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A B S T R A C T

Consider the basic problem in the Calculus of Variations of minimizing an energy functional
depending on absolutely continuous functions Under suitable assumptions on the Lagrangian,
a well-known result establishes that the minimizers satisfy the Du Bois-Reymond equation.
Recent work (cf. Bettiol and Mariconda, 2020 [1], 2023; Mariconda, 2023 [2], 2021, 2024)
highlights not only that a Du Bois-Reymond condition for minimizers can be broadened to cover
the case of nonsmooth extended valued Lagrangians, but also that a particular subdifferential
(associated with the generalized Du Bois-Reymond condition) plays an important role in the
approximation of the energy via its values along Lispchitz functions, no matter minimizers
exist. A crucial point is establishing boundedness properties of this subdifferential, based on
weak local boundedness properties of the Lagrangian. This is the main objective of this paper.
Our approach is based on a refined analysis of the metric that can be employed to evaluate
the distance from the complementary of the effective domain of the reference Lagrangian. As
an application of our findings we show how it is possible to deduce the non-occurrence of the
Lavrentiev phenomenon, providing a new general result.

. Introduction

Consider the classical problem of the Calculus of Variations of minimizing an integral functional

𝐹 (𝑦) = ∫

𝑏

𝑎
𝛬(𝑠, 𝑦(𝑠), 𝑦′(𝑠)) 𝑑 𝑠

ver absolutely continuous functions with, possibly, prescribed boundary values at 𝑎 or 𝑏. If 𝛬 ∶ (𝑠, 𝑦, 𝑣) ∈ [𝑎, 𝑏]×R𝑛×R𝑛 → 𝛬(𝑠, 𝑦, 𝑣) ∈
is of class 𝐶1 and 𝛬 satisfies a suitable local Lipschitz condition (S) (stronger than condition (S+) below) with respect to the variable
(see [3]), any minimizer 𝑦∗, even just local, satisfies the Du Bois-Reymond equation: the function

𝑝(𝑠) = 𝛬(𝑠, 𝑦∗(𝑠), 𝑦′∗(𝑠)) − 𝑦′∗(𝑠) ⋅ ∇𝑣𝛬(𝑠, 𝑦∗(𝑠), 𝑦′∗(𝑠)) (1.1)

urns out to be absolutely continuous and

𝑝′(𝑠) = 𝛬𝑡(𝑠, 𝑦∗(𝑠), 𝑦′∗(𝑠)) a.e. on [𝑎, 𝑏]. (1.2)

ere 𝛬𝑡 and ∇𝑣𝛬 denote, respectively, the derivative of 𝛬 with respect to 𝑠 and the gradient of 𝛬 with respect to 𝑣. An extension
f the Du Bois-Reymond equation to the nonsmooth setting was established in [4]: under a nonsmooth version of Condition (S) it
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turns out that, for almost every 𝑠 ∈ [𝑎, 𝑏], the function 0 < 𝜇 ↦ 𝛬
(

𝑠, 𝑦∗(𝑠),
𝑦′∗(𝑠)
𝜇

)

𝜇 is ‘‘convex at 𝜇 = 1’’: we mean that there exists
an real valued function 𝑝(𝑠) such that

∀𝜇 > 0 𝛬
(

𝑠, 𝑦∗(𝑠),
𝑦′∗(𝑠)
𝜇

)

𝜇 − 𝛬(𝑠, 𝑦∗(𝑠), 𝑦′∗(𝑠)) ≥ 𝑝(𝑠)(𝜇 − 1), 𝑎.𝑒. 𝑠. (1.3)

In this situation the Du Bois-Reymond (in what follows DBR) condition takes the following form: if 𝑦∗ is a (local) minimizer, then 𝑝 is
bsolutely continuous and 𝑝′ belongs to the Clarke’s subdifferential of 𝛬 with respect to 𝑠. (See also [1] and [2] for further discussion

and developments.) If 𝛬 is smooth, then from (1.3) and using the chain rule we deduce the classical (smooth) Du Bois-Reymond
quation (1.1) – (1.2).

Another classical problem of interest in the Calculus of Variations is related to the possibility to investigate the value of the
nfimum of 𝐹 by means of numerical methods: well-established numerical techniques allow to do that when the infimum of 𝐹 over
ipschitz admissible arcs coincides with that one of 𝐹 over the absolutely continuous admissible arcs (here, ‘admissible’ means that
he arc satisfies some given boundary conditions). It is well-known that, even if Lipschitz functions on [𝑎, 𝑏] are dense in the set of

absolutely continuous functions on [𝑎, 𝑏], a gap (also referred to as Lavrentiev gap) between the two infima of 𝐹 might occur in some
ircumstances, as shown by the celebrated examples of Manià [5] and of Ball and Mizel [6], where the Lagrangians 𝛬 are merely
olynomials. In an attempt of trying, given an absolutely continuous admissible arc 𝑦, to approximate the energy 𝐹 (𝑦) via the one
f a Lipschitz function one can try to find it among the reparametrizations of the form 𝑦◦𝜑−1 of 𝑦, where 𝜑 ∶ [𝑎, 𝑏] → [𝑎,+∞[ is
bsolutely continuous, strictly increasing. This approach was followed by Cellina in [7] in the autonomous case assuming continuity
nd convexity in the velocity variable, both weakened here. If 𝑦 is such a reparametrization, then

𝐹 (𝑦) = ∫

𝑏

𝑎
𝛬
(

𝑡, 𝑦(𝑡), 𝑦
′(𝑡)
𝜑′(𝑡)

)

𝜑′(𝑡) 𝑑 𝑡.

If 0 < 𝑟 ↦ 𝛬(𝑠, 𝑦, 𝑟𝑣) is convex, one can compare the value of 𝐹 (𝑦) with that of the reparametrized energy, in terms of the
subdifferential of the convex function 0 < 𝜇 ↦ 𝛬

(

𝑠, 𝑦, 𝑣
𝜇

)

𝜇 at 𝜇 = 1, that we call DRB type subdifferential in view of its
direct connection to the Du Bois-Reymond condition. To establish a comparison between the energy of the reference arc and the
eparametrized one it is crucial to have some bounds of the DBR subdifferential 𝑃 (𝑠, 𝑧, 𝑣) of 𝛬 evaluated at points (𝑠, 𝑦(𝑠), 𝑣) with
near to 𝑦′(𝑠), 𝑠 ∈ [𝑎, 𝑏]. The boundedness of 𝑃 along the trajectory of a given minimizer 𝑦∗ is trivial since, in this case, from

1.1)–(1.2), 𝑠 ↦ 𝑃 (𝑠, 𝑦∗(𝑠), 𝑦′∗(𝑠)) is absolutely continuous. A key point here is that 𝑦 is an arbitrary trajectory, so that the Du Bois
eymond condition is not supposed to hold, in general.

The main objective of this paper is to provide some global boundedness properties of the DBR type subdifferential of 𝛬 depending
ust on some local boundedness properties of 𝛬 ‘‘inside’’ the effective domain

Dom(𝛬) ∶= {(𝑠, 𝑦, 𝑣) ∈ [𝑎, 𝑏] × R𝑛 × R𝑛 ∶ 𝛬(𝑠, 𝑦, 𝑣) < +∞} .

The case of Lagrangians that may take the value +∞ is of interest when one deals with state or velocity constraints. This case is
ore difficult to deal with: there are examples exhibiting the occurrence of the Lavrentiev gap in which the Lagrangian is just the

indicator function of a particular domain; and recent work shows that the non-occurrence of the Lavrentiev gap may depend on the
topology of the effective domain of the Lagrangian (see [8,9]).

The use of boundedness properties of a DBR type subgradient is not new; however, to our knowledge, these were previously
erived either from the regularity of the Lagrangian as in [10], or were imposed a priori as in [11] and were not a consequence of
ust some local boundedness properties of the Lagrangian.

In this paper we develop the idea introduced in [12] that, making use of different (from the Euclidean one) metrics, we can
btain more precise information about important features of the reference Calculus of Variations problem. For instance, concerning

the non-occurrence of the Lavrentiev phenomenon some sufficient conditions can be more easily verified employing a ‘bigger’ (w.r.t.
ome order) distance, but in some circumstances ‘smaller’ metrics can be more convenient (see Section 5).

More precisely, we characterize a class of ‘admissible’ (in a sense that will be made precise in Section 3 below) topologies in a
metric space associated with particular equivalence relations families, which allows to deduce boundedness properties of the DBR
type subgradient of 𝛬.

The first part of the paper is devoted to the study of metric spaces endowed with a distance built upon a suitable equivalence
elation on a metric space. The central part of the paper is devoted to the main result (Theorem 4.3); it extends [12, Proposition

2.15] in a more precise way and employing a new topological framework. Though the main applications of Theorem 4.3 are
thoroughly developed in a forthcoming paper [8], in the last section we give a simple, self-contained proof of the non-occurrence
f the Lavrentiev phenomenon in the calculus of variations for problems with one initial endpoint (see Proposition 5.1). Finally,
e formulate a general result (see Theorem 5.2) that shows how different admissible topologies can be useful to investigate more

omplex problems.

2. Notation and assumptions

2.1. Notation

We introduce some recurring notations:

• The Euclidean norm on R𝑛 (𝑛 = 1, 2,…) is denoted by | ⋅ |, the Euclidean distance on R𝑛 × R𝑛 is written dist ;
𝑒

2 
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• The closed ball of R𝑛 centered in the origin of radius 𝐾 ≥ 0 is denoted by 𝐵𝐾 .

We shall consider the Calculus of Variations problem
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min𝐹 (𝑦) = ∫

𝑏

𝑎
𝛬(𝑠, 𝑦(𝑠), 𝑦′(𝑠)) 𝑑 𝑠

over admissible continuous arcs 𝑦 ∶ [𝑎, 𝑏] → R𝑛 s.t.
𝑦′(𝑠) ∈  a.e. 𝑠 ∈ [𝑎, 𝑏],
𝑦(𝑠) ∈ 𝛥 for all 𝑠 ∈ [𝑎, 𝑏],

(P)

where [𝑎, 𝑏] is a given closed bounded interval of R, and 𝛥 ⊂ R𝑛 and  ⊂ R𝑛 are given subsets. We say that an absolutely continuous
arc 𝑦 ∶ [𝑎, 𝑏] → R𝑛 is admissible for (P) if 𝑦′(𝑠) ∈  a.e. 𝑠 ∈ [𝑎, 𝑏] and 𝑦(𝑠) ∈ 𝛥 for all 𝑠 ∈ [𝑎, 𝑏]. With the reference problem (P) we
shall consider the following assumptions.

2.2. Basic assumptions

Basic Assumptions. We assume the following conditions.

(A1)  is a cone in R𝑛 (i.e. if 𝑣 ∈  and 𝜆 > 0 then 𝜆𝑣 ∈  );
(A2) 𝛬 ∶ [𝑎, 𝑏] × R𝑛 × R𝑛 → R ∪ {+∞} is a Borel measurable function.

Observe that (A2) guarantees, for instance, that if 𝑦, 𝑣 ∶ [𝑎, 𝑏] → R𝑛 are (Lebesgue) measurable then 𝑠 ↦ 𝛬(𝑠, 𝑦(𝑠), 𝑣(𝑠)) is
Lebesgue) measurable (cf. [13, Proposition 6.34]).

2.3. Structure and radial convexity assumptions.

The following additional conditions on 𝛬 will be assumed throughout the paper.

Structure Assumption on 𝐃𝐨𝐦(𝜦). When 𝛬 is extended valued, we assume the following conditions on the effective domain,
given by

Dom(𝛬) ∶= {(𝑠, 𝑦, 𝑣) ∈ [𝑎, 𝑏] × R𝑛 × R𝑛 ∶ 𝛬(𝑠, 𝑦, 𝑣) < +∞}.

1. The effective domain of 𝛬 is a product:

Dom𝛬 = [𝑎, 𝑏] ×𝐷𝛬 for some 𝐷𝛬 ⊆ R𝑛 × R𝑛. (2.1)

2. For every 𝑦 ∈ R𝑛 let

𝐷𝛬(𝑦) ∶= {𝑣 ∈ R𝑛 ∶ (𝑦, 𝑣) ∈ Dom(𝛬)}

be the 𝑦-section of 𝐷𝛬. We assume that 𝐷𝛬(𝑦) is strictly star-shaped on the variable 𝑣 with respect to the origin, i.e.,

∀(𝑦, 𝑣) ∈ 𝐷𝛬, ∀𝑟 ∈]0, 1] (𝑦, 𝑟𝑣) ∈ 𝐷𝛬. (2.2)

Thus if 𝛬(𝑠, 𝑦, 𝑣) < +∞ then 𝛬(𝑠, 𝑦, 𝑟𝑣) < +∞ for every 𝑟 ∈]0, 1].
Fig. 1 illustrates an example of a domain that satisfies the Structure Assumption.

Remark 2.1. Condition (2.1) is fulfilled if 𝛬 is a product of functions of the form 𝛬(𝑠, 𝑦, 𝑣) = 𝑎(𝑠)𝐿(𝑦, 𝑣);
We recall here some important properties of the subgradient of a convex function, that will be used in the proof of the main

results (see, for instance, [4,14] for more details).

Proposition 2.2 (Convex Subgradient). Let 𝜙 ∶ ]0,+∞[ → R ∪ {+∞} be a convex function that is finite on ]0, 1] and has a subgradient
𝑄 ∈ R at 1:

∀𝑟 > 0 𝜙(𝑟) − 𝜙(1) ≥ 𝑄(𝑟 − 1).
The subset of such elements 𝑄 ∈ R is called the (convex) subdifferential of 𝜙 at 1, and denoted by 𝜕 𝜙(1). Then:

1. The function 0 < 𝜇 ↦ 𝛷(𝜇) ∶= 𝜙
( 1
𝜇

)

𝜇 is convex, finite on [1,+∞[;

2. 𝑃 ∈ 𝜕 𝛷(1) if and only if there is 𝑄 ∈ 𝜕 𝜙(1) satisfying
𝑃 = 𝜙(1) −𝑄.

In particular 𝑃 is the ordinate of the intersection of the tangent line 𝑧 = 𝑄(𝜇 − 1) + 𝜙(1) to the graph of 𝜙 at 1 with the vertical axis.
3 
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Fig. 1. An example of a subset 𝐷𝛬 that satisfies the Structure Assumptions.

Radial Convexity Assumption. For a.e. 𝑠 ∈ [𝑎, 𝑏], for all (𝑦, 𝑣) ∈ R𝑛 × such that (𝑠, 𝑦, 𝑣) ∈ Dom(𝛬),

0 < 𝑟 ↦ 𝛬(𝑠, 𝑦, 𝑟𝑣) is convex, (RC)

and has a non-empty convex subdifferential at 𝑟 = 1, denoted by 𝜕
(

𝛬(𝑠, 𝑦, 𝑟𝑣))𝑟=1.

Remark 2.3.
1. Let (𝑠, 𝑦, 𝑣) ∈ Dom(𝛬). It follows from the Structure Assumption that the effective domain of 0 < 𝑟 ↦ 𝜙(𝑟) = 𝛬(𝑠, 𝑦, 𝑟𝑣) is an

interval 𝐽𝑦,𝑣 =]0, 𝑟(𝑦, 𝑣)[ or 𝐽𝑦,𝑣 =]0, 𝑟(𝑦, 𝑣)] with 𝑟(𝑦, 𝑣) ∈ [1,+∞[. The convexity of 0 < 𝑟 ↦ 𝛬(𝑠, 𝑦, 𝑟𝑣) implies that has a non-empty
subdifferential on the interior of 𝐽𝑦,𝑣. The Radial Convexity assumption requires, in addition that, if 𝑟(𝑦, 𝑣) = 1, this is still true
at 𝑟 = 1. This occurs, for instance, if 𝛬 is identically equal to 0 on its effective domain, since in this case, 0 ∈ 𝜕

(

𝛬(𝑠, 𝑦, 𝑟𝑣))𝑟=1.
2. If 𝛬 is radially convex and  = R𝑛, then (2.2) is fulfilled if

∀(𝑠, 𝑦, 𝑣) ∈ [𝑎, 𝑏] × R𝑛 × R𝑛 𝛬(𝑠, 𝑦, 𝑣) < +∞ ⇒ 𝛬(𝑠, 𝑦, 0) < +∞.

Notice, however, that it is not required, in general, that (𝑠, 𝑦, 0) ∈ Dom(𝛬) for some (𝑠, 𝑦) ∈ [𝑎, 𝑏] × R𝑛.

2.4. The DBR type subdifferential and subgradient

For (𝑠, 𝑦, 𝑣) ∈ Dom(𝛬), we now apply Proposition 2.2 with 𝜙(𝑟) ∶= 𝛬(𝑠, 𝑦, 𝑟𝑣). With the notation of Proposition 2.2, we have that

0 < 𝜇 ↦ 𝛷(𝜇) ∶= 𝛬
(

𝑠, 𝑦, 𝑣
𝜇

)

𝜇

is a convex function which is finite on [1,+∞[; moreover it has a subgradient 𝑃 (𝑠, 𝑦, 𝑣) at 𝜇 = 1. When 𝛬 is smooth in the last
variable we have that

𝑃 (𝑠, 𝑦, 𝑣) = 𝛬(𝑠, 𝑦, 𝑣) − 𝑣 ⋅ ∇𝑣𝛬(𝑠, 𝑦, 𝑣).
The function 𝑃 plays a special role in the calculus of variations: under suitable assumptions it turns out that a minimizer 𝑦∗ of 𝐹
satisfies the Du Bois-Reymond condition: the function 𝑝(𝑠) = 𝑃 (𝑠, 𝑦∗(𝑠), 𝑦′∗(𝑠)) is absolutely continuous and

𝑝′(𝑠) = 𝛬𝑠(𝑠, 𝑦∗(𝑠), 𝑦′∗(𝑠)) for a.e. 𝑠 ∈ [𝑎, 𝑏].
This fact is well known in the smooth case, and was established in a general nonsmooth framework in [4,15].

Definition 2.4 (The DBR Type Subgradient). Let (𝑠, 𝑦, 𝑣) ∈ Dom(𝛬). The set

𝜕𝜇

[

𝛬
(

𝑠, 𝑦, 𝑣
𝜇

)

𝜇
]

𝜇=1

will be called the DBR type subdifferential of 𝛬 at (𝑠, 𝑦, 𝑣); any of its elements 𝑃 (𝑠, 𝑦, 𝑣) will be called a DBR type subgradient of
𝛬 at (𝑠, 𝑦, 𝑣). It has the property that

∀𝜇 > 0 𝛬
(

𝑠, 𝑦, 𝑣
𝜇

)

𝜇 − 𝛬(𝑠, 𝑦, 𝑣) ≥ 𝑃 (𝑠, 𝑦, 𝑣)(𝜇 − 1). (2.3)
4 
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Fig. 2. Interpretation of 𝑃 (𝑠, 𝑦, 𝑣) ∈ 𝜕𝜇

[

𝛬
(

𝑠, 𝑦, 𝑣
𝜇

)

𝜇
]

𝜇=1
(𝑛 = 1).

Remark 2.5. It follows from Proposition 2.2 that 𝑃 (𝑠, 𝑦, 𝑣) represents the intersection with the ordinate axis in the half-plane
{𝑟𝑣, 𝑟 > 0} × {𝑤 = 𝛬(𝑠, 𝑦, 𝑟𝑣) ∶ 𝑟 > 0} of the tangent line to 𝑟↦ 𝛬(𝑠, 𝑦, 𝑟𝑣) at 𝑟 = 1 (see Fig. 2).

In many applications it is useful to evaluate a selection 𝑃 (𝑠, 𝑦, 𝑣) of a DBR type subdifferential along an absolutely continuous
arc 𝑦 and guarantee that the map 𝑠 → 𝛬(𝑠, 𝑦(𝑠), 𝑦′(𝑠)) is Lebesgue measurable. A key result for this purpose is, then, the following
proposition.

Proposition 2.6 (Existence of a Borel Selection of the DBR Type Subdifferential). Assume that  ⊂ R𝑛 is a Borel set and that 𝛬 is a Borel
measurable function which satisfies the Radial Convexity condition (RC) and the Structure Assumption. Then there exists a Borel selection

(𝑠, 𝑦, 𝑣) ∈ Dom(𝛬) ∩ ([𝑎, 𝑏] × R𝑛 × ) ↦ 𝑃 (𝑠, 𝑦, 𝑣) ∈ 𝜕𝜇

[

𝛬
(

𝑠, 𝑦, 𝑣
𝜇

)

𝜇
]

𝜇=1
.

Proof. Observe first that, since 𝛬 is Borel measurable and  is a Borel set, 𝐷 ∶= Dom(𝛬) ∩ ([𝑎, 𝑏] ×R𝑛 × ) is a Borel set, and from
the existence of 𝜕

(

𝛬(𝑠, 𝑦, 𝑟𝑣))𝑟=1 ensured by the Radial Convexity Assumption,

Dom(𝛬) ∋ (𝑠, 𝑦, 𝑣) ⇝ 𝐺(𝑠, 𝑦, 𝑣) ∶= 𝜕
(

𝛬(𝑠, 𝑦, 𝑟𝑣))𝑟=1
takes values nonempty (convex, closed) subsets of R. Therefore, in view of Proposition 2.2, to confirm the proposition statement
it is enough to prove that there exists a Borel selection 𝑄(𝑠, 𝑦, 𝑣) ∈ 𝐺(𝑠, 𝑦, 𝑣) for all (𝑠, 𝑦, 𝑣) ∈ 𝐷. As a consequence 𝑃 (𝑠, 𝑦, 𝑣) ∶=
𝛬(𝑠, 𝑦, 𝑣) − 𝑄(𝑠, 𝑦, 𝑣) will then be the required measurable selection. Let (𝑟𝑘)𝑘≥0 be a dense sequence in ]0,+∞[. For each 𝑘 ≥ 0 we
define the multifunction

𝐺𝑘(𝑠, 𝑦, 𝑣) ∶= {𝑞 ∈ R ∶ 𝛬
(

𝑠, 𝑦, 𝑟𝑘𝑣
)

− 𝛬(𝑠, 𝑦, 𝑣) ≥ 𝑞(𝑟𝑘 − 1)} for all (𝑠, 𝑦, 𝑣) ∈ 𝐷 .
We claim that

Gr aph(𝐺) =
∞
⋂

𝑘=0
Gr aph(𝐺𝑘). (2.4)

Indeed, suppose first that ((𝑠, 𝑦, 𝑣), 𝑞) ∈ Gr aph(𝐺). It means that

𝛬(𝑠, 𝑦, 𝑟𝑣) − 𝛬(𝑠, 𝑦, 𝑣) ≥ 𝑞(𝑟 − 1) for all 𝑟 > 0, (2.5)

and so, in particular, 𝑞 ∈ 𝐺𝑘(𝑠, 𝑦, 𝑣) for all 𝑘 ≥ 0. Conversely, suppose that

((𝑠, 𝑦, 𝑣), 𝑞) ∈
∞
⋂

𝑘=0
Gr aph(𝐺𝑘).

Let 𝑟 > 0. Since the inequality (2.5) is trivially satisfied if 𝛬(𝑠, 𝑦, 𝑟𝑣) = +∞, we can restrict attention to the case when 𝛬(𝑠, 𝑦, 𝑟𝑣) < +∞.
Then, from condition (2.2) (𝐷𝛬(𝑦) is strictly star-shaped on 𝑣 w.r.t. the origin) we deduce that there exists a subsequence 𝑟𝑘𝑚 ↑ 𝑟
such that

𝛬
(

𝑠, 𝑦, 𝑟𝑘𝑚𝑣
)

− 𝛬(𝑠, 𝑦, 𝑣) ≥ 𝑞(𝑟𝑘𝑚 − 1), for all 𝑚 ≥ 1 . (2.6)

Since 𝛬 satisfies the Radial Convexity assumption (RC) and condition (2.2), the map 𝑟′ ↦ 𝛬
(

𝑠, 𝑦, 𝑟′𝑣) is continuous on ]0, 𝑟]. Taking
the limit as 𝑚 → ∞ in (2.6), it follows that

𝛬
(

𝑠, 𝑦, 𝑟𝑣) − 𝛬(𝑠, 𝑦, 𝑣) = lim
𝑚→+∞

𝛬
(

𝑠, 𝑦, 𝑟𝑘𝑚𝑣
)

− 𝛬(𝑠, 𝑦, 𝑣) ≥ 𝑞(𝑟 − 1).
Therefore, we obtain the validity of (2.5), and so ((𝑠, 𝑦, 𝑣), 𝑞) ∈ Gr aph(𝐺). This confirms the claim. Observe now that the multivalued
function 𝐺𝑘 is Borel measurable, for all 𝑘 ≥ 0, and in view of (2.4) Gr aph(𝐺) is Borel measurable. Owing to [16, Theorem III.22] we
obtain that there exists a Borel measurable selection 𝑄 ∶ 𝐷 → R of 𝐺. □
5 
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3. Admissible topologies for the basic problem of the calculus of variations

The projection 𝐷𝛬 on R𝑛 ×R𝑛 of the effective domain of the Lagrangian 𝛬 can be endowed with different topologies, which give
useful information about the reference Calculus of Variations problem (P), as we will show in the next section. We start providing
some general considerations of topologies induced by equivalence relations in a given metric space.

3.1. The topology induced by an equivalence relation in a metric space

We will consider an equivalence relation in a metric space (𝛱 , 𝑑) we allow here a metric to take the value +∞. If  ⊆ 𝛱 ×𝛱
s an equivalence relation on 𝛱 we will write 𝜔 ∼


𝜔′ whenever (𝜔, 𝜔′) ∈  .

Definition 3.1 (The ‘‘metric’’ dist ). Let  be an equivalence relation on a metric space (𝛱 , 𝑑). We set

∀𝜔, 𝜔′ ∈ 𝛱 dist (𝜔, 𝜔′) ∶=
⎧

⎪

⎨

⎪

⎩

𝑑(𝜔, 𝜔′) if 𝜔 ∼

𝜔′,

+∞ otherwise.
(3.1)

Proposition 3.2. Let  be an equivalence relation on a metric space (𝛱 , 𝑑). Then dist is a distance on 𝛱 and

∀𝜔, 𝜔′ ∈ 𝛱 dist (𝜔, 𝜔′) ≥ 𝑑(𝜔, 𝜔′).

Proof. Let 𝜔 ∈ 𝛱 . Since 𝜔 ∼

𝜔, we have dist (𝜔, 𝜔) = 0. Let 𝜔, 𝜔′ ∈ 𝛱 . If dist (𝜔, 𝜔′) = 0 then, from (3.1), we deduce that

(𝜔, 𝜔′) = 0, whence 𝜔 = 𝜔′. Clearly dist (𝜔, 𝜔′) = dist (𝜔′, 𝜔). We check now the triangular inequality. Let 𝜔′′ ∈ 𝛱 . If 𝜔 ∼

𝜔′′

hen, from (3.1),
dist (𝜔, 𝜔′′) = 𝑑(𝜔, 𝜔′′) ≤ 𝑑(𝜔, 𝜔′) + 𝑑(𝜔′, 𝜔′′)

≤ dist (𝜔, 𝜔′) + dist (𝜔′, 𝜔′′).

Otherwise (𝜔, 𝜔′′) ∉  ; then (𝜔, 𝜔′) ∉  or (𝜔′, 𝜔′′) ∉  : in both cases we have

+∞ = dist (𝜔, 𝜔′′) = dist (𝜔, 𝜔′) + dist (𝜔′, 𝜔′′). □

Definition 3.3 (The Topology 𝜏 ). Let  be an equivalence relation on a metric space (𝛱 , 𝑑). If 𝜔 ∈ 𝛱 and 𝑟 > 0 we shall denote
y 𝐵 (𝜔, 𝑟[ the open ball of center 𝜔 ∈ 𝛱 and radius 𝑟 with respect to dist :

𝐵 (𝜔, 𝑟[∶ = {𝜔′ ∈ 𝛱 ∶ dist (𝜔, 𝜔′) < 𝑟}
= {𝜔′ ∈ 𝛱 ∶ (𝜔, 𝜔′) ∈  , 𝑑(𝜔, 𝜔′) < 𝑟}.

The topology 𝜏 is the topology induced on 𝛱 by the metric dist .
The next proposition tells us that the relations  ↦ 𝜏 and  ↦ dist are decreasing with respect to the natural orders.

Proposition 3.4 (Inclusions Between Topologies and Metrics). Let 1 ⊆2 be two equivalence relations in a metric space (𝛱 , 𝑑). Then
dist2

≤ dist1
, 𝜏2

⊆ 𝜏1
.

Proof. If 𝜔, 𝜔′ ∈ 𝛱 then

dist1
(𝜔, 𝜔′) =

⎧

⎪

⎨

⎪

⎩

𝑑(𝜔, 𝜔′) = dist2
(𝜔, 𝜔′) if 𝜔 ∼

1
𝜔′,

+∞ ≥ dist2
(𝜔, 𝜔′) otherwise.

Thus in any case we obtain that dist1
(𝜔, 𝜔′) ≥ dist2

(𝜔, 𝜔′). The topological inclusion 𝜏2
⊆ 𝜏1

follows easily from the fact that,
for all 𝜔 ∈ 𝛱 and 𝑟 > 0, we have

𝐵1
(𝜔, 𝑟[ ⊆ 𝐵2

(𝜔, 𝑟[. □

Definition 3.5. Let  be an equivalence relation on a metric space (𝛱 , 𝑑) and 𝐴 ⊆ 𝛱 . If 𝜔 ∈ 𝛱 we set (using the convention that
‘inf ∅ = +∞’):

dist (𝜔, 𝐴) = inf {dist (𝜔, 𝜔′) ∶ 𝜔′ ∈ 𝐴}

= inf {𝑑(𝜔, 𝜔′) ∶ 𝜔′ ∼

𝜔, 𝜔′ ∈ 𝐴}.
6 
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Lemma 3.6. Let  be an equivalence relation on a metric space (𝛱 , 𝑑) and 𝐴 ⊆ 𝛱 . Then, if (𝜔, 𝜔′) ∈  ,

dist (𝜔, 𝐴) ≤ 𝑑(𝜔, 𝜔′) + dist (𝜔′, 𝐴). (3.2)

Proof. Let 𝜔′′ ∈ 𝐴. It follows from the triangular inequality that
dist (𝜔, 𝐴) ≤ dist (𝜔, 𝜔′′)

≤ dist (𝜔, 𝜔′) + dist (𝜔′, 𝜔′′).

Since 𝜔 ∼

𝜔′ we have dist (𝜔, 𝜔′) = 𝑑(𝜔, 𝜔′). Therefore we obtain

dist (𝜔, 𝐴) ≤ 𝑑(𝜔, 𝜔′) + dist (𝜔′, 𝜔′′).

The conclusion follows. □

3.2. Admissible topologies on R𝑛 × R𝑛

To derive the main result of the paper we will consider different topologies on R𝑛 ×R𝑛 built up from the Euclidean distance and
 suitable equivalence relation subclasses.

Definition 3.7 (Admissible Topologies). Let  be an equivalence relation on R𝑛 × R𝑛. The topology 𝜏 will be called admissible
henever  ⊇0, where

0 ∶= {((𝑦, 𝜆1𝑣), (𝑦, 𝜆2𝑣)) ∶ 𝑦 ∈ R𝑛, 𝑣 ∈ R𝑛, 𝜆1 > 0, 𝜆2 > 0}.

We shall denote by 𝑒 the maximal equivalence relation (R𝑛 × R𝑛) × (R𝑛 × R𝑛), in which case we obtain the Euclidean topology 𝜏𝑒:
𝜏𝑒

= 𝜏𝑒.

Remark 3.8. It follows from Proposition 3.4 that, if  is an equivalence relation in R𝑛 ×R𝑛 such that 0 ⊆ ⊆𝑒, then it turns
ut that

𝜏𝑒 ⊆ 𝜏 ⊆ 𝜏0
.

In particular any admissible (in the sense of Definition 3.7) topology 𝜏 is finer than the Euclidean one.

Example 3.9 (The topology of the 𝑦-sections). Among the admissible topologies on R𝑛 × R𝑛, by taking

 = ∗ = {((𝑦, 𝑣), (𝑦, 𝑣′)) ∶ 𝑦 ∈ R𝑛, 𝑣, 𝑣′ ∈ R𝑛},

we obtain the one whose sets 𝐴 ⊆ R𝑛 × R𝑛 are open for 𝜏 if and only if for all 𝑦 ∈ R𝑛 the sections

𝐴(𝑦) = {𝑣 ∈ R𝑛 ∶ (𝑦, 𝑣) ∈ 𝐴}

are open in R𝑛.

The next result motivates the requirement that we consider just equivalence classes on R𝑛 × R𝑛 containing 0.

Proposition 3.10. Let  ⊇ 0 be an equivalence relation on R𝑛 × R𝑛. Let 𝐴 ⊆ R𝑛 × R𝑛, (𝑦, 𝑣) ∈ R𝑛 × R𝑛 with dist ((𝑦, 𝑣), 𝐴) ≥ 𝜌 > 0.
Then, if 𝑟 ≥ 0,

dist
(

(𝑦, 𝑣 + 𝑟𝑣), 𝐴) ≥ 𝜌 − 𝑟|𝑣|.

Proof. Let 𝜔 = (𝑦, 𝑣) ∈ R𝑛 × R𝑛. Notice that, if 𝜔′ ∈ R𝑛 × R𝑛 is such that 𝜔 ∼

𝜔′ then, from (3.2) we deduce that

dist (𝜔, 𝐴) ≤ |𝜔 − 𝜔′
| + dist (𝜔′, 𝐴),

whence
dist (𝜔′, 𝐴) ≥ dist (𝜔, 𝐴) − |𝜔 − 𝜔′

|

≥ 𝜌 − |𝜔 − 𝜔′
|.

The conclusion follows immediately by setting 𝜔′ = (𝑦, 𝑣 + 𝑟𝑣), recalling that (𝑦, 𝑣 + 𝑟𝑣) ∼
0

(𝑦, 𝑣) and 0 ⊆ . □

3.3. Well-inside subsets

If 𝐷 is a subset of a space 𝛱 we denote by 𝐷𝑐 its complement in 𝛱 .
7 
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Definition 3.11 (The Family𝑀 (𝐷) and the Notation ⋐ ). Let  be an equivalence relation on a metric space (𝛱 , 𝑑) and let 𝐷 ⊆ 𝛱 .
We say that a subset 𝐴 of 𝐷 is well-inside 𝐷 with respect to dist (briefly 𝐴 ⋐ 𝐷) if there is 𝜌 > 0 satisfying

𝐴 ⊆ {𝜔 ∈ 𝐷 ∶ dist (𝜔, 𝐷𝑐 ) ≥ 𝜌}. (3.3)

We shall denote by 𝑀 (𝐷) the family of subsets of 𝛱 that are well-inside 𝐷 for dist .
The family of sets that are well-inside a give subset 𝐷 ⊆ 𝛱 for dist decreases as the equivalence relation set  increases.

Proposition 3.12. Let (𝛱 , 𝑑) be a metric space and 1 ⊆2 be two equivalence relations in 𝛱 . Then:
1. Let 𝐴 ⊆ 𝛱 . For all 𝜔 ∈ 𝛱 , dist2

(𝜔, 𝐴) ≤ dist1
(𝜔, 𝐴);

2. Let 𝐷 ⊆ 𝛱 . Then 𝑀2
(𝐷) ⊆ 𝑀1

(𝐷).

Proof. Let 𝜔′ ∈ 𝐴. It follows from Proposition 3.4 that

dist2
(𝜔, 𝐴) ≤ dist2

(𝜔, 𝜔′) ≤ dist1
(𝜔, 𝜔′),

whence Claim 1, from which it follows immediately also Claim 2. □

Remark 3.13. In view of Proposition 3.12, if 𝐴 ⊆ R𝑛×R𝑛 and  ⊇0 is an equivalence relation on R𝑛×R𝑛, then for any 𝜔 ∈ R𝑛×R𝑛
e have

dist𝑒(𝜔, 𝐴) ≤ dist (𝜔, 𝐴) ≤ dist0
(𝜔, 𝐴), (3.4)

and, for any given 𝐷 ⊆ R𝑛 we have

𝑀𝑒
(𝐷) ⊆ 𝑀 (𝐷) ⊆ 𝑀0

(𝐷). (3.5)

Observe that inequalities of (3.4) and the inclusions of (3.5) might be strict. This is illustrated by the following examples (see
also Fig. 3).

Example 3.14. Suppose, for instance, that 𝑛 = 1 and

𝐴 = ({0} × {1}) ∪ ((R ⧵ {0}) × {0}).
Then dist𝑒((0, 0), 𝐴) = 0 whereas

dist0
((0, 0), 𝐴) = inf {𝜆 > 0 ∶ (0, 𝜆 × 0) ∈ 𝐴} = +∞.

Inclusion (3.5) may be strict, in general.

Example 3.15. We consider here R𝑛 × R𝑛 endowed with the Euclidean distance.

1. If  = 𝑒, then 𝜏 = 𝜏𝑒 and Condition (3.3) means that for every (𝑦, 𝑣) ∈ 𝐴 we have

∀(𝑦′, 𝑣′) ∈ 𝐷𝑐
|(𝑦, 𝑣) − (𝑦′, 𝑣′)| ≥ 𝜌.

Therefore 𝐴 is well-inside 𝐷 for dist𝑒 if 𝐴 has a strictly positive Euclidean distance from 𝐷𝑐 in R𝑛 ×R𝑛. For instance, if 𝑛 = 1 and
𝐷 =] − 2, 2[×] − 2, 2[ then 𝐴 ∶= [−1, 1] × [−1, 1] is well-inside 𝐷 with respect to dist𝑒. Observe that 𝐵 ∶=] − 2, 2[×[−1, 1] is well-inside
𝐷 w.r.t. dist0

, but it is not well-inside 𝐷 for dist𝑒.
2. On the other hand, if  = 0, Condition (3.3) means that for every (𝑦, 𝜆1𝑣) ∈ 𝐴 ⊂ R𝑛 × R𝑛 with |𝑣1| = 1, 𝜆1 > 0, we have

∀(𝑦, 𝜆2𝑣) ∈ 𝐷𝑐
𝛬, 𝜆2 > 0 𝜆2 ≥ 𝜆1 + 𝜌 or 𝜆2 ≤ 𝜆1 − 𝜌.

Consider a Lagrangian 𝛬 whose domain 𝐷𝛬 satisfies the Structure Assumption. Since 𝐷𝛬(𝑦) is strictly star-shaped with respect to
0, then 𝐴⋐0

𝐷𝛬 if and only if there is 𝜌 > 0 such that, for all (𝑦, 𝜆𝑣) ∈ 𝐴 with 𝜆 > 0 and |𝑣| = 1,

sup{𝜆1 > 0 ∶ (𝑦, 𝜆1𝑣) ∈ 𝐴} + 𝜌 ≤ inf {𝜆2 > 0 ∶ (𝑦, 𝜆2𝑣) ∈ 𝐷𝑐
𝛬}.

If 𝑛 = 1, the above means that, for all 𝑦 in the first projection of 𝐴,

sup(𝐴(𝑦) ∩ R+) + 𝜌 ≤ inf (𝐷𝑐
𝛬(𝑦) ∩ R+),

inf (𝐴(𝑦) ∩ R−) − 𝜌 ≤ sup(𝐷𝑐
𝛬(𝑦) ∩ R−).

Example 3.16. Consider the equivalence relation ∗ defined in Example 3.9. Let

𝐷 ∶= {(𝑦, 𝑣) ∈ R2 ∶ |𝑣| ≤ |𝑦| ≤ 1}.

Then the origin is well-inside 𝐷 for 𝜏0
but not for 𝜏∗

. Indeed, dist0
((0, 0), (𝑦, 𝑣)) = +∞ for all 𝑦, 𝑣 ∈ R with 𝑣 ≠ 0, however the

rigin is a limit point of 𝐷𝑐 for 𝜏 (which coincides with the Euclidean one along the 𝑣-axis).
∗

8 
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Fig. 3. The set 𝐵 is well-inside 𝐷 for dist0
but not for dist𝑒.

4. Boundedness properties of the DBR type subgradient

Let 𝑃 (𝑠, 𝑦, 𝑣) be a DBR type subgradient for 𝛬 at (𝑠, 𝑦, 𝑣) ∈ Dom(𝛬), where 𝛬 satisfies the Basic, Structure and Radial Convexity
assumptions. The proof of some recent results on the non-occurrence of the Lavrentiev phenomenon (as [8, Theorem 5.4]) rely on
Theorem 4.3 below, which is a refinement of [12, Lemma 3.17], [9, Proposition 4.24]. The monotonicity of the convex subgradients
obviously implies that

sup
𝑟≥1

(𝑦,𝑟𝑣)∈𝐷𝛬

𝑃 (𝑠, 𝑦, 𝑟𝑣) ≤ 𝑃 (𝑠, 𝑦, 𝑣) < +∞, (4.1)

inf
𝑟≤1

(𝑦,𝑟𝑣)∈𝐷𝛬

𝑃 (𝑠, 𝑦, 𝑟𝑣) ≥ 𝑃 (𝑠, 𝑦, 𝑣) > −∞. (4.2)

Under some suitable local boundedness assumptions on 𝛬 these estimates become somewhat uniform as 𝑣 varies, respectively, out
of a ball and inside a ball of given radii. One difficulty is that 𝑃 (𝑠, 𝑦, 𝑣) may be unbounded, for instance it can tend to −∞ when
(𝑠, 𝑦, 𝑣) approaches Dom(𝛬)𝑐 . We shall prove that the validity of a uniform estimate as in (4.1)–(4.2) actually holds for points that
are well-inside Dom(𝛬).

Definition 4.1 (Sets Enclosing the Origin). We say that 𝐴 ⊆ R𝑛 encloses the origin if (see Fig. 4)

• There is 𝑟𝐴 > 0 such that

𝐴 ⊆ 𝐵𝑟𝐴 ;

• For all 𝑥 ∈ 𝜕 𝐵1 there is 𝑦 ∈ 𝐴 such that 𝑥 =
𝑦
|𝑦|

or, equivalently, every radius from the origin intersects 𝐴 in at least one point.

Example 4.2. A typical set enclosing the origin is a sphere 𝜕 𝐵𝑟𝐴 centered in the origin and of radius 𝑟𝐴 > 0.

Theorem 4.3 (Boundedness of the DBR Type Subgradient). Suppose that 𝛬 satisfies (A1) of the Basic Assumptions, the Structure and
Radial Convexity assumptions. Let  ⊆ R𝑛 be a bounded set and let  ⊇ 0 be an equivalence relation on R𝑛 × R𝑛. Let, for any
(𝑠, 𝑦, 𝑣) ∈ Dom(𝛬), 𝑣 ∈  , 𝑃 (𝑠, 𝑦, 𝑣) be a DBR type subgradient of 𝛬 at (𝑠, 𝑦, 𝑣), i.e.,

𝑃 (𝑠, 𝑦, 𝑣) ∈ 𝜕𝜇
(

𝛬
(

𝑠, 𝑦, 𝑣
𝜇

)

𝜇
)

𝜇=1
.

(i) Assume that 𝛬 is bounded from below and, moreover, that there exists a set 𝐴 enclosing the origin such that 𝛬 is bounded on

([𝑎, 𝑏] × × (𝐴 ∩ )) ∩ Dom(𝛬).

9 
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Fig. 4. A curve enclosing the origin in R2 (Definition 4.1).

Then, for all 𝑟 > 𝑟 ∶= sup{|𝑣| ∶ 𝑣 ∈ 𝐴 ∩ },

sup
𝑠∈[𝑎,𝑏],𝑦∈,|𝑣|≥𝑟

(𝑦,𝑣)∈𝐷𝛬
𝑣∈

𝑃 (𝑠, 𝑦, 𝑣) < +∞. (4.3)

(ii) Suppose that there exists 𝜆 > 0 such that 𝛬 is bounded on the subsets of the form [𝑎, 𝑏] × 𝐴, where 𝐴 ⊆  × (𝐵𝜆 ∩ ), 𝐴 ⋐ 𝐷𝛬.
Then, for every 0 < 𝜆 < 𝜆,

∀𝜌 > 0 − ∞ < inf
𝑠∈[𝑎,𝑏],𝑦∈,|𝑣|≤𝜆
dist ((𝑦,𝑣),𝐷𝑐𝛬 )≥𝜌

𝑣∈

𝑃 (𝑠, 𝑦, 𝑣).

The proof of Theorem 4.3 is inspired by [17, Lemma 4.18, Proposition 4.24] and [12, Proposition 3.15]. The new distance
depending on the equivalence relation  was not considered before, and some new arguments are presented here.

Proof. (i) Let 𝑟 > 𝑟. If the set

{(𝑠, 𝑦, 𝑣) ∈ Dom(𝛬) ∶ 𝑠 ∈ [𝑎, 𝑏], 𝑦 ∈ , 𝑣 ∈  , |𝑣| ≥ 𝑟}

is empty, then there is nothing to prove. Otherwise, let (𝑠, 𝑦, 𝑣) ∈ Dom(𝛬) with 𝑠 ∈ [𝑎, 𝑏], 𝑦 ∈ , 𝑣 ∈  , |𝑣| ≥ 𝑟. Since 𝐴 encloses
the origin there is 𝜇𝑣 ≥ 𝑟

𝑟
(> 1) such that 𝑣

𝜇𝑣
∈ 𝐴. By applying (2.3),

𝛬
(

𝑠, 𝑦, 𝑣
𝜇𝑣

)

𝜇𝑣 − 𝛬(𝑠, 𝑦, 𝑣) ≥ 𝑃 (𝑠, 𝑦, 𝑣) (𝜇𝑣 − 1) .

Assuming that 𝛽 ∈ R minorizes 𝛬, we deduce that

|𝛽| + 𝛬
(

𝑠, 𝑦, 𝑣
𝜇𝑣

)

𝜇𝑣 ≥ 𝑃 (𝑠, 𝑦, 𝑣) (𝜇𝑣 − 1)

whence

𝑃 (𝑠, 𝑦, 𝑣) ≤ 𝛬
(

𝑠, 𝑦, 𝑣
𝜇𝑣

) 𝜇𝑣
𝜇𝑣 − 1 +

|𝛽|
𝜇𝑣 − 1

≤ 𝛬
(

𝑠, 𝑦, 𝑣
𝜇𝑣

) 𝜇𝑣
𝜇𝑣 − 1 +

|𝛽| 𝑟
𝑟 − 𝑟

.

Since 𝑣
𝜇𝑣

∈ 𝐴 the assumptions imply that 𝛬
(

𝑠, 𝑦, 𝑣
𝜇𝑣

)

is bounded above by a constant depending only on . Moreover, 𝜇𝑣 ≥ 𝑟
𝑟

and 𝜎 ↦
𝜎

𝜎 − 1 is bounded in
[

𝑟
𝑟
,+∞

[

; the required conclusion follows. (ii) Let 𝜌 > 0 and let 𝐴 be the subset of 𝐷𝛬 defined by

𝐴 ∶= {(𝑦, 𝑣) ∈ 𝐷𝛬 ∶ 𝑦 ∈ , 𝑣 ∈  , |𝑣| ≤ 𝜆, dist ((𝑦, 𝑣), 𝐷𝑐
𝛬) ≥ 𝜌}.

It is not restrictive to assume that 𝜌 ≤ 2(𝜆 − 𝜆). If 𝐴 is empty the claim is obvious. Otherwise, let (𝑦, 𝑣) ∈ 𝐴 and 𝑃 (𝑠, 𝑦, 𝑣) ∈
𝜕𝜇

(

𝛬
(

𝑠, 𝑦, 𝑣
𝜇

)

𝜇
)

𝜇=1
. Notice that

|

|

𝜌
𝑣
|

| ≤ 𝜌 ≤ 𝜆 − 𝜆,
|

|𝑣 +
𝜌
𝑣
|

| ≤ 𝜆 + (𝜆 − 𝜆) ≤ 𝜆 .

|

|
2𝜆 |

|
2  |

|
2𝜆 |

|
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It follows from Proposition 3.10 that

dist

(

(

𝑦, 𝑣 + 𝜌
2𝜆

𝑣
)

, 𝐷𝑐
𝛬

)

≥ 𝜌 −
𝜌

2𝜆
|𝑣| ≥ 𝜌

2
.

Therefore
(

𝑦, 𝑣 + 𝜌
2𝜆

𝑣
)

∈ 𝐴′ ⋐ 𝐷𝛬, where

𝐴′ ∶=
{

(𝑦, 𝑤) ∈ 𝐷𝛬 ∶ 𝑦 ∈ , 𝑤 ∈  , |𝑤| ≤ 𝜆, dist ((𝑦, 𝑤), 𝐷𝑐
𝛬) ≥

𝜌
2

}

.

The boundedness assumption implies that there exists 𝑀 ∈ R such that

|𝛬(𝑠, 𝑦, 𝑤)| ≤𝑀 , for all (𝑠, 𝑦, 𝑤) ∈ [𝑎, 𝑏] × (𝐴′∪𝐴). (4.4)

Now, from (2.3) we have

𝛬
(

𝑠, 𝑦, 𝑣 + 𝜌
2𝜆

𝑣
) 1
1 + 𝜌

2𝜆

− 𝛬(𝑠, 𝑦, 𝑣) ≥ 𝑃 (𝑠, 𝑦, 𝑣)
( 1
1 + 𝜌

2𝜆

− 1
)

,

so that

𝑀 + 𝛬
(

𝑠, 𝑦, 𝑣 + 𝜌
2𝜆

𝑣
) 1
1 + 𝜌

2𝜆

≥ 𝑃 (𝑠, 𝑦, 𝑣)
( 1
1 + 𝜌

2𝜆

− 1
)

,

whence

𝑃 (𝑠, 𝑦, 𝑣) ≥ −
2𝜆
𝜌
𝛬
(

𝑠, 𝑦, 𝑣 + 𝜌
2𝜆

𝑣
)

−𝑀
2𝜆 + 𝜌

𝜌

≥ −𝑀
𝜌

(

4𝜆 + 𝜌
)

,

recalling (4.4). We deduce that 𝑃 (𝑠, 𝑦, 𝑣) is bounded from below on 𝐴 by a constant depending only on 𝛽, 𝑀 , 𝜆 and 𝜌. This confirms
laim ( ii). □

Remark 4.4. Taking into account the geometric interpretation of the subdifferentials given in Remark 2.5:

• Condition ( i) of Theorem 4.3 means that the intersection with the ordinate axis of the tangent lines to 𝑟 ↦ 𝛬(𝑠, 𝑦, 𝑟𝑣) at 𝑟 = 1 are
bounded above by a constant if (𝑠, 𝑦, 𝑣) ∈ Dom(𝛬), 𝑣 ∈  , |𝑣| ≥ 𝑟. In the smooth case Condition (4.3) can be rewritten as

sup
𝑠∈[𝑎,𝑏],𝑦∈,|𝑣|≥𝑟

(𝑦,𝑣)∈𝐷𝛬
𝑣∈

𝛬(𝑠, 𝑦, 𝑣) − 𝑣 ⋅ ∇𝑣𝛬(𝑠, 𝑦, 𝑣) < +∞.

• Similarly, Condition ( ii) in Theorem 4.3 geometrically means that the intersection with the ordinate axis of the tangent lines to
𝑟 ↦ 𝛬(𝑠, 𝑧, 𝑟𝑣) at 𝑟 = 1 are bounded below by a constant when dist ((𝑧, 𝑣), 𝐷𝑐

𝛬) ≥ 𝜌, 𝑧 ∈ , and 𝑣 ∈  with |𝑣| ≤ 𝜆. In the smooth
case Condition (ii) can be rewritten as

−∞ < inf
𝑠∈[𝑎,𝑏],𝑧∈,|𝑣|≤𝜆
dist ((𝑧,𝑣),𝐷𝑐𝛬 )≥𝜌

𝑣∈

𝛬(𝑠, 𝑧, 𝑣) − 𝑣 ⋅ ∇𝑣𝛬(𝑠, 𝑧, 𝑣).

Remark 4.5. The topologies 𝜏 involved here play a role in two conditions that, together, ensure the non-occurrence of the
Lavrentiev phenomenon in [8]: the fact that 𝐷𝛬 is open and the fact that 𝛬 is bounded on the sets [𝑎, 𝑏] × 𝛴 where 𝛴 ⋐ 𝐷𝛬.
Now the first is more easily satisfied with a finer topology, whereas the opposite is true for the second: this motivates the need of
statements, like Theorem 4.3, that are valid for admissible topologies on R𝑛 × R𝑛.

5. Non-ocurrence of the lavrentiev phenomenon

5.1. The case of one initial endpoint constraint

As an application of Theorem 4.3 we give a self-contained proof of the non-occurrence of the Lavrentiev gap for the initial
endpoint problem, a particular case of [8, Theorem 4.1]. We denote by 𝑊 1,1([𝑎, 𝑏]) the space of absolutely continuous functions on
𝑎, 𝑏], by Lip([𝑎, 𝑏]) the space of Lipschitz continuous functions on [𝑎, 𝑏].

Proposition 5.1 ([8]). Let 𝛬 = 𝛬(𝑦, 𝑣) ≥ 0 be autonomous, satisfies the Basic, Structure and Radial Convexity assumptions and  is
Borel measurable. Let 𝑦 be an admissible absolutely continuous arc for (P) such that 𝐹 (𝑦) < +∞. Suppose that there is a subset 𝐴 ⊂ R𝑛
enclosing the origin such that 𝛬 is bounded on

(𝑦([𝑎, 𝑏]) × (𝐴 ∩ )) ∩ Dom(𝛬).

Then there is no Lavrentiev gap for 𝐹 at 𝑦 with a prescribed initial endpoint, i.e. we can find a sequence (𝑦𝑘)𝑘 of Lipschitz functions such
that:
11 
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1. For all 𝑘 ∈ N, 𝑦𝑘(𝑎) = 𝑦(𝑎);
2. 𝑦𝑘 → 𝑦 in the 𝐿∞ norm and 𝑦′𝑘 → 𝑦′ in the 𝐿1 norm;
3. lim sup𝑘 𝐹 (𝑦𝑘) ≤ 𝐹 (𝑦).

Moreover 𝑦𝑘([𝑎, 𝑏]) ⊆ 𝑦([𝑎, 𝑏]). As a consequence, if 𝛥 ⊆ R𝑛, there is no Lavrentiev phenomenon for 𝐹 with a prescribed initial endpoint
nd state constraint 𝛥, i.e.,

inf {𝐹 (𝑦) ∶ 𝑦 ∈ 𝑊 1,1([𝑎, 𝑏]), 𝑦(𝑎) = 𝐴 ∈ R𝑛, 𝑦([𝑎, 𝑏]) ⊆ 𝛥, 𝑦′(𝑡) ∈  a. e. 𝑡 ∈ [𝑎, 𝑏]}
= inf {𝐹 (𝑦) ∶ 𝑦 ∈ Lip([𝑎, 𝑏]), 𝑦(𝑎) = 𝐴 ∈ R𝑛, 𝑦([𝑎, 𝑏]) ⊆ 𝛥, 𝑦′(𝑡) ∈  a. e. 𝑡 ∈ [𝑎, 𝑏]}.

Let us point out that the claim of Proposition 5.1 is by no far obvious, as shown by the following example, a modification of the
one given in [18], where the Lagrangian could not be simpler since it equals to 0 in its effective domain.

Example 5.2. Let

𝛬(𝑦, 𝑣) =
⎧

⎪

⎨

⎪

⎩

0 if 𝑣 = 1
2𝑦
, 𝑦 ≠ 0

+∞ otherwise.

Let 𝑦∗(𝑠) =
√

𝑠, 𝑠 ∈ [0, 1]. Since 𝑦′∗ = 1
2𝑦∗

a.e. in [0, 1] we have 𝐹 (𝑦∗) = 0 so that 𝑦∗ minimizes 𝐹 among the absolutely continuous
unctions 𝑦 on [0, 1] satisfying 𝑦(0) = 0. Now let 𝑦 be Lipschitz in [0, 1] such that 𝑦(0) = 0 and 𝐹 (𝑦) < +∞. Then 𝛬(𝑦, 𝑦′) < +∞ a.e. in
0, 1] so that

⎧

⎪

⎨

⎪

⎩

𝑦′ = 1
2𝑦

a.e. in [0, 1]

𝑦(0) = 0.

It follows that 𝑦(𝑠) = √

𝑠, a contradiction. Thus 𝐹 (𝑦) = +∞ whenever 𝑦 is Lipschitz and 𝑦(0) = 0. What fails here, among the
ssumptions of Proposition 5.1, is the fact that the projections of the effective domain onto the 𝑣 variable are either empty or a

non-zero singleton and, so, they are not in general star-shaped with respect to 0.

Proof of Proposition 5.1.
For each 𝑘 = 1,…, let

𝑆𝑘 ∶= {𝑠 ∈ [𝑎, 𝑏] ∶ |𝑦′(𝑠)| > 𝑘}.

Define the absolutely continuous function 𝜑𝑘 ∶ [𝑎, 𝑏] → R by

𝜑𝑘(𝑎) = 𝑎, 𝜑′
𝑘(𝑠) =

⎧

⎪

⎨

⎪

⎩

|𝑦′(𝑠)|
𝑘

𝑠 ∈ 𝑆𝑘,

1 otherwise.

Since 𝜑′
𝑘 ≥ 1 a.e. on [𝑎, 𝑏] then 𝜑𝑘([𝑎, 𝑏]) = [𝑎, 𝑏𝑘] for some 𝑏𝑘 ≥ 𝑏. Let 𝜓𝑘 be the inverse of 𝜑𝑘 restricted to [𝑎, 𝑏] (a Lipschitz function)

and define

𝑦𝑘 ∶= 𝑦◦𝜓𝑘.

Then 𝑦𝑘(𝑎) = 𝑦(𝜓𝑘(𝑎)) = 𝑦(𝑎), 𝑦𝑘([𝑎, 𝑏]) ⊆ 𝑦([𝑎, 𝑏]) and 𝑦𝑘 is Lipschitz: indeed

𝑦′𝑘(𝜏) =
⎧

⎪

⎨

⎪

⎩

𝑘
𝑦′(𝜓𝑘(𝜏))
|𝑦′(𝜓𝑘(𝜏))|

𝜏 ∈ 𝜑𝑘(𝑆𝑘) ∩ [𝑎, 𝑏],
𝑦′(𝜓𝑘(𝜏)) otherwise.

Moreover, 𝑦′𝑘(𝜏) ∈  a.e. 𝜏 ∈ [𝑎, 𝑏]. The convergence of 𝑦𝑘 to 𝑦 in the norm of the absolutely continuous functions follows from
standard arguments. Let us check the limsup property 3. The change of variables 𝑠 = 𝜓𝑘(𝜏) gives

𝐹 (𝑦𝑘) = ∫

𝑏

𝑎
𝛬
(

𝑦(𝑠),
𝑦′(𝑠)
𝜑′
𝑘(𝑠)

)

𝜑′
𝑘(𝑠) 𝑑 𝑠.

Let 𝑃 (𝑦, 𝑣) be a Borel selection of 𝜕𝜇
[

𝛬
(

𝑦, 𝑣
𝜇

)

𝜇
]

𝜇=1
on Dom(𝛬) with 𝑣 ∈  , whose existence is established in Proposition 2.6. Notice

that the fact that the projections onto the 𝑣 space are star-shaped and  is a cone, we have
(

𝑦(𝑠),
𝑦′(𝑠)
𝜑′ (𝑠)

)

∈ Dom(𝛬) and 𝑦′(𝑠)
𝜑′ (𝑠)

∈  a. e. in [𝑎, 𝑏].

𝑘 𝑘

12 
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Let 𝑠 ∈ [𝑎, 𝑏]; the subgradient inequality (2.3) applied with 𝑦 = 𝑦(𝑠), 𝑣 = 𝑦′(𝑠)
𝜑′
𝑘(𝑠)

and 𝜇 = 1
𝜑′
𝑘(𝑠)

gives

𝛬(𝑦(𝑠), 𝑦′(𝑠)) 1
𝜑′
𝑘(𝑠)

− 𝛬
(

𝑦(𝑠),
𝑦′(𝑠)
𝜑′
𝑘(𝑠)

)

≥ 𝑃
(

𝑦(𝑠),
𝑦′(𝑠)
𝜑′
𝑘(𝑠)

)( 1
𝜑′
𝑘(𝑠)

− 1
)

,

from which we deduce that

𝛬
(

𝑦(𝑠),
𝑦′(𝑠)
𝜑′
𝑘(𝑠)

)

𝜑′
𝑘(𝑠) ≤ 𝛬(𝑦(𝑠), 𝑦′(𝑠)) + 𝑃

(

𝑦(𝑠),
𝑦′(𝑠)
𝜑′
𝑘(𝑠)

)

(𝜑′
𝑘(𝑠) − 1). (5.1)

Since 𝜑′
𝑘 ≥ 1 and 𝜑′

𝑘 = 1 on [𝑎, 𝑏] ⧵ 𝑆𝑘, integrating over [𝑎, 𝑏] both sides of (5.1), we obtain

𝐹 (𝑦𝑘) ≤ 𝐹 (𝑦) + ∫𝑆𝑘
𝑃
(

𝑦(𝑠), 𝑘 𝑦′(𝑠)
|𝑦′(𝑠)|

)(

|𝑦′(𝑠)|
𝑘

− 1
)

𝑑 𝑠. (5.2)

It follows from (i) of Theorem 4.3 with  = 𝑦([𝑎, 𝑏]) that, for 𝑘 ≥ 𝑟 > sup{|𝑣| ∶ 𝑣 ∈ 𝐴 ∩ },

sup
𝑧∈𝑦([𝑎,𝑏]),|𝑣|≥𝑘
(𝑧,𝑣)∈Dom(𝛬)

𝑣∈

𝑃 (𝑧, 𝑣) ≤ sup
𝑧∈𝑦([𝑎,𝑏]),|𝑣|≥𝑟
(𝑧,𝑣)∈Dom(𝛬)

𝑣∈

𝑃 (𝑧, 𝑣) ≤ 𝐶 < +∞.

It follows from (5.2) that

𝐹 (𝑦𝑘) ≤ 𝐹 (𝑦) + 𝐶 ∫𝑆𝑘

(

|𝑦′(𝑠)|
𝑘

− 1
)

𝑑 𝑠.

Now

0 ≤ ∫𝑆𝑘

(

|𝑦′(𝑠)|
𝑘

− 1
)

𝑑 𝑠 ≤ 1
𝑘 ∫

𝑏

𝑎
|𝑦′(𝑠)| 𝑑 𝑠 → 0 𝑘 → +∞,

whence the claim. □

Remark 5.3. The proof of Proposition 5.1 shows that the range of 𝑦𝑘 is contained in the range of 𝑦, so that the sequence 𝑦𝑘 takes
values in 𝑦([𝑎, 𝑏]). The conditions formulated there are not sufficient, in general, to derive the non-occurrence of the gap at 𝑦 with two
prescribed two endpoints at 𝑎 and 𝑏 (see [8]), i.e., to obtain a sequence of Lipschitz functions (𝑦𝑘)𝑘 satisfying both 𝑦𝑘(𝑎) = 𝑦(𝑎) and
𝑦𝑘(𝑏) = 𝑦(𝑏): referring to the proof of Proposition 5.1, one has to introduce a subset where 𝜑′

𝑘 < 1 and use Claim 2 of Theorem 4.3;
we refer to [8, Theorem 4.1] for the details.

5.2. A general result on the avoidance of the Lavrentiev phenomenon

We fix 𝛥 ⊆ R𝑛 and a cone  ⊆ R𝑛. We refer to [8] for a thorough discussion on the subject; the aim of this section is to show
how the use of different topologies on R𝑛 × R𝑛 may be useful in the study of the non-occurrence of the Lavrentiev phenomenon.
In the nonautonomous case, it seems essential that 𝛬(𝑠, 𝑦, 𝑣) satisfies a condition on the first variable, otherwise some well-known
counterexamples show the phenomenon may occur (see Manià’s example [5] or Ball–Mizel [6]).

Condition (S+). For every 𝐾 ≥ 0 there exist 𝛾 ∈]0, 1], 𝜀∗ > 0 and:

• a Lebesgue–Borel measurable function ℎ(𝑠, 𝑦, 𝑣) in (𝑠, (𝑦, 𝑣)) such that

∀𝑦 ∈ 𝑊 1,1([𝑎, 𝑏]), 𝐹 (𝑦) < +∞ ⇒ ℎ(𝑠, 𝑦(𝑠), 𝑦′(𝑠)) ∈ 𝐿1([𝑎, 𝑏]);
• a Borel function 𝑔(𝑦, 𝑣) such that 𝑔(𝑦(𝑠), 𝑦′(𝑠)) ∈ 𝐿∞([𝑎, 𝑏]) whenever 𝑦 ∈ 𝑊 1,1([𝑎, 𝑏]) and 𝐹 (𝑦) < +∞;
• a bounded variation function 𝜂 on [𝑎, 𝑏] with values in R

such that, for a.e. 𝑠 ∈ [𝑎, 𝑏], for all 𝑠′ ∈ [𝑠 − 𝜀∗, 𝑠 + 𝜀∗] ∩ [𝑎, 𝑏], 𝑦 ∈ 𝐵𝐾 ∩ 𝛥, 𝑣 ∈  , (𝑠, 𝑦, 𝑣) ∈ Dom(𝛬),

|𝛬(𝑠′, 𝑦, 𝑣) − 𝛬(𝑠, 𝑦, 𝑣)| ≤ |𝑠′ − 𝑠|𝛾ℎ(𝑠, 𝑦, 𝑣) + |𝜂(𝑠′) − 𝜂(𝑠)|𝑔(𝑦, 𝑣).

Example 5.4. Functions ℎ, 𝑔 that satisfy the above conditions are, for instance,

ℎ(𝑠, 𝑦, 𝑣) = 𝐴(𝛬(𝑠, 𝑦, 𝑣) + |𝑣| + 𝜌(𝑠)), 𝑔 Borel and bounded

with 𝐴 ≥ 0, 𝜌 ∈ 𝐿1([𝑎, 𝑏]).

Definition 5.5. Suppose that Dom(𝛬) = [𝑎, 𝑏] ×𝐷𝛬 for some 𝐷𝛬 ⊆ R𝑛 × R𝑛.

1. We say that 𝛬 satisfies the conditions for the non occurrence of the Lavrentiev phenomenon for the initial endpoint problem on
[𝑎, 𝑏] if 𝛬 satisfies the Basic, Structure and Radial Convexity assumptions, Condition (S+) and:

(B𝜎𝛬) For every compact subset  of 𝛥 there is a set 𝐴 > 0 enclosing the origin such that 𝛬 is bounded on ([𝑎, 𝑏] ×× (𝐴 ∩ )) ∩
Dom(𝛬).
13 
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2. We say that 𝛬 satisfies the conditions for the non-occurrence of the Lavrentiev phenomenon for the initial and final endpoints
problem on [𝑎, 𝑏] if 𝛬 satisfies the Basic and Structure assumptions, Condition (S+) and, in addition to (B𝜎𝛬), there is an equivalence
relation  ⊇0 in R𝑛 × R𝑛 such that:

(a) 𝐷𝛬∩(𝛥 × ) is contained in the interior of 𝐷𝛬 w.r.t. the topology 𝜏 ;
(b) The following condition holds:

(B⋐
𝛬 ) For every compact subset  of 𝛥, 𝛬 is bounded on the subsets of the form [𝑎, 𝑏] × 𝐴 where 𝐴 ⊆  × , 𝐴 ⋐ 𝐷𝛬.

Remark 5.6. Notice that the admissible topologies play an essential role in Point 2 of Definition 5.5. It follows from Proposition 3.4
that 2(a) is more easily satisfied when the equivalence class  gets smaller, whereas in order for 2(b) to hold it is more convenient,
from Proposition 3.12, to deal with bigger equivalence classes on R𝑛 × R𝑛.

Theorem 5.7. Let 𝛬 ∶ [𝑎, 𝑏] × R𝑛 × R𝑛 → R. Suppose that there are a subdivision 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 < 𝑡𝑚+1 = 𝑏 of [𝑎, 𝑏] and subsets
0,… , 𝐷𝑚 of R𝑛 × R𝑛 such that

∀𝑖 = 0,… , 𝑚 Dom(𝛬) ∩ (]𝑡𝑖, 𝑡𝑖+1[×R𝑛 × R𝑛) =]𝑡𝑖, 𝑡𝑖+1[×𝐷𝑖.

Suppose that there is 𝐼 ⊆ {0,… , 𝑚} such that:
• For every 𝑖 ∉ 𝐼 the projection of 𝐷𝑖 onto the 𝑣-space R𝑛 is bounded;
• For all 𝑖∈𝐼 , 𝑖 < 𝑚, 𝛬 satisfies the conditions for the non-occurrence of the Lavrentiev phenomenon for initial and final endpoints
problem on [𝑡𝑖, 𝑡𝑖+1].

Then:

1. If 𝑚 ∉ 𝐼 or 𝛬 satisfies the conditions for the non-occurrence of the Lavrentiev phenomenon for the initial and final endpoints problem
on [𝑡𝑚, 𝑏] there is no Lavrentiev phenomenon for the initial and final endpoints problem on [𝑎, 𝑏] with state constraint 𝛥;

2. otherwise there is no Lavrentiev phenomenon for the initial endpoint problem on [𝑎, 𝑏] with state constraint 𝛥.

Proof. Fix 𝑘 ≥ 1 and let 𝑦 ∈ 𝑊 1,1([𝑎, 𝑏]) with 𝐹 (𝑦)≤ inf 𝐹 + 1
𝑘

. If 𝑖 ∉ 𝐼 , the restriction of 𝑦 to [𝑡𝑖, 𝑡𝑖+1] is Lipschitz: in this case we set
𝑦𝑖,𝑘 ∶= 𝑦 on [𝑡𝑖, 𝑡𝑖+1]. For any 𝑖 ∈ 𝐼 , 𝑖 < 𝑚, [8, Corollary 5.13] ensures the existence of 𝑦𝑖,𝑘 ∈ Lip([𝑡𝑖, 𝑡𝑖+1]) satisfying

𝑦𝑖,𝑘(𝑡𝑖) = 𝑦(𝑡𝑖), 𝑦𝑖,𝑘(𝑡𝑖+1) = 𝑦(𝑡𝑖+1), 𝑦𝑖,𝑘([𝑡𝑖, 𝑡𝑖+1]) ⊆ 𝑦([𝑡𝑖, 𝑡𝑖+1]),

∫

𝑡𝑖+1

𝑡𝑖
𝛬(𝑠, 𝑦𝑖,𝑘(𝑠), (𝑦𝑖,𝑘)′(𝑠)) 𝑑 𝑠 ≤ ∫

𝑡𝑖+1

𝑡𝑖
𝛬(𝑠, 𝑦(𝑠), 𝑦′(𝑠)) 𝑑 𝑠 + 1

𝑘
.

Similarly, if 𝑚 ∈ 𝐼 , on [𝑡𝑚, 𝑏] there is 𝑦𝑚,𝑘 ∈ Lip([𝑡𝑚, 𝑏]) satisfying

𝑦𝑚,𝑘(𝑡𝑚) = 𝑦(𝑡𝑚), 𝑦𝑚,𝑘([𝑡𝑚, 𝑏]) ⊆ 𝑦([𝑡𝑚, 𝑏]).
Let 𝑦𝑘 be the Lipschitz function defined to be equal to 𝑦𝑖,𝑘 on [𝑡𝑖, 𝑡𝑖+1](𝑖 = 0,… , 𝑚). Then 𝑦𝑘 satisfies the desired boundary conditions
nd constraints, moreover

𝐹 (𝑦𝑘) ≤ 𝐹 (𝑦) + 𝑚 + 1
𝑘

≤ inf 𝐹 + 𝑚 + 2
𝑘

.

The conclusion follows. □

Example 5.8. Let

𝓁(𝑣) =
{

𝑒𝑣 if 𝑣 ≠ 0,
1 if 𝑣 = 0, 𝑞(𝑦) = 1

1 − 𝑦 , 𝑦 ∈ [0, 1[.

Let, for all 𝑦, 𝑣 ∈ R,

𝐿0(𝑦, 𝑣) =
⎧

⎪

⎨

⎪

⎩

1
|𝑦|

(𝑦, 𝑣) ∈ 𝐷0 ∶= {(𝑦, 𝑣) ∈ R2 ∶ 𝑦 ≠ 0, |𝑣| ≤ 1}

+∞ otherwise,

𝐿1(𝑦, 𝑣) =
⎧

⎪

⎨

⎪

⎩

1
|𝑦|

+ 𝑣2 (𝑦, 𝑣) ∈ 𝐷1 ∶= {(𝑦, 𝑣) ∈ R2 ∶ 𝑦 ≠ 0}

+∞ otherwise,

𝐿2(𝑦, 𝑣) =
{

0 (𝑦, 𝑣) ∈ 𝐷2 ∶= {(𝑦, 𝑣) ∈ R2 ∶ 𝑣 < 𝓁(𝑦)}
+∞ otherwise,

𝐿3(𝑦, 𝑣) =
{

0 (𝑦, 𝑣) ∈ 𝐷3 ∶= {(𝑦, 𝑣) ∈ R2 ∶ 𝑦 ∈ [0, 1[, 𝑣 ≤ 𝑞(𝑦)}
.

+∞ otherwise
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Notice that:

• The projection of 𝐷0 onto the 𝑣-axis is bounded;
• The 𝑦-sections of 𝐷1 are empty (if 𝑦 = 0) or equal to R, 𝐷1 is open for the Euclidean topology in R2, 𝐿1 is continuous on its

effective domain 𝐷1 and 𝐿1(𝑦, ⋅) is convex for all 𝑦. In particular 𝛬1 is bounded on the compact subsets of 𝐷1.
• The 𝑦-sections of 𝐷2 are open intervals containing 0, 𝐷2 is not open for the Euclidean topology in R2, 𝐿2 is equal to 0 on its

effective domain 𝐷2 and 𝐿2(𝑦, ⋅) is convex for all 𝑦.
• The 𝑦-sections of 𝐷3 are empty (if 𝑦 ∉ [0, 1[) or equal to ] − ∞, 𝑞(𝑦)] on which 𝐿3 equals 0 and 𝐿3(𝑦, ⋅) is convex. Notice that 𝐷3

being not open in R × R for 𝜏0
, it is not open for any other admissible topology.

Define 𝛬 ∶ [0, 4] × R × R → R ∪ {+∞} by

∀(𝑠, 𝑦, 𝑣) ∈ [0, 4] × R × R 𝛬(𝑠, 𝑦, 𝑣) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿0(𝑦, 𝑣) 𝑠 ∈]0, 1[,
𝐿1(𝑦, 𝑣) 𝑠 ∈]1, 2[,
𝐿2(𝑦, 𝑣) 𝑠 ∈]2, 3[,
𝐿3(𝑦, 𝑣) 𝑠 ∈]3, 4[.

Then 𝛬 satisfies the conditions of Theorem 5.7 with 𝐼 = {1, 2, 3}, 𝛥 = R ⧵ {0}, = R if we choose  = 𝑒 on [1, 2] and  = 0
on [2, 3] (since the vertical sections are open intervals but 𝐷2 is not open in R2); notice that 𝛬 satisfies the conditions just for the
initial endpoint problem on [3, 4]. It follows that there is no Lavrentiev phenomenon for the prescribed initial endpoint problem
with 𝛥 = R ⧵ {0},  = R.
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