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Contributed Discussion

Andrea Sottosanti*, Davide Rissof, and Cristian Castiglionet

We first want to congratulate the authors for the impressive work, which consists in a
non-parametric method for estimating the spatial dependence structure of both station-
ary and non-stationary fields. For convenience, we refer to their method as NPVecchia.
We are convinced that their work represents a notable advance in spatial statistics and
brings a powerful and flexible analysis tool into many real-data problems. Nevertheless,
to better understand which domains of application could benefit of such innovation,
some open issues should be further discussed.

Due to the absence of an explicit model for the underlying continuous spatial field,
we are concerned about the possibility of using NPVecchia for performing common
operations in spatial data analysis, such as spatial interpolation and prediction. This
limitation would restrict the range of applications to contexts of in-sample analysis,
where prediction over unobserved sites is not the main goal. Moreover, geo-spatial data
are frequently observed upon a collection of sites distributed extremely irregularly over
the space and so the distances between different points can vary considerably. On the
contrary, Kidd and Katzfuss (2021) implicitly assume an almost uniform distribution
of the observed locations.

It therefore appears that NPVecchia is appropriate for applications whose data are
characterized by roughly equally-spaced sites, with many observations per site, and
whose main goal is not the prediction over unobserved locations. Based on these con-
siderations, we believe that NPVecchia would be ideal for modelling the data processed
by a new, groundbreaking class of technologies for DNA sequencing, called spatial tran-
scriptomics (s.t.). For the substantial contributions that s.t. is carrying into the study
of biological organisms, it was named method of the year 2020 (Marx, 2021). The 10X
Visium sequencing platform (Rao et al., 2020), one among several s.t. technologies, col-
lects the cells of a tissue sample through a grid of equally spaced spots on the surface
of a chip. The transcriptome is sequenced within each spot, where a few neighbour cells
are collected. The output of the procedure is the expression of thousands of genes within
each spot, together with the coordinates of the spots. Figure 1 is an example of a human
prostate cancer tissue sample processed with 10X Visium.'

The growing popularity of s.t. has allowed researchers to identify the so-called spa-
tially expressed (s.e.) genes, i.e., genes that show spatial variation patterns across the
tissue. Discovering and comprehending the functions of s.e. genes is of great scientific
interest and might lead to new insights and discoveries of specific biological processes.
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Figure 1: Left: human prostate cancer sample analysed with the 10X Visium platform.
The tissue covers a total of 4,371 spots. Right: detail of the left figure corresponding to
the black square. The spots on the chip are visible as circles over the whole surface.

Svensson et al. (2018) and Sun et al. (2020) tackle this research question as a statisti-
cal hypothesis testing problem where, for each gene, the presence of spatial variation
patterns is tested. Both these methods assume a stationary field and express the de-
pendency across the spots using parametric spatial correlation functions. To overcome
these limitations and perform an accurate inferential process, we discuss a possible use
of the idea of Kidd and Katzfuss (2021) into the analysis of s.t. experiments, with the
aim of improving the discovery of s.e. genes.

Let Y = (y(l)7 . ,y(N))T be an N x n experiment matrix, where y(©) is the expres-
sion of gene £ over the n observational sites (spots) with spatial coordinates sq,...,s,.
We assume that the data have been centered and pre-processed in such a way that
yzm € R and the histogram of each y*) is approximately symmetric. Then, we assume
the following model:

y OO N2 62 ~ N, (ED, N2, 4 621,), 9172, 2 ~ N, (0, 725), (1)

where £ is the gene-specific spatial field with marginal variance 77 and common co-
variance matrix X, while A\? and o2 are the variances of idiosyncratic error terms. We
assume the prior structure on the precision matrix ! proposed by Kidd and Katzfuss
(2021), and non-informative priors for the variance parameters A\? and o2 as suggested
by Gelman (2006). Last, taking inspiration from the recent literature on shrinkage priors
and on the extraction of sparse signals (Bhadra et al., 2019), we propose to consider a
prior model for 77 that performs an aggressive shrinkage toward 0 if no spatial patterns
arise, while leaving a high level of flexibility when the genes show a significant amount
of spatial correlation. Within this framework, an interesting choice with optimal the-
oretical properties is the Horseshoe prior (Carvalho et al., 2010), corresponding to a
hierarchical Half-Cauchy distribution on the standard deviation parameter 7.

Formula (1) can be seen as a generalized, Bayesian version of the SpatialDE model
proposed by Svensson et al. (2018), where all the unknown parameters, including the
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spatial covariance matrix 3, are inferred directly from the data using, for example,
a Gibbs sampling algorithm as described in Section 2.8 of Kidd and Katzfuss (2021).
Thanks to the shrinkage imposed on 752 through its a priori setup, the s.e. genes can
be determined by evaluating the posterior distribution of d, = TL,2 (7'52 + )\3)7 that is
the percentage of spatial variability specific of gene /. For example, one may define an
operating rule based on some threshold conditions, classifying as s.e. only those genes
which have P(§, > ¢|Y) > p for ¢ close to 0 and p close to 1.

Although we see a lot of promise in applying the work of Kidd and Katzfuss (2021) to
the problem of identifying s.e. genes, it remains an open question whether irregularities
on the edges and within the surface of tissues, as the one that appears in Figure 1 (left),
could somehow affect the estimate of 3.

Several generalizations of the model in Formula (1) could be explored. First, it is
often of clinical interest to evaluate biological processes common to a cohort of patients.
Hence, the model could be extended to identify s.e. genes by simultaneously evaluating
multiple tissue samples. Second, since s.t. raw data are highly variable, possibly zero-
inflated counts, a Poisson or Negative Binomial extension could be considered, similarly
to what has been done by Sun et al. (2020).
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