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Introduction

Marine ecosystems are increasingly threatened by rapid cli-
matic changes, exacerbated by human activities, which alter 
ecosystem structure and functioning and consequently affect 
the services they provide (Halpern et al. 2008; Pecl et al. 
2017). Numerous studies on macroalgae have documented 
the cumulative impacts of these changes at both local and 
global scales (Smale and Wernberg 2013; Smale 2020). Key 
factors affecting macroalgae include temperature, salinity, 
photosynthetically active radiation (PAR), ultraviolet (UV) 
exposure, and nutrient availability, all of which significantly 
affect growth and productivity (Lüning 1990; Hurd et al. 
2014; Perini and Bracken 2014).

In terms of nutrients dynamics, the Redfield ratio (C: 
N:P 106:16:1) serves as reference for many aquatic envi-
ronments (Redfield et al. 1963), while a nitrogen (N) to 
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Abstract
Fucus virsoides is a brown seaweed endemic to the Adriatic and the only species of its genus found in the Mediterranean. 
Historically widespread from the Venice lagoon (Italy) to Albania, this species has suffered a sharp decline and is currently 
threatened with extinction.

Over the past three decades, the northern Adriatic has seen a shift towards oligotrophy conditions, yet the ecophysiol-
ogy of F. virsoides in response to nutrients changes has been poorly studied. Addressing this gap is crucial for understand-
ing the extent to which these environmental changes may have contributed to the species’ decline.

To test our hypothesis that nutrient changes might be the primary driver of F. virsoides decline, we conducted a two-
week experiment exposing germlings and adults to six different nutrient conditions. These included three Redfield ratios 
recorded in the Gulf of Trieste in 1996, 2007 and 2017, reflecting the shift from eutrophic to oligotrophic conditions 
experienced by F. virsoides in the wild. Additionally, the adults were exposed to three supplementary eutrophic conditions 
(naturally and artificially fertilized).

Growth and physiological responses (measured via O2 evolution and PAM fluorimetry) of F. virsoides to varying nutri-
ent conditions were largely consistent, with only subtle effects observed. Our results highlight the species’ acclimatation 
potential, suggesting that short-term nutrient changes alone may not fully explain its decline. Understanding F. virsoides 
resilience to multiple environmental stressors is crucial for developing effective conservation strategies to preserve marine 
forests in the face of ongoing anthropogenic disturbances.

Keywords  Mediterranean · Seaweeds · Metabolic rates · Photosynthetic performances

Received: 19 May 2024 / Accepted: 23 September 2024
© The Author(s) 2024

Ecophysiological responses of Fucus virsoides (Phaeophyceae, Fucales) 
to past and present nutrient conditions in the northern Adriatic

Emmanuelle Descourvières1,2  · Martina Mulas2,6  · Sara Natale3  · Raquel Sánchez de Pedro4  · 
Alessandro Alboresi3  · Cosimo Solidoro2,5  · Vinko Bandelj2,5  · Annalisa Falace1,2

1 3

http://orcid.org/0009-0000-8092-2504
http://orcid.org/0000-0001-9228-786X
http://orcid.org/0000-0003-4406-4252
http://orcid.org/0000-0002-2517-2154
http://orcid.org/0000-0003-4818-7778
http://orcid.org/0000-0003-2354-4302
http://orcid.org/0000-0003-0455-1806
http://orcid.org/0000-0002-9671-5283
http://crossmark.crossref.org/dialog/?doi=10.1007/s00227-024-04523-1&domain=pdf&date_stamp=2024-10-4


Marine Biology         (2024) 171:205 

phosphorous (P) ratio of 30:1 is considered non-limiting for 
macroalgae and seagrasses (Atkinson and Smith 1983).

Fucus virsoides J. Agardh is the only endemic Mediter-
ranean representative of the genus Fucus (Giaccone and 
Pignatti 1967; Munda 1973), which is otherwise distrib-
uted in colder temperate areas in the North Atlantic and 
North Pacific coasts, the Baltic Sea (Wahl et al. 2011) and 
at upwelling areas in the east Atlantic coasts and Strait of 
Gibraltar (Lourenço et al. 2016; Sánchez de Pedro et al. 
2023a). Once considered almost ubiquitous from the lagoon 
of Venice to Albania (Linardić 1949; Kashta 1996; Mačić 
2006), F. virsoides, restricted to the intertidal zone, has 
declined drastically and today only a few fragmented popu-
lations remain (Falace et al. 2010; Battelli 2016a; Gljušćić 
et al. 2023; Descourvières et al. 2024a).

The ecological importance of Fucus spp. is well recog-
nized, as they serve as primary producers and habitat-form-
ing species, providing shelter, nursery and feeding grounds 
for a variety of associated species (Wahl et al. 2011). 
Fucus species are known for their ability to tolerate large 
fluctuations in environmental variables (Wahl et al. 2011; 
Ferreira et al. 2014), resulting in significant ecotypic and 
phenotypic differentiation even at local scale (Gylle 2011). 
From a ‘resistance–resilience’ perspective (Nimmo et al. 
2015), their ecological success in fluctuating (i.e. intertidal 
zones) and disturbed environments (i.e. polluted sites) may 
be related to their broad ‘optimum’ performance range, in 
which physiological responses remain stable (resistance 
response), as well as their ability to recover their physio-
logical functions (i.e. photosynthesis, nutrient uptake) fol-
lowing abiotic stress (Schagerl and Möstl 2011). However, 
the impact of a single stressor can exceed the natural physi-
ological limits of Fucus species (e.g. Martínez et al. 2012; 
Falace et al. 2018a), leading to decline and local extinction 
(Nilsson et al. 2004; Nicastro et al. 2013; Sánchez de Pedro 
et al. 2023b).

In contrast to other congeneric species, such as Fucus 
vesiculosus, which have been extensively studied under 
various stressors (temperature, Graiff et al. 2015; tempera-
ture and salinity, Takolander et al. 2017; temperature and 
nutrients, Steen and Rueness 2004; Piñeiro-Corbeira et al. 
2019), the literature on F. virsoides remains scarce (Zavod-
nik 1973; Kremer and Munda 1982). Recent studies have 
explored the responses of F. virsoides to eutrophication and 
pollutants such as glyphosate, a widely used fertilizer (Fal-
ace et al. 2018a; Felline et al. 2019; Gerdol et al. 2020). 
However, the causes of F. virsoides decline remain elusive 
(Falace et al. 2010; Orlando-Bonaca et al. 2013; Battelli 
2016a; Descourvières et al. 2024a).

In its northern range, a decrease in P load of the Po River 
has been recorded since the late 1980s (Cozzi and Giani 
2011; Giani et al. 2012), likely due to Italian legislation 

reducing phosphates in detergents and thus nutrient load in 
wastewater (Totti et al. 2019). This P depletion (Solidoro 
et al. 2009; Grilli et al. 2020) has led to an increase in the 
N: P ratio in the northern Adriatic (Degobbis et al. 2000; 
Fanelli et al. 2022), which is now classified as oligotrophic 
(Mozetič et al. 2010). Phosphorus is crucial for nucleic 
acids, proteins, coenzymes and phospholipids and is essen-
tial for energy transfer through ATP, photosynthesis, respi-
ration, and the priming of molecules for metabolic pathways 
(Douglas et al. 2014). In contrast, high nutrient levels (e.g. 
eutrophication) can trigger growth responses in environ-
ment where other conditions are suboptimal (e.g. salinity) 
(Nygård and Dring 2008). Increased nutrient loading may 
also promote competition with fast-growing macroalgae 
(e.g. Ulva spp.), sessile fauna and periphytic microorgan-
isms, leading to the overgrowth of epibionts (Korpinen et 
al. 2010), impaired light penetration, phytoplankton blooms 
and altered vertical distribution of coastal macroalgae in the 
subtidal (Kautsky et al. 1986).

We hypothesized that the shift from eutrophy to oligotro-
phy in the northern Adriatic could be a driving factor in the 
decline of F. virsoides and that species’ responses my vary 
depending on its developmental stage. The aim of this study 
was to test this hypothesis under controlled laboratory con-
ditions. We examined the effects of three dissolved inorganic 
nitrogen to phosphorus ratios ([DIN]: [P]) experienced by F. 
virsoides in the Gulf of Trieste (northern Adriatic) over the 
last 30 years on germlings and adult fronds. Additionally, 
we exposed adult fronds to three supplementary conditions 
(i.e. seawater collected at the sampling site, eutrophic and 
biofertilizer enriched). Our objectives were: (i) to assess dif-
ferences in physiological performance and (ii) evaluate the 
morphological development of germlings and adult fronds 
to determine whether varying nutrient conditions could be 
blamed for the decline of F. virsoides.

Materials and methods

Analysis of the [DIN]: [P] ratio in the gulf of trieste

The long-term annual average concentrations of dissolved 
inorganic nitrogen [DIN] and [P] in the surface seawater of 
the Gulf of Trieste were assessed using the pre-processed 
datasets available on EMODnet: Mediterranean Sea – DIVA 
4D 6-year seasonal analysis of Water body DIN 1990/2019 
v2021 (https://emodnet.ec.europa.eu/geonetwork/emodnet/
api/records/3b85a714-cd1c-11e8-8664-8056f28224bb) and 
Mediterranean Sea – DIVA 4D 6-year seasonal analysis of 
Water body phosphate 1968/2019 v2021 (https://emodnet.
ec.europa.eu/geonetwork/srv/api/records/158de2d6-ca8a-
11e8-b0bc-8056f28224bb). The downloaded dataset was 
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formatted as a 6-year average for each season, covering 
the period from 1990 to 1995 to 2014–2019. Based on the 
calculated annual mean concentrations, we derived the cor-
responding annual [DIN]: [P] ratio. Data analysis was con-
ducted using the Python programming language. From the 
results, we identified two extreme values of the annual mean 
[DIN]: [P] ratio: 31:1 in 1996 (R1) and 102:1 in 2017 (R3). 
Additionally, a median value of 66:1 from 2007 (R2) was 
selected to represent intermediate conditions. These three 
[DIN]: [P] ratios were chosen as the experimental conditions 
for testing the responses of both adults and germlings stages 
of F. virsoides (Fig. 1; Table 1). Historical data indicate that 
F. virsoides populations were abundant and widespread in 
the Gulf of Trieste during 1992–1993 (Lipizer et al. 1995). 
However, by 2009, Orlando-Bonaca et al. (2013) noted 
the absence of the species at several previously recorded 
sites, and by 2017, only the population of Marina Julia was 
reported (Falace et al. 2018a; Descourvières et al. 2024a). 
Given that the peak of growth of F. virsoides occurred under 
conditions similar to those in R1, this ratio was considered 
representative of non-limiting conditions for the species.

Sampling

Fucus virsoides samples were collected in the Gulf of Tri-
este at Marina Julia (45°46’37.7 “N, 13°32’02.6 “E) during 

low tide (ca. 1m above Chart Datum) in May-July 2023. 
In this area (northern Adriatic), the mean recorded tidal 
amplitude reaches its peak up to ca. 90 cm compared to the 
average 20–30 cm recorded in the rest of the Adriatic and 
the Mediterranean (Battelli 2016b). To minimize the impact 
on the population, only apical fronds were collected rather 
than whole individuals. To ensure that different individuals 
were sampled, fronds were collected at least 10 cm apart. 
Approximately 150 fronds with mature receptacles and 
around 100 sterile fronds (ca. 5 cm long) were gathered and 
transported under dark, cold conditions to the Phycological 
Laboratory of the University of Trieste (Italy) within one 
hour. The samples were then cleaned of epiphytes, sand 
and pebbles using artificial seawater (ASW) and tweezers. 
For the germling experiment, fertile fronds were stored at 
4°C for 24 h to induce the release of gametes (Falace et al. 
2018b; Kaleb et al. 2022).

All fronds were photographed and weighed (fresh 
weight, FW) using an analytical scale (± 0.1 mg) (Sartorius, 
Göttingen, Germany). The fronds were then dark-adapted in 
Petri dishes for 20 min (Kaleb et al. 2023) before measuring 
the maximal quantum efficiency of photosystem II (Fv/Fm) 
using a PAM Imaging Fluorometer Open FluorCam (Pho-
ton Systems Instruments©, Czech Republic). Initial basal 
fluorescence (F0) was measured, followed by the applica-
tion of a saturating light pulse to induce and measure the 

Acronym Culture Media N-NO3 (µM) P-PO4 (µM) [DIN]: [P] ratio
R1 ASW + [DIN]: [P] ratio in 1996 3.18 0.12 31:1
R2 ASW + [DIN]: [P] ratio in 2007 3.58 0.05 66:1
R3 ASW + [DIN]: [P] ratio in 2017 2.46 0.03 102:1
C1 ASW + ARPA 2009–2014a 25.99 0.05 577:1
C2 SW + AlgatronCifo®bc 0.86 0.02 1044:1
SW SW at collection siteb 1.25 0.02 121:1

Table 1  Nutrient conditions used 
in the Fucus virsoides culture 
experiment derived from EMOD-
net and the literature
ª Values as reported by Gerdol et 
al. (2020); b Values as reported 
by Kaleb et al. (2023); c In 
addition to the N-NO3, C2 also 
included 20.75 µM N-NH4

 

Fig. 1  Long-term analysis of the 
seasonal [DIN]: [P] ratio in the 
Gulf of Trieste. The dots con-
nected by dotted line represent 
the annual average values, while 
the black line represents the 
trend line with the corresponding 
equation (y), R-squared (R²) and 
p-value (p). Data were extracted 
from pre-processed datasets 
available on the EMODnet web-
site (see the section “Analysis of 
the [DIN]: [P] ratio in the Gulf of 
Trieste” for more details)
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at their base, labelled with plastic beads, and suspended in 
the tanks using nylon strings.

In addition to the three [DIN]: [P] conditions, adult 
fronds were exposed to three additional nutrient conditions 
(Table 1):

	● C1: representing higher annual mean values recorded 
in the Gulf of Trieste by the Regional Environmental 
Protection Agency – Friuli Venezia Giulia (ARPA FVG, 
2009–2014) (Gerdol et al. 2020).

	● C2: enriched with the biofertilizer AlgatronCifo® (Cifo 
S.p.A. San Giorgio di Piano, Bologna, Italy) which has 
been shown to enhance photophysiological and growth 
performance in other Fucales (e.g. Gongolaria barbata, 
Kaleb et al. 2023; Ericaria amentacea, Malfatti et al. 
2023).

	● SW: filtered seawater collected at the sampling site in 
Marina Julia.

R1 was used as control condition for a three-day acclimation 
period, as it was considered optimal for F. virsoides based 
on historical data from the 1990s when it was widespread 
and abundant in the Gulf of Trieste.

Culture media R1, R2, R3 and C1 were prepared by add-
ing sodium nitrate (NaNO3, SigmaAldrich), and potassium 
phosphate (KH2PO4, SigmaAldrich) to ASW. Nitrites (NO2⁻) 
were not included due to their typically low concentrations 
compared to nitrates in the North Adriatic Sea (Degob-
bis and Gilmartin 1981). Both nutrients were dissolved in 

maximum fluorescence (Fm). Fv/Fm was then calculated 
using the equation of Maxwell and Johnson (2000). Only 
samples with Fv/Fm ≥ 0.6, indicative of a healthy ecophysi-
ological state (e.g. Schagerl and Möstl 2011; Martínez et al. 
2012), were selected for the experiments.

Experimental setup

Cultures of germlings and fronds of F. virsoides were main-
tained under controlled conditions at 15 ± 0.5  °C, with a 
light intensity of 125 ± 30 µmol photons m− 2 s− 1, salinity 
of 35, and a photoperiod of 15:9 h light-dark cycle similar 
to field condition. Light was provided by white LED lamps 
(ADDLIVE LED, Dongguan, China) and measured using 
a LI-COR190/R photometer (LICOR-Biosciences, Lincoln, 
NE, USA).

Culture media were prepared with ASW (ca. 30–40 L per 
conditions) using Instant Ocean® Salt (Aquarium Systems, 
Sarrebough, France) following the protocols of Nielsen and 
Nielsen (2012). Temperature and salinity were monitored 
daily using a digital thermometer (ThermoPro, Shenzhen, 
China) and a portable refractometer RSM/ATC (Exacta and 
Optech, San Prospero, Modena, Italy), respectively.

The effects of the three specific [DIN]: [P] ratios (R1, 
R2 and R3) were tested on both adult fronds and germlings. 
Each nutrient condition was replicated in three 1-liter tanks, 
containing five clay tiles for the germlings culture and seven 
fronds for the adults culture (Fig. 2), resulting in a total of 
45 clay tiles and 63 fronds. The fronds were needle-punched 

Fig. 2  Experimental design for the different nutrient conditions in the 
germling and adult experiment. R1 = [DIN]: [P] ratio in 1996, R = 
[DIN]: [P] ratio in 2007, R3 = [DIN]: [P] ratio in 2017, C1 = higher 

annual mean values registered in the Gulf of Trieste, C2 = biofertil-
izer additive AlgatronCifo® and SW = filtered seawater collected at the 
sampling site
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(Leica, DM IL LED) using a Canon PowerShot G9. This 
procedure was repeated after 3 (T1), 6 (T2), 9 (T3), and 
12 days (T4). The following variables were measured 
using ImageJ® software (Schneider et al. 2012): embryo 
length and width, rhizoid length, hyaline hair length and 
number (measured from T2 to T4).

	● Embryo density and survival rate: The number of em-
bryos per tile was determined from images of 4 tiles per 
tank, taken with a digital camera (Olympus Tough TG-
7) at T0 and T4. The tiles were positioned on a plasti-
cized grid paper, which served as a reference for germ-
ling coverage in the images. The survival rate (%) was 
then manually calculated using ImageJ® software.

	● Photosynthetic efficiency: Fv/Fm was measured on the 
surface of the germlings-covered tiles at T2, T3 and T4 
using a PAM Imaging Fluorometer Open FluorCam as 
previously described (Malfatti et al. 2023).

Adults culture

Fronds were acclimatized in R1 solution for three days 
before being randomly assigned to tanks (T0). Measure-
ments were conducted as follows (Table 3):

	● Photosynthetic performance: Rapid Light Curves 
(RLCs) measurements were performed on three ran-
domly selected fronds per tank with the PAM Imaging 
Fluorometer Open FluorCam at day 0 (T0), 4 (T1), 8 
(T2), and 12 days (T3). RLCs consisted of eight actin-
ic light steps (18, 101, 188, 277, 451, 622, 1118, 1588 
µmol photons m⁻² s⁻¹), each lasting 60  s. A saturating 
light pulse of 4040 µmol photons m⁻² s⁻¹ was applied 
at the end of each step to determine the minimum (F0) 
and maximum fluorescence (Fm). Each RLC lasted 

distilled water and then added to the ASW batches. Instant 
Ocean contains trace amounts of NO3

− and PO4
3− (ca. 0.5 

µM NO3
− and ca. 0.3 µM PO4

3−); however, since the same 
amount of salt was added to each condition involving ASW, 
these trace amounts and other micronutrients present in the 
filtered SW were not included in the nutrient listings. For 
the C2 and SW conditions, seawater was collected from the 
sampling site and filtered through 0.22 μm Durapore mem-
brane filters (Merck Millipore Ltd). The C2 condition was 
prepared by adding 4.5 mL L− 1 of AlgatronCifo® to the sea-
water, as in Kaleb et al. (2023).

To avoid possible nutrient limitation, culture media were 
renewed every three days in the germlings tanks and every 
two days in the adult tanks. To control the variation of light 
intensity with position under the lamp, tanks and tiles within 
the tanks were randomly repositioned under the lamps when 
culture media was refreshed.

Germlings culture

After 24 h in dark and cold conditions, the receptacles were 
placed in six 300 mL beakers filled with R1 solution and 
left undisturbed for an additional 24 h under laboratory con-
ditions (see previous section) until the gamete release and 
fertilization occurred. The receptacles were then carefully 
removed, and concentrated zygote solution was prepared by 
removing ca. 250 mL of R1 from each beaker. An area of 
3.2 ± 0.22 cm² on 45 clay tiles was inoculated by pipetting 
the zygote solution. The tiles were acclimatized for 24 h, 
after which five tiles per tank were randomly assigned (T0). 
The following measurements were conducted (Table 2):

	● Morphometry: One tile for each tank was used for mor-
phometric analysis, where 10 embryos were randomly 
selected and photographed under an inverted microscope 

Time Sample size Variable
T0 = random assignment of the 
tiles to the different nutrient 
concentrations

4 tiles per tank density

T1 = 3 days 10 embryos per tank embryos length and width
rhizoids length

T2 = 6 days 10 embryos per tank embryos length and width
rhizoids length
hyaline hairs length and number

4 tiles per tank Fv/Fm

T3 = 9 days 10 embryos per tank embryos length and width
rhizoids length
hyaline hairs length and number

4 tiles per tank Fv/Fm

T4 = 12 days 10 embryos per tank embryos length and width
rhizoids length
hyaline hairs length and number

4 tiles per tank
4 tiles per tank

density
Fv/Fm

Table 2  Data collected on 
germlings
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time was defined appropriate after some preliminary 
tests combining biomass, vials volume and time, so to 
prevent any photorespiration process happening in the 
light incubation (Ouissè et al. 2014). While light incuba-
tions did not require a specific acclimation time because 
conducted at laboratory conditions, prior respiration 
measurement, fronds acclimation was ensured by start-
ing at least one hour after the lamps switched off. To 
prevent the boundary layer formation at the beginning 
and at the end of the incubation, the vials were carefully 
shaken, stirring the water inside during the experiment 
and before recording the values. DO measurements were 
automatically adjusted for temperature changes using 
the TSUB21 temperature sensor (PyroScience GmbH, 
Aachen, Germany), which was inserted into the culture 
medium within the tank and connected to the readout 
device. At the end of each incubation cycle, each frond 
was photographed and weighed (FW) to express meta-
bolic rates as µmol O2·gFW− 1·h− 1. Net production and 
respiration were calculated as the difference between the 
final and initial values. Assuming a constant respiration 
rate throughout the daily cycle, gross primary produc-
tivity (GPP) was calculated as follows: GPP = NP + R 
(Guy-Haim et al. 2016).

Statistical analysis

Statistical tests were performed in RStudio (R Core Team 
2023). Germling morphometric measurements and density 
were analyzed by a Split-Plot ANOVA with ‘Tank’ as the 
within-subjects identifier (9 levels), ‘Time’ as the within-
subjects factor (4 or 3 levels), and ‘Nutrient’ as the between-
subjects factor (3 levels) using the ‘anova_test’ function 
from the ‘rstatix’ package (Kassambara 2023). When these 
were significant, we proceeded with pairwise comparison 
analysis with Bonferroni adjustment using the ‘t-tests’ func-
tion from ‘rstatix’. Linear mixed-effects models were used 
to account for the nesting design with the function ‘lmer’ 
from the package ‘lme4’ (Bates et al. 2020) and Type II or 

approximately 8 min and recorded the fluorescence yield 
(F), the maximum fluorescence yield of a light-adapted 
frond (F’m), the effective quantum yield of PSII (ϕPSII), 
and the electron transport rate (ETR). Following Ralph 
and Gademann (2005), the initial slope of the RLC be-
fore the onset of saturation (α), the minimum saturat-
ing irradiance (Ek) and the maximum relative electron 
transport rate (rETRmax) were determined by fitting the 
RLC to a curve as function of PAR irradiance (Sigma-
Plot v. 12.0, Systat Software Inc.) using the equation of 
Platt et al. (1980). For each light step, non-photochem-
ical quenching (NPQ) was calculated as the ratio of 
the difference between Fm and F’m to F’m, and fitted as 
function of PAR irradiance to obtain the maximum non-
photochemical quenching (NPQmax), representing maxi-
mum thermal energy dissipation, according to Serôdio 
and Lavaud (2011).

	● Relative Growth Rate (RGR): The FW of all fronds was 
recorded at T0 and T3. RGR was calculated as the differ-
ence between the logarithms of the final and initial FW 
divided by the time interval (Lüning 1990).

	● Metabolic rates: To minimize stress to the fronds, meta-
bolic rates were recorded one-day after the photosyn-
thetic performance measurements, referred to as T0*, 
T1*, T2*, T3*. Oxygen evolution was measured by in-
cubating individual fronds in 20 mL gas-tight glass vi-
als equipped with sensor spots (three fronds per tank, 
one per vial) alongside a control vial containing only the 
tank medium to account for possible microbial activity. 
Once incubated, the fronds were put back into the tank 
and left to acclimate again to the laboratory conditions. 
Dissolved oxygen (DO) was recorded through contact-
less optical fibers, with the oxygen curve recorded in 
real-time using a 4-channel optical O2 readout device 
(FireSting-O2; FSO2-C4, PyroScience GmbH, Aachen, 
Germany) at one-minute interval, with data stored in the 
Pyroscience Workbench software. The incubation lasted 
approximately 15–20 min and was conducted under both 
light and dark conditions to measure net production (NP) 
and respiration rate (R), respectively. The incubation 

Time Sample size Variable Unit
T0 = random assignment of 
fronds to the different nutri-
ent concentrations

3 fronds per tank
63 fronds

RLCs
Length

-
mm

T0* = 1 days 3 fronds per tank Metabolic rates µmol O2·gFW− 1·h− 1

T1 = 4 days 3 fronds per tank RLCs -
T1* = 5 days 3 fronds per tank Metabolic rates µmol O2·gFW− 1·h− 1

T2 = 8 days 3 fronds per tank RLCs -
T2* = 9 days 3 fronds per tank Metabolic rates µmol O2·gFW− 1·h− 1

T3 = 12 days 3 fronds per tank
63 fronds

RLCs
Length

-
mm

T3* = 13 days 3 fronds per tank Metabolic rates µmol O2·gFW− 1·h− 1

Table 3  Data collected on adult 
fronds. *Asterisks indicate the 
time intervals of the metabolic 
rates measurements, one day later 
than the other measurements
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interaction of the two factors was considered (Linear mixed 
model, Chi²15 = 27.66, p < 0.01, Table S3). At the end of the 
experiment, higher NPQmax values were observed in C1 and 
SW compared to R1, R2, R3 and C2 (Fig. 3e, S5).

The average RGR ranged from 1.54 ± 0.28 in C2 to 
2.71 ± 1.32% d− 1 in R3. The RGR in C2 was ca. 1% lower 
than in R2, R3, C1 and SW, and R3 showed a slightly 
higher RGR than R1 (Linear mixed model, Chi²15 = 29.16, 
p < 0.01) (Fig. 4, Table S6).

Metabolic rates, net oxygen production (NP) and res-
piration (R), remained consistent over time (Linear mixed 
model, Chi²3 = 3.37, p = 0.34, Chi²3 = 6.94 p = 0.07, respec-
tively) (Fig.  5, Table S7). Nonetheless significant differ-
ences were observed between treatments (Chi²5 = 19.38, 
p < 0.01 and Chi²5 = 59.68, p < 0.001) and in the interac-
tion between time and treatment. Notably, samples in the 
R3 exhibited the highest R values at T0*. Additionally, NP 
was similar across the six nutrient conditions, except for 
R1, which was significantly lower than R2 and R3 (Table 
S8). By the final measurement (T3*), R values were similar 
across all conditions, while R2 showed a higher NP than 
C2. The calculated gross primary productivity (GPP) values 
were initially (T0*) higher in R3 compared to the other con-
ditions, with R2 significantly higher than C1 and C2 after 
two weeks (T3*).

Discussion

This study provides new insights into the ecophysiology (i.e. 
growth, photosynthesis, oxygen production and respiration) 
of Fucus virsoides. Although the decline of F. virsoides is 
mainly associated with pollution, habitat fragmentation and 
climate change (e.g. Boero et al. 2008; Orlando-Bonaca et 
al. 2013; Gerdol et al. 2020; Descourvières et al. 2024a), the 
exact cause-effect relationships have not yet been assessed 
and the reasons for this loss are still unclear. The occurrence 
of remnant populations is often restricted to areas close to 
freshwater inputs (Gerdol et al. 2020), this may be due to F. 
virsoides finding shelter in nutrient enriched areas as a con-
sequence of the remarkable changes in trophic conditions 
in the northern Adriatic. Based on these assumptions, these 
changes were therefore hypothesized as a possible driver for 
the species’ decline. In addition, according to Wahl et al. 
(2011), different responses were expected at different devel-
opmental stages, with greater effects on early life stages, 
as in other Fucales (Coelho et al. 2000; Kraufvelin et al. 
2012; Falace et al. 2021), and especially within the first two 
weeks of development (Tarakhovskaya et al. 2017). Factors 
influencing germling physiology and growth include storm 
and wave action (Norton et al. 1981; Vadas et al. 1990; Ser-
rão et al. 1996), temperature (Falace et al. 2021; Sánchez 

III Wald Chi-Square tests were applied to assess the signifi-
cance of the fixed effects. For the analysis of photosynthetic 
performances and metabolic rates, the factors ‘Nutrient’ (3 
or 6 levels) and ‘Time’ (3 or 4 levels) were treated as fixed 
effects, while ‘Tank’ was included as a random effect (9 or 
17 levels). For the RGR, the factor ‘Nutrient’ (6 levels) was 
treated as a fixed effect and ‘Tank’ as a random effect (17 
levels). Estimated marginal means analysis with pairwise 
comparison test with Tukey adjustment was then performed 
using the ‘emmeans’ package (Lenth et al. 2023) when 
necessary.

Results

Morphometric measurements of germlings significantly 
increased over time, but no significant differences were 
observed between treatments (Tables S1, S2). However, at 
T4, the mean length of hyaline hairs in the R1 condition was 
ca. 52 μm smaller than in R2 and R3 (284.76 ± 45.42 μm, 
337.92 ± 58.97  μm and 335.28 ± 7.49  μm, respectively). 
Germling density decreased significantly and uniformly 
over time across all conditions (Split-plot ANOVA, F2,6 = 
59.85, p < 0.01), while no significant differences in germ-
ling survival were observed (Linear mixed model, Chi²2 = 
0.03, p = 0.98) (Fig. S1).

Fv/Fm ratio was similar across different nutrient condi-
tions (Linear mixed model, Chi²2 = 0.09, p = 0.96), but 
significant differences were observed over time and in the 
interaction between nutrient conditions and time (Chi²2 = 
76.71, p < 0.01 and Chi²4 = 10.73, p < 0.05, respectively). A 
slight decrease in Fv/Fm was observed over time in all nutri-
ent conditions, with mean values ranging from 0.68 ± 0.01 
(± SD) at T2 to 0.63 ± 0.03 (± SD) at T4.

In adult fronds, Fv/Fm decreased slightly over time (Lin-
ear mixed model, Chi²3 = 55.25, p < 0.01), but not uniformly 
across nutrient conditions (Chi²15 = 52.76, p < 0.01) (Table 
S3). Notably, Fv/Fm values at T3 remained consistently 
above 0.6 in C1 and SW, whereas these values decreased to 
0.56–0.58 in R1, R2, R3 and C2 (Fig. 3a, Table S4). Simi-
lar to Fv/Fm, rETRmax also showed significant differences 
over time (Linear mixed model, Chi²3 = 54.51, p < 0.01) and 
in the interaction of the factors (Chi²15 = 67.85, p < 0.01) 
(Table S3). However, similar rETRmax values of ca. 83 µmol 
electrons m− 2 s− 1 were found at both T0 and T3 (Fig. 3b, 
Table S4). Differences were also observed for α and Ek in 
both factors and their interaction (Table S3). In particular, 
samples cultured in R1, R2 and R3 exhibited lower α val-
ues than those in C1, C2 and SW (Fig. 3c, Table S5) and 
higher Ek values compared to C1 (Fig.  3d, Table S5). A 
similar trend to rETRmax was observed for NPQmax (Fig. S2, 
S3). NPQmax only showed significant differences when the 
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differences were only observed over time, while in adults, 
some differences were also noted across treatments.

For instance, the NPQmax values of adults fronds cul-
tured in C2, R1, R2 and R3 media were approximately half 
(2.82 ± 0.58, 2.67 ± 0.69, 3.11 ± 1.09 and 2.87 ± 0.62, respec-
tively) of those cultured in C1 and SW, ). Lower NPQmax 
values indicate reduced photoprotective activity, suggest-
ing that the conditions can be interpreted as non-stressful or 
indicative of allostasis and that photosynthetic efficiency is 
likely to be higher under these conditions. Kaleb et al. (2023) 
observed that nitrogen enrichment through the addition of 
Algatron could enhance the biosynthesis of light-harvesting 
centers or, as Gerard (2008) noted, increase the density of 

de Pedro et al. 2022, 2023a), light intensity (Creed et al. 
1996), UV exposure (Schoenwaelder et al. 2003), eutro-
phication (Bergström et al. 2003), trace metals (Andersson 
and Kautsky 1996), pollutants (Creed et al. 1996, 1997) and 
acidification (Al-Janabi et al. 2016). However, in our study, 
we observed only subtle differences in the physiological 
responses of both early life stages and adults under vary-
ing nutrient conditions, ranging from eutrophic to oligotro-
phic environments. Despite the limited significant changes 
in physiological traits of F. virsoides, we recorded consis-
tent growth over time across all conditions, suggesting that 
none of the conditions were severely limiting to the species’ 
development and/or function. For germlings, significant 

Fig. 3  (a) Fv/Fm, (b) rETRmax, (c) α and (d) Ek and (e) NPQmax mea-
sured in adult fronds of Fucus virsoides under different nutrient con-
ditions on day 0 (T0) in grey and day 12 (T3) in black. R1 = [DIN]: 
[P] ratio in 1996, R2 = [DIN]: [P] ratio in 1996, R3 = [DIN]: [P] 
ratio in 2017, C1 = higher annual mean values recorded in the Gulf 

of Trieste, C2 = biofertilizer additive AlgatronCifo® and SW = filtered 
seawater collected at the sampling site. Data are presented as mean 
values (n = 3) ± SD. Different regular and bold letters indicate statisti-
cally significant differences between nutrient conditions at T0 and T3, 
respectively (p < 0.05); n.s.= not statistically significant
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concentrations of this algal extract may be suboptimal for 
F. virsoides. In addition, significant P-limitation is expected 
in C2, as indicated by the [DIN]: [P] ratio of 1044:1. Some 
previous studies in the Fucales restoration context recorded 
enhancement of physiological performance, fertility (Kaleb 

PSII centers. However, the lower Fv/Fm values (0.56–0.58) 
and RGR (1.54 ± 0.28% d− 1) measured in the ammonium-
rich biofertilizer condition (C2, AlgatronCifo®) compared 
to the other treatments suggest that these samples may have 
experienced some nutrient limitation. This indicate that the 

Fig. 5  Metabolic oxygen evolution rates measured on adult fronds of 
Fucus virsoides under light (net production: NP) and dark conditions 
(respiration: R) incubations on day 1 (T0*) and 13 (T3*). R1 = [DIN]: 
[P] ratio in 1996, R2 = [DIN]: [P] ratio in 1996, R3 = [DIN]: [P] ratio 
in 2017, C1 = higher annual mean values recorded in the Gulf of Tri-

este, C2 = biofertilizer additive AlgatronCifo® and SW = filtered sea-
water collected at the sampling site. Data are mean values (n = 3) ± SD. 
DO: dissolved oxygen. Different regular and bold letters indicate sta-
tistically significant differences between nutrient conditions in NP and 
R, respectively (p < 0.05); n.s.= not statistically significant

 

Fig. 4  Median values, 25th and 75th percentiles of 
relative growth rates expressed in terms of fresh weight 
(RGR%) of adult fronds of Fucus virsoides exposed to 
the different nutrient conditions. R1 = [DIN]: [P] ratio 
in 1996, R2 = [DIN]: [P] ratio in 1996, R3 = [DIN]: [P] 
ratio in 2017, C1 = higher annual mean values recorded in 
the Gulf of Trieste, C2 = biofertilizer additive Algatron-
Cifo® and SW = filtered seawater collected at the sam-
pling site. Data are presented as mean values (n = 3) ± SD. 
Different letters indicate statistically significant differ-
ences among nutrient conditions and times (p < 0.05)
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PAR conditions, which might influence other aspects such 
as faster desiccation (Descourvières et al. 2024b).

The lack of significant physiological differences under 
the nutritional conditions tested may be attributed to the 
evolutionary history and biogeographical distribution of F. 
virsoides. As the only Mediterranean representative of the 
genus, it may have descended from a common ancestor with 
F. spiralis (Serrão et al. 1999) and subsequently became iso-
lated in the Adriatic during the last glaciation. Nonetheless, 
given its geographical distribution from the Venice lagoon 
to Albania, the term ‘glacial relict’ may be misleading.

Unlike other genera adapted to more stable environments 
(e.g. the Baltic Sea), F. virsoides is well adapted to a wide 
range of natural environmental conditions, as evidenced 
by its latitudinal distribution. An analysis of annual nutri-
ent concentrations within the three sub-basins (Artegiani et 
al. 1997) in the surface waters from 1993 to 2017 revealed 
considerable temporal and spatial variability (Fig. S4, data 
obtained from available datasets in EMODnet). The north-
ern sub-basin exhibited the largest range of DIN concentra-
tions (from 1.60 to 4.72 µM), while the southern sub-basin 
had the widest range of DIP concentrations (from 0.03 to 
0.14 µM).

Although further species-specific research on F. virsoides 
is required to address gaps in knowledge regarding nutri-
ent uptake, storage strategies and its general ecophysiology. 
Other Fucus species demonstrate remarkable nutrient adap-
tive strategies which may be shared by this Mediterranean 
representative. For instance, Fucus serratus can thrive in 
low external P-concentrations by employing high nutrient 
storage as well as non-saturating or biphasic kinetics (Gor-
dillo et al. 2002). Generally, Fucus spp. have a high capacity 
for nutrients accumulation, reflecting the water trophic sta-
tus (Wahl et al. 2011), making them effective bioindicators 
(García-Seoane et al. 2021). Moreover, Munda and Veber 
(1996) reported that F. virsoides could increase its P-content 
by 8 to 37 times without hindering growth, except under 
high concentration of heavy metals (Kremer and Munda 
1982).

These findings, along with our results, suggest that the 
interactive effect of non-climatic stressors (Gunderson et 
al. 2016) such as nutrients availability in combination with 
other factors like temperature (Colvard and Helmuth 2017; 
Gouvea et al. 2017; Umanzor et al. 2021; Fales et al. 2023) 
and/or salinity (Nygård and Dring 2008), could contribute 
to the decline of this species, as observed in other Fucales. 
This highlights the importance of understanding how mul-
tiple stressors interact (Kunze et al. 2021) and how factors 
often considered detrimental may instead enhance perfor-
mance in some aspects, such as productivity (Connell et al. 
2013). It has been suggested that higher nutrient availability 
could improve the resilience of Fucus species to abiotic and/

et al. 2023), growth, survival and microbial biofilm com-
munities (Malfatti et al. 2023) when the species were treated 
with Algatron addition. Because of its valorization poten-
tial, a further consideration of this biofertilizer could lead 
towards new actions aiming at restoring the species within 
the area, as already tested (Kaleb et al. 2022). However, 
our results along with observations from restoration trials 
conducted in our laboratory (unpublished data) convey that 
Algatron is not suitable for F. virsoides.

The similarly low values recorded for R1, R2 and R3 
conditions suggest that there is no consistent pattern in these 
responses as higher values were observed in conditions such 
as SW and in the most eutrophic condition, C1. Therefore, 
these results should not be overgeneralized, and future 
studies should investigate whether higher concentration of 
Algatron could enhance both growth and photosynthetic 
efficiency in this species. Additionally, the potential role 
of high ammonium concentration in lowering pH and thus 
altering nutrient bioavailability should be further explored 
(Ravaglioli et al. 2017; Prisa 2021).

We also quantified the primary production of F. virsoi-
des, adding further valuable information on this species. 
The mean GPP value determined in the laboratory was ca. 
14 µmol O2·gFW− 1 h− 1, while a single field measurement 
conducted in August 2023 yielded a mean value of ca. 44.5 
µmol O2·gFW− 1 h− 1. The R values under both conditions 
were ca. -5 µmol µmol O2·gFW− 1 h− 1. However, these two 
measurements were not directly comparable due to differ-
ences in irradiance and temperature between the labora-
tory and field conditions, which were 125 vs. ca. 800 µmol 
photons·m− 2 s− 1 and 15 vs. 27 °C, respectively.

Earlier studies on this topic date back to the 1970s (Zavod-
nik 1973; Kremer and Munda 1982). Zavodnik (1973) per-
formed both field and laboratory measurements, reporting 
values of ca. 27 and 5.4 µmol O2·gFW− 1 h− 1 and R values 
of ca. -17 and − 4.5 µmol O2·gFW− 1 h− 1 for in-situ and ex-
situ conditions, respectively. Similar data were obtained by 
Viñegla et al. (2006), who tested Fucus spiralis in southern 
Spain (Tarifa) under different irradiances; when exposed to 
ca. 120 µmol photons·m− 2 s− 1, they recorded a productivity 
of ca. 13 µmol O2·gFW− 1 h− 1. The consistent results across 
different studies highlight the wide adaptability of the Fucus 
genus. The higher GPP values recorded in the field both by 
this study and Zavodnik (1973) can be attributed to the 
maximum saturation of intertidal macroalgae at 400–600 
µmol photons·m− 2 s− 1 (Lüning 1981). This also suggests a 
potential limitation in our study when assessing metabolic 
rates and photosynthetic activities at irradiance levels below 
the maximum saturation ones. Nonetheless, these findings 
provide a solid foundation for follow-up experiments that 
could explore these physiological responses under varying 
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