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S O M M A R I O

I sistemi elettronici di potenza, fondamentali per svariate applicazioni, oper-
ano in condizioni ambientali impegnative ed affrontano diverse sollecitazioni,
tra cui elevate tensioni, "power" e "thermal cycling" e vibrazioni meccaniche.
Queste sollecitazioni possono causare la degradazione dei componenti e, con-
seguente impatto sulle prestazioni, la sicurezza e la durata del sistema. Per-
tanto, il potenziamento dell’affidabilità dei sistemi elettronici di potenza riveste
un’importanza vitale.

La valutazione dell’affidabilità nell’ambito dell’elettronica di potenza, in
particolare durante il power e thermal cycling, richiede un approccio olistico
che includa l’analisi dei meccanismi di guasto, la previsione dei tassi di guasto
e lo sviluppo di strategie per migliorare l’affidabilità del sistema. Questo com-
pito complesso richiede una comprensione approfondita del comportamento
dei dispositivi semiconduttori di potenza, delle tecniche di gestione termica e
delle tecnologie di packaging.

La tesi si concentra in particolare sugli studi e lo sviluppo di modelli di
affidabilità legati al fenomeno del power cycling sui dispositivi a semicondut-
tore di potenza. Per far ciò, è stato innanzitutto progettato un set-up sper-
imentale ad hoc per eseguire test accelerati, consentendo l’innesco dei due
principali meccanismi di guasto legati a tale fenomeno: il "solder joint fa-
tigue" e il "wire bond degradation". Il set-up implementa due metodologie di
test da power cycling: a corrente costante o a ciclo termico costante. Entrambi
i metodi sono utilizzati in questo lavoro per calibrare modelli analitici, allo
scopo di determinarne l’impatto sull’accuratezza della stima del lifetime dei
dispositivi di potenza soggetti a condizioni di stress non costante.

Nel corso di questo lavoro, si esplora inoltre l’implementazione di tecniche
di deep learning per definire un modello in grado di prevedere il lifetime dei
dispositivi di potenza, soggetti a diversi meccanismi di degrado. Le indagini
iniziali impiegano una rete neurale artificiale (ANN) per sviluppare un mod-
ello statico non lineare. Test sperimentali convalidano l’accuratezza e la supe-
riorità di questo modello rispetto a quello analitico tradizionale. In aggiunta, è
stato sviluppato un modello basato sui dati utilizzando una rete bLSTM (bidi-
rectional Long Short-Term Memory) per prevedere la vita utile rimanente dei
dispositivi basandosi sui profili di degradazione della tensione. L’attenzione
è stata rivolta all’impatto della suddivisione del dataset sulle prestazioni del
modello, evidenziando l’accuratezza nella previsione della vita utile rima-
nente, anche con un numero limitato di dati.
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A B S T R A C T

Electronic power systems, crucial for various applications, operate in demand-
ing environmental conditions and face different stressors, including high volt-
ages, power and thermal cycling, and mechanical vibrations. These stressors
can lead to component degradation, with consequent impacts on system per-
formance, safety, and lifespan. Therefore, enhancing the reliability of elec-
tronic power systems is of paramount importance.

Reliability assessment in the field of power electronics, especially during
power and thermal cycling, necessitates a holistic approach that encompasses
the analysis of failure mechanisms, the prediction of failure rates, and the
development of strategies to improve system reliability. This complex task
requires a profound understanding of the behavior of power semiconductor
devices, thermal management techniques, and packaging technologies.

The thesis primarily focuses on researching and developing reliability mod-
els related to the phenomenon of power cycling in semiconductor power de-
vices. To achieve this goal, firstly a dedicated experimental set-up has been
designed to conduct accelerated tests, enabling the initiation of the two pri-
mary failure mechanisms associated with this phenomenon: solder joint fa-
tigue and wire bond degradation. The set-up implements two methodologies
for power cycling tests: constant current and constant temperature cycling.
Both methodologies are adopted in this work to calibrate analytical lifetime
models, with the aim of determining their impact on the accuracy of lifetime
estimation for power devices subjected to non-constant stress conditions.

Furthermore, this work explores the implementation of deep learning tech-
niques to establish a model capable of predicting the lifetime of power de-
vices subject to various degradation mechanisms. Initial investigations in-
volve the use of an Artificial Neural Network (ANN) to develop a non-linear
static model. Experimental tests validate the accuracy and superiority of this
model compared to traditional analytical approaches. In addition, a data-
driven model has been developed using a bidirectional Long Short-Term
Memory (bLSTM) network to predict the Remaining Useful Lifetime (RUL)
of devices based on voltage degradation profiles. Attention has been focused
on the impact of dataset partitioning on the model’s performance, highlight-
ing its potential for accurate predictions even with a limited amount of data.
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1
I N T R O D U C T I O N

Power electronics is a multidisciplinary field that plays a pivotal role in the
efficient conversion, control, and conditioning of electrical power [1]. It encom-
passes the design, analysis, and application of electronic devices and systems
for a wide range of power-related applications, including renewable energy
systems, electric vehicles, industrial motor drives, and consumer electronics.

The continuous advancements in power electronic technologies, as depicted
in Fig.1, have revolutionized the utilization of electrical energy, contributing to
improved energy efficiency, reduced carbon emissions, and enhanced overall
performance in numerous applications [2]. The fundamental components of
power electronics include passive components such as inductors, capacitors,
transformers and active components, i.e. power semiconductor devices.

Among these active components, the invention of thyristor switches in 1957
(see Fig.1) marked a significant milestone [3]. The commercialization of thyris-
tors triggered the rapid advancement of power electronics and paved the way
for the development of other devices, including the first power diodes. In the
1970s, the demand for power devices with enhanced switching capabilities
surged with the advent of control technologies like Pulse Width Modulation
(PWM) [4]. This demand spurred the evolution of power semiconductor de-
vices, leading to the development of Gate Turn-Off (GTO) thyristors. Further-
more, the quest for even higher performance brought about the emergence
of power MOSFETs (metal oxide semiconductor field-effect transistor), solid-
ifying their place in the field of power electronics. However, it was in the
1980s that the insulated gate bipolar transistor (IGBT) was introduced [5] (see
Fig.1), revolutionizing the landscape of power semiconductor devices. The in-
troduction of IGBTs marked a turning point in power electronics, enabling the
development of more advanced and sophisticated applications. Currently, the
development of power semiconductor devices is entering its third phase with
the utilization of wide bandgap materials such as SiC or GaN. These advance-
ments go beyond the previous stages, which relied on vacuum tube rectifiers
(phase 1 of Fig.1), and silicon power devices described in the previous phase
(phase 2 of Fig.1). In general, all of these components are strategically inte-
grated to form various power electronic circuits, including rectifiers, inverters,
converters, and voltage regulators. Although they typically represent only 10
to 30% of the total value of a power electronics system, they have a significant
impact on the system’s overall value, dimension, and technical functionality
[6]. As the demand for energy efficiency and the integration of renewable en-
ergy sources into the power grid continue to rise, the role of power electronics
becomes even more critical [7]. Power electronic systems enable the seamless
integration of renewable energy sources like solar and wind into the grid by
efficiently managing power flow, regulating voltage and frequency, and facili-
tating energy storage. Furthermore, power electronics plays a vital role in the
electrification of transportation, supporting the transition from internal com-
bustion engines to electric vehicles through the provision of efficient charging
systems, motor drives, and energy management systems.

1

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]



2 introduction

P
o

w
er

 S
em

ic
o

n
d

u
ct

o
r 

D
ev

ic
es

P
o

w
er

 E
le

ct
ro

n
ic

s

R
el

ia
b

il
it

y
 E

n
g

in
ee

ri
n

g

Phase 2 

circuit 

topologies, 

modeling 

methods, 

increase 

switching 

frequency, 

reduce power 

loss. improved 

gate driving 

methods, 

digital control 

is used in 

power 

electronics

Phase 1 

 Search switches

as nonlinear 

elements

Phase 3 

Application-

driven, packaging, 

thermal 

management, EMI 

and EMC,

 reliability, life-

cycle 

performance,

 virtual 

prototyping and 

modularization

Vacuum-tube

 rectifier 

Thyratron

Invention 

of 

Thyristor

1
9

0
0

s

1
9

0
0

s

Invention of 

vacuum tube 

Mass production
Raise reliability

 engineering

Component-level 

reliability 

System-level

 reliability 

Software reliability

Hybrid physics-

statistics 

Multi-physics 

simulations

 Physics of 

degradation 

Mission profile

Predictive 

maintenance

Accelerated life 

testing 

Bayesian statistics

 Physics of failure

Power

 diode

 Thyristor

1
9

7
0

s

Power 

MOSFET

 GTO

IGBT

Power 

MOSFET

 GTO
Invention

 of 

IGBT

Wide-bandgap 

devices 

1
9

5
7

1
9

7
0

s
1

9
8

0
s

2
0

0
0

s

1
9

8
0

s
1

9
5

7
2

0
0

0
s

Wide-bandgap 

devices 

SiC MOSFET

 GaN power 

devices

Application 

of fast

 power 

switching 

fully 

controlled

Fig. 1: The historical development of power semiconductors, power electronics, and
reliability engineering [8].
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reliability in power electronics

While power electronics has achieved remarkable progress in terms of per-
formance and efficiency, reliability remains a critical aspect that demands
attention. Reliability refers to the ability of a system or component to con-
sistently perform its intended function under specified conditions for a spec-
ified period [9, 10]. In power electronic systems, reliability is of utmost im-
portance due to the critical nature of the applications they serve. Many in-
dustrial, healthcare, automotive, energy, transportation, and aerospace appli-
cations rely on power electronic circuits [11]. The requirement for reliability
in this field has increased considerably [12]. For instance, in some applica-
tions such as avionics, the demand for failure tolerance is even zero [11].
Moreover, the sustainability of a power electronic circuit/system is closely
related to its durability. Consequently, it has a significant impact from both
economic and safety perspectives [11, 13, 14]. In particular, Fig.2 illustrates
the concept of reliability cost/benefit analysis. It shows that by increasing
investments to improve the system’s reliability (red curve), the overall sys-
tem reliability increases. As a result, the costs incurred due to system failures
decrease (blue curve). The sum of these two curves represents the total cost
(green curve), which exhibits a minimum point, identifying the optimal level
of annual cost/system reliability [15].

Fig. 2: Damage, investment together with total cost as a function of system reliability
[15].

Power electronic systems operate under diverse environmental conditions
and are subjected to various stresses, such as high voltage, high current,
temperature cycling, and mechanical vibrations. These stresses can lead to
component degradation, thermal fatigue, material fatigue, and other failure
mechanisms, which can significantly impact the system’s performance, safety,
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(a)

(b) (c)

Fig. 3: Critical failures occur in power electronic devices: discrete (a) and module
(b). (c) Fire in a wind turbine blade as a consequence of critical failure in its
integrated power system.

and lifespan. Therefore, understanding and improving the reliability of power
electronic systems is crucial to ensure their efficient and long-term operation.

Reliability assessment in power electronics involves the analysis of failure
mechanisms, the prediction of failure rates, and the development of strate-
gies to enhance system reliability. It requires a comprehensive understanding
of the behavior of power semiconductor devices, thermal management tech-
niques, packaging technologies, and system-level considerations [12]. One of
the primary concerns in power electronics reliability is the degradation and
failure of power semiconductor devices. Power semiconductor devices, such
as IGBTs, MOSFETs, and thyristors, are exposed to high power densities and
thermal cycling, which can induce stresses leading to device degradation and
eventual failure like is shown in Fig.3.

To evaluate the reliability of power electronic systems, accelerated lifetime
testing is often employed [16]. Accelerated life testing involves subjecting the
devices or systems to harsh conditions, such as elevated temperatures, high
voltages, and increased current levels, to expedite the aging and failure pro-
cess. By analyzing the failure data obtained from accelerated tests, the reli-
ability characteristics, such as failure rates and failure mechanisms, can be
estimated and used to predict the expected lifetime under given operating
conditions. Advancements in reliability modeling and prediction techniques
have enabled researchers and engineers to enhance the design and operation
of power electronic systems. Mathematical models have been utilized to esti-
mate the expected lifetime based on the observed degradation mechanisms
and stress levels. These models consider factors such as temperature, electri-
cal stress, and mechanical stress to provide insights into the system’s relia-
bility and identify critical components that may require additional attention
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in terms of design improvements or maintenance strategies. In recent years,
the application of artificial neural networks (ANNs) and machine learning
algorithms, has gained prominence in power electronics reliability analysis
[17–19]. These techniques can capture complex relationships between input
variables (such as temperature, current, and voltage) and the corresponding
system reliability, enabling more accurate predictions and proactive mainte-
nance strategies. Moreover by training these models with historical data and
monitoring the system’s health parameters in real-time, it is possible to esti-
mate the Remaining Useful Lifetime (RUL) of critical components and take
timely actions to prevent failures and optimize system performance.

In conclusion, as power electronics continues to advance, addressing relia-
bility challenges will remain a key focus area. By combining interdisciplinary
knowledge, advanced modeling techniques, and data-driven approaches, re-
searchers and engineers can continue to improve the reliability of power elec-
tronic systems, leading to increased performance, longevity, and safety in a
wide range of applications.

objectives

Overall, the objectives of the thesis are to enhance the understanding of power
device reliability under power cycling conditions, identify critical stress pa-
rameters, and investigate the applicability of advanced methodologies, such
as deep learning, in accurately predicting device lifetime.

In more detail, the dissertation aims to conduct studies and develop reliabil-
ity models for power devices subjected to power cycling stresses. To achieve
this, a dedicated set-up is designed and implemented to conduct power cy-
cling experiments. The set-up allows for simultaneous stress-testing of multi-
ple components under well-defined experimental conditions. The main goal
is to induce solder degradation and wire bond degradation, which are the
primary failure mechanisms associated with power cycling.

Additionally, the thesis focuses on evaluating different methodologies for
accelerated lifetime testing of IGBT devices under power cycling stress. Special
attention is given to understanding the differences in lifetime estimation un-
der non-constant stress conditions and analyzing the performance of the LDA

rule in predicting device reliability. Furthermore, the thesis will explore the
potential of utilizing deep learning techniques, specifically ANNs, for lifetime
prediction to advance the field of research.

structure of this work

This dissertation is structured into six primary sections. The initial section,
presented in Chapter 1, elucidates the research objectives and delineates the
scope of the dissertation.

Chapter 2 offers a concise introduction to the impact of power cycling stress
on the reliability of power electronic systems, it explores various packaging
types and their associated mechanisms of wear-out failure. Additionally, the
chapter delves into the standard direct current power cycling test and exam-
ines several advanced power cycling test methods published in recent years.
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The historical progression and the current state of the art in lifetime models
for power semiconductor devices are also presented.

Chapter 3 primarily presents detailed information regarding the designed
experimental set-up for conducting power cycling experiments, along with
the appropriate techniques and methodologies employed to carry out such
experiments. Additionally, it describes the measurement set-up used to imple-
ment the temperature sensitive electrical parameters (TSEP) method during
the power cycling experiments, aiming to estimate the junction temperature.

Chapter 4 focuses on the traditional analytical model for estimating life
consumption in the presence of non-constant cumulative stresses. Specifically,
the impact of the experimental methodology on the accuracy of linear dam-
age accumulation theory is investigated.

Chapter 5 delves into the utilization of deep learning techniques to en-
hance reliability assessment within in the context of power cycling stress. To
begin, an empirical static model based on ANN is constructed for estimating
the lifetime. This model is then compared against the conventional analytical
empirical model. Following that, a dynamic lifetime prediction model, also
based on ANN, is developed. This dynamic model enables the estimation of
the RUL and future prediction of an electrical parameter used as the state of
health (SoH) for power devices.

In Chapter 6, a comprehensive summary of the dissertation’s principal find-
ings is provided, with reference to the research objectives defined in the intro-
duction.
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2
S E M I C O N D U C T O R P O W E R D E V I C E S : T E C H N O L O G I E S
A N D L I F E T I M E M O D E L S

2.1 reliability in power systems

The request for increased reliability in power electroinic systems has grown
in recent years due to three main reasons:

• The increase in device density, driven by a growing demand for higher
current density on the chip. This has led to advancements in packaging
technologies to limit the impact of high temperatures and associated
temperature gradients on power devices;

• The widespread use of power electronics systems in various sectors in
particular aviation and medical fields, where zero failure tolerance is
required;

• Modern industrial systems demand low failure rates as multiple power
systems need to operate simultaneously at the same frequency, signifi-
cantly increasing the failure rate [11, 20].

It is under these appropriate considerations that the average failure rate of
power modules has decreased from 1000 FIT in 1995 to 20 FIT in 2000, where FIT

represents 1 failure per 109 [21]. To address these issues, it is first necessary to
identify the components that are susceptible to failure in power systems and
determine the causes behind such failures. In general, in order of importance,
the following elements are typically involved [22]:

• Capacitors;

• PCBs;

• Semiconductors;

• Solder joints;

• Connections or other factors.

In Fig.4, the breakdowns in percentages of the most frequently occurring
failure phenomena in power systems are reported.

From Fig.5, it can be observed that all the failure mechanisms listed in
and reported in Fig.4 are predominantly caused by thermal phenomena, both
static and cyclic, occurring in more than half of the cases. Consequently, con-
sidering the significant impact of thermal phenomena on power electronic sys-
tems, this PhD thesis focuses on various aspects related to these phenomena
arising from an active action of the power system, known as power cycling.

In particular, the effects of power cycling are considered on solder joints and
semiconductors, which are responsible for more than one-third of the causes
of failure in power electronic systems, as reported in Fig.4. This is mainly due

7
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Capacitor
30%    

PCBs 
  26%  

Semiconductors
          21%

Solder joints
       13%

Connectors
and others

10%

Fig. 4: According to [23], the highest percentage of failures is attributed to capacitors
(30%) followed by PCBs (26%). Semiconductor and solder joints (failures pre-
dominantly affecting power devices) account overall for 34%. Finally, 10% of
failure is attributed to various causes or to connections.

Temperature 

steady state 

 and cycling  

55%       
 Humidity/

 Moisture

    19%

Vibration/

   Shock

     20%

Dusts

6%

Fig. 5: According to [24], the majority of the failure phenomena reported in Fig.4 are
primarily attributed to thermal phenomena, both static and cyclic, accounting
for approximately 55%. Other causes include vibration/shock (20%), humidi-
ty/moisture (19%), and dust (6%).
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2.1 reliability in power systems 9

Fig. 6: The bathtub curve describes the relationship between the failure rate and the
operational time of a component.

to the fact that different operational conditions to which the load connected to
the power system is subject have an impact on the currents flowing through
it. These current variations induce temperature changes in the power devices,
leading to cyclic thermal stresses [25, 26].

The failure phenomenon due to power cycling is predominantly attributed
to device aging and falls within the third region of the bathtub curve shown
in Fig.6. This type of curve exhibits three regions, in which three different
mathematical trends of the failure rate, defined as the anticipated number of
times that an item fails in a specified period of time [27], are identified:

• Early Failure: As evident from the curve, the first region represents fail-
ure occurring solely due to production defects. Therefore, this type of
failure can only occur in the early stages of component operation, result-
ing in a decreasing failure rate.

• Random Failure: In the random failure region, the failure rate remains
constant. Here, there are no manufacturing defects or aging effects, so
the only type of failure that can occur is of a random nature.

• Wear-out Failure: In the third region, failure is attributed to device aging,
indicating that the device is approaching the end of its life. The failure
rate exhibits an exponential increase as a function of operating time.

Under nominal operating conditions, the occurrence of power cycling-related
failure events requires long times. In order to analyze this phenomenon, un-
derstand the underlying physical mechanisms, and identify potential lifetime
improvements brought by technological innovations in packaging, accelerated
tests need to be implemented in the laboratory [16, 28, 29].
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10 semiconductor power devices : technologies and lifetime models

2.2 power device packaging technologies

In power electronics, one of the considerations is to ensure that the heat gen-
erated by Joule effect in the chip can flow properly to the heat sink. It is
important to note that in this field of electronics, extremely high power densi-
ties are involved. For example, it is common for power in the range of several
hundred watts to be dissipated on a surface of a few cm2 [20]. Therefore, it
is necessary to encapsulate such chips (e.g., in silicon) to improve thermal
conductivity, but also to:

• Increase reliability: provide high durability due to the changing current
conditions required by the load;

• Reduce parasitic elements such as resistances, capacitances, and induc-
tances; improving electrical resistance;

• Provide electrical isolation between switches (in the case of modules) or
with the heat sink;

• Protect the device from external environmental influences such as hu-
midity;

• Provide protection against mechanical stress.

Discrets Modules Press packs

Fig. 7: Power range of modern semiconductor devices in function of predominant
package technology [20].

It is precisely due to these challenges that the development of packaging for
power devices lags behind IC packages [30]. The choice of packaging depends
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2.2 power device packaging technologies 11

on the required power rating. In the following Fig.7 is shown an overview of
the required power ratings in function of package technology.

The packaging technologies currently used in the field of power electronics
are:

• Discrete;

• Module;

• Press pack.

2.2.1 Discrete

As shown in Fig.7, the use of discrete packages covers the entire range of low-
power applications ( ranging from tens of watts to a few kilowatts). There is
a wide variety of packaging options for these packages (some example are
reported in Fig.8), but the most used are the TO-247 (of which a cross-section
diagram is provided in Fig.9) and TO-220 [20]. Discrete devices are encap-
sulated in a transfer mold compound based on silicon gel, which provides
higher dielectric constants and enhances resistance to moisture, mechanical
stresses and external chemical agents [31]. In this type of packaging, the sil-
icon die is directly soldered to the copper substrate, and aluminum wires
are directly connected to the leads. Typically, one of these wires is the gate
pin, while the others are connected to the source lead. Due to the structure
arrangement, the drain lead and the substrate are electrically connected. This
indicates the need to use an insulating pad between the heat sink and the
power device package.

One of the weak points of these devices is the lead themselves. Considering
that the leads also have an ohmic resistance, although much smaller than that
of the device, the power dissipated on them could reach the melting tempera-
ture of the solder joints to the PCB holes. Obviously, to overcome this issue, the
power dissipation impact needs to be reduced. However, enlarging the lead’s
size is not feasible due to fixed hole dimensions (see Fig. 10b). Furthermore,
maintaining minimal clearance distances between the leads is necessary to
satisfy insulation requirements [20]. Therefore, the focus should be on opti-
mizing the cross-section improving the shape of the lead [20]. Particularly, by
improving the placement of the lead cross-section (black square in Fig.10) to
better fit within the hole of the PCB where it will be soldered (white circle in
Fig.10), it is possible to reduce the ohmic resistance due to the power device’s
lead on the PCB, thus decreasing power dissipation, as demonstrated with the
proposed solution in Fig.10c [20].

Another drawback of these devices is the presence of wire bonds, which
are subjected to power cycling stress and are susceptible to the well-known
phenomenon of lift-off, as well as having an impact on parasitic inductances.
To limit these issues, discrete packages have been developed (see Fig.8a), also
known as DirectFET structures. In these cases, the wire bond has a signifi-
cantly larger thicknesses (clip contacts) compared to the traditional ones, and
the pins are substitued with pads. This allows for handling higher currents,
reducing parasitic inductances and improving the reliability in terms of wire
bonding degradation [20, 32]. However, these newer packaging types require

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]



12 semiconductor power devices : technologies and lifetime models

(a)

(b)

(c)

Fig. 8: Commercial pacakges: DirectFET (a), TO-220 (b) and TO-247 (c).

greater attention to thermal design, as they have the potential for higher cur-
rent capability. Additionally, their encapsulation type makes them more sus-
ceptible to atmospheric corrosion and moisture (eliminates the plastic packag-
ing typical for TO), and they also have higher costs compared to the traditional
TO packages.

Silicon

Substrate

Leads

Bond wires

Solder

Insulating Pad

Heat sink

Fig. 9: Cross-section of TO-247 package.

Standard Leg Enlarged Leg Super Leg

(a) (b) (c)

Fig. 10: (a) Standard section of a lead in a TO-247 package; (b) enlarged version of
the lead cross-section; (c) super leg, which providing a 16% improvement in
current capability [20].
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2.2 power device packaging technologies 13

2.2.2 Module

The development of this type of package allows for encapsulating multiple
chips connected in parallel, enhancing their electrical capabilities. In Fig.11, a
commercial power module is shown, as well as a schematic representation of
the cross-section. In this package, the silicon chip is connected through a wire
bond to the top side contacts, while it is soldered to the DCB (Direct Copper
Bonding) substrate consisting of two copper layers and an insulator. The pres-
ence of the insulator ensures electrical isolation of the device from the heat
sink (which is not possible in TO packages). The substrate is then connected
to the base plate through soldering. Typically, the wire bond material is alu-
minum, while the metallization layers and the substrate are made of copper.
The oxide layer is Al2O3 to achieve a proper balance of the CTE.

However, the traditional power module structure is susceptible to two com-
mon failure phenomena related to power/thermal cycling, namely solder joint
fatigue and wire bond degradation. To mitigate or eliminate these issues, var-
ious solutions have been developed. For example, to address the CTE mis-
match between neighboring materials such as silicon and aluminum, which
is the cause of wire bond degradation, a solution with copper wire bonding
has been proposed. Copper and Aluminim have a CTE of 16.5 ppm/°C and
22.5ppm/°C, respectively. Hence, the CTE of copper is closer to that of silicon,
that is 2.6 ppm/°C. However, this solution has the drawback of creating a
thick metallization layer of copper for subsequent electrical contacts made of
aluminum in the upper part of the module. This practice does not provide
sufficient protection for the ultrasonic bonding process of the copper wire
bonds to the chip. Additionally, this copper layer adds extra thermal capaci-
tance to the device, leading to increased thermal stress compared to thermal
phenomena [33, 34].

For modules requiring higher thermal conductivity, Al2O3 oxides are re-
placed by AIN oxides, where Al2O3 and AIN oxides have thermal conductivities
of 24W/mK and 170W/mK, respectively.

(a)

Silicon

Baseplate

Solder

Solder
Ceramics

bond wire

Copper

(b)

Fig. 11: (a) A commercial IGBT power module; (b) a simplified internal cross-section
of the power module with baseplate.

The presence of AIN insulation may require the use of an AlSiC baseplate in-
stead of copper in applications where high performance is required, in order
to mitigate CTE differences. However, the presence of an AlSiC substrate in-
creases the thermal impedance of the entire system. This is why, currently, an
increasing number of power modules are being designed without a baseplate
(as depicted in Fig.12) [20]. The absence of a baseplate also allows for relax-
ation of dimensional constraints in the substrate zone, copper-oxide-copper,
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14 semiconductor power devices : technologies and lifetime models

where typically their layer thicknesses are 0.3 mm, 0.4/0.6 mm, and 0.3 mm,
respectively. Consequently, there are no inherent limitations on the footprint
size, potentially reducing production efforts and the likelihood of errors dur-
ing manufacturing [20]. Additionally, this approach reduces thermal gradi-
ents on the chip, enhancing reliability. However, the absence of a baseplate
negatively affects the heat dissipation pathway, resulting in a spread of tem-
perature across the device. Therefore, the baseplate-less power module so-
lution is preferable only for small-sized chips. Furthermore, the substrate-
heat sink interface requires the use of thermal interface materials (TIM) with
extremely thin thicknesses to minimize the impact on the overall thermal
impedance of the system.

Silicon
Solder

TIM Ceramics

bond wire

Copper

Fig. 12: A simplified internal section of power module with the use of thermal inter-
face materials (TIM) and without baseplate.

2.2.3 Press Pack or Capsules

This type of packaging is highly utilized for high or very high power appli-
cations, particularly for encapsulating devices such as thyristors or GTOs. The
first power IGBTs used this type of package; however, due to the much higher
cell density compared to thyristors and space limitations, power devices have
transitioned to module-type packaging. Additionally, it has been observed
that in terms of power cycling capability, IGBTs encapsulated in press-pack
packages are less robust compared to those encapsulated in modules [6]. This
package type consists of a double metal disc (anode and cathode) with the
silicon chip sandwiched in between (see Fig.13). This design is intended to
distribute pressure uniformly within the package. Furthermore, a molybde-
num disc improves pressure uniformity and ensures excellent thermal expan-
sion coefficient matching with silicon, resulting in better heat dissipation. The
gate of the thyristor is placed on a metal lead extending from the cathode into
the silicon chip. A defined physical contact pressure, typically around 10-20
N/mm2, is applied to establish electrical and thermal contact via external clip-
ping [35]. The interconnection between the silicon device and molybdenum
can vary depending on the package size, but the process typically involves
sintering techniques where a noble metal layer is created to form the metallic
contact, using metal powder under high pressure and at a temperature of ap-
proximately 250°C [20].

The positive aspects of this packaging type include:
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• The ability to cool both surfaces of the device.

• No wire bonding, eliminating the associated failure mechanisms.

• Excellent die/package surface ratio and compact design.

• Due to its specific structure, especially the arrangement of cathode and
anode, it is possible to easily connect multiple of them in series, which
is highly advantageous, especially in applications that demand such so-
lutions, such as high-voltage applications.

The negative aspects include:

• Isolation circuits are necessary due to the absence of electrical insulation
in the package structure.

• It is diffult to choose and maintain an appropriate pressure during the
package assembly phase.
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Fig. 13: (a) A typical press pack commercial GTO. (b) A simplified internal section of
the capsule [20].
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2.3 power cycling stress

In the Sec.2.1, it is discussed the significant impact of power/thermal cycling
phenomena on power systems and the need to perform accelerated tests to
analyze their effects.

Power cycling denotes the phenomenon in which the load connected to the
power system necessitates varying current levels over time. This phenomenon
directly impacts the current flowing through the constituent devices of the sys-
tem, consequently causing variations in their operating junction temperatures.
These load-induced temperature variations are typically non-periodic and of-
ten involve rather lengthy timescales, allowing power devices to cool down
(tcold) and heat up (theat), thus defining a cycle of temperature variation
(like in Fig.14).

This cyclic temperature variation causes expansion and contraction of the
adjacent materials within the power device, the intensity of which depends
on the difference in their coefficient of thermal expansion (CTE), resulting in
thermo-mechanical stresses at the interface of these materials. These repeated
stresses induce material degradation and damage to the device, altering its
electrical and thermo-electrical properties. This can adversely affect the de-
vice’s performance or even lead to failure in the overall system where the
power device is integrated.

Tj

∆
T
j

theat tcool
t

Fig. 14: Schematic representation of a generic thermal cycle as a function of time,
where (theat) and (tcold) the periods when the power device heats up and
cools down, respectively.

This paragraph focuses on the failure mechanisms associated with power
cycling. These fully permanent failures include:

• Wire bond fatigue;

• Wire bond lift off;

• Wire bond heel cracking;

• Aluminum reconstruction;

• Solder joint fatigue.
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2.3.1 Wire Bond fatigue

The wire bonds connected to the leads of the power device make contact
with the silicon chip through an aluminum pad. These wire bonds generally
have diameters ranging from 300 to 500 µm and are primarily composed of
aluminum with small additions of magnesium or nickel. This composition
helps prevent the formation of corrosive phenomena on the silicon chip and
mitigates the differences in CTE between aluminum and silicon if the interface
were exclusively composed of the contact between these two materials.

The portion of the wire bond closest to the chip is most exposed to temper-
ature gradients during device operation, and the power dissipated, typically
ranges from 100 mW to a maximum of 400 mW, depending on the wire bond
diameter. However, during transient phases (switching modes) of the power
device, the current density through the wire bond section is non-uniform due
to the skin effect. This results in shear stress between the wire bond and the
pad to which it is connected on the silicon chip, as well as repeated flexing of
the wire bond. Consequently, there is a change in the device’s resistive behav-
ior and a modification in current distribution, as the electrical resistance of
the interface pad increases. The point at which this stress occurs is indicated
in the Fig.15 [36, 37].

Silicon 
Chip

Wire Bond

Pad

Fig. 15: Cross section of a wire bond, with a representation of the transition from
wire bond to the silicon chip via an intermediate aluminunim pad [36].

2.3.2 Wire Bond Lift-Off

The wire bond lift-off failure is caused by thermal stress at the interface be-
tween two materials, silicon and aluminum, which have different CTE. This
phenomenon does not affect the copper lines connected to the aluminum
wire bond, as the CTE difference between copper and aluminum is smaller
compared to that between silicon and aluminum.

The crack generated due to thermo-mechanical stress forms at the base of
the wire bond, expands, and detaches from the contact pad connected to the
silicon chip. It is known that polycrystalline materials like aluminum have
a maximum acceptable stress value (elastic stress region), and if this value
is exceeded, the impact of thermo-mechanical stress amplifies (plastic stress
region). Of course, this depends on the intensity and duration of the applied
stress.
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In Fig.16a, the wire bond lift-off phenomenon is depicted, while in Fig.16b,
the footprint of the wire bond after lift-off is displayed. Additionally, it is
possible to observe the traces of the wire bond’s solder placed on its sides
rather than in the central part.

To mitigate the impact of wire bonding lift-off, a series of polymer layers
called "coating layers" are used, which mix with the wire bond during the
application of the ultrasonic bonding technique to connect to the bond pad of
the silicon chip [36].

Fig. 16: (a) Wire bond lift-off (SEM image, 40x). (b) Footprint of wire bond after lift-
off (SEM image, 100x) [36].

2.3.3 Heel Cracking

This type of failure effect is less common compared to wire bond lift-off and
is primarily caused by an incorrect ultrasonic bonding process. It is triggered
by thermo-mechanical stress, specifically related to the contraction and expan-
sion of the wire bond in the presence of temperature gradients. The viscosity
of the silicone gel used for device encapsulation can also influence this phe-
nomenon.

Furthermore, during the wire bond displacement phase, where the degra-
dation mechanism is accelerated, this phenomenon can be observed in the
section of the wire bond connected to the pins. Fig.17 illustrates an example
of heel cracking [36].

In Fig.18, it can be observed how the crack forms at the site of a defect
during the ultrasonic bonding phase. This type of failure effect is particularly
evident when the self-heating effect is stronger and non-uniform, which typi-
cally occurs when there are two wire bonds for the emitter lead [38].

2.3.4 Aluminum Reconstruction

This phenomenon is often a secondary effect related to wire bond lift-off. It is
caused by thermo-mechanical stress as well, which, due to the expansion and
contraction of the wire bond, leads to the formation of granules in the metallic
interface layer between the wire bond and the silicon chip. This is due to the
significant difference in CTE between silicon and aluminum. The roughness of
the silicon chip layer has a certain impact on this type of phenomenon, as it
causes the stress to exceed the elastic limit and become plastic.

The phenomenon manifests itself through the formation of granules, cracks,
or plastic deformations (see Fig.19). The specific manifestation depends on
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Fig. 17: Heel cracking in a double wire bond [36].

Fig. 18: Wire bond heel crack due to improper bonding process (SEM image, 25x )
[36].

the cyclic nature of the stress and its impact. The type of metallization layer
texture also determines the size of the granules. This phenomenon tends to
occur in the areas of the layer near the center of the silicon chip, where higher
temperatures are reached, while it is less significant at the edges. That is why
the phenomenon is related to wire bond lift-off because when one of the
contacts detaches, the remaining contact has to bear the entire current flow,
leading to increased temperature and plastic stress levels in the area of the
pad where the contact is still connected.

This effect contributes to an increase in the resistance offered by the device,
as it increases the electrical resistance of the metallization layer. Among the
technological solutions implemented to mitigate this effect is the use of a
"compressive overlayer" that reduces the increase in electrical resistance of the
metallization layer subjected to high temperature. In the Fig.20, it is possible
to observe the section of the layer without the use of the compressive layer and
the one with the compressive layer, highlighting how the effect is significantly
mitigated [36].

2.3.5 Solder Joint Fatigue

The material used for soldering the silicon chip with the baseplate (in the case
of discrete package) or with DCB substrate (in power module) is typically com-
posed of tin, indium, or tin-lead alloys. These alloys exhibit excellent thermo-
electric properties with melting points reaching 185°C, and their self-heating
effect is negligible in terms of thermal characteristics. However, when they
come into contact with other materials such as copper (which is composed
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Fig. 19: (a) Emitter metalization of an IGBT chip before power cycling test (SEM image,
1000x). (b) Reconstruction phenomenon in the same emitter metalization after
power cycling stress (SEM image, 1000x) [36].

Fig. 20: Reconstructed emitter metalization after removal of the polyimide passiva-
tion (compressive overlayer) in the left of metalizzation. In the right part, the
mitigation effect due the compressive overlayer can be observed (SEM image,
800x) [36].

the baseplate, for example), it is necessary to use combinations of copper and
tin, such as the CuSn6 alloy, to mitigate the differences in CTEs. In the case
of tin-lead solders, their actual composition consists of a tin-enriched phase
and a lead-enriched phase. These two phases tend to expand during device
power cycling or thermal cycling, leading to fractures near the copper layer,
particularly in the areas adjacent to the ceramic substrate. Usually, to activate
these mechanisms, the size of the system involved needs to be considered. For
instance, in discrete devices, the duration of the stress has a greater influence
than the effect of the temperature gradient in causing material degradation.

In the Fig.21a, the impact of solder failure is assessed after a power cycling
test and in Fig.21b a thermal cycling. During thermal cycling, the failure is
observed at the edges of the solder joints, as these are the points where passive
thermal stress is most pronounced. Conversely, power cycling stress, where
only the chip heats up, solder failure is found in regions where the chip is
located, typically in the central areas [39–42] .

Another potential cause of solder failure is the presence of voids within the
solder joints resulting from production processes (see Fig.22). Generally, the
presence of large voids creates highly localized and steep temperature gradi-
ents, leading to expansion of the solder and the formation of cracks. These
voids also contribute to increased temperatures on the silicon chip. To ad-
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dress this issue, efforts are made to minimize the occurrence of large voids
by promoting the formation of smaller voids, thereby reducing the localized
temperature gradients on them.

(a) (b)

Fig. 21: (a) Damage is developed below active chips of a module in the substrate
solder joint after power cycling stress [39] . (b) Damage is developed at the
corners of the substrate solder as a result of passive thermal cycling in the
module [39].

Fig. 22: Voids in the solder between ceramic substrate and base plate (SEM image,
100x) [42].
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Tab. 1: Comparison of the three common methods for junction temperature measure-
ment [6].

Category Examples Advantages Disadvantages

Physical

method

(direct)

Thermocouple

Thermal probes

Liquid crystal

Temperature map

Spatial resolution

Low response time

Package opening

Physical contact

Noise measurement

Optical

method

(direct)

IR radiation

Spectroscopy

Thermo reflectance

Temperature map

Spatial resolution

Package opening

Expensive

Electrical

method

(indirect)

PN-junction

Gate threshold

On-resistance

Small time constant

No contact need
Average temperature

2.4 methods for estimating junction temperature

Measuring or estimating the temperature of devices during power cycling
tests is of paramount importance as it allows defining critical operating points
used to identify failure phenomena, replicate operating conditions for quali-
fication tests (e.g., JEDEC standards), and develop models that consider the
actual impact of temperature. These models are essential for providing a reli-
able prognosis of the power device’s lifetime.

The methods for measuring and estimating temperature can be essentially
divided into two categories: direct and indirect.

2.4.1 Direct Mode

In the case of direct methods, the two main approaches are physical and
optical, each with their positive and negative aspects as reported in the Tab.1.

2.4.1.1 Physical Methods

If direct access to the silicon chip is possible, a way to measure the junction
temperature is by using temperature sensors such as thermocouples and ther-
mistors. The spatial resolution of this approach varies across the spectrum
from sub-micrometer to millimeter scales, based on the number and dimen-
sions of the probes utilized. The use of liquid crystals, commonly employed
to identify hot spots in power devices, is implemented in this method to en-
able the extraction of temperature maps [6]. The accuracy of the measurement
depends on the sensor’s capabilities, especially in terms of time response re-
lated to its thermal capacity. However, in general, these types of approaches
are highly accurate even though the response times are in the order of 5 ms
[6]. However, this method require the chip to be exposed.
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2.4.1.2 Optical Methods

An optical beam is directed towards the region where the silicon chip is lo-
cated. This beam is reflected, and by measuring the energy of the reflected
beam, indications of the junction temperature can be obtained. These meth-
ods include the use of IR sensors, microscopes or infrared cameras, and optical
fibers [43–48]. Although measurements obtained with these methods are suf-
ficiently precise, e.g. with an IR camera, spatial resolutions of a few tens of
micrometers with a temporal resolutions of the tens ms can be achieved [47].
Their drawback is that they require the removal of the ceramic case and pro-
tective gel to detect the junction temperature.

Both direct methods require chip exposure, which is rarely practical, which
is why indirect methods are preferred [43].

2.4.2 Indirect Mode

The indirect method, i.e. the electrical method (see Tab.1), is based on equiva-
lent circuits, or intrinsic electrical properties of the semiconductor [48]. Among
these, the most well-known and widely used indirect method is based on the
intrinsic electrical properties of silicon, such as the concentration of intrinsic
carriers and the mobility of charge carriers. These parameters are influenced
by temperature. For example, there is a dependence between on-voltage and
junction temperature, and this parameter is defined as the TSEP method [43,
49–52]. The use of this method provides much faster response times compared
to the two previously mentioned methods. However, the estimated tempera-
ture value must be considered as an average value, as the chip area does not
allow for discerning the points of maximum temperature, such as the center
of the chip, compared to the corners. This implies that the measurement re-
quires a certain time for the chip to effectively reach a temperature close to
the estimated average temperature, typically in the order of several hundred
milliseconds [53].

Some studies utilize the on-voltage under high current conditions as the
TSEP method [54–56] because it ensures good measurement sensitivity. How-
ever, this approach is not advantageous when the currents are sufficiently
high to significantly influence Ron, considering its temperature dependence
(as in MOSFET devices), resulting in variations in the on-voltage. Consequently,
significant errors occur in estimating the junction temperature. Additionally,
especially in cases where accelerated testing is necessary and wire bond degra-
dation occurs, this type of approach is not recommended. Therefore, when
using the on-voltage as the TSEP method, it is primarily employed under con-
ditions of very low current measurement. In this case, the monitored voltage
is the one across the pn junction and is not affected by voltage variations due
to Ron (and thus mobility). Further details on this method are provided in the
following section.

2.4.2.1 PN-junction Voltage

Considering a basic structure of pn junction, its forward voltage is closely
related to temperature. This voltage is often used as a "temperature sensor"
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for silicon chip devices like bipolar transistors, MOSFETs, IGBTs, and GITs with
p-AlGaN where, in this case, the pn junction exists between the gate and source,
examples are reported in [47, 57–64]. This measurement is performed under
very low current conditions, so that the voltage drop can be attributed solely
to the effect of the pn junction, without being influenced by the base region,
channel resistance, or ohmic contacts. The mathematical expresion of this volt-
age, assuming an ideal pn junction, is represented in the following expression
[65]:

Vj(Tj) =
nkbTj

q
ln
(
Id
Id,s

+ 1

)
(1)

where Vj is the junction voltage, q is the elementary charge, n is the ideal
factor of the pn junction, kb is the Boltzmann constant, and Tj is the junction
temperature. Id and Id,s represent the current density and reverse saturation
current density, respectively. The expression of Id,s is as follows:

Id,s = qn
2
i

(
Dp

LpND
+

Dn

LnNA

)
(2)

where Dn (Dp) is the diffusion coefficient of electrons (holes), Ln (Lp) is
the diffusion lenght of electrons (holes), and ND, NA and ni are the donor,
acceptor and intrinsic concentrations, respectively.

To establish the empirical or mathematical relationship between Tj and for-
ward voltage (VF), the following steps are followed:

• The device is turned on, by applying a gate voltage larger than the
threshold voltage.

• A very small sensing current is set, typically 1/1000 of the rated current
of the device, to ensure that the current in the device is negligible in
terms of self-heating effects [20].

• The device is externally heated, for example in an oven, and the temper-
ature of the case is measured using a thermocouple, assuming that the
case temperature corresponds to that of the silicon chip.

The relationship between Tj - VF is expressed through a linear dependence
like in (3), where the slope coefficient has a negative value in the case of IGBT

device (see Fig.23):

Tj = m · VF (3)

Generally, the measurement resolution is around -2mV/°C. Additionally,
it is observed that the sensing current should not be excessively small, as
it would worsen the resolution error in Vce measurement (see the case for
100µA in Fig.23).
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Fig. 23: Calibration curves Vce-Tj for IGBT for different level of sensing current [6].

2.4.2.2 Gate Threshold Voltage

Another possible indirect method is to find the experimental relationship be-
tween threshold voltage (Vth) and (Tj), where, for the IGBT, the mathematical
expression showing the temperature dependence is given as:

Vth(Tj) =
kbTj
q ln

(
NA
ND

)
− Qox
Cox

+
√
4·εsi·NA·kb
Cox

·
√
ln
(
NA
ni

)
· Tj (4)

In (4), Qox is the effective gate oxide charge density, εsi is the permittivity
of silicon, Cox is the oxide capacitance [56].

Typically, the measurement circuit is implemented as shown in Fig.24. The
gate-emitter (Vge) and collector-emitter (Vce) voltages are set equal, a fixed
current Im is applied and the corresponding voltage Vth is measured. This
method is applied in the same manner for both MOSFETs and IGBTs. A typical
Vth vs Tj relationship is shown in Fig.25.

From Fig.25, it can be observed that the dependence of Vth on the tem-
perature is nonlinear. This type of measurement exhibits better sensitivity
compared to the Vce vs Tj dependence, typically around 10-15 mV/°C. This
is likely due to the presence of the oxide layer relative to the pn junction,
resulting in different impurity quantities, thus improving the measurement
sensitivity [60].

In power cycling tests, it is crucial to keep the parameters used as TSEP

constant during the experiment. Consequently, the Von(Tj) method under low
measuring current conditions is preferred over Vth(Tj). This preference stems
from the fact that during the aging process, the value of Vth may experience
variations due to gate oxide degradation caused by charge trapping issues.

This phenomenon has been observed in IGBT devices but not in MOSFETs
as demonstrated [37]. However, this limits the feasibility of using Vth as TSEP
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Fig. 24: Circuit for calibration curves Vth-Tj for IGBT [6].

Fig. 25: Calibration curves Vth-Tj for an IGBT [6].

in power cycling tests. Furthermore, an additional limitation of this method
is its difficulty in implementation on a device used in a real converter. In SiC

technology, this method is not preferred due to the trapping effects occurring
in the gate oxide, which capture some charge carriers and cause a shift in Vth
[62, 66, 67].
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2.5 techniques for performing power cycling tests

It has been discussed in sec.2.1 that accelerated stress tests are conducted
in laboratories to analyze failure phenomena, evaluate new materials and/or
packaging designs, identify their weaknesses, and seek improvements [11, 16].

The strategy of using accelerated tests is based on the fact that under stan-
dard operating conditions (excluding the region of premature failure shown
in Fig.6), a device takes years to reach a failure event, making the aforemen-
tioned objectives impractical.

There are two possible methods for accelerating tests:

• Thermal cycling;

• Power cycling.

In thermal cycling tests, the device is passively heated, usually using an
oven. This approach ensures accurate estimates of the junction temperature
but is relatively slow due to the sluggishness of the thermal cycling system.

A faster way to conduct such accelerated tests is through power cycling,
which involves active heating cycles of the device. Although this electrical-
based process does not provide an extremely precise estimation of tempera-
ture compared to the previous method, it is significantly faster, even in exe-
cuting individual stress cycles. Moreover, power cycling tests approximate the
device’s behavior under operational conditions more effectively [68].

In these tests, the parameters that influence the device’s reliability from a
thermo-mechanical stress perspective are increased compared to those in stan-
dard operating conditions. This necessitates the creation of models, whether
empirical or simulation-based, (that incorporate and fit to these accelerated
parameters) which providing estimations of lifetime giving as input the stress
parameters under standard operational conditions.

To perform power cycling tests, three main methods are:

• Constant current;

• Constant ∆Tj;

• Constant power.

2.5.1 Constant Current

The constant current method is recommended as the standard for power cy-
cling stress method by AQG 324 and the IEC 60749-34 standard. It is also
referred to as the DC-power cycling test [69–72]. In this type of accelerated
test, a high DC current is applied to stress the component. This current is
injected into the device for a defined interval of time (heating time/on-time),
representing a percentage of the cycle period. As a result, the power dissi-
pated in the device leads to a junction temperature (Tj) increase due to the
Joule effect, resulting in a thermo-mechanical stress.

The remaining time of the cycle period is defined as the cooling time. Dur-
ing the cooling time, the high current is stopped, and a small sensing current
is injected into the device, in order to acquire voltage adopted as TSEP param-
eter.
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The stress parameters, associated with power cycling that can be controlled
to calibrate the experiment, are:

• DC current.

• Heating time, cooling time.

• Case temperature.
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Fig. 26: Current, voltage and junction temperature trends during a standard power
cycling test.

In Fig.26, the high current value (Idc) is chosen to reach the desired maxi-
mum junction (Tj,max) value. However, it is important to note that the choice
of on-time (ton), must be sufficiently long to ensure that the (Tj,max) value
is evenly distributed across the entire chip, as discussed in sec.2.4.2.1. This
requires a minimum ton of several hundreds of milliseconds [53].

During the cooling phase (toff), the first measured voltage value (with low
current Iref) in stable conditions (i.e., with electrical transients exhausted, typ-
ically after a time interval of hundreds of microseconds) retains the informa-
tion of the recently heated device, corresponding to Tj,max (assuming that
the thermal time constant is greater than hundreds of microseconds). On the
other hand, in order to estimate the minimum junction temperature (Tj,min),
that can be controlled through the heat sink, the voltage value at the last point
before the onset of the next on-phase (or heating time) is sampled [6]. This
type of test is considered the fastest and most critical [73].
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Through power cycling, it is possible to induce both of the main failure
mechanisms in devices, as reported in [39, 74–79]. Specifically during the
heating time, the information provided by on-voltage is used to monitor the
SoH of the wire bond, while information regarding the junction-to-case vari-
ation temperature (∆Tjc) and the dissipated power (Pd) is used to monitor
the junction-to-case thermal resistance (Zth,jc = ∆Tjc/Pd) and thus the condi-
tions of the solder joints inside the component. In general, for Von and Zth,j,
an increase of 5% and 20%, respectively, from their initial values are set as EoL

condition [20].

2.5.2 Constant ∆Tj

The constant ∆Tj test is considered less critical compared to the conventional
test, as it limits the most significant stress parameter, namely ∆Tj, thereby
eliminating the nonlinear effects caused by self-heating and temperature in-
crease when the power device approaches its EoL [80, 81].

A possible method to keep ∆Tj constant is the online control of the DC
current (Idc) like in [81] (see Fig.27a). Alternatively, it is possible to change,
during the experiment, the heating time (ton) or the gate voltage.

A controller, like PID controller in [80], can be used to regulate the device’s
gate voltage during the heating phase, ensuring that any measured ∆Tj vari-
ations are balanced in the subsequent cycle (an example is shown in Fig.27b).
This method requires interrupting the control and cyclically evaluating the on-
voltage under standard conditions (as indicated in SubSec.2.5.1), if the stress
induces the wire bond degradation.

To maintain a constant ∆Tj during the test, another possibility is to manage
the heating time (ton). In this case, the current parameter remains constant,
as well as the gate voltage parameter, allowing the measurement of the on-
voltage (Von) as a parameter of SoH using the same reference (with no need
to periodically interrupt the test and measure under standard conditions) [72].

2.5.3 Constant Power

In constant power tests, it is necessary to maintain a constant power dissipa-
tion on the device during the experiment. This can be achieved by controlling
either the stress current or the on-voltage [72, 81]. Even in this case, if the gate
voltage or the current are changed during the on-phase, it is necessary to pe-
riodically interrupt the experiment to measure SoH of the wire bonds through
the on-voltage under reference conditions. However, if the stress induces sol-
der degradation only, the test does not require cyclic interruption as shown
in the example of Fig.27c.
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(a)

(b) (c)

Fig. 27: (a) On-voltage, cycling current, and ∆Tj trends of three power cycling tests
(red, blue, and green curves) in constant ∆Tj stress condition via Idc control
[81]. (b) Gate voltage regulation during a long period to mantain constant
∆Tj [80]. (c) Parameter trends of IGBT module during a constant power power
cycling test by means gate-emitter voltage control [72].
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2.6 lifetime models

Lifetime models are crucial in studying the reliability of power systems. As
mentioned earlier, one of the objectives of reliability is to predict the LC or
RUL of a power system under specific mission profiles. One of the key steps
to achieve this goal is to extract the device’s lifetime through an equation.
Generally, there are two possible approaches:

• Model-driven;

• Data-driven.

2.6.1 Model-Driven

These models determine the component’s lifetime by defining a static equa-
tion. They are typically categorized as physically-based models [82–85] and
empirical models [51, 86–93].

Physically-based models calculate the lifetime based on information re-
lated to the physical and mechanical structure of the device. They rely on
parameters such as deformation intensity and crack depth, which are ob-
tained through stress tests or FEM simulations. However, developing a physi-
cal model that accurately predicts lifetime is a complex task, as it requires in-
tegrating electrical, thermal, and mechanical phenomena. These models have
certain limitations and their accuracy is dependent on their validity range.

Empirical models, on the other hand, are more prevalent. They rely on well-
fitted experimental data that consider thermal and electrical aspects although
lack information about the physical aspects of failure.

One of the early empirical lifetime models developed was the Coffin-Manson
model (5) [86, 87]. This model formulated a power law to describe the rela-
tionship between ∆Tj and lifetime in terms of the number of applied stress
cycles (Nf):

Nf = K ·∆Tαj (5)

Where K and α are fitting parameters whose values depend on the technol-
ogy of the specific device type for which the model has been extrapolated. The
value of α, determining the slope of the power law, is negative, highlighting
the fact that with the increase of ∆Tj stress (the most influential parameter on
the lifetime regarding power cycling [94]), the average lifetime of the device
decreases.

Subsequently, additional analysis was performed to investigate the interde-
pendencies of various stress parameters on the lifetime of the IGBT module, as
discussed in [51]. Observing the dependency of average junction temperature
(Tj,av) on lifetime, the term of the Arrhenius law was introduced (6), taking
into account the impact of the chemical reaction rate through the activation
energy (Ea) and the Boltzmann constant (kb):

Nf = K ·∆Tαj · e
Ea

kbTj,av (6)
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In-depth studies and improvements in the packaging structure of power
devices, particularly IGBT modules, led to the introduction of a new empir-
ical model known as CIPS08 [88]. In this model (7), for the first time, the
dependence on heating time (ton), as well as the geometric parameters (D),
current density per wire (I) and rating voltage (V) of the power device, are
also highlighted.

Nf = K ·∆Tβ1j · e
β2
Tj,av · tβ3on · Iβ4 · Vβ5 ·Dβ6 (7)

The CIPS08 model paved the way for several other models, allowing for the
development of even more complex ones (8), as shown in [89]:

Nf = K ·∆Tαj · e
Ea

kbTj,av · ar(β1·∆Tj+β0) · C+ tγon
C+ 1

· fdiode (8)

In this model, which was extrapolated for the IGBT module (SKiM63), ad-
ditional parameters were introduced, including the aspect ratio (ar) which
is the ratio between the height of the wire bond and the distance between
two wire bonds, and the derating factor of the anti-parallel diode (fdiode).
The inclusion of this latter parameter in the empirical model allowed for im-
provements regarding the size of the wire in the anti-parallel diode, which
was found to have lower reliability compared to the wire bond on the silicon
chip. It should be noted that the implementation of lifetime models is also
useful for identifying critical technological aspects that were previously not
considered in terms of lifetime.

A first empirical model (9) developed for discrete devices was presented in
[90]:

Nf = K ·∆Tαj · e
Ea

kbTj,av · Iγ (9)

This model was based on [88] and aimed to consider the impact of current
density, temperature variation, and the Arrhenius law. A more comprehensive
study covering multiple discrete packages and also taking into account the
impact of ton was reported in [91]. The fitting coefficients were recalculated
considering whether the dependence on the Arrhenius law involved Tj,min,
Tj,max, or Tj,av.

It is important to consider that these empirical models are derived from
adapting experimental data obtained under accelerated test conditions, which
do not correspond to real operational conditions. The potential of these meth-
ods lies in extrapolating lifetime predictions to the stress parameters encoun-
tered in operational conditions. Therefore, efforts have been made to validate
these models for low variations in junction temperature (∆Tj), or at least close
to operational conditions. For example, in [92], an attempt was made to verify
the model in [88] for low values of ∆Tj, specifically ∆Tj = 30°C, demonstrating
that the model remains valid as it is still within the plastic deformation zone.
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Meanwhile, [93] tested the validity of the model in [88] for ∆Tj less than
30°C and proposed an approximation in such cases, introducing an expo-
nential term (10) to compensate for the underestimation error of the model
introduced in [88] (see results in Fig.28):

Nf = K
′ ·∆T

(
e
∆Tj−27.1K
2.08K +β1

)

j (10)

It should be noted that both models were extrapolated from extremely ac-
celerated power cycling tests with a stress cycle period (Ts) of less than 100ms.
This condition is necessary to analyze failure mechanisms under such condi-
tions; otherwise, the test duration would be impractical [34].

Fig. 28: Comparison of CIPS08 model and modified CIPS08-model with (10) which
well fit experimental data [93].

2.6.2 Data-Driven

Data-driven models are based on predicting the lifetime by analyzing and
monitoring one of the electrical parameters related to SoH of a power device
over time. Compared to empirical models, these models require fewer exper-
iments for validation but still rely on power cycling tests for practical vali-
dation purposes. The precursor parameters for SoH, such as on-voltage (Von)
and thermal junction impedance (Zth), have been investigated in several liter-
ature works [95–97].

These methods are based on equations that define the initial conditions and
parameter values of the function, which are then recalibrated to make future
predictions of the parameter used to monitor SoH. Predictive algorithms are
implemented to achieve this goal. In this context, the use of particle filters is
gaining popularity, mainly because they can handle the inherent uncertainty
in failure phenomena [95]. In [96, 97], PFs were implemented to monitor Von
and make predictions about it to determine the RUL.
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The predicted value of Von (V(on),pre) and its measured value (V(on),act)
at the k-th instant involve the functions f and h, where f represents a prede-
fined nonlinear transition function and h represents a measurement function
(intended as y=x) [97]:

V(on),pre,k = f
(
V(on),pre,k−1

)
+ vk−1 (11)

V(on),act,k = h
(
V(on),pre,k

)
+mk (12)

The v andm represent process and measurement noises, respectively, which
follow Gaussian distributions according to the central limit theorem. In par-
ticular mk is known as posterior PDF and defined as p

(
V(on),pre,k|V(on),act,k

)
.

At k = 0, the posterior PDF will exhibit a constant pattern since there is no
previous information available.

By employing an iterative approach, the posterior PDF gradually converges
towards a uniform distribution while at the end remains non-Gaussian; its
Gaussian approximation is described by an ideal PDF called "importance PDF"
[96, 97]. The Particle Filter (PF) algorithm approximates the posterior PDF, us-
ing a collection of discrete random sampling points, commonly referred to as
particles:

p
(
V(on),pre,k|V(on),act,k

)
=

N∑

i=1

wikδ(V(on),pre,k − V
i
(on),pre,k) (13)

where δ() is Dirac-delta function, wik is importance weight of i-th sample
at time k, and i is index of ith sample drawn from posterior PDF [96].

The wik is calculated as the normalization of ratio between posterior PDF

and importance PDF at time k. During the iterative weights calculation (wik),
many weights tend to approach zero (weight degeneracy).This poses a criti-
cal issue for the estimation performance of the PF since calculations are per-
formed on particles with negligible weights.

To address this, a resampling process is conducted, replacing particles with
very small weights with a large number of particles with higher weights. After
resampling, the weight values become equal for all particles and are set to
1/N. Therefore, the calculation of future particles is expressed in (14). The
flowchart in Fig.29 illustrates the organization of the PF implementation.

p
(
V(on),pre,k|V(on),act,k

)
=
1

N

N∑

i=1

δ(V(on),pre,k − V
i
(on),pre,k) (14)
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PF parameter initialization

t = 1:k

Calculate particles

Resampling

Estimation of V(on),pre,k

Calculate the posterior PDF

V(on),pre,k < kthr · V(on),pre,k−1

Calculate weights

YES

NO

Output liketime k

Fig. 29: Flow chart of PF algorithm predicting RUL.
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3
D E S I G N O F P O W E R C Y C L I N G S E T- U P

3.1 introduction

This section focuses on the design of the set-up employed for power cycling
experiments. It provides an in-depth understanding of the various technical
details implemented to conduct these tests, as outlined in the theory in Chap-
ter 2, Sec.2.5. Additionally, the chapter presents crucial details of the LabView
code used for controlling and managing the experimental setup. Furthermore,
it elucidates the measurement configuration necessary for developing a Tem-
perature Sensitive Electrical Parameters (TSEP) model, in accordance with
the description provided in Chapter 2, SubSec.2.4.2.1. This model will subse-
quently be implemented in the LabView code for power cycling tests, with
the aim of estimating the junction temperature (Tj) of the Device Under Test
(DUT). Finally, the experimental results of the two different power cycling test
methods adopted (constant current and constant ∆Tj) are presented, demon-
strating the operational effectiveness of both the set-up and the LabView code.

3.2 tsep model calibration

In the literature, several works such as [60, 98–101] have proposed circuit
solutions for the empirical estimation of Von-Tj model. Among these circuit
solutions, the most widely adopted, and utilized in this work is schematically
depicted in Fig.30.

DUT

V

Im

SMU

Vdc

Fig. 30: A simplified schematic circuit for the calibration Von − Tj curves.

In Fig.30, a DC voltage (Vdc) is used to drive the power device and put it
in the on state (Vdc>Vth). An SMU is used to inject a low current (Im) and
measure the voltage across the DUT, the device is passively heated to specific
temperatures using a suitable system. For the purpose of this work, the set-up
that allows for the extraction of the Von-Tj model is schematized in Fig.31 and
depicted in Fig.32. It consists of:

37
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38 design of power cycling set-up

• Two SMUs: Keithley 2651A e Keithley 2450;

• One power device (DUT);

• An oven with internal temperature control.

In Fig.31, the Keithley 2651A SMU is used to provide the bias voltage to
the power device (Vdc in Fig.30), delivering an output voltage of 15V. The
Keithley 2450 SMU supplies the measurement current to be injected into the
power device (Im in Fig.30) and measures the on-voltage across its terminals.

The choice of using SMU2 as the measurement instrument is due to its su-
perior measurement sensitivity compared to SMU1 (see Tab.2). The oven is
the system that, through a PID controller, allows heating the power device. By
means of its internal temperature sensor, it is possible to precisely reach a
specific temperature for the device, as the sensor is a Class A PT100 with a
sensitivity of ±0.15°C. The DUT used is an IGBT with a discrete TO-247 package,
whose technical specifications are listed in Tab.3. It will be commonly used
for all the experiments conducted in this work. The chosen current Im to be
injected into the device is 50mA. Given its small value, the junction tempera-
ture is approximated to be equal to the case temperature of the power device,
which corresponds to the temperature detected by the oven’s internal tem-
perature sensor. The chosen measurement approach is the 4-wire technique
to avoid measurement errors introduced by the internal resistance of the ca-
bles. Additionally, considering the measurement environment, cables with a
polymer coating suitable for withstanding ambient temperatures above 180°C
have been selected for the connections.

DUT

Im

Oven

SMU1

SMU2

Fig. 31: The schematic circuit adopted to calibrate Von − Tj curves. The DUT (an IGBT

device) is biased with two SMUs.

The methodology used for the measurements followed the selection of tem-
perature points at which to heat the device and perform voltage measure-
ments. The oven system is a thermodynamic system, so to ensure tempera-
ture homogeneity, a waiting period of a couple of minutes was allowed for
the voltage measurement to stabilize. The actual chosen temperature points
are 14, ranging from 25°C to 150°C.
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Fig. 32: A picture of the experimental set-up adopted for Von − Tj calibration. The
DUT is placed in an oven to control its temperature.

Tab. 2: Valtage and Current ranges of SMUs.

Voltage ranges (SMU1) 100m− 40 [V]

Voltage ranges (SMU2) 20m− 200 [V]

Current ranges (SMU1) 100n− 50 [A]

Current ranges (SMU2) 10n− 1 [A]

In Fig.33, the experimental results of the obtained curves after the con-
ducted measurements are presented. It can be observed, as mentioned in
Chapter2, SubSubSec.2.4.2.1 at currents around 1/1000 of the DC current of
power device, the linear relationship between Vce and Tj, as expected by the-
ory, is verified. Based on these measurements, it was observed that the value
of Im (also called Iref) closest to 1/1000 of the DC current, specifically the
curve obtained at 50mA, was chosen. Moreover, the linear response Vce(Tj)
obtained at 50mA, in accordance with theory, has a slope of approximately
-2mV/°C.

3.3 experimental set-up description for power cycling tests

Tab. 3: Electrical and thermal parameters of TO-247 used as DUT.

Voltage rating Vbk 650 [V]

Pulsed current rating Ip 120 [A]

DC collector current Idc 40 [A]

Thermal resistance, junction - case Zth,jc 0.6 [K/W]
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Fig. 33: The Vce,on(Tj) curves based to Im currents.

Tab. 4: Electrical and thermal parameters of used switches.

Voltage rating Vbk 40 [V]

Pulsed current rating Ip 1500 [A]

DC collector current Idc 200 [A]

Thermal resistance, junction - case Zth,jc 0.41 [K/W]

3.3.1 Circuit Diagram and Instruments Used

The power cycling experiments are conducted using a custom-designed board
specifically created for this purpose, with a simplified schematic representa-
tion shown in Fig.34. Four devices are alternately subjected to equal stress
using the same current value, Idc, supplied by the EA-PSB 9080 current gen-
erator through a multiplexing approach. This approach is achieved by em-
ploying electronic switches S0-S3 whose electrical characteristics are listed in
Tab.4.

The FPGA on the CompactRio board, as depicted in Fig.34, is utilized to
generate digital control signals for switches S0-S3. Specifically, these digital
signals are sent to the driver section of the switches, as illustrated in Fig.34.
The switches are MOSFET devices that, due to their electrical characteristics
(see Tab.4), enable the dissipation of almost all the power in the DUT.

The driver section of switch "Sx" consists of a digital isolator and a MOSFET

driver, as shown in Fig.35a. The digital signal output from the FPGA, which is
used as an input in the driver section, has a voltage range between 0V to 5V ,
while the voltage range at the output of the driver section is between 0V and
15V . The signal periodicity is managed through the LabView software.

The driver section of the IGBTs, used as DUTs for power cycling experiments,
consists of a negative-feedback amplifier that acts as a voltage buffer (see
Fig.35b), ensuring that the DUTs are always in an on-state with a gate voltage
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Fig. 34: Simple Schematic representation of the set-up adopted for power cycling
tests.

of 15V (DCbias in Fig.34). In Fig.36, the Vce voltage at the device terminals is
fed into a differential amplifier with a gain of 3. The output signal from the
amplifier is sampled by the ADC of the CompactRio. The acquired data is then
processed on the PC using LabView software through an Ethernet connection
(see Fig.34).

(a)

(b)

Fig. 35: (a) The driving section of MOSFET used as a switch. (b) The driving section of
DUT.
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Fig. 36: The circuit utilized to sense Vce and acquire it by means of CompactRio ADC.
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Fig. 37: The current flowing in the DUT (a) is switched between a large value (ON
phase) and a small value (OFF phase). The corresponding voltage drop is
reported in (b). During the ON phase a large voltage drop is observed and
the Vce,on estimation is taken at the end of this phase. During the OFF phase,
a sensing current (Iref=50mA) is injected in the DUT and the Vce,off profile
is used for the estimation of Tj. The inset illustrates the temperature profile
resulting from the application of the TSEP methodology to the Vce,off profile.

Fig.37 depicts the typical current and voltage profiles in a DUT. During
the heating period (ON phase), a high current Idc flows through the device,
while during the cooling phase (OFF phase), a reference current Iref of 50 mA
is injected into the device (via the circuit shown in Fig.38) to measure Vce,off.

As shown in Fig.37b, the Vce,off profile is used to estimate the Tj by adopt-
ing the TSEP method. The inset of Fig.37b presents the result of the TSEP

methodology, whose model was developed following the steps in the Sec.3.2.
The temperature profile starts with a maximum junction temperature (Tj,max),

reached at the end of the heating phase, and gradually approaches a min-
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Fig. 38: The schematic of Iref generation circuit.

imum value (Tj,min), at the end of the cooling phase. The thermal cycle is
defined as the temperature difference ∆Tj = Tj,max - Tj,min.

As shown in Fig.34, a bypass section can be implemented to support the
Idc current. Specifically, when a DUT fails due to reaching its EoL condition,
the corresponding switch must be permanently opened, and switch S4 is acti-
vated to maintain the same ton and toff values for the remaining DUTs. Fig.39
illustrates the configuration of the bypass circuit, composed of two identical
IGBT devices that serve as protective elements and are not utilized as test
components. To ensure this, their DC current rating is twice that of the DUTs.
Furthermore, these two IGBT devices are connected in parallel to evenly divide
the current, thereby further reducing the potential impact of stress on them.

Fig. 39: The bypass circuit implemented for the custom board.

Fig.40 displays an image of the experimental set-up. The custom board,
containing the DUTs, is mounted on a liquid-cooled thermal plate. A ther-
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CompactRio

PC

Temperature
controller

Power Supply

DUTs

Security
box

Switches

DUTs

Iref circuit
Switch driver

Vce sensing

Unde
r PCB boar

d

Inside security box

Fig. 40: Picture of the set-up. The test circuit is placed on a liquid-cooled thermal
plate, whose temperature is fixed by means of a temperature controller.

mal controller, Julabo Presto A40 (also depicted in the schematic diagram of
Fig.34), is used to control the temperature of the thermal plate. The DUTs are
positioned on the backside of the custom board and are in direct contact with
the thermal plate.

The average junction temperature can be estimated using the formula:

Tj,av = Tref + Rth,jh · Pav (15)

Where Pav is the average power dissipated in the DUTs, Rth,jh is the thermal
resistance between the DUT junction and the thermal plate, and Tref is the
temperature of the thermal plate set by the temperature controller. Therefore,
for each experiment, the value of Tref is properly adjusted to achieve the
desired Tj,av. It is important to note that the value of Rth,jh of a DUT is also
influenced by neighboring devices (mutual heating effects). Hence, when a
DUT fails and is permanently turned off, small changes in Tj are observed in
the adjacent DUTs. This effect is compensated by appropriately modifying the
value of Tref. However, a transient effect may be visible in the Tj and Vce
profiles.

The health status of the DUTs subjected to power cycling stress is estimated
by monitoring the thermal impedance between the junction and case (Zth,jc)
and the Vce voltage in the on-phase (Vce,on). The failure event is generally
determined by a 20% increase in Zth,jc or a 5% increase in Vce,on [20].

Regarding the power cycling tests, different methodologies can be adopted
to achieve the desired cycling of the junction temperature [72, 81, 102, 103].
In this set-up, the developed approaches are "non-controlled ∆Tj" and "active
control of ∆Tj", and the details are reported in SubSec.3.3.3 and subSec.3.3.4.

Overall, Fig.41, Fig.42, and Fig.43 respectively depict the actual schematic,
associated Gerber file, and the physical appearance of the PCB board.
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Fig. 44: The phases in which is divided a power cycling period for LabView program.

3.3.2 LabView Code

The code and the overall framework in LabView have been divided into dif-
ferent sections based on the "phases" that make up a power cycle of a DUT.

This division allows the program to process the data extremely quickly, as
the PC already knows in advance the phase of the data set received from the
DSP. Fig.44 reports a generic example of a period in the thermal cycle of a DUT

to illustrate the concept.

• Phase 1: on phase (ON) - This phase starts at the beginning of the DUTs
heating process when the load current starts to flow into the device.
During this phase, the conduction voltage under high current conditions
is sampled to monitor the state of health SoH of the device.

• Phase 2: Initial off-phase (OFF1) - This phase starts at the end of the
heating phase to include the rapid initial cooling dynamics and lasts
for about ten milliseconds. The goal of this phase is to sample the con-
duction voltage at the beginning of the off-phase, where the reference
current Iref is injected. Generally, a delay of about 50 microseconds,
associated with the switching transient, is introduced before using the
first sampled voltage data to estimate the maximum junction tempera-
ture using the TSEP method.

• Phase 3: Advanced off-phase (OFF2) - This phase starts after the end
of OFF1 and includes the slower cooling dynamics. It ends before the
start of the next heating process. During this phase, the sampled voltage
value is used to estimate the minimum junction temperature.

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]
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3.3.2.1 The Framework

The framework of the virtual instrument (VI) is divided into three parts:

• "ThermalCycle.vi": This VI is executed by the FPGA of the CompactRio.

• "acquisition.vi": This VI is executed by the DSP of the CompactRio.

• "getDataprocessing.vi": This VI is executed by the PC.

Each one is hence executed on a different device and has a specific func-
tion. The three main VIs automatically synchronize during execution by im-
plementing global variables.

3.3.2.2 VI executed by the FPGA

This section of the program is executed within the FPGA of the CompactRio
and is responsible for managing the power cycle. In particular, it handles
the switching-on and switching-off of the MOSFETs, allowing to control the
activation time (ton) during power cycling and managing the dead times for
the driving signals.

Fig.45 represents a portion of the code that manages these specifications. In
this section, the voltage for driving the DUTs is provided and the activation or
deactivation of the power supply is managed. Communication between this
part of the program in the FPGA and the other components occurs exclusively
through the control panel, using global variables as shown in Fig.46.

Fig. 45: Main cycle (partial figure) that manages the entire power cycling and gate
voltage of the DUTs.

3.3.2.3 VI executed by the DSP

The following VI is executed within the DSP of the CompactRio and is respon-
sible for data acquisition and its corresponding transmission to the PC via
Ethernet communication. For data transmission, NPSV shared variables are
used, one for each phase (identified by the global variables in the blue box in
Fig.47) and for each channel (3 phases x 4 channels = 12 NPSVs) like is shown
in the red boxes in Fig.47.

The DSP processor utilizes the NI9223 module with an integrated ADC. The
ADC sampling frequency is set to the maximum value of 1MHz. This value de-
termines the actual sampling frequency for the OFF1 phase, while the other
phases (ON and OFF2) undergo decimation to avoid the accumulation of less
significant data, as they exhibit slower and more stable dynamics. The man-
agement of decimation is performed in the corresponding PC VI.

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]
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Fig. 46: Cycle responsible for updating the current phase (for VI synchronization) of
all DUTs through the use of global variables.

CompactRio

CompactRio

cio

CompactRio

Fig. 47: The code consists of a single main loop that handles the data transmission
to the PC through the NPSV of the current phase for each DUT. The blue box
highlights the global variables that identify in which of the three phases (ON,
OFF1, OFF2) the DUTx is situated (in this case for DUT0), as communicated by
the FPGA. The three NPSVs, highlighted in red, store the sampled data from
the ADC during each of the three phases.

The "LoopTime" parameter has been introduced, indicating the cycle time
for data transmission to the PC. This value has been determined through
stability tests of the code and is also useful for detecting any anomalies. It
is set to 3ms, representing the minimum time interval in which the PC can
reliably keep up with the data processing executed by the DSP processor.

3.3.2.4 VI executed by the PC

The following VI is executed by the PC and is responsible for processing
the data received from the DSP processor. Specifically, it manages the data ac-
quired by sampling the Vce voltage in the three phases. During the ON phase,

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]
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Fig. 48: Part of the code allowing to estimate ∆Tj (one for each DUT).

Fig. 49: Part of the code allowing for data storage.

the data is decimated by a factor of 50, while in the OFF2 phase, the decima-
tion factor is 20. As mentioned earlier, the OFF1 phase is not decimated. By
using the Vce,on voltage in the ON phase, SoH related to contact degradation
is monitored. Additionally, the first sample obtained after the switching tran-
sient in the OFF1 phase and the last sample acquired in the OFF2 phase are
used Tj,max and Tj,min, respectively, according to the previously developed
TSEP model. The temperature swing ∆Tj can be calculated, as shown in Fig.48.
Temperature information, along with the voltage in the ON phase and the
Idc current information, is used to derive the Zth,jc information and monitor
the SoH of the solder joints. Some of the processed data is then sent to the
FPGA via global variables to update the experiment’s state, for example, in
case of DUT failure and activation of the bypass circuit driving signal. The
main data, such as the on-voltage, Tj,max and Tj,min are saved in CSV files
for subsequent post-processing, as depicted in Fig.49. This VI also manages
the interfacing with the experimental system’s peripherals, such as the power
supply and temperature controller via RS232. The code sections that handle
and, if necessary, decimate the data from the DSP processor are presented in
Fig.50, Fig.51 and Fig.52 for the ON, OFF1, and OFF2 phases, respectively.

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]
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cycle
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3.3 experimental set-up description for power cycling tests 55

Tab. 5: Summary of DC power cycling tests under constant current condition.

Test Idc [A] Tj,min [°C] ∆Tj [°C] Ts [s] duty [-]

Test1 73.5 25 140 2.5 0.22-0.28

Test2 68.5 25 120 2.5 0.22-0.28

3.3.3 Power Cycling Experiments under constant current

The previously described codes in SubSec.3.3.2 allow conducting standard ex-
periments, namely DC power cycling. In Chapter 2, Sec. 2.5, the theory related
to this type of test has been explained. In this section, some of the results from
DC power cycling experiments conducted under the conditions indicated in
Tab. 5 are reported. Two tests, Test1 and Test2, were performed with currents
Idc of 73.5A and 68.5A, respectively, while maintaining a controlled tempera-
ture of 25°C using the temperature control device for the heatsink (JULABO
Presto A40). The currents were selected to obtain an appropriate value of ∆Tj,
and for each test condition, eight samples were experimentally evaluated. Dif-
ferences between the samples can affect power losses and, consequently, the
values of ∆Tj. Therefore, the duty cycle of individual devices was slightly
adjusted (in a range between 0.22 and 0.28) in order to obtain similar ∆Tj
values.
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Fig. 53: Temperature swing profiles, as a function of the number of power cycles for
8 different samples (Test1).

For Test1, the results of ∆Tj, Vce,on, and Zth,jc are shown in Fig.53, Fig.54
and Fig.55, respectively, as a function of the number of power cycles. From
the conducted experiment and the obtained results, it can be observed that
the failure phenomenon is associated with wire bond degradation, as EoL is
reached with a 5% increase in Vce,on compared to its initial value. Further-
more, this increase is responsible also for the ∆Tj rise as observed in Fig.53.
Towards the end of the device’s useful life, a slight increase in Zth,jc is ob-
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56 design of power cycling set-up

served, although it is much lower than 20%. Therefore, it is not considered
the primary factor causing device failure. Similar considerations can be made
for the results obtained in Test2, as reported in Fig.56, Fig.57, Fig.58. By ob-
serving Fig.54 and Fig.57, abrupt variations can be noticed. These variations
are mainly attributed to a transient phase in which a failed device no longer
generates the same heating effect on the plate and adjacent devices, causing
a transient phase of thermal imbalance, which can also be observed for ∆Tj
profiles in Fig.53 and Fig.56. However, this imbalance will be compensated by
controlling the reference temperature value (Tref) through the active control
system responsible for the heat sink temperature, bringing the experiment
back to a steady-state condition.
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Fig. 54: Vce,on as a function of the number of cycles in DC power cycling under
∆Tj=140 °C stress
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Fig. 55: Zth,jc as a function of the number of cycles in the case of Test1 condition.
The increase of thermal resistance is always lower than about 1%, indicating
that the degradation in the device is mainly linked to wire bonding effects.
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Fig. 56: Variation junction temperature cycling for 8 different samples (Test2).
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Fig. 57: Vce,on as a function of the number of cycles in DC power cycling under
∆Tj=120 °C stress.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·104

0.6

0.62

0.64

0.66

0.68

Test2:∆Tj=120°C

Number of cycles

Z t
h,

jc
[K

/W
]

Fig. 58: Zth,jc as a function of the number of cycles in the case of Test1 condition.

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]



58 design of power cycling set-up

3.3.4 Power Cycling Experiments under constant ∆Tj

In addition to the standard DC power cycling stress, referred to as non-
controlled ∆Tj in this work, this set-up also included power cycling experi-
ments conducted under a constant ∆Tj, also indicated as active control of ∆Tj
in this thesis.

To maintain the actual value of ∆Tj constant, or within a limited range
of variation, a control on ∆Tj is adopted. As shown in Fig.59 (red curves),
the temperature increase (due to wear-out phenomenon) is compensated by
reducing the heating time of the DUT. In this set-up, a hysteresis control is
considered. The hysteresis thresholds are ±1°C with respect to the ∆Tj refer-
ence value. Therefore, whenever the ∆Tj value goes beyond the thresholds,
the ton time is reduced or potentially increased. It is important to note that
the heating time is also a parameter that affects the power components’ life-
time, albeit to a lesser extent compared to ∆Tj. Therefore, it is crucial to avoid
significant changes in ton during a test.

 active control of DTj

t on

Number of cycles

(b)

Nominal 
ton time

ton is reduced to keep 
DTj in the desired range 

Fig. 59: Schematic representation of the different methodologies adopted for power
cycling tests. In the case of standard DC power cycling stress (“non-controlled
∆Tj” approach), the temperature swing, obtained by means of a constant heat-
ing current, deviates from the nominal value (a) because of Vce,on or Zth,jc
degradation. The “active control of ∆Tj” allows limiting the temperature in-
crease by dynamically reducing the ton time (b).

This method is applied to all four devices mounted on the test board. Con-
sequently, the sum of all ton times might be different (lower) than the period-
icity of the control signals. In such cases, the bypass transistor (see Fig.34 in
SubSec.3.3.1) is activated for a short period to ensure a constant periodicity of
power cycling tests. Here is an example of a controlled ∆Tj experiment to eval-

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]



3.3 experimental set-up description for power cycling tests 59

uate the code implementation and the robustness of the set-up for the power
cycling test methodology. An appropriate current was chosen to achieve a
∆Tj value of 140°C. The period was set to 2 seconds, while the ton time varies
based on the ∆Tj value. In Fig.60, it can be observed that the ∆Tj values remain
within the range of ±1°C with respect to the 140°C reference value throughout
the duration of the experiment. Additionally, the phases where the control
becomes more active can be observed through abrupt temperature changes
when the power device is nearing EoL. Fig.61 shows the on-voltage curves,
highlighting that this type of experiment induces failure due to wire bond
degradation. Fig. 62 shows the LabView code that implements the method for
the active control of ∆Tj described in Fig. 59.
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Fig. 60: ∆Tj as a function of the number of cycles, in the case of active control ∆Tj
stress.
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Fig. 61: Vce,on as a function of the number of cycles, in the case of active control ∆Tj
stress.
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4
R E L I A B I L I T Y I N V E S T I G AT I O N B A S E D O N A N A LY T I C A L
L I F E T I M E M O D E L S

4.1 introduction

This chapter explores the use of analytical models to investigate and predict
failures caused by power cycling. Specifically, the focus is on enhancing the ap-
plicability of the Linear Damage Accumulation (LDA) rule. The LDA approach
provides a systematic methodology for predicting the life consumption (LC)
of components exposed to repetitive load cycles, which is highly relevant in
the field of power electronics. Consequently, this chapter will examine typical
scenarios where the LDA is applied, analyze the literature evaluating the valid-
ity of its implementation, and emphasize the significance of statistical analysis
for its proper application, particularly when dealing with non-constant stress
conditions over time.

By focusing on non-constant stress, this chapter delves into how the method-
ology used in power cycling experiments affects the accuracy of predictions
derived from the LDA. This aspect is particularly important because under-
standing how design of experiments (DoE), conditions, and procedures can
influence the accuracy of the model is crucial for obtaining reliable and mean-
ingful results. Furthermore, the analysis conducted will align with a compre-
hensive exploration of the observed failure mechanisms. This approach allows
for the verification of the underlying assumption of the LDA, specifically, the
hypothesis of a single stress-induced failure mechanism.

4.2 linear damage accumulation rule for the lifetime estima-
tion

In general, there is a strong request for an accurate prediction of the lifetime
in power electronics, in order to satisfy the reduction of development and
testing time [104]. In a consolidated approach, the analysis of the reliability of
a generic power system begins with the study of the mission profile [105–107].

As schematized in Fig.63, based on the electric and thermal model of the
system, the mission profile is translated in a temperature profile in power
semiconductor devices. The rainflow algorithm can be adopted to evaluate
the number and the amplitude of temperature cycles [108]. Lifetime models
are used to predict number of cycles to failure as a function of relevant pa-
rameters: temperature swing (∆Tj), minimum temperature junction (Tj,min),
heating time ton and current density per wire.

The number of cycles to failure can be defined either as the average num-
ber or as the number leading to a given PoF. Hence, based on the considered
lifetime model, the Miner’s rule is adopted to predict the LC for a given tem-
perature profile, under the assumption of LDA (see Fig.63). The applicability
of LDA is a fundamental point, which have been considered in literature.

61
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62 reliability investigation based on analytical lifetime models

In [107], LDA rule was validated considering the superimposition of differ-
ent temperature profiles, having different heating times. Moreover, the analy-
sis in [107] was carried out at different values of PoF. In [109], the application
of combined power cycling stresses led to an underestimation in the lifetime
prediction, which was explained assuming a dual degradation mechanism, re-
sulting in a prediction error. In [110] under the assumption of a single degra-
dation mechanism, combined power cycling stresses verified the applicability
of LDA rule. In [26], combined experimental tests at different ∆Tj values did
not verify the linearity of the Miner’s rule, particularly in the case of a com-
bined stress with significantly different ∆Tj values (varying between 110°C
and 70°C). In [111, 112] the impact of combined vibrating and thermal cy-
cling stresses was analyzed. An overestimation of the lifetime was found by
applying the Miner’s rule. This inconsistency was ascribed to a change of the
thermo-mechanical response due to the interaction between different types
of stress [111] or to an additional stress phenomenon due to random vibra-
tions during the test being temperature dependent [112]. In [113], a non-linear
cumulative damage model was proposed for ceramic column grid array elec-
tronic package subjected to a combination of thermal cycling and vibration.

Also in [114], combined thermal cycling and vibration stress, under the as-
sumption of a single failure mechanism, i.e. solder fatigue, led to an overesti-
mation of lifetime with the Miner’s rule, because of dynamic effects combined
with thermal stress. In [115], a non-linearity in the accumulation of damage
to solders in combined thermal cycling and vibration stress was found. In
this case, the prediction error, despite the hypothesis of a single degradation
mechanism and no interaction between the two stresses, was ascribed to the
formation of intermetallic material at the interfaces or to the increase of voids
size, amplifying the degradation process.
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64 reliability investigation based on analytical lifetime models

4.2.1 The Impact of Statistics

The study of the lifetime under under a generic mission profile, hence experi-
encing a non-constant cumulative stress, requires the knowledge of the statis-
tics of failure events occurring under constant stress conditions. Therefore,
in this subsection, a brief theoretical explanation of the statistical methods
commonly implemented is provided.

4.2.1.1 Weibull Statistic

The CDF gives the probability that a device will fail within a given number of
cycles N (in order words the percentage of population expected to be failed
as a function of N). The Weibull statistics is widely adopted to describe ther-
mal/power cycling phenomena in power semiconductor devices [116]. Its CDF

is expressed as:

CDF = 1− e(
N
β )
α

(16)

where α is the shape parameter and β is the scale parameter. In particular,
the shape parameter provides information about the behavior of the failure
rate [116]:

• α < 1: it indicates that the samples fail prematurely;

• α = 1: constant failure rate, if it occurs, the failure is not correlated to
aging mechanism;

• α > 1: increasing failure rate, it indicates that the type of failure is asso-
ciated with a wear-out mechanism.

It is possible to observe how the CDF changes with respect to alpha in Fig.64.
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Fig. 64: The CDF of Weibull distribution with the same β but different α.

Typically, in the presence of experimental data, specifically the number of
cycles to failure, in order to analyze the statistics and construct the CDF plot,
the Bernard formula [117] is employed:
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4.2 linear damage accumulation rule for the lifetime estimation 65

CDFexp(Nk) =

(
k− 0.3

Ntot + 0.4

)
(17)

where Nk is the number of cycles to failure of the k− th experiment (with
experiments sorted in ascending order according to the number of cycles to
failure) and Ntot is the total number of experiments.

From the values obtained using (17), it is possible to determine the α and
β parameters of (16) using two approaches: The least squares fitting for the
linearization of the Weibull distribution (also known as Weibit) or the maxi-
mum likelihood estimation method. Both methods are employed to validate
the obtained experimental results.

The first method is based on fitting the experimental data with a linear
function that minimizes the mean squared error. The second method requires
solving a system of equations. Both methods, if executed correctly, yield con-
sistent results. In the context of this work, the first approach was utilized. This
method is based on the following mathematical steps:

ln (1−CDF) = −

(
N

β

)α

ln(−ln (1−CDF)) = α · ln
(
N

β

)

ln(−ln (1−CDF)) = α · ln(N) −α · ln(β) (18)

According to (18), considering a plot of ln(−ln (1−CDF)) vs ln(N), the
experimental data can be fitted with a linear function having a slope equal to
α. An example of this approach is provided using the results of the two real
power cycling experiments described in Chapter 3, SubSec.3.3.3, and depicted
in Figure 65. Furthermore, Fig.65 displays the confidence and prediction in-
tervals at a certain percentage (to account for data variability and method
robustness), along with different levels of PoF.
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Fig. 65: The linearization of CDF for ∆Tj=140 °C and ∆Tj=120 °C constant stresses
(described in Chapter 3, SubSec.3.3.3), fitted assuming Weibull statistics. Dif-
ferent PoF, ranging from 10% to 75%, are also reported and named B10, B25,
B50 and B75.
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4.3 the influence of power cycling test methodology on the
lda rule accuracy

This section explores the impact of the power cycling test methodology on the
accuracy of the LDA rule from an academic point of view. To investigate this,
power cycling tests are conducted using two different approaches:

• Non-controlled ∆Tj approach, in which a constant heating current is
used to achieve the desired ∆Tj (constant current or DC power cycling
test as indicated in Chapter 2 and Chapter 3);

• Active control of ∆Tj approach (power cycling test under constant ∆Tj
as outlined in Chapter 2 and Chapter 3), in which the heating time is
modulated in order to keep the ∆Tj value close to the desired value for
the entire experiment.

4.3.1 Power Cycling Tests Under Constant ∆Tj Stress

As mentioned in the more theoretical SubSec.4.2.1, the study of the lifetime
under non-constant cumulative stress requires the knowledge of the statistics
of failure events occurring under constant stress conditions.

In this section, the experimental results of power cycling tests are reported,
by considering constant ∆Tj values: 120°C and 140°C. In both cases, “non-
controlled ∆Tj” and “active control of ∆Tj” approaches are considered for the
sake of comparison. Vce,on and ∆Tj profiles are reported in Fig.66 for the nom-
inal ∆Tj = 120°C. The adopted heating current is 63.5A with a variation of a
maximum of ±0.5A, with Tj,min = 25°C. In the case of “active control of ∆Tj”,
the temperature swing is kept constant to the nominal value of 120°C, within
the hysteresis threshold of 1°C (see Fig.66a). The Vce,on profile, reported in
Fig.66b, is initially flat, while it sharply increases close to the EoL of the compo-
nents. In all twelve experiments the failure is determined only by an increase
of Vce,on by 5%. On the other hand, in the case of “non-controlled ∆Tj” ap-
proach, the temperature swing increases up to around 127°C (see Fig.66c).
Although the qualitative profile of Vce,on (see Fig.66d) is in agreement with
the one observed in the case of “active control of ∆Tj”, the increase of tem-
perature reported in Fig.66b is responsible of modifications in the number of
cycles to failure. In the case of ∆Tj = 140°C, an heating current of 68.5A is
adopted, with Tj,min = 25°C. Vce,on and ∆Tj profiles are analogous to those
reported in Fig.66.

The experimental number of cycles to failure can be adopted to build the
CDF plot. By means of (17), the experimental CDFs are reported in Fig.67 for
both ∆Tj = 120°C and ∆Tj = 140°C and for both “non-controlled ∆Tj” and
“active control of ∆Tj” approaches. Aiming at linearizing the dependence be-
tween CDF and N, using (18) a linear fitting has been adopted to estimate
both α and β parameters. Lines at specific PoFs are reported in Fig.67 and
are labeled B10, B25, B50 and B75. In general, the adoption of “active control
of ∆Tj” approach leads to a larger number of cycles to failure for a given PoF

with respect to the "non-controlled ∆Tj” approach. In the latter case, according
to [80], a positive feedback relationship between the wire bonds degradation
and ∆Tj leads to lower lifetimes. CDFs, estimated in the case of “active con-
trol of ∆Tj” approach, exhibit a similar shape parameter α, while the change
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Fig. 66: Power cycling tests carried out under constant stress conditions. Temperature
swing and Vce,on profiles are reported as a function of the number of cycles
in the case of “active control of ∆Tj”, Fig. (a) and (b), and in the case of “non-
controlled ∆Tj ”, Fig. (c) and (d). Twelve samples are stressed under the same
test conditions (Tj,min = 25°C and ∆Tj = 120°C). The increase of Vce,on by
5% is considered as failure criterion.

of the stress level leads to a modification of the scale parameter β. On the
other hand, the adoption of “non-controlled ∆Tj” approach leads to a statistic
in which the shape parameter α is significantly reduced in the case of ∆Tj
= 140°C. It is possible that during the degradation phase the non-controlled
increase of temperature can cause some early failures, hence modifying the α
parameter of the distribution.
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Fig. 67: Experimental CDF for constant ∆Tj = 120°C and ∆Tj = 140°C. Results arising
from both techniques, “active control of ∆Tj” and “non-controlled ∆Tj”, are
reported. Experimental data are fitted assuming a Weibull distribution. Pre-
diction bounds (99%) are also included in the plots.
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4.3.2 Power Cycling Tests Under Non-Constant ∆Tj Stress

In the case of non-constant ∆Tj stress, the Miner’s rule, which formalizes the
LDA theory and relies on an understanding of the statistics described in the
previous subsection, is adopted for the estimation of LC. Its expression for a
specific percentage of PoF is as follows:

LCy =

m∑

i=1

ni
Ni,y

(19)

where ni is the number of cycles for the i-th stress level, m is the number
of stress levels considered, and Ni,y is the expected lifetime to achieve y per-
centage PoF under the i-th stress level. When LC is equal to 1, the targeted y
percentage of PoF has been achieved.

The case of Test 1 (as illustrated in Tab.6) is reported in Fig.68. Non-constant
stress is defined as: 6000 cycles at ∆Tj = 140°C and the remaining cycles at
∆Tj = 120°C, with Tj,min = 25°C. According to (19), the LC is calculated by
considering the expected number of cycles at ∆Tj = 120°C and ∆Tj = 140°C.
These values can be directly derived from Fig.67a and Fig.67b (active control
of ∆Tj) for the given PoF (10%). However, the CDFs of Fig.67 are defined within
given prediction bounds with a level of certainty of 99%. Consequently, the
LC profile is also known in a prediction interval, as reported in Fig.68. The
lifetime is then calculated as the number of cycles leading to LC = 1. Overall,
a lifetime interval can be estimated, arising from the limited statistics in the
experimental activity.

Tab. 6: List of experiments under non-constant ∆Tj stress.

N range
(*103)

0-6 6-10 10-14 14-15 15-EoL

Test 1 140°C 120°C

Test 2 140°C 120°C

Test 3 120°C 140°C

Test 4 120°C 140°C

For the sake of comparison, the analysis of Test 1 is then carried out by con-
sidering lifetime models derived with both “non-controlled ∆Tj” and “active
control of ∆Tj” approaches and for the probability of failure ranging from
10% to 75%. The application of the Miner’s rule for both cases is reported in
Fig.69. The LC is estimated in Fig.69a and Fig.69c at different PoF. By using
these pairs of values, i.e. the number of cycles to failure and the PoF, a CDF

can be predicted according to the Miner’s rule (see Fig.69b and Fig.69d). Al-
though both predicted CDFs are included in the range of constant stresses (∆Tj
= 120°C and ∆Tj = 140°C), the adoption of lifetime models calibrated with a
“non-controlled ∆Tj” approach leads to higher probability of failure (under
non-constant stress).

Experimental non-constant ∆Tj stresses are reported in Fig.70 in the case of
Test 1. In Fig.70a, ∆Tj profiles were obtained by actively controlling ton and
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Fig. 68: Application of the Miner’s rule for the determination of the lifetime in the
case of non-constant stress (Test 1 of Tab.6). LC is calculated according to (19),
by considering the expected number of cycles estimated in Fig.67 for a PoF of
10%. The prediction interval arises from the prediction bound of Fig.67.

hence exactly matching the conditions of Test 1 (see Tab.6). This is the most
appropriate profile to consider, since the only available lifetime models are
those for ∆Tj = 120°C and ∆Tj = 140°C. For the sake of comparison, in Fig.70b
∆Tj profiles were generated by only controlling the heating current, hence
an uncontrolled temperature increase close to the end of life is observed. In
Fig.70c, by considering the CDF calculated on the basis of models calibrated
with the “active control of ∆Tj” methodology, the application of the Miner’s
rule leads to a lifetime prediction being in a very good agreement with the
experimental CDF deriving from the tests of Fig.70a.

As reported in Tab.7, the experimental number of cycles to failure is always
included in the prediction interval (associated to the Miner’s rule estimation)
for the full range of PoFs. In the case of “non-controlled ∆Tj” approach, the
application of the Miner’s rule leads to a lifetime prediction which is accurate
in the case of large PoFs, while at low PoF the experimental results differ from
the calculated values (they are even outside of the prediction intervals).

Considering the non-constant stress profile of Fig.70b (in which the stress
methodology is analogous to the one adopted for the calibration of lifetime
models) the difference between the Miner’s prediction and the experimental
CDF decreases but it is still relevant in the case of PoF close to 10%. The error
around PoF = 10% can be explained by considering the CDF at constant stress
reported in Fig.67. More specifically, in Fig.67 the number of cycles to failure
for ∆Tj = 140°C is very low in the case of PoF = 10%. As discussed before, this
is probably due to the positive feedback relationship between the wire bonds
degradation and ∆Tj, possibly leading to the premature failure of samples
in which the thermo-mechanical stress is not kept constant. As a result, the
application of the (19) in the case of combined 140°C/120°C stress leads to an
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Fig. 69: Combined non-constant power cycling stress (Test 1 of Tab.6) for both “ac-
tive control of ∆Tj” (left column) and “non-controlled ∆Tj” (right column).
Lifetime consumption is reported in (a) and (c) considering different proba-
bilities of failure. CDFs arising from the application of the Miner’s rule are
as reported in (b) and (d), along with prediction bounds. Weibull fittings for
constant ∆Tj = 120°C and ∆Tj = 140°C are included in order to delimit the
region in which results are expected.

underestimation of the lifetime with respect to the experimental value at PoF =
10%. According to the analysis reported in Fig.70 and Tab.7, the way in which
accelerated lifetime tests are performed can have an impact on the accuracy
of the linear damage accumulation theory. On the one hand, if lifetime mod-
els are calibrated by means of accelerated tests with “active control of ∆Tj”,
the thermo-mechanical stress can be considered constant, since ∆Tj is fixed at
the nominal value. Consequently, the Miner’s rule gives an accurate predic-
tion when the considered stress is a combination of the stresses at constant
∆Tj. On the other hand, during the calibration of lifetime models based on a
“non-controlled ∆Tj” approach, power devices are subjected to a temperature
cycling exceeding the nominal ∆Tj value. Therefore, the effective ∆Tj value
to be considered for the lifetime modeling purpose should be higher. When
applying the Miner’s rule for a given (non-constant) temperature profile, the
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Fig. 70: Experimental non-constant ∆Tj stresses for Test 1. In (a) the temperature cy-
cling profile is obtained by actively controlling the heating time. In (b) a
constant heating current is adopted, leading an increase of temperature close
to the end of life. Experimental CDFs, for both ∆Tj profiles, are reported in (c)
and compared with those calculated according to the Miner’s rule (Fig.69).

adopted lifetime model is based on the nominal ∆Tj value rather than the
effective ∆Tj value. Hence, some inaccuracies are introduced in the lifetime
estimation. The “active control of ∆Tj” approach is extensively verified in all
the test conditions reported in Tab.6 and the results are illustrated in Fig.71.
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Tab. 7: Experimental lifetime vs. lifetime prediction according to the Miner’s rule (19).
lifetime estimated (19) and prediction bound are expressed as a percentage of
the experimental number of cycles to failure. Active "∆Tj" approach is com-
pared with the case of "non-controlled ∆Tj" approach.

PoF Exp.#cycles Estimated
with(19)[%]

Prediction
Bound[%]

B10 16028 112.22 [98.30; 130.03]

Test1 active control B25 17373 101.36 [92.65; 110.95]

of ∆Tj B50 19858 99.84 [91.02; 105.90]

B75 22006 98.58 [87.35; 103.78]

B10 11506 208.81 [150.77; 289.21]

Test1 non-controlled B25 13723 128.79 [107.62; 178.83]

of ∆Tj B50 17210 106.86 [93.24; 122.64]

B75 20790 100.51 [85.00; 113.71]

The different conditions foresee the same ∆Tj stresses (120°C and 140°C),
but with different orders and switching points. Therefore, the Miner’s rule
predictions can be again estimated from the results of Fig.67. As illustrated
in Fig.71 the experimental CDFs are always well aligned with the application
of the Miner’s rule. The maximum error, which is reported in Tab.8, is in
the order of 10%, which typically falls in the prediction bound calculated for
the lifetime estimation. Therefore, we can conclude that the application of the
Miner’s rule allows accurately calculating the number of cycles to failure at
any PoF.

However, guidelines for the qualification of power devices, such us [71],
typically do not allow for modifications of the heating time during the power
cycling test. This approach is referred to as “non-controlled ∆Tj” method in
this discussion, since the application of a constant heating current leads to
a change of the temperature swing during the test (due to the modification
of self-heating effects). In this case, the application of the Miner’s rule for
an arbitrary mission profile can lead to less accurate results, but still in the
prediction bounds if large probabilities of failure are considered.
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4.4 analysis of degradation mechanisms

This section aims to provide further insight into the previously discussed
results by conducting an analysis on the degradation mechanisms. Device un-
der tests considered in these experimental results are discrete IGBTs in TO-247
package. They are characterized by a typical lead-frame substrate and solder-
able pins as terminal contacts. Discrete devices are encapsulated in a transfer
mold compound based on an epoxy resin [31]. In order to observe the pres-
ence of stress in the solder joint region, X-ray images are captured by means
of an EasyTom tomograph. The fresh sample, reported in Fig.72a, shows some
voids at the interface between the silicon die and the copper tab, which can
be ascribed to the manufacturing process [90, 107, 110]. Similarly, devices sub-
jected to power cycling (both constant and non-constant temperature cycling)
exhibit some voids, but no signs of delamination can be found in Fig.72b,
Fig.72c or Fig.72d. It is worth noting that the solder joint has a significantly
larger volume, with respect to wire bonds, with a consequent higher thermal
time constant. For this reason, the solder joint fatigue typically occurs when
considering a longer heating time than the value considered in these experi-
ments (ton = 0.625s) [37].

(a) (b)

(c) (d)

Fig. 72: X-ray images of solder joint regions taken from the back side of the com-
ponent: (a) fresh device; (b) after failure - ∆Tj = 120°C with “active control
of ∆Tj”; (c) after failure - ∆Tj = 120°C with “non-controlled ∆Tj”. (d) after
failure – Test 1. Voids can be observed in all samples at the Si/Copper tab
interface. The shadow of the two wire bonds is also visible in the images.
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The packages of some samples have been opened for the inspection of
wire bonds. As reported in Fig.73, in all considered cases (both constant
and non-constant temperature cycling, both “active control of ∆Tj” and “non-
controlled ∆Tj”) the formation of a crack at the Al/Si interface is visible in
the images acquired through a Leica MS5 microscope. Therefore, according
to this study, the discussion about the applicability of the LDA theory is re-
lated to the wire bonds degradation mechanism. It is worth mentioning that
the Miner’s rule can be considered only if a single failure mode occurs in the
component [110]. The analysis of degradation mechanisms is in agreement
with the electrical wear-out of the components. In fact, as reported in Fig.66,
the failure events are associated to only an increase of Vce,on.

(a) (b)

(c)

Fig. 73: Microscope images of wire bonds after power cycling failures: (a) ∆Tj = 120°C
with “active control of ∆Tj”; (b) ∆Tj = 120°C with “non-controlled ∆Tj” (c)
Test 1. Red arrows indicate the localization of the crack formation.
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5
A P P L I C AT I O N O F A N N T O M O D E L T H E R E L I A B I L I T Y O F
S E M I C O N D U C T O R P O W E R D E V I C E S

5.1 introduction

This chapter presents an overview of the contributions enabled by the utiliza-
tion of deep learning techniques in the domain of power cycling reliability,
particularly focusing on predicting the lifetime of power devices. To achieve
this, two distinct approaches have been evaluated:

• Employing artificial neural network (ANN) as a lifetime model to de-
velop a unified framework for various types of failure mechanisms.

• Developing a deep learning technique for estimating the remaining use-
ful lifetime (RUL) of semiconductor power devices.

These studies involved the development of a specialized methodology and
were validated through experimental testing.

5.2 basics of ann

ANNs represent a class of computational models inspired by the human brain’s
functioning. These networks distinguish themselves through their capacity to
learn from data and discern complex patterns. Comprising interconnected
units termed neurons, ANNs process and transmit information via weighted
connections [118, 119]. The significance of ANNs lies in their ability to ad-
dress intricate problems that frequently surpass the scope of conventional
analysis techniques [118, 120]. There are various types of ANNs, including the
multi layer perceptron neural network (MLP-NN) and recurrent neural net-
work (RNN), both employed in this work, with each being trained for specific
objectives.

Notably in the field of power electronics, ANNs find substantial utility in
monitoring and predicting the efficiency, reliability, and remaining useful life-
time of electronic devices [17–19, 121–129]. Their proficiency in decoding in-
tricate data and identifying anomalies renders them invaluable tools for en-
hancing the performance and management of power electronic devices and
systems.

5.2.1 Multi Layer Perceptron Neural Network

In this type of ANN, the neurons are divided into layers which are typically
fully connected. They are also called feed-forward neural networks (FFNNs)
due to the fact that the information only travels forward in the network. When
the relationship between input and output is a (non-linear) static function,
MLP-NN is the most suitable ANN to be used [17, 121], with an appropriate
number of hidden layers and neurons. The basic elements in a MLP-NN are as
follows [130]:

79
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• Number of layers;

• Number of neurons in each layer;

• Activation function of each layer;

• Algorithm used during the training process.

In MLP-NNs there are at least three layers: the input, the output and the
shallow layer. The number of neurons in the input layer must be equal to the
number of input signals, while in the output layer, it depends on the type
of ANN. In classification problems the number of output neurons matches
the number of classification classes, while in regression problem, it matches
the number of outputs. The internal layers between input and output are
denoted as hidden layers. Commonly, increasing the problem’s complexity
(i.e. the complexity of the function to be estimated) leads to an increase in
the number of neurons and hidden layers. Unfortunately, it is not possible
to theoretically determine how many hidden layers or neurons are needed
for each problem. To address this issue, in this work, a systematic analysis is
carried out in Sec.5.3, aiming at establishing the most suitable configuration in
the case of power cycling tests. Fig.74 depicts a regressive MLP-NN with three
inputs, three hidden layers, each with four neurons, and a single neuron in
the output layer. The activation functions are essential in each ANN to describe
non-linear functions. Among the different activation functions developed in
the literature [131, 132], the Hyperbolic Tangent Sigmoid Activation Function
is adopted for the architectures used for this work. It is defined as:

f(x) =
2

1+ e(−2x) − 1
(20)

Fig. 74: Example of MLP-NN with three inputs, three hidden layers and a single out-
put.

As depicted in Fig.75, the output of a generic neuron is defined as:

y = f

(
b ·w0 +

n∑

i=1

[xi ·wi]
)

(21)
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Fig. 75: Relationship between input and output in a neuron.

where, xi is i − th neuron’s input, b is the bias value, w0 is the weight
associated to the bias,wi is the weight for the i− th input, f() is the activation
function and n is the number of inputs in a neuron.

5.2.1.1 Training Process

In the training process, the MLP-NN has to extrapolate and to learn the corre-
lations between inputs and outputs of the dataset provided. To this purpose,
the weights and the biases of each neuron are adjusted to reduce a specific
cost function. The training process can be divided into three steps:

• Preliminary operations: in order to obtain an accurate and a robust
MLP-NN, the dataset is split in training (around 80%) and test (around
20%) data. Training data are used during the learning process and test
data during the performance evaluation step. After this, the data are
usually normalized in order to achieve better performances during train-
ing process. The normalization presented in [133] can be adopted. When
presenting the final estimated results, denormalization is performed.
During this phase, the MLP-NN structure is defined in terms of number
of inputs, outputs and hidden layers.

• Training: the training algorithm is executed in order to find the min-
imum in a cost function (i.e. the RMSE). It is typically split into two
sub-steps. In the first one, the output is calculated using inputs and net-
work weights, while in the second one the backpropagation algorithm
[134] is applied and the network weights and biases are updated. The
number of epochs measures how many times the algorithm has been
executed on the entire dataset. The training process ends when a min-
imum (which may be local) is reached in the cost function or when
a predefined RMSE is achieved. The validation data are used to detect
overfitting or underfitting.

• Performance evaluation : the test set is evaluated, and the obtained out-
put is compared with the dataset output. If the performances of the
MLP-NN are not sufficient, the MLP-NN structure (i.e., number of hid-

[ November 30, 2023 at 10:53 – classicthesis version 0.0 ]



82 application of ann to model the reliability of semiconductor power devices

den layers, number of neurons) or the training algorithms should be
updated.

With the rapid development of artificial intelligent techniques, several deep
learning frameworks and libraries have been developed. The most used ones
are Matlab Deep Learning, TensorFlow as well as PyTorch. For the architec-
ture of the ANNs utilized in this work, the aforementioned frameworks are
employed.

5.2.2 Recurrent Neural Network

In the previous section, it was discussed how among the architectures of
ANNs, the MLP-NN is the most suitable when the input-output relationship
is described by a nonlinear static function. Within ANNs, there are architec-
tures capable of predicting the future performance and reliability trends of
devices. These types of ANNs are referred to as RNNs. These neural networks
allow, through historical information, the definition of a dynamic nonlinear
model, which improves its prediction as new data is added during the testing
phase.
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Fig. 76: Schematic description of a gated cell (LSTM network). σ and tanh are the
sigmoid and hyperbolic functions, respectively.

To tackle time-sequence forecasting, RNNs are designed to effectively pro-
cess sequential data. Compared to traditional MLP-NNs, where inputs are prop-
agated and processed through the hidden layer stack, RNNs allow previous
outputs to be used as inputs. The key feature of RNNs is their ability to main-
tain an internal memory or hidden state that can capture temporal depen-
dencies in the input data. This memory enables RNNs to process sequences
of variable length and make predictions based on previous elements in the
sequence.

RNNs are affected by the vanishing gradient issue, making it challenging for
RNNs to learn and capture long-term dependencies effectively. LSTM can be
considered to overcome this problem, thanks to its ability to ignore or retain
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information to remember [135]. The atomic element of an LSTM network is
the gated cell shown in Fig.76. The cell is supplied with three gates, namely
forget, input and output, regulating the flow of information into and out of
the cell. Each gate processes the linear combination of its inputs through a
non-linear function (i.e., the activation function) and returns a value between
0 and 1 used to weigh the desired information.

The input and forget gates act directly on the cell state ck. The first one
determines how to balance the new knowledge from the input xk and the
previous cell output hk−1, while the second one decides the contribution of
the preceding state ck−1. Lastly, the output gate regulates the cell output
hk. based on the current cell state. Remarkably, inputs and states are both
processed using the tanh function to mitigate the vanishing or exploding
gradient issues.

An extension and improvement of LSTM performance is achieved with the
bLSTM [136]. As illustrated in Fig.77, bLSTM consists of two chains of LSTM cells
that consider both time directions. According to the temporal input order xk,
gated cells connected in ascendent order define the forward state. On the con-
trary, the ones associated with the descending order give the backward state.
The output layer (i.e., the output sequence yk) is then given by a combination
of both forward and backward states.
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Fig. 77: Bidirectional Long-Short Term Memory (bLSTM) network.

The network training process, to develop a single-step time-series forecast-
ing model, is based on a sliding window approach. Therefore, a window of
a predetermined size is chosen to be fed as input to the network for training,
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and the subsequent point in the window is given as the training output to the
network. This type of approach has been found to be among the most suitable
for forecasting and estimating the RUL, ensuring high accuracy, as indicated
in [137]. A fixed window, containing m samples, from the input sequence x is
selected as the model’s input (i.e., xk,. . . , xk−m+1). The neural network pre-
dicts the subsequent value x̃k+1, where k is the index of the last input value.
The learning process is aimed at tuning the parameters of the non-linear func-
tion fNN associated with the ANN architecture minimizing the loss function
(e.g., RMSE) of the predicted value

x̃k+1 = fNN (xk, xk−1, . . . , xk−m+1) (22)

with respect to the real one xk+1. To this purpose, the input dataset used
for the training is composed of portions of the on-voltage profiles arising from
different samples. The corresponding next value of the sequence window is
the target output.

5.3 ann-based static lifetime model

This section analyzes the problem of modeling the lifetime in semiconduc-
tor power devices subjected to more than one mechanism of failure linked
to power cycling stress using ANNs. It discusses the optimal configuration of
ANNs for the considered problem, aiming at minimizing the error in the pre-
dicted lifetime and at reducing the required number of training data. More-
over, being the device lifetime a stochastic parameter, the suitability of ANNs
is verified in the case of variability in the input training data.

5.3.1 Limit of Empirical Analytical Lifetime Models

In Chapter 2, Subsection 2.6.1, an in-depth analysis of the primary empirical
lifetime models found in literature has been conducted. Among these models,
particular attention is drawn to the group of researchers who developed the
model, as described in (8) in Chapter 2 and comprehensively presented in
[89]. This group carried out an analytical analysis in [34] and [138], highlight-
ing that the adaptation parameters within the empirical model, developed in
[89], significantly vary depending on whether the model predicts wire bond
degradation or solder degradation. This underscores a well-known issue af-
fecting analytical models, namely their limitation in effectively describing a
single failure mechanism. As extensively discussed in [139], it is crucial to
differentiate between these two failure mechanisms. The primary rationale
behind this necessity lies in the evidence that the impact of stress parameters
on the device, in terms of failure mechanisms, is fundamentally different, as
reported both in [138] and [139].

The challenge of obtaining accurate predictions in classic empirical lifetime
models when considering multiple failure mechanisms can be attributed to
the excessive complexity required to adapt a single model to this array of
scenarios. Consequently, the utilization of deep learning techniques emerges
as a promising solution to this challenge. These techniques have demonstrated
remarkable capabilities in describing and modeling complex phenomena that
link input and output data.
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5.3.2 Methodology

The goal of this work is to investigate the suitability of an ANN to define a non
linear static model for power cycling failure phenomena. Failures are stochas-
tic events characterized by a Weibull random distribution [116] (see Chapter4).
Hence, when considering the training process of MLP-NNs, the variability of
training data must be considered. Averaging several tests, under the same
conditions, is a solution to reduce the randomness of the lifetime estimated
under power cycling effects. However, this can be significantly time consum-
ing, also considering that a relevant number of data is required in the training
phase of a MLP-NN.

In order to evaluate the influence of random distribution of training data
on the accuracy of a MLP-NN prediction, a preliminary analysis using a failure
model validated in the literature [91] is performed. The methodology reported
in Fig.78 is adopted using the following steps. For a given combination of
junction temperature cycling (∆Tj), minimum junction temperature (Tj,min),
heating time (ton) and current density per wire (I), the average number of
cycles to failure is estimated according to [91]:

Nav = A ·∆Tγj · e
β

Tj,min · tαon · Iφ (23)

being A, α, β, γ and φ fitting parameters based on experimental data [91],
considered also valid for IGBT devices in TO-247 package. The current density
I is calculated as the ratio between the current flowing in the device and the
wire diameter, whose typical value is taken from [91]. Although, according to
(23), four parameters are assumed to affect the lifetime of IGBT devices, the
major contribution is expected to come from the junction temperature cycling
[88]. Nav represents the average value of the number of cycles to reach the
failure condition under power cycling tests. Afterwards, Weibull distribution
is considered, with a 50% percentile at Nav and with a shape parameter of
10 which is in agreement with typical experimental power cycling tests. A
random value of the number of cycles to failure (Nrandom) is then generated
according to the considered Weibull distribution and to the Nav input value.
Step a) is repeated K times under different input combinations, being K=22 a
tradeoff between precision and measurement time. However, different values
of K could be adopted, depending on the available hardware setup.

The dataset ofNrandom, obtained at step a), is used for the training process
of the MLP-NN. Depending on the input conditions, the number of cycles to
failure can change of orders of magnitudes, possibly leading to larger errors
for very low values of N during the error minimization process. Hence, the
MLP-NN is trained according to the logarithmic value of Nrandom.

The ANN derived at step b) is used to predict the number of cycles to failure
NANN under several input conditions, being different from those considered
in step a). NANN values are compared to average values predicted by (23),
Nav, and the relative error is calculated as:

er =
NANN −Nav

Nav
(24)
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Consequently, RMSRE is estimated as:

RMSRE =

√√√√
M∑

i=1

e2r,i

M
(25)

where M is the number of test conditions and er,i is the relative error re-
ferred to the i-th test condition.

Training of ANN based on (b)

―

(d)

Average number of 

cycles to failure (Nav) 

according to 

Random generation of 

N considering a 

Weibull statistics

P
D

F

Number of cycles

Nav

(a)

(c)

Fig. 78: Schematic representation of the methodology adopted to investigate the per-
formance of MLP-NN to model power cycling effects: (a) Number cycles to fail-
ure is calculated considering the application of (23) and a random Weibull
distribution; (b) Nrandom values are used in the training phase of MLP-NN;
(c) Trained MLP-NN predicts the number of cycles to failure NANN; (d) The
relative error is calculated considering the difference between NANN and the
average value Nav given by (23).

5.3.3 Configuration and Performance of MLP-NN

The list of input parameters, considered for the training process of the MLP-NN,
is reported in Tab.9. A set of K=22 input combinations is selected among those
arising from Tab.9. Following the methodology reported in Fig.78, the num-
ber of cycles to failure Nrandom are generated considering the selected input
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Fig. 79: RMSRE calculated in case of MLP-NN with a 1 hidden layer and a number of
neurons ranging from 1 to 60. Each neural network is trained with a dataset
of 20 input combinations. The training process is repeated 100 times for each
network configuration in order to gain statistical relevance of results.

combinations. The search for the optimum MLP-NN foresees the analysis of net-
works with different number of hidden layers (from 1 to 2) and with different
neurons within each hidden layer (from 1 to 60). Therefore, the methodology
reported in Fig.78 is carried out for each MLP-NN configuration. Moreover,
the statical relevance of the results is verified by repeating 100 times the en-
tire procedure. Every time the procedure is repeated, although Nav dataset
is unchanged (because the 22 input combinations are the same), the random
generation of the number of cycles, based on the Weibull statistics, leads to
different Nrandom values. Therefore, a total amount of 60 (number of neu-
rons) x 2 (number of HLs) x 100 (number of tests) = 12000 MLP-NNs are trained
for this task, each of them being characterized by a dataset of 22 inputs.

The results in the case of a single hidden layer and Hyperbolic Tangent
Sigmoid activation function are reported in Fig.79. For some MLP-NN config-
urations (i.e. for a given number of neurons in the hidden layer) the RMSRE

value can significantly increase (up to 70% in some cases) by considering a
different randomly generated dataset. Therefore, it is fundamental to select
an MLP-NN configuration in which the RMSRE has always a limited value and
it is verified for a large number of tests. The average values of RMSRE, over
100 tests, are reported in Fig.80 in the case of one or two hidden layers. The
average errors are close to 10% in both cases, even if slightly lower values
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Fig. 80: RMSRE averaged over 100 tests as a function of the number of neurons, in the
case of a single hidden layer (a) or two hidden layers (b). Error bars represent
standard deviations around the average values. The RMSRE in the case of
fitting with model (23) is also reported (dashed line) as a reference.

are observed in the case of 1 hidden layer. In order to select the number of
neurons, the following desired conditions are considered in this work: i) low
average value of RMSRE; ii) reduced standard deviation of RMSRE; iii) limited
sensitivity to a change of the number of neurons. The box reported in Fig.80
indicates the region in which the selected configuration of the MLP-NN is lo-
calized. As a consequence, a MLP-NN having a single hidden layer with 15
neurons is considered for the remainder of this work. However, alternative
values for the number of neurons are suitable for the goal of this paper. For
example, in the case of neurons ranging from 3 to 10 similar characteristics,
with respect to the case of 15 neurons, are observed in Fig.80.

For the sake of comparison, in Fig.80 it is also reported the RMSRE value
obtained in the case of fitting performed with the analytical model. In this
case, step (b) of Fig.78 is replaced with a conventional fitting by means of the
model (23) and in step (c) a simple analytical calculation of the number of cy-
cles to failure is carried out, according to the model calibration. The procedure
is repeated 100 times and the average RMSRE is then calculated and reported
in Fig.80. It is worth noting that for the selected MLP-NN configuration, the
RMSRE value is slightly lower with respect to the analytical fitting.

Once the selected neural network has been trained, an extensive compari-
son is done between the model of (23) and the MLP-NN prediction. Some of
the significant results are reported in Fig.81, where the dependence on the
junction temperature cycling and on the heating time is investigated. The life-
time predicted by the MLP-NN is in good agreement with respect to the model
of (23), being adopted in the methodology of Fig.78. When evaluating the
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Tab. 9: Input parameters adopted for the training process of MLP-NNs according to
the methodology presented in Fig.78.

Input parameter Values

∆Tj [60; 70; 80; 90; 100; 110; 120; 150] °C

Tj,min [25; 51.67; 70.33; 85] °C

ton [0.3; 0.75; 1; 1.2; 1.875; 2; 3; 18; 32] s

I [71.11; 80; 100; 116.67; 136.44; 151.11; 175.56] A/mm

accuracy of results, two important considerations should be kept in mind: a)
the MLP-NN is trained with randomly distributed number of cycles to failure
(Nrandom), while in Fig.81 average values Nav are used as a comparison; b)
test conditions reported in Fig.81 are in general different from those adopted
for the training phase, hence confirming the suitability of the MLP-NN in the
whole range of parameters (reported in Tab.9).

The detailed list of experimental tests conducted in this work is reported
in Tab.10, overall, 25 experimental power cycling tests are carried out, un-
der different parameter configurations. As reported in Tab.10, when a large
ton is considered (in the order of 30 seconds), a significant increase of Zth
is observed, eventually determining the failure of the component when the
threshold of +20% is reached. Hence, solder joint fatigue can be assumed as
a failure mechanism in this case. For low values of ton, instead, the predomi-
nant failure is due to wire bonds degradation.
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Tab. 10: List of power cycling experiments.

∆Tj
[°C]

Tj,min
[°C]

ton
[s]

I [A/mm] Nf
[-]

Vce,on @
failure

Zth @
failure

scope

60 85 0.3 100 486700 +5% ∼ +0% training

70 70.33 0.3 109.56 151200 +5% ∼ +0% training

80 70.33 2 85.11 73820 +5% ∼ +0% training

90 51.67 1 102.89 54720 +5% ∼ +0% training

90 70.33 1 100.44 38465 +5% ∼ +0% training

90 70.33 3 85.33 32760 +5% ∼ +0% training

100 25 0.3 145.56 82390 +5% ∼ +0% training

100 25 1 116.67 64691 +5% ∼ +0% training

100 51.67 0.3 136.44 37315 +5% ∼ +0% training

108 85 18 80 2355 +5% ∼+1% training

110 51.67 1.25 111.11 22305 +5% ∼ +0% test

110 85 32 71.11 560 ∼+4% +20% training

116 80 29 75.55 571 +5% ∼ +16% test

120 25 0.3 158.89 24480 +5% ∼ +0% training

120 25 0.625 139.33 21775 +5% ∼ +0% test

120 25 0.75 137.11 22885 +5% ∼ +0% test

120 25 1.875 110.89 18250 +5% ∼ +0% training

120 25 3 105.56 14055 +5% ∼ +0% training

120 51.67 0.3 152.67 22510 +5% ∼ +0% training

120 51.67 2 106.67 15646 +5% ∼ +0% training

120 51.67 3 112 13305 +5% ∼ +0% training

140 25 0.625 151.11 10764 +5% ∼ +0% test

150 25 0.3 175.56 10584 +5% ∼ +0% training

150 25 1.2 71.11 10183 +5% ∼ +0% test

150 25 2 126.22 7459 +5% ∼ +0% training
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Fig. 81: Number of cycles to failure as a function of the junction temperature cycling
∆Tj (a) and the heating time ton (b). Values calculated with the analytical
model of (2), are compared with values predicted by the selected neural net-
work (1 HL and 15 neurons).
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5.3.4 Training of MLP-NN with Experimental Data and Validation

The ANN has been configured according to the discussion reported in previ-
ous section: MLP-NN with a single hidden layer having 15 neurons. Experi-
mental data reported in Tab.10 are adopted during the training process of the
MLP-NN.

The dataset is divided in 19 training data and 6 test data, as illustrated
in Tab.10. The input parameters for these experiments are in similar ranges
adopted for the analysis in the previous section. The trained MLP-NN is then
used to predict the number of cycles to failure as a function of the junc-
tion temperature cycling, the minimum junction temperature and the heating
time, and a representative dataset is reported in Fig.82. Experimental results,
adopted as both training and test data, are also included in Fig.82 for the sake
of the comparison.

Despite the reduced number of experimental data, a good fitting is ob-
served in a large range of input parameters. In particular, the RMSRE value,
calculated between the full experimental dataset and MLP-NN predictions, is
16.23%, while its value decreases to 10.94% when only test data are consid-
ered. This error is consistent with the randomness of the experimental num-
ber of cycles to failure. In fact, a too small value of the error, would be char-
acteristic of an overfitting model. In Fig.82a the number of cycles to failure
vs. ∆Tj is reported for different Tj,min and ton combinations. In the case of
Tj,min=70.33°C and ton=3s a single experimental point was available. Never-
theless, a reasonable dependence on ∆Tj is found confirming the suitability of
the model in a large range of input parameters. A similar result is observed in
Fig.82c for Tj,min=51.67°C and ∆Tj=110°C, where no training data are present
at all, but still a consistent dependence on ton is verified and a good matching
with test data is observed.

In Fig.82a and Fig.82b experimental results arising from both bond wire
failure (ton 6 3s) and solder joint fatigue (ton = 32s) are reported. The pro-
posed neural network is able to properly predict lifetime of the component in
a large range of operating conditions and when more than one mechanism of
failure linked to the power cycling occurs in the power device.
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Fig. 82: Number of cycles to failure as a function of the junction temperature cycling
∆Tj (a) and of the heating time ton (b). A zoom of (b) in the ton range
from 0 to 3.5s is reported in (c). MLP-NN is trained against experimental data
and predicted values are reported as dashed lines. Some of the training data
(open symbols) and of the test data (stars) are also included for the sake of
the comparison.
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5.3.5 A Comparative Study between Analytical Modeling and ANN

This section aims at comparing the adoption of ANNs and analytical models
to predict the lifetime of discrete IGBT devices under power cycling stress. To
this purpose, an experimental activity is carried out, based on Sec.5.3 and
with additional test conditions, in which different failure mechanisms limit
the lifetime of components.

5.3.5.1 Methodology

The workflow adopted for the calibration and verification of both MLP-NN and
analytical model is reported in Fig.83. In the first step, junction temperature
cycling, minimum junction temperature, heating time and current density per
wire are selected in a large range of test conditions. A total amount of 27
experimental tests are carried out (25/27 are the same reported in Tab.10)
and the dataset is split in training (22) and test (5) data.

In this work two different approaches are followed for the lifetime model-
ing:

• MLP-NN with four inputs (∆Tj, Tj,min, ton, I), with a certain number
of hidden layers and neurons, and one output (N, number of cycles to
failure) (based on the methodology and results discussed in Sec.5.3).

• Fitting of a conventional analytical model, accounting for relevant power
cycling parameters, whose expression is (23).

In order to define the best ANN structure in terms of number of neurons and
hidden layers, the methodology proposed in Sec.5.3 is applied. According to
this study, the selected MLP-NN has 2 hidden layers with a total number of
neurons equal to 9. The activation functions are log-sigmoid and hyperbolic
tangent sigmoid, used for the first and second hidden layers, respectively.

Bayesian regularization is used as a training algorithm with a learning rate
set to 0.1, being implemented by means of Matlab Deep Learning libraries.

According to Fig.83, experimental training data are adopted for the calibra-
tion of both MLP-NN and analytical lifetime models. Afterward, their accuracy
is evaluated by comparing the lifetime prediction with test data (non-adopted
for the training/fitting phase) as well as with training data. The relative error
is calculated with (24) As a final step, the RMSRE values are calculated using
(25) and compared quantitatively between the application of MLP-NN and the
analytical model.
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5.3.5.2 Experimental Results and Comparison of Accuracy of Models

Fig.84, based also on data in Tab.10, reports a summary of all experimental
number of cycles to failure as a function of ∆Tj and ton. It is clear that devices
tested with a short heating time (63s) follow a different trend with respect
to the case of a longer heating time (>18s). This is a confirmation of the
presence of different failure mechanisms occurring in devices subjected to
different stress conditions.

A further evidence of this, in Fig.85, power cycling tests are reported by
considering very different heating times. In the case of ton=0.3s, on-voltage
(Vce,on) sharply increases close to the end of life, while the junction-to-case
thermal impedance (Zth) does not change significantly. This suggests that
bond wire degradation is occurring in the device. On the other hand, in the
case of ton=29s, Zth significantly increases, determining the failure event
when the threshold value (+20%) is achieved. At the same time, Vce,on ap-
pears to be almost unchanged. Therefore, solder joint failure can be assumed
in this case.
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Fig. 84: Experimental number of cycles to failure as a function of the junction tem-
perature cycling. Power cycling tests are carried out at different heating times
and minimum junction temperatures.

Having trained the MLP-NN and fitted the analytical model (whose fitting
parameters are reported in Tab.11) with the experimental data, lifetime predic-
tion as a function of ∆Tj, is compared in Fig.86(a) and Fig.86(b) with respect
to both training and test data. Several combinations of Tj,min and ton are
considered in Fig.86(a) and Fig.86(b), while I is linearly swept in the range re-
ported in the legend. In Fig.86(a), the adoption of MLP-NN leads to curves with
different slopes, depending on the heating time. This allows to achieve a good
accuracy for both bond wire degradation (short ton) and solder joint fatigue
(long ton). In Fig.86(b), the adoption of a conventional analytical model leads
to a constant slope in the plot, according to ∆Tγj dependence of (23). However,
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ported as dashed lines.

Tab. 11: Fitting parameters of empirical analytical model (23).

A γ β α φ

5.217e+11 -4.779 2287.7 -0.7118 -0.366

since different failure mechanisms are involved, γ parameter should change
with ton. This kind of relationship cannot be captured by the simple model
(23) and significant errors are observed in Fig.86(b).

In Fig.87(a) and Fig.87(b), the number of cycles to failure as a function of the
heating time is reported in the case of MLP-NN and analytical model, respec-
tively. Again, the analytical model fails in accurately predicting the lifetime
over the entire ton range, while the ANN approach is able to properly model
the lifetime at any ton value. Tab.12 summarizes the RMSRE values calculated
with (25) for both approaches. The RMSRE value in the case of analytical model
is more than double with respect to the ANN approach. More in details, when
considering ton > 18s (i.e. for failure events due to the increase of Zth) the
error of the analytical model with respect to the experimental data grows up
to 56.29%.

In the case of ANN approach, the RMSRE is very similar for short and long
ton values, and it is close to 21%. It is worth noting that failures are stochas-
tic events, hence a certain randomness is expected in the experimental data,
leading to a non-negligible RMSRE value. To reduce this number, more exper-
imental tests should be performed and averaged. Nevertheless, in Sec.5.3, it
is shown that the modeling of lifetime by means of ANN brings to relatively
accurate results also in the case of training data affected by randomness.
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Tab. 12: Summary of RMSRE.

all dataset test data ton 6 3s ton > 18s

ANN 21.58% 8.83% 21.59% 21.56%

Analytical

model
45.36% 41.64% 43.17% 56.29%

This results confirms that conventional analytical models are suitable only
to model a single failure mechanism (either bond wires degradation or solder
joint fatigue), while they fail if multiple failure mechanisms are considered.
In the latter case, multiple lifetime models need to be derived, requiring ded-
icated and more complicated test structures. On the other hand, artificial neu-
ral networks with the architecture of MLP-NN are proved to be a good solution,
since they are able to find complex correlations between inputs and output,
being difficult to model with a conventional analytical method.
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5.4 adoption of neural networks to predict remaining useful
lifetime of devices

In Chapter 2, Subsec.2.6.2, the data-driven models are introduced, which are
used to estimate the lifetime by monitoring and forecasting the future behav-
ior of a parameter known as SoH (e.g., on-voltage or thermal impedance).

Among the widely used analytical methods for describing a data-driven
model, the PF is described (see Chapter 2, Subsec.2.6.2). However, according
to [122, 140], imprecise knowledge of the parameters of the function that de-
scribes the SoH, as well as inaccurate initialization of the filter, can lead to
inconsistent prognosis results. The ANNs represent a viable solution for data-
driven prognostic methods, as they avoid the need for model definition, can
learn online, and adapt themselves to the degradation profile [122]. In Sub-
Sec.5.2.2, families of architectures capable of implementing dynamic models
for future parameter prediction are defined. For this purpose, an ANN based
on bLSTM is adopted. The bLSTM is trained by using experimental on-voltage
degradation profiles. The proposed method relies on monitoring a precur-
sor, specifically the on-voltage degradation, and based on this precursor, the
model allows for the prediction of the RUL.

5.4.1 Methodology for RUL Estimation

The proposed approach aims at developing a deep learning-based model for
predicting the degradation profile of the on-voltage of switching devices un-
der fixed stress conditions. Being the failure event a stochastic phenomenon,
ANN models are the most suitable to account for the variability in the degrada-
tion process. Fig.88 illustrates the expected outcome of the data-driven model,
with the predicted on-voltage profile over time as the model output. In power
cycling stress scenarios, the on-voltage is expected to increase due to wire
bonds degradation, and a 5% increment is considered as the failure threshold
[20]. The estimated on-voltage profile, and consequently the lifetime predic-
tion, relies on the real-time on-voltage acquisition. Initially, the prediction is
mainly based on the off-line training of the model, resulting in an approxi-
mation close to the average value of the voltage profiles used in the training
phase. However, as the monitoring time increases and the on-voltage of the
tested device is experimentally measured, the accuracy of the lifetime predic-
tion improves. Consequently, the RUL estimation approaches the ideal value.

The forecast is based on recursive iterations of the bLSTM model to obtain
the on-voltage profile along the thermal cycles, as schematically reported in
Fig.89. At the first iteration (initial guess), m samples of the experimental
profile are provided to the bLSTM model to guess the subsequent value x̃k+1.
At the next iteration, the predicted value x̃k+1 is used as the model’s input
discarding the oldest sample xk−m+1 and sliding one step forward the m-
length window. At the i-th iteration, the on-voltage is predicted through both
experimental and predicted samples if i < m, or only predicted values if
i > m

x̃k+i = fNN (x̃k+i−1...., x̃k+1, xk, xk−1, . . . , xk−m+1) , i < m

x̃k+i = fNN (x̃k+i−1...., x̃k−m+i+1) , i > m (26)
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Fig. 88: Graphic representation of the expected outcome of the data-driven model.
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Fig. 89: On-voltage prediction according to the proposed methodology. m samples
are considered (xk,. . . , xk−m+1) as the input of the NN and allows calcu-
lating x̃k+1. Subsequently, the vector (x̃k+1,. . . , xk−m+2) is considered as a
new input of the NN and another value (x̃k+2) is estimated. This process is
repeated until the EoL condition is reached.

This process is iterated until x̃k+i reaches the EoL condition (i.e., an increase
of 5% of the initial on-voltage value). From this definition, the RUL can be
expressed as

RUL(k) = i| x̃k+i > XEoL AND x̃k+i−1 6 XEoL (27)
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where k and i represent the number of monitored cycles and the remaining
number of cycles to failure, respectively. xEoL is the failure threshold.

5.4.2 Results and Discussion

The bLSTM has been trained according to the procedure reported in Sub-
Sec.5.2.2, by using the experimental Vce,on profiles reported in Fig.90. These
profiles are decimated by a factor 100 in order to reduce the complexity of the
neural network while maintaining good performances. A window size (m) of
45 elements is considered for both training and testing phases, correspond-
ing to 4500 cycles for the chosen decimation factor. Regularization techniques
have been implemented to improve the network’s learning ability, and the
Adam algorithm with a learning rate of 0.1 has been used to train the bLSTM

[141]. The dataset is split into a training subset (6 profiles) and a test subset
(2 profiles). To verify the robustness of the model concerning the partition of
the available dataset, the model is trained with all the possible combinations
of training/test subsets, totaling 28 possible neural networks, i.e. the bino-
mial coefficient (8, 6). Two different conditions are considered for the training
phase: ∆Tj = 120°C and ∆Tj = 140°C. An example of Vce,on profiles estimated
by means of the neural network is reported in Fig.91. In particular, Fig.91a
(or 91b) considers a neural network trained at ∆Tj = 120°C (or ∆Tj = 140°C)
with samples #1, #2, #4, #5, #6, and #7 (or samples #9, #10, #12, #13, #14 and
#15) and tested on sample #3 (or #11). Experimental Vce,on profiles as a func-
tion of the number of cycles are reported in black (solid lines), along with the
thresholds assumed for the failure criterion (dashed lines). The other curves
are those predicted by the neural network according to the selected observa-
tion windows, i.e. the monitored number of cycles indicated as k in (26) and
(27).

After an observation of 4500 cycles, predicted lifetimes are relatively differ-
ent from those experimentally evaluated. However, the predicted values are
within the range of values adopted for the neural network training. As the
monitored number of cycles increases, the predicted Vce,on profiles get closer
to the expected ones, hence improving the accuracy in the lifetime estimation.

The RUL represents the difference between the predicted lifetime and the
monitoring time, both expressed as number of cycles, the results of the RUL

analysis are reported in Fig.93 and Fig.94 for ∆Tj = 120°C and ∆Tj = 140°C,
respectively. Both RUL and monitored number of cycles are expressed as a
percentage value of the effective lifetime. The RUL is estimated for all the 16
samples (8 for each stress condition). The 7 different curves reported in each
sub-plot refer to different bLSTM, trained with a different combination of sam-
ples. For each ∆Tj stress condition, 28 bLSTMs are trained in total, which are
used to test the 2 samples not adopted in the training phase of the specific neu-
ral network. As a result, 56 RUL curves are visible in each figure. Although the
estimated RULs can be initially different with respect to the ideal ones (black
dashed lines), the accuracy of the RUL prediction improves with the monitored
number of cycles. In some cases, like samples #4 and #6 the estimated RULs
differ from the ideal values also when approaching to the EoL. This inaccu-
racy could be ascribed to the high variability of the individual experimental
sample. By increasing the number of samples adopted for training phase, the
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Fig. 90: Experimental on-voltage profiles as a function of the number of cycles. Vce,on
profiles are obtained for ∆Tj = 120°C (a) and ∆Tj = 140°C (b).

bLSTM is expected to be more robust against variability in on-voltage profiles.
In order to assess the performance of the proposed bLSTM, the relative error,
defined as the relative difference between the predicted and the experimental
lifetime, is averaged for all the 56 tests performed at a given ∆Tj. The results
are reported in Fig.92. In the range of the monitored number of cycles, com-
prised between 20% and 100% of the device lifetime, the average relative error
is always equal or lower than 13%. As long as the number of cycles increases,
the relative error, along with the standard deviation associated to the averag-
ing process, tends to decrease. For example, by exceeding 80% of the device
lifetime, the average relative error is below 7%, with a standard deviation
lower than 5%. This is a remarkable result for predictive maintenance, since
the EoL can be accurately predicted well before the failure event.
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5.4.3 A Methodology to Estimate On-Voltage Degradation of Power Devices Ac-
cording to a Power Cycling Mission Profile

In the previous section, a deep learning-based solution was introduced, en-
abling the prediction of the Remaining Useful Life (RUL) of a power device
under power cycling stress conditions. This approach utilizes the degradation
profile of the on-Voltage (Von) as a key parameter. However, the objective is
to extend this result by defining a new ANN capable of predicting the SoH of
a power device using Von information, while considering variations in stress
conditions in terms of ∆Tj. This extension is motivated by the fact that cur-
rent data-driven models, whether analytical as in [96, 97] or based on ANNs
as in [122, 127–129], rely exclusively on experimental Von degradation curves.
Typically, constant stress conditions (e.g., constant temperature swing ∆Tj)
are assumed for model calibration and training, which, however, appears to
be unrealistic when a generic mission profile is taken into account. Conse-
quently, models should be trained with Von degradation curves obtained
under non-constant stress conditions, requiring a broad range of test con-
ditions to achieve statistical relevance. Nevertheless, power cycling tests are
time-consuming, making this approach impractical. To overcome this limita-
tion, this section proposes a methodology for generating the Von degradation
curve of a power device subjected to a generic power cycling mission pro-
file, which can be subsequently used for ANN training, implementing a data-
driven model for predicting the RUL. This methodology eliminates the need to
conduct tests under non-constant ∆Tj stress conditions. To achieve this goal,
experimental power cycling tests under constant ∆Tj stress are combined to
predict the Von degradation curve under arbitrary mission profiles.

The basic idea of the proposed methodology is reported in Fig.95. This
method is based on a database of Von vs N curves, being N the number of
cycles and arising from power cycling test at constant ∆Tj stress. A mission
profile is then taken into account and, following a typical Rainflow algorithm
[108], the i-th stress ∆Tj,i is quantified in terms of the fraction pi = ni

Ntot
, be-

ing ni the number of cycles occurring at the specific level of stress and Ntot
the total number of cycles. Successively, an average Von profile, being char-
acteristic of the given mission profile, is estimated. Defined fi as the Von-N
relationship at the the i-th stress level, the number of cycles Ni corresponding
to a generic value Von = V∗ is calculated as:

Ni = fi
−1(V∗) (28)

The average number of cycles (Nav) is then estimated, for Von = V∗, on the
basis of the fraction of number of cycles pi:

Nav(V
∗) =

n∑

i=1

pi ·Ni (29)

This process is schematized in Fig.96 for the simplified case in which only
two levels of stress are considered. In order to validate the proposed method,
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three types of experimental power cycling tests have been carried out (as illus-
trated in Tab.13): constant ∆Tj = 140°C (Test1); constant ∆Tj = 120°C (Test2); a
combination of Test1 and Test2 to generate an arbitrary mission profile (Test3).
More details about Test3 are reported in Fig.97. Eight cycles are carried out at
140°C, followed by 7 cycles at 120°C. After that, a relatively low current value
Is is injected in order to sense the on-voltage degradation. It is worth noting
that, although a different level of stress requires a different level of current, in
order the method to be successful the on-voltage degradation must be always
evaluated under standard conditions (i.e. constant Is current).
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Fig. 95: The methodology considered in this work is based on the knowledge of a
mission profile of ∆Tj and of a database of typical Von degradation curves
at several stress conditions ∆Tj. An average Von profile is then calculated,
being representative of the considered mission profile.

Tab. 13: Summary of experimental test conditions.

Test Tj,min [°C] ton [s] Istress [A] Is [A] ∆Tj [°C]

Test1 25 0.5 68 20 140

Test2 25 0.5 63 20 120

Test3 25 0.5 68-63 20
140 (53.3%)

120 (46.7%)

To validate the described methodology, power cycling experiments have
been conducted on discrete IGBT devices, having TO-247 package. For each
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Fig. 97: Typical power cycling tests carried out in this work. Different levels of stress
current are applied to the DUT in order to generate a non-constant tempera-
ture cycling. Periodically, a sensing current (Is) is applied in order to measure
the on-voltage in standard conditions.
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type of test, six different samples have been considered. The results of power
cycling tests are reported in Fig.98. Fig.98a reports the case of constant ∆Tj
stress, which must be adopted as an input for the proposed methodology. On
the other hand, Fig.98b illustrates the case of non-constant ∆Tj stress, which
serves as the experimental reference to validate the proposed methodology.
As expected, a statistical dispersion is observed on Von degradation curves.
In order to apply the proposed methodology, a single Von-N profile must be
identified for Test1 and Test2. Therefore, profiles arising from different sam-
ples, are averaged according to (29) and considering the same weight pi=1/6.
Following the same approach, the average curve of Test3 can be estimated
from Fig.98b.
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Fig. 98: Experimental Von profiles. A constant ∆Tj is considered in (a), equal to 140°C
(Test1) or 120°C (Test2). A non-constant ∆Tj is considered in (b): 53.3% of
cycles at 140°C and 46.7% of cycles at 120°C (Test3). For each test condition,
six samples are analyzed.

The average Von profiles, arising from the experimental power cycling tests
under Test1, Test2, and Test3 conditions, are reported in Fig.99. Test1 and
Test2 are then used as an input for the proposed model and, according to
(29), the Von profile for Test3 is calculated considering the given mission pro-
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file: ∆Tj,1 =140°C, p1 = 0.533, ∆Tj,2 =120°C, p2 = 0.467. The estimated curve
is also reported in Fig.99. In the case of Test3, prediction intervals (with a
level of certainty of 99%) are also included. Von degradation curves arising
from experimental tests and estimated with the proposed methodology are
very close each other. It is important to note that there is an overlap between
the prediction intervals of the two profiles, confirming the validity of the
proposed methodology. In conclusion, the study has successfully validated a
methodology for generating Von profiles representative of a generic power
cycling mission profile. These Von profiles can be used to train data-driven
models.
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Fig. 99: On-voltage profiles in the case of: i) average of experimental Test1 (constant
∆Tj = 140°C); ii) average of experimental Test2 (constant ∆Tj = 120°C); iii)
average of experimental Test3 (non-constant ∆Tj); iv) predicted according to
the proposed methodology (considering the same mission profile of Test3).
Prediction intervals (with level of certainty of 99%) for experimental Test3
overlap the prediction intervals of the proposed methodology.
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5.4.4 Implementing an ANN for the Development of a Dynamic-Static Model for
RUL Prediction

In SubSec.5.4.1, the methodology for training an ANN was presented, along
with a specification of the type of ANN that can be employed to implement
a data-driven model. Simultaneously, in SubSec.5.4.3, a method for creating
a dataset intended for the training of an ANN similar to the one described in
SubSec.5.4.1 was outlined. This method takes into account variable stress con-
ditions, expressed in terms of ∆Tj, arising from power cycling. In this section,
the two outcomes are combined to define an ANN capable of implementing a
data-driven model for predicting RUL, taking into account the static informa-
tion regarding the stress conditions to which the power device is subjected.
Fig.100 provides a schematic representation of the ANN designed for this pur-
pose. Specifically, the bLSTM (highlighted in red) models the dynamic varia-
tion of the Von, while the green box defines an FFNN capable of considering
the percentages of constant stress within a cycle of variable stress observation.
The outputs of both networks are combined in a cascade sequence of "Dense
Layers", with the first layer having 64 neurons and the second layer having
128 neurons. The final result is represented by a single neuron in the output
layer, predicting the subsequent point in the Von profile after observing a win-
dow composed of 45 previous samples, under the variable stress conditions
considered by the FFNN.

DENSE DENSE

DENSE DENSE. . .

OUTPUT

. . .

DENSE DENSE. . .

. . .

. . .

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

45 Time Series Features
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L
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64 Dense Blocks
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Predict Value

Fig. 100: The schematic of the adopted ANN for predicting the RUL under variable
stress conditions.
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The ANN, in Fig.100, is trained following the methodology described in Sub-
Sec.5.4.1, and the training dataset is created using the procedure outlined in
SubSec.5.4.1. In particular, for the training dataset, the Von average profiles
of Test1 and Test2 in SubSec.5.4.3, whose conditions are described in Tab.13,
serve as the basis for generating additional Von profiles through data augmen-
tation, following the methodology outlined in the same section. The resulting
five Von profiles, as depicted in Fig.101, represent the primary combinations
of stress (in terms of ∆Tj) percentages from Test1 and Test2 in Tab.13.

After training the ANN, it undergoes testing using power cycling experi-
ments under variable stress conditions, as detailed in Tab.14. Mission profiles
are defined while considering the specified stress conditions, as outlined in
Tab.13 within SubSec.5.4.3. Specifically, for each predefined mission profile
condition, power cycling tests are conducted on four samples to assess the
performance of the ANN. It’s important to note that the ANN is trained on
average profiles using data augmentation approach (theory in SubSec.5.4.3),
so evaluating its performance under varying conditions of the phenomenon
is crucial.

The experiments are conducted following a procedure that involves measur-
ing the on-voltage, as described in SubSec.5.4.3, and schematically depicted in
Fig.97. In Fig.102, the mission profile, as shown in Fig.102a, is defined as 8000
cycles under test1 stress conditions (see Tab.13), with the remaining cycles up
to the end of life (EoL) conducted under test2 conditions. The associated Von
profiles are displayed in the lower part of Fig.102a.

By applying the methodology described in SubSec.5.4.1, the ideal RUL for
each experimental Von profile (the blue curves in Fig.102b) is calculated and
then compared with the predictions made by the ANN. The ANN takes into ac-
count the stress variation during the test and updates its predictions based on
the percentage of constant stress applied in the mission profile. The predicted
RUL curves from the network show increased accuracy as the number of ac-
quired samples increases, confirming a similar trend observed in the bLSTM

trained and tested in SubSec.5.4.1.
This rigorous analytical framework is systematically applied to two addi-

tional mission profiles, as conspicuously outlined in Tab.14. The results, en-
compassing the Von profiles and the corresponding RUL predictions proffered
by the ANN, are meticulously presented in Fig.103 and Fig.104. In both in-
stances, as delineated in Fig.103b and Fig.104b, the initial estimations of RUL

are marked by a degree of imprecision. This initial disparity can primarily
be attributed to the phenomenon whereby, during the preliminary prediction
phase (referred to as the initial guess), the forecasted profile demonstrates
a propensity to converge toward the average profile that forms the basis for
the ANN’s training. Nevertheless, as the number of acquired samples contin-
ues to accrue and variable stress conditions are diligently considered, the
accuracy of the predictions exhibits a gradual convergence towards the ideal
RUL curve characteristic of the respective degradation profile. These findings
underscore the remarkable capacity of the ANN to adapt and enhance its pre-
dictive prowess with the acquisition of additional data, especially as stress
conditions dynamically evolve during the testing process.
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Fig. 101: Average Von profiles utilized to train the ANN for RUL prediction under gen-
eral mission profile. The average Von profiles from Test1 and Test2 in Tab.13,
represented by the red and blue curves, respectively, are linearly combined
using the methodology described in SubSec.5.4.3. This combination gener-
ates additional 5 average profiles through data augmentation, taking into
account for different percentages of constant stress applicable in a generic
mission profile.

Tab. 14: List of mission profiles employed for power cycling experiments under non-
constant stress conditions.

N range
(x 103)

0-8 8-14.4 14.4-24 24-EoL

Mission
Profile 1

Stress type 1
(Test 1 in Tab.13)

Stress type 2
(Test 2 in Tab.13)

Mission
Profile 2

Stress type 3
(Test 3 in Tab.13)

Stress type 1
(Test 1 in Tab.13)

Mission
Profile 3

Stress type 2
(Test 2 in Tab.13)

Stress type 1
(Test 1 in Tab.13)
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(a)

(b)

Fig. 102: Mission Profile 1 (see Tab.13) is depicted in the upper part of (a). In the
lower part of (a), the degradation profiles of Von are reported in the case
of 4 different DUTs. In (b), the predicted RUL profiles by the ANN for each
test sample are presented, compared with their respective ideal RUL profiles
(dashed line).
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(a)

(b)

Fig. 103: Mission Profile 2 (see Tab.13) is depicted in the upper part of (a). In the
lower part of (a), the degradation profiles of Von are reported in the case
of 4 different DUTs. In (b), the predicted RUL profiles by the ANN for each
test sample are presented, compared with their respective ideal RUL profiles
(dashed line).
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(a)

(b)

Fig. 104: Mission Profile 3 (see Tab.13) is depicted in the upper part of (a). In the
lower part of (a), the degradation profiles of Von are reported in the case
of 4 different DUTs. In (b), the predicted RUL profiles by the ANN for each
test sample are presented, compared with their respective ideal RUL profiles
(dashed line).
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6
C O N C L U S I O N S

This work involves performing studies and developing reliability models for
power cycling stresses on semiconductor power devices. To accomplish this,
a dedicated set-up was created to conduct power cycling experiments. The
set-up allows for stress-testing 4 components with a multiplexed approach
under established experimental conditions. By varying the stress parameters,
both solder degradation and wire bond degradation, which are the main
failure mechanisms associated with power cycling, can be triggered. The de-
vices under test are IGBT discrete devices with package TO-247. The set-up
allows for implementing both standard experimental conditions, as indicated
by the AEQ-324 standard, also known as DC power cycling (referred to as
non-controlled ∆Tj in this work), as well as constant ∆Tj (referred to active
control of ∆Tj) stresses. Specifically, the "active control of ∆Tj" approach in-
volves dynamically modulating the heating time to maintain a constant ∆Tj.

The two different methodologies, implemented in the experimental set-up,
are used to apply power cycling stress in the context of accelerated life tests
conducted on TO-247 IGBT devices. Specifically, the aim is to academically
analyze the impact of the methodologies employed in accelerated power cy-
cling tests on the estimation of lifetime when power devices are subjected
to non-constant stress conditions. To achieve this objective, lifetime models
are derived with both the "non-controlled ∆Tj" and "active control of ∆Tj"
approaches, spanning a range of PoF from 10% to 75%. By considering the
"active control of ∆Tj" methodology, the application of Miner’s rule results
in highly consistent lifetime predictions with respect to experimental non-
constant stress conditions. More specifically, the experimental number of cy-
cles to failure consistently falls within the 99% prediction interval associ-
ated with Miner’s rule estimation, covering the full spectrum of PoFs. In con-
trast, when employing the "non-controlled ∆Tj" approach, the application of
Miner’s rule yields accurate lifetime predictions for high PoFs, but discrepan-
cies become apparent, particularly at low PoFs. These discrepancies, especially
at lower probability levels, can be attributed to the positive feedback relation-
ship between wire bond degradation and ∆Tj when thermo-mechanical stress
is not maintained at a constant level.

These results obtained, emphasize impact of the chosen methodology in ac-
celerated lifetime testing. On one hand, when lifetime models are calibrated
through tests employing the "active control of ∆Tj" approach, thermo me-
chanical stress can be considered constant, as ∆Tj remains fixed at its nom-
inal value. Consequently, Miner’s rule provides accurate predictions, when
dealing with a combination of stresses at constant ∆Tj. On the other hand,
during the calibration of lifetime models based on the "non-controlled ∆Tj"
approach, power devices undergo temperature cycling that exceeds the nom-
inal ∆Tj value, primarily due to the previously mentioned positive feedback
mechanism. Therefore, the effective ∆Tj value considered for lifetime model-
ing should be higher. When applying Miner’s rule to a given non-constant

119
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temperature profile, the adopted lifetime model relies on the nominal ∆Tj
value, introducing inaccuracies in lifetime estimation.

The possibility of implementing deep learning techniques in the field of
reliability has been explored. As an initial study, the adoption of ANN was
investigated for developing a non-linear static model to predict the lifetime of
semiconductor power devices under power cycling stress. The methodology
described has potential applications in cases involving degradation related to
different failure mechanisms or novel packaging designs.

As a preliminary step, a MLP-NN was trained based on a well-established
analytical power cycling model. The training process considered a Weibull
random distribution in the number of cycles to failure. It was determined
that a single hidden layer MLP-NN with 15 neurons provided the most suitable
configuration, minimizing the error introduced by the MLP-NN (approximately
10%) and yielding reproducible results.

Experimental power cycling tests were performed on 25 different combi-
nations of junction temperature cycling, minimum junction temperature, and
heating time. The MLP-NN was subsequently trained using the acquired exper-
imental data. Despite the limited training data available, the MLP-NN demon-
strated good performance in accurately fitting the experimental data across a
wide range of input parameters involving various failure mechanisms.

To further prove the validity of the proposed model, the performance of the
MLP-NN model is compared with that of an analytical model. It was observed
that the conventional analytical models are only capable of representing a
single failure mechanism, such as bond wire degradation or solder joint fa-
tigue, and are inadequate when multiple failure mechanisms are present. In
such cases, deriving multiple lifetime models becomes necessary, which re-
quires complex test structures. On the other hand, ANNs prove to be a viable
solution as they are able to capture complex correlations between input and
output variables that are challenging to model using traditional analytical
methods. In fact, the RMSRE value of the analytical model is more than double
compared to the MLP-NN approach. This highlights the capability of neural
networks to handle the intricacies of multiple failure mechanisms and their
ability to provide more accurate predictions.

The application of deep learning techniques has been extended to develop a
data-driven model for predicting the lifetime of semiconductor power devices.
The proposed model utilizes bLSTM blocks and is trained using experimental
on-voltage degradation profiles obtained from power cycling tests with tem-
perature swings of 120°C and 140°C. The model predicts the lifetime of the
devices based on the monitoring of the on-voltage profile. When only a lim-
ited amount of data is available, the lifetime prediction falls within the range
observed in the experimental samples used for training. As more data on
SoH of the tested device are acquired, the model’s accuracy improves. The im-
pact of dataset partitioning on the performance of the bLSTM networks is also
analyzed. Specifically, 28 bLSTM networks are trained for each ∆Tj stress condi-
tion. These trained networks are then used to evaluate the RUL of test samples
based on the monitored number of cycles. The relative error between the life-
time predicted by the neural network and the actual experimental lifetime
tends to decrease as the number of monitored cycles increases. On average,
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the relative error among all the trained neural networks remains below 13%,
and it can even be as low as 5% when the monitoring time exceeds 80% of the
device’s lifetime.

This work is also intended to define a new ANN capable of predicting the
State of Health (SoH) of a power device using Von information while ac-
counting for variations in stress conditions in terms of ∆Tj. This extension
is motivated by the fact that current data-driven models, whether analytical
or based on ANNs, rely exclusively on experimental Von degradation curves.
Typically, constant stress conditions (e.g., a constant temperature swing ∆Tj)
are assumed for model calibration and training. However, this assumption
appears to be unrealistic when considering a generic mission profile. To over-
come this limitation, a methodology has been developed to generate the Von
degradation curve of a power device subjected to a generic power cycling
mission profile. This curve can be subsequently used for ANN training, im-
plementing a data-driven model for predicting the Remaining Useful Life
(RUL). Importantly, this methodology eliminates the need to conduct tests un-
der non-constant ∆Tj stress conditions. To validate the methodology, power
cycling experiments are conducted on discrete IGBT devices with TO-247 pack-
ages. The Von degradation curves resulting from experimental non-constant
stress conditions and that estimated with the proposed methodology closely
resemble each other. It is important to note that there is an overlap between
the prediction intervals of these two profiles, confirming the validity of the
proposed methodology.

A comprehensive ANN capable of implementing a data-driven model to pre-
dict RUL under varying stress conditions has been developed. This model com-
bines two key outcomes: the dynamics of Von over the stress time captured
by the bLSTM and the information related to varying stress conditions, inte-
grated into the FFNN, utilizing the methodology of dataset creation through
data augmentation. The training technique used for the initial data-driven
model implemented on the bLSTM has been reapplied to this new ANN. The
testing phase of the ANN is conducted through power cycling experiments
across various mission profiles. Notably, the initial RUL estimations made by
the ANN exhibit some degree of imprecision. This difference can be attributed
to the phenomenon where, during the initial prediction phase (referred to as
the initial guess), the forecasted profile tends to converge towards the average
training profile used for the ANN. However, with the acquisition of more sam-
ples and consideration of variable stress conditions, the accuracy of the predic-
tions progressively approaches the ideal RUL curve specific to the respective
degradation profile. These findings underscore the remarkable capacity of the
ANN to adapt and enhance its predictive accuracy as it acquires more data, es-
pecially in response to the dynamic evolution of stress conditions during the
testing process.

Extending the applicability of such models to other wide bandgap devices
entails addressing various significant issues. One of the primary challenges
pertains to the diversity of available packages, necessitating a reconsidera-
tion and adaptation of the experimental setup to ensure accurate and com-
parable results. Moreover, emphasis is placed on the need to recalibrate the
TSEP to account for the specific characteristics of the new devices, introduc-
ing a dynamic element to the experimental procedure. These adaptations are
crucial to preserve the reliability and precision of the results obtained dur-
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ing power cycling on wide bandgap devices. As a future perspective, further
exploration and refinement of experimental methodologies and calibration
techniques will be essential for broadening the scope of these models to en-
compass an even wider array of wide bandgap devices.
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