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A B S T R A C T

Optimizing unit sizes and operation within a Renewable Energy Community (REC) can match intermittent
renewable energy generation with variable user energy demands. These uncertain variables are often represented
by pre-defined stochastic scenarios, without searching for the “best” scenarios and testing the optimization
models with these scenarios. Moreover, little work both optimized RECs under uncertainty and distributed
optimal life-cycle costs (investment and operation) among members. Thus, the objectives are: i) identifying the
“best” set of stochastic scenarios of solar irradiance and user electricity demands and ii) assessing the accuracy of
the “stochastic forecasts” of the total system costs and unit sizes, obtained by solving a stochastic programming
model based on the “best” scenarios. The proposed novel procedure shifts the “present moment” back in time to
split historical data into “past” and “future” periods used to identify the “best” scenarios and compare the
“stochastic forecasts” with the utopic “perfect forecasts” based on the perfect knowledge of real data, respec-
tively. The small errors between these forecasts in the optimal life-cycle costs (less than 2 %) and sizes (3–13 %)
indicate good effectiveness of the suggested procedure. Also, the optimal life-cycle costs of “stochastic forecasts”
are fairly distributed among users by applying the Shapley value mechanism.

1. Introduction

Creating a greener and more equitable society requires increased
utilization and consumption of distributed Renewable Energy Sources
(RES). Recently, the European Union updated the energy and environ-
mental targets of the “Clean Energy Package” [1], according to the
“Fit-for-55” [2] and the “REPowerEU” [3] plans, with a view to
achieving the carbon neutrality by 2050 [4].

Energy Communities (ECs) are innovative energy system configura-
tions that could help achieve the energetic and environmental targets set
by the European Union [5]. ECs promote the aggregation of local users
[6] to improve the match between energy demand and generation at the
local level, thereby reducing the burden on the energy networks. ECs
also increase the self-consumption of distributed RES in neighbour-
hoods, districts, municipalities and cities [7,8], by enabling members to
share energy within the community [9]. The European legislation [10,
11] defined the Citizen Energy Community (CEC) and Renewable

Energy Community (REC) [12]. Contrary to CEC, REC is constrained to
use only RES and not fossil fuel energy. CEC can manage only the
electricity demand, while REC also other demands such as heating and
cooling.

1.1. Literature review

ECs may exploit the synergy between different types of energy users
[13] from different consumption sectors, leading to several economic (e.
g., cost savings) [14], environmental (e.g., emission reductions) [15]
and social (e.g., access to distributed RES for low-income users) [16]
benefits to its members. As demonstrated in a work of the authors
(Volpato et al. [17]), the aggregation of various users with comple-
mentary demand and generation profiles in ECs results in economic
savings for both the community and single members. Gjorgievski et al.
[18] found a similar result for the members of a REC, also when the
energy sharing is taxed (with a lower price than that for the energy
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purchased from the grid). RECs ensure access to distributed RES to
different local energy users, including the most vulnerable ones [19]
characterized by severe economic and social conditions [20], thus
mitigating energy poverty. Balderrama et al. [21] and Li et al. [22]
pointed out the role of ECs in promoting the rural electrification plan-
ning. As the case for Italy, Candelise and Ruggieri [23] found that local
and small citizen-led projects foster the spread of ECs [24]. ECs also
encourage final users to participate in Demand Response (DR) programs
[25,26] to improve the local balance between energy generation and
demand and, in turn, limit the stress on the electric grid. Cai et al. [26]
minimized the energy expenditure of a residential EC while achieving a
flatter daily profile of its net electricity withdrawn from the grid. Mar-
iuzzo et al. [27] optimized the design of an EC, reducing the annual CO2
emissions while, at the same time, ensuring economic savings and
limited social discomfort to users with shiftable loads.

According to Lowitzsch et al. [28] and Bartolini et al. [29], RECs
could rely on Multi-Energy Systems (MES) to satisfy the various energy
demands of their members. A MES consists of a set of energy conversion
and storage units that exploit the interaction between multiple energy
vectors (e.g., electricity, heat, cooling, fuels, etc.), at different
geographical scales (e.g., neighbourhood, district, municipality, city,
etc.), to find the best match between energy demand and generation.
Two main issues arise in the design and operation optimization of local
MES of ECs. First, the intermittent RES and the various energy demands
of end-users might be difficult to be predicted, thus invoking the need of
proper design-operation optimization models under uncertainties [30].
Sakki et al. [31] proposed a novel method to account for different
sources of uncertainty in the design-operation optimization of
renewable-driven energy systems. Coignard et al. [32] found that the
calculation of total cost, self-sufficiency and self-consumption of an EC
are highly affected by the forecasts of energy demands. Simoiu et al.
[33] developed a multi-agent model of an EC, where the willingness of
members to shift their energy demands is evaluated by a stochastic
approach. Another relevant issue for ECs is guaranteeing the fair allo-
cation of the total economic benefit to its members, thus satisfying en-
ergy democracy [34]. A fair allocation of economic benefits should also
ensure that each member finds it more economically convenient to
participate in the EC rather than to operate independently, thus pre-
venting members from dropping out of the community [35,36].

In such a context, this paper focuses on the design and operation
optimization of a local MES meeting the energy demands of a REC under
uncertainties in solar irradiance and users’ electricity demand. The
fairness in the allocation of the total cost of the system to its end users is
also analysed. Thus, the literature below mainly focuses on the design
and operation optimization of MES of ECs without uncertainty, with
uncertainty, and on the fair allocation of the total economic cost/profit
within ECs.

Some works neglected any uncertainty. Piazza et al. [37] presented a
Mixed-Integer Linear Programming (MILP) model to optimize the design
and operation of an EC. The optimal CO2 emissions and operational costs
are 33 % and 35 % lower compared to a reference case in which elec-
tricity is withdrawn from the grid and the heating and cooling demands
are satisfied by natural gas boilers and heat pumps, respectively. In a
work of the authors (Dal Cin et al. [38]), multi-objective design--
operation optimization models of different EC configurations are
developed, encompassing residential and commercial users with elec-
tricity and heating demands. Results show an average economic cost
saving of 14 % and a reduction of emissions by 24 % for the analysed
configurations, with respect to the case in which users are simple con-
sumers. Sousa et al. [39] conducted a design optimization of a REC that
comprises two consumers and a prosumer using PV and wind power
plants. Ceglia et al. [40] analysed the MES of the municipality of Tirano
(Italy), supplying a REC with electricity, heating and cooling demands.
Bahl et al. [41,42] selected an appropriate set of typical days for a
design-operation optimization of a MES by finding the minimum error
between the optimal objective function based on typical days and that

based on the full annual data.
The main uncertainties in the design-operation optimization of MES

are related to the RES (i.e., generation side) and the energy demand
profiles (i.e., demand side) [43,44]. Some works applied Monte Carlo
based techniques to assess how the optimal capacity planning [45] and
the optimal operational management [46] of ECs change under different
scenarios of the uncertain parameters. However, these techniques do not
allow to obtain optimal design and operational decisions (i.e., the choice
of unit sizes and loads) under uncertainty, since the optimization is
solved for each scenario independently. On the other hand, Stochastic
Programming (SP) [47] and Robust Optimization (RO) [48] are themain
methods to conduct the optimization under uncertainty [49]. SP con-
siders a set of stochastic scenarios with the associated probabilities,
while RO defines an interval of possible random realizations of an un-
certain parameter. One example of application of RO to optimize the
day-ahead operational scheduling of an EC under the uncertainty in
solar PV power generation and load demand can be found in Ref. [50].
RO searches for a worst-case feasible solution, which is only optimal for
a worst-case scenario, sometimes leading to overly conservative results
[51]. On the contrary, SP is able to guarantee a well-hedged solution of
the optimization problem under uncertainty, i.e., an optimal solution
that takes into account multiple stochastic scenarios [52]. Di Somma
et al. [53] used a SP optimization model to maximize the shared energy
within an Italian REC, represented by a condominium equipped with a
PV plant of known capacity, and thus maximize the associated economic
benefits provided for by the Italian legislation, under the uncertainty in
PV power generation and user demands. Zakaria et al. [54] reviewed SP
for two-stage design-operation problems, where the decisions related to
the optimal sizes of the energy units are taken in the first stage (i.e., the
design phase), while the operational decisions are taken in the second
stage (i.e., the operation phase) that is affected by the stochastic sce-
narios. Some works used SP models with typical days of a year as sto-
chastic scenarios of the uncertain parameters [55,56]. Li and Yang [56]
used a two-stage SP model, based on typical days of solar irradiance and
wind speed in one historical year, to optimize the design and operation
of a hybrid energy system. Mansouri et al. [57] implemented a two-stage
SP model to optimize the design and operation of a multi-energy hub.
Uncertainty in energy demand and wind power generation was repre-
sented by daily stochastic scenarios, the number of which (variable from
5 to 20) is found by applying K-means clustering. Zheng et al. [58]
optimized the design and operation of a system consisting of PV and
battery, considering 6 typical days of PV power and residential elec-
tricity demand, found by clustering, as stochastic scenarios in the
two-stage SP model. Narayan and Ponnambalam [59] included the risk
of uncertainty associated with energy demands and RES in the formu-
lation of a two-stage SP model for the optimal design of a microgrid. In
the previous works, the stochastic scenarios of uncertain parameters are
often selected a priori, without validating the optimization models
under uncertainty on historical input data to identify the “best” set of
stochastic scenarios, and without testing the optimization models under
uncertainty with the preliminarily identified “best” scenarios. In addi-
tion, the weight of the uncertain parameters in the optimal design of the
systems (e.g., in the optimal cost/profit and sizes of the energy con-
version and storage units) is not assessed. It is also worth highlighting
that the works cited above did not consider any allocation of the total
cost/profit of the EC to its members.

Some works investigated how to ensure a fair cost/profit allocation
to the EC members by implementing cooperative game-based [60,61] or
other [62] approaches. The literature reported here covers only the
cooperative game-based approaches, such as “Shapley value” [63],
“Nucleolus” [64], and “Nash bargaining” [65], which can effectively
represent the cooperation among the members of ECs. Zatti et al. [66]
optimized the design of an EC, which comprises three commercial and
six residential users, and applied the Shapley value mechanism to fairly
allocate the total economic profit to the members in accordance with
their economic contributions to the energy sold to the grid and to that
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shared with other members. De Souza Dutra and Alguacil [67] used a
mechanism based on Shapley value to distribute incentives equitably
among residential prosumers participating in an incentive-based de-
mand response program. Fioriti et al. [68] optimized the design and
operation of an EC and, subsequently, implemented hybrid cooperative
allocation mechanisms based on Shapley value and Nucleolus. Jiang
et al. [69] developed a Nash bargaining model to fairly distribute the
operational profit of a community made of five residential prosumers.
Zhao et al. [70] used a Nash bargaining model to fairly allocate the
optimal operational cost of an alliance of ECs. Volpato et al. [71] applied
the Shapley value and the Nucleolus allocation criteria and the Nash
bargaining optimization approach to comprehensively compare three
different distributions of the total cost of a general EC (consisting of both
consumers and prosumers) based on the different notions of “individ-
ual”, “collective” and “proportional” fairness, respectively. Although the
previous works focused on the allocation of the cost/profit of an EC, they
disregarded the uncertainty of input parameters in the design-operation
optimization of the system.

Few works considered both the optimization of MES supplying ECs
under uncertainties and the fair distribution of the total economic
benefit. Siqin et al. [30] optimized the day-ahead dispatch of three ECs
under the uncertainty in the PV power. A Shapley value mechanism is
applied to fairly allocate the total economic cost saving to the ECs.
However, this work did not optimize the design of the system and, be-
sides, did not distinguish the individual energy demands of the com-
munity members. Ye et al. [72] minimized the operational cost of a
residential EC (including the cost of purchasing electricity from the main
grid and the cost of charging/discharging electrical storage units) under
the uncertainty in RES, user energy demands and electricity prices. The
authors also used a Nash bargaining model to fairly distribute the total
cost among users, but neglected to optimize the energy generation (i.e.,
PV and wind power plants) and storage capacities. Tomin et al. [73]
optimized the design and operation of an EC comprising three micro-
grids. They implemented a bi-level model to minimize total costs under
the uncertainty in the choice of the EC configuration in the upper level,
and tominimize operational costs, emissions and power shortage of each
microgrid in the lower level. They also allocated the total economic cost
to the microgrids, although they neglected the users’ electricity demand
in each microgrid, thus disregarding the cost distribution among indi-
vidual users.

1.2. Research gap, goal and novelty

The literature review pointed out two evident gaps.

• The validation and successive test of the optimization models under
uncertainty. Indeed, the common practice in the literature is to select
in advance and arbitrarily the stochastic scenarios in these optimi-
zation models (e.g., Refs. [56–58]), without validating and testing
them.

• The lack of a comprehensive case study in which the weight of
different uncertainties are quantified in the design-operation opti-
mization of a local MES associated with an EC [39,70,74,75], also
considering the fair allocation of the total cost of the system to the EC
members [73].

This work fills in the above-mentioned gaps in the design and
operation optimization of a local MES of a REC under the uncertainties
in solar irradiance and users’ electricity demand. The goal is twofold.

i. Identifying the “best” set of stochastic scenarios (i.e., the most
representative) that represent the most accurate predictions of the
uncertain parameters in a “past” training dataset (2005–2014).

ii. Assessing the accuracy of the optimal “stochastic forecasts” of the
system total cost and unit sizes, based on the previously found “best”
set of stochastic scenarios, in a “future” testing dataset (2015–2020).

Fig. 1 shows the novel procedure developed to achieve the twofold
goal, which shifts the “present moment” back in time, using the input
data of the period prior to the “present moment” as the “past” training
dataset (2005–2014), and the data of the subsequent period as the
“future” testing dataset (2015–2020).

The procedure is based on MILP and SP [47] models to optimize the
design-operation of the system with, respectively, perfect knowledge of
input timeseries and under uncertainties, with the aim of minimizing the
life cycle cost of the system (investment, operation and maintenance
costs). SP is chosen over RO because the former’s formulation is more
appropriate for the considered uncertainties represented by stochastic
scenarios [76]. The procedure is organized according to the four points
below, where points 1) to 3) contribute to goal i) and points 1)-4) to goal
ii).

1) Model with perfect knowledge: the MILP model is solved for each
year, first using the training and then the testing datasets, so leading
to the “historical solutions” and “perfect forecasts”, respectively, the
latter based on the utopic assumption of perfect knowledge of the
“future”.

2) Scenarios generation: different sets of stochastic scenarios of the
uncertain parameters are generated by applying K-means clustering
in the training dataset.

3) Validation of the SP model: the SP model, solved for each year and
set of stochastic scenarios, leads to different “stochastic solutions”.
The "best" set of stochastic scenarios is identified considering the
lowest Root Mean Squared Error (RMSE) and residual between the
optimal life cycle costs according to the “stochastic solutions” and
“historical solutions”.

4) Test of the SP model: the SP model is solved for each year of the
testing dataset with this “best” set of scenarios, resulting in different
“stochastic forecasts”, the accuracy of which is assessed compared to
the “perfect forecasts” in terms of the optimal life cycle cost of the
system and the optimal sizes of the units.

To the best of the authors’ knowledge, this paper is the first to pre-
sent such a novel procedure to find the “best” set of stochastic scenarios
and test the associated “stochastic forecasts”.

Furthermore, the optimal life cycle cost according to the “stochastic
forecast” obtained for each year of the testing dataset is fairly allocated
to the EC users by applying the Shapley value mechanism. This ensures a
fair allocation of the optimal economic benefit of an EC by distributing
lower costs to members who contribute more to the cost reduction of the
community and its internal coalitions of members. Contrary to Nucle-
olus [64] and Nash bargaining [65] mechanisms, Shapley value does not
require an optimization problem dedicated to the cost allocation.

The remaining part of the paper is organized as follows. Section 2
presents the local MES of the REC, the novel optimization procedure and
the Shapley value mechanism. Section 3 reports the MILP and SP opti-
mization models, and the input data. Section 4 discusses the results
obtained from the implementation of the procedure. Section 5 draws the
Conclusions of this work.

2. Methodology

Section 2.1 introduces the Renewable Energy Community (REC)
associated with a local Multi-Energy System (MES). Section 2.2 de-
scribes the novel stochastic optimization procedure. Section 2.3 explains
the Shapley value mechanism to fairly distribute the optimal cost of the
system.

2.1. Renewable Energy Community configuration

Fig. 2 shows the system analysed. To benefit from the complemen-
tarity between diverse curves of energy generation and demand, the
members of the REC are chosen as representative of the residential (Res),
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tertiary (Ter), commercial (Com) and public (Pub) sectors. The resi-
dential and public members are prosumers who could invest in solar
PhotoVoltaic plants (PV), Heat Pumps (HP), Electrical Energy Storage
(EES) and Thermal Energy Storage (TES). Conversely, the tertiary and
commercial members are consumers that could invest in natural Gas
Boilers (GB) to satisfy their heating demands, while their electricity
demands are met by purchasing electricity from the distribution grid.

According to the Italian legislation, the members of the REC under
the same primary cabin share electricity through the grid, realizing that
is called collective virtual self-consumption.

The assumptions and boundary conditions of this work are reported
afterwards.

• The legislation of the REC only allows the sharing of electricity
among the community members [77], who individually satisfy their
heating demands. The shared energy, net of the individual physical
self-consumption of members [78], is in each hour of the day the mini-
mum between the electricity withdrawn from the grid and the renewable
electricity injected into the grid by each member of the community [77,
79].

• The users’ electricity demands can be optimally shifted according to
a Price-Based Demand Response (PBDR) program with a Real Time
Pricing (RTP) strategy [25], which sets a daily profile of the grid
purchase/sale price following that of the day-ahead market price.

Fig. 1. Structure of the novel optimization procedure to obtain the “best” set of stochastic scenarios (left) and assess the “stochastic forecasts” based on the “best” set
compared to the “perfect forecasts” based on real data (right).

Fig. 2. Local MES of a REC with residential (Res), tertiary (Ter), commercial (Com) and public (Pub) users.
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• The input dataset containing daily timeseries is divided into a larger
training dataset (2005–2014), representing the “past” period, and a
smaller testing dataset (2015–2020), representing the “future”
period, which roughly corresponds to a ratio of 60:40 between the
training and testing datasets (i.e., 60 % of the complete dataset is
used for training while 40 % for testing) [80]. The representation of
uncertainty in solar irradiance and electricity demands is assumed to
be the same in the “past” and “future” periods.

• The time horizon of the optimization is one year, assuming that the
system operation is the same for each year of its life cycle. This leads
to a trade-off between the accuracy of the optimization results and
acceptable computational times.

• Optimizing the design and operation of the system with perfect
knowledge of input timeseries requires the input timeseries for each
day of the year. In the testing dataset, this corresponds to the utopic
assumption of perfect knowledge of the “future”. On the contrary,
the optimization under uncertainties only has knowledge of the input
timeseries for a set of days of the year, i.e., the stochastic scenarios.
In addition, the temporal relationship between consecutive sto-
chastic scenarios is disregarded, which does not compromise the
achievement of global optimal solutions in exchange for a higher
model simplicity [42,58].

2.2. Novel stochastic optimization procedure

Fig. 3 shows in detail the four steps of the novel procedure to carry
out the design-operation optimization of the system under uncertainties
in solar irradiance and users’ electricity demand. The “present moment”
is set at the beginning of year 2015, so using the “past” period
(2005–2014) and the “future” period (2015–2020) as training and
testing datasets, respectively. The aim is to identify the “best” set of
stochastic scenarios in the “past” dataset and then assess the accuracy of
the “stochastic forecasts”, based on the “best” set of stochastic scenarios,
compared to the “perfect forecasts” with perfect knowledge in the
“future” dataset. In the optimization models, the time horizon is one
year, and the life cycle cost of the system actualized to one year (in-
vestment, operation and maintenance costs) is the objective function to
be minimized. The optimization procedure and the related assessment
consist of four steps.

1) Model with perfect knowledge: solving the Mixed-Integer Linear
Programming (MILP) optimization model with perfect knowledge of
input timeseries for each year of the training and testing datasets;

2) Scenarios generation: generating different candidate sets of sto-
chastic scenarios of solar irradiance and electricity demands for each
year of the training dataset;

3) Validation of the SP model: finding the “best” set of stochastic sce-
narios, extracted from the training dataset, to be used in the SP
model;

4) Test of the SP model: solving the SP model, based on the “best” set of
stochastic scenarios, for each year of the testing dataset.

Step 1) deals with the optimization problem knowing all input
timeseries. First, the MILP model with perfect knowledge is solved for
each year (considering 365 days) of the training dataset, thus obtaining
a set of 10 “historical solutions” (2005–2014). The same model is then
solved for each year of the testing dataset, based on the utopic
assumption of perfect knowledge of the “future” (Section 2.1), thus
obtaining a set of 6 “perfect forecasts” (2015–2020).

Step 2) deals with the generation of different sets of stochastic sce-
narios. K-means clustering [81] is applied for each year of the training
dataset to identify typical days of solar irradiance and electricity de-
mands, increasing the number of clusters generated (i.e., groups con-
taining similar days) from 2 to 30. Thus, the number of typical days (i.e.,
the representative of clusters) is varied from 2 to 30, resulting in 29
alternative sets, each made of 2 up to 30 typical days. K-means usually
selects as representative the averaged typical days (centroids), instead of
the real typical days as done by K-medoids [82]. Taking the centroids as
typical days could lead to a smoothing of the daily timeseries, thus
neglecting the peaks of the solar irradiance and electricity demands in
each year. To avoid this issue, the typical day of each cluster is selected
as the real day with the lowest value of the Euclidean distance from the
centroid of the cluster. In addition, the design of a MES also requires the
inclusion of the extreme day where the highest electricity demands
occur. Following the “replace representative period” approach [82],
clustering is first applied as described above, and then the extreme day
becomes the new typical day of the cluster to which it was assigned to.
Each typical day is considered as a stochastic scenario in the SP model,
with a probability corresponding to the frequency of its cluster (number

Fig. 3. Details of the four steps of the novel optimization procedure: 1) Model with perfect knowledge, 2) Scenarios generation, 3) Validation of the SP model and 4)
Test of the SP model.
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of days in the cluster), that is equivalent to the weight of the typical day
(number of days in a year represented by that typical day). The daily
timeseries of heating demands, ambient temperature and prices are
considered on the same days of the typical days of solar irradiance and
electricity demands to preserve the chronological correlation between
the daily timeseries of uncertain parameters and non-uncertain
parameters.

Step 3) deals with the validation of the SP model. An appropriate set
of typical days for a design optimization problem should be selected by
comparing the optimal solution based on the typical days with that
based on the annual historical data (i.e., leading to the “historical so-
lutions” defined above) [83], for example taking the optimal value of the
objective function as indicator [41,42]. This comparison allows to
validate the SP model, i.e., to select the “best” set of stochastic scenarios
of the uncertain parameters. The SP solution for a set of scenarios and a
year of the training dataset is named “stochastic solution”, with 290
“stochastic solutions” obtained in the training dataset (i.e., for 29 sets for
each of the 10 years). The value of the objective function of each “sto-
chastic solution” in a year (based on the typical days) is compared with
that of the “historical solution” (based on the perfect knowledge of input
timeseries, see step 1)) of the same year, and an error given by the re-
sidual (i.e., difference between the two) is calculated. This computation
is repeated for each year of the training dataset to select the “best” set of
stochastic scenarios with their number and profiles. The Root Mean
Squared Error (RMSE) is used to calculate the standard deviation of the
errors (using the residuals) between the values of the objective functions
of the “stochastic solutions” and “historical solutions” across all years of
the training dataset. A RMSE is calculated for each number of stochastic
scenarios, and the lowest RMSE, after which it does not change signifi-
cantly as the number of scenarios increases, gives the number of the
“best” set of stochastic scenarios. The formula of the RMSE is [84]:

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Y

y=1

(
cSP,y,k − cy

)2

Y

√
√
√
√
√

(1)

where cSP,y,k and cy,
(
cSP,y,k − cy

)
, and Y are, respectively, the optimal

values of the objective function found by solving the SP model for year y
with k stochastic scenarios (see Section 3.2) and the MILPmodel for year
y with perfect knowledge of input timeseries (see Section 3.1), the re-
sidual, and the number of years considered, respectively. When the
formula of the RMSE is applied to select the “best” number of stochastic
scenarios, y refers to a year of the training dataset, Y is equal to 10 (i.e.,
10 years in the training dataset), cSP,y,k and cy correspond to the optimal
values of the objective function of a “stochastic solution” and the “his-
torical solution” for year y of the training dataset, respectively. Since for
the “best” number of stochastic scenarios there are 10 sets containing
different profiles, the “best” profiles of stochastic scenarios are taken in
the year of the training dataset with the lowest value of the residual
between the “stochastic solution” and “historical solution”.

Step 4) deals with the test of the SPmodel. This is solved for each year
of the testing dataset with the “best” set of stochastic scenarios, thereby
providing “stochastic forecasts”. Finally, the accuracy of the “stochastic
forecasts” is assessed by calculating its errors with respect to the “perfect
forecasts” (see step 1)) in terms of optimal life cycle cost of the system
and units’ sizes for each year of the testing dataset.

2.3. Allocation of the optimal cost of the Renewable Energy Community

A cooperative game model can effectively represent the cooperation
between interacting players [85] of an EC, where the “players” (i.e.,
members of the EC) constituting the “grand coalition” (i.e., the EC itself)
cooperate to achieve a common goal (e.g., minimization of the total cost
of the community). A cooperative game model is defined by N players
forming the “grand coalition”, which includes 2N coalitions as the grand
coalition itself and the empty coalition (i.e., the coalition without

players) [64]. Each coalition S is associated with a “value” function,
which represents the benefit of the players in cooperating together. In
the context of ECs, the value of the grand coalition could correspond to
the total cost/profit of an EC, while the value of the empty coalition is
zero. This work applies Shapley value [63], a cooperative game-based
allocation mechanism applied ex-post the optimization, to achieve a
fair distribution of the optimal economic benefit of the EC among its
members. The cost/profit xi allocated to a member i is calculated as:

xi =
∑

S⊆{1,…,N},i∈S

(|S| − 1)!(N − |S|)!
N!

(v(S) − v(S\{i})) (2)

where |S| is the size of the coalition S (i.e., the number of members of the
coalition) and (v(S) − v(S\{i})) is the contribution of the member i to the
value v(S) of coalition S, i.e., the difference between the value v(S) with
member i and the value v(S\{i}) without member i. Shapley value as-
signs to each member a cost/profit that represents its weighted average
marginal contribution to the cost/profit of each coalition it takes part in
within the grand coalition. In other words, Shapley value is fair in the
sense that it succeeds in distributing the optimal cost/profit of an EC by
weighting the individual economic contributions of its members [86].

The Shapley value mechanism is applied after testing the SP model to
distribute the optimal life cycle costs according to the annual “stochastic
forecasts” (Section 2.2). The choice of the four users of different con-
sumption sectors in the REC (Fig. 2) is a good compromise between the
search for the best match among different generation and demand
curves and the need of limiting the computational time required to solve
the SP model for each of the 16 (24) coalitions of members in the REC.

3. Optimization models

Sections 3.1 and 3.2 present the Mixed-Integer Linear Programming
(MILP) and Stochastic Programming (SP) models to optimize the design-
operation of the system with perfect knowledge of input timeseries and
under uncertainty, respectively. Section 3.3 specifies the input data.

3.1. Mixed integer linear programming optimization model of the system
with perfect knowledge

The MILP model is solved for all days of a year of the training or
testing datasets (Section 2.2), assuming to know the input timeseries (e.
g., solar irradiance, electricity and heating demands, ambient temper-
ature, grid purchase and sale prices) for each day.

The constraints refer to each hour t (i.e., T={1, …,24}) of each day
d (i.e., D={1, …,365}) of a year for a consumer c (i.e., C={Ter,Com}) or
prosumer p (i.e., P={Res,Pub}). The decision variables in the design and
operation optimization of the system can be classified into design vari-
ables and operational variables. The design variables are the capacities
of the PV (capPV

p ), HP (capHP
p ), EES and TES (capES

p for a general storage
unit), while the capacity of GB (capGB

c ) is fixed by the heating demand.
The operational variables are: the heating power generated by the HP
(QHP

p,t,d) and the binary variable indicating its on-off operational state
(δHP

p,t,d); the energy stored by the ES unit (EES
p,t,d), its charging/discharging

power (PES,+
p,t,d / PES,−

p,t,d ) and the binary variable indicating its charging/

discharging state (δES
p,t,d); the energy imported/exported from/to the

electrical grid (Eimp
p,t,d/ Eexp

p,t,d); the shifted electricity demands of users due

to the application of the PBDR with RTP strategy (Eel,shift
c,t,d and Eel,shift

p,t,d ).
Energy and power variables have, respectively, [kWh] and [kW] as units
of measurement.

Each member “i” of the REC has an electricity demand that can be
optimally shifted:

∑24

t=1
Eel

i,t,d =
∑24

t=1
Eel,shift

i,t,d (3)
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Eel,min
i,d ≤ Eel,shift

i,t,d ≤ Eel,max
i,d (4)

(1 − Dvar) ⋅ Eel
i,t,d ≤Eel,shift

i,t,d ≤(1+Dvar)⋅Eel
i,t,d (5)

where Eel
i,t,d, Eel,shift

i,t,d , Eel,min
i,d , Eel,max

i,d , and Dvar are, respectively, the input
electricity energy demand, the shifted electricity energy demand of
member i in hour t of day d, the minimum and maximum of the input
electricity energy demand in day d, and the hourly maximum fraction of
the load that can be shifted (the value assumed here is 0.1). Eq. (3) states
that the daily electricity demand of member i does not change after
shifting the hourly loads. Both constraints (4) and (5) set upper and
lower bounds to the shifted electricity demand Eel,shift

i,t,d .
For a consumer “c”, the constraints of the GB are:

FGB
c,t,d =QGB

c,t,d

/
ηGB (6)

QGB
c,t,d ≤ capGB

c (7)

where FGB
c,t,d and QGB

c,t,d, capGB
c and ηGB [− ] are the fuel power consumed

and the heating power generated, the capacity and efficiency of the GB,
respectively. Eq. (6) represents the input-output characteristic curve of
the GB and constraint (7) sets the capacity as upper bound of the heating
power.

The electricity balance of a consumer “c” is:

Eimp
c,t,d − Eel,shift

c,t,d = 0 (8)

where Eimp
c,t,d and Eel,shift

c,t,d are the energy imported from the electrical grid
and the shifted electricity demand of consumer c.

The heating balance of a consumer “c” is:

QGB
c,t,d ⋅ Δt − Eth

c,t,d = 0 (9)

where Δt is the time step of 1 h in the optimization and Eth
c,t,d is the

heating energy demand of consumer “c”.
For a prosumer “p”, the electrical power generated by PV is:

PPV
p,t,d = capPV

p • It,d (10)

where PPV
p,t,d is the power generated, capPV

p [m2] is the capacity (consid-
ering also the efficiency of PV) and It,d [kW/m2] is the global solar
irradiance (on a tilted surface).

The characteristic curve of the HP of a prosumer “p” is:

PHP
p,t,d =

a0 • QHP
p,t,d + a1 • δHP

p,t,d

COPp,t,d
(11)

where PHP
p,t,d, QHP

p,t,d, δHP
p,t,d, a0 and a1, and COPp,t,d are the electrical power

consumed, the heating power generated, the binary variable indicating
the on-off operational state of the HP, the constant coefficients [− ] that
linearize the characteristic curve and the coefficient of performance in
ideal conditions (Carnot equation) calculated as reported in Ref. [87],
respectively. Other constraints of the HP are:

θHP
p,t,d ≤ δHP

p,t,d • M (12)

0≤ capHP
p − θHP

p,t,d ≤
(
1 − δHP

p,t,d

)
• M (13)

minHP • θHP
p,t,d ≤QHP

p,t,d ≤ θHP
p,t,d (14)

where capHP
p [kW] is the capacity and minHP [% of the capacity] is the

minimum part load of the HP. The “big M″ method is applied by intro-
ducing the auxiliary variable θHP

p,t,d and the parameter M (equal to 104) to
avoid bilinear constraints, thus keeping a MILP formulation of the

optimization model. Constraints (12) and (13) deal with the capacity of
the HP and constraint (14) sets the lower and upper bounds of the
heating power generated by the HP.

The energy balance of an ES (i.e., EES or TES) of a prosumer “p” is:

EES
p,t,d =EES

p,t− 1,d ⋅ (1 − SD)+

(

PES,+
p,t,d ⋅ ηES,+ −

PES,−
p,t,d

ηES,−

)

⋅Δt (15)

where EES
p,t,d, SD, PES,+

p,t,d / PES,−
p,t,d and ηES,+/ ηES,− are the state of charge [% of

capacity], the self-discharge [% of the state of charge in each hour], the
charging/discharging power and the charging/discharging efficiency
[− ] of ES, respectively. Other constraints of ES are:

θES,+
p,t,d ≤ δES

p,t,d • M (16)

0≤ capES
p − θES,+

p,t,d ≤
(
1 − δES

p,t,d

)
• M (17)

θES,−
p,t,d ≤

(
1 − δES

p,t,d

)
• M (18)

0≤ capES
p − θES,−

p,t,d ≤ δES
p,t,d • M (19)

EES
p,t,d ≤ capES

p (20)

PES,+
p,t,d ≤ CES,+ • θES,+

p,t,d (21)

PES,−
p,t,d ≤ cES,− • θES,−

p,t,d (22)

EES
p,t=1,d = EES

p,t=24,d (23)

where capES
p [kWh] is the capacity, δES

p,t,d is the binary variable associated
with the charging (1) or discharging (0) state of ES, CES,+ and CES,− [kW/
kWh] are the specific input and output capacity. The auxiliary variables
θES,+

p,t,d and θES,−
p,t,d and the M parameter are used to avoid bilinear con-

straints. Constraints (16)-(19) regard the capacity of ES. Constraint (20)
places the capacity of ES as upper limit of its state of charge. Constraints
(21) and (22) bound the charging and discharging power of ES. Eq. (23)
sets that the state of charge in the first hour of day d is equal to that in the
last hour of the same day.

The electricity balance of a prosumer “p” is:

Eimp
p,t,d − Eexp

p,t,d +
(

PPV
p,t,d +PEES,−

p,t,d − PEES,+
p,t,d − PHP

p,t,d

)
⋅ Δt − Eel,shift

p,t,d =0 (24)

where Eimp
p,t,d/ Eexp

p,t,d, PEES,−
p,t,d / PEES,+

p,t,d and Eel,shift
p,t,d are the energy imported/

exported from/to the electrical grid, the power discharged/charged
from/into EES and the shifted electricity demand of prosumer p,
respectively.

The heating balance of a prosumer “p” is:
(

QHP
p,t,d +PTES,−

p,t,d − PTES,+
p,t,d

)
⋅ Δt − Eth

p,t,d =0 (25)

where PTES,−
p,t,d / PTES,+

p,t,d and Eth
p,t,d are the power discharged/charged from/

into TES and the heating demand of prosumer “p”.
The total energy of the REC withdrawn from (Eimp

t,d ) and injected to
(Eexp

t,d ) the grid are defined as:

Eimp
t,d =

∑N

i=1
Eimp

i,t,d (26)

Eexp
t,d =

∑N

i=1
Eexp

i,t,d (27)

where Eimp
i,t,d/ Eexp

i,t,d is the energy of member i, net of the individual physical
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self-consumption, imported/exported from/to the electrical grid in hour
t of day d, and N is the number of REC members. The shared energy Es,t,d

is defined as the hourly minimum between Eimp
t,d and Eexp

t,d :

Es,t,d =min
(

Eimp
t,d ,Eexp

t,d

)
(28)

The objective function to be minimized is the life cycle cost of the
system, referring to one year of operation and encompassing all the 365
days:

clife cycle = cdesign + coperation (29)

where cdesign and coperation are the investment and operational costs.
The investment cost of the system actualized to one year of operation

is:

cdesign =
∑

u∈U

((
a⋅(1+ a)ltu

(1+ a)ltu − 1
+O&Mfix,u

)

⋅ cinv,u ⋅
∑N

i=1
capu

i

)

(30)

where u identifies a specific energy technology (i.e., U={GB,PV,HP,EES,
TES}), a [%] is the interest rate, ltu [years] is the lifetime of the tech-
nology u, O&Mfix,u [% of the investment cost] is the fixed part of the
operation and maintenance cost of the technology u, cinv,u [€/kW or
€/kWh] is the investment cost and capu

i is the capacity [kW or kWh] of
the technology u owned by member i.

The annual operational cost is:

coperation =
∑365

d=1

∑24

t=1

(
∑

c∈C

(
FGB

c,t,d ⋅ cgas

)
+Eimp

t,d ⋅ cimp
t,d − Eexp

t,d ⋅ cexp
t,d − Es,t,d ⋅ incREC

)

(31)

where cgas [€/kWh], cimp
t,d and cexp

t,d [€/kWh], and incREC [€/kWh] are the
price of natural gas, the grid purchase and sale prices, and the incentive
of the REC, respectively. The first term of the summation represents the
cost of natural gas consumed by the boilers. The second and third terms
are the cost for the electricity imported from the grid and the revenue for
the electricity exported to the grid. The last term is the revenue due to
the incentive for the shared energy. It is worth highlighting that the
optimal value of the life cycle cost of the system with perfect knowledge
(i.e., clife cycle in Eq. (29)) is associated with the “historical solution” or
“perfect forecast” depending on whether the MILP model is solved for a
year of the training or testing dataset (Section 2.2).

3.2. Stochastic programming optimization model of the system under
uncertainty

The main difference between the MILP model with perfect knowl-
edge (Section 3.1) and the SP model under uncertainty is that the former
is formulated for each day d of a year, whereas the latter for each typical
day k of a year. Thus, given the reduced model size of the SP model,
solving it implies a lower computational effort compared to solving the
MILP model with perfect knowledge.

The decision variables, constraints and energy balances of the SP
model are those of the MILP model with perfect knowledge (Eqs. (3)–
(28), Section 3.1), except that the subscript associated with the day d is
replaced by that of the typical day k. The formula of the design cost is
equivalent to Eq. (30), whereas the operational cost is not calculated
considering all the 365 days of one year but only the typical days with
their weights in the year considered (Section 2.2). The annual opera-
tional cost is:

coperation,SP=
∑K

k=1

wk ⋅
∑24

t=1

(
∑

c∈C

(
FGB

c,t,k ⋅cgas

)
+Eimp

t,k ⋅cimp
t,k − Eexp

t,k ⋅cexp
t,k − Es,t,k ⋅incREC

)

(32)

where wk is the weight of the typical day k (K is the number of typical

days), which corresponds to the probability (value between 0 and 1) of a
daily stochastic scenario multiplied by 365 to evaluate its contribution
to the annual operational cost. The objective function of the SP model is
given by the sum between Eq. (30) and Eq. (32).

The SP solution for a set of stochastic scenarios in one year of the
training dataset is called “stochastic solution”, whereas the test of the SP
model with the “best” set of stochastic scenarios for a year of the testing
dataset leads to the “stochastic forecast” (Section 2.2). The optimal life
cycle cost of the system according to a “stochastic forecast” is fairly
allocated to the members of the REC by implementing the Shapley value
mechanism. In Eq. (2) (Section 2.3), the “value” of each coalition S of the
REC is the optimal life cycle cost, predicted for one year of the testing
dataset, that is attained by solving the SP model considering only the
members of coalition S.

3.3. Input data

Table 1 shows the values of the techno-economic parameters for each
technology [88,89]. The interest rate a of the investments and the life-
time ltu of each technology u (Eq. (30)) are assumed to be 0.05 [-] and 20
years, respectively.

Figs. 4–6 and 7(a) and (b) show, respectively, the 29 typical days of
solar irradiance, electricity demands, heating demands, ambient tem-
perature and grid sale price in the year 2014. The typical days of solar
irradiance and electricity demands represent the “best” set of stochastic
scenarios found from the validation of the SP model (next Section 4.1).
Solar irradiance and ambient temperature refer to the location of Padova
(Italy) and are taken from PVGIS [90]. According to the implemented
PBDR with RTP strategy (Section 2.1), in each hour the grid sale price is
assumed to be half of the day-ahead market price [91] in Italy, and the
grid purchase price is calculated as the grid sale price plus 0.2 €/kWh.
The electricity and heating demands of different users are taken from
Ref. [92]. Moreover, the maximum hourly fraction of the load that can
be shifted (constraints (5) in Section 3.1) is equal to 0.1. The price of
natural gas is equal to 0.098 €/kWh. The incentive for shared energy is
0.12 €/kWh.

The models are developed and solved using Gurobi software [93]
with a maximum optimality gap set at 2 % [41], which is found to be the
best trade-off between accurate results and acceptable computation
times. The computer utilized is an Intel (R), Core (TM) i9-12900K with
3.20 GHz, 16 core, 24 threads and 64 GB of RAM.

Table 1
Input techno-economic parameters of the optimization models [88,89].

Technology “u” Parameter Value

GB ηGB [− ] 0.97
cinv,u [€/kW] 300
O&Mfix,u [% of cinv,u] 4.9

PV cinv,u [€/kW] 1250
O&Mfix,u [% of cinv,u] 1.1

HP a0, a1 [− ] 1.7961, 2.6527
minHP [% of capacity] 50
cinv,u [€/kW] 1500
O&Mfix,u [% of cinv,u] 2.8

EES SD [% of the state of charge in each hour] 0.04
ηES,+ , ηES,− [− ] 0.95, 0.95
CES,+ ,CES,− [kW/kWh] 0.5, 3
cinv,u [€/kWh] 1500
O&Mfix,u [% of cinv,u] 1

TES SD [% of the state of charge in each hour] 2.1
ηES,+ , ηES,− [− ] 0.99, 0.99
CES,+ ,CES,− [kW/kWh] 0.7, 0.7
cinv,u [€/kWh] 400
O&Mfix,u [% of cinv,u] 4
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4. Results

Sections 4.1 and 4.2 discuss the results of the validation and test of
the Stochastic Programming (SP) optimization model, respectively.

Section 4.3 summarizes the critical remarks of the proposed novel sto-
chastic optimization procedure.

4.1. Validation of the stochastic programming optimization model

This Section presents the validation of the SP model, leading to the
selection of the “best” set of stochastic scenarios from the “past” period
(Section 2.2). Fig. 8 shows the calculated RMSE for 29 different cases,
each with a different number of stochastic scenarios ranging from 2 to
30 in each year of the training dataset. The choice of varying the number
of scenarios from 2 to 30, which is a wider interval than those commonly
used in the literature (i.e., not more than 20 scenarios approximately for
one year), is dictated by the need to evaluate how the RMSE changes
over a sufficiently wide interval. The minimum number of 2 scenarios
corresponds to the minimum and meaningful number of clusters
considered in a clustering technique. The value of the RMSE shows a
decreasing trend as the number of stochastic scenarios increases, with
the highest and lowest values being approximately 78 k€ (for 2 sce-
narios) and 36 k€ (for 29 scenarios). This result is consistent with the fact
that, in general, the optimal value of the objective function of the
“stochastic solution” approaches that of the “historical solution” when
the number of stochastic scenarios (i.e., typical days of a year) increases,
thereby reducing the value of the RMSE. Since after 25 scenarios the
RMSE remains almost constant around 40 k€ and the case with 29 sce-
narios presents the lowest value of the RMSE, the “best” number of
stochastic scenarios is fixed to 29 (dashed green circle in Fig. 8). In

Fig. 4. 29 typical days of solar irradiance in 2014.

Fig. 5. 29 typical days of electricity demands in 2014 for the residential (Res), tertiary (Ter), commercial (Com) and public (Pub) members of the REC. The highest
electricity demands of users, highlighted in red, account for the extreme day.

G. Volpato et al. Renewable Energy 237 (2024) 121580 

9 



addition, the “best” profiles of the 29 stochastic scenarios are taken from
the year 2014, which is characterized by the lowest value of the residual
of 1.26 k€ (error of 0.33 %) between the optimal values of the objective
functions of the historical and stochastic solutions. Note that Figs. 4 and
5 in Section 3.3 show this “best” set of 29 stochastic scenarios of solar

irradiance and electricity demands, respectively.

4.2. Test of the stochastic programming optimization model

This Section presents the test of the SP model in the “future” period

Fig. 6. 29 typical days of heating demands in 2014 for the residential (Res), tertiary (Ter), commercial (Com) and public (Pub) members of the REC.

Fig. 7. 29 typical days of a) ambient temperature and b) grid sale price in 2014.
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(Section 2.2). Table 2(a) shows the optimal sizes of the units according
to the stochastic forecasts and perfect forecasts, while Table 2(b) shows
the relative errors according to the stochastic forecasts with respect to

the perfect forecasts. In both solutions, the EES units for the residential
and public prosumers are not part of the optimal design of the system
due to the high investment cost associated with this technology. How-
ever, note that the absence of EES is not harmful for the operational
flexibility of the system, which is already ensured by the PBDR program
that optimally shifts the users’ electricity demands. The optimal sizes of
the larger units, such as the PV and HP of the public user, are higher
according to the stochastic forecasts than to the perfect forecasts. This is
explained by the greater impact of the extreme day of the total elec-
tricity demand on the stochastic forecasts than on the perfect forecasts,
as the extreme day has a weight in the SP model of 7 days (in the “best”
set of 29 scenarios) instead of one single day as in the MILP model with
perfect knowledge. Thus, the extreme day in the SP model leads to an
increase in the optimal sizes of PV and, in turn, of HP (which could
consume the electricity generated by the PV), compared to those found
by solving the MILP model. Moreover, the overestimation of the PV and
HP sizes mainly concerns the public user as the extreme day is mainly
affected by its high electricity demand (peak of 350 kWh, see Fig. 5). As
for the optimal sizes of the PV and HP units, the average relative error
over the years of the testing dataset is 13 % and 3 % (residential and
public users) and 3 % and 10 % (residential and public users), respec-
tively. Looking at the optimal sizes according to the stochastic forecasts
(Table 2(a)), the relative errors (Table 2(b)) in the conversion units can

Fig. 8. Trend of the Root Mean Squared Error (RMSE) as the number of sto-
chastic scenarios increases from 2 to 30 in each year of the training dataset. The
dashed green circle indicates the case with the “best” set of 29 scenarios leading
to the lowest value of the RMSE of 36 k€.

Table 2
a) Optimal sizes of the energy conversion and storage units according to the stochastic forecast and the perfect forecast (inside the brackets) solutions and b) absolute
values of the relative errors of the stochastic forecasts compared to the perfect forecasts, for each year of the testing dataset.

a)

Stochastic forecasts (perfect forecasts)

Years

2015 2016 2017 2018 2019 2020

capPVRes [kW] 25 (28) 20 (25) 23 (26) 25 (30) 25 (26) 20 (23)
capHPRes [kW] 41 (46) 40 (40) 39 (38) 40 (40) 41 (40) 39 (38)
capTESRes [kWh] 126 (98) 42 (86) 46 (88) 50 (86) 106 (103) 39 (93)
capGBTer [kW] 36 (36) 36 (36) 36 (36) 36 (36) 36 (36) 36 (36)
capGBCom [kW] 84 (84) 84 (84) 84 (84) 84 (84) 84 (84) 84 (84)
capPVPub [kW] 537 (529) 489 (482) 521 (511) 585 (551) 521 (502) 469 (464)
capHPPub [kW] 509 (481) 533 (479) 538 (463) 509 (499) 513 (475) 538 (461)
capTESPub [kWh] 790 (921) 694 (935) 666 (1021) 790 (849) 770 (955) 666 (1033)

b)

Relative errors (absolute value, [%]) of the sizes of the stochastic forecasts with respect to the perfect forecasts

Years

2015 2016 2017 2018 2019 2020 Average

capPVRes 10.71 20.00 11.54 16.67 3.85 13.04 12.63
capHPRes 10.87 0.00 2.63 0.00 2.50 2.63 3.11
capTESRes 28.57 51.16 47.73 41.86 2.91 58.06 38.38
capGBTer 0.00 0.00 0.00 0.00 0.00 0.00 0.00
capGBCom 0.00 0.00 0.00 0.00 0.00 0.00 0.00
capPVPub 1.51 1.45 1.96 6.17 3.78 1.08 2.66
capHPPub 5.82 11.27 16.20 2.00 8.00 16.70 10.00
capTESPub 14.22 25.78 34.77 6.95 19.37 35.53 22.77

Table 3
Optimal values of the life cycle cost of the system according to the stochastic forecast and the perfect forecast solutions, and absolute values of the relative errors of the
stochastic forecasts compared to the perfect forecasts, for each year of the testing dataset.

Years

2015 2016 2017 2018 2019 2020

Stochastic forecasts [k€] 380.96 376.44 383.39 380.16 381.38 375.72
Perfect forecasts [k€] 370.70 377.46 375.75 375.65 374.90 367.15
Relative errors [%] 2.77 0.27 2.03 1.20 1.73 2.33
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be considered acceptable (with no error for GB). Conversely, the optimal
sizes of the TES units according to the stochastic forecasts present higher
relative errors compared to the perfect forecasts (38 % and 23 % for the
residential and public users, respectively, Table 2(b)). The reason for
this is mainly related to the neglected temporal relationship between the
typical days in the SP model, resulting in optimal sizes of TES being
suitable only for the daily operation and not for the seasonal operation.
In other words, while in the MILP model with perfect knowledge the
daily operation of TES units is evaluated for each day of each year of the
testing dataset, in the SP model the daily operation of TES units is only
considered in the “best” set of 29 stochastic scenarios that are inde-
pendent of each other, leading to a neglected temporal relationship
between typical days. In addition, the higher relative errors in the TES
sizes in specific years (e.g., for the residential user in 2016, 2017, 2018
and 2020) are explained by the considered typical days of ambient
temperature taken from the “past” period, which are very different from
those really occurring in the years of the testing dataset. In fact, it is
worth reminding that the uncertainty in the ambient temperature is not
considered in this work, and therefore the “best” set of 29 stochastic
scenarios from the “past” period is mainly representative only of solar
irradiance and user electricity demands. Finally, the residential user
shows the highest relative errors in the TES size. These are more
acceptable than those for the public user because the optimal design of
the system is more affected by the optimal TES size of the public user
(hundreds of kW) than that of the residential user (tens of kW). How-
ever, the errors in the TES sizes do not compromise the validity of the
proposed novel procedure, as demonstrated by the low errors in the
optimal life cycle costs obtained according to the stochastic forecasts
and the lower RMSE in the testing dataset than in the training dataset
(see the results below).

Table 3 shows the optimal life cycle costs of the system associated
with the stochastic forecasts and the perfect forecasts, and the relative
errors according to the stochastic forecasts with respect to the perfect
forecasts. The highest and lowest relative errors are 2.77 % and 0.27 %
in years 2015 and 2016, respectively, with an average relative error of
1.63 %. It is acceptable given that the average computational time to
solve the MILP model with perfect knowledge for one year of the testing
dataset is 32 h, as opposed to a few minutes to test the SP model in the
same year. Moreover, the RMSE between the optimal life cycle costs
according to the stochastic forecasts and perfect forecasts is 7 k€, which
is lower than 36 k€ (Fig. 8) found in the training dataset for the same
number of scenarios. This confirms that the SP model with the “best” set
of 29 stochastic scenarios predicts reliable solutions in the testing
dataset, with a higher accuracy than in the training dataset (the RMSE
decreases by 81 %), suggesting that the SP model does not overfit

training data. This also confirms the validity of splitting the input
dataset (2005–2020) into a “past” training dataset (2005–2014) and a
“future” testing dataset (2015–2020).

Fig. 9 shows the fair distribution of the optimal life cycle cost among
the REC members for each year of the testing dataset by the Shapley
value mechanism. Fig. 10 shows the annual cost savings of members
achieved by operating together in the REC compared to operating alone
(left axis), and the average shares (dark blue dots) of these cost savings
in the total savings of the REC (right axis). In addition, Table 4(a) and
Table 4(b) in the Appendix show in detail the values of these costs
associated with Figs. 9 and 10, respectively. Table 4(a) (Fig. 9) high-
lights that the annual costs allocated to the residential and tertiary users
(18–20 k€ and 16–18 k€, respectively) are much lower than those allo-
cated to the commercial and public users (53–54 k€ and 288–294 k€,
respectively). This is mainly explained by the higher daily demands of
the commercial and public users (Figs. 5 and 6) and the high investment
costs of the public user (due to the large optimal sizes of its units, Table 2
(a)). Indeed, the Shapley value allocation depends on the weights of the
users’ demand and the energy generation of prosumers in the calculation
of the individual contributions of members to the values (i.e., life cycle
costs) of all 16 coalitions considered within the REC by the Shapley
value mechanism (Eq. (2), Section 2.3). However, Table 4(b) shows that,
over the different years, approximately 41–57 % of the total annual cost
savings are allocated to the commercial consumer, 21–34% to the public
prosumer, 10–20 % to the tertiary consumer and 3–15 % to the resi-
dential prosumer (48.41 %, 26.2 %, 14.14 % and 11.25 % on average,
respectively, in Fig. 10). For example, in year 2017, the total annual cost
savings are 11.33 k€, of which 41 % and 32 % are allocated to the
commercial and public users, respectively. The commercial and public
users bear more expensive investments than the residential and tertiary
users, so the Shapley value supports these investments by fairly
distributing higher annual cost savings to the commercial and public
users.

4.3. Critical remarks

This Section summarizes the main findings from the results presented
in Sections 4.1 and 4.2, highlighting the advantages and limitations of
the proposed novel stochastic optimization procedure.

• The presented procedure can be used to optimize the sizes and
operation of units within a REC under uncertainties in solar irradi-
ance and members’ electricity demand. To fill the gaps identified in
the literature, the procedure successfully identifies the “best” set of
stochastic scenarios of the uncertain variables in a “past” training

Fig. 9. Allocation of the optimal life cycle cost of the system, predicted for each
year of the testing dataset, to the REC members by Shapley value.

Fig. 10. Annual cost savings of the REC members compared to the case of in-
dependent operation (left axis) and their average shares (dark blue dots) in the
total annual cost savings of the REC (right axis).
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dataset, and then evaluates the accuracy of the optimal “stochastic
forecasts” solutions, based on the “best” set of stochastic scenarios,
compared to the “perfect forecasts” with perfect knowledge in a
“future” testing dataset. For the analysed REC, the “stochastic fore-
casts” based on the “best” set of 29 stochastic scenarios lead to
acceptable errors in the optimal life cycle cost and sizes of less than 2
% and in the range of 3–13 % for conversion units, respectively.

• However, a limitation of the proposed procedure is that it disregards
the temporal relationship between consecutive typical days used as
stochastic scenarios in the SP model. While this choice improves the
computational efficiency of the SP model, resulting in a few minutes
to obtain the optimal “stochastic forecasts”, it reduces the model
accuracy, leading to higher errors in the predicted sizes of TES units
(i.e., 38 % and 23 % on average for the residential and public users,
respectively) than the other units. It should be noted that these errors
could be further reduced by searching for the “best” set of stochastic
scenarios that is also representative of the uncertainty in the ambient
temperature, which affects the TES operation and therefore its
optimal size.

• The proposed procedure is general and flexible. In fact, the SP model
under uncertainty and the MILP model with perfect knowledge could
be adapted to different REC settings characterized, for example, by a
different geographical location and a higher number of members
than those considered. However, given a REC with a higher number
of members (e.g., tens or hundreds), greater computational resources
would be required to solve the MILP model with perfect knowledge
and to fairly allocate the optimal predicted life cycle cost to the REC
members using the Shapley value. In fact, for large RECs, the number
of user coalitions increases dramatically and so does the computa-
tional time to solve the SPmodel for each coalition to achieve the fair
economic allocation of the predicted life cycle costs. The procedure
could also integrate and use different techniques to generate alter-
native sets of stochastic scenarios, such as clustering techniques
other than K-means (e.g., K-medoids, hierarchical clustering) and
artificial neural networks, with the aim of improving the accuracy in
predicting the “best” set of stochastic scenarios and thus reducing the
errors in the “stochastic forecasts” of sizes of both conversion and
storage units.

5. Conclusions

This paper searches for the optimal sizes and operating conditions of
energy conversion units of a Multi-Energy System (MES) within a
Renewable Energy Community (REC) under uncertainties in solar irra-
diance and users’ electricity demand. The twofold objective is to i) find
the “best” set of stochastic scenarios associated with the analysed un-
certainties and ii) assess the accuracy of the “stochastic forecasts”, based
on the “best” set of stochastic scenarios, in terms of optimal cost and
design of the system by comparison with the utopic “perfect forecasts”
based on the perfect knowledge of real data. The analysed REC consists
of two residential and public prosumers who could install PV, HP, EES
and TES units, and two tertiary and commercial consumers who could
install GB units.

A novel optimization procedure is presented that shifts the “present
moment” back in time to divide an available dataset into “past”
(2005–2014) and “future” (2015–2020) periods, which are used as
training and testing datasets, respectively. The procedure is based on
Mixed-Integer Linear Programming (MILP) and Stochastic Programming
(SP) models to carry out the design-operation optimization of the system
minimizing its life cycle cost. The MILP model is solved for each day of
each year, first using the training and then the testing datasets, leading
to the “historical solutions” and “perfect forecasts”, respectively, the latter

based on the utopic assumption of perfect knowledge of the “future”.
Subsequently, different sets of stochastic scenarios of the uncertain pa-
rameters are obtained by applying K-means clustering in the training
dataset. At this point, the SP model, solved for each year and set of
stochastic scenarios, leads to different “stochastic solutions”. The "best"
set of stochastic scenarios is identified considering the lowest Root Mean
Squared Error (RMSE) and residual between the optimal life cycle costs
obtained according to the “stochastic solutions” and “historical solutions”.
The last step consists in solving the SP model for each year of the testing
dataset with this “best” set of scenarios, resulting in different “stochastic
forecasts”, the accuracy of which is assessed compared to the “perfect
forecasts”.

In the presented case study, the validation of the SPmodel shows that
the “best” set of stochastic scenarios contains 29 scenarios from the year
2014. Given this “best” set of scenarios, the test of the SP model leads to
the following outcomes in terms of optimal life cycle cost, its fair allo-
cation and optimal sizes of the units.

• The average relative error in the optimal life cycle cost of the system ac-
cording to the “stochastic forecasts” with respect to the “perfect fore-
casts” is 1.63 %, which indicates the good accuracy of the SPmodel in
predicting the optimal life cycle cost over the years of the testing
dataset.

• The Shapley value mechanism fairly allocates the optimal life cycle cost
predicted for each year of the testing dataset. In fact, this mechanism not
only distributes lower annual costs to the residential and tertiary
users characterized by low electricity demands (18–20 k€ and 16–18
k€ over the years of the testing dataset, respectively), but also gua-
rantees users with expensive investments (e.g., commercial and
public users) higher reimbursements (41–57 % and 21–34 % of the
total annual cost savings, respectively) encouraging them to stay
within the REC.

• The average relative errors in the optimal sizes according to the “sto-
chastic forecasts” compared to the “perfect forecasts” are 3-13 % for PV
and HP (with acceptable errors), while the optimal sizes of the GB units
are predicted with no error. Note that the presented procedure neglects
the temporal relationship between consecutive typical days defining
the stochastic scenarios in the SP model, thus disregarding the sea-
sonal operation of the storage units. This choice was dictated by the
search for the best compromise between model accuracy and
computational times. The errors between “stochastic forecasts” and
“perfect forecasts” in the optimal sizes of the storage units are
therefore higher than those of the other units (i.e., 38 % and 23 % for
the residential and public prosumers, respectively).

In summary, we can state that the proposed procedure succeeds in
identifying the “best” set of stochastic scenarios representing uncertain
parameters because the errors in the optimal life cycle costs (less than 2
%) and sizes of conversion units (3–13 %) according to the “stochastic
forecasts” can certainly be considered acceptable in the common prac-
tice of MES design. The implicit assumption is that the representation of
uncertainties in the "future" will remain the same as in the "past".
Moreover, the SP model proves to be computationally efficient, taking
only a fewminutes to obtain a "stochastic forecast", compared to the 32 h
on average required to achieve a “perfect forecast”.

The proposed procedure could be useful for policy makers and in-
vestors because i) it helps make informed decisions, based on the "sto-
chastic forecasts", on the optimal design of MES supplying RECs under
uncertainties in RES and users’ energy demand, ii) it can be adapted to
optimize the design-operation of MES having different characteristics (e.
g., type and number of users, additional units, etc.) from those consid-
ered in this work and iii) it has the possibility of including an allocation
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mechanism (e.g., the Shapley value) to fairly distribute the total eco-
nomic benefit of the REC among its members.

The good accuracy and the low computational times of the SP model
pave the way to future developments of the proposed procedure. Further
research could analyse the impact of changing the temporal position of
the “present moment” on the “stochastic forecasts”, which would require
larger training and testing datasets. Other directions of future work
could focus on considering other uncertainties (e.g., ambient tempera-
ture, heating demands, prices of technologies and energy-related costs,
etc.) and further investigating the temporal relationship between
consecutive typical days used as stochastic scenarios in the SP model.
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Nomenclature

Acronyms Symbols
Com Commercial a Interest rate, [− ]
EC Energy Community a0, a1 Coefficients of the linear characteristic curve of an energy conversion

unit
EES Electrical Energy Storage c Optimal cost of the system [€] or grid price [€/kWh]
ES Energy Storage cap Capacity of an energy conversion or storage unit, [kW] or [kWh]
GB Gas Boiler COP Coefficient of performance, [− ]
HP Heat Pump Dvar Maximum hourly shifting of the electricity load demand, [− ]
MES Multi-Energy System E Energy, [kWh]
MILP Mixed-Integer Linear Programming F Power consumed by an energy conversion unit, [kW]
PBDR Price-Based Demand Response I Global solar irradiance, [kW/m2]
Pub Public inc Incentive, [€/kWh]
PV Photovoltaic K Number of stochastic scenarios
REC Renewable Energy Community lt Lifetime of an energy technology, [years]
RES Renewable Energy Sources N Number of members of an energy community
Res Residential O&M Operation and maintenance cost, [€]
RMSE Root Mean Squared Error P Electrical power generated by an energy conversion unit, [kW]
RTP Real Time Pricing Q Thermal power generated by an energy conversion unit, [kW]
SP Stochastic Programming w Weight of a typical day in one year
Ter Tertiary Y Total number of years in one dataset
TES Thermal Energy Storage  
Greek symbols Subscripts and superscripts
Δt Time step of 1 h in the optimization c Consumer
δ Binary variable indicating the on-off operational state of an energy conversion/storage

unit, [− ]
d Day

η Efficiency, [− ] el Electricity
θ Auxiliary variable exp Export

i Member of an energy community
imp Import
inv Investment
k Typical day used as stochastic scenario in the SP model
max Maximum
min Minimum
p Prosumer
shift Shifted electricity demand
t Hour
u Energy technology
+/− Charging/discharging state of an energy storage unit
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Appendix

Table 4
a) Allocation of the optimal life cycle cost of the system, predicted for each year of the testing dataset, to the members of the REC by Shapley value (the last line
shows the annual life cycle costs) and b) the annual cost savings of the members of the REC, compared to the case of independent operation, and their shares (in
brackets) in the total annual cost savings of the REC (last line).

a)

Costs allocated by Shapley value [k€]

Member Years

2015 2016 2017 2018 2019 2020

Res 19.67 18.57 18.33 18.82 19.17 18.53
Ter 17.70 16.59 17.27 17.42 17.68 16.19
Com 54.26 52.79 53.31 54.38 53.93 52.55
Pub 289.34 288.50 294.48 289.54 290.61 288.45
REC 380.96 376.44 383.39 380.16 381.38 375.72

b)

Annual cost savings [k€] of members within the REC compared to the independent operation and their shares in the total annual cost savings of the REC [%]

Member Years

2015 2016 2017 2018 2019 2020

Res 0.17 (2.81 %) 1.02 (12.12 %) 1.75 (15.43 %) 1.07 (12.85 %) 0.60 (9.73 %) 1.17 (14.58 %)
Ter 0.58 (9.63 %) 1.46 (17.28 %) 1.31 (11.59 %) 1.30 (15.5 %) 0.64 (10.41 %) 1.63 (20.43 %)
Com 3.25 (53.92 %) 3.81 (44.99 %) 4.65 (41.02 %) 4.17 (49.84 %) 3.49 (56.52 %) 3.53 (44.14 %)
Pub 2.03 (33.65 %) 2.17 (25.61 %) 3.62 (31.96 %) 1.82 (21.8 %) 1.44 (23.34 %) 1.67 (20.85 %)
REC 6.03 8.46 11.33 8.36 6.18 8.00
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