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Collision-free Volume Estimation Algorithm for Robot Motion
Deformation
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Abstract— The collaborative transport of objects between
humans and robots is one of the main areas of focus in physical
Human-Robot Interaction (pHRI). Ensuring the operator’s
safety and maintaining collision-free motion of the robot during
transportation are crucial challenges in this context. Consider
a collaborative co-manipulation scenario where the operator
modifies the trajectory being executed by the robot. In such
cases, the robot may deviate from its previously calculated path,
potentially resulting in collisions.

In this work, we propose a method to estimate the maximum
collision-free volume around the path of the robot. This volume
represents the permissible deviation introduced by the human
worker while ensuring that no collisions occur. To evaluate the
effectiveness of the proposed algorithm, we test it in a real
industrial scenario.

Index Terms— Physical Human-Robot Interaction, Deforma-
tion Boundaries, Collision-free Volume Estimation

I. INTRODUCTION

Human-robot co-manipulation is one of the most challeng-
ing tasks in the physical Human-Robot Interaction (pHRI),
especially in the industrial fields. The advantages of physical
interaction between humans and robots include increased
task complexity, improved handling capabilities, flexibility,
adaptability and the creation of a collaborative and trusting
working environment. These benefits contribute to more
efficient and effective collaborative operations and improve
performance and productivity. Collaborative object trans-
portation is one of the scenarios that benefit most from
this interaction. In that scenario, humans and robots can
collaborate in real-time, responding to unexpected envi-
ronmental changes or variations. Humans can provide on-
the-fly adjustments, ensuring the transport process remains
efficient and effective even in unpredictable situations. This
flexibility allows for the seamless integration of human and
robot capabilities, overcoming challenges that arise during
transportation: for example, the user can intervene to prevent
accidental damage to the object or material being transported
with the robot. Specifically, one possible interaction mode for
collaborative transport is the following: the robot is moving
along a pre-computed path and the human follows it. In this
situation, the operator can monitor and follow the robot’s
movement and intervene when necessary by modifying the
robot’s path while at the same time ensuring compliance with
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safety protocols and preventing potential accidents such as
collisions with other objects in the environment.

This paper proposes an algorithm for estimating a
collision-free deformation volume within which the user
can modify the robot’s movement without causing collisions
with static objects in the environment. More specifically,
the proposed method is based on a precomputed collision-
free path for the robot, called nominal path. That path
is computed by a path planner, and then the maximum
collision-free deformation volume is estimated along this
path. These boundaries define the limits within which joint
values can be adjusted during movement to account for
expected deviations from the nominal path. These boundaries
must prevent collisions while allowing paths resembling
the nominal one. The aim of this research is to improve
collaboration between humans and robots during movements
by establishing a subspace within the configuration space that
allows deviations from the nominal path, thereby enhancing
the robot’s adaptability to the human operator.

The main contributions of this paper are as follows:
• An algorithm for estimating the collision-free volume of

deformation that allows the user to modify the robot’s
movement without causing collisions with static objects.

• A representation method of the volume through bound-
aries expressed in configuration space.

The method proposed in this paper has been tested in two
simulated environments within the EU project DrapeBot1,
which aims to develop a Human-Robot Collaborative system
capable of assisting an operator working on the draping of
carbon fiber parts. Among the various assistance tasks is the
collaborative transport of the carbon ply from the pick table
to the mould for the subsequent draping.

II. RELATED WORKS

In recent years, the estimation of a collision-free volume
has been investigated. A related approach is based on the
concept of swept-volume. The swept-volume is defined as the
volume generated from the sweeping of an object [1]. This
approach has been used to generate more robust trajectories
[2] or to enhance the collision detection module [3]. De
Mont-Marin et al. in [2] formulated the minimum swept-
volume distance and its geodetics and used them to improve
the Rapidly-exploring Random Tree (RRT) motion planning
algorithm. Another work that used the swept-volume in the
motion planner is [4]. The authors present a technique to
generate a motion sequence for a mobile manipulator based

1https://www.drapebot.eu/
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on a desired goal-hand pose. This involved recording and
selecting suitable motion sequences and associated swept-
volumes, allowing for real-time modification of motion se-
quences using sequential quadratic programming to avoid
collisions with dynamically discovered obstacles. Regarding
the improvements of the collision detection module, the
swept-volume is used to reduce the collision checking phase
during the computation of a footstep planning for humanoid
robots [5] or to represent the robot’s body and perform the
pairwise checking for collisions [3]. More recently, Chang
et al. in [6] proposed a deep learning network approach to
estimate the swept-volume. Baxter et al. in [7] also proposed
a deep learning-based approach to predict the swept-volume
using voxel grids. All these works share similarities in their
use of the swept-volume to enhance the collision detection
module or the final trajectory computed by a motion planner
algorithm like (RRT). However, our method differs in that we
don’t want to compute a trajectory with the swept-volume.
Instead, we based our approach on a precomputed collision-
free path and aim to estimate the collision-free space around
it. In other words, we proposed a method to expand the
swept-volume and dynamically deform the robot’s motion
ensuring the safety within the computed volume. Another
difference with our approach lies in the method used to
compute the space region. Several algorithms in the literature
focused on generating approximations using occupation grid-
based, convex polyhedra-based and boundary-based meth-
ods. Boundary-based methods [8], [9] involve the computa-
tion of an outer boundary surface for the swept volume. This
process entails creating surfaces representing the sweeping
and rotational motion of object surfaces and then determining
the surface of their combination. These methods primarily
concentrate on calculating the boundaries of the swept vol-
ume for moving solids, but they tend to be slow, particularly
when dealing with articulated robots. In occupancy grid-
based methods [10], [11], the space is split into voxels. These
methods then record which segments of space are touched by
the robot as it moves in steps from one configuration to the
next configuration. Finally, convex polyhedra-based methods
involve approximating robot bodies with convex hulls [12],
[13]. Typically, these methods break down the model into
smaller collections of convex polyhedrons, presenting its own
difficulties. As the robot transitions between configurations,
extra convex hulls are incorporated, and the swept volume is
determined by the union of these convex hulls [13]. In the
proposed approach, we did not use this representation of the
space because they are expensive in terms of computational
resources and time. Instead, we formulated an approach
based on Height-Map, i.e. a 2D map and the Height-function
used to represent the third dimension. This choice was made
in order to save computational resources and allow us to be
very fast when estimating the deformation volume.

III. METHOD

As observed in the previous sections, managing the human
presence in the context of pHRI raises certain challenges, as
the human operator is inherently unpredictable. In addition,

Fig. 1: Example of deformation boundaries limits in a 2D
representation.

classical approaches such as swept-volume are used to create
a robust nominal path. Nevertheless, they cannot ensure
the robot does not collide with its surroundings when the
operator adjusts and modifies the path.

This section presents the formulation of the maximum
boundaries estimation to create a collision-free volume
around the nominal path. Starting from the nominal path
obtained by a path planner and a model of the environment,
we defined a collision-free volume around such path. The
algorithm can take as input any legitimate path and return a
corresponding free volume. The model of the environment,
i.e. the position and dimension of the objects, can be pro-
vided by camera systems or other vision system modules.
In this way, our approach is independent and adaptable to
different environments. The collision-free volume represents
a portion of the space where the robot can modify the
nominal path in response to the human motion without
colliding with the other objects presented in the workcell, and
it is represented through boundary limits in the joint space.
Fig. 1 depicts a 2D image of the boundary deformation limits
around the nominal path to provide an idea of the proposed
approach’s potential.

The proposed method is entirely computed offline in
the joint space before the motion execution. The overall
concept is to generate a volume which synthesizes the
whole workspace but is left free in the space surrounding
the nominal path and near the goal. Then, the boundaries
defining the final intervals are found by observing for which
joints’ value the robot collides with such volume.

Given a collision-free nominal path Qnominal =
[q1, . . . , qg] where q1 is the initial configuration and qg is
the goal configuration. Let qi = [q1, . . . , qk], where k is
the number of joints of the manipulator. The nominal path
is computed using the RRT-Connect path planner algorithm
[14]. The path planner provides a path where singularity
never take place. In addition, the step 3 of the algorithm
checks that no singularities can occur. The method consists
of the following main steps (Algorithm 1):

1) Object Categorization: division of the obstacles in
the workspace into goal, trail and no-goal sets. The
first represents obstacles around the target position of
the robot; the second set encapsulates the informa-
tion regarding the surrounding of the nominal path
(robot’s links included), and the last set the remaining



Algorithm 1 Volume estimation
Input: q1, qg,O, δ
Output: B

1: B = []
2: Qnominal ← RRT − Connect(q1, qg)
3: Ong,Ot,Og ← ObjectCategorization(O)
4: H ← instantiateHeightMap(Ong,Ot,Og)
5: for all qi ∈ Qnominal where i ∈ [1, g] do
6: bi ← getJointsBounds(qi,H, δ)
7: B.append(bi)
8: end for
9: return B

obstacles. Formally, let O the obstacles set, O =
Ong ∪ Ot ∪ Og , where Ong is the no-goal obstacles
set, Ot is the trail obstacles set and Og is the goal
obstacles set. Note that Ong ∩ Og ∩ Ot = ∅

2) Volume Generation: generation of the volume V
through a Height-map H and Height-function h(c) in
the 3D cartesian workspace W ∈ R3.

3) Joint Space Exploration: transforming volume V from
W to joint space C and express it as joints’ boundaries
limits B = [b1, . . . , bg] where bi = [b1, . . . , bk]i, ∀i ∈
[1, g]. In other words, bi is the boundary for qi, and
bj =< bl, bu >j , ∀j ∈ [1, . . . , k] is the tuple that
represents the lower and upper joint’s boundary.

Note that getJointsBounds(qi,H, δ) (Alg1 - line 6) is a
function that calculates bi for each qi. The computation
is done by iteratively calling the function Joint Bounding
(Algorithm 2) ∀qj ∈ qi, j = [1, . . . , k].

A. Objects Categorization

This step aims to explicitly define three different categories
of the objects in the working environment since, as it will
be shown in the next step, different objects influence the
boundaries differently. Starting from the obstacles set O,
it is necessary to divide O into the three different subsets
Ong,Og,Ot described above. The categorization uses the
distance between the obstacles and the nominal path (start
and target pose included) along the path direction.

B. Volume Generation

This phase aims to combine the obstacles and the spatial
areas around the nominal path in one entity to gauge the
robot’s moving limits. This phase requires the definition of
a Height-map H and a related Height-function h(c). The
resulting volume V is represented through H as a set of
collision boxes.

1) Height Map: The volume expands using a Height-map
roughly representing the robot’s workspace. The Height-map
was preferred over a 3D structure like an Octree [15] or
Octomap [16] because it allows us to save computational
resources by eliminating one spatial dimension. However,
the combination of Height-map and Height-function allows
a representation of volume along all directions and pro-
vides the necessary robustness to changes introduced during
movement. In contrast to using a Quadtree [17], the Height-
map was chosen due to the potential occurrence of large

empty areas in the map when using an exploratory approach.
Consequently, when computing the heights of individual
cells, notable discontinuities may arise between adjacent
volumes. These discontinuities can give rise to unpredictable
behaviours when determining the boundaries of the final
joints. The height maps are typically used for reconstruction
and mapping purposes, but in this work, they are used for
generative purposes.

The Height-map H is defined by its origin Oh ∈ R3,
a pair (xdim, ydim) of the dimension of its sides and a
maximum number of cells R. The side of a cell is defined as
side =

√
xdimydim

R ; while the number of rows and columns
are, respectively, #row = m = xdim

side and #column =
n = ydim

side . Finally, to instantiate the volume, it’s necessary
to decide how much to grow up the volume in each cell of
the Height-map: the following Height function is used.

2) Height Function: The aim of this function is to set,
cell by cell, the heights of the final volume. Since the
volume will be used for a co-manipulation transport, where
the human operator will modify the path, and at the same
time, he has to guarantee the precision in the target pose,
we have formulated a function that would make the volume
grow higher when closer to the non-goal obstacles and
lower when near the goal obstacles. By employing this
approach, we enable the joint boundaries to exclude the areas
surrounding the obstacles, while also ensuring they do not
become excessively constrained around the nominal values
or the target region. Let dt, dg and dng be the distance from
the center of the cell c to the trail, goal and no-goal obstacle
respectively. Let also d·,LB , d·,UB be the parameters defining
the floor and the top of the correspondent height-function
component ∆·. Thus, the mathematical formulation for the
Height-function is:

h(c) = At(c)hmax

(
∆αt

t +∆αg
g +∆αng

ng

)
(1)

where At(c) is the activation function that sets the volume
corresponding to a cell c too close to the trail to zero, hmax

sets the highest possible increment a single component of
the function can contribute, the exponentials α represents the
tightness of the boundaries and ∆· are defined as follows:

∆t =
dt − dt,LB

dt,UB − dt,LB

∆g =
dg − dg,LB

dg,UB − dg,LB

∆ng =
dng,UB − dng

dng,UB

In practice, for each cell c, a collision box with a square
base (side side and height h(c)) is instantiated. Fig. 2 depicts
an example, visualized using the software PhysX 2. The
free space is the volume V computed for the nominal path,
while the green boxes represent the unavailable space. The
volume is truncated across the robot’s nominal poses and
over the goal obstacle to the left. As expected, volume peaks

2PhysX physics engine.
Available: www.geforce.com/hardware/technology/physx
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Fig. 2: Visualization of a scene in PhysX before (a) and during (b) volume generation.

are presented over the obstacles. Once the volume V is
generated in the cartesian workspace W , it is necessary to
establish the boundaries in the joint space around the nominal
values. Therefore, we have formulated an iterative approach
to convert the volume from W to C as boundary limits for
each joint.

C. Joint Space Exploration

The volume is used to apply ”pressure” on the joints to find
an upper and lower bounding interval for each joint. Upper
and lower bounds are computed separately with the same
procedure (Algorithm 2). The algorithm starts by setting the
joint j under analysis at its absolute bound B (Alg2 - line
4), while other joints are set at their input nominal value
and kept at these values in all the steps. First, the algorithm
checks if a collision occurs between the robot and the volume
generated in the previous section (Alg2 - line 5). If not, the
algorithm halts and returns the absolute bound as a result
(Alg2 - lines 6, 7). Otherwise, the joint is set to the midpoint
between the input and absolute boundary values (Alg2 -
lines 9, 10). After that, the algorithm enters a loop, which
is depicted in Fig. 3. At each iteration, a collision check is
performed as before (Alg2 - lines 12). If there’s a collision,
the joint is set to the midpoint between the highest collision-
free value and the current joint value (Alg2 - lines 13). If
there’s no collision, the joint is set to the midpoint between
the current and lowest colliding values (Alg2 - lines 15). The
loop halts once the distance between the highest collision-
free and lowest colliding values is less than a given threshold
δ (Alg2 - line 11) and returns the highest collision-free value
as the resultant boundary b∗ (Alg2 - line 21).

A mathematical explanation of the approach follows. Let
δ be the threshold parameter and d be the distance between
the best value of the bound b∗ and the current absolute value.
At the beginning of the loop, d is the distance between the
highest collision-free value and the absolute boundary B.
At each step of the loop, d is cut in half. Therefore the
exit condition can be written as d

2s < δ, where s is the
number of steps inside the loop. So, the loop is exited when
s > log2

d
δ . Therefore the whole algorithm 2 takes s = 1

Algorithm 2 Joint Bounding
Input: qi, j, B, δ,H
Output: b∗

1: q ← copy(qi)
2: b∗ ← q[j]
3: x, y ← B
4: q[j]← B
5: if !collision(q,H) then
6: b∗ ← B
7: return b∗

8: end if
9: x← (b∗ + y)/2

10: d← ∥(x− b∗)∥
11: while d > δ do
12: if collision(q,H) then
13: y ← x
14: else
15: b∗ ← x
16: end if
17: x← (b∗ + y)/2
18: q[j]← x
19: d← ∥(x− b∗)∥
20: end while
21: return b∗

steps if it doesn’t enter the loop or s = 1 +
⌈
log2

d
δ

⌉
if it

enters the loop.

D. Theoretical Time Analysis

This section will analyse the proposed algorithm from a
computational perspective. Let g be the number of configu-
rations in Qnominal, and R = m×n be the number of cells
of H. Let the goal position be pg = [xg, yg, zg]

T ∈ W and
the robot has k joints. Finally, let o = |O| the number of
obstacles. Since the Object Categorization step subdivides
and classifies obstacles, the algorithm’s computation time
complexity is linear. Regarding step 2, the volume generation
needs to evaluate the Height-function of each cell. For each
cell, it requires 1 + g + o iterations. As before, the compu-
tational time is linear. Finally, the Joint Space Exploration
requires 1 or 1 +

⌈
log2

d
δ

⌉
steps. This process contains the

most expensive operation in terms of computational time:
collision checking. This single operation requires gR steps



Fig. 3: Graphical description of the upper boundary searching
algorithm in the joint space.

because each robot link is confronted with each cell of the
volume V . Therefore the total time T of this step:

gkR ≤ T ≤ gkR

(
1 + log2

d

δ

)
(2)

Therefore, the discretization of the Height-map is the only
main parameter under control to manage the computational
time of the proposed method. This relation, represented by
R, appears to be linear, as well as the other relations with the
not controllable parameters like k (since the robot is given),
o (since also the environment is known), and g. Based on
this analysis, the expected computational time is smaller than
what could have been expected with the method described
in Sec. II or the cylindrical algebraic decomposition [18],
which has a double exponential complexity. Notice that also
g has a linear impact on the computational time.

IV. EXPERIMENTS

A. Case Study

The two simulated scenarios are from the automotive (Fig.
4a) and aerospace (Fig. 4b) industrial sectors. In the first
case, the 6-DoF ABB IRB 6700-205/2.80 is used, while, in
the aerospace use case, the 6-DoF KUKA Quantec KR210
R3100 robot is mounted on an eight-meter-long linear axis.
Thus, we have decided to consider the robot a 7-DoF robot,
with the first being a prismatic joint, i.e., the linear axis. To
evaluate the proposed approach, the Boundary Confidence
performance indicator is defined. The indicator describes the
quality of the volume computed around the nominal path
and is useful for the deformation algorithm used during the
robot’s motion. The metrics identified for the evaluation of
the Boundary Confidence are:

• Time to compute the boundaries.
• Confidence Factor (CF): the CF has been computed

as the average number of collision-less random joints
configuration encountered in a time window. The CF
aims to express the quality of the boundaries produced.

Three different start and goal states were selected for each
use case to compare the performance. Since the path planner
(RRT-Connect) is a sampling-based algorithm, the paths
generated from the same initial and final states are not always
identical. This is an advantage for testing the robustness

and generalisation of the deformation volume estimation
algorithm. Since the resolution of the Height-map is a crucial
parameter to set, a performance analysis was done and
a set R of possible values was selected. The set values
are R = {100, 500, 1000, 2000, 5000, 10000, 15000, 20000}:
these values represent the number of the cell on the Height-
map H. As mentioned above, the boundaries algorithm was
investigated into three different paths, and each value r ∈ R
has been checked over the 20 trials for each path. So, the
average computing time is used for the evaluation. As the
nominal path can be composed of linearly connected config-
urations, we arbitrarily divided the path into Ntw = 30 time
windows and Nm = 10000 random joints’ configurations,
with values within the time window’s boundaries, are tested
for collision in each time window. Then, indicating with
J(i) the joint boundaries within the i-th time window, the
mathematical formulation of CF is:

CF =
1

NtwNm

Ntw∑
i=1

Nm∑
m=i

cJ(i) (3)

where cJ(i) is the function checking whether the collision of
the random set in J(i) occurs. In other words:

cJ(i) =

{
1 if no-collision,
0 if collision

(4)

Taking equation 1 as a reference and after a fine-tuning
phase, the following values were used for the parameters:

• αt = αg = αng = 1
• dt,LB = 350 mm, dt,UB = 1500 mm
• dg,LB = 100 mm, dg,UB = 2000 mm
• dng,UB = 500 mm
• hmax = 1500 mm
• the activation function At(c) set zero height in all the

cells more distant than 2800 mm for the automotive
case and 3000 mm for aerospace.

The activation function’s parameter is set at a value such that
no box is instantiated outside the robot’s reachability. The
exponents αt, αg and αng are set to 1 as it was chosen to
prefer tighter boundaries. Higher exponents would make the
volume scale up smoother, although these exponents have
less influence on the final boundaries than the distances’
UBs and LBs. Finally, the experiments were performed on
a Windows 10 pc with an Intel(R) Core(TM) i5-8250U CPU
@ 1.60GHz and 8 GB of RAM.

B. Results

1) Automotive Use Case: As can be seen from Table I,
the computational time increases linearly with respect to
the resolution value in all three paths. Thus, these results
confirm the analysis done in Section III-D. The CF shows
linear growth with respect to resolution, although less sharp
than with respect to computing time. Analysing all three
paths, it can be established that the best performance in
terms of calculation time and confidence factor occurs with
a resolution equal to 1000. In fact, the computational times
are always less than 200ms and the CF greater than 99%.
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Fig. 4: Automotive use case (a) and aerospace use case (b).

Resolution Path 1 Path 2 Path 3
Time [ms] CF [%] Time [ms] CF [%] Time [ms] CF [%]

100 82 95.3839 71 93.4484 71 99.9484
500 121 98.9903 151 99.1484 119 99.9999
1000 170 99.5000 191 99.3742 173 99.9999
2000 231 99.5903 246 99.7742 202 99.9999
5000 387 99.8548 411 99.7742 365 99.9999
10000 609 99.9871 717 99.9613 598 99.9999
15000 1000 99.9226 1329 99.9161 837 99.9999
20000 1149 99.8258 1584 99.8000 1224 99.9999

TABLE I: Automotive case results.

2) Aerospace Use Case: The results obtained in this
use case are similar to the automotive case: the CF values
are constantly greater than 90% (except for the first three
resolution values for Path 2), and the linear grown behaviour
remains. The same linear behaviour is also present in the
computational time. In this case, the resolution 2000 has the
best results (time = 562ms and CF = 93.20%) for Path
1, but not for Path 2 and Path 3. In Path 2, the highest CF
is 98.19% with a resolution equal to 20000 and 2434ms as
computing time, while the best computational time is 498ms
with a resolution equal to 100 and a corresponding CF
amount to 88.1%. Thus, analyzing the performance makes
it possible to affirm that the right trade-off between the
two paths is the one with a 5000 resolution because the
computing time is less than 1s and the CF is greater than
95%.

Resolution Path 1 Path 2 Path 3
Time [ms] CF [%] Time [ms] CF [%] Time [ms] CF [%]

100 398 90.5355 498 88.1 884 93.7387
500 453 92.5355 670 87.1032 538 99.8774
1000 504 91.7452 552 87.8 557 99.9516
2000 562 93.2097 723 92.6613 640 99.9999
5000 772 92.7677 975 95.9032 984 99.9999
10000 1124 92.7194 1684 97.0613 1222 99.9999
15000 1452 92.8194 2056 98.1613 1817 99.9999
20000 1657 92.9226 2434 98.1935 2419 99.9999

TABLE II: Aerospace case results.

Compared the Table I with Table II, it is possible to notice
that the time results are influenced by the workcell. This
influence is due to the different sizes of the two workcells:
in the automotive case, the workspace is smaller than in
the aerospace case. Nevertheless, the results confirmed the
proposed approach’s potential to estimate a collision-free

volume around a nominal path which can be very useful in
applications requiring online deformation of the robot path,
such as human-robot collaborative transport.

V. CONCLUSIONS

In this paper, we proposed an approach to estimate the
collision-free volume of a robot’s motion deformation. In
fact, during collaborative transport with human and robot,
the human operator could deform the current motion of
the robot. This motion adjustment can, however, lead to
collisions with objects in the environment. Therefore, the
algorithm proposed in this work aims to be a supporting
tool in this type of scenario. Starting from the nominal path,
the algorithm analyzes the workspace and uses a Height-map
and a Height-function to estimate the collision-free volume
in the cartesian space. After that, the algorithm converts
the volume from the cartesian space to the joint space and
expresses it through boundary limits at joints along the
nominal path. The proposed approach has been validated in
two simulated industrial scenarios from the DrapeBot project.
The computational time and the Confidence Factor are the
two metrics used to evaluate the results. In both use cases
used for the evaluation, the computing time is very fast (less
than 200ms) with a 99% of confidence for the automotive
case and less than 1s with the 95% of confidence. Therefore,
the results demonstrate the applicability and effectiveness of
the approach. An extension of the algorithm here described
could be to adapt it to an unknown environment, providing a
detection system to build a dynamic model. Consequentially,
it could be possible to change the volume at runtime due to
a changing environment if the delay between one instance
of the model and the next is properly managed.
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