
77

Testing a trapping protocol for generic surveillance of wood-
boring beetles in heterogeneous landscapes
Giacomo Santoiemma1 , Andrea Battisti1 , Claudine Courtin2, Gianfranco Curletti3, Massimo Faccoli1 ,  
Nina Feddern4, Joseph A. Francese5, Emily K. L. Franzen6,7, Filippo Giannone8, Martin M. Gossner4,9 ,  
Chantelle Kostanowicz10, Matteo Marchioro1 , Davide Nardi1, Ann M. Ray7, Alain Roques2 ,  
Jon Sweeney10 , Kate Van Rooyen10, Vincent Webster10, Davide Rassati1

1 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020, Legnaro (PD), Italy
2 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UR 0633, Zoologie Forestière, 45075, Orléans, France
3 Museo Civico di Storia Naturale, Parco Cascina Vigna, 10022 Carmagnola, Italy
4 Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, Switzerland
5 USDA-APHIS-PPQ-S&T Forest Pest Methods Laboratory, 1398 W. Truck Road, Buzzards Bay, MA 02542, USA
6 USDA APHIS PPQ S&T Bethel Field Station, Bethel, OH 45106, USA
7 Department of Biology, Xavier University, 104 Albers Hall, 3800 Victory Pkwy., Cincinnati, OH 45207, USA
8 Padova, Italy
9 Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
10 Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, 1350 Regent St., Fredericton, NB, E3C 2G6, Canada
Corresponding authors: Giacomo Santoiemma (giacomo.santoiemma@unipd.it); Davide Rassati (davide.rassati@unipd.it)

Copyright: © Giacomo Santoiemma et al.  
This is an open access article distributed under 
terms of the Creative Commons Attribution 
License (Attribution 4.0 International – CC BY 4.0).

Research Article

Abstract

Baited traps are a basic component of both specific and generic surveillance programs targeting 
wood-boring beetles at risk of introduction to new habitats because of global trade. Among the 
numerous protocols developed over the years for generic surveillance of longhorn beetles, jewel bee-
tles, and bark and ambrosia beetles is the simultaneous use of black multi-funnel traps set up in the 
understory and green multi-funnel traps set up in the canopy of forested areas surrounding ports 
and other entry points. These traps are commonly baited with multi-lure blends of pheromones and 
host volatiles. In this study, we tested this trapping protocol in areas surrounding eight entry points 
located in Europe and North America to determine: i) the relative performance of black-understory 
traps and green-canopy traps among the targeted taxa; and ii) whether the dissimilarity among com-
munities of beetles collected by the understory vs. canopy traps was affected by taxon and amount 
of forest cover in the traps’ surroundings. A total of 96,963 individuals belonging to 358 species of 
wood-boring beetles were collected, including 21 non-native species. Black-understory multi-funnel 
traps were generally more efficient than green-canopy multi-funnel traps for detecting longhorn 
beetles and bark and ambrosia beetles, whereas the opposite trend was observed for jewel beetles. 
Differences between beetle communities caught in black-understory and green-canopy traps were 
mainly attributed to differences in species richness in jewel beetles, while both differences in species 
richness and species turnover contributed to the dissimilarity between communities of longhorn 
beetles and bark and ambrosia beetle. The difference in the number of jewel beetle species caught 
by the two trapping methodologies decreased with increasing forest cover, whereas species turnover 
increased when moving from an urban-dominated to a forest-dominated landscape. Overall, these 
results suggest that the simultaneous use of both black-understory and green-canopy multi-funnel 
traps can be considered a very efficient approach for generic surveillance of longhorn beetles, jewel 
beetles and bark and ambrosia beetles in both urban-dominated and forest-dominated areas sur-
rounding entry points.
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Introduction

The continuous increase in global trade in recent decades, combined with deliberate 
plant introductions in the past, has resulted in increasing number of non-native in-
sects moved outside their native ranges (Seebens et al. 2017; Isitt et al. 2024). This 
trend is evident for wood-boring insects, especially bark and ambrosia beetles (Co-
leoptera: Scolytinae), longhorn beetles (Cerambycidae) and jewel beetles (Bupresti-
dae) (Rassati et al. 2016; Ruzzier et al. 2023a) which can be accidentally transport-
ed within wood packaging materials, logs, processed wood, and live nursery stock 
(Meurisse et al. 2019; Fenn-Moltu et al. 2023). After introduction, wood-boring 
beetles may become invasive pests, with high economic, ecological, and social im-
pacts in urban and natural forests (Aukema et al. 2011). The jewel beetle Agrilus 
planipennis and the longhorn beetle Anoplophora glabripennis, for example, are listed 
among the top 10 of all invasive species for post-invasion management costs and are 
estimated to be among the costliest non-native insects worldwide (Cuthbert et al. 
2022). For these reasons, substantial investments globally have focused on mitigat-
ing the arrival and establishment rate of non-native wood-boring beetles through 
more efficient biosecurity measures (Nahrung et al. 2023), including tools and 
strategies for early-interception of non-native species at and around entry points.

Among the numerous tools developed for surveillance of wood-boring beetles 
(Poland and Rassati 2019), traps baited with attractive lures are part of the biose-
curity systems of several countries around the world (Rassati et al. 2015a, 2015b; 
Carnegie et al. 2018, 2022; Rabaglia et al. 2019; Hoch et al. 2020; Allison et al. 
2021; Holusa et al. 2023; Mas et al. 2023; Wardhaugh and Pawson 2023). The 
knowledge acquired over the years on the key factors influencing trap efficacy (Alli-
son and Redak 2017; Dodds et al. 2024) and on the chemical ecology of hundreds 
wood-boring beetle species (e.g., Byers 2007; Millar and Hanks 2017; Ranger et 
al. 2021) has led to the definition of a set of trapping protocols tailored to the tar-
get taxa or objective of the surveillance program. In the case of generic surveillance 
aimed at intercepting as many non-native species as possible, the simultaneous use 
of black multi-funnel or intercept panel traps set up in the understory and green 
multi-funnel traps set up in the canopy, all baited with multi-lure blends, in areas 
surrounding entry points (e.g., Wong et al. 2012; Hanks et al. 2018; Fan et al. 
2019; Rice et al. 2020; Roques et al. 2023), might be considered as a potentially 
efficient approach. Baited black traps set up in the understory are known to attract 
longhorn beetles and bark and ambrosia beetles commonly living in the lower 
forest strata (De Groot and Nott 2001; McIntosh et al. 2001; Dodds et al. 2010; 
Flaherty et al. 2019; Ulyshen and Sheehan 2019), while baited green multi-funnel 
traps set up in the canopy are known to catch jewel beetles well (Francese et al. 
2011, 2013; Petrice and Haack 2015; Skvarla and Dowling 2017; Santoiemma 
et al. 2024) but also longhorn beetles and certain bark and ambrosia beetles liv-
ing in mid and upper forest strata (Rassati et al. 2019; Marchioro et al. 2020). 
Nonetheless, this trapping protocol remains to be tested in surveillance programs 
targeting areas surrounding high-risk sites, such as international ports and airports 
or warehouses, which can be characterized by heterogeneous landscapes ranging 
from urban-dominated areas to forest-dominated areas.
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In addition to testing overall efficacy, there is an urgent need to better understand 
whether the simultaneous use of baited black multi-funnel traps placed in the un-
derstory and baited green multi-funnel traps placed in the canopy is always neces-
sary, irrespective of the characteristics of the landscape. Previous studies showed that 
the efficacy of a trapping methodology can be context-dependent (e.g., Bouget et al. 
2009; Marchioro et al. 2020; Rassati et al. 2021) as it can be affected by a number 
of environmental variables (Dodds et al. 2024), including the amount of tree cover 
occurring around the trap (Schroeder 2013; Nunes et al. 2021). In areas surrounding 
high-risk sites, traps can be set up either on isolated trees that are present along streets 
or private gardens (i.e., in urban-dominated areas) or on trees that are present in 
urban parks or forest patches and that are surrounded by many potential hosts (i.e., 
in forest dominated landscapes or where urban areas are intermixed with forest areas) 
(Bashford 2008; Rassati et al. 2015a; Mas et al. 2023). Thus, understanding whether 
the proposed trapping protocol can be simplified depending on the amount of tree 
cover occurring in the trap surroundings is crucial to optimize efforts and reduce over-
all costs of the surveillance program (Epanchin-Niell et al. 2014; Nguyen et al. 2024).

In this study, we conducted a trapping experiment in areas surrounding eight 
entry points located in Europe and North America using black multi-funnel traps 
set up in the understory and green multi-funnel traps set up in the canopy, all bait-
ed with the same multi-component blend of longhorn beetle pheromones comple-
mented with plant volatiles. We first compared the relative efficacy of black-under-
story traps and green-canopy traps for detecting different target taxa, i.e., longhorn 
beetles, jewel beetles and bark and ambrosia beetles. Second, we calculated dissim-
ilarity indices to compare the communities of longhorn beetles, jewel beetles and 
bark and ambrosia beetles collected by black-understory vs. green-canopy traps, 
and then we tested the effect of the amount of forest cover in the trap surroundings 
on the dissimilarity indices. These analyses allowed us to investigate whether the 
simultaneous use of black-understory traps and green-canopy traps is required irre-
spective of the taxon and the landscape in which this protocol is used, or whether 
a simpler protocol (e.g., using only black-understory traps) may detect as many 
species of a particular taxon, depending on the surrounding landscape.

Methods

Study sites, trap types and experimental scheme

The study was conducted at eight sites in five different countries in the temperate 
zone of Europe and North America: France, Italy, Switzerland, Canada (Nova Sco-
tia) and USA (Ohio) (Suppl. material 1: fig. S1, table S1). Selected sites were char-
acterized by the presence of mixed forest and urban patches, and were located in 
the proximity of entry points or high-risk areas such as ports, airports, warehouses 
and high-use recreation areas (Suppl. material 1: table S1).

At each site we used sixteen black and sixteen green multi-funnel traps (Sup-
pl. material 1: fig. S1), supplied by Synergy Semiochemical Corporation (Del-
ta, BC, Canada) and ChemTica Internacional (Santo Domingo, Costa Rica). 
Both trap types were pre-treated with a 50% solution of Fluon (active ingredient 
polytetrafluoroethylene) as a trap coating because of its ability to increase trap 
catches of wood-boring beetles (Graham and Poland 2012; Allison et al. 2016). 
Trap-collecting cups were filled with 150–200 ml of a 50% propylene glycol solu-
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tion mixed with either water or as a pre-mixed marine/RV antifreeze solution. 
Propylene glycol solutions were replaced at each trap check.

Traps were set up using a 2 km × 2 km grid as reference (Suppl. material 1: fig. 
S1), with one black and one green multi-funnel trap set up in each of 16 grid cells of 
0.5 km × 0.5 km. The only exceptions were the two sites in France, where traps were 
coupled along a horizontal transect due to limits in space within the selected sites and 
local restrictions. Black multi-funnel traps were set up with the top of the trap about 
1.5–2 m above the ground on lower tree branches, whereas green multi-funnel traps 
were set up in the upper one-third of the tree canopy at heights ranging from 7 m to 
15 m. We selected this approach even though it confounded the effects of trap height 
and trap color on catch of targeted taxa because the latter was already addressed in 
several previous studies (reviewed in Dodds et al. 2024). Canopy traps were set up 
following the methods of Hughes et al. (2014). The two traps within the same grid 
cell were suspended on different trees, separated by 50–100 m. Trees were selected 
based on position and suitability to hold the weight of the traps, irrespective of the 
species. Traps were set up in mid-May 2019 and emptied every 2–3 weeks until the 
end of August 2019. All trapped longhorn beetles, jewel beetles, and bark and ambro-
sia beetles were identified to species level using morphological features and taxonomic 
keys. Voucher specimens were deposited in the insect collection of each institution.

Lures

All traps were baited with a lure containing a blend of eight cerambycid pher-
omones attractive to a wide range of longhorn beetle species (Fan et al. 2019; 
Roques et al. 2023), plus UHR (ultra-high release rate) ethanol and alpha-pinene 
lures. The pheromone blend included racemic fuscumol (volume amount: 50 
mg), racemic fuscumol acetate (50 mg), geranyl acetone (25 mg), racemic 3-hy-
droxyhexan-2-one (50 mg), prionic acid (1 mg), 2-methylbutan-1-ol (50 mg), an-
ti-2.3-hexanediol (50 mg), and monochamol (50 mg), all dissolved in isopropanol 
as a carrier to a total volume of 1 ml per lure (see Fan et al. 2019 for release rate). 
All pheromones were purchased from ChemTica Internacional (Santo Domingo, 
Costa Rica) except prionic acid (Alpha Scents Inc., West Linn, Oregon, USA); the 
ethanol and alpha-pinene lures were provided by Econex (Spain). One-milliliter 
aliquots of the pheromone blend were filled in glass vials with screw caps and 
stored at 4 °C until used. At the beginning of the trial and during each trap check, 
the 1-ml aliquots were poured into a clear polyethylene sachet containing a cotton 
cylinder, which was hung on the trap using a string. The addition of the two host 
volatile lures increases both the attractiveness of the pheromones to many species 
of longhorn beetles (e.g., Collignon et al. 2016; Miller et al. 2017) as well as the 
likelihood of trapping certain species of jewel beetles (Miller et al. 2015) and bark 
and ambrosia beetles (Miller and Rabaglia 2009; Marchioro et al. 2020).

Analysis of dissimilarity indices to investigate wood-boring beetle 
communities

To investigate differences in the communities of wood-boring beetles collected in 
black-understory multi-funnel traps and green-canopy multi-funnel traps, we used 
the β-diversity approach outlined in Carvalho et al. (2012) (see also Podani and 
Schmera 2011; Legendre 2014). The general term “β-diversity” refers to the total 
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compositional change between two communities (in our case study, the community 
of wood-boring beetles collected using the two trapping methodologies), and can be 
partitioned into two components: species richness difference and species replacement 
(Carvalho et al. 2012). “Species richness difference” refers to the relative difference 
in the number of species between two communities, whereas “species replacement” 
refers to the substitution of species by others when two communities are compared. 
The two components are additive, and their sum provides the β-diversity index.

Given “a” = number of species exclusive to the first community, “b” = number of 
species exclusive to the second community, and “c” = number of species common 
to both communities, the β-diversity is given by the Jaccard dissimilarity index:

βcc = (a + b)/(a +b +c)

with values ranging from 0 (perfect similarity) to 1 (total dissimilarity). The species 
richness difference component is given by:

βrich = |a + b|/(a +b +c)

with values ranging from 0 (no richness difference) to 1 (maximum richness differ-
ence). The species replacement component is given by:

β-3 = 2 min (a, b)/(a +b +c)

with values ranging from 0 (no replacement) to 1 (maximum replacement). To cal-
culate these indices, data collected across the entire sampling season from black-un-
derstory and green-canopy traps (i.e., total catch per trap over the entire trapping 
season) of each grid cell at each site were paired, creating n × m presence/absence 
matrices for each taxon, whereby n = 2 (one row for each trapping method) and 
m = number of species. Then, for each matrix, the three indices were computed us-
ing the “vegan” package (Oksanen et al. 2022) in R software (R Core Team 2021).

Quantification of tree cover in the area surrounding the traps

Forest patches around each trap were manually digitized by visual inspection of 
high-resolution satellite images in Google Earth Pro (Google Inc.© 2023) within a 
buffer of 250 m radius. This spatial scale was selected based on the results of previ-
ous studies testing the attraction range of baited traps towards wood-boring beetles 
(e.g., Dodds and Ross 2002; Jactel et al. 2019). For each buffer, the total forest 
cover (%) was then quantified in GIS (Quantum GIS 3.22, QGIS Development 
Team 2021) after importing the digitized patches from Google Earth Pro (Google 
Inc.© 2023). Forest cover within the buffers ranged from 0% (where only urban 
patches were present) to 100% (where only forest was present), with a mean value 
(± standard deviation) of 51.4 ± 39.3%.

Statistical analyses

We used generalized linear mixed models for all the analyses. Data collected from 
all sites were analyzed together to increase both the statistical power of the models 
and the gradient of forest cover around the traps.
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First, we tested the effect of the taxon and the trapping methodology on spe-
cies richness and abundance. Species richness (i.e., total number of species) and 
abundance (i.e., total number of individuals) for each trap and pooled over the 
sampling rounds were considered as response variables. The taxon (categorical vari-
able: longhorn beetles, jewel beetles, and bark and ambrosia beetles), the trapping 
methodology (categorical variable: black-understory and green-canopy multi-fun-
nel traps) and their interaction were considered as explanatory variables. The site 
identity, the identity of each grid cell within each site and the identity of each trap 
within each grid cell were included in the models as nested random factors.

Second, we tested the effect of the taxon and the forest cover on beta-diversity 
indices. The three beta-diversity indices βcc, βrich and β-3 calculated for each pair 
of traps (within a cell) were considered as response variables. The taxon (cate-
gorical variable: longhorn beetles, jewel beetles, and bark and ambrosia beetles), 
the forest cover (continuous variable: mean % of forest cover in the buffers of 
250 m radius around the pair of traps present in the same cell) and their interac-
tion were considered as explanatory variables. The site identity and the identity 
of each cell of the grid within each site were included in the models as nested 
random factors.

Models were fitted with a Poisson distribution (log link function) for species 
richness, negative binomial distribution (log link function) for abundance, and 
Gaussian distribution for the beta-diversity indices. Pairwise comparisons be-
tween each taxon and between the two trapping methodologies within each tax-
on were run using Tukey correction of p-values. All the analyses were carried out 
in R software (R Core Team 2021). Models were fitted using the ‘glmmTMB’ 
(Brooks et al. 2022) and ‘nlme’ (Pinheiro et al. 2021) packages, and validated 
using the ‘DHARMa’ (Hartig 2022) and ‘car’ (Fox and Weisberg 2019) packages. 
There was no evidence of spatial autocorrelation of models’ residuals, checked with 
Moran’s I test for distance-based autocorrelation using the ‘DHARMa’ package 
(Hartig 2022). Pairwise comparisons and slope estimates were calculated using the 
‘emmeans’ package (Lenth 2021).

Results

General results

A total of 96,963 individuals belonging to 358 species of wood-boring beetles 
were collected (Suppl. material 1: table S2). The most species-rich taxon was rep-
resented by longhorn beetles (169 species), followed by bark and ambrosia beetles 
(123) and jewel beetles (66). Longhorn beetles and bark and ambrosia beetles 
represented the most trapped species at all sites (Fig. 1). For abundance, bark and 
ambrosia beetles had the highest number of trapped specimens (73,109), followed 
by longhorn beetles (17,970) and jewel beetles (5,884) (Suppl. material 1: table 
S2). Xyleborinus saxesenii (48,042 individuals) and Orthotomicus erosus (4,180) 
were the most abundant ambrosia and bark beetle species collected, respectively, 
whereas Phymatodes amoenus (2,954) and Agrilus olivicolor (2,213) were the most 
abundant longhorn beetle and jewel beetle species, respectively. Although most 
of the trapped species were native, 21 species were non-native for 14,772 speci-
mens. These non-native species included four longhorn beetle species (i.e., Phym-
atodes testaceus in North America, Neoclytus acuminatus, Xylotrechus chinensis and 
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Xylotrechus stebbingi in Europe), two jewel beetle species (i.e., Agrilus cyanescens 
and Agrilus planipennis in North America), and 15 bark and ambrosia beetle spe-
cies (nine in North America, two in Europe and four in both continents) (Suppl. 
material 1: table S2).

Effect of taxon and trapping methodology on trap captures

Species richness was significantly affected by taxon and by the interaction between 
taxon and trapping methodology (Table 1). The mean number of species (± stan-
dard error) was significantly higher for longhorn beetles (8.34 ± 0.26) than bark 
and ambrosia beetles (7.42 ± 0.26) and jewel beetles (1.79 ± 0.15). In addition, 
the effect of trapping methodology differed depending on the taxon (Fig. 2A–C). 
For longhorn beetles, the mean number of species caught in black-understory traps 
was not significantly different from the number of species caught in green-canopy 
traps (Fig. 2A). For jewel beetles, green-canopy traps caught significantly more 
species than black-understory traps (Fig. 2B), whereas the opposite trend was ob-
served for bark and ambrosia beetles (Fig. 2C).

Abundance was significantly affected by all tested variables (Table 1). The mean 
number of individuals (± standard error) was significantly higher for bark and am-
brosia beetles (286.70 ± 25.47) than for both longhorn beetles (70.47 ± 4.03) and 
jewel beetles (23.08 ± 5.43). In addition, black-understory traps generally caught 
more individuals than green-canopy traps, even though the trapping performance 

Figure 1. World map describing the communities of longhorn beetles, jewel beetles, and bark and ambrosia beetles collected at each 
experimental site. Circle size indicates the number of trapped species ranging from 55 (smallest circle) to 100 (biggest circle). The different 
colors within each circle indicate the relative percentage of species attributed to each taxon: red = longhorn beetles; green = jewel beetles; 
blue = bark and ambrosia beetles. Numbers in yellow circles represent the different study sites according to Suppl. material 1: table S1 
column ID number.
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changed depending on the taxon (Fig. 2D–F). Black-understory traps outper-
formed green-canopy traps for both longhorn beetles (Fig. 2D) and bark and am-
brosia beetles (Fig. 2F), whereas the opposite trend was observed for jewel beetles 
(Fig. 2E).

Table 1. Analysis of deviance table from the generalized linear mixed models testing the effects 
of taxon (longhorn beetles, jewel beetles, and bark and ambrosia beetles), trapping methodology 
(black-understory multi-funnel traps and green-canopy multi-funnel traps) and their interaction on 
species richness (Poisson distribution; log link function) and abundance (negative binomial distri-
bution; log link function). Nested random structure used for both models: ~1|Site/Cell/Trap. Type 
II Wald chi-square tests (χ2), degrees of freedom (df ), p-values, and lognormal marginal (mR2) and 
conditional (cR2) pseudo R-squared are provided for both models.

χ2 df p-value

Species richness

Taxon 659.517 2 < 0.001

Methodology 0.455 1 0.500

Taxon × Methodology 161.154 2 < 0.001

mR2 = 0.73, cR2 = 0.87

Abundance

Taxon 1040.747 2 < 0.001

Methodology 20.737 1 < 0.001

Taxon × Methodology 274.916 2 < 0.001

mR2 = 0.73, cR2 = 0.86

Figure 2. Mean (± standard error) species richness and abundance of longhorn beetles (A, D), jewel beetles (B, E), and bark and ambrosia 
beetles (C, F) for each trapping methodology. Asterisks within the plots indicate the statistical significance level from pairwise comparisons 
between the two trapping methodologies within each taxon from the generalized linear mixed models. Asterisks under the plots indicate 
the statistical significance level from pairwise comparisons among the three taxa from the generalized linear mixed models. P-values: 
* = 0.01 - 0.05; ** = 0.001 - 0.01; *** = < 0.001; ns = not significant (> 0.05). P-values were adjusted by Tukey correction. Model details 
are provided in Table 1.
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Effect of taxon and forest cover in the trap surroundings on 
dissimilarity indices

βcc and βrich were significantly affected by taxon and forest cover but not by their 
interaction, while β-3 was significantly affected by taxon and by the interaction 
between taxon and forest cover (Table 2). Irrespective of the forest cover effect, 
jewel beetles showed higher βcc and βrich values, and lower β-3 values compared to 
longhorn beetles and bark and ambrosia beetles (Fig. 3; Suppl. material 1: table 
S3). For all taxa, βcc slightly decreased with increasing amount of forest cover, 

Figure 3. Effect of forest cover in a buffer of 250 m radius around the traps on the dissimilarity among wood-boring beetle communities 
found in black understory multi-funnel traps and green canopy multi-funnel traps, considering the total beta-diversity βcc (A–C) and its 
components species richness difference βrich (D–F) and species replacement β-3 (G–I). Plots include model estimate (colored line) and 95% 
confidence intervals (colored shading). Model details are provided in Table 2. Pairwise comparisons among taxa are provided in Suppl. 
material 1: table S3. Slope estimates, along with their corresponding 95% confidence intervals, are provided in Suppl. material 1: table S4.
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although the trend was not significant (Fig. 3A–C; Suppl. material 1: table S4). 
For jewel beetles, βrich decreased with increasing amount of forest cover (Fig. 3E; 
Suppl. material 1: table S4), whereas the opposite trend was found for β-3 (Fig. 3H; 
Suppl. material 1: table S4). For longhorn beetles and bark and ambrosia beetles, 
both βrich and β-3 showed no relationship with forest cover (Fig. 3D, F, G, I, Suppl. 
material 1: table S4).

Discussion

Our study confirmed that the use of baited traps around high-risk sites represents 
an efficient approach for generic surveillance of wood-boring beetles (Brockerhoff 
et al. 2006; Rassati et al. 2015a, 2015b; Fan et al. 2019; Rabaglia et al. 2019; Mas 
et al. 2023). The simultaneous use of black-understory multi-funnel traps and 
green-canopy multi-funnel traps baited with a multi-lure blend of pheromones 
and host volatiles allowed us to catch 21 non-native species from all the three tar-
geted families (i.e., longhorn beetles, bark and ambrosia beetles and jewel beetles), 
as well as more than 300 native species. In addition to the importance of records 
of newly introduced or expanding non-native species, knowledge of distribution 
and abundance data for native species in areas near entry/export sites represents a 
second key benefit of the application of this or similar trapping protocols (Rassati 
et al. 2015a, 2018; Mas et al. 2023). In fact, these data can be crucial not only to 
increase our ability to predict which species are at most risk from being introduced 

Table 2. Analysis of deviance table from the generalized linear mixed models testing the effects of 
taxon (longhorn beetles, jewel beetles, and bark and ambrosia beetles), forest cover (mean % in buf-
fers of 250 m radius around the pair of traps) and their interaction on β-diversity (βcc), species rich-
ness difference (βrich) and species replacement (β-3) indices (Gaussian distribution used for all models). 
Nested random structure used for all models: ~1|Site/Cell. Type II Wald chi-square tests (χ2), degrees 
of freedom (df ), p-values, and delta marginal (mR2) and conditional (cR2) pseudo R-squared are 
provided for all models. Pairwise comparisons among taxa are provided in Suppl. material 1: table S3. 
Slope estimates, representing the relationship between each index and forest cover, along with their 
corresponding 95% confidence intervals, are provided in Suppl. material 1: table S4.

χ2 df p-value

βcc

Taxon 391.167 2 < 0.001

Forest 4.282 1 0.039

Taxon × Forest 0.899 2 0.638

mR2 = 0.53, cR2 = 0.58

βrich

Taxon 262.048 2 < 0.001

Forest 4.617 1 0.032

Taxon × Forest 5.073 2 0.079

mR2 = 0.45, cR2 = 0.47

β-3

Taxon 17.470 2 < 0.001

Forest 0.426 1 0.514

Taxon × Forest 7.250 2 0.027

mR2 = 0.07, cR2 = 0.10
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in other countries via exported commodities (Mas et al. 2023) but also to monitor 
range expansion or shifts of native species, which could become invasive within 
their native distributional range (Rassati et al. 2018; Ruzzier et al. 2023b).

Comparing the efficacy of the two trapping methodologies, we found that black 
multi-funnel traps baited with the multi-lure blend and set up in the understory 
caught significantly more bark and ambrosia beetle species and individuals than 
green multi-funnel traps baited with the same blend and set up in the canopy, 
but significantly less jewel beetle species and individuals. For longhorn beetles, a 
difference between the two trapping methodologies was found in the total number 
of individuals (more in black-understory traps), but not in the number of species. 
The trends observed in our study are likely explained by the combined effect of 
trap height and trap color (Dodds et al. 2024), two variables that are well known to 
affect trap efficacy towards the targeted taxa. Several studies, for example, showed 
an increasing abundance and richness of longhorn beetles and jewel beetles with 
increasing trap height (Ulyshen and Hanula 2007; Maguire et al. 2014; Flaherty 
et al. 2019; Rassati et al. 2019; Sheehan et al. 2019; Sweeney et al. 2020) and/
or the opposite trend for bark and ambrosia beetles (Ulyshen and Hanula 2007; 
Hanula et al. 2011; Dodds 2014; Hardersen et al. 2014; Flaherty et al. 2019). 
Other studies showed that green colored traps are more efficient than black or 
dark colored traps in catching jewel beetles, especially Agrilus spp. (e.g., Crook et 
al. 2009, 2014; Francese et al. 2010a, b, 2011; Petrice and Haack 2015; Skvarla 
and Dowling 2017; Rassati et al. 2019; Tobin et al. 2021), and/or that black or 
dark colored traps are generally more or similar efficient than green colored traps in 
attracting bark and ambrosia beetles (Cavaletto et al. 2020; Marchioro et al. 2020) 
and longhorn beetles (Kerr et al. 2017; Rassati et al. 2019; Cavaletto et al. 2021). 
Although our study does not allow us to disentangle the individual contribution 
of trap color and trap height on beetle catches, it shows that the simultaneous use 
of black-understory and green-canopy multi-funnel traps in generic trapping pro-
grams targeting these three taxa at the same time is essential.

Analyzing dissimilarity indices, we also found that differences between beetle 
communities caught in black-understory traps and green-canopy traps were more 
evident for jewel beetles than for both longhorn beetles and bark and ambrosia 
beetles. For jewel beetles, these differences were mainly attributed to differences 
in species richness, while both differences in species richness and species turnover 
contributed to explain the dissimilarity of communities of longhorn beetles and 
bark and ambrosia beetles between trapping methodologies. These results are espe-
cially useful when planning surveillance activities targeting only one of the three 
taxa. For longhorn beetles and bark and ambrosia beetles, the simultaneous use of 
black-understory and green-canopy multi-funnel traps is always recommended, as 
different species with different flight patterns can be caught by these two trapping 
methodologies. Previous studies testing different trap types, environmental gradi-
ents, and/or lures (Skvarla and Dowling 2017; Flaherty et al. 2019; Rassati et al. 
2019) confirmed that the diversification of trapping methodologies is always ad-
vantageous when targeting longhorn beetles and bark and ambrosia beetles (Dodds 
et al. 2024). For jewel beetles, especially Agrilus spp., green-canopy multi-funnel 
traps should be prioritized over black-understory traps in some, but not all, land-
scapes. In fact, jewel beetles were the only taxon for which dissimilarity indices 
were affected by the amount of forest cover in the trap surroundings. In particular, 
the difference in the number of jewel beetle species caught in black-understory and 
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green-canopy multi-funnel traps decreased with increasing amount of forest cover, 
whereas the species turnover increased. In other words, jewel beetle species collect-
ed in black-understory traps were a subset of the species collected in green-canopy 
traps in urban-dominated landscapes, whereas the number of jewel beetle species 
exclusive to either black-understory or green-canopy traps increased in forest-dom-
inated landscapes. Thus, the use of black-understory along with green-canopy 
multi-funnel traps is recommended only in forest-dominated landscapes.

Conclusions

Baited traps are an essential component of both specific and generic surveillance 
programs around the world, making the development of efficient trapping proto-
cols a research priority. Here we showed that the simultaneous use of black-un-
derstory and green-canopy multi-funnel traps baited with a multi-lure blend of 
longhorn beetle pheromones and host volatiles can be considered a very efficient 
approach for generic surveillance of longhorn beetles, jewel beetles and bark and 
ambrosia beetles in both urban-dominated and forest-dominated areas surround-
ing entry points. The only case in which this protocol can be simplified using only 
green-canopy multi-funnel traps is when targeting jewel beetles in urban-domi-
nated landscapes. Despite the general efficiency of the trapping protocol we tested, 
it is very likely that not all longhorn beetle, bark and ambrosia beetle and jewel 
beetle fauna present in the sampled area was represented by trap catches. Fan et al. 
(2019), for example, using the same multi-lure blend, collected 48% of the 238 
longhorn beetle species native to France, percentage that would be likely lower for 
bark and ambrosia beetles and jewel beetles. Overall, these results highlight that 
further improvements to the trapping protocol are possible. For example, the use 
of traps of different colors (e.g., yellow, blue) (Cavaletto et al. 2020, 2021) or traps 
integrated with more complex visual stimuli (Masaguè et al. 2024) is very likely 
to increase the diversity of species that can be collected, especially within those 
taxa strongly relying on color vision at the adult stage (e.g., Lepturinae). Similarly, 
advances in the knowledge of the chemical ecology of still understudied taxa (i.e., 
jewel beetles) will further improve trap attractiveness with direct benefits for na-
tional and international surveillance.
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