaor model (A5.8) with
α = 0.25 and β = 0.5 (BE(0.25,0.5)), a Bemmaor model (A5.8) with α = 1 and β = 0.5
(BE(1,0.5)) a two-wave model (A5.9) with changepoint in tcc = 20 (TW(20)). The m(t)
function used throughout the paper, (2.4), is also plotted and denoted by BE(0.5,0.5).

Table A5.6
MISE for the market potential function, m(t), with alternative specifications.

T = 50 T = 60 T = 70 T = 88 T = 114

BE(0.5,0.5) ωσi = 0.05 7.9842*105 8.4136*105 9.5680*105 1.8808*106 6.7524*106

ωσi = 0.10 1.0264*106 1.1166*106 1.3408*106 2.8253*106 9.2680*106

ωσi = 0.15 1.6529*106 1.8306*106 2.2428*106 4.7968*106 1.5172*107

BE(0.25,0.5) ωσi = 0.05 1.0649*106 1.1039*106 1.2103*106 2.1663*106 8.4540*106

ωσi = 0.10 2.0646*106 2.1692*106 2.3584*106 3.4547*106 9.2892*106

ωσi = 0.15 3.9747*106 4.1821*106 4.5231*106 6.1057*106 1.3061*107

BE(1,0.5) ωσi = 0.05 1.4031*106 1.4457*106 1.6207*106 4.1432*106 1.7707*107

ωσi = 0.10 2.7012*106 2.8158*106 3.4295*106 1.0847*107 6.0820*107

ωσi = 0.15 3.2451*106 3.4712*106 4.5917*106 1.7575*107 1.1643*108

TW(20) ωσi = 0.05 5.2213*107 5.4527*107 5.5356*107 1.3536*108 1.2534*109

ωσi = 0.10 5.2346*107 5.4871*107 5.5799*107 1.3644*108 1.2625*109

ωσi = 0.15 5.3285*107 5.5762*107 5.6861*107 1.4162*108 1.2932*109

Figure A5.13 shows the plot of these alternative dynamic structures in
comparison with the original function used in previously described simula-
tions. For comparative purposes, we show here the results obtained with the
three alternatives for the less extreme values of ωσi (namely 0.05, 0.10, and
0.15).

Table A5.6 shows the MISE values. When a BE(0.25,0.5) structure is
used to simulate the data, the MISE values are remarkably close to the
BE(0.5,0.5) case, and for higher T values, the MISE is even smaller. The
BE(1,0.5) model makes a somewhat greater impact on the MISE. Figures
A5.14–A5.19 show the true and estimated trajectories for the dynamic mar-
ket potential and the fitted response, when m(t) is simulated through a
Bemmaor process. The fluctuations are higher, especially when BE(1.0.5) is
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Fig A5.14. Case BE(0.25,0.5), ωσi = 0.05. Left side: m̂k(t) (yellow trajectories),
true m0(t), m(t) = 1

1000

∑1000
k=1 m̂k(t), median trajectory, and quantile trajectories (0.05

and 0.95). Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) =
1

1000

∑1000
k=1 ẑik(t), median trajectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.15. Case BE(0.25,0.5), ωσi = 0.10. Left side: m̂k(t) (yellow trajectories),
true m0(t), m(t) = 1
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k=1 m̂k(t), median trajectory, and quantile trajectories (0.05

and 0.95). Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) =
1

1000

∑1000
k=1 ẑik(t), median trajectory, and quantile trajectories (0.05 and 0.95).

used and t ≥ 80. For higher t values, the average trajectories are not fully
coincident with the true ones. This is unsurprising, as the estimation pro-
cedure makes use of data from t = 1 to t = 50; a good approximation of a
Bemmaor structure through a Bass model in the range [1, 50] may not be
equally good in a different range.

Finally, the two-wave model (TW(20)) produces MISE values that are
ten times greater than the BE(0.5,0.5) model. Figures A5.20–A5.22 show
the true and estimated trajectories for dynamic market potential and the
fitted response when m(t) is simulated through a two-wave process. In this
case, m(t) cannot be adequately described even for smaller t values, but the
fluctuations around z0i(t) are extremely small for t ≤ 60.

Table A5.7 shows the MSE for the estimates of (p1, q1, p2, q2, δ) with the
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Fig A5.16. Case BE(0.25,0.5), ωσi = 0.15. Left side: m̂k(t) (yellow trajectories),
true m0(t), m(t) = 1
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and 0.95). Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) =
1
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∑1000
k=1 ẑik(t), median trajectory, and quantile trajectories (0.05 and 0.95).

0 20 40 60 80 100 120
t0

2000

4000

6000

8000

10 000

12 000

14 000

market potential

moHtL
mHtL
Median@mHtLD
0.05�0.95@mHtLD

0 20 40 60 80 100 120
t0

2000

4000

6000

8000

10 000

instantaneous sales

zioHtL
ziHtL
Median@ziHtLD
0.05�0.95@ziHtLD

Fig A5.17. Case BE(1,0.5), ωσi = 0.05. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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median trajectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.18. Case BE(1,0.5), ωσi = 0.10. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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median trajectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.19. Case BE(1,0.5), ωσi = 0.15. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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median trajectory, and quantile trajectories (0.05 and 0.95).

Table A5.7
MSE of the parameter estimates for (p1, q1, p2, q2, δ) with alternative m(t) specifications.

parameter p1 q1 p2 q2 δ
(βj0) (0.02) (0.03) (0.005) (0.1) (0.05)

BE(0.5,0.5) ωσi = 0.05 1.1897*10−5 2.7558*10−3 1.4823*10−6 3.5251*10−3 8.9532*10−3

ωσi = 0.10 2.5986*10−5 8.3951*10−3 6.5940*10−6 9.1042*10−3 2.4722*10−2

ωσi = 0.15 5.5103*10−5 3.1755*10−2 2.1710*10−5 3.2648*10−2 9.0742*10−2

BE(0.25,0.5) ωσi = 0.05 1.1852*10−5 1.8281*10−3 1.1023*10−6 2.5001*10−3 6.1818*10−3

ωσi = 0.10 2.7446*10−5 6.6698*10−3 5.0748*10−6 7.4257*10−3 1.9925*10−2

ωσi = 0.15 4.9248*10−5 2.1805*10−2 1.3392*10−5 2.3126*10−2 6.1728*10−2

BE(1,0.5) ωσi = 0.05 3.7755*10−6 4.8813*10−3 3.1662*10−6 5.4007*10−3 1.4122*10−2

ωσi = 0.10 1.4818*10−5 1.9343*10−2 1.1618*10−5 2.0172*10−2 5.5211*10−2

ωσi = 0.15 3.3855*10−5 6.4107*10−2 2.9979*10−5 6.4740*10−2 1.8183*10−1

TW(20) ωσi = 0.05 1.1022*10−4 2.5203 1.9994*10−6 3.5076 6.1608

ωσi = 0.10 1.1130*10−4 2.5217 2.6444*10−6 3.5249 6.3360

ωσi = 0.15 1.1872*10−4 2.5613 3.0510*10−6 3.5735 6.4498
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Fig A5.20. Case TW(20), ωσi = 0.05. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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median trajectory, and quantile trajectories (0.05 and 0.95).
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Fig A5.21. Case TW(20), ωσi = 0.10. Left side: m̂k(t) (yellow trajectories), true m0(t),
m(t) = 1
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k=1 m̂k(t), median trajectory, and quantile trajectories (0.05 and 0.95).

Right side: ẑik(t) (yellow and orange trajectories), true zi0(t), zi(t) = 1
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∑1000
k=1 ẑik(t),

median trajectory, and quantile trajectories (0.05 and 0.95).

alternative m(t) specifications. We can see that when m(t) belongs to the Be-
mmaor family, the misspecification has a very small impact on the precision
of the evolutionary parameters. For two-wave m(t), the impact is larger.
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