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Abstract
We investigate an optimal reinsurance problem when the loss process exhibits jump
clustering features and the insurance company has restricted information about the
loss process. We maximise expected exponential utility of terminal wealth and show
that an optimal strategy exists. By exploiting both the Kushner–Stratonovich and Za-
kai approaches, we provide the equation governing the dynamics of the (infinite-
dimensional) filter and characterise the solution of the stochastic optimisation prob-
lem in terms of a BSDE, for which we prove existence and uniqueness of a solution.
After discussing the optimal strategy for a general reinsurance premium, we provide
more explicit results in some relevant cases.
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1 Introduction

Optimal reinsurance problems have attracted special attention during the past few
years and have been investigated in many different model settings. Insurance compa-
nies can hardly deal with all the different sources of risk in the real world; so they
hedge against at least part of them by reinsuring with other institutions. A reinsurance
agreement allows the primary insurer to transfer part of the risk to another company,
and it is well known that this is an effective tool in risk management. Moreover, the
subscription of such contracts is required by some financial regulators; see e.g. the
Directive Solvency II in the European Union. A large part of the existing literature
focuses mainly on classical reinsurance contracts such as proportional and excess-
of-loss, which were extensively investigated under a variety of optimisation criteria,
e.g. ruin probability minimisation, dividend optimisation or expected utility maximi-
sation. Here we are interested in the latter approach (see Irgens and Paulsen [18],
Mania and Santacroce [24], Brachetta and Ceci [4] and references therein). Some of
the classical papers devoted to the subject assume a diffusive dynamics for the sur-
plus process, while the more recent literature considers surplus processes including
jumps, see Schmidli [26].

The pioneering risk model with jumps in non-life insurance is given by the clas-
sical Cramér–Lundberg model, where the claim arrival process is a Poisson process
with constant intensity. This assumption implies that the instantaneous probability
that an accident occurs is always constant, which is too restrictive in the real world
as already motivated by Grandell [16, Chap. 2]. In recent years, many authors made
a great effort to go beyond the classical model formulation. For example, Cox pro-
cesses were employed to introduce a stochastic intensity for the claim arrival process;
see e.g. Albrecher and Asmussen [1], Björk and Grandell [3], Embrechts et al. [15].
Moreover, other authors introduced Hawkes processes in order to capture the self-
exciting property of the insurance risk model in the presence of catastrophic events.
Hawkes processes were introduced by Hawkes [17] to describe geological phenom-
ena with clustering features like earthquakes. Hawkes processes with general kernels
are not Markov processes; they can include long-range dependence, while Hawkes
processes with an exponential kernel exhibit the appealing property that the process–
intensity pair is Markovian. Moreover, they are affine processes according to the def-
inition provided by Duffie et al. [14]. For the latter literature strand, we mention here
Stabile and Torrisi [28] and Swishchuk et al. [29].

Dassios and Zhao [13] proposed a model which combines the two approaches by
introducing a Cox process with shot noise intensity and a Hawkes process with an ex-
ponential kernel for describing the claim arrival dynamics. Recently Cao et al. [7] in-
vestigated the optimal reinsurance–investment problem in the model setting proposed
by Dassios and Zhao [13] with a reward function of mean–variance type.

A different line of research related to the optimal reinsurance–investment problem
focuses on the possibility that the insurer does not have access to all the information
when choosing the reinsurance strategy. As a matter of fact, only the claim arrivals
and the corresponding disbursements are observable. In this case, we need to solve a
stochastic optimisation problem under partial information. Liang and Bayraktar [22]
were the first to introduce a partial information framework in optimal reinsurance
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problems. They consider the optimal reinsurance and investment problem in an unob-
servable Markov-modulated compound Poisson risk model, where the intensity and
jump size distribution are not known, but have to be inferred from the observations
of claim arrivals. Ceci et al. [10] derive risk-minimising investment strategies when
the information available to investors is restricted and they provide optimal hedg-
ing strategies for unit-linked life insurance contracts. Jang et al. [20] present a sys-
tematic comparison between optimal reinsurance strategies in complete and partial
information frameworks and quantify the information value in a diffusion setting.

More recently, Brachetta and Ceci [5] investigate the optimal reinsurance problem
under the criterion of maximising the expected exponential utility of terminal wealth
when the insurance company has restricted information on the loss process in a model
with claim arrival intensity and claim size distribution affected by an unobservable
environmental stochastic factor.

In the present paper, we investigate the optimal reinsurance strategy for a risk
model with jump clustering properties in a partial information setting. The risk model
is similar to that proposed by Dassios and Zhao [13] and includes two different jump
processes driving the claims arrivals: one process with constant intensity describing
the exogenous jumps, and another with stochastic intensity representing the endoge-
nous jumps which exhibits self-exciting features. The externally-excited component
represents catastrophic events which generate claims clustering increasing the claim
arrival intensity. The endogenous part allows us to capture the clustering effect due
to self-exciting features. That is, when an accident occurs, it increases the likeli-
hood of such events. The insurance company has only partial information at its dis-
posal; more precisely, the insurer can only observe the cumulative claim process. The
externally-excited component of the intensity is not observable and the insurer needs
to estimate the stochastic intensity by solving a filtering problem. Our approach is
substantially different from that of Cao et al. [7] in several respects. Firstly, we work
in a partial information setting; secondly, the intensity of the self-excited claim ar-
rival exhibits a slight more general dependence on the claim severity; finally, we
maximise an exponential utility function instead of following a mean–variance crite-
rion. In a partially observable framework, our goal is to characterise the value process
and the optimal strategy. The optimal stochastic control problem in our case turns out
to be infinite-dimensional, and the characterisation of the optimal strategy cannot
be performed by solving a Hamilton–Jacobi–Bellman equation, but via a backward
stochastic differential equation (BSDE) approach.

A difficulty naturally arises when dealing with Hawkes processes: the intensity of
the jumps is not bounded a priori, although a non-explosivity condition holds. Hence
we are not able to exploit some relevant bounds which are usually required to prove
a verification theorem and results on the existence and uniqueness of the solution
for the related BSDE. Nevertheless, we are going to show that the optimal stochastic
control problem has a solution, which admits a characterisation in terms of a unique
solution to a suitable BSDE.

Our paper aims to contribute in different directions to the literature on optimal
reinsurance problems. First, we provide a rigorous and formal construction of the
dynamic contagion model. Second, we study the filtering problem associated to our
model, providing a characterisation of the filter process in terms of the Kushner–
Stratonovich equation and the Zakai equation as well. To the best of our knowledge,
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this problem has not been addressed so far in the existing literature. We refer to
Dassios and Jang [11] for a similar problem without the self-exciting component.
Third, we solve the optimal reinsurance problem under an expected utility criterion.

We remark that our study differs from Brachetta and Ceci [5] in many key aspects.
The risk model is substantially different, in that it requires a strong effort to be rigor-
ously constructed and leads to the study of a new filtering problem. What is more, a
crucial assumption in Brachetta and Ceci [5] is the boundedness of the claim arrival
intensity which is not satisfied in our case, thus leading to additional technicalities
in most of the proofs. This happens for example when one needs to prove existence
and uniqueness of the solution of the BSDE. Moreover, we perform the optimisation
over a class of admissible contracts instead of maximising over the retention level.
This feature allows us to cover a larger class of problems. Finally, we do not require
the existence of an optimal control for the derivation of the BSDE; hence the general
presentation turns out to be different.

The paper is organised as follows. In Sect. 2, we introduce the risk model and
specify what information is available to the insurer. A rigorous mathematical con-
struction is provided, based on a measure change approach which is necessary to
develop the following analysis in full detail. In Sect. 3, the filtering problem is in-
vestigated in order to reduce the optimal stochastic control problem to a complete
information setting. The stochastic differential equation satisfied by the filter is ob-
tained by exploiting both the Kushner–Stratonovich and the Zakai approaches. In
Sect. 4, the optimal stochastic control problem is formulated, while in Sect. 5, a
characterisation of the value process associated with the optimal stochastic control
problem is illustrated. Due to the infinite dimension of the filter, the approach based
on the Hamilton–Jacobi–Bellman equation cannot be exploited; so the value process
is characterised as the unique solution of a BSDE. In Sect. 6, the optimal reinsur-
ance strategy is investigated under general assumptions, and some relevant cases are
discussed. Some proofs and useful computations are collected in Appendices A–C.

2 The mathematical model

Let (�,F ,F,P) be a filtered probability space with a filtration F = (Ft )t∈[0,T ] satis-
fying the usual hypotheses. The time T > 0 is a finite time horizon that represents the
maturity of a reinsurance contract. Here we start by giving an overview of the optimal
reinsurance problem from the primary insurer’s point of view; then in Sect. 2.1, we
provide a rigorous construction of our model setting.

Our aim is to introduce a dynamic contagion process generalising the Hawkes and
Cox processes with shot noise intensity introduced e.g. by Dassios and Zhao [13].
More precisely, the claims counting process N(1) has the stochastic (P,F)-intensity,
for t ∈ [0, T ],

λt = β + (λ0 − β)e−αt +
N

(1)
t∑

j=1

e
−α(t−T

(1)
j )

�(Z
(1)
j ) +

N
(2)
t∑

j=1

e
−α(t−T

(2)
j )

Z
(2)
j , (2.1)

where
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– β > 0 is the constant reversion level;
– λ0 > 0 is the initial value;
– α > 0 is the constant rate of exponential decay;
– N(2) is a Poisson process with constant intensity ρ > 0;
– (T

(1)
n )n≥1 are the jump times of N(1), i.e., the time instants when claims are

reported;
– (T

(2)
n )n≥1 are the jump times of N(2), i.e., the time instants when exogenous/

external factors make the intensity jump;
– (Z

(1)
n )n≥1 represent the claim size and are modelled as a sequence of i.i.d.

R+-valued random variables with distribution function F (1) : (0,∞) → [0, 1] such
that E[Z(1)] < ∞;

– � : [0,∞) → [0,∞) is a measurable function (for instance we could take
�(z) = az, a > 0, and the self-exciting jumps would be proportional to claim sizes)
such that E[�(Z(1))] < ∞;

– (Z
(2)
n )n≥1 are the externally-excited jumps and are modelled as a sequence of

i.i.d. R+-valued random variables with distribution function F (2) : (0,∞) → [0, 1]
such that E[Z(2)] < ∞.

Notice that the counting process N(1) is defined via its intensity λ in (2.1), which
in turn depends on the history of N(1). So an apparent logical loop seems to arise
about the existence of λ. We postpone this issue to Sect. 2.1 where we give a rigorous
construction of the model based on an equivalent change of probability measure.

The following assumption will hold from now on.

Assumption 2.1 We assume N(2), (Z(1)
n )n≥1 and (Z

(2)
n )n≥1 to be independent of each

other under P.

We define the cumulative claim process C = (Ct )t∈[0,T ] at time t as

Ct =
N

(1)
t∑

j=1

Z
(1)
j , t ∈ [0, T ]. (2.2)

Remark 2.2 Our model includes many meaningful properties of risk models. The
claim arrival process has stochastic intensity, reflecting random changes in the instan-
taneous probability that accidents occur. Most importantly, our framework captures
both self-exciting (endogenous) and externally-exciting (exogenous) factors via, re-
spectively, the claim arrival times and sizes (T

(1)
n , Z

(1)
n )n≥1 and (T

(2)
n , Z

(2)
n )n≥1. For

this reason, it is well suited to describe for instance catastrophic events; see Cao
et al. [7] where self-exciting jump sizes are independent from the claim severity.
In contrast, in our model, they depend on claim sizes via �(Z

(1)
j ). Moreover, the

decay coefficient α is considered because catastrophic events typically exhibit this
behaviour.

The insurance company is allowed to subscribe a reinsurance contract with a re-
tention function �(z, u) parametrised by a dynamic reinsurance strategy (the control)
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taking values in U . That is, under a dynamic strategy u = (ut )t∈[0,T ], the aggregate
losses covered by the insurer, denoted by Cu = (Cu

t )t∈[0,T ], read

Cu
t =

N
(1)
t∑

j=1

�(Z
(1)
j , u

T
(1)
j

), t ∈ [0, T ],

so that the remaining losses C −Cu are covered by the reinsurer. We highlight that in
our setting, the insurer can choose the optimal reinsurance arrangement over a class of
admissible contracts; see Sect. 4 for details. For this service, a reinsurance premium
rate qu = (qu

t )t∈[0,T ] must be paid. Hence the primary insurer receives the insurance
premium rate c, pays the reinsurance premium rate qu and bears the aggregate losses
Cu so that the surplus process Ru follows the stochastic differential equation (SDE)

dRu
t = (ct − qu

t )dt − dCu
t , Ru

0 = R0 ∈ R+,

where R0 denotes the initial capital. Investing the surplus in a risk-free asset with
interest rate r > 0, the total wealth Xu of the primary insurer is

dXu
t = dRu

t + rXu
t dt, Xu

0 = R0 ∈ R+.

We assume that the information at disposal is limited: the insurer only observes
the cumulative claim process C in (2.2). Let us denote by H the natural filtration
generated by C,

H = F
C = (FC

t )t∈[0,T ] ⊆ F, FC
t = σ(Cs, 0 ≤ s ≤ t). (2.3)

Notice that the filtration H is right-continuous (see e.g. Brémaud [6, Theorem T25 in
Appendix A2]). We assume that the insurer and the reinsurer have the same informa-
tion represented by H. Therefore, the insurance and the reinsurance premium have
to be H-predictable. The same applies to the insurer’s control u. The insurer aims at
maximising the expected exponential utility of terminal wealth over a suitable class
U of H-predictable strategies (which will be made precise later in Definition 4.4), i.e.,

sup
u∈U

E[1 − e−ηXu
T ],

where η > 0 denotes the insurer’s risk aversion. More mathematical details on the
control problem to be solved are given in Sect. 4.

Remark 2.3 Notice that the stochastic wealth Xu can possibly take negative values,
due to the possibility of borrowing money from the bank account.

This setting leads to investigate a stochastic control problem under partial infor-
mation. Due to the presence of the externally-excited component, the claim arrival
intensity in (2.1) is F-adapted rather than H-adapted; hence it is not observable by the
insurance and reinsurance companies. We reduce the original problem to a stochastic
control problem under complete information by solving a filtering problem in Sect. 3.



Optimal reinsurance via BSDEs

The knowledge of the filter process allows to compute the H-predictable intensity of
the claim arrival process N(1), which represents the best estimate of the stochastic
intensity λ based on the available information.

The next subsection provides a formal and rigorous construction of our model.

2.1 Model construction

We introduce the dynamic contagion model by a suitable measure change, starting
from two Poisson processes with constant intensity on a given probability space
(�,F ,F,Q); N(1) is standard and N(2) has constant intensity ρ > 0. Moreover, we
take two sequences (Z

(1)
n )n≥1 and (Z

(2)
n )n≥1 of i.i.d. positive random variables with

distribution functions F (1) and F (2), respectively, and such that EQ[�(Z(1))] < ∞
and E

Q[Z(2)] < ∞. We assume N(1), N(2), (Z
(1)
n )n≥1 and (Z

(2)
n )n≥1 to be indepen-

dent of each other under Q.
The key idea behind our construction is to introduce a new measure P, equivalent

to Q on (�,F ,F), such that under P, the intensity of N(2) and the distributions of
(Z

(1)
n )n≥1 and (Z

(2)
n )n≥1 do not change and N(1) is a counting process with stochastic

intensity λ given by (2.1). Notice that under P, N(1), N(2), (Z
(1)
n )n≥1 and (Z

(2)
n )n≥1

are not independent anymore.
Let us introduce the integer-valued random measures m(i)(dt, dz), i = 1, 2, by

m(i)(dt, dz) =
∑

n≥1

δ
(T

(i)
n ,Z

(i)
n )

(dt, dz)1{T (i)
n <∞}, (2.4)

where δ(t,z) denotes the Dirac measure in (t, z). Under Q, m(i)(dt, dz), i = 1, 2, are
independent Poisson measures with compensator measures given respectively by

ν(1),Q(dt, dz) = F (1)(dz)dt, ν(2),Q(dt, dz) = ρF (2)(dz)dt.

The measure change from (Q,F) to (P,F) is performed via the stochastic process
L = (Lt )t∈[0,T ] defined by

Lt = E
(∫ t

0

∫ ∞

0
(λs− − 1)

(
m(1)(ds, dz) − F (1)(dz)ds

))

= E
(∫ t

0
(λs− − 1)(dN(1)

s − ds)

)
,

where E(M) denotes the Doléans-Dade exponential of a martingale M and λ under
Q is defined by (2.1). This process will be proved to be a (Q,F)-martingale under

Assumption 2.4 We assume that there exists ε > 0 such that

E
Q[eε�(Z(1))] < ∞, E

Q[eεZ(2)] < ∞.

Before proving the martingale property, we notice the following.
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Remark 2.5 We observe that (
∫ t

0 (λs− − 1)(dN
(1)
s − ds)t∈[0,T ] is a (Q,F)-martingale

since E
Q[∫ t

0 λsds] < ∞ for all t ∈ [0, T ]. In fact, by (2.1),

λt ≤ max{λ0, β} +
N

(1)
t∑

j=1

�(Z
(1)
j ) +

N
(2)
t∑

j=1

Z
(2)
j (2.5)

and

E
Q[λt ] ≤ max{λ0, β} + E

Q[N(1)
t ]EQ[�(Z(1))] + E

Q[N(2)
t ]EQ[Z(2)]

= max{λ0, β} + (
E
Q[�(Z(1)] + ρEQ[Z(2)])t.

We then have for Lt the explicit expression

Lt = e− ∫ t
0 (λs−1)ds+∫ t

0 ln(λs−)dN
(1)
s , t ∈ [0, T ], (2.6)

and we define the equivalent measure P via

dP

dQ

∣∣∣∣
FT

= LT .

Proposition 2.6 Under Assumption 2.4, the Radon–Nikodým density process L given
in (2.6) is a (Q,F)-martingale.

Proof This proof is based on Sokol and Hansen [27, Corollary 2.5]. We observe that
the left-limit process (λt−)t∈[0,T ], where λ is defined in (2.1), is nonnegative, pre-
dictable and locally bounded. Hence [27, Corollary 2.5] can be straightforwardly
applied after we prove that condition (2.6) therein holds: there exists ε > 0 such that
whenever 0 ≤ u ≤ t , t − u ≤ ε,

E
Q[e

∫ t
u log+(λs−)dN

(1)
s ] < ∞, (2.7)

where log+ x := max{0, log x}. Applying Lemma A.1 under the measure Q, we
obtain that

E
Q[e

∫ t
u log+(λs−) dN

(1)
s ] ≤ E

Q[e
∫ t
u (λs−−1)ds].

Hence condition (2.7) is fulfilled if the expectation E
Q[e

∫ t
u λs−ds] is finite. By applying

(2.5) to λs and noticing that the right-hand side of (2.5) is increasing with respect to
time, we obtain

E
Q[e

∫ t
u λs−ds] ≤ eε(λ0∨β)

E
Q
[
e
ε
∑N

(1)
t

j=1 �(Z
(1)
j )

e
ε
∑N

(2)
t

j=1 Z
(2)
j
]

≤ eε(λ0∨β)
E
Q
[
e
ε
∑N

(1)
t

j=1 �(Z
(1)
j )]

E
Q
[
e
ε
∑N

(2)
t

j=1 Z
(2)
j
]
,
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where we used the mutual independence of N(1), N(2), (Z
(1)
n )n≥1 and (Z

(2)
n )n≥1

under Q. By exploiting Lemma A.2, we immediately find

E
Q
[
e
ε
∑N

(1)
t

j=1 �(Z
(1)
j )] = et(EQ[eε�(Z(1))]−1) < ∞.

Analogously, one shows that EQ[eε
∑N

(2)
t

j=1 Z
(2)
j ] = eρt(EQ[eεZ(2) ]−1) < ∞. �

Now that the change of measure has been rigorously introduced, we can safely
introduce the (P,F)-compensator measures of m(i)(dt, dz), i = 1, 2.

Remark 2.7 By the Girsanov theorem, the (P,F)-predictable projections (the so-
called compensator measures) of m(1)(dt, dz) and m(2)(dt, dz) from (2.4) are given
respectively by

ν(1)(dt, dz) = λt−F (1)(dz)dt, ν(2)(dt, dz) = ρF (2)(dz)dt. (2.8)

In particular, N(1) is a point process with predictable (P,F)-intensity (λs−)s∈[0,T ],
while N(2) remains a point process with constant (P,F)-intensity ρ > 0.

It turns out that for i = 1, 2 and any F-predictable and nonnegative random field
(H(t, z))t∈[0,T ],z∈[0,∞), we have

E

[ ∫ t

0

∫ ∞

0
H(s, z)m(i)(ds, dz)

]

= E

[ ∫ t

0

∫ ∞

0
H(s, z)ν(i)(ds, dz)

]
, t ∈ [0, T ],

where ν(i)(ds, dz), i = 1, 2, are defined in (2.8). Moreover, under the condition

E

[ ∫ T

0

∫ ∞

0
|H(s, z)|ν(i)(ds, dz)

]
< ∞,

the process

∫ t

0

∫ ∞

0
H(s, z)

(
m(i)(ds, dz) − ν(i)(ds, dz)

)
, t ∈ [0, T ],

is a (P,F)-martingale.

2.2 Markov property

In this subsection, we discuss and characterise the Markovian structure of the inten-
sity, working on (�,F ,F,P). Equation (2.1) reads

dλt = α(β − λt )dt +
∫ ∞

0
�(z)m(1)(dt, dz) +

∫ ∞

0
zm(2)(dt, dz).
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Proposition 2.8 The process λ is a (P,F)-Markov process with generator

Lf (λ) = α(β − λ)f ′(λ) +
∫ ∞

0

(
f
(
λ + �(z)

)− f (λ)
)
λF (1)(dz)

+
∫ ∞

0

(
f (λ + z) − f (λ)

)
ρF (2)(dz).

The domain D(L) of the generator L contains the class of functions f ∈ C1(0,∞)

such that

E

[ ∫ t

0

∫ ∞

0

∣∣f
(
λs + �(z)

)− f (λs)
∣∣λsF

(1)(dz)ds

]
< ∞,

E

[ ∫ t

0

∫ ∞

0
|f (λs + z) − f (λs)|F (2)(dz)ds

]
< ∞

and

E

[ ∫ t

0
λs |f ′(λs)|ds

]
< ∞.

Proof This is a direct application of Itô’s formula. �

In what follows, we need the following, which will be crucial to prove Proposi-
tion 2.10.

Assumption 2.9

E
[(

�(Z(1))k
)]

< ∞, E[(Z(2))k] < ∞, k = 1, 2, . . .

Proposition 2.10 Under Assumption 2.9, for any t ∈ [0, T ],

E

[ ∫ t

0
λk

s ds

]
< ∞, k = 1, 2, . . .

Proof We proceed by induction on k. We first prove that E[λt ] ≤ h1(t), t ≥ 0, with a
measurable, nonnegative function h1 such that

∫ T

0 h1(t)dt < ∞. Let us observe that
(2.1) reads

λt = β + (λ0 − β)e−αt +
∫ t

0

∫ ∞

0
e−α(t−s)�(z)m(1)(ds, dz)

+
∫ t

0

∫ ∞

0
e−α(t−s)zm(2)(ds, dz).

Hence by Remark 2.7,

E[λt ] = β+
(

λ0−β−ρE[Z(2)]
α

)
e−αt+ 1

α
ρE[Z(2)]+E[�(Z(1))]

∫ t

0
e−α(t−s)

E[λs]ds.
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By applying Gronwall’s lemma, we obtain

E[λt ] ≤
(

β +
(
λ0 − β − ρE[Z(2)]

α

)
e−αt + 1

α
ρE[Z(2)]

)
eE[�(Z(1))] 1−e−αt

α

= h1(t), t ∈ [0, T ].

It is immediate to verify from Assumption 2.9 that h1(t) ≥ 0 is continuous and∫ T

0 h1(t)dt < ∞. Let us assume that E[λi
t ] ≤ hi(t) with a measurable, nonnegative

function hi such that
∫ T

0 hi(t)dt < ∞ for any i = 1, 2, . . . , k − 1. By Itô’s formula,
we get

λk
t = λk

0 +
∫ t

0
α(β − λs)kλk−1

s ds +
∫ t

0

∫ ∞

0

((
λs− + �(z)

)k − (λs−)k
)
m(1)(ds, dz)

+
∫ t

0

∫ ∞

0

(
(λs− + z)k − (λs−)k

)
m(2)(ds, dz)

= λk
0 +

∫ t

0
α(β − λs)kλk−1

s ds +
∫ t

0

∫ ∞

0

k−1∑

i=0

(
k

i

)
(λs−)i�(z)k−im(1)(ds, dz)

+
∫ t

0

∫ ∞

0

k−1∑

i=0

(
k

i

)
(λs−)izk−im(2)(ds, dz).

Then there exist ci > 0, i = 1, 2, . . . , k, such that

E[λk
t ] = λk

0 +
∫ t

0
αk(βE[λk−1

s ] − E[λk
s ])ds +

∫ t

0

k−1∑

i=0

(
k

i

)
E[λi+1

s ]E[�(Z(1))k−i]ds

+
∫ t

0

k−1∑

i=0

(
k

i

)
E[λi

s]ρE[(Z(2))k−i]ds

≤ λk
0 +

∫ t

0

k−1∑

i=0

cihi(s)ds +
∫ t

0
ckE[λk

s ]ds,

and again by Gronwall’s lemma, it follows that E[λk
t ] ≤ hk(t) with a measurable,

integrable and nonnegative function hk on [0, T ]. This concludes the proof. �

Proposition 2.11 Under Assumption 2.9, the functions fk(λ) := λk , k = 1, 2, . . . ,
belong to D(L).

Proof By computations similar to those in the proof of Proposition 2.10, we get the
claim. �
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3 The filtering problem

We assume that the insurance company has partial information because the exter-
nally-exciting component in the intensity process λ introduced in (2.1) is not ob-
servable. For filtering of Cox processes with shot noise intensity, that is, without the
self-exciting component in (2.1), we refer to Dassios and Jang [11], where the es-
timation of the intensity λ given the observations of the claim arrival process N(1)

reduces to the use of the classical Kalman–Bucy filter after a Gaussian approxima-
tion of the intensity is performed. This result applies in the case where the intensity ρ

of the externally-exciting component is sufficiently large. Their setting can be seen
as a particular case of our contagion model, and their results can then be obtained as
special cases, with no assumption on ρ needed (see also Remark 3.7).

The insurance company aims at estimating the intensity λ by observing the cu-
mulative claim process C in (2.2), that is, by observing the sequence (T

(1)
n , Z

(1)
n )n≥1

of arrival times and claim sizes. This leads to a filtering problem with marked point
process observations.

Let us recall that H = F
C , defined in (2.3), is the observation flow representing the

information at the disposal of the insurance company. So the estimate of the intensity
λ can be described through the filter process π = (πt )t∈[0,T ] which provides the
conditional distribution of λt given Ht for any time t ∈ [0, T ]. More precisely, the
filter is the H-adapted and càdlàg (right-continuous with left limits) process taking
values in the space of probability measures on [0,∞) such that

πt (f ) = E[f (λt )|Ht ]

for any function f satisfying E[∫ t

0 |f (λs)|ds] < ∞, t ∈ [0, T ]. It is easy to verify
that (πt−(λ))t∈[0,T ], where πt (λ) = E[λt |Ht ] and πt−(λ) = lims↗t− πs(λ), provides
the H-predictable intensity of N(1).

Remark 3.1 For any function f satisfying E[∫ t

0 |f (λs)|ds] < ∞ for any t ∈ [0, T ],
we have E[∫ t

0 πs(f )ds] = E[∫ t

0 f (λs)ds], and Jensen’s inequality implies

E

[ ∫ t

0
|πs(f )|ds

]
≤ E

[ ∫ t

0
πs(|f |)ds

]

= E

[ ∫ t

0
|f (λs)|ds

]
< ∞, t ∈ [0, T ].

By applying the innovation method (see for instance Brémaud [6, Chap. IV]), we
characterise the filter in terms of the so called Kushner–Stratonovich (KS) equation.
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Theorem 3.2 For any f ∈ D(L), the filter is the unique strong solution to the filtering
equation, for t ∈ [0, T ],

πt (f ) = f (λ0) +
∫ t

0
πs(Lf )ds

+
∫ t

0

∫ ∞

0

(
πs−(f (λ + �(z))λ)

πs−(λ)
− πs−(f )

)

(
m(1)(ds, dz) − πs−(λ)F (1)(dz)ds

)
, (3.1)

where L and D(L) are given in Proposition 2.8.

Proof We denote by R̂ the (P,H)-optional projection of an F-progressively measur-
able process R such that E[|Rt |] < ∞, t ∈ [0, T ]. We use two well-known facts:

– For any (P,F)-martingale m, the (P,H)-optional projection m̂ is a (P,H)-mar-
tingale.

– The process given by (
̂∫ t

0 �sds − ∫ t

0 �̂sds)
t∈[0,T ] is a (P,H)-martingale for any

F-progressively measurable process �.
By Itô’s formula, for any f ∈ D(L), we have

f (λt ) = f (λ0) +
∫ t

0
Lf (λs)ds + m

f
t , t ∈ [0, T ],

where mf is a (P,F)-martingale. Taking the (P,H)-optional projection, we get

f̂ (λt ) = f (λ0) +
∫ t

0
L̂f (λs)ds + M

f
t , t ∈ [0, T ], (3.2)

where Mf is a (P,H)-martingale. By the martingale representation theorem (see
Jacod and Shiryaev [19, Theorems III.4.34 and III.4.36]), there exists an H-predict-
able random field hf = (h

f
t (z))t∈[0,T ],z∈[0,∞) such that for any t ∈ [0, T ],

M
f
t =

∫ t

0

∫ ∞

0
h

f
s (z)

(
m(1)(ds, dz) − πs−(λ)F (1)(dz)ds

)
(3.3)

and E[∫ t

0

∫∞
0 |hf

s (z)|πs−(λ)F (1)(dz)ds] < ∞. To derive the expression of hf , we
consider an H-adapted and bounded process

�t =
∫ t

0

∫ ∞

0
Us(z)m

(1)(ds, dz)

with an H-predictable bounded random field U . Since � is H-adapted, we have the
equality

�̂tf (λt ) = �t f̂ (λt ), t ∈ [0, T ],P-a.s. (3.4)
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By applying the product rule, we get

d
(
�tf (λt )

) = �t−df (λt ) + f (λt−)d�t + d[�, f (λ)]t

= �t−Lf (λt )dt + �t−dm
f
t +

∫ ∞

0
f (λt−)Ut (z)m

(1)(dt, dz)

+
∫ ∞

0
Ut(z)

(
f
(
λt− + �(z)

)− f (λt−)
)
m(1)(dt, dz)

= �t−Lf (λt )dt +
∫ ∞

0
Ut(z)f

(
λt− + �(z)

)
λtF

(1)(dz)dt + dm
f
t ,

where mf is a (P,F)-martingale. Taking the (P,H)-optional projection, we obtain

d
(
�̂tf (λt )

) =
(

�t− L̂f (λt ) +
∫ ∞

0
Ut(z)

̂
(
λtf

(
λt + �(z)

))
F (1)(dz)

)
dt

+ dMf
t , (3.5)

where Mf is a (P,H)-martingale. On the other hand, we have

d
(
�t f̂ (λt )

) = �t−df̂ (λt ) + f̂ (λt−)d�t + d[�, f̂ (λ)]t

=
(

�t−L̂f (λt ) +
∫ ∞

0
Ut(z)

(
h

f
t (z) + f̂ (λt )

)
λ̂tF

(1)(dz)

)
dt

+ dMf

t , (3.6)

where Mf
is a (P,H)-martingale. By (3.4), the finite-variation parts in (3.5) and

(3.6) have to coincide; so for any t ∈ [0, T ],
∫ t

0

∫ ∞

0
Us(z)h

f
s (z)λ̂sF

(1)(dz)

=
∫ t

0

∫ ∞

0
Us(z)

(
̂

(
λsf

(
λs + �(z)

))− f̂ (λs)λ̂s

)
F (1)(dz).

We select U of the form Ut(z) = Yt1A(z)1{t≤T
(1)
n } with Y = (Yt )t∈[0,T ] any bounded

H-predictable nonnegative process and A ∈ B([0,∞)). With this choice, we get that
� is bounded and for all A ∈ B([0,∞)) and t ≤ T

(1)
n ∧ T ,

∫

A

h
f
t (z)λ̂tF

(1)(dz) =
∫

A

(
̂

(
λtf

(
λt + �(z)

))− f̂ (λt )λ̂t

)
F (1)(dz).

Recalling that λt > 0 for all t ∈ [0, T ] (which implies λ̂t = πt (λ) > 0 for all
t ∈ [0, T ]), we obtain that

h
f
t (z) = πt−(f (λ + �(z))λ)

πt−(λ)
− πt−

(
f (λ)

)
, t ≤ T (1)

n ∧ T .
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Finally, since the counting process N(1) is not explosive, we have T
(1)
n → ∞ as

n → ∞, and by (3.2) and (3.3), we obtain that the filter is a solution to (3.1).
It remains to prove uniqueness for this equation. As in Ceci and Colaneri [8, Theo-

rem 3.3], strong uniqueness of the solution to the KS equation follows by uniqueness
of the filtered martingale problem (FMP(L̄, λ0, C0)) associated to the generator L̄
of the pair (λt , Ct )t∈[0,T ] for any initial condition (λ0, C0) ∈ (0,∞) × [0,∞). For
details on FMPs, we refer to Kurtz and Ocone [21]. The operator L̄ is given by

L̄f (λ, C) = α(β − λ)
∂f

∂λ
(λ, C) +

∫ ∞

0

(
f
(
λ + �(z), C + z

)− f (λ, C)
)
λF (1)(dz)

+
∫ ∞

0

(
f (λ + z, C) − f (λ, C)

)
ρF (2)(dz). (3.7)

Next, in order to prove that FMP(L̄, λ0, C0) has a unique solution, we apply Kurtz
and Ocone [21, Theorem 3.3] after checking that the required hypotheses are fulfilled.
By Itô’s formula, we get that

f (λt , Ct ) = f (λ0, 0) +
∫ t

0
L̄f (λs, Cs)ds + Mt,

where L̄ is given in (3.7) and

M
f
t =

∫ t

0

∫ ∞

0

(
f
(
λs− + �(z), Cs− + z

)− f (λs−, Cs−)
)
m̃(1)(ds, dz)

+
∫ t

0

∫ ∞

0

(
f (λs− + z, Cs−) − f (λs−, Cs−)

)
m̃(2)(ds, dz).

Thus the domain of the operator L̄ contains the set C of all those functions f which
are in C((0,∞) × [0,∞)), have compact support and are C1 with respect to λ, be-
cause for this class of functions, the process Mf turns out to be a (P,F)-martingale.
This implies that the martingale problem for the operator L̄ is well posed on the space
of càdlàg (0,∞) × [0,∞)-valued paths. Then for any f ∈ C, there exists Rf > 0
such that if (λ, C) belongs to the ball centered at zero with radius Rf and f is null
outside this ball, then with ‖f ‖∞ denoting the sup-norm, we have

|L̄f (λ, C)| ≤
(

α(β + λ)

∣∣∣∣
∂f

∂λ
(λ, C)

∣∣∣∣+ 2‖f ‖(λ + ρ)

)
≤ K

with a positive constant K . Thus L̄f (λ, C) is in Cb((0,∞) × [0,∞)). Finally, C
is dense in the space of continuous functions which vanish at infinity, and so all
hypotheses of [21, Theorem 3.3] are satisfied. This concludes the proof. �

The filtering equation (3.1) has a natural recursive structure in terms of the se-
quence (T

(1)
n )n≥1. Indeed, for t ∈ [T (1)

n ∧ T , T
(1)
n+1 ∧ T ) (between two consecutive

jump times), (3.1) reads

dπt (f ) = πt (L̃f )dt − (
πt (λf ) − πt (λ)πt (f )

)
dt, (3.8)
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where

L̃f (λ) = α(β − λ)f ′(λ) +
∫ ∞

0

(
f (λ + z) − f (λ)

)
ρF (2)(dz). (3.9)

At a jump time T
(1)
n ≤ T , the value of the filter is completely determined by the

knowledge of the filter πt , with t ∈ (T
(1)
n−1 ∧ T , T

(1)
n ∧ T ) and the observed data

(T
(1)
n , Z

(1)
n ); more precisely,

π
T

(1)
n

(f ) =
π

T
(1)
n −(λf (λ + �(Z

(1)
n )))

π
T

(1)
n −(λ)

. (3.10)

Notice that L̃ is the Markov generator of a shot noise Cox process, obtained by taking
�(z) = 0 in (2.1).

Remark 3.3 Let us consider fk(λ) = λk , k = 1, 2, . . . Since

L̃fk(λ) = α(β − λ)kfk−1(λ) +
∫ ∞

0

(
(λ + z)k − λk

)
ρF (2)(dz),

(3.8) and (3.10) yield for any k = 1, 2, . . . that between two consecutive jump times,

dπt (fk) = α
(
βπt (fk−1) − πt (fk)

)
kdt +

k−1∑

i=0

(
k

i

)
πt (fi)ρE[(Z(2))k−i]dt

− (
πt (fk+1) − πt (f1)πt (fk)

)
dt, (3.11)

and at a jump time T
(1)
n ≤ T ,

π
T

(1)
n

(fk) =
π

T
(1)
n −(λ(λ + �(Z

(1)
n ))k)

π
T

(1)
n −(f1)

=
∑k

i=0

(
k
i

)
π

T
(1)
n −(fi+1)�(Z

(1)
n )k−i

π
T

(1)
n −(f1)

. (3.12)

In particular, for k = 1, we have that πt (f1) = πt (λ) provides the (P,H)-intensity of
N(1), and the KS equation reads

πt (λ)

= λ0 +
∫ t

0
πs(Lf1)ds

+
∫ t

0

∫ ∞

0

(
πs−((λ + �(z))λ)

πs−(λ)
− πs−(λ)

)(
m(1)(ds, dz) − πs−(λ)F (1)(dz)ds

)

= λ0 +
∫ t

0

(
α
(
β − πs(λ)

)+ ρE[Z(2)] − (
πs(λ

2) − πs(λ)2))ds

+
∫ t

0

∫ ∞

0

(
�(z) + πs−(λ2) − πs−(λ)2

πs−(λ)

)
m(1)(ds, dz),
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i.e.,

dπt (λ) = α

(
β + ρ

E[Z(2)]
α

− πt (λ)

)
dt − (

πt (λ
2) − πt (λ)2)dt

+
∫ ∞

0
�(z)m(1)(ds, dz) + πt−(λ2) − πt−(λ)2

πt−(λ)
dN

(1)
t . (3.13)

Notice that the equations for πt (fk) depend on πt (f1), . . . , πt (fk+1) for k = 1, 2, . . .

Thus the predictable (P,H)-intensity πt−(λ) = πt−(f1) of N(1) is completely char-
acterised by a countable system of equations given in (3.11) and (3.12). Moreover,
(3.13) involves the quantities πt (λ) and

πt (λ
2) − πt (λ)2 = E

[(
λt − πt (λ)

)2∣∣Ht

] = Var[λt |Ht ].
Remark 3.4 By Jensen’s inequality, since πt (λ

2) ≥ πt (λ)2, we get by (3.13) and a
comparison result that

πt (λ) ≤ Yt P-a.s., t ∈ [0, T ],
where the process Y has the same jumps as π(λ) and between two consecutive jumps

solves the SDE dYt = α(β̃ − Yt )dt , where β̃ = β + ρE[Z(2)]
α

. More precisely, for

t ∈ [T (1)
n ∧T , T

(1)
n+1 ∧T ), we have Yt = β̃+(π

T
(1)
n

(λ)−β̃)e−α(t−T
(1)
n ). Hence the filter

is dominated by a process with exponential decay behaviour between consecutive
jump times.

Thanks to Theorem 3.2, we have characterised the filter in terms of a nonlinear
stochastic equation. In our framework, it is possible to describe the filter also in terms
of the unnormalised filter as a solution of the so-called Zakai equation, which has the
advantage of being linear.

By the Kallianpur–Striebel formula, we get for any t ∈ [0, T ] that

πt (f ) = E
Q[Ltf (λt )|Ht ]
EQ[Lt |Ht ] = σt (f )

σt (1)
,

where Q is the equivalent probability measure introduced in Sect. 2.1 and L is given
in (2.6). The process σt (f ) = E

Q[Ltf (λt )|Ht ], t ∈ [0, T ], denotes the unnormalised
filter and is a finite-measure-valued H-adapted and càdlàg process.

Proposition 3.5 For any f ∈ D(L), the unnormalised filter is the unique strong
solution to the Zakai equation, for any t ∈ [0, T ],

σt (f ) = f (λ0) +
∫ t

0
σs(Lf )ds

+
∫ t

0

∫ ∞

0

(
σs−

(
λf
(
λ + �(z)

))− σs−(f )

)

(
m(1)(ds, dz) − F (1)(dz)ds

)
. (3.14)
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Proof First observe that σt (1) = E
Q[Lt |Ht ] = dP

dQ |Ht
, t ∈ [0, T ]. Thus the dynam-

ics of σ(1) can be easily obtained by considering the effect of the Girsanov change
of measure. Indeed, σ(1) is the Doléans-Dade exponential of the (Q,H)-martingale
(
∫ t

0 (πs−(λ) − 1)(dN
(1)
s − ds)), i.e.,

σt (1) = E
(∫ ·

0

(
πs−(λ) − 1

)
(dN(1)

s − ds)

)

t

.

Hence it solves

dσt (1) = σt−(1)
(
πt−(λ) − 1

)
(dN

(1)
t − dt). (3.15)

By Itô’s formula, we get

dσt (f ) = πt−(f )dσt (1) + σt−(1)dπt (f ) + d

( ∑

0<s≤t

�πs(f )�σs(1)

)
.

Taking into account (3.1) and (3.15) and that

d

( ∑

0<s≤t

�πs(f )�σs(1)

)

=
∫ ∞

0
σt−(1)

(
πt−(λ) − 1

)(πt−(λf (λ + �(z)))

πt−(λ)
− πt−(f )

)
m(1)(dt, dz),

we get (3.14). Finally, as in Ceci and Colaneri [9, Theorem 4.7], we can prove strong
uniqueness for the Zakai equation by the strong uniqueness of the KS equation. �

The Zakai equation can also be written as

dσt (f ) =
(
σt (L̃f ) − σt

(
(λ − 1)f

))
dt

+
∫ ∞

0

(
σt−

(
λf
(
λ + �(z)

))− σt−(f )

)
m(1)(dt, dz),

where the operator L̃ is defined in (3.9). Like the KS equation, the above equa-
tion has a natural recursive structure in terms of the sequence (T

(1)
n )n≥1. Indeed,

for t ∈ [T (1)
n ∧ T , T

(1)
n+1 ∧ T ) (between two consecutive jump times), it reads

dσt (f ) =
(
σt (L̃f ) − σt

(
(λ − 1)f

))
dt, (3.16)

and at a jump time T
(1)
n ≤ T ,

σ
T

(1)
n

(f ) = σ
T

(1)
n −

(
λf
(
λ + �(Z(1)

n )
))

. (3.17)

By the linear structure of the Zakai equation between consecutive jumps, we get a
convenient expression of the filter.
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Proposition 3.6 For any f ∈ D(L) and n = 1, 2, . . . , we have the representation

πt (f ) =
E[f (̃λn

t )e
− ∫ t

s (̃λn
u−1)du]|

s=T
(1)
n−1

E[e− ∫ t
s (̃λn

u−1)du]|
s=T

(1)
n−1

, t ∈ (T
(1)
n−1 ∧ T , T (1)

n ∧ T ),

where λ̃n is the shot noise Cox process, i.e., the solution for t ∈ (T
(1)
n−1 ∧ T , T

(1)
n ∧ T )

of the SDE

d̃λn
t = α(β − λ̃n

t )dt +
∫ ∞

0
zm(2)(dt, dz) (3.18)

with initial law π
T

(1)
n−1

.

Proof Denote the solution to (3.18) with initial condition (s, x) ∈ [0, T ) × (0,∞)

by λ̃s,x . By Itô’s formula, for s < t ≤ T ,

f (̃λ
s,x
t ) = f (x) +

∫ t

s

L̃f (̃λs,x
u )du + Mt − Ms

with a (P,F)-martingale M . With γt = e− ∫ t
s (̃λ

s,x
u −1)du, the product rule gives

f (̃λ
s,x
t )γt = f (x) +

∫ t

s

L̃f (̃λs,x
u )γudu −

∫ t

s

f (̃λs,x
u )(̃λs,x

u − 1)γudu +
∫ t

s

γudMu,

and taking expectations, we obtain

E[f (̃λ
s,x
t )γt ] = f (x) +

∫ t

s

E[L̃f (̃λs,x
u )γu]du −

∫ t

s

E[f (̃λs,x
u )(̃λs,x

u − 1)γu]du.

Thus for any f ∈ D(L), the function �t(s, x)(f ) := E[f (̃λ
s,x
t )γt ] solves (3.16), and

so �t (s,x)(f )
�t (s,x)(1)

solves between two consecutive jump times the KS equation in (3.8).
Finally, the statement follows by uniqueness of the KS equation observing that

∫∞
0 �t(T

(1)
n−1, x)(f )π

T
(1)
n−1

(dx)

∫∞
0 �t(T

(1)
n−1, x)(1)π

T
(1)
n−1

(dx)

coincides with the filter at the jump times T
(1)
n−1. �

In the following, we focus on the special case of filtering for shot noise Cox
processes.

Remark 3.7 If we take β = 0 and �(z) ≡ 0 in (2.1), the claim arrival process
N(1) reduces to the Cox process with shot noise intensity considered in Dassios and
Jang [12]. Denoting by LSN the Markov generator given by

LSNf (λ) = −αλf ′(λ) +
∫ ∞

0

(
f (λ + z) − f (λ)

)
ρF (2)(dz),
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the KS and Zakai equations in this special case are driven by N(1) and given by

dπt (f ) = πt (LSNf )ds +
∫ ∞

0

(
πt−(λf )

πt−(λ)
− πt−(f )

)(
dN

(1)
t − πt−(λ)dt

)
,

dσt (f ) = σt (LSNf )dt + (
σt−(λf ) − σt−(f )

)
(dN

(1)
t − dt),

respectively. In particular, the KS equation between two consecutive jump times co-
incides with that in the general case in (3.8) (with L̃ replaced by LSN ), while the
update at a jump time T

(1)
n from (3.10) is given by

π
T

(1)
n

(f ) =
π

T
(1)
n −(λf )

π
T

(1)
n −(λ)

.

Analogously, the Zakai equation between two consecutive jump times coincides with
that in the general case in (3.16) (with L̃ replaced by LSN ), while the update at a
jump time T

(1)
n from (3.17) is given by σ

T
(1)
n

(f ) = σ
T

(1)
n −(λf ).

4 The reduced optimal control problem under complete information

By the filtering techniques developed in Sect. 3, the original problem under partial
information is now reduced to a complete observation stochastic control problem
under P which involves only processes adapted to or predictable with respect to the
filtration H. The (P,H)-predictable projection of m(1)(dt, dz) (see (2.4)) associated
with the loss process C can be written in terms of the filter π as πt−(λ)F (1)(dz)dt .
In the sequel, we denote by m̃(1)(dt, dz) the (P,H)-compensated jump measure, i.e.,

m̃(1)(dt, dz) = m(1)(dt, dz) − πt−(λ)F (1)(dz)dt. (4.1)

We are now ready to state the analogue of Remark 2.7 in (P,H).

Remark 4.1 For i = 1, 2 and for any H-predictable and nonnegative random field
(H(t, z))t∈[0,T ],z∈[0,∞), we have for t ∈ [0, T ] that

E

[ ∫ t

0

∫ ∞

0
H(s, z)m(i)(ds, dz)

]
= E

[ ∫ t

0

∫ ∞

0
H(s, z)πs−(λ)F (i)(dz)ds

]
.

Moreover, if E[∫ T

0

∫∞
0 |H(s, z)|πs−(λ)F (i)(dz)ds] < ∞, the process

∫ t

0

∫ ∞

0
H(s, z)m̃(i)(ds, dz), t ∈ [0, T ],

is a (P,H)-martingale.

The primary insurer wishes to subscribe a reinsurance contract to optimally control
her wealth. The surplus process without reinsurance evolves according to the equation

dRt = ctdt −
∫ ∞

0
z m(1)(dt, dz), R0 = R0 ∈ R+,
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where (ct )t∈[0,T ] denotes the insurance premium which is assumed to be H-pre-
dictable and such that E[∫ T

0 ctdt] < ∞, and R0 is the initial capital. The primary
insurer subscribes a generic reinsurance contract which is characterised by the re-
tention function �, which is in general an H-predictable random field. We assume
that the insurer can choose any reinsurance arrangement in a given class of admissi-
ble contracts, which is a family of functions of z ∈ [0,∞) representing the retained
loss. For practical applications, we suppose that the contracts are parametrised by an
n-tuple u (the control) taking values in a closed set U ⊆ R

n
, with n ∈ N and R de-

noting the compactification of R. Under an admissible strategy u ∈ U (the definition
of U is given in Definition 4.4 below), she retains the amount �(Z

(1)
j , u

T
(1)
j

) of the

j th claim, while the remainder Z
(1)
j − �(Z

(1)
j , u

T
(1)
j

) is paid by the reinsurer.

We suppose that �(z, u) is continuous in u and there exist at least two points
uN, uM ∈ U such that

0 ≤ �(z, uM) ≤ �(z, u) ≤ �(z, uN) = z, (z, u) ∈ [0,∞) × U,

so that u = uN corresponds to null reinsurance while u = uM represents the max-
imum reinsurance protection. Notice that uM corresponds to full reinsurance when
applicable.

Example 4.2 We can show how standard reinsurance contracts fit into our model
formulation.

1) Under proportional reinsurance, the insurer transfers a percentage 1 − u of any
future loss to the reinsurer; so we set

�(z, u) = uz, u ∈ [0, 1] =: U.

Selecting the scalar u is equivalent to choosing the retention level of the contract.
Notice that here uN = 1 means no reinsurance and uM = 0 is full reinsurance.

2) Under an excess-of-loss reinsurance policy, the reinsurer covers all the losses
exceeding a retention level u; hence we fix the class of all functions of the form

�(z, u) = u ∧ z, u ∈ [0,∞] =: U.

So here, uN = ∞ and uM = 0, corresponding to full reinsurance.
3) Under a limited excess-of-loss reinsurance, the reinsurer covers for any claim

the losses exceeding a threshold u1 up to a maximum level u2 > u1, so that the
maximum loss is limited to u2 − u1 on the reinsurer’s side. In this case,

�(z, u) = z − (z − u1)
+ + (z − u2)

+

with U := {(u1, u2) : u1 ≥ 0, u2 ∈ [u1,∞]} and u = (u1, u2). Clearly, we have
that uM = (uM,1, uM,2) = (0,∞) and uN can be any point on the line u1 = u2. A
particular case is the so-called limited excess-of-loss with fixed reinsurance coverage,
in which u2 = u1 + β, β > 0. Here U = [0,∞], uN = ∞ and uM = 0, in which
case the maximum reinsurance coverage here is β.
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Clearly, the insurer has to pay a reinsurance premium qu = (qu
t )t∈[0,T ] which

depends on the strategy u. We assume that the reinsurance premium admits the
representation

qu
t (ω) = q(t, ω, u), (t, ω, u) ∈ [0, T ] × � × U, (4.2)

for a function q(t, ω, u) : [0, T ] × � × U → [0,∞) continuous in u, H-predictable
for fixed u and with continuous partial derivatives ∂q(t,ω,u)

∂ui
, i = 1, . . . , n. We assume

that for any (t, ω) ∈ [0, T ] × �,

q(t, ω, uN) = 0, q(t, ω, u) ≤ q(t, ω, uM), u ∈ U,

since a null protection is not expensive and the maximum reinsurance is the most
expensive. In the following, qu denotes the reinsurance premium associated with the
dynamic reinsurance strategy (ut )t∈[0,T ]. Notice that both insurance and reinsurance
premia are assumed to be H-predictable since insurer and reinsurer share the same
information. Finally, we require the integrability condition

E

[ ∫ T

0
q

uM
t dt

]
< ∞,

which ensures that E[∫ T

0 qu
s ds] < ∞ for any u ∈ U .

Example 4.3 Under any admissible reinsurance strategy u ∈ U , the expected cumula-
tive losses covered by the reinsurer in the interval [0, t] are given by

E

[ ∫ t

0

∫ ∞

0

(
z − �(z, us)

)
m(1)(ds, dz)

]

= E

[ ∫ t

0

∫ ∞

0

(
z − �(z, us)

)
πs−(λ)F (1)(dz)ds

]
.

If we use the expected value principle, the premium qu applied by the reinsurer has
to satisfy for all u ∈ U and t ∈ [0, T ] that

E

[ ∫ t

0
qu
s ds

]
= (1 + θR)E

[ ∫ t

0

∫ ∞

0

(
z − �(z, us)

)
πs−(λ)F (1)(dz)ds

]
,

where θR > 0 denotes the safety loading applied by the reinsurer. Thus

qu
t = (1 + θR)πt−(λ)

∫ ∞

0

(
z − �(z, ut )

)
F (1)(dz). (4.3)

In general, the surplus process with reinsurance evolves according to

dRu
t = (ct − qu

t )dt −
∫ ∞

0
�(z, ut )m(1)(dt, dz), Ru

0 = R0 ∈ R+.
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Let us observe that
∫ t

0

∫ ∞

0
�(z, us)m̃

(1)(ds, dz), t ∈ [0, T ],

turns out to be a (P,H)-martingale because

E

[ ∫ T

0

∫ ∞

0
�(z, us)πs−(λ)F (1)(dz)ds

]
≤ E

[ ∫ T

0

∫ ∞

0
z πs−(λ)F (1)(dz)ds

]

= E[Z(1)]E
[ ∫ T

0
λsds

]

is finite since Proposition 2.10 holds, and so Remarks 3.1 and 4.1 apply.
The insurance company invests its surplus in a risk-free asset with constant interest

rate r > 0. So for any reinsurance strategy u ∈ U , the wealth dynamics is

dXu
t = dRu

t + rXu
t dt, Xu

0 = R0 ∈ R+,

whose solution is given by

Xu
t = R0e

rt +
∫ t

0
er(t−s)(cs − qu

s )ds −
∫ t

0

∫ ∞

0
er(t−s)�(z, us)m(1)(ds, dz).

As announced before, the insurer aims at optimally controlling her wealth using rein-
surance. More formally, she aims at maximising the expected exponential utility of
terminal wealth, that is,

sup
u∈U

E[1 − e−ηXu
T ],

which is trivially equivalent to the minimisation problem

inf
u∈U

E[e−ηXu
T ], (4.4)

where η > 0 denotes the insurer’s risk aversion.

Definition 4.4 The class U of admissible strategies consists of all U -valued and
H-predictable processes (ut )t∈[0,T ] such that E[e−ηXu

T

]
< ∞. Given t ∈ [0, T ],

we denote by Ut the class U restricted to the time interval [t, T ].

Clearly, the admissible strategies must be H-predictable since they are based on
the information at our disposal. The next assumptions are required in the sequel.

Assumption 4.5 We assume that for every a > 0,

i) E[ea�(Z(1))] < ∞, E[eaZ(1)] < ∞, E[eaZ(2)] < ∞;

ii) E[ea
∫ T

0 q
uM
t dt ] < ∞.
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Lemma 4.6 Under Assumption 4.5 i), we have E[eaCT ] < ∞ for every a > 0, where
C is defined in (2.2).

Proof See Appendix B. �

Remark 4.7 Usually insurance companies apply a maximum policy D > 0, i.e., they
only repay claims up to the amount D to the policyholders. In this setting, claim
sizes are of the form min{Z(1)

n ,D} ≤ D; hence the condition E[eaZ(1)] < ∞ in
Assumption 4.5 is trivially satisfied.

The class of admissible strategies is non-empty, as shown by the next result.

Proposition 4.8 Under Assumption 4.5, every H-predictable process (ut )t∈[0,T ] with
values in U is admissible.

Proof Thanks to Lemma 4.6, the proof is basically the same as in Brachetta and
Ceci [5, Proposition 2.2]. �

5 The value process and its BSDE characterisation

In this section, we study the value process associated to the problem in (4.4). Let us
introduce for any u ∈ U the Snell envelope

Wu
t = ess inf

ū∈U(t,u)
E[e−ηXū

T |Ht ], t ∈ [0, T ], (5.1)

with U(t, u) for an arbitrary control u ∈ U defined as the class of controls almost
surely equal to u over [0, t],

U(t, u) := {ū ∈ U : ūs = us a.s. for all s ≤ t}.
Denoting by X̄u

t = e−rtXu
t the discounted wealth, we get

X̄u
t = R0 +

∫ t

0
e−rs(cs − qu

s )ds −
∫ t

0

∫ ∞

0
e−rs�(z, us)m(1)(ds, dz), (5.2)

and introducing the value process as

Vt = ess inf
ū∈Ut

E[e−ηerT (X̄ū
T −X̄ū

t )|Ht ], t ∈ [0, T ], (5.3)

(where Ut is introduced in Definition 4.4), we can show that for all u ∈ U ,

Wu
t = e−ηX̄u

t erT

Vt .

In turn, choosing null reinsurance ut = uN for any t ∈ [0, T ], we get

Vt = eηX̄N
t erT

WN
t , t ∈ [0, T ], (5.4)
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where X̄N and WN denote the discounted wealth and the Snell envelope in (5.2) and
(5.1), respectively, associated to null reinsurance. Our aim is to develop a BSDE char-
acterisation for the process (WN

t )t∈[0,T ] which also provides a complete description
of the value process (Vt )t∈[0,T ] in (5.3).

The following definitions play a key role for our BSDE characterisation and its
solution.

Definition 5.1 We define the following three classes of stochastic processes:
– S2 denotes the space of all càdlàg H-adapted processes Y such that

E

[(
sup

t∈[0,T ]
|Yt |

)2]
< ∞.

– L2 denotes the space of all càdlàg H-adapted processes Y such that

E

[ ∫ T

0
|Yt |2dt

]
< ∞.

– L̂2 denotes the space of all [0,∞)-indexed and H-predictable random fields
� = (�t (z))t∈[0,T ],z∈[0,∞) such that

E

[ ∫ T

0

∫ ∞

0
�2

t (z)πt−(λ)F (1)(dz)dt

]
< ∞.

Definition 5.2 We define

M = {(
t, ω, y, θ( · )) : (t, ω, y) ∈ [0, T ] × � × [0,∞)

and θ : [0,∞) → R is measurable
}
,

and similarly, we denote by M
u the same set augmented with the variable u ∈ U , i.e.,

M
u = {(

t, ω, y, θ( · ), u) : (t, ω, y, u) ∈ [0, T ] × � × [0,∞) × U

and θ : [0,∞) → R is measurable
}
.

Definition 5.3 Let ξ be an HT -measurable random variable. A solution to a BSDE
driven by the compensated random measure m̃(1)(dt, dz) given in (4.1) and gen-
erator g is a pair (Y,�Y ) ∈ L2 × L̂2 such that for all t ∈ [0, T ], P-a.s., we have

Yt = ξ +
∫ T

t

g
(
s, Ys,�

Y
s ( · ))ds −

∫ T

t

∫ ∞

0
�Y

s (z)m̃(1)(ds, dz),

where g(t, ω, y, θ( · )) is a real-valued function on M which is H-predictable with
respect to (t, ω) ∈ [0, T ] × �.

We first give some preliminary results.
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Proposition 5.4 Under Assumption 4.5 i), we have that

0 < M
(1)
t ≤ WN

t ≤ M
(2)
t , t ∈ [0, T ], (5.5)

where M(i), i = 1, 2, are the (P,H)-martingales

M
(1)
t = e−ηR0e

rT

E
[
e−η

∫ T
0 er(T −s)csds

∣∣Ht

]
, t ∈ [0, T ],

M
(2)
t = E[eηerT CT |Ht ], t ∈ [0, T ].

Moreover,

E

[(
sup

t∈[0,T ]
WN

t

)2]
< ∞. (5.6)

Proof The discounted wealth in (5.2) for u = uN becomes

X̄N
t = R0 +

∫ t

0
e−rscsds −

∫ t

0

∫ ∞

0
e−rsz m(1)(ds, dz);

hence (5.3) implies that

0 ≤ Vt ≤ E[e−ηerT (X̄N
T −X̄N

t )|Ht ] ≤ E[eηerT (CT −Ct )|Ht ], t ∈ [0, T ],P-a.s.

By (5.4) and observing that

X̄Nt ≥ −
∫ t

0

∫ ∞

0
e−rszm(1)(ds, dz) ≥ −

∫ t

0

∫ ∞

0
zm(1)(dz) = −Ct ,

we get for any t ∈ [0, T ] that

WN
t ≤ e−ηX̄N

t erT

E[eηerT (CT −Ct )|Ht ] ≤ E[eηerT CT |Ht ] = M
(2)
t P-a.s.

Moreover, we have for all t ∈ [0, T ] that

WN
t = ess inf

ū∈U(t,uN )
E[e−ηXū

T |Ht ] ≥ E[e−ηXN
T |Ht ]

≥ e−ηR0e
rT

E[e−η
∫ T

0 er(T −s)csds |Ht ] = M
(1)
t > 0.

To complete the proof, we observe that Doob’s martingale inequality implies that

E

[(
sup

t∈[0,T ]
WN

t

)2] ≤ E

[(
sup

t∈[0,T ]
M

(2)
t

)2] ≤ 4E[(M(2)
T )2] = 4E[e2ηerT CT ]

which is finite according to Lemma 4.6. �

The next result is Bellman’s optimality principle in our setting.
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Proposition 5.5 Under Assumption 4.5,
i) (Wu

t )t∈[0,T ] is a (P,H)-submartingale for all u ∈ U ;
ii) (Wu∗

t )t∈[0,T ] is a (P,H)-martingale if and only if u∗ ∈ U is an optimal control.

Proof The proof follows the lines of Brachetta and Ceci [5, Proposition 3.2]. �

Remark 5.6 We highlight some interesting points that are useful in the sequel:
– The filtration H is right-continuous (see e.g. Brémaud [6, Theorem T25 in

Appendix A2]).
– Using the same arguments as in Lim and Quenez [23, Proposition 4.2], we can

safely state that there exists a càdlàg version of WN , which we use henceforth.
– Proposition 5.4, in particular (5.5) and (5.6), implies that WN is bounded from

above and from below by two (P,H)-martingales, and hence WN is of class D.

Remark 5.7 By Proposition 5.5, since u = uN ∈ U , (WN
t )t∈[0,T ] is a (P,H)-sub-

martingale and WN ∈ S2 ⊆ L2 by Proposition 5.4. As a consequence, by the Doob–
Meyer decomposition and the (P,H)-martingale representation theorem (see Jacod
and Shiryaev [19, Theorems III.4.34 and III.4.36]), it admits the expression

WN
t =

∫ t

0

∫ ∞

0
�WN

s (z) m̃(1)(ds, dz) + At,

where �WN ∈ L̂2 and (At )t∈[0,T ] in an increasing H-predictable process. Moreover,

WN
T = e−ηXN

T =: ξ , and since the wealth associated to null reinsurance u = uN is
given by

XN
T = R0e

rT +
∫ T

0
er(T −t)ctdt −

∫ T

0

∫ ∞

0
er(T −t)zm(1)(dt, dz),

we get the inequality ξ ≤ eηerT CT . Thus Lemma 4.6 guarantees that ξ is a random
variable with finite moments of any order. Summarising, we obtain that

WN
t = ξ −

∫ T

t

∫ ∞

0
�WN

s (z) m̃(1)(ds, dz) +
∫ T

t

dAs.

The next step provides an explicit expression for the process A and characterises WN

and the optimal control via a BSDE approach.

We now give the main result of this section.

Theorem 5.8 Under Assumption 4.5, (WN,�WN
) ∈ L2 × L̂2 is the unique solution

to the BSDE

WN
t = ξ −

∫ T

t

∫ ∞

0
�WN

s (z) m̃(1)(ds, dz)

−
∫ T

t

ess sup
u∈U

f̃
(
s,WN

s ,�WN

s ( · ), us

)
ds (5.7)
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with terminal condition ξ = e−ηXN
T , where

f̃
(
t,WN

t ,�WN

t ( · ), ut

)

= −WN
t−ηer(T −t)qu

t

−
∫ ∞

0

(
WN

t− + �WN

t (z)
)
(e−ηer(T −t)(z−�(z,ut )) − 1)πt−(λ)F (1)(dz). (5.8)

Moreover, the process u∗ ∈ U which satisfies

f̃
(
t,WN

t ,�WN

t ( · ), u∗
t

) = ess sup
u∈U

f̃
(
t,WN

t ,�WN

t ( · ), ut

)
, t ∈ [0, T ], (5.9)

is an optimal control.

Proof Theorem 5.8 follows directly by an existence result for a solution to the BSDE
(5.7) (see Theorem 5.10 below) and a verification result (see Theorem 5.12 be-
low), which imply that any solution to the BSDE (5.7) coincides with the process
(WN,�WN

). �

Remark 5.9 Let us notice the following points:
i) The driver of the BSDE (5.7) is always nonnegative since by using (5.8) and the

property that quN = 0 and �(z, uN) = z, we get

ess sup
u∈U

f̃
(
t,WN

t ,�WN

t ( · ), ut

) ≥ f̃
(
t,WN

t ,�WN

t ( · ), uN

) = 0.

ii) There exists u∗ ∈ U which satisfies (5.9). Indeed, by hypothesis, qu
t and �(z, u)

are continuous in u ∈ U and U is compact; hence measurable selection results (see
e.g. Beneš [2]) ensure that the maximiser is an H-predictable process and we can use
Proposition 4.8 to obtain u∗ ∈ U .

Theorem 5.10 Under Assumption 4.5, there exists a unique solution (Y,�Y ) in the
space L2 × L̂2 to the BSDE (5.7), i.e.,

Yt = ξ −
∫ T

t

∫ ∞

0
�Y

s (z)m̃(1)(ds, dz) +
∫ T

t

f
(
s, Ys,�

Y
s ( · ))ds (5.10)

with generator f : M → [0,∞) given by

f
(
s, y, θ( · )) = − ess sup

u∈U
f̃
(
s, y, θ( · ), us

)

= − ess sup
u∈U

(
− yηer(T −s)qu

s

−
∫ ∞

0

(
y + θ(z)

)
(e−ηer(T −s)(z−�(z,us)) − 1)

× πs−(λ)F (1)(dz)

)
, (5.11)

where M is given in Definition 5.2, and with terminal condition ξ = e−ηXN
T .
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Proof The proof is postponed to Appendix C. �

We now wish to provide a verification result. To this end, we recall the following
result in Brachetta and Ceci [5, Proposition 3.4].

Proposition 5.11 Suppose there exists an H-adapted process D such that
(i) (Dte

−ηX̄u
t erT

)t∈[0,T ] is for any u ∈ U a (P,H)-submartingale and for some
u∗ ∈ U a (P,H)-martingale;

(ii) DT = 1.
Then D ≡ V and u∗ is an optimal control.

The next result is a verification theorem.

Theorem 5.12 Under Assumption 4.5, let (Y,�Y ) ∈ L2 × L̂2 be the solution to the
BSDE (5.7) and u∗ ∈ U a process satisfying (5.9). Then Y coincides with WN ,

Vt = eηX̄N
t erT

Yt , t ∈ [0, T ],

and u∗ is an optimal control.

Proof Let (Y,�Y ) ∈ L2 × L̂2 be the solution to the BSDE (5.7) and u∗ ∈ U a pro-
cess satisfying (5.9) (see ii) in Remark 5.9). Define Dt := eηX̄N

t erT
Yt , t ∈ [0, T ],

and observe that DT = eηXN
T ξ = 1. We now prove that (Dte

−ηX̄u
t erT

)t∈[0,T ] is
a (P,H)-submartingale for any u ∈ U and a (P,H)-martingale for u∗. Then the
statement will follow by Proposition 5.11.

By the product rule, for any u ∈ U ,

d(Dt e−ηX̄u
t erT

) = d(eη(X̄N
t −X̄u

t )erT

Yt )

= eη(X̄N
t−−X̄u

t−)erT

dYt + Yt− d(eη(X̄N
t −X̄u

t )erT

)

+ d

( ∑

0<s≤t

�Ys �(eη(X̄N
s −X̄u

s )erT

)

)
.

Recalling (5.2), we notice that

X̄N
t − X̄u

t =
∫ t

0
e−rsqu

s ds −
∫ t

0

∫ ∞

0
e−rs

(
z − �(z, us)

)
m(1)(ds, dz), (5.12)

and applying Itô’s formula, we obtain

d(eη(X̄N
t −X̄u

t )erT

) = ηerT eη(X̄N
t −X̄u

t )erT

e−rt qu
t dt

+ eη(X̄N
t−−X̄u

t−)erT

∫ ∞

0
(e−ηer(T −t)(z−�(z,ut )) − 1)m(1)(dt, dz).
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Recall now that Y solves the BSDE (5.10) with f given by (5.11). Inserting the
dynamics of Y above, we get after some calculations for any u ∈ U that

d(Dte
−ηX̄u

t erT

)

= dMu
t + eη(X̄N

t −X̄u
t )erT

(
ess sup

w∈U
f̃
(
t, Yt ,�

Y
t ( · ), wt

)− f̃
(
t, Yt ,�

Y
t ( · ), ut

))
,

where

Mu
t =

∫ t

0

∫ ∞

0
eη(X̄N

s−−X̄u
s−)erT

�Y
s (z)e−ηer(T −s)(z−�(z,us))m̃(1)(ds, dz)

+
∫ t

0

∫ ∞

0
Ys−eη(X̄N

s−−X̄u
s−)erT

(e−ηer(T −s)(z−�(z,us)) − 1)m̃(1)(ds, dz).

It remains to verify that for any u ∈ U , the process (Mu
t )t∈[0,T ] is a (P,H)-martingale.

To this end, it is sufficient to prove that

E

[ ∫ T

0

∫ ∞

0
eη(X̄N

t −X̄u
t )erT |�Y

t (z)|e−ηer(T −t)(z−�(z,ut ))πt (λ)F (1)(dz)dt

]
< ∞,

E

[ ∫ T

0

∫ ∞

0
eη(X̄N

t −X̄u
t )erT |Yt ||e−ηer(T −t)(z−�(z,ut )) − 1|πt (λ)F (1)(dz)dt

]
< ∞.

Using (5.12), �(z, ut ) ≤ z, the elementary inequality 2ab ≤ a2 + b2 and Jensen’s
inequality, the first expectation above is dominated by

E

[
eηerT

∫ T
0 e−rt q

uM
t dt

∫ T

0

∫ ∞

0
|�Y

t (z)|πt (λ)F (1)(dz)dt

]

≤ 1

2

(
E

[
e2ηerT

∫ T
0 e−rt q

uM
t dt

∫ T

0
πt (λ)dt

]

+ E

[ ∫ T

0

∫ ∞

0
|�Y

t (z)|2πt (λ)F (1)(dz)dt

])

≤ 1

4
E
[
e4ηerT

∫ T
0 e−rt q

uM
t dt

]
T + 1

4
E

[ ∫ T

0
π2

t (λ)dt

]

+ 1

2
E

[ ∫ T

0

∫ ∞

0
|�Y

t (z)|2πt (λ)F (1)(dz)dt

]

≤ 1

4
E
[
e4ηerT

∫ T
0 e−rt q

uM
t dt

]
T + 1

4
E

[ ∫ T

0
πt (λ

2)dt

]

+ 1

2
E

[ ∫ T

0

∫ ∞

0
|�Y

t (z)|2πt (λ)F (1)(dz)dt

]
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which is finite because of Assumption 4.5 ii), Remark 3.1, Proposition 2.10 and
recalling that �Y ∈ L̂2. The second expectation is less than

E

[
eηerT

∫ T
0 e−rt q

uM
t dt

∫ T

0
|Yt | πt (λ)dt

]

≤ 1

2
E

[ ∫ T

0
|Yt |2dt

]
+ 1

4
E
[
e4ηerT

∫ T
0 e−rt q

uM
t dt

]
T + 1

4
E

[ ∫ T

0
π4

t (λ)dt

]
,

where the first term is finite because Y ∈ L2, the second is finite by Assumption 4.5 ii)
and the third by Remark 3.1 and Proposition 2.10. �

6 The optimal reinsurance strategy

The aim of this section is to provide more insight into the structure of the optimal
reinsurance strategy and investigate some special cases.

By Theorem 5.8, (WN,�WN
) ∈ L2 × L̂2 is the unique solution to the BSDE

(5.7) and any maximiser in (5.9) provides an optimal control. Hence, exploiting the
expression in (4.2), we look over u ∈ U for a maximiser of the function f̃ : Mu → R

given by

f̃
(
t, ω,w, θ( · ), u)

= −wηer(T −t)q(t, ω, u)

−
∫ ∞

0

(
w + θ(z)

)
(e−ηer(T −t)(z−�(z,u)) − 1)πt−(λ)(ω)F (1)(dz). (6.1)

The following general result provides a characterisation of the optimal reinsurance
strategy in the one-dimensional case, where u ∈ [uM, uN ] ⊆ R and �(z, u) is
increasing in u. In order to obtain some definite results, we need to introduce a
concavity hypothesis for the function f̃ with respect to to the variable u ∈ [uM, uN ].

Proposition 6.1 Under Assumption 4.5, suppose �(z, u) is differentiable in u for
almost every z ∈ (0,∞) and f̃ in (6.1) is strictly concave in u, both on [uM, uN ].
Then the optimal reinsurance strategy is u∗ = (û(t,WN

t−,�WN

t ( · )))t∈[0,T ], where û

is given by

û
(
t, ω,w, θ( · )) =

⎧
⎪⎨

⎪⎩

uM for (t, ω,w, θ( · )) ∈ R0,

ū(t, ω,w, θ( · )) on M\(R0 ∪ R1),

uN for (t, ω,w, θ( · )) ∈ R1,

(6.2)
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where we define the two regions

R0 =
{(

t, ω,w, θ( · )) ∈ M : ∂f̃ (t, ω,w, θ( · ), uM)

∂u
< 0

}
,

R1 =
{(

t, ω,w, θ( · )) ∈ M : ∂f̃ (t, ω,w, θ( · ), uN)

∂u
> 0

}
,

and ū(t, ω,w, θ( · )) is the solution u ∈ (uM, uN) to the equation

−w
∂q(t, ω, u)

∂u
=
∫ ∞

0

(
w + θ(z)

)
ze−ηer(T −t)(z−�(z,u))

× ∂�(z, u)

∂u
πt−(λ)(ω)F (1)(dz). (6.3)

Proof We observe that f̃ given in (6.1) is continuous and strictly concave in u on
[uM, uN ] by hypothesis. Hence the first order condition, which reads as (6.3), admits
a unique solution which is a measurable function ū(t, ω,w, θ( · )) on M. If we extend
the function f̃ to the whole real line, i.e., allow u ∈ R, then f̃ is in u decreasing for
u < ū and increasing for u > ū; hence the maximiser on [uM, uN ] must be given by

û
(
t, ω,w, θ( · )) = max

{
uM, min

{
ū
(
t, ω,w, θ( · )), uN

}}
,

which is equivalent to (6.2). �

Remark 6.2 If q(t, ω, u) and �(z, u) are linear or convex in u on [uM, uN ], then f̃ is
strictly concave in u on [uM, uN ] and Proposition 6.1 applies.

We now consider a few examples under the expected value principle for the
reinsurance premium (see Remark 4.3).

6.1 Proportional reinsurance

In this subsection, we take �(z, u) = zu and u ∈ [0, 1]. According to (4.3), the
reinsurance premium reads

qu
t = (1 + θR)E[Z(1)]πt−(λ)(1 − ut ), u ∈ U .

Notice that Assumption 4.5 ii) is automatically satisfied since for every a > 0,

E
[
ea
∫ T

0 πt (λ)dt
]

< ∞
(see Appendix B).

Proposition 6.3 Under Assumption 4.5 i), there exist two stochastic threshold pro-
cesses θF < θN such that

u∗
t (ω) =

⎧
⎪⎨

⎪⎩

0 if θR < θF
t (ω),

1 if θR > θN
t (ω),

ū(t, ω,WN
t−(ω),�WN

t ( · )(ω)) otherwise.
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They are given by

θF
t = 1

E[Z(1)]
∫ ∞

0

WN
t− + �WN

t (z)

WN
t−

ze−ηer(T −t)z

F (1)(dz) − 1,

θN
t = 1

E[Z(1)]
∫ ∞

0

WN
t− + �WN

t (z)

WN
t−

zF (1)(dz) − 1,

and ū(t, w, θ( · )) is the solution u ∈ (0, 1) to the equation

(1 + θR)E[Z(1)] =
∫ ∞

0

w + θ(z)

w
ze−ηer(T −t)z(1−u)

F (1)(dz).

Proof This follows immediately from Proposition 6.1. �

Let us briefly comment on the previous result. We can distinguish three cases,
depending on the stochastic conditions (in particular, depending on the solution of
the BSDE (5.7)):

– If the reinsurer’s safety loading θR is smaller than θF
t , then full reinsurance is

optimal.
– If θR is larger than θN

t , then null reinsurance is optimal and the contract is not
subscribed.

– Finally, if θF
t < θR < θN

t , then the optimal retention level takes values in (0, 1),
that is, the ceding company transfers to the reinsurance a non-null percentage of risk,
but not the full risk.

In other words, if the reinsurance contract is inexpensive, the full reinsurance is
purchased. On the other hand, when the reinsurance cost is excessive, the primary
insurer will retain all the risk. In the intermediate case θF

t < θR < θN
t , the retention

level takes values in the interval (0, 1). In any case, the concepts of inexpensive and
expensive must be related to the underlying risk through the stochastic processes WN

and �WN
; hence the thresholds are stochastic.

6.2 Limited excess-of-loss reinsurance

The reinsurer’s loss function is (see Example 4.2, 3))

z − �(z, u) = z − �
(
z, (u1, u2)

)

= (z − u1)
+ − (z − u2)

+ =

⎧
⎪⎨

⎪⎩

0 if z ≤ u1,

z − u1 if z ∈ (u1, u2),

u2 − u1 if z ≥ u2,

with u1 < u2, so that the retention function is �(z, u) = z − (z − u1)
+ + (z − u2)

+.
To obtain explicit results, we reduce our analysis to the case where the control is

u = u1, while u2 = u1 + β is unequivocally determined with β > 0 being the fixed
maximum reinsurance coverage.
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According to (4.3), the expected value principle becomes

qu
t = (1 + θR)πt−(λ)

∫ ut+β

ut

SZ(z)dz, u ∈ U , (6.4)

where SZ is the survival function SZ(z) = 1 − F (1)(z).
We observe that Assumption 4.5 ii) is automatically satisfied by Lemma B.1.

Proposition 6.4 Under Assumption 4.5 i), there exists a stochastic threshold θL
t such

that

u∗
t (ω) =

{
0 if θR < θL

t (ω),

ū(t, ω,WN
t−(ω),�WN

t ( · )(ω)) otherwise,

where

θL
t = 1

F (1)(β)

∫ β

0

WN
t− + �WN

t (z)

WN
t−

e−ηer(T −t)z

F (1)(dz) − 1

and ū(t, w, θ( · )) is the solution u ∈ (0,∞) to the equation

(1 + θR)
(
F (1)(u + β) − F (1)(u)

) =
∫ u+β

u

w + θ(z)

w
e−ηer(T −t)(z−u)

F (1)(dz). (6.5)

Proof It is immediate to verify that f̃ in (6.1) is strictly concave in u ∈ [0,∞)

because the premium in (6.4) is convex in u and ∂�(z,u)
∂u

= 1 for z ∈ [u, u+β), while
it is null elsewhere. The first order derivative is

∂f̃ (t, ω,w, θ( · ), u)

∂u

= wηer(T −t)(1 + θR)πt−(λ)(ω)
(
F (1)(u + β) − F (1)(u)

)

−
∫ u+β

u

(
w + θ(z)

)
ηer(T −t)e−ηer(T −t)(z−u)πt−(λ)(ω)F (1)(dz).

The maximiser is always finite (we can rule out the possibility of having null rein-

surance, u∗ = ∞), while it is null if and only if ∂f̃ (t,ω,w,θ( · ),0)
∂u

< 0, i.e., when
θR < θL

t (ω). Conversely, if θR ≥ θL
t (ω), the maximiser coincides with the unique

stationary point satisfying ∂f̃ (t,ω,w,θ( · ),u)
∂u

= 0, which can be written as (6.5). �

Let us briefly comment on the previous result. Differently from the proportional
reinsurance, null reinsurance is never optimal and we can distinguish two cases,
depending on the maximum coverage β and the solution of the BSDE (5.7):

– If the reinsurer’s safety loading θR is smaller than θL, then the maximum
reinsurance coverage β is optimal.

– If θR is larger than θL, then it is optimal to purchase reinsurance, but not with
maximum coverage.
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6.3 Excess-of-loss reinsurance

The excess-of-loss contract, i.e., z−�(z, u) = (z−u)+ (see Example 4.2, 2)) can be
easily obtained from the previous case by letting β → ∞. The optimal reinsurance
strategy under Assumption 4.5 i) then becomes

u∗
t (ω) =

{
0 if θR < θL

t (ω),

ū(t, ω,WN
t−(ω),�WN

t ( · )(ω)) otherwise,

where

θL
t =

∫ ∞

0

WN
t− + �WN

t (z)

WN
t−

e−ηer(T −t)z

F (1)(dz) − 1

and ū(t, w, θ( · )) is the solution u ∈ (0,∞) to the equation

(1 + θR)SZ(u) =
∫ ∞

u

w + θ(z)

w
e−ηer(T −t)(z−u)

F (1)(dz).

As in the limited excess-of-loss reinsurance case, null reinsurance is never optimal
and two cases are possible, depending on the solution of the BSDE (5.7):

• When θR < θL, the full reinsurance is optimal.
• Otherwise, it becomes optimal to purchase an intermediate protection level.

Appendix A: Proofs of auxiliary results

Lemma A.1 Let (�,F ,F,P) be a filtered probability space and assume that the fil-
tration F = (Ft )t∈[0,T ] satisfies the usual hypotheses. Let N be a standard Poisson
process with F-intensity λ > 0 and (bt )t∈[0,T ] an F-predictable process. Then

E
[
e
∫ T

0 bt dNt
] = E

[
e
∫ T

0 (ebt −1)λdt
]
,

provided that the last expectation is finite.

Proof To show that the statement is valid for any bounded F-predictable process, see
Brémaud [6, Appendix A1, Theorem T4], it is sufficient to prove it for any process
of the form

bt = 1(t1,t2](t)1A, 0 ≤ t1 < t2 ≤ T ,A ∈ Ft1 .

For such a process, we have

E
[
e
∫ T

0 bt dNt
] = E

[
e
∫ t2
t1

1A dNt
]

= E[e(Nt2 −Nt1 )1A(1A + 1Ac)]
= E

[
E[e(Nt2 −Nt1 )|Ft1 ]1A + 1Ac

]

= E
[
E[e(Nt2 −Nt1 )]1A + 1Ac

]
.
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Because Nt2 − Nt1 ∼ Po (λ(t2 − t1)), we get E[e(Nt2−Nt1 )] = e(e−1)λ(t2−t1). Substi-
tuting and rearranging the terms then gives

E
[
e
∫ T

0 bt dNt
] = E[e(e−1)λ(t2−t1)1A ].

On the other hand, we notice that

ebt − 1 = e1(t1,t2](t)1A − 1 = e1(t1,t2](t)1A − 1(t1,t2](t)1A = (e − 1)1(t1,t2](t)1A,

and so

E
[
e
∫ T

0 (ebt −1)λdt
] = E

[
e
∫ T

0 (e−1)1(t1,t2](t)1Aλdt
] = E[e(e−1)λ(t2−t1)1A ].

This proves the statement for any bounded F-predictable process. To extend the result
to unbounded processes, assume that (bt )t≥0 is an arbitrary F-predictable process and
define the F-stopping times τn = inf{t ≥ 0 : bt > n}, n ≥ 1. Clearly, τn → ∞ as
n → ∞. By the first part of the proof, we know that

E
[
e
∫ T ∧τn

0 bt dNt
] = E

[
e
∫ T ∧τn

0 (ebt −1)λdt
]

so that it remains to pass to the limit n → ∞. We can apply monotone convergence

theorem to the family of random variables Xn := e
∫ T ∧τn

0 bt dNt , n ≥ 1, if b is positive,

or to Xn := e

∫ T ∧τn
0 b

+
t dNt

e

∫ T ∧τn
0 b

−
t dNt

, n ≥ 1, for general b. �

Lemma A.2 Let (�,F ,F,P) be a filtered probability space and assume that the fil-
tration F = (Ft )t∈[0,T ] satisfies the usual hypotheses. Let N(dt, dz) be a Poisson
random measure on [0, T ] × [0,∞) with F-intensity kernel λF(dz)dt . Then for any
F-predictable and [0,∞)-indexed process (H(t, z))t∈[0,T ],z∈[0,∞), we have that

E
[
e
∫ T

0

∫∞
0 H(t,z) N(dt,dz)

] = E
[
e
∫ T

0

∫∞
0 (eH(t,z)−1)λF (dz)dt

]
,

provided that the last expectation is finite.

Proof It is sufficient to prove the result for any process H of the form

H(t, z) = bt1A, t ≥ 0, A ∈ B
([0,∞)

)
,

where b is F-predictable. By Lemma A.1, we readily obtain that

E
[
e
∫ T

0 H(t,z) N(dt,dz)
] = E

[
e
∫ T

0 btN(dt,A)
]

= E
[
e
∫ T

0 (ebt −1)
∫
A F(dz) λdt

]

= E
[
e
∫ T

0

∫∞
0 (ebt −1)1A(z) F (dz) λdt

]

= E
[
e
∫ T

0

∫∞
0 (ebt1A(z)−1) F (dz) λdt

]

= E
[
e
∫ T

0

∫∞
0 (eH(t,z)−1) F (dz) λdt

]
,

where we use that (N((0, t]×A)) is a Poisson process with intensity
∫
A

F(dz) λ. �
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Appendix B: Proof of key lemmas

We focus here on the finiteness of the four expectations E[eaN
(1)
T ], E[ea

∫ T
0 λsds],

E[ea
∫ T

0 πs(λ)ds] and E[eaCT ] computed under P for an arbitrary real constant a > 0.
Here N(1) is a standard Poisson process under (Q,F) and a counting process with
(P,F)-intensity λ given in (2.1). We exploit the measure change introduced in detail
in Sect. 2 and work under Assumption 4.5 i). We prove the following result.

Lemma B.1 Under Assumption 4.5 i), we have

E[eaN
(1)
T ] < ∞, E

[
ea
∫ T

0 λsds
]

< ∞, E
[
ea
∫ T

0 πs(λ)ds
]

< ∞.

Proof First of all, we show that under Assumption 4.5 i), we have

E
Q
[
ea
∫ T

0 λsds
]

< ∞. (B.1)

Recalling (2.5), for a suitable c1 > 0 and for c2 = aT , we find that

E
Q
[
ea
∫ T

0 λsds
] ≤ E

Q
[
e
aT (max{λ0,β}+∑N

(1)
T

j=1 �(Z
(1)
j )+∑N

(2)
T

j=1 Z
(2)
j )]

≤ c1E
Q
[
e
c2(
∑N

(1)
T

j=1 �(Z
(1)
j )+∑N

(2)
T

j=1 Z
(2)
j )]

= c1e
T (EQ[ec2�(Z(1))]−1)eT (EQ[ec2Z(2) ]−1) < ∞,

where we used the independence of N(1), N(2), (Z
(1)
n )n≥1, (Z

(2)
n )n≥1 under Q, and in

the last equality, we followed the path traced in the proof of Proposition 2.6. Finally,
Assumption 4.5 i) gives the finiteness of the expectation under Q.

To prove that E[eaN
(1)
T ] is finite, we exploit the change of measure from P to Q via

dP
dQ |FT

= LT , with LT given in (2.6), so that

E[eaN
(1)
T ] = E

Q[LT eaN
(1)
T ]

= E
Q
[
e− ∫ T

0 (λs−1)ds+∫ T
0 (ln λs−+a)dN

(1)
s
]

≤ C E
Q
[
e
∫ T

0 (ln λs−+a)dN
(1)
s
]

for a suitable constant C > 0. Now we recall that under Q, the Poisson process N(1)

has unit intensity and take bs = ln λs− + a in Lemma A.1 to obtain

E[eaN
(1)
T ] ≤ CE

Q
[
e
∫ T

0 (ln λs−+a)dN
(1)
s
] = CE

Q
[
e
∫ T

0 (eaλs−1)ds
]
,

which is finite because of (B.1).
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We now show that E[ea
∫ T

0 λsds] < ∞ for all a > 0. We proceed as above: pass-
ing to Q via LT , recalling (2.5) and introducing the integer-valued random measure
m(1)(dt, dz), we find

E
[
ea
∫ T

0 λsds
] = E

Q
[
LT ea

∫ T
0 λsds

]

= E
Q
[
e
∫ T

0 ((a−1)λs+1)ds+∫ T
0 ln λs−dN

(1)
s
]

≤ C1E
Q
[
e
C2(

∑N
(1)
T

j=1 �(Z
(1)
j )+∑N

(2)
T

j=1 Z
(2)
j )

e
∫ T

0 ln λs−dN
(1)
s
]

= C1E
Q
[
e
C2
∑N

(2)
T

j=1 Z
(2)
j
]
E
Q
[
e
∫ T

0

∫∞
0 (C2�(z)+ln λs−)m(1)(ds,dz)

]

for a suitable constant C1 > 0. We now apply Lemma A.2 under Q and for the process
H(t, z) = (C2�(z) + ln λt−) and with ν(1),Q(dt, dz) = F (1)(dz)dt , and we get

E
[
ea
∫ T

0 λsds
] ≤ C1 E

Q
[
e
C2
∑N

(2)
T

j=1 Z
(2)
j
]
E
Q
[
e
∫ T

0

∫∞
0 (C2�(z)+ln λs−)m(1)(ds,dz)

]

= C1E
Q
[
e
C2
∑N

(2)
T

j=1 Z
(2)
j
]
E
Q
[
e
∫ T

0

∫∞
0 (λse

C2�(z)−1)F (1)(dz)ds
]

= C1E
Q
[
e
C2
∑N

(2)
T

j=1 Z
(2)
j
]
E
Q
[
e
∫ T

0 (λsE
Q[eC2�(Z

(1)
1 )]−1)ds

]
,

which is finite under Assumption 4.5 i).

It remains to prove that E[ea
∫ T

0 πs(λ)ds] < ∞ for all a > 0. The structure of the
filtering equation implies that over [0, T ], the filter attains its maximum value at a
jump time. More precisely, we showed in Remark 3.4 that the filter is dominated by
a process with exponential decay behaviour between two consecutive jumps; hence
the maximum over [0, T ] is attained at a jump time τ ≤ T such that

πτ (λ) = max

{
π

T
(1)
1

(λ), . . . , π
T

(1)

N
(1)
T

(λ)

}
.

Notice that the maximum is taken over a finite number of elements because the jump
process N(1) is non-explosive. Then using Jensen’s inequality, we have that

E
[
ea
∫ T

0 πt (λ)dt
] ≤ E[eaT πτ (λ)] ≤ E[πτ (e

aT λ)] = E[eaT λτ ] < ∞.

The last inequality is due to the fact that τ ≤ T , and so we have the inequalities

E[eaT λτ ] = E
Q[LT eaT λτ ]

≤ C1E
Q
[
eaT λτ e

∫ T
0 ln λs−dN

(1)
s
]

≤ C1E
Q
[
e
C2(

∑N
(1)
T

j=1 �(Z
(1)
j )+∑N

(2)
T

j=1 Z
(2)
j )

e
∫ T

0 ln λs−dN
(1)
s
]
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for suitable constants Ci > 0, i = 1, 2, and we can prove the finiteness by doing the

same computations as for proving that E[ea
∫ T

0 λsds] < ∞. �

Based on Lemma B.1, we conclude this section proving the useful result given in
Lemma 4.6, i.e., that for every a > 0, we have

E[eaCT ] < ∞.

Proof of Lemma 4.6 For a suitable constant κ > 0, passing to Q via the Radon–
Nikodým derivative LT given in (2.6) and using Lemma A.2, we get

E[eaCT ] = E
Q
[
e− ∫ T

0 (λt−1)dt+∫ T
0 ln λt− dN

(1)
t e

∫ T
0

∫∞
0 az m(1)(dt,dz)

]

≤ κEQ
[
e
∫ T

0

∫∞
0 (ln λt−+az) m(1)(dt,dz)

]

= κEQ
[
e
∫ T

0

∫∞
0 (eln λt−+az−1) F (1)(dz)dt

]

= κEQ
[
e
∫ T

0 λt−(E[eaZ(1) ]−1)dt
]

< ∞,

where the finiteness comes from (B.1) and Assumption 4.5 i). �

Appendix C: Proof of Theorem 5.10

Proof In order to apply Papapantoleon et al. [25, Theorem 3.5], we start by verifying
that the BSDE data are standard under β̂, i.e., that assumptions (F1)–(F5) in [25] are
satisfied for a β̂ > 0. We show that in our setting, any β̂ > 0 works (see (F4) below).

(F1) The process (C̃t )t∈[0,T ] with C̃t = ∫ t

0

∫∞
0 zm̃(1)(ds, dz) is a (P,H)-mar-

tingale because of Remark 4.1. Notice that C̃ is a pure-jump martingale since the
Brownian part is absent. Moreover,

E[C̃2
t ] = E

[∫ t

0

∫ ∞

0
z2πs−(λ)F (1)(dz)ds

]
= E[(Z(1))2]E

[ ∫ t

0
πs−(λ)ds

]

is finite for every t ∈ [0, T ] by Remark 3.1. Hence supt∈[0,T ] E[C̃2
t ] < ∞ and [25,

Assumption 2.10] is satisfied. In particular, the disintegration property is fulfilled
with the transition kernel Kω on (� × [0, T ],P(H)) given by

Kω
t (dz) = πt−(λ)F (1)(dz).

(F2) Lemma 4.6 guarantees that the terminal condition ξ = e−ηXN
T has finite

moments of any order. See also (F4) below for additional details.
(F3) We need to prove that the generator f satisfies a stochastic Lipschitz condi-

tion, i.e., there exist two positive H-predictable processes γ , γ̄ such that on M,

∣∣f
(
t, ω, y, θ( · ))− f

(
t, ω, y′, θ ′( · ))∣∣2

≤ γt (ω)|y − y′|2 + γ̄t (ω)
(|||θ( · ) − θ ′( · )|||t (ω)

)2
, (C.1)
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where

(|||θ( · )|||t (ω)
)2 =

∫ ∞

0
θ2(z)Kω

t (dz) ≥ 0.

Exploiting the definition of f in (5.11), we first need to deal with the ess sup via

∣∣f
(
t, ω, y, θ( · ))− f

(
t, ω, y′, θ ′( · ))∣∣2

≤
(

ess sup
u∈U

∣∣f̃
(
t, ω, y, θ( · ), u)− f̃

(
t, ω, y′, θ ′( · ), u)∣∣

)2
,

and we first work on the absolute value difference involving f̃ by

∣∣f̃
(
t, ω, y, θ( · ), u)− f̃

(
t, ω, y′, θ ′( · ), u)∣∣

=
∣∣∣∣(y − y′)ηer(T −t)qu

t (ω)

+
∫ ∞

0

(
y − y′ + θ(z) − θ ′(z)

)
(e−ηer(T −t)(z−�(z,u)) − 1)Kω

t (dz)

∣∣∣∣

≤ |y − y′|ηer(T −t)q
uM
t (ω) +

∫ ∞

0
|y − y′|Kω

t (dz)

+
∫ ∞

0
|θ(z) − θ ′(z)|Kω

t (dz),

where we have used the boundedness of |e−ηeR(T −t)(z−�(z,u)) − 1| and that qu
t ≤ q

uM
t

for any u ∈ U . Now since the inequality above does not depend on u, the ess supu∈U

also satisfies it and we can take its square to find

(
ess sup

u∈U

∣∣f̃
(
t, ω, y, θ( · ), u)− f̃

(
t, ω, y′, θ ′( · ), u)∣∣

)2

≤ 3|y − y′|2η2e2r(T −t)
(
q

uM
t (ω)

)2 + 3

(∫ ∞

0

∣∣y − y′∣∣Kω
t (dz)

)2

+ 3

(∫ ∞

0
|θ(z) − θ ′(z)|Kω

t (dz)

)2

.

Recalling now that the transition kernel reads Kω
t (dz) = πt−(λ)F (1)(dz) and F (1) is

a distribution function, we use Jensen’s inequality for an integrable function ϑ to get

(∫ ∞

0
|ϑ(ω, z)|πt−(λ)F (1)(dz)

)2

≤
∫ ∞

0
|ϑ(ω, z)|2π2

t−(λ)F (1)(dz).
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So we finally find that

(
ess sup

u∈U

∣∣f̃
(
t, ω, y, θ( · ), u)− f̃

(
t, ω, y′, θ ′( · ), u)∣∣

)2

≤ 3|y − y′|2η2e2r(T −t)
(
q

uM
t (ω)

)2 + 3|y − y′|2π2
t−(λ)

+ 3
∫ ∞

0
|θ(z) − θ ′(z)|2πt−(λ)Kω

t (dz)

= 3|y − y′|2
(
η2e2r(T −t)

(
q

uM
t (ω)

)2 + π2
t−(λ)

)

+ 3
∫ +∞

0
|θ(z) − θ ′(z)|2πt−(λ)Kω

t (dz).

This gives (C.1), and we get for the stochastic Lipschitz coefficients γt , γ̄t the values

γt = 3η2e2r(T −t)(q
uM
t )2 + 3π2

t−(λ),

γ̄t = 3πt−(λ),

which are independent of the control u.
(F4) Since by definition α2· = max{√γ·, γ̄·}, we find that

α2
s = max

{√
3η2e2r(T −s)(q

uM
s )2 + 3π2

s−(λ), 3πs−(λ)
}
.

As At = ∫ t

0 α2
s ds, the inequality �At ≤ � P-a.s. holds true for any � > 0 since A

has no jumps. Notice that (F2) requires that the terminal condition ξ = e−ηXT
N be-

longs to the set of HT -measurable random variables such that E[eβ̂AT e−2ηXN
T ] < ∞

for some β̂ > 0. This is true for any β̂ > 0 since α2
s ≤ √

3ηer(T −s)q
uM
s + 3πs−(λ)

and so

E[eβ̂AT e−2ηXN
T ] ≤ E

[
eβ̂

√
3η
∫ T

0 er(T −s)q
uM
s dse3β̂

∫ T
0 πs−(λ)dse−2ηXN

T
]
,

which is finite for any β̂ > 0 thanks to Assumption 4.5 (ii) (see also Lemma B.1).
(F5) Finally, by using the same β̂ > 0 and A introduced to prove (F4), we obtain

E

[ ∫ T

0
eβ̂At

|f (t, 0, 0, 0)|2
α2

t

dt

]
< ∞,

since here f (t, 0, 0, 0) = − ess supu∈U f̃ (t, 0, 0, ut ) = 0. It now remains to prove
that the quantity

M�(β̂) = 9

β̂
+ �2(2 + 9β̂)√

β̂2�2 + 4 − 2
exp

(
β̂� + 2 −

√
β̂2�2 + 4

2

)
,

with � > 0 introduced in (F4) and β̂ > 0, satisfies M�(β̂) < 1
2 . Thanks to [25,

Lemma 3.4], it suffices to take � < 1
18e

and β̂ sufficiently large because we have
limβ̂→∞ M�(β̂) = 9e�.
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It remains to show that (Y,�Y ) ∈ L2 × L̂2. According to [25, Theorem 3.5],
we have

E

[ ∫ T

0
eβ̂At α2

t |Yt |2dt

]
< ∞.

Moreover, α2
t ≥ 3πt−(λ) ≥ 3 min{λ0, β} implies E[∫ T

0 eβ̂At |Yt |2dt] < ∞ and
therefore Y ∈ L2. The same argument can be used to prove that �Y ∈ L̂2. �
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