
ar
X

iv
:c

s/
02

04
01

6v
1

 [
cs

.P
L

]
 9

 A
pr

 2
00

2

Making Abstract Domains Condensing

ROBERTO GIACOBAZZI

Università di Verona, Italy

FRANCESCO RANZATO

Università di Padova, Italy

and

FRANCESCA SCOZZARI

Università di Pisa, Italy

In this paper we show that reversible analysis of logic languages by abstract interpretation can
be performed without loss of precision by systematically refining abstract domains. The idea
is to include semantic structures into abstract domains in such a way that the refined abstract
domain becomes rich enough to allow approximate bottom-up and top-down semantics to agree.
These domains are known as condensing abstract domains. Substantially, an abstract domain
is condensing if goal-driven and goal-independent analyses agree, namely no loss of precision is
introduced by approximating queries in a goal-independent analysis. We prove that condensation
is an abstract domain property and that the problem of making an abstract domain condensing

boils down to the problem of making the domain complete with respect to unification. In a
general abstract interpretation setting we show that when concrete domains and operations give
rise to quantales, i.e. models of propositional linear logic, objects in a complete refined abstract
domain can be explicitly characterized by linear logic-based formulations. This is the case for
abstract domains for logic program analysis approximating computed answer substitutions where
unification plays the role of multiplicative conjunction in a quantale of idempotent substitutions.
Condensing abstract domains can therefore be systematically derived by minimally extending any,
generally non-condensing domain, by a simple domain refinement operator.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—semantics; D.3.2 [Programming Languages]: Language Classifications—constraint
and logic languages; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming

Languages—program analysis

General Terms: Languages, Theory

Additional Key Words and Phrases: Abstract interpretation, abstract domain, completeness,
linear logic, logic program analysis, condensation

1. INTRODUCTION

Logic program analysis and optimization algorithms are often goal-directed. This
means that the analysis is constructively derived from a goal-directed semantics and
the properties of the resulting analysis, such as its precision, depend on this choice.
For instance, it is well known that, in general, goal-independent analyses of logic
programs, like those obtainable with bottom-up/top-down analyzers [Barbuti et al.

Authors’ addresses: R. Giacobazzi, Dipartimento di Informatica, Università di Verona, Strada Le
Grazie 15, Ca’ Vignal 2, 37134 Verona, Italy, e-mail: giaco@sci.univr.it; F. Ranzato, Dipartimento
di Matematica Pura ed Applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy, e-
mail: franz@math.unipd.it; F. Scozzari, Dipartimento di Informatica, Università di Pisa, Corso
Italia 40, 56125 Pisa, Italy, e-mail: scozzari@di.unipi.it.

http://arxiv.org/abs/cs/0204016v1

2 ·

1993; Bruynooghe 1991; Codish et al. 1994], may be less precise than goal-directed
ones (cf. [Marriott and Søndergaard 1993, Section 4]). Goal-independent analysis
can be thought of as an analysis for all possible initial queries, while in a goal-
directed analysis, a given query with a fixed initial state is executed in the abstract
domain. In the latter case, the result may be refined by knowing in advance the
initial calls. On the contrary, it may also happen that goal-independent analyses
are more precise than goal-directed ones, for instance when failure properties are
observed.

1.1 The problem

The problem of making the analysis independent from the choice of the initial query
has been considered by many authors (see e.g. [Codish and Lagoon 2000; Debray
1994; Jacobs and Langen 1992; King and Lu 2002; Langen 1990; Giacobazzi and
Scozzari 1998; Marriott and Søndergaard 1993]. The idea of condensing procedures

introduced by Langen [1990] captures the essence of this discussion, providing a
characterization of goal-independent evaluation of procedure calls: The approxi-
mation of the semantics of each predicate (called condensed procedure) defined in a
program is pre-computed in such a way that any specific call can be approximated
without computing a fixpoint, but simply by unifying it against the condensed pro-
cedure defining that predicate. However, condensation may loose precision. A loss
of precision occurs in condensed procedures when the abstract computation of a
procedure call cannot be reconstructed by unifying that call with the correspond-
ing condensed procedure. This is due to the properties of abstract unification on
some abstract domains. A domain where no loss of precision occurs in evaluating
condensed procedures is called condensing. The problem of systematically design-
ing condensing abstract domains is still open. The relevance of this problem relies
upon the importance of condensing domains in efficient static program analysis.
Moreover, few condensing abstract domains are known, all of them being down-
ward closed domains. In this context, it is highly desirable to have a formal setting
where possibly non-downward closed condensing abstract domains can be designed
and proved correct, e.g. for relevant program properties like variable aliasing [Jacobs
and Langen 1992; Langen 1990].

1.2 The main result

In this paper we give a domain-theoretic characterization of condensing abstract
interpretations. We prove that it is always possible to make abstract domains
condensing by minimally refining domains, i.e. by introducing the least amount of
information that makes the domain condensing. We prove that this is an instance
of a more general problem of making a domain complete with respect to some se-
mantic operator. The intuition is that a complete abstract interpretation induces
an abstract semantics where no loss of precision, relatively to the power of repre-
sentation of the underlying abstract domains, is accumulated by computing with
abstract objects [Cousot and Cousot 1979]. In static program analysis, decidability
issues commonly force to sacrifice completeness for achieving termination and/or
efficiency; examples of complete abstract interpretations more frequently occur in
other fields of application. For instance, several complete abstractions of algebraic
polynomial systems have been studied by Cousot and Cousot [1997], and many

· 3

complete abstract interpretations can be found in comparative program semantics
[Cousot 1997; Cousot and Cousot 1992; Giacobazzi 1996] and in model checking by
abstract interpretation [Cousot and Cousot 2000; Ranzato 2001].

The possibility of making abstract domains complete with respect to any con-
tinuous semantic operator has been shown in [Giacobazzi et al. 2000], where we
proved that any abstract domain A can always be constructively extended into
the most abstract domain which includes A and is complete for a given continu-
ous function f — the resulting domain is called the complete shell of A and f .
In this paper we apply this technique to systematically derive condensing abstract
domains. In particular we consider the problem of minimally modifying abstract
domains in order to make them condensing yet providing an easily representable
structure for the objects of the refined domain. We prove that this is an instance
of a particular completeness problem arising when concrete semantic domains and
operations give rise to a particular algebraic structure called quantale. Quantales
are well-known algebraic structures which turn out to be models of propositional
linear logic (see [Rosenthal 1990; Yetter 1990]). This is particularly important in
our context, because quantales naturally model a number of different and novel
notions of completeness arising in abstract interpretation, including condensation
as an instance. Interestingly, in this context it turns out that the objects of com-
plete refined abstract domains can be elegantly represented as linear implications,
with a clean logical interpretation. More in detail, a quantale 〈C≤,⊗〉 consists of
a complete lattice C≤ together with a binary operation ⊗ : C × C −→ C which
is additive (i.e., preserves arbitrary lub’s) on both arguments. As a main feature,
quantales support a notion of linear implication between domain’s objects: Given
a, b ∈ C, there exists a unique greatest object a ⊸ b ∈ C which, when combined by
⊗ with a, gives a result which is approximated by b. In other terms, the following
modus ponens law a ⊗ x ≤ b ⇐⇒ x ≤ a ⊸ b holds. When refining abstract do-
mains in order to get completeness in a setting where concrete interpretations are
quantales, linear implication allows us to elegantly characterize complete domain
objects in a variety of situations. It is worth noting that an efficient representation
of abstract objects in abstract interpretation is essential in order to automatically
(or, at least, quickly) implement abstract domains, e.g. by exploiting the logical
properties of the abstract objects (see the use of Binary Decision Diagrams in the
implementation of classical propositional logic-based abstract domains for ground-
ness analysis and in abstract model checking); to study the properties of abstract
operations, like for instance their precision; to help the intuition to understand how
specific abstract domains work. Let us denote by uco(C) the complete lattice of all
abstract domains (modulo isomorphic representation of their objects) abstracting
a given domain C (cf. [Cousot and Cousot 1979]). This lattice is ordered by the
relative precision of domains: For any A,B ∈ uco(C), A ⊑ B if A is more con-
crete (more precise) than B. Given a quantale 〈C≤,⊗〉 and an abstract domain
A ∈ uco(C), we characterize the most abstract domain X ∈ uco(C) such that
X ⊑ A and X is complete for ⊗, namely if αX : C −→ X is the corresponding
abstraction map then the equation αX(·⊗ ·) = αX(αX(·)⊗αX (·)) holds. We prove
that a domain is condensing if and only if a weakened form of completeness holds:
αX(αX(·) ⊗ αX(·)) = αX(· ⊗ αX(·)) = αX(αX(·) ⊗ ·). Thus, given A ∈ uco(C),
we characterize the most abstract domain X ∈ uco(C) such that X ⊑ A and X

4 ·

is condensing. Intuitively, X is condensing when there is no loss of precision in
observing in X the result of ⊗ when one of its arguments is approximated in X .
The set of idempotent substitutions endowed with unification forms a quantale.
As a consequence abstract domains can be refined and constructively made con-
densing, providing their objects with an elegant logical characterization as linear
implications in the quantale of idempotent substitutions. This is a generalization
of an analogous result given by Giacobazzi and Scozzari [1998], which characterizes
condensing downward closed domains as solutions of domain equations involving
intuitionistic implications.

2. BASIC NOTIONS

2.1 Notation

If S and T are sets, then ℘(S) denotes the powerset of S, S−→T denotes the
set of all functions from S to T , and for a function f : S −→ T and X ⊆ S,
f(X)

def

= {f(x) | x ∈ X}. By g ◦ f we denote the composition of the functions
f and g, i.e., g ◦ f

def

= λx.g(f(x)). The identity function λx.x is denoted id. The
notation P≤ denotes a poset P with ordering relation ≤, while 〈C,≤,∨,∧,⊤,⊥〉
denotes a complete lattice C, with ordering ≤, lub ∨, glb ∧, greatest element (top)
⊤, and least element (bottom) ⊥. Somewhere, ≤P will be used to denote the
underlying ordering of a poset P , and ∨C , ∧C , ⊤C and ⊥C will denote operations
and elements of a complete lattice C. Let P be a poset and S ⊆ P . Then,
max (S)

def

= {x ∈ S | ∀y ∈ S. x ≤P y ⇒ x = y} denotes the set of maximal
elements of S in P ; also, the downward closure of S is defined by ↓ S

def

= {x ∈
P | ∃y ∈ S. x ≤P y}, and for x ∈ P , ↓ x is a shorthand for ↓ {x}. We use the
symbol ⊑ to denote pointwise ordering between functions: If S is any set, P a
poset, and f, g : S −→ P then f ⊑ g if for all x ∈ S, f(x) ≤P g(x). Let C and
D be complete lattices. Then, C m−→D, C c−→D, C a−→D, and C coa−→D denote,
respectively, the set of all monotone, (Scott-)continuous, additive, and co-additive
functions from C to D. Recall that f ∈ C c−→D iff f preserves lub’s of (non-empty)
chains, and f : C −→ D is (completely) additive if f preserves lub’s of arbitrary
subsets of C (emptyset included). Co-additivity is dually defined. We denote by
lfp(f) and gfp(f), respectively, the least and greatest fixpoint, when they exist,
of an operator f on a poset. If f ∈ C c−→C then lfp(f) = ∨i∈Nf

i(⊥C), where,
inductively, f0(x)

def

= x and f i+1(x)
def

= f(f i(x)). Dually, if f is co-continuous then
gfp(f) = ∧i∈Nf

i(⊤C). {f
i(⊥C)}i∈N and {f i(⊤C)}i∈N are called, respectively, the

upper and lower Kleene’s iteration sequences of f .

2.2 Logic programming

Let V be an infinite set of variables and Term be the set of terms with variables in
V . A substitution σ is a mapping from V to Term such that {v ∈ V | σ(v) 6= v} is
a finite set. By sσ and σ(s) we denote the application of σ to any syntactic object
s, while vars(s) denotes the set of variables occurring in s. A term t is ground if
vars(t) = ∅. The composition of substitutions is denoted by σ◦θ = λx.σ(θ(x)). The
set of idempotent substitutions modulo renaming ∼ (i.e., given θ and σ idempotent,
θ ∼ σ if and only if there exist two substitutions β and δ such that θ = β ◦ σ and
σ = δ◦θ) is denoted by Sub. Sub is partially ordered by instantiation, denoted by �:

· 5

σ � θ iff ∃δ ∈ Sub. σ = δ ◦ θ. By adding to Sub an extra object τ as least element,
one gets a complete lattice 〈Subτ ,�,∨,∧, ǫ, τ〉, where ∨ is the least general anti-
instance, ǫ is the empty substitution, and ∧ is the standard unification, which is
unique modulo renaming (see [Eder 1985] and [Palamidessi 1990, Sections 3 and 4]
for the details). In the following, for σ, θ ∈ Sub, we will write σ ∧ θ 6= τ to denote
that σ and θ unify.

2.3 The lattice of abstract interpretations

In standard Cousot and Cousot’s abstract interpretation theory, abstract domains
can be equivalently specified either by Galois connections (GCs), i.e., adjunctions,
or by upper closure operators (uco’s) [Cousot and Cousot 1979]. In the first case,
concrete and abstract domains C and A (both assumed to be complete lattices)
are related by a pair of adjoint functions of a GC (α,C,A, γ), where α and γ are
the abstraction and concretization maps. It is usually assumed that (α,C,A, γ)
is a Galois insertion (GI), i.e., α is onto or, equivalently, γ is 1-1. In the second
case, instead, an abstract domain is specified as a uco on the concrete domain C,
i.e., a monotone, idempotent and extensive operator on C. These two approaches
are perfectly equivalent, modulo isomorphic representation of domain’s objects.
Given a complete lattice C, it is well known that the set uco(C) of all uco’s
on C, endowed with the pointwise ordering ⊑, gives rise to the complete lattice
〈uco(C),⊑,⊔,⊓, λx. ⊤C , id〉. Let us recall that each ρ ∈ uco(C) is uniquely deter-
mined by the set of its fixpoints, which is its image, i.e. ρ(C) = {x ∈ C | ρ(x) = x},
since ρ = λx. ∧ {y ∈ C | y ∈ ρ(C), x ≤ y}. Moreover, a subset X ⊆ C is the set
of fixpoints of a uco on C iff X is meet-closed, i.e. X =M(X)

def

= {∧Y | Y ⊆ X}
(note that ⊤C = ∧∅ ∈M(X)). For any X ⊆ C,M(X) is called the Moore-closure
of X , and X is a generator set for M(X). Also, ρ ⊑ η iff η(C) ⊆ ρ(C); in this
case, ρ is a so-called refinement of η, and if ρ ⊑ η then ρ ◦ η = η ◦ ρ = η. Often,
we will identify closures with their sets of fixpoints. This does not give rise to
ambiguity, since one can distinguish their use as functions or sets according to the
context. In view of the equivalence above, throughout the paper, 〈uco(C),⊑〉 will
play the role of the lattice of abstract interpretations of C [Cousot and Cousot 1977;
Cousot and Cousot 1979], i.e. the complete lattice of all the abstract domains of the
concrete domain C. When an abstract domain A is specified by a GI (α,C,A, γ),
ρA

def

= γ ◦ α ∈ uco(C) is the corresponding uco on C. The ordering on uco(C) cor-
responds to the standard order used to compare abstract domains with regard to
their precision: A1 is more precise than A2 (i.e., A1 is more concrete than A2 or
A2 is more abstract than A1) iff A1 ⊑ A2 in uco(C). Lub and glb on uco(C) have
therefore the following reading as operators on domains. Let {Ai}i∈I ⊆ uco(C):
(i) ⊔i∈IAi is the most concrete among the domains which are abstractions of all the
Ai’s; (ii) ⊓i∈IAi is the most abstract among the domains which are more concrete
than every Ai – this domain is also known as reduced product of all the Ai’s.

2.4 Completeness in abstract interpretation

Completeness in abstract interpretation uniquely depends upon the abstraction
map [Giacobazzi and Ranzato 1997]. Let us consider the simple case of an ab-
stract interpretation specified by an abstract domain A and an abstract operation
f ♯ : A −→ A approximating a concrete semantic operation f : C −→ C. Then, f ♯

6 ·

is (sound and) complete if ρ ◦ f = f ♯ ◦ ρ, where ρ ∈ uco(C) is the uco associated

with A. It turns out that if f ♯ is complete then the best correct approximation
of f in A, i.e. ρ ◦ f : A −→ A, is complete as well, and, in this case, f ♯ indeed
coincides with ρ ◦ f . Thus, for any A, one can define a complete abstract semantic
operation f ♯ : A −→ A over A if and only if ρ ◦ f : A −→ A is complete. Hence,
an abstract domain ρ ∈ uco(C) is defined to be complete for f iff ρ ◦ f = ρ ◦ f ◦ ρ
holds. This simple observation makes completeness an abstract domain property,
namely an intrinsic characteristic of the abstract domain. It is also worth recalling
that, by a well-known result [Cousot and Cousot 1979, Theorem 7.1.0.4], complete
abstract domains are “fixpoint complete” as well, i.e., if ρ is complete for f then
ρ(lfp(f)) = lfp(ρ ◦ f), while the converse, in general, does not hold.
In [Giacobazzi et al. 2000] we gave a constructive characterization of complete

abstract domains, under the assumption of dealing with Scott-continuous concrete
functions. This result allows us to systematically derive complete abstract domains
from non-complete ones in a minimal way. The idea is to build the greatest (i.e.,
most abstract) domain in uco(C) which includes a given domain A and which is
complete for a set F of (continuous) functions, i.e., for each function in F . Given a
set of continuous functions F ⊆ C c−→C, Giacobazzi et al. [2000] define a mapping
RF : uco(C) −→ uco(C) as follows:

RF (ρ)
def
= M(

⋃

f∈F,a∈ρ

max({x ∈ C | f(x) ≤ a})).

Theorem 2.1. [Giacobazzi et al. 2000] A domain ρ ∈ uco(C) is complete for F
iff ρ ⊑ RF (ρ). Moreover, RF is co-additive.

Thus, the most abstract domain which includes ρ and which is complete for F
is gfp(λη.ρ ⊓ RF (η)). This domain is called the complete shell of ρ for F (see
[Giacobazzi et al. 2000] for more details).

2.5 Quantales and linear logic

Quantales originated in the algebraic foundations of the so-called quantum logic.
Afterwards, they have been successfully considered as algebraic models of Girard’s
linear logic [Rosenthal 1990; Yetter 1990]. Informally, quantales can be thought of
as a generalization of Boolean algebras, where the modus ponens law a∧(a⇒ b) ≤ b
holds relatively to a binary operation ⊗ of “conjunction” possibly different from the
meet. The basic idea in a quantale is to guarantee that, for any two objects a and b,
there exists a greatest (i.e., most abstract in abstract interpretation terms) object
c such that a ⊗ c ≤ b. In the following, we restrict our attention to commutative
quantales, i.e., quantales where the binary operation ⊗ is commutative. More
formally, a (commutative) quantale is an algebra 〈C≤,⊗〉 such that:

—〈C,≤,∨,∧,⊤,⊥〉 is a complete lattice;

—⊗ : C × C −→ C is a commutative and associative operation, i.e., a⊗ b = b ⊗ a
and (a⊗ b)⊗ c = a⊗ (b ⊗ c), for any a, b, c ∈ C;

—a⊗ (
∨

i∈I bi) =
∨

i∈I(a⊗ bi), for any a ∈ C and {bi}i∈I ⊆ C.

In other words, a quantale is a complete lattice endowed with a commutative
and associative “product” ⊗ which distributes over arbitrary lub’s. Common ex-

· 7

amples of quantales are complete Boolean algebras, which become quantales by
considering as ⊗ their meet operation. In particular, for any set A, the alge-
bra 〈℘(A)⊆,

⋂
〉 is a quantale. Also, given a commutative and associative opera-

tion · : A × A −→ A, a further basic example of quantale is 〈℘(A)⊆,⊗〉, where
X ⊗ Y

def

=
⋃
{x · y | x ∈ X, y ∈ Y } is the lifting of the operation · to sets.

The fundamental property of quantales is that, for any a ∈ C, the function
λx.a ⊗ x has a right adjoint, denoted by λx.a ⊸ x. This is equivalent to say that
one can define a binary operation ⊸: C × C −→ C such that, for all a, b, c ∈ C,
the following property holds:

a⊗ b ≤ c ⇐⇒ b ≤ a ⊸ c.

This is a straight consequence of the fact that, for all a ∈ C, λx.a ⊗ x is additive,
and therefore, it has a unique right adjoint λx.a ⊸ x giving rise to a GC. This
right adjoint ⊸: C × C −→ C is therefore defined as follows:

a ⊸ c
def

=
∨
{b ∈ C | a⊗ b ≤ c}.

A quantale 〈C≤,⊗〉 is called unital if there exists an object 1 ∈ C, called unit,
such that 1⊗a = a = a⊗1, for all a ∈ C. 〈℘(A)⊆,

⋂
〉 is a trivial example of unital,

commutative quantale, where A is the unit.
From a logical point of view, it is well known that quantales turn out to be

models of (commutative) linear logic [Rosenthal 1990; Yetter 1990], where the linear
implication is interpreted as the operation ⊸. The next proposition summarizes
the basic properties of linear implication (see [Rosenthal 1990]).

Proposition 2.2. Let 〈C≤,⊗〉 be a unital, commutative quantale with unit 1,

{xi}i∈I ⊆ C and a, b, c ∈ C.

(i) a⊗ (a ⊸ c) ≤ c (ii) a ⊸ (b ⊸ c) = (b ⊗ a) ⊸ c

(iii) a ⊸ (
∧

i∈I

xi) =
∧

i∈I

(a ⊸ xi) (iv) (
∨

i∈I

xi) ⊸ c =
∧

i∈I

(xi ⊸ c)

(v) a ⊸ (b ⊸ c) = b ⊸ (a ⊸ c) (vi) 1 ⊸ a = a

(vii) c ≤ (c ⊸ a) ⊸ a (viii) ((c ⊸ a) ⊸ a) ⊸ a = c ⊸ a

(ix) if b ≤ c then a⊗ b ≤ a⊗ c

In particular, from the above properties, it is easy to check that for all a ∈ C,
λx.(x ⊸ a) ⊸ a ∈ uco(C).

3. COMPLETENESS IN LOGICAL FORM

In this section we consider completeness in quantales, providing a linear logic-based
characterization of complete abstract interpretations of quantales. Let 〈C≤,⊗〉 be
a unital, commutative quantale playing the role of concrete interpretation, that is,
C is the concrete domain provided with a semantic operation ⊗ : C × C −→ C.
Let ρ ∈ uco(C) be an abstract domain. Recall that ρ is complete for ⊗ when for
all concrete objects x, y ∈ C, ρ(ρ(x) ⊗ ρ(y)) = ρ(x ⊗ y). This is more compactly
denoted by the equation ρ ◦⊗◦ 〈ρ, ρ〉 = ρ ◦⊗. Given any η ∈ uco(C), we define the
following set of unary (additive) functions Fη ⊆ C a−→C:

Fη
def

= {λx.x⊗ y | y ∈ η}.

8 ·

In particular, Fid will be also denoted by FC . It turns out that completeness of ρ
for ⊗ is equivalent to completeness of ρ for FC .

Lemma 3.1. Let 〈C≤,⊗〉 be a commutative quantale and ρ ∈ uco(C). The fol-

lowing are equivalent.

(i) ρ is complete for ⊗;

(ii) ρ ◦ ⊗ ◦ 〈ρ, id〉 = ρ ◦ ⊗;

(iii) ρ is complete for FC .

Proof. We first show (i) ⇔ (ii). Assume that ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗. Then, by
monotonicity and extensivity of ρ, we get ρ◦⊗ ≤ ρ◦⊗◦〈ρ, id〉 ≤ ρ◦⊗◦〈ρ, ρ〉 = ρ◦⊗.
On the other hand, assume that ρ ◦ ⊗ ◦ 〈ρ, id〉 = ρ ◦ ⊗. By monotonicity and
extensivity of ρ, ρ ◦⊗ ≤ ρ ◦⊗ ◦ 〈ρ, ρ〉 = ρ ◦⊗◦ 〈ρ, id〉 ◦ 〈id, ρ〉 = ρ ◦⊗◦ 〈id, ρ〉 = (by
commutativity of ⊗) = ρ ◦ ⊗ ◦ 〈ρ, id〉 = ρ ◦ ⊗.
Thus, ρ is complete iff ∀x, y ∈ C, ρ(ρ(x) ⊗ y) = ρ(x ⊗ y), and this is equivalent
to state that ρ is complete for the set of unary functions FC = {λx.x⊗ y | y ∈ C},
which concludes the proof.

Corollary 3.2. Let 〈C≤,⊗〉 be a commutative quantale and ρ ∈ uco(C). The

complete shell of ρ for ⊗ is gfp(λη.ρ ⊓RFC
(η)).

Proof. By Lemma 3.1, the complete shell of ρ for ⊗ coincides with the complete
shell of ρ for FC . Each function in FC is additive, and therefore continuous. Thus,
by applying Theorem 2.1, the complete shell of ρ for ⊗ is gfp(λη.ρ ⊓RFC

(η)).

Thus, the complete shell of any domain ρ for ⊗ can be constructively obtained by
iterating the operator RFC

. Our main aim is to show that this operator and, more
generally, the family of operators RFη

, for any η ∈ uco(C), can all be characterized
in terms of sets of linear implications. Let us define a domain operator

∧

⊸ : uco(C)×
uco(C) −→ uco(C) by lifting linear implication ⊸ to abstract domains as follows:
For any A,B ∈ uco(C):

A
∧

⊸B
def

=M({a ⊸ b ∈ C | a ∈ A, b ∈ B}).

Hence, A
∧

⊸B is defined to be the most abstract domain in uco(C) containing all
the linear implications from A to B.

Theorem 3.3. Let 〈C≤,⊗〉 be a unital, commutative quantale. For any ρ, η ∈
uco(C), RFη

(ρ) = η
∧

⊸ρ.

Proof. Let us prove that RFη
(ρ) =M({y ⊸ a | y ∈ η, a ∈ ρ}).

RFη
(ρ) = [by definition of RFη

]

M(∪f∈Fη,a∈ρmax({x ∈ C | f(x) ≤ a})) = [by definition of Fη]

M(∪y∈η,a∈ρmax({x ∈ C | x⊗ y ≤ a})) = [by commutativity of ⊗]

M(∪y∈η,a∈ρmax({x ∈ C | y ⊗ x ≤ a})) = [by definition of ⊸]

M(∪y∈η,a∈ρmax({x ∈ C | x ≤ y ⊸ a})) =

M(∪y∈η,a∈ρ{y ⊸ a}) =

η
∧

⊸ρ.

This closes the proof.

· 9

The following basic properties of
∧

⊸ follow directly from the corresponding prop-
erties of the linear implication in quantales.

Proposition 3.4. For all A ∈ uco(C) and {Bi}i∈I ⊆ uco(C), we have:

(i) A
∧

⊸(
d

i∈I Bi) =
d

i∈I(A
∧

⊸Bi);

(ii) A
∧

⊸⊤uco(C) = ⊤uco(C);

(iii) C
∧

⊸A ⊑ A;

(iv) C
∧

⊸A = C
∧

⊸ (C
∧

⊸A).

Proof. Points (i) and (ii) are straightforward.

(iii). By Prop. 2.2 (vi), for all a ∈ A it holds 1 ⊸ a = a. Since 1 ∈ C, it follows
that a = 1 ⊸ a ∈ C

∧

⊸A, and therefore C
∧

⊸A ⊑ A.

(iv). By point (iii), C
∧

⊸A ⊑ A, and therefore, by right monotonicity of
∧

⊸,
C

∧

⊸(C
∧

⊸A) ⊑ C
∧

⊸A. For the other inequality, consider an element belonging to
{c ⊸ a ∈ C | c ∈ C, a ∈ C

∧

⊸A}. By definition, such an element can be written as
follows: c ⊸

∧
i∈I(di ⊸ ai), for suitable c, di ∈ C, and ai ∈ A, for all i ∈ I, where

I is a suitable set of indexes. Then,

c ⊸
∧

i∈I(di ⊸ ai) =
∧

i∈I(c ⊸ (di ⊸ ai)) [by Prop. 2.2 (iii)]
=

∧
i∈I((di ⊗ c) ⊸ ai) [by Prop. 2.2 (ii)]

Since, for all i ∈ I, di ⊗ c ∈ C and ai ∈ A, (di ⊗ c) ⊸ ai ∈ C
∧

⊸A. Then, by
monotonicity of the Moore-closure, we get C

∧

⊸A ⊑ C
∧

⊸ (C
∧

⊸A).

This concludes the proof.

It is worth noting that, by points (iii) and (iv) above, the monotone operator
λX.C

∧

⊸X : uco(C) −→ uco(C) is reductive and idempotent, and therefore it is a
lower closure operator on uco(C). Also, it is important to note that in general A
and A

∧

⊸A are incomparable abstract domains.
The following result shows that the complete shell of an abstract domain A for ⊗

is given by all the linear implications from the concrete domain to A. This provides
a first representation result for objects of complete abstractions of quantales.

Theorem 3.5. Let 〈C≤,⊗〉 be a unital, commutative quantale and A ∈ uco(C).
The complete shell of A for ⊗ is C

∧

⊸A.

Proof. By Corollary 3.2, the complete shell of A for ⊗ is gfp(λX.A⊓RFC
(X)),

and, by Theorem 3.3, this is gfp(λX.A ⊓ C
∧

⊸X). We show that gfp(λX.A ⊓
C

∧

⊸X) = C
∧

⊸A by computing the corresponding Kleene’s iteration sequence.

(λX.A ⊓ C
∧

⊸X)(⊤uco(C)) = A ⊓ C
∧

⊸⊤uco(C) = A ⊓ ⊤uco(C) = A
[by Prop. 3.4 (ii)]

(λX.A ⊓ C
∧

⊸X)(A) = A ⊓ C
∧

⊸A = C
∧

⊸A
[by Prop. 3.4 (iii)]

(λX.A ⊓ C
∧

⊸X)(C
∧

⊸A) = A ⊓ C
∧

⊸(C
∧

⊸A) = A ⊓ C
∧

⊸A
[by Prop. 3.4 (iv)]
= C

∧

⊸A
[by Prop. 3.4 (iii)]

Thus, C
∧

⊸A actually is the greatest fixpoint of λX.A ⊓ C
∧

⊸X.

10 ·

The relevance of this result stems from the fact that, in the considered case of
concrete quantales, the fixpoint construction of the complete shell of an abstract
domain converges in two steps, and this provides a clean logical characterization for
the objects of the complete shell in terms of linear implications. Furthermore, the
following result yields an explicit logical characterization for the abstraction map
associated with that complete shell.

Theorem 3.6. Let 〈C≤,⊗〉 be a unital, commutative quantale and A ∈ uco(C).
Let ρ ∈ uco(C) be the uco associated with C

∧

⊸A. Then, for all c ∈ C,

ρ(c) =
∧

a∈A

(c ⊸ a) ⊸ a.

Proof. Since A =
d

a∈A {⊤C , a}, by Proposition 3.4 (i), we have that C
∧

⊸A =d
a∈A C

∧

⊸{⊤C , a}. Let us show that the closure operator ρa ∈ uco(C) associated
with C

∧

⊸{⊤C , a} is ρa = λc.(c ⊸ a) ⊸ a, i.e., by Theorem 3.5, ρa is the complete
shell of {⊤C , a} for ⊗. Then, the thesis is a straight consequence, since, by defini-
tion, for any c ∈ C, ρ(c) =

∧
a∈A ρa(c) =

∧
a∈A(c ⊸ a) ⊸ a. We first show that

ρa is complete for ⊗. By Lemma 3.1, it is enough to show that for any x, y ∈ C,
ρa(ρa(x)⊗ y) = ρa(x⊗ y). We prove that ρa(x)⊗ y ≤ ρa(x⊗ y), since this implies
ρa(ρa(x) ⊗ y) ≤ ρa(x ⊗ y) and the other inequality always holds. We have that
y ⊗ (y ⊸ (x ⊸ a)) ≤ x ⊸ a, and therefore y ⊗ (y ⊸ (x ⊸ a)) ⊗ ((x ⊸ a) ⊸

a) ≤ (x ⊸ a) ⊗ ((x ⊸ a) ⊸ a) ≤ a. As a consequence, we have the following
inequalities:

y ⊗ (y ⊸ (x ⊸ a))⊗ ((x ⊸ a) ⊸ a) ≤ a
y ⊗ ((x⊗ y) ⊸ a)⊗ ((x ⊸ a) ⊸ a) ≤ a
y ⊗ ((x ⊸ a) ⊸ a) ≤ ((x⊗ y) ⊸ a) ⊸ a
y ⊗ ρa(x) ≤ ρa(x⊗ y).

Thus, ρa is complete for ⊗. Then, in order to conclude, we prove that ρa is the great-
est domain complete for ⊗ which contains the object a. Suppose, by contradiction,
that there exists η ∈ uco(C) such that η(a) = a, η is complete for ⊗ and ρa ⊏ η.
Therefore, there exists c ∈ C such that η(c) > ρa(c), that is η(c) > (c ⊸ a) ⊸ a.
Then, η(c) ⊗ (c ⊸ a) 6≤ a, otherwise we would get η(c) ≤ (c ⊸ a) ⊸ a, which is a
contradiction. As a consequence, η(η(c)⊗ η(c ⊸ a)) 6≤ a. But, by completeness of
η, η(η(c) ⊗ η(c ⊸ a)) = η(c ⊗ (c ⊸ a)) ≤ η(a) = a, and this is the contradiction
which closes the proof.

4. CHARACTERIZING CONDENSING ABSTRACT DOMAINS

In this section we give a characterization of condensing abstract domains as solu-
tions of simple abstract domain equations, where the objects of condensing abstract
domains have an immediate interpretation in a fragment of propositional linear
logic. We consider a core logic programming language computing substitutions.
Our basic semantic structure is the unital, commutative quantale 〈℘(Sub)⊆,⊗〉,
where 〈℘(Sub),⊆〉 is a complete lattice and ⊗ : ℘(Sub)× ℘(Sub) −→ ℘(Sub) is the
standard lifting of unification ∧ to sets of substitutions, namely:

X ⊗ Y
def

= {x ∧ y | x ∈ X, y ∈ Y, x ∧ y 6= τ}.

· 11

Obviously, 〈℘(Sub)⊆,⊗〉 turns out to be a unital, commutative quantale, where
{ǫ} ∈ ℘(Sub) is the unit. In the following, we will slightly abuse the notation by
applying the operation ⊗ also to substitutions.

4.1 A core logic programming language

We consider programs as (finite) sets of procedure declarations, and we assume
that each procedure can be declared in at most one clause of the form p(x̄) ← A.
This assumption simplifies the treatment of condensing procedures: With each
predicate p a single clause is allowed in the program. The non-deterministic choice
in the definition of p is specified by allowing disjunction (

∑
) in clause-bodies. The

following syntax specifies the structure of logic programs considered in this section.
In the following definition Θ ∈ ℘

fin
(Sub) stands for a finite set of substitutions.

P ::= ∅ | p(x̄)← A | P.P
A ::= Θ | A⊗A |

∑n
i=1 Ai | p(x̄)

The forward semantics J〈p(x̄), {ϑ}〉KP of a procedure call p(x̄)ϑ in a program P
is defined as Sp(x̄)({ϑ}), as given by the following function on ℘(Sub), which is
recursively defined on program’s structure for any Φ ∈ ℘(Sub):

SΘ(Φ) = Θ⊗ Φ
SA1⊗A2

(Φ) = SA1
(Φ)⊗ SA2

(Φ)
S∑n

i=1
Ai
(Φ) =

∨n
i=1 SAi

(Φ)

Sp(x̄)(Φ) = SA(Φ) where p(x̄)← A ≪ P .

In this definition ≪ selects a (renamed) clause from P where variables not in x̄ are
renamed apart from x̄ and Φ. The forward concrete semantics of a logic program
P with initial goal p(x̄) is therefore FP,p(x̄) = λΘ.J〈p(x̄),Θ〉KP .
Thus, the best correct approximation of FP,p(x̄) with respect to an abstract do-

main ρ ∈ uco(℘(Sub)) is inductively defined as follows for any Φ ∈ ρ(℘(Sub)):

SρΘ(Φ) = ρ(Θ⊗ Φ)
SρA1×A2

(Φ) = ρ(SρA1
(Φ)⊗ SρA2

(Φ))
Sρ∑n

i=1
Ai
(Φ) = ρ(

∨n
i=1 S

ρ
Ai
(Φ))

Sρp(x̄)(Φ) = SρA(Φ) where p(x̄)← A ≪ P .

As above, the abstract semantics of a procedure call p(x̄) in a program P , with
abstract initial call Θ ∈ ρ, is defined as J〈p(x̄),Θ〉KρP = Sρp(x̄)(Θ). The forward

abstract semantics of a logic program P with initial goal p(x̄) is therefore F ρ
P,p(x̄) =

λΘ.J〈p(x̄),Θ〉KρP . Note that, in each equation above, Sρ is recursively defined as
the best correct approximation of S in ρ.

4.2 Generalizing condensing domains

The first attempt to formally specify condensing procedures as an abstract do-
main property was due to Marriott and Søndergaard [1993]. The authors consider
downward-closed abstract domains: X ∈ uco(℘(Sub)) is downward-closed if any
φ ∈ X is closed by instantiation. In this case, the glb of X , that is set intersection,
actually plays the role of abstract unification. A domain X ∈ uco(℘(Sub)) is called

12 ·

condensing if for any program P , query Q, and φ, φ′ ∈ X , we have:

FX
P,Q(φ ∧ φ′) = φ ∧ FX

P,Q(φ
′)

where FX
P,Q : X −→ X is the best correct approximation in X of the goal-directed

semantic function FP,Q mapping a set of initial substitutions for the program P
and query Q to their semantics. Giacobazzi and Scozzari [1998] gave a characteri-
zation of condensing downward-closed abstract domains as so-called Heyting-closed
domains. Heyting algebras are instances of quantales where linear implication is
replaced by intuitionistic implication, i.e. the quantale multiplication is the meet
operation. This perfectly models downward closed condensing abstract domains.
Indeed, the collection of idempotent substitutions closed by instantiation, denoted
by ℘↓(Sub), is a complete Heyting algebra, i.e. a quantale 〈℘↓(Sub),∧〉 [Giacobazzi
and Scozzari 1998]. In this section, we generalize this construction to any, possi-
bly non downward-closed, abstract domain. This characterization relies upon the
following generalized notion of condensing abstract domain, where we assume that
〈℘(Sub)⊆,⊗〉 is a quantale.

Definition 4.1. An abstract domain ρ ∈ uco(℘(Sub)) is condensing for F ρ
P,Q :

ρ −→ ρ, indexed on programs P and queries Q, if for all Θ,Φ ∈ ρ,

F ρ
P,Q(ρ(Θ ⊗ Φ)) = ρ(Θ⊗ F ρ

P,Q(Φ)).

This property depends upon the domain ρ and the abstract semantics F ρ
P,Q, which

in turn is defined on ρ. Not all domains are condensing: Marriott and Søndergaard
[1993] exhibit some non-condensing domains for groundness analysis. Let us see an
example of an abstract domain which is not condensing.

Example 4.2. Two variables x, y ∈ V are said to be independent for the substi-
tution θ when vars(θ(x)) ∩ vars(θ(y)) = ∅. Let Ixy be the set of substitutions for
which x and y are independent:

Ixy
def

= {θ ∈ Sub | vars(θ(x)) ∩ vars(θ(y)) = ∅}.

We consider a finite set of variables of interest VI ⊂
fin
V , which are the relevant

variables. According to this, abstract domains are restricted to have variables in
VI and do not explicitly show the set of relevant variables they refer to. The basic
domain PShVI for detecting pair-sharing (i.e., pairs of variables which may share
a common variable) is given by the most abstract domain which contains all the
objects Ixy, for any x, y ∈ VI , with x 6= y:

PShVI
def

=M({Ixy | x, y ∈ VI , x 6= y}).

The domain PShVI induces a Galois insertion (α, ℘(Sub),PShVI , γ) defined as fol-
lows: for all Θ ∈ ℘(Sub),

α(Θ)
def

=
∧
{Ixy | x, y ∈ VI , x 6= y, ∀θ ∈ Θ vars(θ(x)) ∩ vars(θ(y)) = ∅}.

Let P be the following program:

p(X,Y)← {{X/a}, {Y/a}}.

For VI = {X,Y } we have that PShVI = {⊤, IXY }, where γ(⊤) = Sub. Let us
denote by ρ the uco associated with PShVI . Note that the abstract operation ⊗

· 13

on PShVI is trivially defined as follows: For all A,B ∈ PShVI , ρ(A⊗B) = ⊤ (this
is a consequence of the fact that {X/Z} ⊗ {Y/Z} = {X/Z, Y/Z} which does not
belong to IXY while both {X/Z} and {Y/Z} do). If we compute F ρ

P,p(X,Y) with

initial query Φ = ⊤ we obtain:

F ρ
P,p(X,Y)(⊤) = Sρp(X,Y)(⊤)

= Sρ{{X/a},{Y/a}}(⊤)

= ρ({{X/a}, {Y/a}}⊗ ⊤) = IXY .

Therefore, being ρ(IXY ⊗⊤) = ⊤, the following results hold:

F ρ
P,p(X,Y)(ρ(IXY ⊗⊤)) = F ρ

P,p(X,Y)(⊤) = IXY

ρ(IXY ⊗ F ρ
P,p(X,Y)(⊤)) = ρ(IXY ⊗ IXY) = ⊤.

As a consequence, the domain ρ is not condensing for F ρ
P,p(X,Y). ✷

In the following we give a systematic method for designing condensing abstract
domains for logic programs. This allows us to remove the possible loss of preci-
sion between goal-independent vs. goal-directed static program analyses. This is
achieved by observing that {ǫ}, which is the unit element in 〈℘(Sub)⊆,⊗〉, rep-
resents the weakest possible substitution. Therefore, if a condensing abstract do-
main 〈ρ(℘(Sub))⊆, ρ ◦ ⊗〉 satisfying Definition 4.1, is also a commutative quantale
with unit ρ({ǫ}), then for any set of substitutions Θ ∈ ρ(℘(Sub)), we have that
ρ(Θ ⊗ F ρ

P,Q(ρ({ǫ}))) = F ρ
P,Q(Θ). The idea here is that by computing the abstract

semantics of a query with initial call in Θ, i.e., F ρ
P,Q(Θ), we obtain the same result

as unifying the substitutions in Θ with the result of the semantics of the same query
in the most general environment ǫ, which is F ρ

P,Q(ρ({ǫ})). This encodes the typical
way we derive the analysis of a query in an initial state from a goal-independent
(condensing) analysis: We filter out, by unification, those computations which do
not satisfy the given initial state (cf. [Barbuti et al. 1993]).

4.3 Weak completeness

It is worth noting that the abstract semantics of a program P is always defined
by iterating abstract unification of a concrete substitution belonging to P against
the result of the previous computation, which is an abstract object. The fixpoint
of this iterated procedure gives the semantics of a predicate. As observed above,
an abstract domain is condensing when it is possible to postpone the evaluation
of a specific call after the evaluation of the semantics of each predicate, without
any loss of precision. This means that it is possible to propagate the information
contained in a query back to the semantics without recomputing the semantics of
that query, by a simple unification operation. In this case, the semantics is obtained
by computing the semantics of each predicate with the most general call. It is
clear that completeness is sufficient to ensure condensation, since all intermediate
abstractions can be removed from the fixpoint computation of the semantics of each
predicate. However, a weaker form of completeness can be considered in view of
the evaluation strategy implemented in the bottom-up semantics of logic programs
[Barbuti et al. 1993; Codish et al. 1994]. The idea is that only one of the two
arguments of unification is an abstract object. Our aim here is to formalize the

14 ·

intuition that still no loss of precision is accumulated in the abstract computation
when at least one argument of ⊗ is an abstract object. This happens in logic
program analysis, when ⊗ is unification and the semantics consists in iteratively
unifying concrete and abstract objects, which respectively come from program’s
clauses and the current abstract substitutions. We define an abstract domain ρ ∈
uco(C) to be weak-complete for ⊗ when:

if either x ∈ ρ or y ∈ ρ then ρ(ρ(x)⊗ ρ(y)) = ρ(x⊗ y).

Hence, this is equivalent to require that ρ satisfies the following equalities:

ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗ ◦ 〈ρ, id〉 = ρ ◦ ⊗ ◦ 〈id, ρ〉.

In turn, by the hypothesis of commutativity of ⊗, this last condition is equivalent
to the following single equation:

ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗ ◦ 〈ρ, id〉. (1)

It is worth pointing out that this is actually a weakening of standard completeness,
i.e., any ρ complete for ⊗ is weak-complete for ⊗ as well. The converse does not
hold.
Then, for a given abstract domain A ∈ uco(C), we are interested in characterizing

the most abstract domain ρ ∈ uco(C) which is more concrete than A and satisfies
Equation (1). This domain, when it exists, is called the weak-complete shell of A for
⊗. Weak-completeness problems can be solved by exploiting the same technique
used for completeness, i.e., by resorting to a recursive abstract domain equation
involving linear implication. The next theorem gives a recursive characterization
of the solutions of Equation (1).

Theorem 4.3. Let 〈C≤,⊗〉 be a unital, commutative quantale and ρ ∈ uco(C).
The following are equivalent.

(i) ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗ ◦ 〈ρ, id〉;

(ii) ρ is complete for Fρ = {λy.x⊗ y | x ∈ ρ};

(iii) ρ = ρ ⊓ (ρ
∧

⊸ρ).

Proof. ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗ ◦ 〈ρ, id〉 holds iff for all x ∈ ρ and y ∈ C it
holds ρ(x ⊗ ρ(y)) = ρ(x ⊗ y), that is to say that ρ is complete for the set of
unary functions Fρ = {λy.x⊗ y | x ∈ ρ}. By Theorem 2.1, ρ is complete for Fρ

iff ρ ⊑ RFρ
(ρ). By Theorem 3.3, this is equivalent to say that ρ ⊑ ρ

∧

⊸ρ, and
therefore ρ = ρ ⊓ ρ

∧

⊸ρ.

Corollary 4.4. Let 〈C≤,⊗〉 be a unital, commutative quantale and A ∈ uco(C).
The weak-complete shell of A for ⊗ is gfp(λX.A ⊓X ⊓ (X

∧

⊸X)).

Proof. Since the operator λX.X
∧

⊸X is clearly monotone1, from Theorem 4.3
it directly follows that the most abstract domain which includes A and is weak-
complete for ⊗ is given by gfp(λX.A ⊓X ⊓X

∧

⊸X).

1It is worth noting that, even if RFρ = λη.ρ
∧

⊸η is co-additive for any ρ ∈ uco(C), this does not
imply that the operator λη.η

∧

⊸η is co-additive as well. This is a consequence of the fact that the
set of functions Fρ for which we want to be complete, changes at each iteration.

· 15

Thus, the weak-complete shell of a domain A ∈ uco(C) is exactly the greatest
solution in uco(C) of the following recursive abstract domain equation:

X = A ⊓X ⊓ (X
∧

⊸X). (2)

4.4 Condensing domains in logical form

We are now in the position to prove the main result of this section. In the follow-
ing we prove that any abstract domain, which is solution of the recursive domain
equation (1), is a unital commutative quantale which satisfies the relevant property
of being condensing and, under additional non-restrictive hypotheses, condensing
domains are all and only the solutions of Equation (1). This result shows a surpris-
ing link between completeness in abstract interpretation and condensing domains
and, more importantly, it gives computational relevance in static program analysis
to the notion of weak-completeness. Before proving this result, let us show the
following simple property which will be used later.

Lemma 4.5. Let 〈C≤,⊗〉 be a unital, commutative quantale, ρ ∈ uco(C) and

c1, .., cn ∈ C for n > 0. If ρ satisfies Eq. (1), then for all i, with 1 ≤ i ≤ n, it holds:
ρ(ρ(c1)⊗ . . .⊗ ρ(cn−1)⊗ ρ(cn)) = ρ(ρ(c1)⊗ . . .⊗ ρ(cn−1)⊗ cn).

Proof. The proof is by induction on the number of applications of ⊗.
(n = 0) is straightforward: ρ(ρ(c)) = ρ(c).
(n > 1) follows by Eq. (1):

ρ(ρ(c1)⊗ ρ(c2)⊗ . . .⊗ ρ(cn−1)⊗ ρ(cn)) = [by Eq. (1)]
ρ(ρ(c1)⊗ ρ(ρ(c2)⊗ . . .⊗ ρ(cn−1)⊗ ρ(cn))) = [by inductive hypothesis]

ρ(ρ(c1)⊗ ρ(ρ(c2)⊗ . . .⊗ ρ(cn−1)⊗ cn)) = [by Eq. (1)]
ρ(ρ(c1)⊗ ρ(c2)⊗ . . .⊗ ρ(cn−1)⊗ cn).

Theorem 4.6. Let P be a program and ρ ∈ uco(℘(Sub)). If ρ = ρ ⊓ ρ
∧

⊸ρ then

ρ is condensing for F ρ
P,p(x̄).

Proof. Let ρ be a solution of the recursive domain equation ρ = ρ⊓ ρ
∧

⊸ρ. Let
Ψ,Θ ∈ ρ. Since 〈℘(Sub)⊆,⊗〉 is a unital, commutative quantale, it is sufficient to

prove that Sρ is condensing, i.e., SρA(ρ(Ψ⊗Θ)) = ρ(Ψ⊗SρA(Θ)), for any procedure
definition A. This is proved by induction on the structure of the procedure definition
A. Let Φ,Ψ,Θ ∈ ρ(℘(Sub)).

—Consider SρΦ. By Lemma 4.5 we have that

SρΦ(ρ(Ψ ⊗Θ)) = ρ(Φ⊗ ρ(Ψ⊗Θ))
= ρ(Φ⊗Ψ⊗Θ)
= ρ(Ψ ⊗ Φ⊗Θ)
= ρ(Ψ ⊗ ρ(Φ⊗Θ))
= ρ(Ψ ⊗ SρΦ(ρ(Θ))).

—Consider SρA1∧A2
. By Lemma 4.5 and inductive hypothesis we have that

SρA1∧A2
(ρ(Ψ⊗Θ)) = ρ(SρA1

(ρ(Ψ ⊗Θ))⊗ SρA2
(ρ(Ψ⊗Θ)))

= ρ(Ψ⊗ SρA1
(Θ)⊗Ψ⊗ SρA2

(Θ))
= ρ(Ψ⊗ ρ(SρA1

(Θ)⊗ SρA2
(θ)))

= ρ(Ψ⊗ SρA1∧A2
(Θ)).

16 ·

—Consider Sρ∑n
i=1

Ai
. Recall that, by definition of quantale, the operation ⊗ is

additive. Therefore, by inductive hypothesis and Lemma 4.5 we have that

Sρ∑n
i=1

Ai
(Ψ ⊗Θ) = ρ(

∨n
i=1 S

ρ
Ai
(Ψ⊗Θ))

= ρ(
∨n

i=1 Ψ⊗ S
ρ
Ai
(Θ))

= ρ(Ψ⊗
∨n

i=1 S
ρ
Ai
(Θ))

= ρ(Ψ⊗ ρ(
∨n

i=1 S
ρ
Ai
(Θ)))

= ρ(Ψ⊗ Sρ∑n
i=1

Ai
(Θ)).

—Consider Sρp(x̄). The thesis follows immediately by definition and inductive hy-

pothesis.

The key point in the previous theorem is that the operation ⊗ is additive, i.e., it
distributes over arbitrary lub’s. Thus, whenever the abstract domain contains all
linear implications between any two abstract objects, no loss of precision is accumu-
lated by distributing the abstract unification over non-deterministic computations,
which are modeled by abstract disjunction.

In order to prove the converse of Theorem 4.6, i.e., that condensing domains
are solutions of Eq. (1), we need some additional hypotheses. The next result,
together with Theorem 4.6, provides a constructive characterization of condensing
domains which are at least as precise as a given domain A. These are all and
only those domains which are solutions of a recursive domain equation of the form
X = A ⊓X ⊓X

∧

⊸X.

Theorem 4.7. Let P be a program, p(x̄) be an atom, ρ ∈ uco(℘(Sub)) and let

X be a generator for ρ, i.e.,M(X) = ρ. Assume that for any Φ,Ψ ∈ X there exist

{Θ1, . . . ,Θn} ⊆ Sub, with n > 0, such that Θi is finite and the following conditions

hold:

—
∨n

i=1 Θi ⊆ Φ ⊸ Ψ

—ρ(
∨n

i=1 Θi) = ρ(Φ ⊸ Ψ)

If ρ is condensing for λΘ ∈ ρ.J〈p(x̄),Θ〉KρP then ρ = ρ ⊓ ρ
∧

⊸ρ.

Proof. Let ρ be condensing. We have to prove that ρ ⊑ ρ
∧

⊸ρ, i.e., that for any
Φ,Ψ ∈ ρ, ρ(Φ ⊸ Ψ) = Φ ⊸ Ψ. Since X is a generator set for ρ, it suffices to show
that for any Φ,Ψ ∈ X , ρ(Φ ⊸ Ψ) = Φ ⊸ Ψ. Suppose, by contradiction, that there
exist Φ,Ψ ∈ X such that ρ(Φ ⊸ Ψ) ⊃ Φ ⊸ Ψ. Note that, by definition, Φ ⊸ Ψ
is the most abstract object ∆ which satisfies Φ ⊗ ∆ ⊆ Ψ. Therefore, Φ ⊗ ρ(Φ ⊸

Ψ) 6⊆ Ψ. By hypothesis there exists {Θ1, . . .Θn} ⊆ Sub, with n > 0, such that Θi

is finite and the above conditions hold. Consider the program P = {p :−
∑n

i=1 Θi}

· 17

consisting of n facts. Then, by hypothesis, we have that:

ρ(Φ⊗ J〈p, {ǫ}〉KρP) = ρ(Φ⊗ ρ(
∨n

i=1 ρ({ǫ} ⊗Θi)))
= ρ(Φ⊗ ρ(

∨n
i=1 ρ(Θi)))

= ρ(Φ⊗ ρ(
∨n

i=1 Θi))
= ρ(Φ⊗ ρ(Φ ⊸ Ψ))
6⊆ Ψ
⊇ ρ(Φ⊗ (Φ ⊸ Ψ))
⊇ ρ(Φ⊗

∨n
i=1 Θi)

= ρ(
∨n

i=1 Φ⊗Θi)
= ρ(

∨n
i=1 ρ(Φ⊗Θi))

= J〈p,Φ〉KρP
= J〈p, ρ(Φ⊗ {ǫ})〉KρP

Therefore ρ would not be condensing, which is a contradiction.

The hypothesis in Theorem 4.7 is not restrictive for most domains used in logic
program analysis. Conditions (1) and (2) say that any implicational object x ⊸

y always approximates a finite disjunction of substitutions. This allows us, in
Theorem 4.7, to construct, for any implicational object x ⊸ y, a (finite) program
having that object in the abstract semantics. The idea is that, in order to prove the
converse of Theorem 4.6, any implicational object has to be the semantics of some
well-defined program. The following characterization of condensing is therefore
immediate by Theorems 4.6 and 4.7.

Corollary 4.8. Under the hypothesis of Theorem 4.7, ρ is condensing for the

semantic function λΘ ∈ ρ.J〈p(x̄),Θ〉KρP if and only if ρ = ρ ⊓ ρ
∧

⊸ρ.

Example 4.9. Consider the domain ρ = {⊤, IXY } as defined in Example 4.2.
The following equivalences hold.

—for all Θ ∈ ℘(Sub), from the definition of ⊸ it follows that Θ ⊸ ⊤ = ⊤.

—⊤ ⊸ IXY = {θ ∈ Sub | ∀δ ∈ Sub θ ⊗ δ ⊆ IXY } = {θ ∈ Sub | ↓ θ ⊆ IXY }. If
either X or Y is ground in θ, then the result immediately follows. Otherwise, it is
always possible to find an instance of θ where X and Y share a common variable.
Thus we have that ⊤⊸ IXY = {θ ∈ Sub | vars(θ(X)) = ∅ or vars(θ(Y)) = ∅}.

—IXY ⊸ IXY = {θ ∈ Sub | ∀δ ∈ IXY θ ⊗ δ ⊆ IXY }. If either X or Y is ground in
θ, then it trivially holds θ ⊗ δ ⊆ IXY . Consider now the case that both X and
Y are not ground. Recall that, given a substitution δ ∈ IXY , all variables but X
and Y are allowed to share. Therefore, when unifying θ ⊗ δ, we have to assure
that no variable in θ shares with any other variable. For example, if we consider a
substitution θ = {Z/W}, then by unifying with δ = {X/Z, Y/W}we immediately
obtain a substitution which does not belong to IXY . As a consequence, IXY ⊸

IXY = {θ ∈ Sub | vars(θ(X)) = ∅ or vars(θ(Y)) = ∅} ∪ {θ ∈ Sub | ∀v ∈
dom(θ) vars(θ(v)) = ∅}.

Let us denote by GXY the set {θ ∈ Sub | vars(θ(X)) = ∅ or vars(θ(Y)) = ∅} and
by ǫG the set {θ ∈ Sub | ∀v ∈ dom(θ) vars(θ(v)) = ∅}. Since GXY ⊆ GXY ∪ ǫG ⊆
IXY ⊆ ⊤, we have that ρ′ = ρ ⊓ ρ

∧

⊸ρ = {GXY , GXY ∪ ǫG , IXY ,⊤}. It is now

18 ·

easily seen that ρ′
∧

⊸ρ′ = ρ′ and therefore the most abstract solution to the domain
equation ρ = ρ ⊓ ρ

∧

⊸ρ is ρ′ = ρ ∪ {GXY , GXY ∪ ǫG}. By using ρ′ we now obtain:

F ρ′

P,p(X,Y)(ρ
′(IXY ⊗⊤)) = F ρ′

P,p(X,Y)(⊤) = ρ′({{X/a}, {Y/a}}⊗ ⊤) = GXY

and

ρ′(IXY ⊗ F ρ′

P,p(X,Y)(⊤)) = ρ′(IXY ⊗GXY) = GXY .

5. CONCLUSION

We have shown a surprising link between completeness in quantale-like structures
and condensation. This provides a characterization of condensing domains as mod-
els of a fragment of propositional linear logic. The relation between completeness
and reversible dataflow analysis has gained great attention in the last few years. As
observed in [King and Lu 2002], the possibility of reusing code in logic program-
ming is often related to the problem of figuring out how to query a program, and
backward analysis allows us to automatically derive the possible modes in which
predicates must be called. As proved in [King and Lu 2002], this property needs
condensing abstract domains. By this observation and from our characterization
of condensing abstract domains in logical form, it seems possible to characterize
reversible abstract interpretations in a pure domain-theoretic form. There are still
many open questions along this line of research. It is for instance a major chal-
lenge to design condensing abstract domains for aliasing. Theorems 4.6 and 4.7
give necessary and sufficient conditions to systematically design these domains, but
the construction of non-downward closed condensing abstract domains, although
clarified and made systematic, is still quite difficult due to the complex structure
of the quantale of idempotent substitutions. This is the case if we are looking for
the most abstract condensing domain refining sharing , which is an abstract do-
main devoted to the static analysis of variable aliasing in idempotent substitutions
[Jacobs and Langen 1992; Langen 1990]. In this case, the solution of the abstract
domain equation X = sharing ⊓ X ⊓ (X

∧

⊸X) is still unknown. Our results can
be used also to prove that known domains are condensing. Scozzari [2002] proved
that the domain Pos for groundness analysis [Armstrong et al. 1998] is the most
abstract solution of the abstract domain equation X = G ⊓ X → X , where G is
the domain of plain groundness in [Jones and Søndergaard 1987]. In view of The-
orems 4.6 and 4.7, this provides an alternative proof of the known fact that Pos is
condensing [Marriott and Søndergaard 1993]. The advantage of our method with
respect to other proofs is that it gives a constructive procedure to systematically
design condensing domains even for non-downward closed properties.

REFERENCES

Armstrong, T., Marriott, K., Schachte, P., and Søndergaard, H. 1998. Two classes of
Boolean functions for dependency analysis. Sci. Comput. Program 31, 1, 3–45.

Barbuti, R., Giacobazzi, R., and Levi, G. 1993. A general framework for semantics-based
bottom-up abstract interpretation of logic programs. ACM Trans. Program. Lang. Syst. 15, 1,
133–181.

Bruynooghe, M. 1991. A practical framework for the abstract interpretation of logic programs.
J. Logic Programm. 10, 91–124.

· 19

Codish, M., Dams, D., and Yardeni, E. 1994. Bottom-up abstract interpretation of logic pro-

grams. Theor. Comput. Sci. 124, 1, 93–126.

Codish, M. and Lagoon, V. 2000. Type dependencies for logic programs using ACI-unification.
Theoretical Computer Science 238, 131–159.

Cousot, P. 1997. Types as abstract interpretations (Invited Paper). In Conference Record of
the 24th ACM Symp. on Principles of Programming Languages (POPL ’97). ACM Press, New
York, 316–331.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the 4th ACM Symposium on Principles of Programming Languages (POPL ’77). ACM Press,
New York, 238–252.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. In Confer-
ence Record of the 6th ACM Symposium on Principles of Programming Languages (POPL ’79).
ACM Press, New York, 269–282.

Cousot, P. and Cousot, R. 1992. Inductive definitions, semantics and abstract interpreta-
tion. In Conference Record of the 19th ACM Symp. on Principles of Programming Languages
(POPL ’92). ACM Press, New York, 83–94.

Cousot, P. and Cousot, R. 1997. Abstract interpretation of algebraic polynomial systems. In
Proc. 6th AMAST Conf. Lecture Notes in Computer Science, vol. 1349. Springer-Verlag, Berlin,
138–154.

Cousot, P. and Cousot, R. 2000. Temporal abstract interpretation. In Conference Record of the
Twentyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, New York, NY, 12–25.

Debray, S. K. 1994. Formal bases for dataflow analysis of logic programs. In Advances in logic
programming theory, G. Levi, Ed. Oxford University Press.

Eder, E. 1985. Properties of substitutions and unifications. J. Symbolic Computation 1, 31–46.

Giacobazzi, R. 1996. “Optimal” collecting semantics for analysis in a hierarchy of logic program
semantics. In Proc. of the 13th Int’l Symposium on Theoretical Aspects of Computer Science
(STACS ’96), C. Puech and R. Reischuk, Eds. Lecture Notes in Computer Science, vol. 1046.
Springer-Verlag, Berlin, 503–514.

Giacobazzi, R. and Ranzato, F. 1997. Completeness in abstract interpretation: A domain
perspective. In Proceedings of the 6th International Conference on Algebraic Methodology and
Software Technology (AMAST ’97), M. Johnson, Ed. Lecture Notes in Computer Science, vol.
1349. Springer-Verlag, Berlin, 231–245.

Giacobazzi, R., Ranzato, F., and Scozzari, F. 2000. Making abstract interpretations complete.
Journal of the ACM 47, 2, 361–416.

Giacobazzi, R. and Scozzari, F. 1998. A logical model for relational abstract domains. ACM
Transactions on Programming Languages and Systems 20, 5, 1067–1109.

Jacobs, D. and Langen, A. 1992. Static analysis of logic programs for independent AND-

parallelism. J. Logic Program. 13, 2-3, 154–165.

Jones, N. D. and Søndergaard, H. 1987. A semantics-based framework for the abstract in-
terpretation of Prolog. In Abstract Interpretation of Declarative Languages, S. Abramsky and
C. Hankin, Eds. Ellis Horwood Ltd, Chichester, UK, 123–142.

King, A. and Lu, L. 2002. A backward analysis for constraint logic programs. Theory and
Practice of Logic Programming . To appear.

Langen, A. 1990. Static analysis for independent And-parallelism in logic programs. Ph.D. thesis,
Univ. of Southern California, Los Angeles, Calif.

Marriott, K. and Søndergaard, H. 1993. Precise and efficient groundness analysis for logic
programs. ACM Lett. Program. Lang. Syst. 2, 1-4, 181–196.

Palamidessi, C. 1990. Algebraic properties of idempotent substitutions. In Proc. of the 17th
International Colloquium on Automata, Languages and Programming, M. S. Paterson, Ed.
Lecture Notes in Computer Science, vol. 443. Springer-Verlag, Berlin, 386–399.

20 ·

Ranzato, F. 2001. On the completeness of model checking. In Proc. of the 10th European Symp.

on Programming (ESOP ’01), D. Sands, Ed. Lecture Notes in Computer Science, vol. 2028.
Springer-Verlag, Berlin, 137–154.

Rosenthal, K. 1990. Quantales and their Applications. Longman Scientific & Technical, Harlow,
Essex, U.K.

Scozzari, F. 2002. Logical optimality of groundness analysis. Theoretical Computer Sci-
ence 277, 1-2, 149–184.

Yetter, D. 1990. Quantales and (noncommutative) linear logic. Journal of Symbolic Logic 55, 1,
41–64.

