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ABSTRACT
This work follows a companion article, which will be referred to as Paper I [Campeggio et al., J. Chem. Phys. 158, 244104 (2023)] in which a
quantum-stochastic Liouville equation for the description of the quantum–classical dynamics of a molecule in a dissipative bath has been for-
mulated in curvilinear internal coordinates. In such an approach, the coordinates of the system are separated into three subsets: the quantum
coordinates, the classical relevant nuclear degrees of freedom, and the classical irrelevant (bath) coordinates. The equation has been derived
in natural internal coordinates, which are bond lengths, bond angles, and dihedral angles. The resulting equation needs to be parameter-
ized. In particular, one needs to compute the potential energy surfaces, the friction tensor, and the rate constants for the nonradiative jumps
among the quantum states. While standard methods exist for the calculation of energy and dissipative properties, an efficient evaluation of
the transition rates needs to be developed. In this paper, an approximated treatment is introduced, which leads to a simple explicit formula
with a single adjustable parameter. Such an approximated expression is compared with the exact calculation of transition rates obtained via
molecular dynamics simulations. To make such a comparison possible, a simple sandbox system has been used, with two quantum states
and a single internal coordinate (together with its conjugate momentum). Results show that the adjustable parameter, which is an effective
decoherence time, can be parameterized from the effective relaxation times of the autocorrelation functions of the conjugated momenta of
the relevant nuclear coordinates.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0148192

I. INTRODUCTION

In the companion Paper I,1 a quantum-stochastic Liouville
equation (QSLE) in natural internal coordinates (i.e., bond lengths,
bond angles, and dihedral angles) has been formulated. The main
idea is partitioning of the degrees of freedom (d.o.f.) of the sys-
tem into three sets: QS, CS, and CB. In QS are included all those
coordinates that are relevant to the physical observable under study
and need to be treated at the quantum mechanical level. In the
QSLE presented in Paper I,1 only electronic degrees of freedom were
considered in this set, even if it can be extended to a few nuclear
coordinates. In CS are included the relevant nuclear d.o.f., which are

treated explicitly and at the classical level of theory. In particular,
the CS coordinates are directly related to the phenomenon under
investigation and correspond to the classical environment correlated
with the quantum subsystem.2 Finally, CB includes those nuclear
d.o.f. that can be considered irrelevant with respect to the physical
observable under study. In the context of the QSLE, the CB coordi-
nates must be (i) fast with respect to CS coordinates and (ii) weakly
coupled to the QS coordinates.3 They represent the dissipative envi-
ronment of the quantum–classical system. The CB d.o.f. are treated
at the classical level and enter in the QSLE implicitly as generators
of fluctuation–dissipation on CS coordinates. For this reason, the
dynamics of the CS d.o.f. is stochastic.
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The QSLE is a set of coupled diffusion-reaction like equations,
providing the time evolution of adiabatic electronic populations
of the system coupled with nuclear dynamics. The nonadiabatic
behavior of the system is described by momentum-jump operators,
which allow electronic transitions accompanied by a change in the
kinetic energy of the nuclei. The probability of jumping from one
electronic state to another depends also upon transition rates (see
below), which are functions of the CS coordinates and their conju-
gated momenta. The set of transition rates is part of the ingredients
required to parameterize the QSLE. Apart from the rates, one needs
the potential energy surfaces (PESs) of all of the electronic states and
the generalized friction tensor as function of the molecular confor-
mation. While standard computational methods exist for the latter
two properties, an efficient approach is required for the estimation
of transition rates in such a quantum–classical approach.

The calculation of nonadiabatic rates in condensed phases plays
a crucial role in the interpretation of nonradiative transition paths
and their impact in regard to technological application. Howgate4

reported the calculation of nonradiative electron transition rates
between pure electronic states of Cr3+ and V3+ in the Al2O3 lattice,
treating the system as a two-component electron–phonon system
and introducing a perturbation Hamiltonian that induces the transi-
tions. A similar approach has been applied to ions doped into insu-
lators or large-gap semiconductors.5 Another approach that can be
found is the application of transition state theory to model the non-
radiative rate constant.6 Therefore, an Arrhenius-like shape is used,
with the “activation energy” as the difference in energy for transition
from a radiative to a nonradiative state and a pre-exponential con-
stant that is proportional to a frequency of the vibrational mode that
is coupled to the transition. The approach is applied to phospho-
rescent Ir(III) complexes. Mishra and Collins computed radiative
and nonradiative rates of polyatomic systems based on the crude
adiabatic approximation.7 The method is suitable for ions in solids.
Approaches to compute the nonradiative rates in organic molecules
are also found. In the work of Kohn et al.,8 a heuristic approach
that employs machine learning techniques to estimate luminescence
quantum yields (and therefore nonradiative rates) reported. In a
recent study,9 a cost-effective method to predict electronic transi-
tion rates is introduced and applied to rationalize decay pathways of
excited benzophenone. To conclude this short review on the state-
of-the-art calculations of nonradiative rates, the work of Egorov
et al. should be mentioned.10 In that work, the authors compute the
nonradiative constants of a two-level system that is coupled to a har-
monic bath using both a fully quantum mechanical approach and
two different classical approaches. The results to suggest that if non-
adiabatic relaxation occurs in configurations with small energy gaps,
the quantum–classical approach can provide a good approximation
to nonradiative rates.

A cost-effective method to compute nonradiative rates in liq-
uid phases, taking into account explicitly nonharmonic nuclear
motions, is (to our knowledge) still lacking. In the framework of
the quantum–classical Liouville equation (QCLE), Grunwald and
Kapral11 used a modeling approach to compute the transition rates
by approximating the bath coordinates as a set of harmonic oscilla-
tors. The aim of this work is to provide both a numerical approach to
the computation of the transition rates based on classical molecular
dynamics simulations and an approximate, yet fast, explicit formula
that depends on a single adjustable parameter. A way to guess the

value of such a parameter will be discussed in what follows. We
used as test case a simple model system similar to that employed
by Grunwald and Kapral as a comparison. In particular, the system
consists of two electronic states, coupled to a single nuclear coor-
dinate (and its conjugated momentum) in the CS set. We decided
to use a dihedral angle of a simple butane-like model molecule
anchored to a surface in order to block the rigid body degrees of
freedom.

This paper is organized as follows: In Sec. II, the QSLE is
recalled and the exact and approximated approaches to the calcula-
tion of the transition rates are introduced. In Sec. III, the transition
rates are computed for the model system (which has been described
briefly above) and a comparison between the two approaches is dis-
cussed. In Sec. IV, conclusive remarks and plans for future work are
discussed.

II. METHODOLOGY
A. Quantum-stochastic Liouville equation

The QSLE is a multiscale, nonadiabatic mixed
quantum–classical method that describes the stochastic evolu-
tion of a system interspersed with transitions among the adiabatic
eigenstates. The derivation of the QSLE is reported in the com-
panion Paper I.1 Here, we report the equation in its final form to
make the paper self-consistent. The QSLE is a set of coupled master
equations given by

∂ρα(χ, t)
∂t

= −Γ̂α
FP(χ)ρα(χ, t) +

N

∑
β≠α

mαβ(χ) ĵα→β(χ)ρβ(χ, t)

−mαα(χ)ρα(χ, t), (1)

where N is the number of electronic states, ρα(χ, t) is the probability
density associated with the population of the α = 1, . . . , N eigenstate,
and χ = (RCM, Ω, q, PCM, L, p) ≡ (Q, Π) are the CS nuclear degrees
of freedom. In particular, (RCM, PCM) are respectively the position
and momentum of the center of mass, (Ω, L) are respectively the ori-
entation and angular total angular momentum of the molecule, and
(q, p) are respectively the internal coordinates and their conjugated
momenta. Γ̂α

FP(χ) is the Fokker–Planck operator of the system that
is responsible for the stochastic evolution of χ on the α-th potential
energy surface. The transitions among the PESs are accounted for
by the last two terms of Eq. (1). In particular, mαβ(χ) are the rates of
population transfer from β to α, the operator ĵα→β(χ) accounts for
the variation of the momenta of the nuclei associated with a transi-
tion between two electronic states, while mαα(χ) is the rate for the
loss of population of the α state.

The development of an efficient method to evaluate the
mαβ(χ) functions in an ab initio fashion is the objective of the
present work.

B. “Exact” calculation of the transition rates
The transition rates for the gain of population are1

mαβ(χ) = ∫
∞

0
dt′ ∫ dχB Mαβ

αβ(χ, χB, t′)ρc(χB∣χ), (2)
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where χB are the bath d.o.f., Mαβ
αβ(χ, χB, t′) is the memory function,

and ρc(χB∣χ) is the equilibrium probability density to find the bath
d.o.f. in χB conditioned by the CS subsystem being in χ. The memory
function reads as

Mαβ
αβ(χ, χB, t) = 2 Re[Wαβ(χ, χB, t)]Dαβ(χ)Dαβ(χαβ,t), (3)

where

Wαβ(χ, χB, t) = e−i∫ 0
t dτωαβ(Q αβ,τ), (4)

Dαβ(χ) = g ⋅ p′ ⋅ dINT
αβ (Q), (5)

ωαβ(Q) = [Eα(Q, QB) − Eβ(Q, QB)]/h̵, (6)

p′ = A ⋅ L + p, (7)

where Eα(Q, QB) is the PES in the electronic state α, g and A
are, respectively, the contravariant tensor and the Gauge potential
matrix,12 dINT

αβ (Q) is the nonadiabatic coupling vector, and χαβ,t rep-
resents the time-reversed trajectory of the system after transition
from Eα to the average PES Eαβ = (Eα + Eβ)/2.

In Eq. (2), two integrals appear. The first one is to be carried out
over the bath d.o.f., while the second integral is carried out over time.
As suggested in the work of Grunwald and Kapral,11 the former inte-
gral can be replaced by the average over an ensemble of trajectories
on Eαβ,

∫ dχB Mαβ
αβ(χ, χB, t)ρc(χB∣χ) =

1
Nχ

Nχ

∑
i=1

Mαβ
αβ,i(χ, χB, t), (8)

where Nχ is the number of molecular dynamics trajectories that in
a period of time t are found in χ, and Mαβ

αβ,i(χ, χB, t) is the memory
function computed using the i-th trajectory. The key idea of Eq. (8)
is that the average over the Nχ ensemble of trajectories is an average
over the conditional probability density ρc(χB∣χ). The equivalence is
valid in the limit Nχ →∞.

The computation of transition rates as expressed in Eq. (8) is
very resource demanding as it will be shown in Sec. III A. It becomes
infeasible rapidly with the dimensions of χ. For this reason, a fast
(even if approximated) approach is desirable.

C. Approximated explicit formula for the transition
rates

Here, an approximated explicit formula is introduced for the
calculation of transition rates. The basic idea shares some assump-
tions with the approach proposed by Rank and Kapral.13 The main
difference is that our derivation does require to model the ρc(χB∣χ)
probability density (which for simplicity is usually shaped as a
multivariate Gaussian, i.e., the bath is considered harmonic). The
derivation presented in this subsection is based on the high-friction
limit, on the fast relaxation of the bath phase-space coordinates,
and on the weak interaction between CB and CS degrees of free-
dom. Therefore, the method presented here is suitable to describe
the quantum–classical dynamics of a molecule in liquid phase.

Under these conditions, the memory function Mαβ
αβ,i(χ, χB, t) is

expected to show a short time decay with respect to the timescale of
the dynamics of χ. It is useful to rewrite Eq. (3) by making explicit
both the phase factor and the time-reversed evolution. The memory
function reads

Mαβ
αβ(χ, χB, t) = 2 Re[e−i∫ 0

t dτ e−iL̂ αβ(χ αβ ,χB)τ ωαβ(Q)]

×Dαβ(χ)e
−iL̂ αβ(χ αβ ,χB)tDαβ(χαβ), (9)

where iL̂αβ(χαβ, χB) is the Liouville operator associated with the clas-
sical evolution on Eαβ. Such an energy difference term can be split
into a zero-order term that depends only on CS, i.e., E(0)αβ (Q), a

term that depends only on bath coordinates, i.e., E(B)αβ (QB), and an

interaction term, E(int)
αβ (Q, QB) such that

Eαβ(Q, QB) = E(0)αβ (Q) + E(B)αβ (QB) + E(int)
αβ (Q, QB). (10)

Moreover, due to the assumption of weak coupling between CS and
CB d.o.f., the total nuclear kinetic energy can be written as

K(χαβ, χB) ≈ K(0)(χαβ) + K(B)(χB). (11)

When Eqs. (10) and (11) are substituted into the expression of the
Liouville operator iL̂αβ(χαβ, χB), the latter can in turn be split into

iL̂αβ(χαβ, χB) = iL̂(0)αβ (χαβ) + iL̂(int)
αβ (χαβ, χB) + iL̂ (B)(χB), (12)

where

iL̂(int)
αβ (χαβ, χB) = −∇QE(int)

αβ (Q, QB) ⋅ (∇Παβ
−∇ΠB). (13)

Since the averaging of the memory function is expected to be a fast
process with respect to the nuclear dynamics, the Suzuki–Trotter
expansion is applied here to obtain

e−iL̂ αβ(χ αβ ,χB)t ≈ e−iL̂ (0)
αβ (χ αβ)te−iL̂ (int)

αβ (χ αβ ,χB)t−iL̂ (B)(χB)t , (14)

which can be used to recast the integral over bath coordinates in
Eq. (9) to

∫ dχB Mαβ
αβ(χ, χB, t)ρc(χB∣χ)

≈ 2 Re
⎡
⎢
⎢
⎢
⎣

e−i∫ 0
t dτ e

−iL̂ (0)
αβ (χ αβ)τ

ωαβ(Q)
⎤
⎥
⎥
⎥
⎦

×Dαβ(χ)e
−iL̂ (0)

αβ (χ αβ)t[(gTdINT
αβ (Q)) ⋅

⋅ ∫ dχB ρc(χB∣χ)e
−iL̂ (int)

αβ (χ αβ ,χB)t−iL̂ (B)(χB)tp′αβ], (15)

where dINT
αβ (Q) is the conformational part of the diabatic coupling

vector.1
The average of memory function is therefore rewritten as a

product of a function that, despite its complexity, depends only on
CS coordinates multiplied by a function that is the average over the
conditional Boltzmann probability density of the bath coordinates
(ρc(χB∣χ)) of the possible shifts in momenta conjugated to the CS
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coordinates. The last integral in Eq. (15) is a function that decays in
time due to randomization of the velocities.13

The next step is to bypass the calculation of bath integral, by
introducing the ansatz

e−τ−1
dec t p′αβ ≈ ∫ dχB ρc(χB∣χ)

× e−iL̂ (int)
αβ (χ αβ ,χB)t−iL̂ (B)(χB)t p′αβ, (16)

where τdec is assumed to be a diagonal matrix, each element of which
represents an effective decoherence time for each of the momenta
conjugated to the internal coordinates q. A justification for Eq. (16)
is provided in Appendix A.

Substituting Eq. (16) into Eq. (15), the transition rates can be
expressed as

mαβ(χ) ≈ ∫
∞

0
dt′ M̃αβ

αβ(χ, t′), (17)

where

M̃αβ
αβ(χ, t) = 2 Re[W̃αβ(χ, t)]Dαβ(χ)D̃αβ(χαβ,t), (18)

W̃αβ(χ, t) = exp [−i∫
0

t
dτ e−iL̂ (0)

αβ (χ αβ)τωαβ(Q)], (19)

D̃αβ(χαβ) = [e
−τ−1

dec t gTdINT
αβ (Q)] ⋅ [e

−iL̂ (0)
αβ (χ αβ)t p′αβ]. (20)

Since the computation of Eq. (17) does not require knowledge
of ρc(χB∣χ), and the integral has been substituted with a simple expo-
nential expression, the computational cost is orders of magnitude
smaller than the exact protocol presented above. The price to pay is
that a set of adjustable parameters, i.e., the diagonal elements of the
τdec matrix, are introduced. A possible strategy to parameterize the
decoherence time is provided in what follows.

D. Estimation of the decoherence times
The exponential decay matrix e−τ−1

dec t introduced in Eq. (16)
is a simple way to model the effect of bath coordinates on transi-
tion rates, which is to make the system lose memory of its initial
configuration. As it has been observed by Rank and Kapral,13 the
decoherence time is smaller the higher the friction is. It can be
expected that τdec can be estimated from time autocorrelation func-
tion of the momenta. In the Sec. III, the goodness of such an
assumption is proven for a Lennard-Jones solvent.

The autocorrelation function of the momenta can be computed
from an all-atom molecular dynamics simulation carried out on
the average PES Eαβ(Q, QB) and taking as τdec,i the time at which
the autocorrelation function of the momentum pi is equal to e−1.
While such a procedure would be very simple in Cartesian coordi-
nates, some additional work is required in internal coordinates since
the metric tensor g must be used.12 A second, simpler route can
be followed if Eαβ presents a single minimum. The autocorrelation
function of the momentum conjugated to the i-th coordinate can be
modeled as

Ci(t) =
λ2
+,i

λ2
+,i − ki/gi

e−λ+,it −
ki/gi

λ2
+,i − ki/gi

e−λ−,it , (21)

where

λ±,i =
ξi

2gi
±

1
2

¿
Á
ÁÀ ξ2

i

g2
i
− 4

ki

gi
, (22)

while ξi, gi, and ki are respectively the i-th diagonal elements of
the friction, covariant, and curvature matrices associated with the
i-th internal coordinate qi, respectively, whose average PES is locally
approximated by the harmonic potential

Eαβ(qi) ≈
1
2

ki(qi − qi,eq)
2. (23)

A detailed derivation of Eq. (21) is provided in Appendix B.

E. Model system
In Sec. II, two methods to compute the transition rates have

been introduced. The “exact” method provides a way to compute
the integral over bath coordinates using MD simulations. However,
it becomes unfeasable as soon as a few internal degrees of freedom
are included in the CS set. The second approach is based on the
assumption of weak (energetic) coupling between the CS and CB
coordinates, and on the fast loss of memory with respect to the time
evolution of both the populations (QS d.o.f.) and the CS degrees of
freedom. Such an approximated approach requires limited compu-
tational effort with respect to the exact protocol. To test the validity
of the approximated method, the transition rates are here estimated
using both the approaches presented in the previous subsections on
a test-case model system. The objective is to test the approximated
method on a model system that resembles the molecular systems tar-
get of the approach presented here, i.e., flexible molecules in liquids.
It is worth noting that the model system is intended to benchmark
the approximations that, in a dissipative environment, lead to the
QSLE and to benchmark the approximated estimation of the transi-
tion rates. A system similar to that used by Grunwald and Kapral was
chosen,11 i.e., the quantum–classical system is described by a single
nuclear coordinate (CS) and two electronic states (QS), immersed in
a classical (stochastic) dissipative bath (CB).

In detail, the model system (represented in Fig. 1) is built by
a coarse-grained molecule composed of four beads with a butane-
like topology. The bond lengths are fixed to 2.5 Å, and the bond
angles are fixed to 120○, so that the only internal degree of free-
dom is the dihedral angle. The molecule is anchored to a surface
made of 50 dummy atoms (ε = −0.12 kcal/mol and Rmin = 3.4 Å),
which are kept fixed. Such a surface is blocking the translation and
rotation of the molecule. Apart from this constraint, there is no
potential energy interaction between the anchor points of the sur-
face and the four-bead molecule. Finally, the system is immersed
in 330 solvent molecules treated at a coarse-grained level as single
beads. The MARTINI force field was employed to parameterize the
Lennard-Jones potential. In particular, type IV beads were used for
the solute,14 and MARTINI water parameters were used for the sol-
vent.15 An example conformation of the model system is provided
in Fig. 1. The relevant nuclear d.o.f. are therefore χ = (φ, pφ) with φ
the dihedral angle and pφ its conjugated momentum.

J. Chem. Phys. 158, 244105 (2023); doi: 10.1063/5.0148192 158, 244105-4
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FIG. 1. Representation of the model system. The coarse-grained molecule is rep-
resented by purple spheres connected by sticks. The cyan spheres represent the
water beads, and the gray plane represents the surface that serves as anchor point
for the molecule. The yellow curved arrow highlights the unique internal degree of
freedom included in the model, i.e., the dihedral angle φ.

A two-level system is considered, where, for example, the
electronic states can be HOMO (0) and LUMO (1) energy levels.
Therefore, the QSLE consists of just two coupled partial differential
equations, given by

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂ρ0(χ, t)
∂t

= −Γ̂0
FPρ0(χ, t) +m01(χ)ρ1(χ01, t) −m00(χ)ρ0(χ, t),

∂ρ1(χ, t)
∂t

= −Γ̂1
FPρ1(χ, t) +m10(χ)ρ0(χ10, t) −m11(χ)ρ1(χ, t),

(24)

where χαβ = ĵα→β(χ)χ, and the Fokker–Planck operator of the
α = 0, 1 state Γ̂α

FP reads

Γ̂α
FP =

pφ

gφ

∂

∂φ
+ Fα(φ)

∂

∂pφ
−

∂

∂pφ
ξφ

pφ

gφ
− kBT

∂

∂pφ
ξφ

∂

∂pφ
, (25)

where Fα(φ) is the Hellmann–Feynman force

Fα(φ) = −
∂Eα(φ)
∂φ

, (26)

gφ is the conformational element of the covariant metric tensor,12

and ξφ is the conformational part of the friction tensor. The latter
could be parameterized via a hydrodynamic approach.16

To obtain the PESs, a model Hamiltonian has been employed,
taking as representation of the potential energy (V) over the two
electronic states the matrix

V = V0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Δ − cos φ + sin (φ/2) −δ

−δ Δ − cos φ − sin (φ/2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (27)

FIG. 2. Plot of the PESs as functions of the dihedral angle for V0 = 4.835kBT ,
Δ = 1.0, and δ = 0.025. Blue solid line E0, red dashed line E1, green
dotted-dashed line the average surface E01.

where V0 is a scaling factor of the potential, Δ is an energy shift
common to all the eigenvalues, and δ regulates the energy separa-
tion between the electronic levels. Both Δ and δ are dimensionless
quantities, while V0 has the dimension of energy. Such a represen-
tation leads to PESs that resemble those employed by Grunwald
and Kapral11 in their work. In all the calculations, V0 = 4.835kBT,
Δ = 1.0, and δ = 0.025. The resulting eigenvalues are

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

E0(φ) = V0[Δ − cos φ −
√

δ2
+ sin2

(φ/2)],

E1(φ) = V0[Δ − cos φ +
√

δ2
+ sin2

(φ/2)].
(28)

The two PESs are shown in Fig. 2, along with the mean PES E01(φ).
The nonadiabatic vectors computed from the eigenfunctions of

V become scalar functions of the dihedral angle, d01(φ) and d10(φ).
These coefficients provide the propensity for nonadiabatic events to
occur. In fact, as it is shown in Fig. 3, d01(φ) reaches its peak for
φ = 0, where the energy gap between E0 and E1 is minimum.

III. RESULTS
A. “Exact” protocol

The exact computation of transition rates is very resource
demanding, since it requires an ensemble of trajectories of the sys-
tem [Eq. (8)] large enough to sample the conditional Boltzmann
distribution of the bath coordinates in each point of the phase-space
of CS. In this case, the molecular dynamics simulations were per-
formed using NAMD software,17,18 at 300 K with a fixed box 25.845
× 26.16 × 60 Å 3. Since 300 MD trajectories have been required to
compute Eq. (8) in the (φ, pφ) phase space (see below), we decided
to run canonical NVT simulations instead of NVE, for which a
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FIG. 3. Plot of the nonadiabatic coupling d01 as function of the dihedral angle for
V0 = 4.835kBT , Δ = 1.0, and δ = 0.025.

larger simulation box would have been needed, thus increasing the
computational time. The Langevin thermostat has been employed
with a correlation time of 0.2 ps, which ensures correct calculation
of the self-diffusion coefficient of water,17 thus assuming that the
dynamical properties of the solute are reliable. The time step was
set to 1 fs, and periodic boundary conditions were applied in all
directions (assuming that because of the short-range behavior of the
Lennard-Jones potential, the interaction among solvent beads above
and below the dummy atoms surface was negligible). The Colvars19

package of NAMD was employed to extract the dihedral angle time
series.

The function m01(χ) was obtained over a discrete grid in the
(φ, pφ) phase space. In particular, the selected bin widths were
Δφ = 0.5○, and Δpφ = 0.05(gφkBT), which were chosen in such a way
that both energy and nonadiabatic coupling do not change abruptly
within the bins. The domain was limited to −6.0○ < φ < +6.0○ and
0.5 < pφ/(gφkBT)1/2

< 2.0, which is the region where, at 300 K and
given the shape of the PESs, it is expected to mostly find the system
and, therefore, where it will be mostly probable to observe a jump
between the two electronic states. For larger values of ∣φ∣, the tran-
sition rate rapidly tends to zero because the nonadiabatic coupling
drops (see Fig. 3). For large values of ∣pφ∣, one should expect the sys-
tem to have more energy to promote the electronic transition, but
the probability of finding the system with such a high kinetic energy
drops exponentially to zero.

The MD protocol was as follows: First, a preliminary long
trajectory of 52 ns saving coordinates each 1 ps was computed (dis-
carding the first 2 ns as equilibration time). Such a trajectory serves
to sample the average PES, E01. Second, 300 equally distributed
configurations were extracted from the long trajectory and used as
starting points for short, 6 ns trajectories (discarding the first 0.5 ns
as equilibration time), saving coordinates each 1 fs. The third step
was to split each of the short trajectories into small chunks of 0.5 ps.
Based on the final value of (φ, pφ), a chunk of trajectory is assigned to
one bin in the grid defined above. For example, a chunk of trajectory

ending at χ∣t=0.5ps = (φ = 0.12○, pφ = −1.34(gφkBT)1/2
) is assigned

to the bin (0.0○ < φ < 0.5○,−1.35 < pφ/(gφkBT)1/2
< −1.30). In this

step, Nχ trajectories for each bin were collected [see Eq. (8)].
The fourth step was the computation of the i-th memory func-

tion, M01
01,i(χ, χB, t) at each time step, for the Nχ chunks belonging to

each bin, followed by calculation of the mean value as expressed in
Eq. (8). The resulting bath average was significantly affected by the
value of Nχ . In particular, the higher the value of Nχ , the smaller was
the noise of the average memory function.

The last step was comprised of numerical integration over
time of the average memory functions. The integration should be
performed until the integrating function decays to zero. However,
because of low statistics for some of the bins, the tails of mem-
ory functions were too noisy. In these cases, the upper integration
extreme was set at 0.5 ps, which was the total length of a chunk. A
schematic representing the protocol defined above is shown in Fig. 4.

As mentioned above, this approach is very resource demand-
ing and it becomes rapidly infeasible as soon as the dimension of

FIG. 4. Visual representation of the exact protocol to compute m01(χ). The colors
are associated with the five steps described in the main text, following the order
violet→ orange→ green→ blue→ red.

FIG. 5. Visual representation of the approximate protocol to compute m01(χ). The
colors are associated with the five steps described in the main text, following the
order violet→ green→ orange→ blue→ red.
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χ increases to just a few coordinates. For example, if the CS set
contains two internal coordinates, the sampling on the adiabatic
dynamics must be done in four directions (two for the coordinates
and two for their conjugated momenta), making the number of short
trajectories increase exponentially to ensure a statistically large Nχ
value. For this reason, a faster, even if approximated, estimation of
the rate coefficients is desirable.

B. Approximated protocol
The protocol used to compute the approximated transition

rates can be divided into five steps. The first one was the selec-
tion of φ and pφ domains with the highest transition probability

that were the same as defined in the exact protocol. The best way
to select the extent of φ and pφ is to consider only the domain in
which ΔE01 > Ek, where the last term represents the kinetic energy
associated with the system d.o.f. In this way, all the configurations
without enough energy to overcome the barrier potential are cut out.
Then, the resulting domain has to be compared with the nonadia-
batic coupling, excluding the region where d01 is too small to provide
population transfer.

The second step was computation of the “fictitious” time-
reversed trajectory. In other words, the Newton dynamics along
E01(φ) was simulated without the influence of bath degrees of free-
dom. In this way, a single trajectory was computed, instead of
hundreds, needed in the exact protocol.

FIG. 6. (a) Plot of the bath average of the memory function computed via the exact protocol for different grid points: violet solid line, χ = (1.2○, 2.00(gφkBT)1/2
); light

blue dotted-dashed line, χ = (−1.2○, 2.00(gφkBT)1/2
); light green dotted line, χ = (0.2○, 0.82(gφkBT)1/2

). (b) Plot of the bath average of the memory function computed
via the approximate protocol for different grid points: violet solid line, χ = (1.2○, 2.00(gφkBT)1/2

); light blue dotted-dashed line, χ = (−1.2○, 2.00(gφkBT)1/2
); light green

dotted line, χ = (1.2○, 0.82(gφkBT)1/2
). (c) Surface plot of exact m01(φ, pφ) in ps−1. (d) Surface plot of approximate m01(φ, pφ) in ps−1.
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The third step consisted of computing the decaying exponential
e−t/τdec . For this purpose, the approximate autocorrelation function
of pφ was computed [Eq. (21)], and τdec was chosen as the time at
which the function was equal to 1/e.

The fourth step consisted of computing the product between
backward trajectories and the decaying exponential to obtain
M̃01

01(χ, t). This step was much faster compared to the corresponding
step of the exact protocol.

Finally, the transition rate was obtained by time integration.
Since the integral was not analytical, the Euler forward integra-
tion method was performed, using a time step of 0.1 fs. The upper
extreme of the integral td was fixed at 0.5 ps, as it was set in the exact
protocol. A schematic representing the protocol is shown in Fig. 5.

C. Discussion
Figures 6(a) and 6(b) show comparison between the exact

(M̄01
01(χ, t)) and the approximated (M̃01

01(χ, t)) bath average of the
memory function associated with the relaxation from the excited
state to the ground state m01(χ), at three different points in the χ
phase space.

As it can be seen below, the approximated protocol reproduces
the exact functions quite well, even though it shows a larger damping
of the tail oscillations. However, it is difficult to say whether this is
a problem of the approximated protocol or an effect of low statistics
in the exact protocol.

Figures 6(c) and 6(d) show comparison between the exact and
the approximated transition rates. Both the trends and the abso-
lute values of m01(χ) are well reproduced from the approximated
approach. In particular, the higher the momentum, the higher the
transition rate, due to the greater nuclear kinetic energy that can
be converted into electronic potential. Along the dihedral angle,
instead, the transition rate increases as φ tends to zero, as it was
expected from the shape of the nonadiabatic coupling term (Fig. 3).
In addition, it appears that the function is not symmetric around
φ = 0○. Since the configurations explored during a time-reversed tra-
jectory depend on the starting value of χ, for a positive value of the
momentum, it is generally true that φ(t − Δt) < φ(t) (and an anal-
ogous observation holds for a negative momentum, inverting the
inequality). Therefore, since d01 is symmetric around 0○, the asym-
metry in probability of the time-reversed trajectories is translated
into a larger transition rate for φ > 0○.

IV. CONCLUSIONS
The results reported in this paper (i) show that a dissipative

bath implies fast relaxation of the memory kernel of jumps among
PESs, and the timescale allows one to determine whether or not the
Markovian approximation can be done; (ii) because of the high-
friction limit in condensed phases, a cost-effective explicit formula
for the calculation of the transition rates can be obtained.

The first observation is a partial benchmark of the method. The
difficulties to benchmark the QSLE by comparison to a full quan-
tum mechanical calculation arise from the necessity for computing
the quantum dynamics of a large number of molecules (e.g., here
300 beads were used to simulate the solvent) that interact with each
other and with the relevant part of the system (the solute) with a

Lennard-Jones (or, in general, nonbonded) interaction. Usually, the
1D simple avoided crossing model introduced by Tully20 is used as
a benchmark for quantum–classical methods, but such a model is
not suited for the QSLE since there is no dissipative environment.
This, in turn, breaks the Markovian nature of jumps among the
PESs. The Markovian approximation can be easily substituted by a
non-Markovian time evolution of the quantum subsystem and in the
absence of a dissipative bath, the QSLE is just a QCLE, which has
been already benchmarked against the Tully model with satisfying
results.2 In literature, a benchmark of the performance of harmonic
and nonharmonic classical baths in quantum–classical descriptions
has been attempted,10 but using this work as a benchmark for the
QSLE is not directly possible because the quantum–classical models
are in part different and since the authors of that work are mostly
interested in dynamics in solids. Further work is required to try to
benchmark the QSLE with a full quantum calculation. At least, in
this paper it was tested that a dissipative environment implies fast
relaxation of the memory functions due to bath averaging, as it was
shown in Figs. 6(a) and 6(b). The results also provide a limit to the
characteristic timescale of the QS and CS d.o.f. in order to assume
the Markovian dynamics and this timescale seems to be linked to
the relaxation of the CS momenta.

The second result is the approximated, but cost-effective, pro-
tocol to estimate the transition rates for jumps among electronic
PESs. At the basis of the approximation is the fast relaxation dynam-
ics of the bath degrees of freedom, allowing linearization of the
exponential operators entering in the expression for rates. The final
formula, i.e., Eq. (17) (and equations below), requires the calculation
of a classical molecular dynamics trajectory on the average PES. Note
that Eqs. (17) and (18) are computed on the time-reversed evolution
of the relevant coordinates in vacuum. Equation (17) relies on a free
parameter, which has been called an effective decoherence time. It
is responsible for the loss of memory in the master equation part
of the QSLE. Therefore, it represents the timescale characteristic for
the jump from the actual PES to another one, independent of which
path among PESs was followed earlier. Such a single parameter was
introduced as an ansatz in place of the very complex integral to be
carried out in the coordinates and momenta of the bath coordinates.
Such an integral is unfeasible both for the high dimensionality of
the bath phase space and for the complicated expression of the inte-
grand function. While a free parameter is introduced, the shape of
the integrand suggests that the decoherence time is related to the
relaxation of the conjugated momenta of the relevant degrees of
freedom. Therefore, given that the relevant dynamics in the aver-
age PES is the vibration around the energy minimum, we were able
to compute analytically the relaxation time for the momentum and
it turned out to be in the correct order of magnitude. If anharmonic-
ity is not negligible, such a correlation time can be computed from
short molecular dynamics simulations.

Two steps are planned as further work. First, the implemen-
tation of a numerical method to solve the QSLE, in particular to
have access to the time evolution of the electronic populations cou-
pled with the motions of nuclei. Such a work is in progress and the
method chosen for the numerical solution is the local radial basis
function collocation approach.21–23 It is a meshfree protocol that
should allow to solve the QSLE in a multidimensional coordinate
space.
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The second step is the application of the QSLE to study
the relaxation pathways of excited organic molecules in liquid
phases. Evidence has shown that conformational changes of the
molecule—in particular the timescales of nuclear motions—can
affect such a pathway.9 The QSLE provides the perfect framework
to include the relevant dynamics of nuclei in the dynamics of elec-
tronic populations. To pursue this objective, a choice will have to be
made on how the PESs will be calculated and treated. In the present
formulation, the QSLE does not include relaxation due to intersys-
tem crossing if the PESs are pure spin states. Therefore, further work
is required to provide a way to include the ISC mechanism in the
model.
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APPENDIX A: EXPONENTIAL ASSUMPTION

In this appendix, a qualitative explanation of Eq. (16) is pro-
vided. In order to simplify the bath integral in Eq. (15), the following
Taylor expansion is performed:

e−iL̂ (int)
αβ (χ αβ ,χB)t−iL̂ (B)(χB)tp′αβ

≈ [1 − iL̂(int)
αβ (χαβ, χB)t − iL̂ (B)(χB)t]p

′
αβ. (A1)

Consequently, one gets

∫ dχB ρc(χB∣χ)[1 − iL̂(int)
αβ (χαβ, χB)t − iL̂ (B)(χB)t]p

′
αβ

= p′αβ + ∫ dχB ρc(χB∣χ)∇qE(int)
αβ (Q, QB) t, (A2)

where the integral in the right-hand side of the equation can be
approximated to k(χαβ)t. k(χαβ) is in principle a dense matrix, but
if there are no cross-correlation effects it becomes diagonal. Consid-
ering the case of no correlations between momenta and supposing
that each momentum p′αβ,i decays to zero for ti = τdec,i, the following
expression is obtained:

k(χαβ) = τ−1
dec p′αβ. (A3)

Finally, considering the inverse of the Taylor expansion, Eq. (16) is
obtained,

(1 − τ−1
dec t)p′αβ = e−τ−1

dec t p′αβ. (A4)

APPENDIX B: APPROXIMATE CORRELATION
FUNCTION OF THE MOMENTUM

In this appendix, an estimation of the τdec for a one-
dimensional problem X = (q, p) is provided. In the hypothesis
that

Eαβ ≈
1
2

k(q − qeq), (B1)

the probability density function associated with the mean PES is

ρeq =
1
Z

e−
k

2kBT (q−qeq)2− 1
2kBTg p2

. (B2)

Changing the variables q̃ =
√

k
kBT (q − qeq) and p̃ =

√
1

kBTg p, the
Fokker–Planck operator for the evolution on Eαβ becomes

Γ̂ = −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂

∂q̃
∂

∂p̃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

tr⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −

√
k
g√

k
g

ξ
g

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ρ̃eq

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂

∂q̃
∂

∂p̃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ρ̃−1
eq = ∇̂

tr
X̃ωρ̃eq∇̂X̃ρ̃−1

eq , (B3)

where X̃ = (q̃, p̃) and ρ̃eq = (2π)−1e−(q̃
2+p̃ 2)/2. Considering the sym-

metrized Fokker–Planck operator,

ˆ̃Γ = ρ̃−1/2
eq Γ̃ρ̃1/2

eq , (B4)

the following ladder operator is defined:

Ŝ± =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ŝ±q̃
Ŝ±p̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= ∓

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e±q̃ 2/4 ∂

∂q̃
e∓q̃ 2/4

e±p̃ 2/4 ∂

∂p̃
e∓p̃ 2/4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B5)

so that ˆ̃Γ = Ŝ+ ⋅ ωŜ−. Then, the left and right eigenvalues of ω are
taken into account,

ωE = Eλ, (B6)

Ftrω = λFtr, (B7)

FtrE = I. (B8)
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In this way, the symmetrized Fokker–Planck operator is rewritten as

ˆ̃Γ = Ô+ ⋅ λÔ− = −λ1Ô+1 Ô−1 − λ2Ô+2 Ô−2 , (B9)

where

Ô+ = EtrŜ+ (B10)

Ô− = FtrŜ−. (B11)

The eigenfunctions of ˆ̃Γ are

∣n1, n2⟩ = (n1!n2!)−1/2
(Ô+1 )

n1(Ô+2 )
n2 ∣0, 0⟩, (B12)

where ∣0, 0⟩ = ρ̃1/2
eq and the effect of the ladder operators is

(Ô+1 )
m1 ∣n1, n2⟩ =

√
(n1 +m1)!

n1!
∣n1 +m1, n2⟩, (B13)

(Ô−1 )
m1 ∣n1, n2⟩ =

√
n1!

(n1 −m1)!
∣n1 −m1, n2⟩, (B14)

provided that m1 ≤ n1, otherwise the result is 0 (similar equations
exist for operators acting on the second coordinate). Using these
rules, one gets

ˆ̃Γ∣n1, n2⟩ = (λ1n1 + λ2n2∣n1, n2⟩ = Λn1 ,n2 ∣n1, n2⟩. (B15)

The time-correlation function for the momenta becomes

C(t) =
⟨p̃ρ̃1/2

eq ∣e−
ˆ̃Γ t
∣p̃ρ̃1/2

eq ⟩

⟨p̃ 2ρ̃eq⟩

= ∑
n1 ,n2

∑
n′1 ,n′2

⟨p̃ρ̃1/2
eq ∣n1, n2⟩

× ⟨n̄1, n̄2∣e−
ˆ̃Γ t
∣n′1, n′2⟩⟨n̄

′
1, n̄′2∣p̃ρ̃1/2

eq ⟩, (B16)

where ∣n̄′1, n̄′2⟩ = (n1!n2!)−1/2
[(Ô−1 )

n1]
†
[(Ô−1 )

n2]
†
∣0, 0⟩. Using the

properties

⟨n̄′1, n̄′2∣n1, n2⟩, (B17)

[Ô+i , Ô+j ] = [Ô
−
i , Ô−j ], (B18)

[Ô+i , Ô−j ] = δi, j. (B19)

Equation (B16) becomes

C(t) = ∑
n1 ,n2

⟨p̃ρ̃1/2
eq ∣n1, n2⟩⟨n̄1, n̄2∣p̃ρ̃1/2

eq ⟩e
−Λn1 ,n2 t. (B20)

To compute the integrals in Eq. (B20), the expansion of p̃ρ̃1/2
eq is

helpful

∣p̃ρ̃1/2
eq ⟩ = Ŝ+q̃ ∣0, 0⟩ = F1,p̃Ô+1 ∣0, 0⟩ + F2,p̃Ô+2 ∣0, 0⟩

= F1,p̃∣1, 0⟩ + F2,p̃∣0, 1⟩ (B21)

together with its conjugated complex given by

⟨p̃ρ̃1/2
eq ∣ = ⟨1̄, 0̄∣E1,p̃ + ⟨0̄, 1̄∣E2,p̃. (B22)

In this way, Eq. (B20) can be written as

C(t) = E1,p̃F1,p̃e−Λ1,0t
+ E2,p̃F2,p̃e−Λ0,1t. (B23)

After computing the eigenvalues λ1 = λ+ and λ2 = λ− of ω,

λ± =
ξ

2g
±

1
2

¿
Á
ÁÀ ξ2

g2 − 4
k
g

, (B24)

and imposing the condition FtrE = I, the left and right eigenvectors
are obtained as

E1 =
1

√

λ2
1 − k/g

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
√

k/g

λ1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

E1,q̃

E1,p̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (B25)

E2 =
1

√

λ2
1 − k/g

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−λ1
√

k/g

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

E2,q̃

E2,p̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (B26)

F1 =
1

√

λ2
1 − k/g

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√
k/g

λ1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

F1,q̃

F1,p̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (B27)

F2 = −
1

√

λ2
1 − k/g

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ1
√

k/g

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

F2,q̃

F2,p̃

⎤
⎥
⎥
⎥
⎥
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. (B28)

Finally, the approximate time-correlation function is

C(t) =
λ2

1

λ2
1 − k/g

e−λ1t
−

k/g
λ2

1 − k/g
e−λ2t. (B29)
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