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Abstract. The goal of the present work is the simulation mass movement hazards, in-
volving fast and large soil deformation, interacting with flexible protection structures.
For the simulation of those large deformation phenomena, involving complex history de-
pendent material laws, the Material Point Method (MPM) is a powerful method, as the
particles move trough a fixed background mesh. This allows to overcome the classical
limitation of the Finite Element Method (FEM) related to mesh distortion in large strain
problems. Therefore, a staggered or partitioned coupling scheme is proposed, combining
the advantages of FEM and MPM by solving both models separately using their respective
established environment, whereas the communication between the two fields is achieved by
mapping boundary conditions on the shared interface. In this work a Gauss-Seidel com-
munication pattern is considered, leading to the necessity of imposing Dirichlet Boundary
Conditions on one interface (in this study: FEM) and Neumann Boundary Conditions on
the corresponding counterpart (in this study: MPM). For validation purposes, a structural
example with analytical solution is chosen.
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1 INTRODUCTION

Mass movements hazards involving fast and large soil deformation have increased sig-
nificantly in the past decades due to the climate change and global warming. Those
phenomena, avalanches and mud-flow, can cause extensive damage on landscapes and
infrastructures. Therefore, further assessment and prediction on the effects on such dis-
asters and countermeasures are in high social and economic demands.
For the simulation of solid mechanics problems, including history dependent material laws
and large deformations, MPM has gained a remarkably increasing popularity in the last
years. As the material domain is discretized by Lagrangian moving particles, whereas the
governing equations are solved at a stationary background grid, mesh-distortion problems
are eliminated. This method was first introduced by [2, 3] as an extension of Particle-In-
Cell (PIC) method [4] whereas the implicit version of the method, utilized in this study
was introduced by [5].
Although MPM has been proven, to work robustly for problems involving large defor-
mation materials, the accuracy of the integration done in the particle integration is sig-
nificantly lower than the Gaussian quadrature, which is used in traditional FEM. Fur-
thermore, the cell-crossing error and numerical fracture can lead to less accurate results
compared to FEM, which is a very efficient method for structural dynamics. Therefore
especially for soil-structure interaction (SSI) problems it is desirable to combine FEM and
MPM and take the respective advantages of these two methods.
Therefore, a staggered coupling scheme is developed, providing the possibility to solve
the MPM and the FEM model separately using their respective established environment,
whereas the communication of the two fields is achieved by mapping boundary conditions
on the shared interface. The presented algorithms are developed within the open source
software Kratos-Multiphysics proposed by [1], which has been used and continuously de-
veloped to simulate multi-physics coupling phenomena.

2 GOVERNING EQUATIONS

2.1 Strong Form

The governing equations, i.e. the mass and momentum conservation equations, for a
body B, which occupies a domain Ω in a three-dimensional Euclidean space E can be
written as:

dρ

dt
+ ρ∇ · u̇ = 0 in Ω (1)

ρü = ∇ · σ + ρb in Ω (2)

where ρ is the mass density, b is the volume acceleration and σ is the symmetric Cauchy

stress tensor. The first and second material derivative of the displacement u are the veloc-
ity and the acceleration, respectively. Resulting from the time-dependent map Φ (X, t),
the displacement is expressed by the difference between the current configuration x and
the reference configuration X which describes the kinematic relation for each point within
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the body B and is illustrated in Figure 1.

u(t) = x(t)−X, (3)

The problem 1 - 2 is fully defined with the boundary conditions

X
x

u

Φ (X, t)

Current ConfigurationReference Configuration

e2
e1

e3

Figure 1: Current and Reference Configuration of a body B in an three-dimensional Euclidean space E .

u = u ΓD (4)

σ · n = t ΓN (5)

where u is a prescribed displacement on the Dirichlet boundary ΓD and t is a traction
vector on the Neumann boundary ΓN .

2.2 Virtual Work

Multiplying the momentum equation with a virtual displacement field δu and integrat-
ing over the domain Ω ⊂ E leads to the weak form of the balance equation

δW = δWint − δWext + δWkin = 0 (6)

with the internal work contribution, obtained by partial integration, the external and the
kinetic work

δWint :=

∫
Ω

σ : δedΩ (7)

δWext :=

∫
Ω

ρb · δudΩ +

∫
ΓN

σn · δudΓN (8)
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δWkin :=

∫
Ω

ρü · δudΩ (9)

respectively. Equation 6 can be expressed through the variation of the virtual work w.r.t.
δu as

δW =
∂W

∂u
δu = 0 (10)

Since, in the current work, geometric and material nonlinearities are considered, a lin-
earization of the weak form is necessary, and thus, the Newton-Raphson method, which
is based on Taylor’s theorem, is used to approximate the solution iteratively.

2.3 Discretization in Space and Time

In FEM the body B is discretized into a finite number ne of non-overlapping subdomains
Ωe

B ≈ Bh =
ne⋃
e=1

Ωe (11)

where the subscript h is used to indicate the approximative character. Therefore the
continuous fields are approximated by discrete quantities in the nodes and locally confined
basis functions. This leads to the discretized displacement field:

uh =

nnodes∑
i=1

Ni(x)Ui (12)

where Ni and Ui are the shape function and discrete nodal displacement, respectively,
corresponding to node i of the element, which in turn consists of nnodes nodes. The same
principle is applied to all occurring fields, including the geometry itself.
Considering the time derivatives, an implicit time integration scheme of the Newmark-
beta method is utilized. Hence equation 10 transforms to:

δW =
∂W

∂uh

δuh = −R · δuh = 0 (13)

meaning, that the residual force vector R has to vanish, as the virtual displacements δuh

are arbitrary. Since material and geometric nonlinearities are considered, an iterative
solution approach namely the Newton Raphson algorithm is applied, which introduces
the tangential stiffness matrix K as a linearization of the residual vector R:

LIN(R) = R+
∂R

∂uh

∆uh = R+K∆uh = 0 (14)

Also in MPM, the continuous fields in MPM are approximated by discrete nodal values
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and the corresponding shape functions, by introducing a computational background grid.
The body B, however, is discretized into np Lagrangian moving material points as:

B ≈ Bh =

np⋃
p=1

Ωp (15)

with a finite volume of the body Ωp. Those material points carry the history dependent
variables and material information during the calculation process, whereas the background
grid is reset after each time-step. Therefore this leads to the necessity of inter- and
extrapolating data from the material points to the nodes of the computational background
grid and vice versa, resulting into the three phases of a MPM calculation:

1. Initialization phase: A search is performed, to define the background grid el-
ement, which belongs to each material point, before the necessary variables are
mapped via mass projection to the corresponding nodes as initial conditions.

2. Lagrangian phase: Solution of the discretized governing equations. Coincides
with the solution step for an Updated Lagrangian Element in FEM.

3. Convective phase: Solutions obtained are interpolated back to the material points,
resulting in an update of the material point’s position and the background grid is
reset to its initial position.

Initialization phase Lagrangian phase Convective phase

grid nodes material points material point update

Figure 2: (a)Initialization phase, (b) Lagrangian phase and (c) Convective phase. Square markers
identify the grid nodes while round markers indicate the material points.

which is also illustrated in figure 2.
For both methods, the integrals in the discretized equations 14 have to be solved. While
in Lagrangian FEM usually Gauss integration is used, as the elements deform according
to the body, “particle”integration is applied in MPM.
As MPM allows to overcome the the classical limitation of FEM related to mesh dis-
tortion in large strain problems, a staggered coupling scheme is introduced, to solve the
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engineering problem of large mass movement hazards interacting with flexible protection
structures. Therefore the communication of the two separated fields is shifted to the
shared interface leading to the necessity of imposing boundary conditions on each inter-
face. While the imposition of boundary conditions is straightforward in FEM, special
attention should be made in MPM, which is introduced in the next section.

2.4 Boundary Conditions in MPM

As in MPM the particles move independently of the computational background grid,
the boundaries Γ, both, the Neumann ΓN and Dirichlet ΓD boundaries, usually do not
coincide with the background grid nodes. In Lagrangian FEM, as the mesh moves ac-
cording to the body deformation, the boundary conditions can be applied directly at the
nodes, the so calles grid-conforming boundaries. Also in MPM, some strategies have been
introduced, to achieve grid-conforming boundary imposition, just mentioning, the moving
grid approach [8]. However, regarding the coupling of MPM with FEM or other physics,
the robust imposition of non-conforming boundary conditions is crucial. Following the
concept of MPM, a particle discretization is applied, to represent the continuous boundary
Γ with a discrete number of boundary particles b leading to the approximation:

Γ ≈ Γh =

nb⋃
b=1

∫
Γb

(...)dΓb. (16)

Applying the concept of particle integration and therefore evaluating the continuous sur-
face integral at the discrete location of the boundary particle, the contribution of each
boundary particle can be reduced to:

∫
Γb

(...)dΓb = (...)Ab (17)

assuming, that the quantities inside the surface integral are constant within the surface.
Those mass-less boundary particles track the deformation of the interface and carry the
respective information for the boundary imposition.
For the imposition of Dirichlet Boundary conditions a penalty augmentation is a suitable
method and its accuracy has been proven in [10]. Using those introduced boundary par-
ticles, moving boundaries, slip boundaries as well as releasing-contact conditions can be
realized, by penalty augmentation. Furthermore, this boundary imposition can also be
used for a staggered coupling approach with FEM, as shown in [11]. Further verification
and validation tests are planned to be performed for this coupling scheme in near future,
but are out of scope of the current work.

In the case of Neumann boundaries, the particles are carrying the value of the Point
Load and the corresponding position of the particle. During the calculation process,
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the Point Load Pb is mapped via the shape functions to the corresponding nodes of the
computational background grid.

Pi = Ni(xb) · Pb (18)

where Pi is the resulting value at the node i of the background grid and Ni(xb) is the
corresponding shape function evaluated at the point-load position xb.
Special treatment has to be done for elements which contain boundary particles but no
material points. Therefore, only the nodes of the background grid are considered which
also carry a mass resulting from the material points and ensuring the interaction with
the material. Therefore the considered shape functions are modified accordingly to fulfill
unity on the one hand side and preserve the sum of forces on the other hand side.

3 COUPLING OF MPM AND FEM

In this study a partitioned or staggered approach is considered which keeps the solution
of the two subsystems, structural domain ΩS with boundary ΓS and the particle domain
ΩP with boundary ΓP , independently of each other. The communication between the
subsystems is shifted to the shared interface

ΓSP = ΓS ∩ ΓP (19)

where the kinematic and dynamic conditions have to be enforced

uS = uP on ΓSP (20)

tS = tP on ΓSP (21)

where uS and up are the displacements of the structure and the particles and tS and tP
are their traction, respectively. The kinematic constraint makes sure, that both domains
deform consistently at the interface without gaps and overlaps, whereas the dynamic
condition specifies the load balance at the shared interface. Due to the independent
discretization of each domain, the Nearest Neighbor mapping technique [6] is applied to
enforce the respective conditions at non-matching grids.
In the current work the classical Dirichlet-Neumann decomposition approach is applied,
meaning, that reaction forces, which are the resultants of the traction multiplied by
the respective area of the discretized surface, are transferred from the FEM interface
to MPM and displacements and velocity are transferred back from MPM as prescribed
displacements in FEM resulting in the communication pattern, depicted in Figure 3.
Depending on the simulation to be performed, it is possible to start either with MPM
and therefore mapping first the displacement to FEM as prescribed displacement and
receiving the respective Reaction Forces as Point Loads or, alternatively, starting with
the FEM calculation and therefore sending the Reaction Forces first to MPM and receiving
the displacement as an answer.
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Figure 3: Gauss Seidel Communication Pattern for strong coupling of MPM and FEM

As both subsystems are solved implicitly and therefore relatively large time-steps are
used, a strong coupling approach is considered, resulting in the respective iteration loop,
until the residual criteria is fulfilled. Furthermore, large time steps typically lead to large
differences in the interface velocities and displacements, and thus resulting in non-physical
reaction forces. To overcome this problem, convergence-accelerators [9] can be used, which
means, that the transferred data is applied gradually.

4 Numerical Example

The first step, before running challenging large scale examples, as the interaction of
landslides with protection structures, is the validation for the coupling algorithm and the
mapping parameters. Therefore, validation tests are performed, and compared to the
analytical solution. Therefore, as a first example, a static, linear elastic beam, clamped
on both sides, under self-weight with a total length of L = 8 m and a square cross-
section with unit area of A = 1 x 1 m2 is considered. The material parameters are
set as follows: density ρ = 1000 kg/ m3, Young’s modulus E = 90 MPa and Poisson’s
ratio ν = 0.0. The sketch of the system can be found in Figure 4 including a detailed
sketch of the shared interface. The left hand side of the beam is modeled using MPM
whereas for the right hand side FEM is used. For the discretization of the FEM model,
a structured, quadrilateral mesh is considered with an element size of 0.04 m. Also for
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Point A

8m

MPM FEM

gravity: 9.81 N
m2

Mapper

ΓP ΓS

FEMMPM

u

t

Γ

Figure 4: Both sided clamped beam under gravity load. Left side is modeled by MPM and right side
by FEM and a detail of the interface is shown.

MPM, a quadrilateral background grid with mesh size of 0.04 m is assumed, whereas
for the the body discretization 16 particles per element are introduced. To enforce the
respective boundary conditions, a conforming Dirichlet condition is considered at the
nodes of the FEM grid at the shared interface ΓS. For the MPM counterpart Neumann
ΓP boundary particles are introduced, which are able to impose the respective reaction
forces from FEM as Point Loads to MPM and are located independently of the considered
background grid. To eliminate a possible mapping error for this example, the boundary
particles have the same coordinates as the respective nodes of the FEM counterpart.
Therefore the mapping reduces to a copy operation with a switch of the sign. In the near
future, also other mapping techniques, which for example can be found in [7], will be
investigated.
For this example, the vertical displacement of the beam at the evaluation Point A, which
is the center of this structure, should be compared to the analytical solution, which can
be calculated by:

wref
A =

g · ρ · A · L4

384 · EI
+

g · ρ · A · L2

8 ·GAs

(22)

9



Veronika Singer, Bodhinanda Chandra, Antonia Larese and Roland Wüchner

where I = bh3/12 is the inertia of the beam section, As = 5/6A is the reduced cross-section

area due to the shear effect and G is the shear modulus, which is equal to G =
E

2(1 + ν)
.

Figure 5 shows the final deformation of the coupled beam model under gravity load and

MPM FEM

Point Load Reaction Force

Γ

Point A

Figure 5: Final deformation of the both sided clamped beam under gravity load using the proposed
staggered approach and the resulting forces at the shared interface.

the resulting displacement at Point A is wA = 0.0160109m. Compared to the analytical

result wref
A = 0.0160448 this leads to an relative error of er = |

wA − wref
A

wref
A

| = 0.21% and

an absolute error of ea = |wA − wref
A | = 0.0034%.

This result could even be improved, by decreasing the grid size, as the distribution of
the Point Load over the background element has a main effect on the final result. If the
calculation is repeated with half the grid size, meaning an element size of 0.02 for each,
the FEM and MPM part, the relative error reduces to:

er = |
wA − wref

A

wref
A

| ==
0.0160172− 0.0160448

0.0160448
= 0.17%. (23)
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The continuity of the displacements is proven by the resulting deformation of the consid-
ered example. But also the traction at the shared interface is mapped perfectly, as can be
seen in the lower part of Figure 5. The Reaction Forces at the interface ΓS, which are the
resultants of the traction multiplied by the respective area of the discretized interface, are
mapped by the nearest neighbor mapper to the MPM interface ΓP as Point Loads with
opposite sign. As the location of the introduced boundary particles in MPM coincide
with the coordinates of the FEM interface nodes, no mapping error is introduced in this
example, resulting in equivalent values for the forces on both sides of the interface. Due
to the symmetry of the considered example, the resulting forces are horizontal and sum
up to the final bending moment of the beam formulation M = 26, 15kNm at the interface
with a relative error of er = 0.049% compared to the analytical solution:

Mref =
g · ρ · A · L2

24
= 26, 16kNm. (24)

This example proves the applicability of the proposed staggerd coupling scheme for static
cases. Further verification and validation tests, including dynamic effects, are planned to
be performed in the near future.

5 CONCLUSIONS

A staggered strong coupling scheme is presented, to couple implicit MPM and FEM.
Utilizing this proposed approach one can benefit of the strengths of both methods for the
simulation of landslides interacting with protection structures, as FEM efficiently leads to
accurate results for structural dynamics, whereas MPM is preferable for the simulation of
large and non-linear soil deformation. Nevertheless, some future works are necessary to do
some verification and validation tests, including dynamic effects on the one hand side and
adapt the proposed scheme to real-scale landslide hazards involving complex multi-phase
flows of particles with different size on the other hand side.
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