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Universal filtered quantizations of nilpotent Slodowy slices
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Abstract. Every conic symplectic singularity admits a universal Poisson deformation and a uni-
versal filtered quantization, thanks to the work of Losev and Namikawa. We begin this paper by
showing that every such variety admits a universal equivariant Poisson deformation and a universal
equivariant quantization with respect to a reductive group acting on it by C�-equivariant Poisson
automorphisms.

We go on to study these definitions in the context of nilpotent Slodowy slices. First, we give
a complete description of the cases in which the finite W -algebra is a universal filtered quantiza-
tion of the slice, building on the work of Lehn–Namikawa–Sorger. This leads to a near-complete
classification of the filtered quantizations of nilpotent Slodowy slices.

The subregular slices in non-simply laced Lie algebras are especially interesting: with some
minor restrictions on Dynkin type, we prove that the finite W -algebra is a universal equivariant
quantization with respect to the Dynkin automorphisms coming from the unfolding of the Dynkin
diagram. This can be seen as a non-commutative analogue of Slodowy’s theorem. Finally, we apply
this result to give a presentation of the subregular finiteW -algebra of type B as a quotient of a shifted
Yangian.

1. Introduction

The finite subgroups of SL2.C/ are classified by the simply laced Dynkin diagrams. If
� is such a diagram corresponding to a group � , then the quotient singularity C2=� is
said to have type �. It was proven by Artin that these varieties give an exhaustive list of
rational isolated surface singularities up to analytic isomorphism [1].

The classical theorem of Brieskorn [6], conjectured by Grothendieck, states that if g

is a complex simple Lie algebra with simply laced Dynkin diagram�, then the transverse
slice to the subregular orbit is the C�-semi-universal deformation of the singularity of type
�. This remarkable theorem was extended to the non-simply laced types by Slodowy [34].
Let�0 be such a diagram, and let� be simply laced and �0�Aut.�/ be uniquely determ-
ined by the requirement that�0 is obtained by folding� under �0 (cf. [9, Section 13], for
example). Then, the subregular slice in a Lie algebra of type �0 is the C�-semi-universal
�0-deformation of a singularity of type �.
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Type of g Any BCFG C G
Type of O Regular Subregular Two Jordan blocks Dimension 8

Table 1. Cases in which �� ! h�=W is not a universal Poisson deformation.

Lehn, Namikawa, and Sorger have generalised this classical story to arbitrary nilpo-
tent orbits, taking the focus away from the subregular case [21]. In general, the nilpotent
part of a Slodowy slice is not an isolated surface singularity, and so, there is no versal the-
ory for deformations. It turns out that the correct generalisation is given by realising the
Slodowy slice as a Poisson variety via Hamiltonian reduction, following [13]. Since the
nilpotent part of the slice is a conic symplectic singularity, results of Namikawa [28, 29]
show that there is a Poisson deformation which is universal, in the sense that every other
deformation is obtained by a unique base change. The main result of [21] gives a neces-
sary and sufficient condition for the Slodowy slice to be a universal Poisson deformation
of its nilpotent part.

Let G be a simple, simply connected, complex algebraic group and g D Lie.G/ its
Lie algebra, with nilpotent cone N .g/. Choose e 2 N .g/ and identify e with � 2 g� via
the Killing isomorphism � W g ��! g�. Set N .g�/ D �.N .g//. Denote the adjoint orbit of
e by O, and write �� for the Slodowy slice to � in g�, which is transverse to coadjoint
orbits. Consider the Springer resolution � W zN ! �.N .g//. Then, Theorems 1.2 and 1.3
of [21] state that the following are equivalent:

(1) 'W �� ! h�=W is a universal Poisson deformation of the central fibre '�1.0/;

(2) the restriction map H 2. zN ;Q/! H 2.��1.�/;Q/ is an isomorphism;

(3) O does not occur in Table 1.

The objective of this paper is to prove non-commutative analogues of many of the
results described above: we will classify the non-commutative filtered quantizations of
every nilpotent Slodowy slice whose orbit does not appear in Table 1, and we prove non-
commutative analogues of both Brieskorn and Slodowy’s theorems.

Our point of departure is the work of Namikawa [28, 29] and Losev [23] on deforma-
tions and quantizations of conic symplectic singularities. Namikawa has shown that every
such variety admits a universal Poisson deformation, whilst Losev demonstrated that
Namikawa’s deformation can be quantised, and that the quantization enjoys a universal
property similar to its semi-classical limit.

In order to compare universal Poisson deformations with universal quantizations, we
begin the paper working in a general setting. We fix n 2 N and a commutative posit-
ively graded connected Poisson algebra A with bracket in degree �n. The functor PDA of
graded Poisson deformations has been well studied by many authors, and we recap some
of the main features in Section 2.3. The functor QA of filtered quantizations of Poisson
deformations of A is defined analogously, although it appears to be new to the literature;
we state some of its basic properties in Section 2.4. One of the key definitions in this paper
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is the functor of deformations (or quantizations) with fixed symmetries. Suppose that � is
a reductive group of graded Poisson automorphisms of A. We define actions on deforma-
tions and quantizations of A compatible with the one on the central fibre, namely, graded
Poisson �-deformations and filtered �-quantizations; see Sections 2.6 and 2.7. Our main
result in this setting is the following.

Theorem 1.1. Suppose thatX is a conic symplectic singularity and � is a reductive group
of C�-equivariant Poisson automorphisms of A D CŒX�.

(1) The functor PDA;� of graded Poisson �-deformations ofA, resp., the functor QA;�
of filtered �-quantizations of A, admits universal elements.

(2) A filtered �-quantization is a universal element of QA;� if and only if its associated
graded is a universal element of PDA;� .

(3) The universal base B of QA;� is a split-filtered commutative algebra, and there
is a unipotent algebraic group U consisting of automorphisms of B which induce
the identity on the associated graded grB . This group acts freely and transitively
on the universal elements of QA;� over B with a fixed associated graded.

The proof will be completed in Section 2.8. We expect even the case of � trivial to
have various applications, some of which we explain at the end of the introduction.

We now return to the Lie theoretic setting discussed at the beginning of this introduc-
tion and retain the notation introduced there. We briefly recount the basic properties of the
Slodowy slice ��. Let .e; h; f / be an sl2-triple and gf the centraliser of f . Then,

�� WD �C �.g
f /

is a transversal slice to coadjoint G-orbits, admitting a contracting C�-action. Further-
more, it carries a Poisson structure via Hamiltonian reduction, studied in [13] (see Sec-
tion 3.2 for more details). Slodowy showed [34, Corollary 7.4.1] that the adjoint quotient
map g� ! g�==G ' h�=W restricts to a flat C�-equivariant morphism �� ! h�=W ,
and it follows that the slice provides a Poisson deformation of the central fibre ��;N D

�� \N .g�/, which we call the nilpotent Slodowy slice.
On the other hand, Premet introduced a filtered quantization of the Slodowy slice

known as the finite W -algebra [31]. This is a non-commutative filtered algebra U.g; e/
which depends only on g and the orbit of e. Since their inception, they have found
numerous applications to the ordinary and modular representation theory of Lie algebras;
see [33] for a nice overview of both settings. If � denotes a central character of U.g; e/,
then U.g; e/� will denote the quotient by the ideal generated by the kernel of �.

Theorem 1.2. Let A D CŒ��;N �. The following are equivalent:

(1) The functor QA is representable over CŒh�=W �, and the finite W -algebra

U.g; e/ 2 QA.CŒh
�=W �/

is a universal element;
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(2) the orbit O is not listed in Table 1.

When these equivalent conditions hold, each filtered algebra quantising CŒ��;N � is iso-
morphic to U.g; e/� for some choice of central character �.

This result is proven in Theorem 3.6. Our argument consists of assembling the neces-
sary ingredients from throughout the literature to apply Theorem 1.1 with � trivial. In
Section 3.2, we define the Poisson structure on �� and recall the fact, well known to
experts, that ��;N is a conic symplectic singularity. In Section 3.3, we recall the basic
properties of the finite W -algebra, whilst in Sections 3.4 and 3.5, we record the remain-
ing facts needed to explain that the Slodowy slice and the finite W -algebra are Poisson
deformations and quantizations of ��;N .

Finally, we focus on the subregular case considered by Brieskorn, Grothendieck, and
Slodowy [6, 34]. The non-commutative analogue of Brieskorn’s theorem says that the
subregular finite W -algebra attached to a simply laced Lie algebra of type � is a uni-
versal filtered quantization of the rational singularity of type �. This is a special case
of Theorem 1.2. Some of the most interesting applications in this paper arise from our
non-commutative analogue of Slodowy’s theorem. Let g0 be a simple Lie algebra with
non-simply laced Dynkin diagram�0, and let .�;�0/ be determined by�0 by folding, as
we described earlier. Let �D �.e/, where e 2 g is a subregular element. With some restric-
tions on �0, we prove the following analogue of Slodowy’s theorem [34, Section 8.8] in
the setting of universal Poisson deformations and their quantizations.

Theorem 1.3. Let g0 be of type Bn, Cn, or F4, where n � 2 and n is even in type C. LetW0
be the Weyl group of g0; let e0 2N .g0/ be a subregular nilpotent element and �0D �.e0/.
Let A D CŒ��;N �. Then,

(1) the functor PDA;�0 is representable over CŒh�0 �
W0 and CŒ��0 � is a universal ele-

ment;

(2) the functor QA;�0 is representable over CŒh�0 �
W0 and the finite W -algebra

U.g0; e0/ is a universal element.

After laying the groundwork for the �0-action in Section 4.1, the proof of this theorem
is given in Section 4.2. We expect that the restrictions on�0 are unnecessary and we con-
jecture that Theorem 1.3 holds for all non-simply laced simple Lie algebras. Theorems 1.2
and 1.3 lead to interesting surjective homomorphisms betweenW -algebras, which are new
in the literature.

Corollary 1.4. There exists a surjective homomorphism of subregular W -algebras:

U.g; e/� U.g0; e0/:

When g0 satisfies the hypotheses of Theorem 1.3, the kernel is generated by elements
z � z �  , where  2 �0 and z 2 Z.g; e/ lies in the centre.

In the final section, we apply Corollary 1.4 to obtain new Yangian-type presentations
of W -algebras. Since W -algebras are defined via quantum Hamiltonian reduction, there
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is no known presentation in general. This makes them difficult to work with. The situation
is significantly improved in type A: in this case, there is an explicit isomorphism between
a truncated shifted Yangian and the W -algebra [7]. This leads to an explicit presentation
of the subregular finite W -algebra of type B as a quotient of a truncated shifted Yangian.

Theorem 1.5. If e0 2 g0 WD so2nC1 lies in the subregular orbit, then the finiteW -algebra
U.g0; e0/ is generated by elements

¹D
.r/
1 ;D

.r/
2 j r > 0º [ ¹E

.r/
j r > 2n � 2º [ ¹F .r/ j r > 0º

together with the relations given in [7, (2.4)–(2.9)], along with the relations D.r/
1 D 0 D

Z.2s�1/, where r > 1, s D 1; : : : ; n, and where Z.r/ is given by formula (4.6) below.

1.1. Further applications

We discuss three large families of conic symplectic singularities to which Theorem 1.1
might be applied in the case � D ¹1º.

(i) Braverman–Finkelberg–Nakajima (BFN) have recently introduced a rigorous
mathematical definition of the Coulomb branch associated to a class of 3-dimen-
sional N D 4 supersymmetric gauge theories [5]. These are algebraic varieties
attached to a pair .G; V /, where G is a reductive group and V is a G-module,
which can be naturally quantised, leading to a Poisson structure. The question
of when these varieties have conical symplectic singularities has been a sub-
ject of much recent research [27, 35], and a positive answer has recently been
given by Gwyn Bellamy [4]. These varieties also come equipped with natural
deformations (see Sections 2 (ii) and 3 (viii) of loc. cit.), and whenever the BFN
deformation is universal in the sense of Namikawa, our theorem implies that the
BFN quantization of the deformation is universal in the sense of Losev.

(ii) The universal quantization of a symplectic quotient singularity was determined
by Losev [23, Proposition 3.17]. It can be constructed by taking the invariants in
the spherical symplectic reflection algebra with respect to the Namikawa–Weyl
group. Bellamy has previously obtained the Poisson analogue of this theorem
[3, Theorem 1.4], and combining our Theorem 1.1 with loc. cit., one obtains a
(less detailed) proof of Losev’s description of the universal quantization.

(iii) Other examples are expected to arise from symplectic reduction. To be more
precise, suppose that we have a Hamiltonian action of a reductive group G on
a symplectic variety. Suppose furthermore that the Kirwan map on cohomology
groups is an isomorphism (cf. [26]). Then, varying the moment map over the
cocentre of LieG should give the universal Poisson deformation of the sym-
plectic reduction, and our Theorem 1.1 suggests a straightforward proof that
the quantum symplectic reduction is universal in the sense of Losev. We hope
that examples of this phenomenon should be provided by quiver varieties and
hypertoric varieties.
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2. Universal Poisson deformations and filtered quantizations

2.1. Representability of functors and universal elements

Let C be a category. For an object B 2 C, we denote by AutC.B/ the set of automorph-
isms of B in C. Let FWC ! Sets be a functor. The functor F is said to be represent-
able if there exists a pair .Bu; �/ with Bu 2 C and � a natural isomorphism of functors
�WHomC.Bu;�/! F.�/. Later in the paper, we sometimes express this by saying that
F.�/ is representable over Bu. In this case, F is said to be represented by .Bu; �/, and
Bu 2 C is called a universal object (or base) for F, while � is called a representation over
Bu of the functor F. A universal element of F is a datum .Bu; a/ of a universal object
Bu 2 C, and an element a 2 F.Bu/ such that for all .B; b/ with B 2 C and b 2 F.B/ there
exists a unique morphism � 2 HomC.Bu; B/ satisfying F.�/.a/ D b [24, Section III.1].
For expository convenience, our terminology will slightly differ from the classical one:
we will often refer to such an a 2 F.Bu/ as a universal element of F, omitting the base
when clear from the context.

By Yoneda’s lemma, the representations � of F over a base Bu correspond bijectively
to the universal elements of F in F.Bu/ via the map � 7! �Bu.idBu/. Once a universal ele-
ment in F.Bu/ is fixed, the collection of all universal elements of F in F.Bu/ corresponds
bijectively to AutC.Bu/; in other words, the set of universal elements is an AutC.Bu/-
torsor.

2.2. Graded and filtered algebras

All vector spaces in this paper will be C-vector spaces. Unadorned tensor products should
be read as tensors over C. Every algebra in this paper is finitely generated, unless stated
otherwise.

When we refer to a filtered vector space, we always mean a filtration by the non-
negative integers satisfying V D

S
i�0 Vi , V0 D C, and dim.Vi / <1 for all i . Similar

hypotheses are assumed for all graded vector spaces. From a filtered vector space

V D
[
i�0

Vi ;

we can construct the associated graded space

grV D
M
i�0

Vi=Vi�1;

where we take V�1 D 0 by convention. A graded module over a graded algebra is free
graded if it has a homogeneous basis.

We say that a filtered map of filtered vector spaces �W V ! W is strictly filtered or
strict if �.Vi /DWi \ �.V /. The importance of this definition is that gr is an exact functor
from the category of filtered vector spaces with strict morphisms to the category of graded
vector spaces [25, Proposition 7.6.13] so that, for instance, a strict filtered embedding
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induces an embedding of associated graded vector spaces. In this paper, every filtered
morphism of vector spaces is assumed to be strict.

When V is a graded vector space, we may regard it as filtered in the usual manner
and identify V with grV via the obvious splitting. Note that every graded map of graded
vector spaces is a strictly filtered map. We shall often need to consider a map �WV ! W

from a graded space to a filtered space, and we call such a map strict if it is so when
regarded as a map of filtered spaces.

Lemma 2.1. Let AD
L
i�0Ai be a finitely generated graded algebra with A0 D C, and

let M be a graded A-module. Then, M is flat if and only if M is a free graded module.

Proof. This follows directly from [10, Lemma 2.2] because the grading on A is bounded
from below.

Lemma 2.2. Suppose that B is a commutative filtered algebra and that C and A are
commutative filtered B-algebras such that the natural maps B ! A and B ! C are
strictly filtered. Assume in addition that grA is grB-flat. There is a natural isomorphism:

grA˝grB grC ��! gr.A˝B C/:

Proof. Since grA is flat, it is free graded by Lemma 2.1. Hence, A is a free object in
the category of filtered B-modules [30, Lemma 5.1, part 3ı]. Consider the natural homo-
morphism of grB-modules 'W grA˝grB grC � gr.A˝B C/ defined on homogeneous
elements by

'. Na˝ Nc/ D a˝ c;

where we write Nv D vC Vi�1 2 grV for the top graded component of v 2 Vi n Vi�1, with
V any filtered vector space. By [30, Lemma 8.2], the map ' is an isomorphism. A direct
verification shows that it is also an algebra homomorphism.

Let B , C ,D be commutative rings, and let A be a B-algebra. Suppose also that C is a
B-algebra andD is a C -algebra. Then,D is naturally aB-algebra. We make the following
notation:

"C WA˝B C ˝C D ! A˝B D; a˝ c ˝ d 7! a˝ cd: (2.1)

We denote by G the category of finitely generated non-negatively graded commutat-
ive C-algebras B D

L
i�0 Bi such that B0 D C. Morphisms between objects of G are

graded morphisms. For B 2 G, we write BC for the unique graded maximal ideal, and
CC for the corresponding quotient B=BC ' C. Similarly, we denote by F the category of
finitely generated non-negatively filtered commutative C-algebras F such that F0 D C.
Morphisms between objects of F are strictly filtered morphisms.

There is a functor filtWG! F, which associates to a graded algebra B (resp., a graded
morphism) the filtered algebra B with filtration induced by the grading (resp., the same
morphism, considered as a filtered morphism). We will consider the subcategory SF of F
of split filtered algebras, i.e., the essential image of G through filt.
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Fix n 2N. A Poisson algebra is a commutative algebra A equipped with a Lie bracket
¹�; �ºWA �A! A which is a biderivation. We say that a graded (resp., filtered) Poisson
algebra AD

L
i�0Ai (resp., AD

S
i�0Ai ) has Poisson bracket in degree �n if ¹a; bº 2

AiCj�n for a 2 Ai , b 2 Aj . If A is a filtered Poisson algebra with bracket in degree �n,
then gr A is a graded Poisson algebra with bracket in degree �n. Similarly, we say that
a filtered (non-commutative) associative algebra A D

S
i�0 Ai has degree �n if Œa; b� 2

AiCj�n whenever a 2 Ai and b 2 Aj . Such filtered algebras have the property that gr A

is a graded Poisson algebra with bracket in degree �n via the formula

¹aCAi�1; b CAj�1º WD Œa; b�CAiCj�n�1 (2.2)

whenever a 2Ai , b 2Aj . Similarly, filtered homomorphisms between filtered algebras of
degree �n induce graded homomorphisms between Poisson algebras of degree �n. These
observations can be upgraded to a well-known categorical statement.

Lemma 2.3. Taking the associated graded defines an exact functor from the category
of strictly filtered algebras of degree �n to the category of graded Poisson algebras of
degree �n.

For B 2 G, when we say that A is a Poisson B-algebra, we assume that the structure
map B ! A is a homomorphism whose image is Poisson central. Recall that, for B 2 F
and A a filtered B-algebra, we always assume that the structure map B ! A is strictly
filtered.

2.3. The Poisson deformation functor

For the rest of this section, we keep fixed n 2N and a positively graded, finitely generated,
commutative, integral Poisson algebra A D

L
i�0Ai with Poisson bracket in degree �n.

A filtered Poisson deformation of A is a pair .A; �/ consisting of a filtered Poisson
algebra with bracket in degree �n and an isomorphism � W gr A! A of Poisson algebras.

By the Rees algebra construction, a filtered Poisson deformation is a special case of a
more general notion of Poisson deformation.

Definition 2.4. Let B 2 G. A graded Poisson deformation of A over B is a pair .A; �/,
where

(i) A is a graded Poisson B-algebra, flat as a B-module;

(ii) �WA˝B CC ! A is an isomorphism of graded Poisson algebras.

Two graded Poisson deformations .A1; �1/ and .A2; �2/ of A over B are said to be
isomorphic if there exists a graded Poisson algebra isomorphism �WA1 ! A2 such that
the following diagrams commute:

B

A1 A2
�

(2.3)
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A

A1 ˝B CC A2 ˝B CC
�˝id

�1 �2 (2.4)

Remark 2.5. Let B and .A; �/ be as in Definition 2.4, and consider the (split) short exact
sequence of B-modules 0! BC ! B ! CC ! 0. Since A is flat over B , we obtain
another short exact sequence of graded B-modules after tensoring with A over B and
using �:

0! BCA! A
�
�! A! 0: (2.5)

Since B is Poisson central in A, BCA is a Poisson ideal in A and � in (2.5) respects
the Poisson brackets. We choose a graded vector subspace A0 � A isomorphic to A as a
graded vector space such that A0 ˚ BCA D A. By [10, Lemma 2.2], we conclude that
we have an isomorphism of graded B-modules A ' A0 ˝ B (where B acts on the right
tensor factor), and the nth graded component of (2.5) reads

0!

nM
i>0

A0n�i ˝ Bi !

nM
iD0

A0n�i ˝ Bi ! A0n ! 0:

Definition 2.6. The functor of graded Poisson deformations of A is defined as follows:

PDAWG! Sets :

(i) For B 2 G, the set PDA.B/ is the set of isoclasses of graded Poisson deforma-
tions .A; �/ over B;

(ii) for ˇ 2 HomG.B1;B2/, we set PDA.ˇ/ to be the map associating to the isoclass
of .A1; �1/ 2 PDA.B1/ the isoclass of .A1˝B1 B2; �1 ı "B2/ 2 PDA.B2/, where
"B2 is defined in (2.1).

When clear from the context, we will denote isoclasses by their representatives.
If PDA is representable, we use the following notation: we denote by Bu 2 G a fixed

universal base, we fix one of its representations over Bu, and we set .Au; �u/ to be the
element in PDA.Bu/ corresponding to idBu and call it a universal graded Poisson deform-
ation of A.

For the reader’s convenience, we explicitly state the universal property of .Au; �u/,
as in [23, Proposition 2.12]: for B 2 G and .A; �/ 2 PDA.B/, there exists a unique
ˇ 2 HomG.Bu; B/ such that PDA.ˇ/.Au; �u/ D .A; �/ in PDA.B/; i.e., there exists a B-
linear graded Poisson isomorphism �WAu ˝Bu B ! A such that the following diagram
(see (2.4)) commutes:

A

Au ˝Bu B ˝B CC A˝B CC

�uı"B

�˝id

�

where "B is defined in (2.1).
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Remark 2.7. Note that the notation "C in (2.1) actually suppresses the choice of homo-
morphism ' W B ! C , making C a B-algebra. In this remark we write "C WD "C;' . Let
B 2 G and ˇ 2 AutG.B/, and consider

PDA.ˇ/.A; �/ D .A˝B B; � ı "B;ˇ / 2 PDA.B/:

Then, A and A ˝B B are isomorphic as graded Poisson algebras and both deform A,
but .A; �/ and .A˝B B; � ı "B;ˇ / are generally distinct elements of PDA.B/, since the
isomorphism need not be B-linear; i.e., the diagram in (2.3) may not commute.

Suppose that PDA is represented by Bu 2 G; then, the choice of a universal graded
Poisson deformation is not unique: the graded automorphisms of Bu correspond biject-
ively to elements of PDA.Bu/, each of which can serve as a choice of universal element.
See Section 2.1 for further details.

Example 2.8. Let G be a simply-connected complex semisimple group and g its Lie
algebra with Cartan subalgebra h and Weyl group W . The coordinate ring CŒg�� is nat-
urally a graded Poisson algebra, and the Poisson centre coincides with CŒg��G which is
isomorphic to CŒh��W D CŒh�=W � by Chevalley’s restriction theorem. One may choose
the isomorphism to ensure that it is an isomorphism of graded algebras. SetADCŒN .g�/�

to be the coordinate ring of the nullcone. This is graded via the contracting C�-action
on g�, and a famous theorem of Kostant [16, Proposition 7.13] says that the defining
ideal of N .g�/ in CŒg�� is generated by CŒg��GC. Hence, A is a positively graded Poisson
algebra, and there is an isomorphism

�WCŒg��˝CŒh�=W � CC ! A:

By another theorem of Kostant, CŒg�� is a free CŒg��G-module [18, Theorem 0.2], and
so, .CŒg��; �/ 2 PDA.CŒh�=W �/ is a Poisson deformation of the coordinate ring of the
nullcone.

2.4. The filtered quantization functor

We continue to fix n 2 N and A, and we remind the reader that all filtered maps in this
paper are assumed to be strict. Our goal here is to define a functor similar to PDA clas-
sifying filtered quantizations of A. Recall that, for a filtered algebra of degree �n, the
associated graded algebra carries a Poisson structure via (2.2).

Definition 2.9. Let B 2 SF. A filtered quantization (of a Poisson deformation) of A over
B is a pair .Q; �/, where

(i) Q is a filtered B-algebra of degree �n, flat as a B-module;

(ii) .gr Q; �/ 2 PDA.grB/, where the structure map grB ! gr Q is induced by the
structure map B ! Q.

Once again, we call B the base of the quantization.
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Two quantizations .Q1; �1/ and .Q2; �2/ of A over B are said to be isomorphic if there
exists a filtered isomorphism �WQ1 ! Q2 such that

(i) the following diagram commutes:

B

Q1 Q2
�

(ii) gr �W gr Q1 ! gr Q2 gives an isomorphism between .gr Q1; �1/ and .gr Q2; �2/

as graded Poisson deformations of A over B .

Definition 2.10. The functor of filtered quantizations of A is defined as follows:

QAWSF! Sets

(i) for B 2 SF, the set QA.B/ is the set of isoclasses of filtered quantizations .Q; �/
over B;

(ii) for ˇ 2 HomSF.B1; B2/, the morphism QA.ˇ/ maps the isoclass of .Q1; �1/ 2

QA.B1/ to the isoclass of .Q1 ˝B1 B2; �1 ı "grB2/ 2 QA.B2/, where "grB2 is
defined in (2.1).

When QA is representable, we denote by Bu 2 SF a fixed universal base, we fix one
of its representations over Bu, and we set .Qu; �u/ 2 QA.Bu/ to be the universal element
corresponding to idBu and call it a universal filtered quantization of A.

Then, .Qu; �u/ 2 QA.Bu/ satisfies the universal property in [23, Proposition 3.5],
which we restate in the functorial language: for all B 2 SF and .Q; �/ 2 QA.B/, there
exists a unique morphism ˇ 2 HomSF.Bu; B/ such that

.Q; �/ D QA.ˇ/.Qu; �u/ D .Qu ˝Bu B; � ı "grB/

as elements in QA.B/, where "grB is defined in (2.1).
A quantum analogue of Remark 2.7 applies.

Example 2.11. Consider the enveloping algebra U.g/ which is filtered of degree �1 with
grU.g/ ' CŒg��, and as usual, denote the centre of U.g/ by Z.g/. Thanks to the Harish–
Chandra restriction theorem, we know that there is a choice of grading on Z.g/ such
that we have graded isomorphismsZ.g/'CŒh��W� DCŒh�=W��'CŒh��W (the filtered
maps are clearly strictly filtered); see Section 3.4 for a more detailed account. Further-
more, grZ.g/ ' Z.g/ is identified with CŒg��G � CŒg�� as a subalgebra of grU.g/.

In virtue of Example 2.8, from which we retain notation, we have

.U.g/; �/ 2 QA.CŒh
�=W��/;

with A D CŒN .g�/�. The construction depends on a choice of grading on Z.g/, which is
the same as fixing a choice of strictly filtered isomorphism CŒh��W ! Z.g/, and these
various choices of isomorphism lead to different isomorphism classes of quantization ofA.
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2.5. Interplay between deformations and quantizations

There is a natural relationship between the two functors we have introduced above: this is
given by the natural transformation

grWQA ! .PDA ı gr/:

ForB 2 SF, the map grB WQA.B/! PDA.grB/ is defined by .Q; �/ 7! .grQ; �/. This rela-
tion is extremely nice under the following assumptions, which hold for conic symplectic
singularities (introduced by Beauville [2]): these are the main family of Poisson varieties
to which we intend to apply the results of this paper.

Definition 2.12. We say that A admits an optimal quantization theory (OQT) if the fol-
lowing conditions are satisfied:

(i) The functor QA is representable over Bu 2 SF.

(ii) The functor PDA is representable over grBu 2 G.

(iii) There exists a representation � of QA over Bu, resp., � of PDA over grBu, such
that the following diagram of natural transformations commutes:

HomSF.Bu;�/ QA.�/

HomG.grBu; gr�/ PDA gr.�/

gr

�

gr

�

where, for B 2 SF, we set grB WHomSF.Bu; B/! HomG.grBu;grB/ to be the
map ˇ 7! grˇ.

Remark 2.13. An OQT is equivalent to the existence of universal bases Bu of QA, resp.,
Cu of PDA, and universal elements .Qu; �Q/ 2 QA.Bu/, resp., .Au; �A/ 2 PDA.Cu/, and
a graded isomorphism � 2 HomG.Cu; gr Bu/ (which is necessarily unique) such that
PDA.�/.Au; �A/ D .gr Qu; �Q/.

Lemma 2.14. Assume that A admits an OQT. Let B 2 SF and .Q; �/ 2 QA.B/. Suppose
that .gr Q; �/ 2 PDA.gr B/ is a universal element of PDA. Then, .Q; �/ is a universal
element of QA.

Proof. Consider the universal base Bu 2 SF from OQT axiom (i) and fix a universal
element .Qu; �u/ 2 QA.Bu/. There exists a unique ' 2 HomSF.Bu; B/ such that

QA.'/.Qu; �u/ D .Q; �/:

Now, OQT axiom (iii) implies that .grQ; �/D gr.QA.'//.Qu; �u/D PDA.gr'/.grQu; �u/.
By OQT (ii), there exists a unique ˇ 2HomG.grBu;grB/ such that PDA.ˇ/.gr Qu; �Q/D

.gr Q; �/ and ˇ is an isomorphism, by the assumption of universality of .gr Q; �/. Unique-
ness yields ˇ D gr '. We conclude that ' is an isomorphism; hence, .Q; �/ is a universal
element of QA.
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2.6. Automorphisms of A and of its deformations

Denote by PAutG.A/ the group of graded Poisson automorphisms of A. For B 2 G and
.A; �/ 2 PDA.B/, we denote by AutB�G.A/ the group of B-linear graded automorphisms
of A. Moreover, we write PAutB�G.A/ for the subgroup of automorphisms in AutB�G.A/,
respecting the Poisson brackets.

We retain the surjection � WA!A=BCA from Remark 2.5, and we identify the algeb-
ras A=BCA ' A˝B CC ' A through �. We define a map

pWPAutB�G.A/! PAutG.A/ (2.6)

by setting p./ 2 PAutG.A/ to be the map defined by p./.aC BCA/ WD .a/C BCA

for a 2 A. Since the elements of PAutB�G.A/ preserve the Poisson ideal BCA, for  2
PAutB�G.A/, the map is well defined.

Lemma 2.15. Let B 2 G and .A; �/ 2 PDA.B/. Then, the following hold:

(1) PAutG.A/ and PAutB�G.A/ are linear algebraic groups.

(2) The map p defined in (2.6) is a morphism of linear algebraic groups.

(3) The kernel of p is unipotent and kerp D PAutB�G.A; �/, the automorphism group
of the graded Poisson deformation .A; �/ over B .

Proof. Since A is a finitely generated algebra, AutG.A/ can be identified with a closed
subgroup of GL.V / for some finite-dimensional vector space V ; i.e., AutG.A/ is a (pos-
sibly disconnected) linear algebraic group; see also [23, Section 3.7]. By a similar argu-
ment, AutB�G.A/ is a linear algebraic group. Since automorphisms respecting the Poisson
brackets define a Zariski-closed subset, we have proven (1).

The map p is clearly a group homomorphism. We prove that it is a morphism of
algebraic varieties: there isN � 0 such that AutB�G.A/ and AutB�G.A/ can be identified
as closed subgroups of GL.

LN
jD0 Aj / and GL.

LN
jD0 Aj /, respectively. Now, as vector

spaces
NM
jD0

Aj '

 
NM
jD0

Aj \ BCA

!
˚

NM
jD0

Aj

and p maps the automorphism  to its restriction to
LN
jD0 Aj , this completes the proof

of (2).
Finally, we describe kerp. Observe that  2 kerp if and only if

� ı . ˝ id/ D �I

that is,  is a B-linear Poisson graded automorphism of A inducing the identity on the
central fibre A. In particular, and in view of Remark 2.5, the map  is an automorphism of
the graded B-module A˝ B , and it satisfies � ı  D � . Combining ker� D BCA with
an induction argument on the graded components of  proves that  is unipotent; hence,
kerp is unipotent. This concludes the proof of (3).
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The algebraic group PAutG.A/ admits a Levi decomposition by Mostow’s theorem;
see [15, Theorem VIII.4.3]: we denote by G the (possibly disconnected) reductive part of
PAutG.A/. Throughout this section, we fix a reductive subgroup � � G .

Let B 2 G. For any .A; �/ 2 PDA.B/, we define the subgroup of PAutB�G.A/:

z�.A; �/ WD ¹ 2 PAutB�G.A/ j � ı . ˝ id/ D g ı � for some g 2 �º: (2.7)

The group (2.7) can be described quite transparently with fewer symbols: these are the B-
linear graded Poisson automorphisms of A which restrict to elements of � on the central
fibre A; to phrase it another way, we consider automorphisms  of A such that � ı  D
g ı � for some g 2 � .

ForB 2G, .A; �/2 PDA.B/ and g 2� , we define the g-twisted deformation g.A; �/D
.A; g ı �/: this yields a (left) action of � on the set PDA.B/. We remark that the existence
of  2 z�.A; �/ restricting to g 2 � on A is equivalent to the condition g.A; �/ D .A; �/ in
PDA.B/.

Definition 2.16. Let B 2 G. A �-stable Poisson graded deformation of A over B is an
element .A; �/ 2 PDA.B/ such that g.A; �/D .A; �/ as elements of PDA.B/ for all g 2 � .

For B 2 G, let PDA.B/� denote the subset of isoclasses of �-stable graded deforma-
tion ofA over B . Then, for B 0 2G and ˇ 2HomG.B;B

0/, we have PDA.ˇ/.PDA.B/�/�
PDA.B 0/� . Hence, we can define the functor of �-stable Poisson graded deformations
of A:

PD�A WG! Sets

associating to B 2 G the set PD�A.B/ WD PDA.B/� and operating on morphisms as per
Definition 2.6 (ii).

Lemma 2.17. Let B 2 G, .A; �/ 2 PD�A.B/, and let z� WD z�.A; �/. Then, z� is a linear
algebraic group with unipotent radical U D kerp and Levi decomposition

z� ' � Ë U:

Proof. Let p be as in (2.6); then, the group z� defined in (2.9) is precisely p�1.�/. This
is nonempty because .A; �/ 2 PD�A.B/ and it is a closed (hence algebraic) subgroup of
PAutB�G.A/. We set U WD kerp and observe that it is contained in z� . The last assertion
follows from Lemma 2.15 (3), the short exact sequence

1! U ! z�
p
�! � ! 1;

and Mostow’s theorem [15, Theorem VIII.4.3].

Remark 2.18. Suppose that PDA is representable, and retain notation from Section 2.3.
Let g 2 � , and consider .Au; g ı �u/ 2 PDA.Bu/. By representability, there exists a unique
morphism ˛g 2 HomG.Bu; Bu/ such that

PDA.˛g/.Au; �u/ D .Au; g ı �u/:
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Thus, for each g 2 � , there is an isomorphism of deformations z̨g WAu ˝Bu Bu ! Au

inducing the equality PDA.˛g/.Au; �u/ D .Au; g ı �u/. We claim that the collection of
morphisms .˛g/g2� yields a right action of � on Bu. Indeed, for h; g 2 � , we have

PDA.˛h/PDA.˛g/.Au; �u/ D PDA.˛h/.Au; g ı �u/ D .Au ˝Bu Bu; g ı �u ı "Bu/

D .Au ˝Bu Bu; g ı h ı �u ı .z̨h ˝ id// D .Au; g ı h ı �u/

D PD.˛gh/.Au; �u/;

where "Bu is as in (2.1), and all equalities should be read as equalities of isoclasses.
Uniqueness of ˛g ; ˛h, and ˛gh yields the proof of the claim.

Definition 2.19. Let B 2 G and .A; �/ 2 PDA.B/. Set z� WD z�.A; �/, as in Section 2.6. A
�-structure on .A; �/ is a group morphism sW� ! z� such that p ı s D id� .

Namely, the morphism sW� ! z� gives a family of commutative diagrams for g 2 �:

A A

A˝B CC A˝B CC

g

s.g/˝id

� �

Definition 2.20. Let B 2 G. A graded Poisson �-deformation of A over B is a triple
.A; �; s/ such that

(i) .A; �/ 2 PDA.B/;

(ii) s is a �-structure on .A; �/.

We say that two graded Poisson �-deformations .A1; �1; s1/ and .A2; �2; s2/ of A over
B are isomorphic if there exists a graded Poisson algebra isomorphism �WA1!A2 such
that (2.3) and (2.4) commute, and � ı s1.g/ D s2.g/ ı � for all g 2 � .

Definition 2.21. The functor of graded Poisson �-deformations ofA is defined as follows:

PDA;� WG! Sets :

(i) For B 2 G, the set PDA;�.B/ consists of isoclasses of graded Poisson �-defor-
mations .A; �; s/ over B;

(ii) for ˇ 2HomG.B1;B2/, the morphism PDA;�.ˇ/maps .A1; �1; s1/2 PDA;�.B1/
to .A2; �2; s2/ 2 PDA;�.B2/, where .A2; �2/ D PDA.ˇ/.A1; �1/, and for g 2 � ,
we set s2.g/ D s1.g/˝ id.

We define the forgetful natural transformation FWPDA;� ! PDA as follows: for B 2G,
the component FB W PDA;�.B/! PDA.B/ maps .A; �; s/ 7! .A; �/. The following is one
of the most important general results of this paper.

Theorem 2.22. The natural transformation FW PDA;� ! PDA factors through PD�A and
induces a natural isomorphism between the functors PDA;� and PD�A .
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Proof. Let B 2 G. The image of FB is contained in PD�A.B/. Indeed, by definition of �-
structure, for each g 2 � , the graded Poisson automorphism s.g/ is B-linear and satisfies
� ı .s.g/˝ id/ D g ı �; i.e., (2.3) and (2.4) commute.

We prove that FB W PDA;�.B/ ! PD�A.B/ is surjective. Let .A; �/ be an object in
PD�A.B/, and consider p from (2.6). By Lemma 2.17, from which we retain notation,
the map p restricts to a surjective algebraic group morphism pW z�.A; �/ ' � Ë U ! � .
Any section sW� ! z�.A; �/ thus endows .A; �/ with a �-structure.

Finally, we prove that
FB WPDA;�.B/! PD�A.B/

is injective. For i D 1;2, let .Ai ; �i ; si / 2 PDA;�.B/ such that .A1; �1/ and .A2; �2/ are iso-
morphic graded Poisson deformations over B . Without loss of generality, we can assume
that .Ai ; �i / D .A; �/ for i D 1; 2. Now, by Lemma 2.17 and Lemma 2.15 (3), all sections
of p, that is, all splittings of the short exact sequence 1! U ! z�

p
�! � ! 1, are conjug-

ate by an element of U . Hence, there is � 2 PAutB�G.A/ conjugating the �-structure s1
to s2; i.e., .A; �; s1/ and .A; �; s2/ are isomorphic as graded �-deformations.

As a consequence, we can identify the functors PDA;� , and PD�A ; in particular, for
B 2 G, we may omit the �-structure when writing an element of PDA;�.B/.

We recall the right �-action on Bu defined in Remark 2.18, and we set .Bu/� to be the
quotient of Bu modulo the homogeneous ideal generated by ¹b � b �  j b 2 Bu;  2 �º,
the algebra of �-coinvariants of Bu. Geometrically, the �-action on Bu yields a �-action
on SpecBu, and one has the equality Spec..Bu/�/ D .SpecBu/� .

Proposition 2.23. Denote by ˛� W Bu ! .Bu/� the quotient map onto the coinvariant
algebra. If PDA is representable over Bu, then PD�A is representable over .Bu/� and
PDA.˛�/.Au; �u/ is a universal element of PD�A .

Proof. Let .A; �/ be a �-stable graded Poisson deformation. By representability of PDA,
there exists a unique map ˇ 2 HomG.Bu; B/ such that .A; �/ D PDA.ˇ/.Au; �u/. We
claim that ˇ D x̌ ı ˛� for a unique x̌ 2 HomG..Bu/� ; B/. Let .˛g/g2� be the collection
of morphisms introduced in Remark 2.18. Then

PDA.ˇ ı ˛g/.Au; �u/ D PD.ˇ/.Au; g ı �u/ D .A; g ı �/ D .A; �/ D PD.ˇ/.Au; �u/;

where in the penultimate equality, we used �-stability of .A; �/. The claim follows from
uniqueness of the map ˇ and the universal property of the coinvariant algebra. We con-
clude that .A; �/ D PD�A. x̌/PDA.˛�/.Au; �u/.

2.7. Automorphisms of A and of its quantizations

We continue to work with a fixed reductive subgroup � � G as in Section 2.6. The current
section can be considered the quantum counterpart of the previous section. For B 2 SF,
we have an action of � on QA.B/: for .Q; �/ 2 QA.B/ and g 2 � , we define the g-twisted
quantization g.Q; �/ D .Q; g ı �/.
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A quantum version of Remark 2.18 holds. In particular, if QA is representable, then �
admits a right action on the universal base Bu, which we again denote by

� ! AutSF.Bu/; g 7! ˛g : (2.8)

Definition 2.24. Let B 2 SF. A �-stable filtered quantization of A over B is an element
.Q; �/ 2 QA.B/ such that g.Q; �/ D .Q; �/ for all g 2 � .

For B 2 SF, let QA.B/� denote the subset in QA.B/ consisting of isoclasses of �-
stable filtered quantizations of A over B . Then, for B 0 2 SF and ˇ 2 HomSF.B; B

0/, we
have QA.ˇ/.QA.B/�/ � QA.B 0/� . Hence, we can define the functor of �-stable filtered
quantizations of A:

Q�A WSF! Sets

associating to B 2 SF the set Q�A.B/ WD QA.B/� and operating on morphisms as per
Definition 2.10 (ii).

Let B 2 SF and .Q; �/ 2 QA.B/. Denote by AutB�F.Q/ the set of B-linear filtered
automorphisms of Q: for  2 AutB�F.Q/, we have gr  2 PAutgrB�G.gr Q/. In view of
this, for any .Q; �/ 2 QA.B/, we define

z�q.Q; �/ WD ¹ 2 AutB�F.Q/ j gr  2 z�.gr Q; �/º: (2.9)

Remark 2.25. The map grW AutB�F.Q/ ! PAutgrB�G.gr Q/ is a group morphism by
functoriality of gr. By choosingN sufficiently large, we can (and will) identify AutB�F.Q/

and PAutgrB�G.grQ/with closed subgroups of GL.QN / and GL.
LN
jD0.grQ/j /, respect-

ively. Then, for any splitting of the vector space
SN
jD0Qj D

LN
jD0Rj withR0 DQ0 and

Rj a complement of Rj�1 in Qj , the group AutB�F.Q/ is identified with a subgroup of
block upper triangular matrices. In addition, any such splitting is compatible with the grad-
ing of the vector space

LN
jD0.gr Q/j , and with respect to these splittings, gr is identified

with the algebraic morphism mapping a block upper triangular matrix to its block diag-
onal part. Hence, grWAutB�F.Q/! PAutgrB�G.gr Q/ is a morphism of algebraic groups
with unipotent kernel.

Lemma 2.26. Let B 2 SF, .Q; �/ 2 Q�A.B/, and z�q WD z�q.Q; �/, and let p be as in (2.6)
for .gr Q; �/. Then, z�q is a linear algebraic group with Levi decomposition z�q D � Ë Uq ,
where Uq D ker.p ı gr/ is the automorphism group of the filtered quantization .Q; �/
over B .

Proof. Set z� WD z�.gr Q; �/. Observe that z�q D gr�1.z�/ is a closed (hence algebraic) sub-
group of AutB�F.Q/, by Remark 2.25. We know that p from (2.6) restricts to a surjective
algebraic group morphism pW z� ! � . By Remark 2.25, from which we adopt notation,
p ı grW z�q! � is a morphism of algebraic groups. It is surjective because we assumed that
.Q; �/ 2Q�A.B/. We set Uq D ker.p ı gr/D ¹g 2 z�.grQ; �/ j gr.g/ 2U º. By construction,
it is the automorphism group of the filtered quantization .Q; �/ over B . We have a short
exact sequence of algebraic groups 1! ker gr! Uq ! gr.Uq/! 1, where gr.Uq/ � U
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and ker gr are unipotent. By Mostow’s theorem, we conclude that Uq is unipotent. As a
byproduct, we also derive the remaining assertions.

Definition 2.27. Let B 2 SF and .Q; �/ 2 QA.B/. Set z�q WD z�q.Q; �/ as in Section 2.7.
A �-structure on .Q; �/ is a group morphism sW� ! z�q such that p ı gr ıs D id� .

Definition 2.28. Let B 2 SF. A filtered �-quantization of A over B is a triple .Q; �; s/
such that

(i) .Q; �/ 2 QA.B/;

(ii) s is a �-structure on .Q; �/.

We say that two filtered �-quantizations .Q1; �1; s1/ and .Q2; �2; s2/ of A over B
are isomorphic if there exists a B-linear filtered algebra isomorphism �WQ1 ! Q2 such
that (2.4) commutes for .gr Q1; �1/ and .gr Q2; �2/ and � ı s1.g/D s2.g/ ı � for all g 2 � .

Definition 2.29. The functor of filtered �-quantizations of A is defined as follows:

QA;� WSF! Sets :

(i) For B 2 SF, the set QA;�.B/ consists of isoclasses of filtered �-quantizations
.Q; �; s/ over B;

(ii) for ˇ 2 HomSF.B1; B2/, the morphism QA.ˇ/ maps .Q1; �1; s1/ 2 QA;�.B1/ to
.Q2; �2; s2/ 2 QA;�.B2/, where .Q2; �2/ D QA.ˇ/.Q1; �1/, and for g 2 � , we
set s2.g/ D s1.g/˝ id.

The notion of an optimal quantization theory (OQT) from Definition 2.12 can be
upgraded to the equivariant setting.

Definition 2.30. We say that A admits an optimal �-quantization theory (O�QT) if the
following conditions are satisfied:

(i) The functor QA;� is representable over some Bu;� 2 SF.

(ii) The functor PDA;� is representable over grBu;� 2 G.

(iii) There exists a representation � of QA;� over Bu;� , resp., � of PDA;� over
grBu;� , such that the following diagram of natural transformations commutes:

HomSF.Bu;� ;�/ QA;�.�/

HomG.gr.Bu;�/; gr�/ PDA;� gr.�/

gr

�

gr

�

We define the forgetful natural transformation FWQA;� ! QA as follows: for B 2 SF,
the map FB WQA;�.B/! QA.B/ is given by

.Q; �; s/ 7! .Q; �/:

We have a quantum analogue of Theorem 2.22.
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Theorem 2.31. The natural transformation FWQA;� ! QA factors through Q�A , and F
defines a natural isomorphism between the functors QA;� and Q�A .

Proof. This is a quantum version of Theorem 2.22: the proof is analogous and uses
Lemma 2.26.

As a consequence, we identify the functors QA;� and Q�A ; in particular, for B 2 SF,
we omit the third entry (i.e., the �-structure s) when writing an element of QA;�.B/.

The following is a quantum version of Proposition 2.23, and its proof is similar. Denote
by ˛� WBu! .Bu/� the quotient map onto the coinvariant algebra with respect to the right
�-action defined in (2.8).

Proposition 2.32. If QA is representable over Bu, then Q�A is representable over .Bu/�
and QA.˛�/.Qu; �u/ is a universal element of Q�A .

Recall from Section 2.5 that there is a natural transformation gr W QA ! PDA ı gr.

Lemma 2.33. The natural transformation gr induces a natural transformation of functors
QA;� ! PDA;� ı gr.

Moreover, if A admits an OQT, the following conditions are verified:

(1) Let B 2 SF and .Q; �/ 2 QA;�.B/, and suppose that .gr Q; �/ 2 PDA;�.grB/ is a
universal element of PDA;� . Then, .Q; �/ is a universal element of QA;� .

(2) A admits an O�QT with Bu;� D .Bu/� , and the restrictions of the representations
form the OQT assumption.

Proof. The first assertion follows from the definitions. For the remaining part of the
lemma, (1) can be proven by mimicking the argument for Lemma 2.14. For part (3), we
simply combine Theorem 2.22, Proposition 2.23, Theorem 2.31, and Proposition 2.32.
Commutativity of the diagram of Definition 2.30 (iii) is a consequence of Propositions
2.23 and 2.32 under the OQT conditions for A.

Remark 2.34. Assume that A admits an OQT, and retain notation from Remark 2.13. In
particular, the universal bases are Bu and Cu, and .Au; �A/ and .Qu; �Q/ are universal
elements of PDA and QA (respectively) satisfying the compatibility condition (iii) of an
OQT. In Remark 2.18 and (2.8), we noted that there are right �-actions on Bu and Cu.
Let ˇ� WBu ! .Bu/� and ˛� WCu ! .Cu/� denote the quotient maps to the coinvariant
algebras; then, QA.ˇ�/.Qu; �Q/, resp., PDA.˛�/.A; �A/, is a universal element of QA;� ,
resp., of PDA;� . Then, (1) of Lemma 2.33 is equivalent to saying that there exists a unique
isomorphism �� 2 HomG..Cu/� ; .grBu/�/ such that PDA;�.��/ maps PDA.˛�/.A; �A/
to gr QA.ˇ�/.Q; �Q/. In other words, �� makes the following diagram commute:

Cu grBu

.Cu/� .grBu/� gr..Bu/�/

�

˛� grˇ�
�� �
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Lemma 2.35. Assume that A admits an OQT, and retain notation from Remark 2.13.
Let .Q; �/ 2 QA.Bu/ satisfy .gr Qu; �Q/ D .gr Q; �/. Then, there exists a unique unipotent
automorphism � 2 AutSF.Bu/ such that QA.�/.Qu; �Q/ D .Q; �/.

Proof. Under the assumptions, there exists a unique � 2 HomSF.Bu; Bu/ such that

QA.�/.Qu; �Q/ D .Q; �/:

By Lemma 2.14, .Q; �/ is universal, so � 2 AutSF.Bu/. Moreover, it satisfies the rela-
tion .gr �/ ı � D � 2 HomG.Cu; grBu/. Since � is an isomorphism, this implies that
gr � D idgrBu . To prove that � is unipotent, we observe that AutSF.Bu/ and AutG.grBu/
are algebraic groups and that grWAutSF.Bu/! AutG.grBu/ is a morphism of algebraic
groups: one can use the same argument in Remark 2.25.

Along the same lines, one can prove the following �-equivariant version of the result.

Lemma 2.36. Assume that A admits an OQT, and retain notation from Remark 2.34.
Let .Q; �/ 2 QA;�..Bu/�/ satisfy gr.Bu/� QA.ˇ�/.Q; �Q/ D .gr Q; �/. Then, there exists a
unique unipotent automorphism � 2 AutSF..Bu/�/ such that

QA;�.�/.Qu; �Q/ D .Q; �/:

2.8. Conical symplectic singularities and their deformations

In this section, we apply all of the above results to an important class of conical Poisson
varieties, known as symplectic singularities. We say that an affine Poisson variety X is
conical if CŒX� is a graded Poisson algebra of degree �n for some n 2 N. Now, let
X be a normal conical Poisson variety, with Poisson bivector $ , and suppose that the
restriction $ jX reg to the regular locus is non-degenerate; i.e., .X reg; $/ is a symplectic
variety. Following [2], we say that X is a symplectic singularity if there is a projective
resolution of singularities � W zX ! X such that the symplectic form ��� on ��1.X reg/

extends to a regular 2-form on zX . This property does not depend on which resolution you
choose [17, Section 2.1].

The following theorem combines the results of Losev and Namikawa; see [23,28,29].

Theorem 2.37. Let X be a conical symplectic singularity. Then, A D CŒX� admits an
OQT, so Lemmas 2.14 and 2.35 apply.

Remark 2.38. The universal base of the functor PDA and QA is the coordinate ring on a
graded vector space defined to be the cohomologyH 2. zX reg;C/, where zX reg is the smooth
locus of a Q-factorial terminalization of the conical symplectic singularity X . Since these
technical details lie beyond the requirements of the current paper, we refer the reader
to [23, 29] for information.

Now, let X be a conical symplectic singularity with � a reductive group of C�-
equivariant Poisson automorphisms. Then, Propositions 2.23, 2.32 and Lemmas 2.33, 2.36
apply. This completes the proof of Theorem 1.1.
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For the sake of completeness, we make explicit the excellent properties of �-quantisa-
tion theory for X .

Theorem 2.39. Let X be a conical symplectic singularity. If � is any reductive group of
C�-equivariant Poisson automorphisms of X , then CŒX� admits an O�QT.

Proof. Apply Lemma 2.33 and Theorem 2.37.

3. Nilpotent Slodowy slices and their universal quantizations

Throughout this section, we use the following notation:

• G is a complex, simple, simply connected algebraic group;

• g D Lie.G/, the Lie algebra;

• � W g! g� is the G-equivariant isomorphism induced by the Killing form;

• N .g�/ D �.N .g// is the nullcone of g�;

• e 2 N .g/ is a nilpotent element with � WD �.e/;

• .e; h; f / is an sl2-triple;

• h is a maximal toral subalgebra containing h, � is the Dynkin diagram, and W is the
Weyl group;

• for a given choice of a base for the root system ˆ of g, � is half-sum of the positive
roots;

• � W C� ! G is a cocharacter with d1�.t/ D th;

• �� D �C �.g
f / � g� is the Slodowy slice.

3.1. Hamiltonian reduction

Before we introduce the main objects of study of this section, we record some prelimin-
aries on Hamiltonian reduction. In fact, the ideas introduced here serve to generalise the
well-known formalism of Hamiltonian reduction exhibited in the literature, and so, we
include a brief proof for the reader’s convenience.

LetN be a complex affine group, and letX be a complex affine Poisson variety. AnN -
action onX is said to be Hamiltonian if there is anN -equivariant Poisson homomorphism
�� W CŒn��! CŒX� which satisfies

d1�.x/ D ¹�
�.x/; �º; (3.1)

where � W N ! Aut CŒX� is the (locally finite) representation of N on CŒX� and d1� W
n ! Der CŒX� is the differential. The map �� is called the comoment map whilst the
induced morphism � W X ! n� is the moment map.

For any N -stable affine subvariety Y � n�, we define the Hamiltonian reduction:

��1.Y /==N WD Spec.CŒ��1.Y /�N /: (3.2)
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We note that, in general, the algebra CŒ��1.Y /�N is not finitely generated, and so, the
Hamiltonian reduction is a scheme but not necessarily an algebraic variety. Nonethe-
less, the N -stable assumption on Y ensures that Hamiltonian reduction inherits a Poisson
structure.

Lemma 3.1. ��1.Y /==N inherits a Poisson structure from X . The bracket is given by
lifting functions to CŒX�, taking the Poisson bracket, and restricting to ��1.Y /==N .

Proof. Let J � CŒn�� be the defining ideal of Y with generators f1; : : : ; fn. Then, the
defining ideal of the scheme-theoretic fibre ��1.Y / is

I D .��.fi / j i D 1; : : : ; n/ E CŒX�:

Since Y is N -stable and � is N -equivariant, it follows that ��1.Y / is N -stable, and
so, N acts on CŒ��1.Y /�. Since the action is locally finite, we have

CŒ��1.Y /�N D CŒ��1.Y /�n:

In order to prove the claim, it suffices to show that for g1 C I; g2 C I 2 CŒ��1.Y /�n

the bracket
¹g1 C I; g2 C I º WD ¹g1; g2º C I

is well defined. This will follow if we show that every g1; g2 2 CŒX� satisfying gi C I 2
CŒ��1.Y /�n actually lie in the Poisson idealiser of I , which is defined to be the subalgebra
consisting of elements g 2 CŒX� such that ¹g; I º � I .

Let g 2CŒX� such that gC I 2CŒ��1.Y /�n. The n-invariance of gC I can be rewrit-
ten as d1�.n/.g C I / � I . Since I is n-stable, this is equivalent to d1�.n/g � I . Now,
formula (3.1) implies that ¹��.n/; gº � I . Note that ��.fi / lies in the symmetric algebra
S.��.n// � CŒX�, and so applying the Leibniz identity, we obtain ¹��.fi /; gº � I . This
shows that ¹g; I º � I , and the proof is complete.

3.2. Poisson structures on Slodowy slices

We begin by explaining how �� is naturally equipped with a conical Poisson structure.
This structure can be understood in two different ways: either as the transverse Poisson
structure to g� at � as in [11, Section 2.3] or alternatively via Hamiltonian reduction
similar to [13], as we now explain.

The torus �.C�/ induces a Z-grading on g� via

g�.i/ D ¹� 2 g� j �.t/ � � D t i�º;

where �.t/ � � denotes the coadjoint action. Using the representation theory of sl2, we have
�.gf / �

L
i�0 g�.i/. Therefore, the cocharacter C� ! GL.g�/ given by t 7! t�2�.t/

induces a contracting C�-action on �� with negative weights. This action defines a grad-
ing on both CŒg�� and CŒ���, known as the Kazhdan grading. It is readily seen that the
Poisson bracket on CŒg�� lies in degree �2 and that the grading on CŒ��� is non-negative.
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Thanks to the representation theory of sl2, we have an isomorphism

ad.e/ W g.�1/ ��! g.1/;

and it follows that the form !Wx;y 7! �Œx;y� on g.�1/ is symplectic. We pick an isotropic
subspace ` � g.�1/. We let `?! � g.�1/ be the annihilator of ` with respect to ! and let
N` � G be a unipotent algebraic group such that n` D Lie.N`/, where

n` D `
?! ˚

M
i<�1

g.i/;

m` D `˚
M
i<�1

g.i/:

The group N` acts by Poisson automorphisms on g� and ��
`
, and the restriction map

�` W g
� ! n�

`
is N`-equivariant. In fact, �` is a comoment map for the Hamiltonian

action of N` on g�, and this places us in the context for Hamiltonian reduction; see [20,
Section 5.4.4].

Consider the set
Y` WD �jn` C Annn�

`
.m`/: (3.3)

Thanks to [13, Lemma 2.1], the coadjoint action gives an isomorphism

N` � ��
�
�! ��1` .Y`/ D �C Anng�.m`/: (3.4)

Therefore,N` acts freely on��1
`
.Y`/, and the slice �� parameterisesN`-orbits in��1

`
.Y`/.

It follows that there is a natural isomorphism of Kazhdan graded algebras:

CŒ��1` .Y`/�
ad.n`/ D CŒ��1` .Y`/�

N` ��! CŒ���: (3.5)

We write I��CŒg�� for the defining ideal of��1
`
.Y`/, which is generated by x ��.x/

with x 2 m`. By Lemma 3.1, there is a Poisson structure on CŒ��1
`
.Y`/�

ad.n`/ given by

¹f C I�; g C I�º WD ¹f; gº C I� for f C I�; g C I� 2 CŒ��1` .Y`/�
ad.n`/:

This Poisson structure is transferred from CŒ��1
`
.Y`/�

ad.n`/ to CŒ��� via the isomorph-
ism (3.5).

Observe that ��1
`
.Y`/ ,! ��10 .Y0/, and so, CŒ��10 .Y0/�� CŒ��1

`
.Y`/�. Using the

fact that �� � �
�1
`
.Y`/, along with (3.4), we see that

CŒ��10 .Y0/�
ad.n0/ ! CŒ��1` .Y`/�

ad.n`/

which is an isomorphism of Poisson algebras because both algebras are isomorphic to
CŒ��� as Kazhdan graded algebras, by (3.5). Hence, the Poisson structure which we have
placed on �� does not depend on `.

Now, consider the Poisson subvariety ��;N WD �� \ N .g�/, known as the nilpotent
Slodowy variety.
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Lemma 3.2. ��;N is a conical symplectic singularity.

Proof. Thanks to [31, Section 5], the fibres of the restriction of the adjoint quotient map
�� ! h=W are irreducible and normal; in particular, the zero fibre ��;N is normal.
Since the Hamiltonian reduction of a smooth symplectic variety is symplectic [20, Corol-
lary 6.16], the symplectic leaves of �� are the irreducible components of the intersections
of the leaves of g� with ��, i.e., the components of the intersectionsG � � \ �� with � 2 g�.
It follows that ��;N contains a dense symplectic leaf �

reg
�;N
WD �� \ Oreg corresponding

to the regular coadjoint orbit. This shows that ��;N is a Poisson variety of full rank such
that CŒ��;N � is positively graded with bracket in degree �2. It follows from [14, Propos-
ition 2.1.2] that ��;N admits a symplectic resolution, which completes the proof of the
current lemma.

3.3. Finite W -algebras

Let m`;� D ¹x � �.x/ j x 2 m`º � U.g/, and consider the left ideal J� WD U.g/m`;�.
A short calculation will confirm that ad.n`/ preserves J� and the ad.n`/-invariants in
the left U.g/-module Q WD U.g/=J� inherit an algebra structure from U.g/. The algebra
U.g; e/ WD Qad.n`/ is known as the finite W -algebra.

Define a filtration U.g/ D
S
i2Z FiU.g/ by placing g.i/ in FiC2U.g/; we warn the

reader that FiU.g/ ¤ 0 for all i 2 Z, contrary to the conventions of the rest of this paper.
This descends to a non-negative filtration on both Q and U.g; e/ known as the Kazhdan
filtration. The associated graded algebra is grU.g/' CŒg��, and under this isomorphism,
we have an identification gr J� D I�. Since U.g/ is almost commutative with respect to
this filtration (of degree �2), so too is U.g; e/. Therefore, grU.g; e/ is equipped with a
Poisson structure in the usual manner.

By [13, Proposition 5.2], the natural inclusion grU.g; e/ � .CŒg��=I�/ad.n`/ ' CŒ���
is an equality, and it is not hard to check that the Poisson structure on grU.g; e/ arising
from the non-commutative multiplication coincides with the structure coming from Pois-
son reduction of CŒg��. Thus, U.g; e/ is a filtered algebra quantising the Kazhdan graded
Poisson algebra CŒ���.

3.4. Casimirs on the Slodowy slice and the centre of the finite W -algebra

We have chosen our maximal toral subalgebra h � g so that h 2 h, and W denotes the
Weyl group. Therefore, CŒh�� ,! CŒg�� is a Kazhdan graded subalgebra with h � CŒh��
concentrated in degree 2, and W acts by graded automorphisms. The �-shifted invariants
are denoted by CŒh��W� as usual.

The Poisson centre of CŒg�� is ZCŒg�� D CŒg��G , and the centre of U.g/ is Z.g/ D
U.g/G . These algebras are well understood by the Chevalley restriction theorem and the
Harish–Chandra restriction theorem. Consider the natural projection maps

ZCŒg�� D CŒg��G ! ZCŒ���;

Z.g/ D U.g/G ! Z.g; e/ WD ZU.g; e/:
(3.6)
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Lemma 3.3 ([32, Footnote 1]). The maps (3.6) are isomorphisms.

We have the following commutative diagram:

CŒg�� CŒg��G CŒh��W CŒh��W� U.g/G U.g/

CŒ��� ZCŒ��� Z.g; e/ Q:

res '

' ' '

' pr

'

(3.7)

The restriction map CŒg��G ! CŒh��W is an isomorphism by Chevalley’s restriction the-
orem, U.g/G ! CŒh��W� is the Harish–Chandra isomorphism, and the isomorphism

CŒh��W ! CŒh��W�

is the shift map x 7! x � �.x/ which sends invariants to �-shifted invariants. The iso-
morphism ZCŒ��� ! Z.g; e/ is the unique map making the diagram commute. Every
algebra on the left half of (3.7) is Kazhdan graded. Furthermore, if we grade CŒh�� by
placing ¹x � �.x/ j x 2 hº in degree 2, then CŒh��W� is a graded subalgebra and

CŒh��W ! CŒh��W�

is a graded homomorphism. Furthermore, the isomorphism CŒh��W� ! Z.g; e/ is strict
for the Kazhdan filtration.

3.5. The universal deformation of a nilpotent Slodowy slice

For the rest of the paper, we identify ZCŒ��� D CŒh�=W � and Z.g; e/ D CŒh�=W��
as Kazhdan graded algebras, via (3.7). Since the scheme-theoretic fibres of the adjoint
quotient map �� ! h�=W are reduced [31, Theorem 5.4 (ii)], it follows from Kostant’s
theorem [16, Proposition 7.13] that

CŒ���˝CŒh�=W � CC ' CŒ��;N �

as graded Poisson algebras. For the rest of this section, we pick a graded Poisson iso-
morphism:

� W CŒ���˝CŒh�=W � CC ! CŒ��;N �:

By [34, Corollary 7.4.1], the adjoint quotient map �� ! h�=W is flat, which completes
the proof of the next result.

Lemma 3.4. Set A D CŒ��;N �. Then, the following hold:

(1) .CŒ���; �/ 2 PDA.CŒh�=W �/;

(2) .U.g; e/; �/ 2 QA.CŒh�=W��/;

(3) .CŒ���; �/ is the associated graded deformation of .U.g; e/; �/.
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Type of g Any BCFG C G

Type of O Regular Subregular Two Jordan blocks Dimension 8

Table 2. Cases in which the Slodowy slice is not a universal Poisson deformation.

Combining Theorem 2.37 and Lemma 3.2, we see that the graded Poisson algebra
CŒ��;N � admits an OQT. It is natural to wonder under what circumstances the objects
in Lemma 3.4 are universal. This question was answered comprehensively by Lehn–
Namikawa–Sorger, as we recalled in the introduction to this paper. We record their result
here for the reader’s convenience.

Theorem 3.5 ([21, Theorems 1.2 and 1.3]). Let g be a simple Lie algebra, and let e 2 g

be a nilpotent element with orbit O.
Set A D CŒ��;N �. Then, the following are equivalent:

(1) PDA is represented by CŒh�=W �, and .CŒ���; �/ is a universal Poisson deforma-
tion of A.

(2) .g;O/ does not occur in Table 2.

In [21], the authors actually classified the nilpotent orbits for which the adjoint quo-
tient ��! h�=W is the formally universal Poisson deformation. It is explained by Nami-
kawa in [29, Section 5] that when the underlying affine Poisson variety is conical a
formally universal deformation can be globalised, leading to a universal Poisson deform-
ation in the sense of the current paper (see also [23, Section 2.2]). The regular Slodowy
slice is not discussed explicitly in [21]; however, it is a classical theorem of Kostant [19]
that �� ! h�=W is an isomorphism for � regular, and so, the Poisson structure is trivial
in these cases by Lemma 3.3.

The following is one of our main results. For the proof, one should combine Lemmas
2.14, 3.2, 3.4 and Theorem 3.5.

Theorem 3.6. Set A D CŒ��;N �. The following are equivalent:

(1) QA is represented by CŒh�=W��, and .U.g; e/; �/ is a universal element of QA;

(2) the orbit of e is not listed in the above table.

Remark 3.7. The universal property in Theorem 3.6 leads to exceptional isomorphisms
with other interesting algebras arising in representation theory. In particular, [23, Propos-
ition 3.17] shows that a universal quantization of a simple surface singularity is given by
(the Namikawa–Weyl group invariants in) the rational Cherednik algebra for the Weyl
group of the same Dynkin type. By the work of Brieskorn and Slodowy, we know that
these surface singularities are isomorphic to subregular nilpotent Slodowy slices for sim-
ply laced Lie algebras. Hence, the subregular simply laced finite W -algebras are iso-
morphic to the corresponding spherical symplectic reflection algebras. This observation
also follows from Losev’s Theorems 5.3.1 and 6.2.2 in [22].
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4. Deformations in the subregular case

We retain the notation and assumptions of Section 3. On top of this, we assume henceforth
that e 2 g is a subregular element.

4.1. The subregular slice and the automorphism group

Consider the subgroup C D C.e; h; f / � Aut.g/ consisting of automorphisms fixing the
triple. Its structure is described in [34, Section 7.5]. The action of C on g descends to an
action on ��.

Lemma 4.1. C acts on CŒ��� by graded Poisson automorphisms.

Proof. Recall the notation `, N`, �, I�, Y` from Section 3.2, and set ` D 0 and � WD
�0. Since the Poisson structure on CŒ��� is defined via the graded isomorphism (3.5), it
will suffice to show that C acts by Poisson automorphisms on CŒ��1.Y0/�N0 . Since C
preserves the graded pieces of g, it stabilises both m0 and n0 and furthermore acts on
CŒg�� by automorphisms which preserve the Kazhdan grading. The defining ideal I� of
��1.Y0/ in CŒg�� is generated by the Kazhdan graded vector space ¹x � �.x/ j x 2m0º,
and so, C acts by graded automorphisms on CŒ��1.Y0/�ad.n0/. Since N0 is connected and
unipotent, the latter algebra coincides with CŒ��1.Y0/�N0 . To see that the C -action on
CŒ��1.Y0/�N0 is Poisson, it suffices to recall that ¹f C I�; g C I�º WD ¹f; gº C I� for
f C I�; g C I� 2 CŒ��1.Y0/�N0 .

4.2. The equivariant universal deformation of a subregular nilpotent Slodowy slice

Assume now that g0 is not simply laced, and choose a simple Lie algebra g by determining
the Dynkin type as follows: 8̂̂<̂

:̂
A2n�1 if g0 is of type Bn
DnC1 if g0 is of type Cn
E6 if g0 is of type F4
D4 if g0 is of type G2

9>>=>>; : (4.1)

In this section, we consider the subregular Slodowy slice in g�0 , and so, we use notation
e0, �0, ��0 to mirror the notation for g. The nilpotent subregular Slodowy slice for g0 is
denoted by ��0;N0

. The following lemma appeared in [12, Lemma 2.23]; we include here
another proof for the reader’s convenience.

Lemma 4.2. The Poisson varieties ��;N and ��0;N0
are C�-isomorphic.

Proof. It follows from the proofs of [34, Theorems 8.4 and 8.7] that ��;N and ��0;N0
are

both C�-isomorphic to a simple surface singularity, say,

CŒ��;N � ' CŒx; y�� ' CŒ��0;N0
�;
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where � is a finite subgroup of SL2. Let ¹�; �º and ¹�; �º0 denote the Poisson structures
on C2=� transported from ��;N and ��0;N0

, respectively. Applying the argument in the
final paragraph of the proof of [20, Proposition 9.24], we see that ¹�; �º D c¹�; �º0 for some
c 2 C�. Now, apply Remark 6.19 of op. cit. to complete the proof.

Let �0 be the finite subgroup of C defined in [34, p. 143]. It is isomorphic to the group
Aut.�/ of Dynkin diagram automorphism of g for all pairs .g; g0/ except for .D4; C3/
in which case �0 is isomorphic to a subgroup of order 2. In all cases, the composition
�0 ,! C ,! Aut.g/ ! Aut.�/ is injective, and its image is the subgroup of Aut.�/
realising the Dynkin diagram �0 of g0 as a folding of �.

By [34, Section 8.7, Remark 3], there is a morphism of deformations of the algebraic
variety ��0;N0

' ��;N illustrated by the following diagram, where the vertical arrows are
the adjoint quotient maps:

��0 ��

h�0=W0 h�=W:

i

ı0 ı

j

(4.2)

Observe that �0 acts on �� and on h�=W , and that the map ı is �0-equivariant. By [34,
Section 8.8, Remark 4], the maps .i; j / induce isomorphisms of varieties

h�0=W0 ' .h
�=W /�0 ; ��0 ' �� �h�=W h�0=W0; (4.3)

where .h�=W /�0 � h�=W is the subscheme of �0-fixed points.

Example 4.3. Assume that g0 is of type Bn, and g is of type A2n�1. Then, �0 is a cyclic
group of order 2 and CŒh�� D CŒx1; : : : ; x2n�=.x1 C � � � C x2n/. The only non-trivial
element  in �0 maps xi to �x2nC1�i . Furthermore,

CŒh�=W � D .CŒx1; : : : ; x2n�=.x1 C � � � C x2n//
S2n D CŒe2; e3; : : : ; e2n�;

where ej is the j th elementary symmetric polynomial. Thus, ej �  D ej for j even and
ej �  D�ej for j odd, and the kernel of the natural projection CŒh�=W �!CŒ.h�=W /�0 �
is generated by all e2rC1 for r D 1; : : : ; n � 1.

For each piece of notation at the start of Section 3, we introduce the same notation
for g0. For example, h0 � g0 is a choice of maximal toral subalgebra, and W0 is the
corresponding Weyl group. Applying the remarks of Section 3.5, we see that we may fix
graded isomorphisms

�0WCŒ��0 �˝CŒh�0=W0�
CC ! CŒ��0;N0

�;

�WCŒ���˝CŒh�=W � CC ! CŒ��;N �:

such that � is �0-equivariant. Since the reductive group �0 acts on CŒ��;N � by graded
Poisson automorphisms, we can consider universal �0-deformations of ��;N . After fixing
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an isomorphism as in Lemma 4.2, by an abuse of notation, we will identify the graded
Poisson algebra CŒ��0;N0

� with CŒ��;N � and view �0 as an isomorphism

CŒ��0 �˝CŒh�0=W0�
CC ! CŒ��;N �:

Before we proceed to the main result of this section, we prove an auxiliary Lemma
containing some general observations regarding graded homomorphisms.

Lemma 4.4. Let V D
Ln
iD1Vi andU D

Ln
iD1Ui be finite-dimensional positively graded

vector spaces, with Vi and Ui of degree i , with possibly Vi D 0 or Ui D 0 for some 1 �
i � n. Let � W S.V /! S.U / be a graded algebra homomorphism between the respective
symmetric algebras, with gradings S.V / D

L
i�0 S.V /i ; S.U / D

L
i�0 S.U /i induced

by the gradings on V and U , respectively. For i > 0, let �i D � jVi , and let d0�i W Vi ! Ui
be the composition of �i with the projection on Ui along

S.U />1i D S.U /i \ S.U /
>1:

Then, � is surjective if and only if its linear term d0� D
Ln
iD1 d0�i W V ! U is surjective.

Proof. Observe that �i D d0�i C x�i W Vi ! S.U /i , where x�i W Vi ! S.U />1i is the com-
position of �i with the projection on S.U />1i along Ui . Suppose that � surjects, so for
u 2 Ui , there exists f 2 S.V /i such that �.f /D u. Since �.S.V />1/ � S.U />1, we see
that if

f 0 D f 00 C f
0
1 C f

0
>1 2 C ˚ V ˚ S.V />1;

then �.f 0/ D �.f 01/ D u. It follows that d0�.f 0/ D u; hence, d0� surjects. Now, suppose
that d0� surjects and that u 2 Ui with d0�.v/ D u. Then,

�i .v/ D uC x�i .v/;

and an inductive argument shows that x�i .v/ lies in the image of � . Hence, U lies in the
image, which proves that � is surjective.

Lemma 4.5. Let A D CŒ��;N �. Then, there is a unique graded algebra morphism

�WCŒh�=W �! CŒh�0=W0�

such that PDA.�/.CŒ���; �/ D .CŒ��0 �; �0/ and it is surjective.

Proof. By Theorem 3.5, u WD .CŒ���; �/ 2 PDA.CŒh�=W �/ is a universal Poisson deform-
ation of A. By Lemmas 3.4 and 4.2, .CŒ��0 �; �0/ is a Poisson deformation of A over
CŒh�0=W0�, so the universal property for u gives the existence of �. By Lemma 4.4 from
which we retain notation, the surjectivity of � follows from the surjectivity of d0�. By
C�-semi-universality of CŒ��� (see [34, Section 2.5 and Theorem 8.7]), the differentials
at zero are equal for the morphism j of (4.2) and the morphism h�0=W0 ! h�=W whose
pull-back is �. Algebraically, this means precisely that d0� D d0j �. The latter is surject-
ive by Lemma 4.4 because j is a closed inclusion of affine varieties.
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Theorem 4.6. Let g0 be of type Bn, Cn, or F4, where n � 2 and n is even in type C. Let
A D CŒ��;N �. Then,

(1) PDA;�0 is represented by CŒh�0=W0� and .CŒ��0 �; �0/ is a universal element;

(2) QA;�0 is represented by Z.g0; e0/ and .U.g0; e0/; �0/ is a universal element.

Proof. We prove (1); then (2) follows from Theorem 1.1 (2) and Theorem 3.6.
Let ˛�0 2 HomG.CŒh�=W �; .CŒh�=W �/�0/ be the quotient map to the coinvariant

algebra, and let � be the morphism in Lemma 4.5. By Proposition 2.23,

u�0 WD PDA.˛�0/.u/

is a universal �0-deformation of A, so we first compare the surjective graded morphisms
˛�0 and �. We claim that ker.�/D ker.˛�0/. The kernel of ˛�0 is generated by f � f �  ,
where f 2 CŒh�=W � and  2 �0; however, we will obtain a different description of the
kernel. If r denotes the rank of g, then we write .di /riD1 for the Kazhdan graded degrees of
the elementary homogeneous generators e1; : : : ; er of CŒh�=W �. These degrees are listed
in [34, p. 112], and they coincide with the total degrees doubled, viewed as polynomials
on h�. Let ƒ0; ƒ2 � ¹1; : : : ; rº be the two complementary sets consisting of indexes
i such that di is congruent to 0 or 2 mod 4, respectively. Thanks to our restrictions on
the Dynkin label of g0, the set ¹di j i 2 ƒ0º coincides with the collection of all degrees
of homogeneous generators of CŒh�0 �

W0 , whilst dim h0 D jƒ0j. Therefore, the Kazhdan
grading on CŒh�0=W0� has degree concentrated in 4Z. Since � is graded, the generators
of degree di with i 2 ƒ2 are mapped to zero. Since � is surjective, the generators with
degrees di , where i 2 ƒ0, are sent to algebraically independent elements. It follows that
ker� D .ei j i 2 ƒ2/.

It is explained in [9, Section 13] (see also [34, Remark 8.8.4]) that CŒh�=W ��0 '
CŒh�0=W0� as algebras graded by total degree and, equivalently, by Kazhdan degree. Since
˛�0 is a surjection, we can apply the argument of the previous paragraph replacing � with
˛�0 to deduce that ker˛�0 D .ei j i 2 ƒ2/.

Equality of the kernels gives the existence of a graded isomorphism � WCŒh�0=W0�
�
�!

CŒh�=W ��0 by setting �.�.f // WD ˛�0.f / for f 2 CŒh�=W �. We have a commutative
triangle of graded homomorphisms:

CŒh�=W �

CŒh�0=W0� CŒh�=W ��0 :

� ˛�0

�

(4.4)

The isomorphism � is �0 invariant, and it satisfies PDA;�0.�/PDA.�/uDu�0 . This proves
that CŒh�0=W0� is another choice for a universal base of PDA;�0 and that PDA.�/u is a
universal element of PDA;�0 over this base.

We conjecture that Theorem 4.6 holds in general, without the restrictions on Dynkin
type. We have the following consequence.



Universal quantizations of nilpotent Slodowy slices 31

Corollary 4.7. There is a surjective homomorphism U.g; e/� U.g0; e0/. Under the
assumptions of Theorem 4.6, the kernel is generated by ¹z � z �  j  2 �0; z 2 Z.g; e/º.

Proof. Retain the notation A D CŒ��;N �. Let q0 WD .U.g0; e0/; �0/ 2 QA.Z.g0; e0//. By
Theorem 3.6, we see that q WD .U.g; e/; �/ 2 QA.Z.g; e// is a universal filtered quant-
ization and gr q a universal Poisson deformation of A, so there is a unique morphism
ˇW Z.g; e/ ! Z.g0; e0/ in SF such that QA.ˇ/.q/ D q0. In particular, there exists a
filtered Z.g0; e0/-linear isomorphism U.g; e/˝Z.g;e/ Z.g0; e0/! U.g0; e0/. Moreover,
PDA.gr ˇ/.gr q/ D gr q0, by Theorem 1.1. Lemma 4.5 gives the surjectivity of gr ˇ,
whence of ˇ. The sought map is then the composition of morphisms:

U.g; e/! U.g; e/˝Z.g;e/ Z.g0; e0/! U.g0; e0/;

where the first arrow is the map x 7! x ˝ 1 for all x 2 U.g; e/. It is surjective by the
surjectivity of ˇ. The statement regarding the kernel follows directly from the proof of
Theorem 4.6.

4.3. A presentation for the subregular W -algebra of type B

In this section, we let G0 D SO2nC1 and g0 D Lie.G0/. Let e0 2 g0 be a subregular
nilpotent element of g0 and �0 2 g�0 the corresponding element with respect to the Killing
identification. Our purpose here is to give a presentation of the finiteW -algebra U.g0; e0/
as a quotient of a shifted Yangian.

By Corollary 4.7, we can express U.so2nC1; e/ as a quotient of U.sl2n; e/, whilst [7]
allows us to express U.gl2n; e/ as a truncated shifted Yangian. In order to tie these threads
together, we record the following observation which follows straight from the definitions.

Lemma 4.8. The centre of gln maps to a 1-dimensional central subspace of U.gln; e/,
and the quotient by that subspace is isomorphic to U.sln; e/.

In [7], the shifted Yangian associated to gln is introduced in full generality; however,
in this paper, we only require a special case: we define the shifted Yangian Y2.�/ to be the
algebra with (infinitely many) generators

¹D
.r/
1 ;D

.r/
2 j r > 0º [ ¹E

.r/
j r > 2n � 2º [ ¹F .r/ j r > 0º

and relations (2.4)–(2.9) from [7]. Our generators E.r/ and F .r/ are denoted by E.r/1 and
F
.r/
1 in loc. cit., and our definition above corresponds to the shift matrix � D .si;j /1�i;j�2

with s1;2 D 2n � 2 and si;j D 0 otherwise. We gather the diagonal generators D.r/
i into

power series by setting Di .u/ WD
P
r�0D

.r/
i u�r 2 Y2.�/Ju�1K, where D.0/

i WD 1, and
consider the series

Z.u/ D u2n C
X
r>0

Z.r/u2n�r

WD u.u � 1/2n�1D1.u/D2.u � 1/ 2 u
2nY2.�/Ju�1K: (4.5)
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Lemma 4.9. The elements ¹Z.r/ j r > 0º are algebraically independent generators of the
centre of Y2.�/. Furthermore, for r D 1; : : : ; 2n, we have

Z.r/ D

rX
sD0

�
2n � 1

2n � 1 � s

�
.�1/2n�s

sX
tD0

D
.t/
1

ı

D2
.s�t/; (4.6)

where
ı

D2
.r/ WD

Pr
sD0

�
r�1
r�s

�
D
.s/
2 and

ı

D2
.�1/ WD 0.

Proof. The first claim follows from [8, Theorem 2.6] since u�2nC1.u � 1/2n�1 is invert-
ible in CJu�1K. We proceed to prove formula (4.6). Using the binomial theorem, we have
.u � 1/�s D

P
r�s

�
r�1
r�s

�
u�r . It follows that

D2.u � 1/ D
X
r�0

.u � 1/�rD
.r/
2 D

X
r�0

u�r
rX
sD0

D
.s/
2

�
r � 1

r � s

�
D

X
r�0

u�r
ı

D2
.r/:

If we define C.u/ D
P
r�0 C

.r/u�r WD D1.u/D2.u � 1/, then we have

C.u/ D
X
r;s�0

D
.r/
1

ı

D2
.s/u�r�s D

X
r�0

rX
sD0

u�rD
.s/
1

ı

D2
.r�s/: (4.7)

At the same time, we have

u.u � 1/2n�1 D

2nX
iD1

�
2n � 1

i � 1

�
.�u/i : (4.8)

Finally, if we have a polynomial f .u/ D
Pm
iD0 fiu

i and a power series

A.u/ D
X
r�0

Aru
�r ;

then for r D 0; : : : ; m the um�r coefficient of f .u/A.u/ is
Pr
sD0 fm�sAs . Since�

2n � 1

�1

�
D 0;

we can combine this last statement together with (4.7) and (4.8); we arrive at the proof
of (4.6).

Theorem 4.10. There is a surjective algebra homomorphism

Y2.�/� U.g0; e0/

with kernel generated by

¹D
.r/
1 j r > 1º [ ¹Z

.2r�1/
j r D 1; : : : ; nº:
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Proof. Let e be a subregular nilpotent element of sl2n � gl2n. The main result of [7]
implies that there is a surjective homomorphism Y2.�/� U.gl2n; e/ with kernel gener-
ated by ¹D.r/

1 j r > 1º. It follows from [8, Lemma 3.7] that the image of the element Z.1/

in (4.5) under the map Y2.�/! U.gl2n; e/ lies in the image of z.gl2n/! Z.gl2n/!

U.gl2n; e/. Together with Lemma 4.8, this implies that U.sl2n; e/ is naturally isomorphic
to the quotient of U.gl2n; e/ byZ.1/. Finally, by Example 4.3 and Corollary 4.7, there is a
surjective algebra homomorphism U.sl2n; e/�U.g0; e0/, and the kernel is generated by
the image of the elementary symmetric polynomials ¹e2rC1 j r D 1; : : : ; n� 1º under the
isomorphism CŒh�=W �! Z.sl2n; e/ discussed in (3.7). Here, we use .h; W / to denote
a torus and Weyl group for sl2n. To complete the proof of the current theorem it suffices
to show, for r D 1; : : : ; n � 1, that the image of e2rC1 under CŒh�=W �! Z.sl2n; e/ is
equal to the image of Z.2rC1/ under Y2.�/! U.gl2n; e/! U.sl2n; e/. Once again this
follows from [8, Lemma 3.7].
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[30] C. Năstăsescu and F. Van Oystaeyen, Graded and filtered rings and modules. Lecture Notes in
Math. 758, Springer, Berlin, 1979 Zbl 0418.16001 MR 551625

[31] A. Premet, Special transverse slices and their enveloping algebras. Adv. Math. 170 (2002),
no. 1, 1–55 Zbl 1005.17007 MR 1929302

[32] A. Premet, Enveloping algebras of Slodowy slices and the Joseph ideal. J. Eur. Math. Soc.
(JEMS) 9 (2007), no. 3, 487–543 Zbl 1134.17307 MR 2314105

[33] A. Premet, Multiplicity-free primitive ideals associated with rigid nilpotent orbits. Transform.
Groups 19 (2014), no. 2, 569–641 Zbl 1353.17009 MR 3200436

[34] P. Slodowy, Simple singularities and simple algebraic groups. Lecture Notes in Math. 815,
Springer, Berlin, 1980 Zbl 0441.14002 MR 584445

[35] A. Weekes, Quiver gauge theories and symplectic singularities. Adv. Math. 396 (2022), article
no. 108185 Zbl 1484.81075 MR 4362780

Received 10 July 2020.

Filippo Ambrosio
Friedrich-Schiller-Universität Jena FMI, Ernst-Abbe-Platz 2, 07743 Jena, Germany;
filippo.ambrosio@uni-jena.de

Giovanna Carnovale
Dipartimento di Matematica “Tullio Levi-Civita” (DM), Università degli Studi di Padova,
Via Trieste 63, 35121 Padova, Italy; carnoval@math.unipd.it

Francesco Esposito
Dipartimento di Matematica “Tullio Levi-Civita” (DM), Università degli Studi di Padova,
Via Trieste 63, 35121 Padova, Italy; esposito@math.unipd.it

Lewis Topley
Department of Mathematical Sciences, University of Bath, Claverton Down, BA2 7AY Bath, UK;
lt803@bath.ac.uk

https://doi.org/10.1215/00127094-2010-066
https://zbmath.org/?q=an:1208.14028
https://mathscinet.ams.org/mathscinet-getitem?mr=2746388
https://doi.org/10.1007/BFb0067331
https://zbmath.org/?q=an:0418.16001
https://mathscinet.ams.org/mathscinet-getitem?mr=551625
https://doi.org/10.1006/aima.2001.2063
https://zbmath.org/?q=an:1005.17007
https://mathscinet.ams.org/mathscinet-getitem?mr=1929302
https://doi.org/10.4171/JEMS/86
https://zbmath.org/?q=an:1134.17307
https://mathscinet.ams.org/mathscinet-getitem?mr=2314105
https://doi.org/10.1007/s00031-014-9266-9
https://zbmath.org/?q=an:1353.17009
https://mathscinet.ams.org/mathscinet-getitem?mr=3200436
https://doi.org/10.1007/BFb0090300
https://zbmath.org/?q=an:0441.14002
https://mathscinet.ams.org/mathscinet-getitem?mr=584445
https://doi.org/10.1016/j.aim.2022.108185
https://zbmath.org/?q=an:1484.81075
https://mathscinet.ams.org/mathscinet-getitem?mr=4362780
mailto:filippo.ambrosio@uni-jena.de
mailto:carnoval@math.unipd.it
mailto:esposito@math.unipd.it
mailto:lt803@bath.ac.uk

	1. Introduction
	1.1. Further applications

	2. Universal Poisson deformations and filtered quantizations
	2.1. Representability of functors and universal elements
	2.2. Graded and filtered algebras
	2.3. The Poisson deformation functor
	2.4. The filtered quantization functor
	2.5. Interplay between deformations and quantizations
	2.6. Automorphisms of A and of its deformations
	2.7. Automorphisms of A and of its quantizations
	2.8. Conical symplectic singularities and their deformations

	3. Nilpotent Slodowy slices and their universal quantizations
	3.1. Hamiltonian reduction
	3.2. Poisson structures on Slodowy slices
	3.3. Finite W-algebras
	3.4. Casimirs on the Slodowy slice and the centre of the finite W-algebra
	3.5. The universal deformation of a nilpotent Slodowy slice

	4. Deformations in the subregular case
	4.1. The subregular slice and the automorphism group
	4.2. The equivariant universal deformation of a subregular nilpotent Slodowy slice
	4.3. A presentation for the subregular W-algebra of type \mathsf{B}

	References

