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An electrically-tunable metamaterial is herein designed for the active control of damped elastic waves. The
periodic device is conceived including both elastic phases and a piezoelectric phase, shunted by a dissipative
electric circuit whose impedance/admittance can be adjusted on demand. As a consequence, the frequency
band structure of the metamaterial can be modified to meet design requirements, possibly changing over time.
A significant issue is that in the presence of a dissipative circuit, the frequency spectra are obtained by solving
eigen-problems with rational terms. This circumstance makes the problem particularly difficult to treat, either
resorting to analytical or numerical techniques. In this context, a new derationalization strategy is proposed
to overcome some limitations of standard approaches. The starting point is an infinite-dimensional rational
eigen-problem, obtained by expanding in their Fourier series the periodic terms involved in the governing
dynamic equations. A special derationalization is then applied to the truncated eigen-problem. The key idea
is exploiting a LU factorization of the matrix collecting the rational terms. The method allows to considerably
reduce the size of the problem to solve with respect to available techniques in literature. This strategy is
successfully applied to the case of a three-phase metamaterial shunted by a series RLC circuit with rational

admittance.

1. Introduction

Metamaterials are engineered structured materials, typically in-
corporating sub-wavelength arrays of resonant unit cells, specially
designed to achieve exotic properties well beyond what is possible with
conventional materials. Applications, including sound filtering (Cum-
mer et al., 2016; lannace et al., 2021; Xiang et al., 2022), anten-
nas (Tadesse et al., 2020; Kumar et al., 2021), seismic protection (Brfilé
et al., 2014; Achaoui et al., 2016; Colombi et al., 2016; Carta et al.,
2016; Miniaci et al., 2016; Achaoui et al., 2017), guided mode manip-
ulation (Liao and Zhao, 2020; Guo et al., 2020), energy harvesting (De
Bellis et al., 2019; Alshaqaq and Erturk, 2020; De Ponti et al., 2020; Hu
et al., 2021), as well as cloacking devices (Brun et al., 2009; Norris and
Shuvalov, 2011; Stenger et al., 2012; Colquitt et al., 2014; Misseroni
et al., 2016; Zhang et al., 2020) and superlenses (Yan et al., 2013; Park
et al.,, 2015; Brun et al., 2019), span from optics to elastodynamics
and acoustics. With reference to the last two mentioned areas of
interest, the key concept to achieving smart mechanical properties is to
appropriately design the microstructure (shape, geometry, size, orienta-
tion and arrangement) of metamaterials also possibly including active
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phases. The resulting microstructured materials are capable of showing
fascinating behaviours such as ultra-stiffness/super-strength (Al-Ketan
et al.,, 2018; Momeni et al., 2019; Zhang et al., 2022), high fracture
toughness (Jia and Wang, 2019; Yin et al., 2021), ultra-lightness (Wang
et al., 2021; Chen et al., 2022; Zhang and Xu, 2022), auxeticity (Baci-
galupo and Gambarotta, 2016; Cabras and Brun, 2016; Lu et al., 2017;
Willey et al., 2020; Diana et al., 2023), as well as extreme constitutive
behaviours (Barchiesi et al., 2019; Zangeneh-Nejad and Fleury, 2019;
Bhatt and Banerjee, 2022) and wave manipulation properties (Baci-
galupo and Gambarotta, 2017; Beli et al., 2018; Bordiga et al., 2021,
2022; Ghaffarivardavagh et al., 2018; Mu et al., 2020). The rising
attention, shown in last years in this field, testifies to the growing
interest to pushing the existing limits of the mechanics of materials
in order to design increasingly versatile and efficient metadevices. In
this regard, the potential of 3D printing can often be exploited to
advantage (Yuan et al., 2019; Sangiorgio et al., 2022; Montgomery
et al., 2020; Gavazzoni et al., 2022).

In this context, an intriguing idea, which can be favourably lever-
aged in the design of high-performance metamaterials properly con-
ceived for the wave propagation control, is the use of active phases

Received 13 January 2023; Received in revised form 24 April 2023; Accepted 3 May 2023

Available online 11 May 2023
0020-7683/© 2023 Elsevier Ltd. All rights reserved.


https://www.elsevier.com/locate/ijsolstr
http://www.elsevier.com/locate/ijsolstr
mailto:marialaura.debellis@unich.it
https://doi.org/10.1016/j.ijsolstr.2023.112306
https://doi.org/10.1016/j.ijsolstr.2023.112306
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2023.112306&domain=pdf

G. Elefante et al.

responsible for multi-field couplings, such as the electro-, thermo-,
chemo- or the magneto-mechanical one (Xiao et al., 2020). In other
terms, by harnessing field responsive materials in the design of the
micorstructure, a broad range of mechanical responses are possible
without changing the mass of the system. Among others, the electro-
mechanical coupling provided by piezoelectric materials has been suc-
cessfully exploited and gave rise to many applications comprehensively
listed in review papers (Chen et al.,, 2018; Marakakis et al., 2019;
Zangeneh-Nejad and Fleury, 2019). A first contribution in this area
dates back to the end of the seventies with the seminal work by For-
ward (Forward, 1979) demonstrating the effectiveness of using external
electronic circuits to damp mechanical vibrations in optical systems.
The basic principle is the use of piezoelectric elements shunted by
electrical networks (shunted piezoelectric phases), resorting to either
active or passive control schemes. In the latter case, the piezoelectric
phases are shunted to passive electrical circuits (Hagood and von
Flotow, 1991; Hollkamp, 1994; Preumont, 1997; Thomas et al., 2009).
From a technological point of view, shunting can be achieved either by
applying patches of piezoelectric material on host structures (dell’Isola
et al.,, 2004; Casadei et al., 2009; Yi and Collet, 2021; Wang et al.,
2011; Zhang et al., 2015; Thorp et al., 2001; Airoldi and Ruzzene,
2011; Collet et al., 2012; Bergamini et al., 2015; Ouisse et al., 2016;
Chen et al., 2017) or directly by including a shunted phase in the
topology of the composite material (Flores Parra et al., 2017; Hou and
Assouar, 2018; Dwivedi et al., 2020; Bacigalupo et al., 2020, 2022).
Interesting studies also relate to spatially reversible and programmable
piezoelectric metamaterial (Celli et al., 2017, 2018; Alan et al., 2019),
as well graded piezoelectric shunted (Jian et al., 2022). On the other
hand a detailed review of different active mechanical metamaterials
can be found in Pishvar and Harne (2020), Ji and Huber (2022).

Focusing on the research targeted to realize tunable mechani-
cal metamaterials, in this paper we propose a paradigm to design
electrically-tunable active metamaterials for the propagation control of
damped elastic waves. In Bacigalupo et al. (2020) a three phase peri-
odic metamaterial characterized by a phononic crystal coupled to local
resonators has been proposed with a phase shunted by an electrical
circuit. The constitutive relations derived are valid in general, indepen-
dent of the type of electrical circuit considered, whether it is dissipative
or non-dissipative. Nevertheless the range of explored applications
focuses on the case of a purely capacitive, non-dissipative circuit.
This circumstance is because, in the presence of a dissipative circuit,
the analysis of wave propagation involves rational eigen-problems
which are very difficult to attack, both resorting to analytical and
computational methods. To overcome these difficulties and being able
to consider dissipative circuits, i.e. rational eigenvalue problems as
well, a possible way out is the use of derationalization techniques. More
specifically, with reference to a rational eigenvalue problem composed
by a polynomial part and a rational part where the rational part is the
sum of scalar rational functions multiplying certain constant matrices,
a possible classical way to resolve it is considering a linearization of
the rational part as described in Mehrmann and Voss (2004). The term
linearization means that the derationalization can be carried out by
multiplying the entire problem by the product of the scalar functions.
This results in a polynomial eigenvalue problem of higher degree
which can be resolved by a linearization process as the ones described
in Mackey et al. (2006b,a) and their references within. This approach
can only be applied to small-scaled problems. Another strategy to attack
the rational eigenvalue problem is to consider it as a general nonlinear
eigenvalue problem and solve it by using some nonlinear eigensolver as
the ones in Ruhe (1973) or the more recent (Lietaert et al., 2022) and
their references within. Regrettably, this strategy can be only exploited
to find an approximate solution of the original problem and requires a
reliable convergence analysis.

Based on this context, in this paper we propose a novel enhanced
derationalization technique, inspired by Su and Bai (2011), that proves
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to be efficient also in the case of large-scaled problems. The main idea is
to linearize the eigenproblem matrix through LU factorization, so that
the linearized problem becomes significantly smaller, leading to a faster
computation of the eigenvalues. The proposed methodological advance
allows the study of metafilters with piezoelectric phases shunted by
general RLC circuit (with rational admittance) and to explore the
intriguing field of wave propagation control in the presence of damped
elastic waves.

The paper is organized as follows. In Section 2 the dynamic bal-
ance equations governing the in-plane behaviour of the periodic tun-
able metamaterial are introduced, with a emphasis on the constitutive
equations specialized for either linear elastic or shunted piezoelec-
tric phases. Section 3 is devoted to wave propagation and frequency
band structure determination in the case of general dissipative circuits.
Within the validity of the Floquet theory, the Fourier series expansion
of the periodic terms intervening in the balance equations leads to
rational infinite dimensional rational eigen-problem. In Section 4 such
eigen-problem is truncated and derationalizated via the newly proposed
approach. Moreover, Section 5 focuses on the particularization of the
enhanced derationalization technique to the case of a specific example
of RLC series circuit. In Section 6 numerical experiments are presented
with the aim of investigating the effects of the tuning parameters of the
electrical circuit on the overall behaviour of the designed metamaterial.
Finally in Section 7 final remarks are drawn together with possible
future developments.

2. Governing equations of the periodic tunable metamaterial

We focus on a periodic heterogeneous metamaterial, made of dif-
ferent phases distinguished between elastic and a piezoelectric phase
shunted by generic electrical circuits (see Fig. 1). The metamaterial
is made by the in-plane regular repetition of a periodic cell 2, along
its periodicity vectors. It follows that the periodic metamaterial is
associated with a periodic lattice defined by the discrete subgroup X :=
{X:X=nv,;n €Z r=1,2} € R? being v, = vie, j =12 the in-
plane independent periodicity vectors. The dynamic balance equations
of the infinite metamaterial, in transformed Laplace space, are obtained
in the context of in-plane linear theory as

05, _ R

a—” +b; = ps*u;, (€8]
X

where o;; are the in-plane stress components, u; are the in-plane dis-

placement components, b; and p are the transformed source term and

the mass density, respectively, s is the complex Laplace variable and x;

are the components of the in-plane position vector x = x;e;, j = 1,2. In
transformed Laplace space, the constitutive relations read
ou,
— < k
0, =CY (5)—, ®))
1 ijkl axl

being Cﬁ“ the components of the constitutive tensor. By substituting
(2) in (1), the dynamic equation results

9 o, O\ ~ 9
L (¢t ()= ) + b, — ps*u; = 0. 3
ox, < k(8 o, > i = psu; 3
Both constitutive tensors and the mass density are 2-periodic fulfilling
the following relations

- .
Cu (x+n¥,,5) = Cly (x5,

) (x + n,vr) =p(x), Vx € 2. (©)]

Concerning the constitutive tensor components Cl.?k ,» it stands to reason
that those related to the linear elastic phases are s-independent, while
those of the shunting piezoelectric phase, polarized along the out-of-
plane direction and denoted by £L, are in general s-dependent and,

accordingly with (Bacigalupo et al., 2020), take the following form
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piezoelectric phase

(b)

Fig. 1. (a) Portion of a sample periodic shunted metamaterial; (b) Detail of the corresponding Periodic Cell containing the shunted piezoelectric material.
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being, with reference to the piezoelectric material, C;;,, the fourth
order elasticity tensor components, ¢;;; the third order stress-charge
coupling tensor components and ¢,,; = e, its transpose. Moreover, the
auxiliary s-dependent function B EL(A(s)) = fs5 (1 + A(s)) is introduced,
being f;; the second order permittivity tensor component and being
A(s) = L )Yg(s) /(s B33 AD)) the so-called tuning function with linear de-
pendence on the generic equivalent shunting admittance Y3~§(s), which
is expressed in terms of one or more tuning parameters defining the
properties of the generic RLC electrical circuit at hand. Note that in
the case of RLC electrical circuits Y”(s) turns out to be a rational
function of the variable s. In addition A") is the in-plane area, and
L™ is the out of plane thickness of the piezoelectric phase. It is
worth-noting that the constitutive relation of the shunted piezoelectric
material, in Eq. (5), is obtained from an in-plane condensation of those
associated to a three-dimensional orthotropic piezoelectric material
with polarization along the out-of-plane direction. It results in-plane
uncoupled constitutive equations, formally equivalent to the equations
of a linearly elastic dielectric material. It also emerges that the elastic
tensor of the shunting piezoelectric phase satisfies the major and minor
symmetries.

3. Wave propagation and frequency band structure

According to the Floquet-Bloch theory, it is possible to decompose

iy = eV, 6)

where ii; are 2-periodic Bloch amplitude components, i.e. they fulfil the
following relation

@ (x+nv,.k s) =i (x,k,5), vx € 2, @)

and k = k;e;, j = 1,2, is the wave vector, spanning all points of the
reciprocal space, also known as k-space. Due to the periodicity of the
metamaterial, besides X defined in the physical space, it is possible to
uniquely identify a periodic reciprocal lattice defined in turn by the
discrete subgroup G := {G : G=mp; m €Z, s=1,2} € R being
P, =pie, =12 the periodicity vectors of the reciprocal lattice that
can be determined as

QVﬁ

o ®)

p, =27

where Q is the /2 rotation matrix, and a,f = 1,2, « # S, so that
the scalar product v, - p, = 2x6,, holds. More specifically, also in the
reciprocal space it is possible to identify an elementary periodic cell
also known as first Brillouin zone B. Therefore, by plugging Eq. (6) in
(3) after proper manipulations we get

i g, 9C,
0 e duh P auh ijht
ox; (Cijhzf’E> —the <(Cuht’ + szh,) ox; + ox, Un

- (kjkf Clap+ pszs,.h) iy = 0. ©)

Due to the A-periodicity of the constitutive tensor components C he
of the mass density p and of the Bloch amplitude components i;, they
can be expanded in their Fourier series in terms of G, defined as

i, = Z (], ¢S, [, = I_i’lll / ge ' S™Xdx  (10a)
nez? 2
. 1 —1G(W):
p= Y o], eSO, ol =0 / peSV%ax (10b)
vez?
G(v): - &6V
ljhf Z [C ht’] ™ x’ [ Ijhl’]” - |Q[|/ ’Ihf o de’
veZ?

(10c)

where n = (n),n,), v = (v;,v,) with n,v € Z?, and || the area of the
periodic cell. The derivatives involved in (9) are accordingly defined as

il

a_x; _ 2 NCTALAN LGmx (11a)
nez?
2%, G
_ (
6xf0x - 2 (nrp )(nspf)[u ]n e n)x (11b)
<>
9C,ine = Y 0, 2ICE, 1y @O, (110
axj rej ijht v
vez?

Consequently, once we substitute Eqs. (10), (11) into (9), we get the
following equation
>y ( AN (AT
neZ? veZ?
(nrp )ngp)IC; ,,f] liyl, + (0" )k,,»[C,W] [ap]n 12)

+ (nrp )kf[ Afhj] [uh]n +(Urp )kf[ ,}hf]v[uh]n

—k; kf[c] o doliin) = (01,528,141, ) L CMHGMIX _ .

Notice that in general the terms C her S well as p, are piece-wise con-
stant functions, characterizing the dlfferent phases of the metamaterial.
With specific reference to the constitutive tensor components, the s-
dependent coefficients of the Fourier series of the shunted piezoelectric
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phase and those s-independent of the elastic phases are denoted by
[C iih f] and [Cl p};]n, respectively. In this framework, we indicate ¢ the
region of the perlodic cell related to the shunted piezoelectric phase,
and 2(\¢ the remaining region related to elastic phases. It follows that
the Fourier coefficients of Cﬁh , becomes
2A\¢

[C, M] =[Cpe It lj,,f] = [CJM] + rijne (S xeln, 13)
where r;;,,, is a generic rational polynomial function of s which depends
on the electric circuit connected to the piezoelectric phase and y, is the
indicator function related to the set (region) ¢, and we include them in
Egs. (12). Therefore, we get the following equations

>y (—(v,p;)(nsp;)[c;i‘,}f]v[a,,],, -

nez? ver?
+ (n, 1 >k/[C/M] @y, + (0,7 )kf[c/,,,J [],
+ Ok CN )y = Kk LCT Ty
+ 0,0k Figne el = 000005 7y () i Vo,

D) PCS Tyl ]

- (n,P;)("sP;) ri/hf(s)[lc]u[ﬁh]n + (n,p;)kf ",‘jhf(s)[lc]u[ﬁh]n"'

+ (”rP;)kf ’ig’hj(s)[)(c]u[ﬁh]n - kjkf "ijhf(s)[)(c]u[ﬁh]n

- [P]y525ih[ﬁh]n> e CMHGENX — a9

Moreover, by defining the multi-index m = v + n, the
infinite-dimensional Eq. (14) becomes

>3 <—((mr—n,)p;)(nsp;>[C§‘,}§],,,_n[ahJ,,

neZ? me7?

A 2A ~
= D) DC N Vol ]y = KK IC 0 Tl 1+

+ ("rp/-)kf Fijne D xelpliyl, + (”rpj)kf Fienj () X e Im-nliin]y

+ (my = 1PV 71 Lt Il T + (1D AAC N iy
+ (1, P (o el + (01, = )P (C N gl ]+
= (m, = 1P e ) e Il

= )P Ty (e Imonliln 1t
= Kk rijne O teImnlinln = [PlnonS"8inliin) > dCmMX =0, (15)

In order to write the infinite-dimensional Eq. (15) in a more compact
form, we define the infinite-dimensional linear operators A, B and
Cijnes with i, j, h,£ = 1, 2, in terms of the argument & introduced as

il = col(u;,u,) € £,(Z*), (16)

where u;,u, are vectors collecting, respectively, the Fourier coefficients
[@,1, [#,],, the col operator stacks its vector arguments column-wise
into a single column vector, #,(Z?) denotes the space of square-
summable sequences with two integer indices and #,(Z?)? is £,(Z%) x
¢,(Z*). Consequently, the first operator A : 7,(Z?)? — £,(Z2)? is
described in each infinite part as

Afcol(uy,up)l™' = ) <—((mr—n,)p;xnsp;)[C?}),EJ",_"[M,.

nez?
(n,p )(l’l pf)[cljh/]m n[uh]n
+ ("er)kf[Cuthmanh]n + (”rp;)kf[cif’\isjm’"[ahj"-‘—

+ ((m, = 1P (O] 0 Dl ]

= Kk O el ) (7a)

A[COl(ul,uz)JM2 = Z < _((m n )P )(nspro)[ /]m n[uh]n
nez?

(n,p )(nyp/)[ 2/}1)’ m n[uh]n+

+ P Ao el + (1, Cop) il ]
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+ ((m, = 1P [Cy 0 Il ]

= kjkel thf]m aliin]ln ) (17b)
the second operator B : 7,(Z?)? = £,(Z*)? results
Bleol(uy, upl™ ' == Y [ply_nliiy 1o, (18a)
nez?
Blcol(uy,up)]™* = = Y’ [plp_nli2]n: (18b)
nez?

and the last operators C s, Cajpp © £2(Z*)? — £,(Z?)* are defined as

Cljhg[col(ul,uz)]"" = z —((m,
nez?
= kjky rijne (D xelm—nlipln +
- ("VP;)(”'A-P;) "ijhf(s)[lc]m_n[ﬁh]"

= 1)) Dy) Fijne () e lm—nliin]n

+ ("rP;)kf Tijne (O xelplidyln+
+ (0. PDk rign () A elmonliin]n

+ ((m, — "r)P;)kf Tijne X elm—nliiplp (19a)
Cljhf[COI(upuz)]mz =0, (19b)
CZjhf[COI(uh uy]™ =0, (19¢)

Cojeleol(u,up)™ = 3% ~((m,

nez?
= kike rijne($)xelmonliinla +

- (nrpj)(nsp}) rijh{’(s)[)fqlmfn [ip]n

- nr)P;)(nSP;) rijh[(s)[xe’,]mfn [,

+ (”rP;-)kf Fijne (D xelylin)+
+ (n0Dke rignj () e Imonliin]n
+ ((m, — ”r)l’;)kf Tijne (Dt e lm-nlip]y- (19d)

In this way the compact form of Egs. (15) is
(A + 2B+ ()C e + rzj,,f(s)czw> =0, (20)

being an infinite-dimensional rational eigenproblem in terms of the
eigenvalue s and the eigenvector &, playing the role of complex fre-
quency and polarization vector of the Bloch wave, respectively.

Notice that, by exploiting the symmetries of the tensor Cf;h , and,
therefore, those of the rational polynomial functions r;;,, as well, we
can develop the sum over the repeated indices, so that Eq. (20) takes
the form

( A+ 5B +7r1111(5) Cripy + 71211 (9) BCrapy + Cappy)

+ r1212(8) 2C 21 + 2C191) + r11n(8) (Chigg + Cyy)

+ 11222(8) (Capp + 3C 1) + 12022(5) Coy ) a=0. (21)

In case the rational polynomial r;;,,(s) is not in a reduced form we
can perform the polynomial division as
ijpe(8) DPijne(8)
4ijne(S) Gijne(S) ’
with d;;,z, pijne» 4ijne Polynomials in s of a certain degree, and reduced
the eigen-problem (21) to the form
(%(A, B,Cjjir-dijie(s), 5) + m(cijkf»pijkf(s)! ‘Iijk/(s)) ) =0, (23)

where ‘P is a polynomial part defined as

rijne(s) = =dijne(s) + (22)

P =A+5"B+d;;,,(5C, +d1211(5)(3C1211 +C2111)
+ d1212(2C1212 +2C2121) + dnzz(s)(cuzz + sz]])
+ dlZZZ(S)(CIZZZ + 3C2221) + dy00(5)Co002s 24)

which, if we set as d = max {2, deg(d; ), for i, j,h,¢ = 1,2}, we may
write it as

P=Ag+5A, + - +574,, (25)
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and a rational part taking the form

Pui(s) Pion(s)
A= Cun + 3Cyy +C
PO R ) (3Cian 2111)
P1212(8) Priaa(s)
+ (2€C 1212 +2C51) + ——= (Ci 12 + Cy))
91212(5) q1122(5)
P122(5) P2222(8)
+ c +3C + ] 26)
q1222(5) (Crazz 1) T (s) 22

For simplicity in the notation the rational part can be rewritten in
compact form as

R= D;, 27)
Z’ i(8)

where the assumptions for the s-dependent terms are introduced

pi(s) . P1111(8) po(s) . P1211(8) p3(s) o P1212(8)

a® " am® @ g 6 T gpp®)’

) _ P P P Pe(S) | Paan(s) (28)

a(s) T ann)’ a5 T d() g6(s) T gam(s)

as well as the assumption posed for the infinite-dimensional linear
operators

D, :=Cy, D, :=3Cy + Cypys D; :=2C 5, +2Cyy,

D, :=Cip+Cpy; Dy 1= Clyy +3Chy, D := Copy. (29)

Therefore, the infinite dimensional eigen-problem (20) results in the
suitable form

<A0+ o+ Aysd +z p’g) i

; .)azo. (30)

4. Truncation and derationalization of the infinite-dimensional
rational eigen-problem

The eigenvalue problem (30) is the compact form of the infinite-
dimensional algebraic system of Eq. (15). For this reason, an approx-
imate solution of the eigen-problem can be found provided that the
system is truncated by restricting the discrete multi-indices m and n to
those satisfying ||m||,,|Inll, < N for a certain N € N>9, with |-,
being the infinity norm. If follows that Eq. (15) becomes

2 X

nez? mez?
Inllo <N lImlloo <N

( ~(m, = n)P) 1, PC 0 Dl ]

= 1P PDIC S Tl = e 1N Tl ]
+ (0. PDk g 1y (D xeloliinly + (.PDk g rignj () X lmonliinla
+ (= 1))k 733 () e Il )t
+ Pk LC 0 Il + (0,2 (C i1
+ ((m, = m P (Co Il It
- ((m,
= (PP Fije () e Imenliinlnt

= 1))y Fijne (D e lm—nllin]n

= kiks rijne (D xelm-nliinly — [P mn 5> 8ip R 1 ) eCmx =, (31)

It follows that the infinite operators in the compact form (17)-(19),
and (29) are replaced by the corresponding finite dimensional op-
erators, i.e., are replaced by matrices, denoted by the apex (f), so
that Eq. (31), by using the same notation in (23) for the corresponding
infinite-dimensional problems, takes the form

(m(f)(A(f)’B(f) ijfk)/” z/k((s) S) + m(f)(c kf’pukt’(s) qukf(s))> i) =0,
(32)

where the vector @) collects the finite-dimensional Fourier coefficients
of the Bloch amplitude components. Specifically the finite-dimensional
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rational eigen-problem involves matrices of dimension 2M x 2M with

= (2N +1)2. On the other hand Fourier coefficients associated to the
tensors involved in Egs. (31) are the one related to the multi-indices
m—n and, as a consequence, we need to determine (4N +1)? coefficients,
i.e. the indices whose norm is smaller than 2N.

It is worth-noting that, dealing with heterogeneous metamaterials,
characterized by periodic piece-wise constant functions C he? and p,
their Fourier series exhibit the so-called Gibbs phenomenon Many
studies have been developed on methods to mitigate this phenomenon,
exploiting polynomial and rational interpolations (Berrut et al., 2020;
De Marchi et al., 2021; Gottlieb and Shu, 1997; Shizgal and Jung,
2003), as well as Fourier series in combination with regularization
filters (Jerri, 1998; Bacigalupo et al., 2019). In general these techniques
are the more effective the greater is the number of harmonic com-
ponents necessary to obtain a desired approximation of the periodic
functions.

A key point to highlight is that the eigen-problem (32) turns out
to be rational and its solution can be obtained resorting to derational-
ization techniques, able to transform the rational eigen-problem into a
polynomial one that in general is simpler to solve. Specifically, since the
rational eigen-problem (32) involves rational polynomials expressed in
a reduced form, we propose an enhanced derationalization procedure
inspired by theoretical investigations on rational eigen-problems de-
tailed in Su and Bai (2011). Specifically it is worth-noting that through
this method the rational eigen-problem is transformed in a linear eigen-
problem of a slightly larger size, but in general easily solvable. In the
case of eigen-problems of large size, this method is computationally
advantageous compared to the standard derationalization procedures
based on multiplying the rational problem by the product of denom-
inators. On the other hand, when small size problems are taken into
account, the two procedures have about the same computational bur-
den. Details on the standard derationalization procedure are included
in Vadala et al. (2021) where the method is exploited to solve a small
size eigen-problem.

In this framework, let us consider a generic finite dimensional
problem of the same form of (30), that is a rational eigen-problem

( AD 4 AV ¢ Z pis) D?f)) i =0, (33)
= ais)

for a generic finite integer number k£ > 1, where AY) and Dl(.f ) are
matrices of a certain size nxn, i) the related eigenvector of size n and
p;» q; are polynomials of certain degrees. Notice, moreover, that once
we have a polynomial fraction of the type 2O with deg(p;) < deg(q;)

q;(s)
and p;(s) = p<0> + et p(V)s q;(s) = q( D 4t q(v)sv + s¥*1, it is possible
to write it as a product of matrices, in fact (see e.g. Antoulas (2005))

we have that

pi(s) _
1
with
onT 1 0
i
0 0 1
a =" EV=| : : N N e H ]
(:V) 0 0 0 1 0
p; ) ) @) 0)
4 —4; —4; e 7Y
(35)

and I (lf ) the identity matrix of the same size of Eﬁf ). Therefore, the
rational eigen-problem (33) can be properly specialized by exploiting
(34). In this framework we consider the LU decomposition (or rank
revealing LU decomposition to reduce the size of the problem) of the
DY = L/(_f>U§f)T

matrix D’(.f ) ie , so that the rational part of the
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eigenvalue problem (33) can be written as follows

k k
pi(s) -1
3 2O b0 = S GOV (19 - ED) O Ly =

g;(s) ! i

i=1

k
i=1

I
M»

L1y @ a1 @ 1) - 1) @ EVy!
1
a1y @ bw\ T =

- L(f)(SF(f) _ G(f))*l(U(f))T’ (36)
with T (2f ) the identity matrix of the size of the matrix Df.f ) (or the
rank in the case of the rank revealing decomposition), the symbol ®
the Kronecker product and the following s-independent matrices are

defined

LY =(1VaY @y, ... 1VaY @ a7},

FO = diagt @ 1V, ..., 19 @ 1),

GV =diag" @ EV..... 1" ® E),

vy = [U(lf)(I(zf) ® b(lf))T’ s chf)(l(zf) ® bi‘f))T]. 37)

The rational eigen-problem (33) can be thus rewritten in the form
(AE)D 4o Aff)sd + LOFD - G(f))‘l(U(f))T> ) =o, (38)

Finally, a linearization of the problem (38) can be performed by
introducing the extra vector variable

x() = _(SF(f) _ G(f))—l(U(/'))Tﬁ(f) (39)

and by setting as

o o o I
AL AL - 4, L
v 0 0
MY = . ,
v 0
(U(/'))T —_GY
d—15(f)
N u
_AD
12 5?2
N = , y(f) - , (40)
v " )
-F x()

with I the identity matrix of the same size of A;f ), with j=0,....d,
we get that (38) can be rewritten as a linear eigen-problem in the
following form

(M(f) — SN(f))y(f) =0. 41)

Therefore the eigen-problem (41) involves matrices of size

k k
s, =2M (P, + ) deg(q) X 2M (P, + Y. deg(q))),

i=1 i=1

with P, = max{2,deg(p;),i = 1,...,k}. It is worth-noting that this
size is much smaller than the size corresponding to matrices involved
into the polynomial eigen-problem obtained by exploiting a standard
derationalization that is
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5, =2MP; xX2MP,,

with P, = max{2Hf.;odeg(ql-),deg(pj)Hf.‘zodeg(q,-),j = 1,...,k}. It
emerges that the enhanced derationalization procedure here proposed
turns out to be very effective since it requires the treatment of ma-
trices of reduced size. The determination of both the eigenvalues and
eigenvectors entails a lower computational burden.

Note that the proposed enhanced derationalization method can
also be exploited to study wave propagation in periodic viscoelastic
materials where the relaxation kernel is expressed in terms of Prony
series. In fact, even in these cases the propagation is governed by
rational eigen-problems and this procedure is all the more convenient,
compared to standard derationalization techniques, the greater is the
number of Prony series terms to be considered for the constitutive
characterization of the viscoelastic material.

5. An example of RLC series circuit

Let us consider the case of a metamaterial with a piezoelectric phase
characterized by in-plane cubic symmetry and out-of-plane polarized,
that is connected in parallel to a RLC series electrical circuit. It results
that the non vanishing constitutive tensor components Cﬂ“l, introduced
in Eq. (5), are in general s dependent, except for the component CEL .
Therefore, the only rational polynomials involved in (22) are ry;;,(s) =
rappp(s) and ryjp(s).

For the considered electrical circuit, the equivalent shunting admit-
tance, first reported in Section 2, specializes in the following form

1 sCg

Y3(s) = = s 42
) Rg+sLg+(sCg)™!  sCgRg+52CgLg+1 “2)

being C¥ the capacitance, R® the resistance and LS is the inductance
characterizing the electrical circuit. The related dimensionless tuning
function turns out to be

PyysS
LYY 1w Cy
s P33 AP) B AP) sCgRg +52CgLg+ 1

AMs) = (43)

For the sake of convenience Eq. (43) can be expressed in terms of the
dimensionless complex frequency o = s/s, as
As

o)z — 28
Sl pr—

(44

where the control parameters Ag, ag, and fg are dimensionless capac-
itance, resistance, and inductance, respectively, defined as follows
Cg Lw®
T Cs prA®

as =5,CsRg, fsg = SECSrLS' (45)

Note that iy corresponds to the value of the tuning function A(c)
evaluated for ¢ = 0. Therefore, for the piezoelectric shunted material,
the auxiliary s-dependent function £* takes the form

A
EL _ 1+ 2 = 1 —S> =
B3y = P33(1 + Ao)) = B33 < * As(oag +02fg) +1

(is(aaS +0%fg+1)+1 >
=P .

Ag(oag +062f8g) + 1 (46)

It follows that the constitutive tensor components C,’f;fl detailed in (5)

are fully defined in terms of the dimensionless frequency o as well as

in terms of Ag, ag, and B characterizing the electrical circuit.
Moreover, the non vanishing rational functions in (22) can be

expressed in the form (See Box I).

ripn(e) =dy+ —— 47)

P Py
= =d, + —, ,
ri111(0) = ry(0) = d, 7o) )

and the second order polynomials in ¢ are

a Ci333A¢ + f33Ca333 + €333€-
010) = (@) = qo) = o? + S 4 B33Cs3334s + F33C3333 33533 _
Bs BsP33Cs3334s + Bsesszeszdg

=02 +qWVo +4©. (49)
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where
d = B33C1111C3333 = B33C1133C3311 + Ci111€3338333 — C113N3€3333311 = Cs311€113%333 + C3333€113%311 ’
P33C3333 + €333€333
dy = B33C1122C3333 = F33C1133C3320 + Clinnes33€sss — C1133€N3335322 — Ci3:e113€333 + Ca333€113832
BsAs(B33C3333 + e333€333)>
_ _Ps(Caazzens = Criz3esss)(Cazzzeann = C3311€333)
Bs(P33C3333 + €333€333)* '
_ _Ps(Caaszens = Ciiz3esss)(Cazzzeann = C3322€333)
! Bs(P33C3333 + €333€333)* |

5

(48)

Box I.

Therefore the rational eigen-problem (33) can be expressed in the form

(4 +o2AY + = )(2p1D(f)+p4D(f))) al) =0, (50)
where AY) = AV + 24,0 + 4, and A’ = BY)s%. This

rational eigen-problem can be tackled by resorting to the enhanced
derationalization scheme detailed in Section 4. In fact, the rational part
can be rewritten in the following suitable form

1 " _
q(c)—(l 0) (dl (_

= (a(f))T(o.I(lf) _ E(f))—l b,

0 1

o)) ()

Once we consider the LU decomposition of the matrix 2p, D(lf )4 D4 Dy ),
the eigen-problem (50) becomes

( AD 16240 4 LOGFY) - Gy 'y’ ) alh =0,

(51)

(52)

with L = LV U @ aMT, FO =1V @ 11, 6Y) = 1, ® EV) and
v =1, bV >)U T resulting in a spec1a11zat10n of (38). Finally the
eigen-problem (52) is linearized as follows

(MY — Ny =, (53)
where
0o AV LV -4y 0 0
2
MO =10 o o [.Nw=] o 1 o
0 U(f)T _G 0 0 —_FU
s
y O =|an (54
XN

with the vector x/) defined in (39).

We remark that the considered enhanced derationalization ap-
proach enables one to have a significant reduction of the computational
burden with respect to the standard derationalization approach. In fact
in the latter case, we would have a polynomial eigen-problem of degree
4 which would lead to a linear eigenvalue problem involving matrices
considerably bigger than those obtained with the combination of the
enhanced derationalization approach together with the subsequent
linearization procedure.

6. Illustrative example of a tunable metamaterial

We focus on a three phase metamaterial made by the in-plane
regular repetition of a periodic cell along two orthogonal periodicity
vectors v; = de; and v, = de,. The periodic cell 2 is characterized
by a central inner circular disk, of radius r, and by a concentric ring
of mean radius R and thickness A, both are denoted as material phase
1. Between the disk and the ring, the material phase 2 occupies the

remaining annular region. The periodic cell is complemented by a
material phase 3 surrounding the outer ring. We consider both phases
1 and 3 as linear elastic, while the phase 2 is a shunted piezoelectric
phase, whose elastic tensor components where denoted by the apex
EL in Eq. (5). It follows that, with reference to Eq. (13), the phase 2
occupies the region €, as well as phases 1 and 3 occupy the region 2\C.

In this context, the constitutive tensor components C;;h , together
with the mass density p can be expressed in the form

3) (D) (3)
t/hf(x) thf +(Cl/hf - C hf)'}/”x”<r3(x)
(2) (1) (2)
+ (€l = Clind) Zixlzr, 0 + (€l = €0 Zigr, (),

p) = p% + (0" = o) <, ) + (02 = 6D) <, )

+ (0 =0 fer, 0, VX ERL, (55)

being r; =r, r, = R—h/2 and r; = R+h/2, y the indicator function and
taking C‘_(jzz - The corresponding Fourier coefficients can be determined
in closed form and result, for n # 0, as

[Cln = / c, (xe” Fion gy / e F N gy -
jheAn |Ql| jht 2 d2 Ixll<r,;
3, An(r;)? (n? +n§)7r2(rj)2
= Z 2 o ’2’_T ’
j=1
1 —Et(n-x) ”l(n-x)
[pln = = / p(x)e d dx = T dx =
A Sy Z d? |x||<r
3\ Bx(r;)? (% + n)m2(r))>
:ZIT()Fl ;2;_T B (56)
=
_ ~M 2) _ ~® (1 _ ~D 3)
where 4, = Cuhf - Cuhf’ A =G jht C:]hf’ A3 = Cijhf = Yijhe?

B, =pM —p® B, =p® 1 B, = p(l) p®, and (F, is a generalized
hypergeometrlc function as defined in Mathai and Saxena (2006) and
briefly recalled in Appendix. In the case where n = 0, the coefficients
result as

3 r;

<4 _ J
[Copdo = Ao+ Z;AJF’
=

3
zr
_ J
plo = By + E] Bj—d2 ,
i=

where A, = C‘.(;)l , and By = p©.

As a remark, we underline that matrices involved in the eigen-
problem (41), including the Fourier coefficients in (56), are in general
dense matrices, so that a convenient linearization of the generic multi-
index m appearing in the finite-dimensional Fourier coefficients can
be useful for the sake of computational efficiency. More specifically,
the 2D-indices labelled in spiral order as in Fig. 2a are rectified into
ID-indices as done in Fig. 2b, where at the left and at the right of
point P, are ordered even and odd indices, respectively. Furthermore,

(57)



G. Elefante et al.

! (@)
) P Ps
+ e .
1,1 ©.1 an
| Py Py | Py
- &
(-1,0) (0,0) (1,0)
| P P P
b - O S
(-1,-1) 0,-1) (1,-1)

International Journal of Solids and Structures 276 (2023) 112306

(b)

Py Pe Py P, Py P3 Ps P; Py

e st SRl bt stebel cheteh bbb ool otoiel bl

= (=3 =2 H O @O @ & @&

Fig. 2. (a) Spiral ordering of points identified by the 2D-index m = (m,,m,); (b) Linear ordering of the 1D-index m = (m,) as a result of the linearization procedure.
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Fig. 3. A set of 3D surface plots of Re(Cﬁ)”(/ls,as,ﬂs,)> in the parameters space.

note that the multi-index linearization procedure can be favourably
exploited also in the consistent truncation of the infinite-dimensional
rational eigen-problem.

Finally, in order to assess the minimum required truncation order,
a proper convergence analysis is required as the dimension of the
linear operators of the truncated eigen-problem increases. All numerical
experiments shown in the next sessions are obtained with converged
truncation orders.

6.1. Numerical results

We refer to the three-phase metamaterial introduced in Section 6 to
test the proposed enhanced derationalization procedure. The phase 1,
related to the internal disk together with the outer ring, is made of steel
with E®=210 GPa, v(V=0.3 and mass density p= 7500 kg/m?>. The
second elastic phase, namely phase 3, is made of a passive polymer
materials whose commercial name is EPO-TEK®301, with E®= 3.6
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Fig. 4. Dispersion curves for ag =0, and ig = A, as By varies. (a), (b), (c) Floquet-Bloch spectra together with their frequency band structure for g = 107,i = 3,4, 5, respectively.

(d), (e), (f) dispersion curves in terms of x on the unit cylinder for r=0.1; (g), (h), (i) dispersion curves in terms of x on the unit cylinder for r=1.

GPa, v¥=0.35, and mass density p®=1150 kg/m?, as in Lee et al.
(2014). As it is well known in the case here considered of plane
stress, both these elastic phases are characterized by four non-vanishing
components of the elasticity tensor, defined as C¥ = cY) = EO /(1—

; e X ) 1111 2222 .
V), cv = VIED /(1 — D)), ¢P = ED/2(1 = (WW)?), with
j=13.

Finally the phase 2, associated to the shunted piezoelectric material,
is obtained by connecting a Polyvinylidene fluoride internal ring to a
RLC series electrical circuit. The 3D electro-mechanical properties of
PVDF, polarized along the out-of-plane e; direction, are taken from Iyer
and Venkatesh (2014) and are listed below. Specifically, the non van-
ishing components of the elasticity tensor are C;;; = Cyyp = 4.84 -10°
Pa, Cs333 = 4.63-10° Pa, Cjjyp = 2.72:10° Pa, Cy 33 = Cpyzz = 2.22:-10°
Pa, Cy,;,=1.06-10° Pa, Cy3;3 = Cp3p3 = 5.26-107 Pa. The non vanishing
components of the stress-charge coupling tensor are e ;3 = e,;3=—1.999
1073 C/m?, e51, = e3,=4.344 1073 C/m?, e333=—1.099 107! C/m>.
The set of components is complemented by the non vanishing compo-
nents of the dielectric permittivity tensor, i.e. f;; = f,,= 6.641 -107!1
C/Vm, and f;;=7.083 -10~'' C/Vm. Moreover the mass density is p®
= 1780 kg/m?>.

As it emerges from Section 5, by modifying the tuning parameters,
i.e. the dimensionless capacitance Ay, resistance ag, and inductance

Bs, the constitutive tensor components, detailed in (5), are changed
in turn. In this respect, with the aim of better understanding the
influence of tuning parameters on the equivalent elastic response of the
shunting piezoelectric phase, in Fig. 3 the real part of the elastic tensor
ﬁ)“, ie. R (Cﬁ)“(/ls, ag, ﬂs,o)>, normalized with respect
to the o-independent component Cliy = Cl(zl)”(ﬂs =0,ag =0,85 =0),
is shown in the parameters space and in the complex frequency domain.

In particular, the three plots on the first row refer to ag = 0, that is
the case of a non-dissipative electrical circuit. In Fig. 3(a) the 3D surface
plot of R (cﬁ)“/cl’m) is shown versus fg and Ag, assuming R(c) =0
and (o) = 1. The grey shaded plane corresponds to the c-independent
resonance value of the tuning parameter Aig = Ap = —(Cs333 33 +
e§33)/(C3333ﬁ33), introduced in Bacigalupo et al. (2020), occurring in
the case of a purely capacitive circuit characterized by ag = fg = 0.
Analogously, in Fig. 3(b) the 3D surface plot of R (Cﬁ)”/cl' 111) is
shown versus fg and Ag, R(c) = 0 and F(c) = 1/2. In addition, in
Fig. 3(c) the 3D surface plot of R (Cﬁ)“/Cl’111
S(o) assuming Ag = Ap.

On the other hand, the three plots on the second row, i.e. (d), (e)
and (f), are the same as for the first row, but referring to a dissipative
circuit with ag = 1/80. It emerges that in the plots shown in the first
row, corresponding to the non-dissipative circuit, singularities appear,

component C

) is shown versus fg and
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Fig. 5. Dimensionless magnitude vy, with n=e,, of the phase velocity vector versus S(o) for a5 =0, 45 =4z and fs = 107,i=3,4,5.

located on the points pertaining to the following implicit function

F (As. 05,5, S(0)) = (A (as. Bs. 3(0)) 45 + B (ag, fs, (o)) As

+ C(as.85.5(0))) =0, (58)
where the auxiliary coefficients are defined as
A (as. Bs.S(0)) = Dy D185’ S(0)* + (D Dyas® + Dy D3fs) (o)’

+ D Ca3337B337,

B (ag, B, S(0)) = =2 D, D,f5sS(c)* — D, D3,
C (ag, Bs,S(0)) = D, Dy, (59)
with
Dy =Cyyy Cazz3 B33 + ‘33332C1111 - C11332ﬂ33 —2ej3e333 Cpyzz + ‘-’1132C3333’
D, = Cayy3fay” +2 Cags Paz e333” + €33
D3 =-2 C33332ﬁ332 -2 C3333 ﬂ33 63332. (60)

On the other hand, observing the corresponding behaviour in the case
of a dissipative circuit, i.e. the second row of the figure, it is noted
that the discontinuities turn into peaks. Moreover, in either event of
non dissipative or dissipative circuit, it is worth mentioning that for
R(c) =0 as J(o) tends to zero the singularity/peak tends to move and
lie on the grey plane.

In Figs. 4(a), (b) and (c), Floquet-Bloch spectra are plot in terms of
the dimensionless frequency ¢ = s/s,, with s, = d~! C;;I;;)F/pPVDF a
reference frequency, versus the dimensionless abscissa k;d considering
ag = 0 and A, = A, for different values of fg. In this case of
non-dissipative circuit shunting the piezoelectric phase the complex
frequencies have zero real part. Moving from the highest value of
Bs=1073 (Fig. 4(a)), to fg= 10~* (Fig. 4(b)), up to fg=10"> (Fig. 4(c))
it emerges that the first band gap becomes noticeably wider, as well
as overall the spectra tend to get less dense and new band gaps form
at higher frequencies. Other parameters being equal, reducing the g
parameter results in a better filtering effect. Additionally, the frequency
band structures in terms of stop and pass band amplitudes are plotted
in the right part of Figs. 4(a), (b), (c). A further representation is
shown in Figs. 4(d)-(i) displaying dispersion curves in terms of real
and imaginary parts of u = exp(c7) versus k;d for « = 0 and g = Ay
and a fixed value of the dimensionless time z = ts,, where ¢ is the
time variable. More specifically, in Figs. 4(d)-(f) the dimensionless
time is fixed to z=0.1, at the same values of Sy as the upper row.

10

Analogously, in Figs. 4(g)-(i) the dimensionless time is fixed to 7= 1.
In the considered non dissipative case (ag = 0) it is worth-noting that
spectra are located on the unit cylinder. As z increases, spectra become
less narrow and they wrap almost completely on the unit cylinder. In
the considered cases, the control parameter fg is varying in the grey
shaded plane shown in Fig. 3(a),(b).

Let us now consider the phase velocity vector v,(n) = (3(s)/k)n of
the wave travelling in the direction n := k/ ||k||, with corresponding
wave number k := |k||,. Consistently the dimensionless magnitude of
v, can be defined as u;} = ”vp(n)”2 /(s,.d) = S(s)/(kd). Specifically, in
Fig. 5 the quantity v;‘ = 3(s)/(k,d) specialized when n = e, is plot in
terms of J(o) for ag = 0, and Ay = Ay as fg varies. It emerges that,
irrespective of fg, the first two curves at the lowest frequencies are
associated with the corresponding two acoustic branches in Figs. 4(a),
(b), (c), respectively. As expected finite values of the phase velocities
are found in this case. In addition, the remaining curves at higher
frequencies are associated with optical branches of the Floquet-Bloch
spectra, exhibiting vertical asymptotes corresponding to infinite veloc-
ity values. As a further remark, pass and stop bands are recognizable
along abscissas, as well as it emerges their tunability as parameter 1
varies.

Fig. 6 reports dispersion curves for the dimensionless resistance
ag = 1073 considering Ag = Ay and fg = 107,i = 3,4,5 from the
first to the third column. Due to the presence of this non vanishing
dissipative control parameter ag, the complex Floquet-Bloch spectra
are characterized by both non vanishing real and imaginary parts of
the complex dimensionless frequency versus k,d, as can be observed
in Figs. 6(a),(b),(c). It is also evident that, as g, decreases, increasing
values of —R(c) are found, i.e. an increasing damping behaviour is
exhibited. In fact, in the considered case the control parameter fg
moves on the grey shaded plane shown in Figs. 3(d),(e) and it emerges
that as fg tends to vanish the real part of the constitutive tensor
components of the shunted piezoelectric material exhibit a peak. In
Figs. 6(d)—(i) dispersion curves in terms of real and imaginary parts
of u = exp(iot) versus k,d for ag = 107>, Ag = A, and a fixed value of
the dimensionless time z = ts, are shown. The non vanishing dissipative
control parameter ag has a direct effect on the position of the dispersion
curves with respect to the unit cylinder. Indeed as r increases, for fixed
B values, the dispersion curves do not remain on the unit cylinder as
they wrap, but move inwards. Moreover, as fg decreases in the range
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Fig. 6. Dispersion curves for ag = 1075, and Ag = A, as fg varies. (a), (b), (c) Complex Floquet-Bloch spectra for g = 107/, = 3,4,5, respectively. (d), (e), (f) dispersion curves
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Fig. 7. Dispersion curves in terms of x on the unit circle for =1, ag = 107 Ag = A, as fg varies. (a), (b) and (c) corresponds to fg = 107,i = 3,4,5, respectively.
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Fig. 9. Dispersion curves in terms of x on the unit circle for =1, ag = 107> Ag = A, as fg varies. (a), (b) and (c) corresponds to fy = 10~,i = 3,4,5, respectively.
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Fig. 10. Dispersion curves for ag = 107!, and Ag = 4, and fig = 1073, (a) Floquet-Bloch spectrum. (b), (c), (d) dispersion curves in terms of x on the unit cylinder for 7=0.1,1,3,

respectively. (e) front view of the dispersion curves for r=3.

Bs = 107,i = 3,4,5 this effect of moving away from the cylinder is
increasingly evident as clearly appear in the front views of Fig. 7.

Analogously, Fig. 8 reports dispersion curves for the dimensionless
resistance ag = 1073 considering Ag¢ = iz and fg = 107,i = 3,4,5
from the first to the third column. Again, the Floquet-Bloch spectra
are characterized by both non vanishing real and imaginary parts of
the complex dimensionless frequency versus k,d, as can be observed in
Fig. 8(a),(b),(c). With respect to these complex spectra it is well evident
that, as the beta decreases, branches occupy ever larger areas in the real
field. In Figs. 8(d)-(i) dispersion curves in terms of real and imaginary
parts of u = exp(or) versus k;d for ag = 1073, Ag = Ay and a fixed
value of the dimensionless time = = ts, are shown. Also in this case,
in Figs. 8(d)-(f) the dimensionless time is fixed to r=0.1, at the same
values of B¢ as the upper row. In Figs. 8(g)-(i) the dimensionless time
is fixed to 7= 1. A qualitative behaviour similar to Fig. 6 is observed,
but in this case the tendency of the curves to go towards the centre of
the unit cylinder as ¢ decreases is more accentuated, as can be seen
in Fig. 9 corresponding to 7 = 1.

Furthermore, in Fig. 10 results corresponding to a dimensionless
resistance ag = 107!, Ag = Ay and fg = 1073 are reported. Also in
this case, the Floquet-Bloch spectrum is characterized by both real and
imaginary parts of the complex dimensionless frequency versus k,d, as
can be seen in Fig. 10(a). In this case Figs. 10(b)-(e) show dispersion
curves in terms of real and imaginary parts of y = exp(c7) versus k,d for
A = Ag and a fixed value of the dimensionless time 7 = ts,. Fig. 10(b)
corresponds to 7=0.1, Fig. 10(c) to 7=0.3 and both Figs. 10(d)—(e)
correspond to r=3. Dispersion curves move away from each other as
7 increases, concurrently they do not remain on the unit cylinder as
they wrap, but move inwards as clearly emerges from the front view
in Fig. 10(e). It can be verified that for this value of ag unnoticeable
differences arise in the spectra as fg varies.

As a remark, it is important observing that, as expected, a non
monotonic damping behaviour is exhibited as «, increases. In fact,
the range of the real part of the dimensionless complex frequency has
not a monotonic behaviour as the dissipative control parameter ag
increases, as shown in Arena et al. (2022), Fantoni et al. (2023) and
investigated in Figs. 11 and 12. More precisely, the frequency loci as
the dimensionless resistance «, varies are plotted for two discrete values
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of the dimensionless abscissa k,d. In Figs. 11(a), (b), (c) and Figs. 12(a),
(b), (c) the 3D plots corresponding to k,d = z/3 and k;d = 2z /3 are
shown, respectively, as beta decreases. In addition Figs. 11(d), (e), (f)
and 12(d), (e), (f) are a further representation in which the variability
of a, is shown graphically as a logarithmic colour scale.

7. Final remarks

The paper is devoted to the design of tunable mechanical metama-
terials conceived for the control of damped elastic wave propagation.
The attention is focused on a periodic metamaterial with three phases,
two of which are elastic and the last one is piezoelectric and connected
in parallel to a tunable dissipative electric circuit. By intervening on
the electric circuit it is possible to modify the equivalent stiffness
of the piezoelectric phase and, therefore, to obtain a metamaterial
whose response spectrum can be modified according to the needs
by opening/closing or widening/translating the band gaps. Due to
the presence of a dissipative electric circuit, the analysis of wave
propagation involves a rational eigenvalue problem, the solution of
which is very difficult using both analytical and computational methods
available in the literature. In this context, an innovative derational-
ization technique is herein proposed. The idea is to start from an
infinite-dimensional eigenvalue problem, obtained by exploiting the
Fourier series decomposition of all the periodic terms, and then apply
a truncation. At this point the procedure foresees a LU factorization of
the matrix that collects the terms of the rational part of the eigenvalue
problem, to then proceed to a subsequent linearization. The proposed
method proves to be effective in obtaining the Floquet-Bloch spectra
in a reasonable time and achieving a good convergence. The rational
eigenvalue problem is solved by slightly increasing the size of the
original rational eigenvalue problem and therefore is computationally
more efficient than the brute force approach consisting in multiplying
the rational eigenvalue problem by the product of the denominators.
This technique is successfully applied to the case of a metamaterial
shunted to a series RLC circuit with rational admittance. The effects
of changing control parameters, i.e. the capacitance, the resistance
and the inductance, on the overall dispersive response of the designed
metamaterial is investigated and critically commented.
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Appendix. Overview of hypergeometric functions

The hypergeometric function ( F; is a particular case of the general-

ized hypergeometric series pFaar, .. aby, . by 2) which is defined
as
[se]
(ap)y - (ayy zk
F,(ay,...,a,by,...,b,;2) = _ = (A.1)
rra P> 7l q I;} (by)y - (by)y k!
where a;, b,z € C, withi = 1,...,p, j = 1,...,q and (a), is the

Pochhammer symbol, i.e.,

(A.2)
(A.3)

(a)o =1,

@g=ala+1)-(a+k-1), k>1.

We underline that the hypergeometric function ,F,(; b; z) has only
one parameter b in the denominator and no parameters g; at the
numerator.
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